

1 **Intermittent Cytomegalovirus Infection Alters Neurobiological Metabolism and Induces**
2 **Cognitive Deficits in Mice**

3 Mark A.A. Harrison^{1, 4}, Sara L. Morris^{2, 4}, Grace A. Rudman³, Daniel J. Rittenhouse^{4, 11}, Chandler H. Monk⁵,
4 Siva SVP Sakamuri⁶, MaryJane J. Jones⁴, Md Mehedi Hasan⁷, Mst Shamima Khatun¹¹, Hanyun Wang⁹,
5 Lucas P. Garfinkel⁹, Elizabeth B. Norton⁴, Chad Steele^{4, 8}, Sangku Kim⁷, Jay K. Kolls^{10, 11}, S. Michal
6 Jazwinski^{7, 8, 10}, Ricardo Mostany^{6, 8}, Prasad VG Katakam^{6, 7, 8}, Elizabeth B. Engler-Chiurazzi^{8, 9}, Kevin J.
7 Zwezdaryk^{4, 7, 8}

8
9 ¹Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New
10 Orleans, LA 70112, USA

11 ²Biomedical Sciences Program, Tulane University School of Medicine, New Orleans, LA 70112, USA

12 ³Department of Environmental Studies, Tulane University School of Liberal Arts, New Orleans, LA 70112,
13 USA

14 ⁴Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA
15 70112, USA

16 ⁵Bioinnovation Program, Tulane University School of Medicine, New Orleans, LA 70112, USA

17 ⁶Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA

18 ⁷Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA

19 ⁸Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA

20 ⁹Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA

21 ¹⁰Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA

22 ¹¹Tulane Center for Translational Research in Infection & Inflammation, Tulane University School of
23 Medicine, New Orleans, LA 70112, USA

24

25

26 **Correspondence**

27 kwezdar@tulane.edu (K.J.Z), eenglerchiurazzi@tulane.edu (E.B.EC)

28

29 **In Brief**

30 Mechanistic evidence supporting an infectious etiology of dementia (e.g. Alzheimer's Disease) are poorly
31 defined. Harrison et al., show that intermittent infection with cytomegalovirus metabolically rewrites the
32 blood brain barrier and neighboring glial cells altering their function, resulting in decreased cognitive
33 function.

34

35 **Keywords**

36 Alzheimer's Disease, cognitive decline, cytomegalovirus, metabolism, oxidative stress, brain
37 microvascular endothelial cells, blood brain barrier, virus, aging, dementia

38

39 **SUMMARY**

40 Risk factors contributing to dementia are multifactorial. Pathogens as risk factors for dementia is largely
41 correlative with few causal relationships. Here, we demonstrate that intermittent cytomegalovirus
42 (CMV) infection in mice, mimicking human chronic infection and reactivation/reinfection events, alters
43 blood brain barrier (BBB) metabolic pathways. An increase in basal mitochondrial function is observed in
44 brain microvasculature endothelial cells (BMEC) at 12 months post infection but not at earlier time
45 points and is accompanied by elevated levels of superoxide, indicative of oxidative stress. Further, these
46 mice score lower in cognitive assays as compared to age-matched controls. Our data show that repeated
47 systemic infection with CMV, alters BBB metabolic function and impacts cognition. These observations
48 provide mechanistic insights through which pathogens contribute to the progression of pathologies
49 associated with dementia.

50 **INTRODUCTION**

51 Aging is a primary risk factor associated with cognitive decline and the development of dementia,
52 such as Alzheimer's disease (AD) (Hou et al., 2019; Moir et al., 2018). Therapeutic strategies have focused
53 on extracellular amyloid-beta (A β) oligomers and soluble fragments, or intracellular
54 hyperphosphorylated-tau tangles. However, these hallmarks of AD are not evident until the disease has
55 been developing for years and, even at that point, patients are often in a pre-clinical phase of the disease
56 with little to no cognitive symptoms (Dubois et al., 2016; Guzman-Velez et al., 2022). These findings
57 suggest that other initiating or contributing factors exist which may be addressed decades prior to the
58 development of any cognitive symptoms.

59 Pathogens are increasingly recognized as risk factors in the etiology of age-associated
60 neurodegeneration (Harris and Harris, 2015; Moir et al., 2018). A single viral or bacterial infection in adult
61 rodents has been shown to promote sickness behavior, induce systemic and central nervous system (CNS)
62 inflammatory cascades, alter memory performance, and disrupted synaptic communication via neuronal

63 loss (Hritcu et al., 2011; Kahn et al., 2012; Kranjac et al., 2012; McLinden et al., 2012; Tarr et al., 2011;
64 Zhao et al., 2019). Humans do not experience a single infection during their lifetimes, but rather
65 intermittent infections throughout life. The long-term consequences of intermittent infection are
66 inadequately studied. Emerging preclinical evidence suggests that a higher lifetime infection burden
67 impairs cognition, especially among transgenic mice carrying AD risk factors (Batista et al., 2019; Harris
68 and Harris, 2015). Finally, studies in adult and aged humans show that higher cumulative exposure to HSV-
69 1, cytomegalovirus (CMV), and bacterial infections was associated with impaired cognitive performance
70 or an accelerated rate of cognitive decline (Dickerson et al., 2014; Katan et al., 2013; Lovheim et al., 2018;
71 Lurain et al., 2013). Converging evidence indicates that pathogen exposure can promote features of
72 dementia but the mechanisms for these effects have yet to be elucidated.

73 In this study, CMV was used as a model pathogen. CMV is a ubiquitous herpesvirus exhibiting
74 40-80% seropositivity in the human population (Hoehl et al., 2020). Common to all herpesviruses,
75 following acute infection, CMV becomes latent and reactivates sporadically throughout the lifetime of the
76 host resulting in intermittent infection. Further, different CMV strains are thought to infect individuals
77 throughout life. CMV's ability to evade immune clearance enables a persistent phenotype that is
78 associated with immunosenescence, inflammaging, and memory T cell inflation (Holtappels et al., 2000).
79 Most individuals seroconvert before the age of 40 suggesting that the cycle of latency/reactivation or
80 reinfection continues for decades (Bate et al., 2010).

81 The role of CMV in unhealthy aging, including dementias, remains largely correlative. Data
82 suggesting individuals positive for CMV have an increased risk for AD and accelerated cognitive decline
83 (Barnes et al., 2015; Lee et al., 2020) are contrasted with data suggesting a weak association (Warren-
84 Gash et al., 2019). Ultimately, a lack of mechanisms linking pathogens and the origins of dementia impede
85 progress. Intriguingly, CMV pathogenesis mirrors many of the features of AD pathology including calcium
86 dysregulation (Sharon-Friling et al., 2006), amyloid deposition (Lurain et al., 2013), iron dysfunction

87 (Crowe et al., 2004), autophagic (Taisne et al., 2019), and mitochondrial dysfunction (Betsinger et al.,
88 2021; Combs et al., 2020; Harrison et al., 2022).

89 The ability of CMV to alter the metabolic profile of host cells to produce the biomaterials and
90 energy needed for viral replication is well described (Combs et al., 2020; Harrison et al., 2022; Saffran et
91 al., 2007; Spaggiari et al., 2008; Suliman et al., 2004; Vastag et al., 2011). This metabolic reprogramming
92 often results in impaired bioenergetics and subsequent increases in reactive oxygen species (ROS)
93 production. Interestingly, ROS production and impaired metabolism have been implicated in numerous
94 neurodegenerative diseases (Cai et al., 2012; Kim et al., 2015; Li et al., 2013; Muddapu et al., 2020).
95 Additionally, the Mitochondrial Cascade Hypothesis posits that AD pathogenesis is driven by progressive
96 mitochondrial dysfunction (Ashleigh et al., 2022). Further, it has been shown that mitochondrial function
97 directly alters the secretion or storage of A β (Wilkins et al., 2022). Finally, studies have demonstrated that
98 metabolic and mitochondrial changes alter cellular proteostasis and precede the onset of clinical
99 symptoms of AD (Swerdlow, 2020). Therefore, CMV, with its potent capacity to reprogram cellular
100 metabolism is an ideal candidate for assessing the impact of pathogens on aging-associated pathology
101 such as AD.

102 In this study, we demonstrate that intermittent CMV infection induces metabolic alterations in
103 the blood brain barrier (BBB) that correlate with decreases in cognitive function. We observe that
104 endothelial cells isolated from the BBB display enhanced oxidative phosphorylation (OXPHOS) and
105 consequently produce elevated levels of superoxide (SO) following the pro-inflammatory immune
106 response. These findings suggest that infection frequency and burden may accelerate cognitive decline by
107 modulating BBB metabolism and increasing oxidative stress.

108

109 **RESULTS**

110

111 **Intermittent MCMV infection exhibits delayed inflammatory cytokine expression in the brain**

112 Pathogen exposure and burden increase with age (Kline and Bowdish, 2016). Using a reductionist
113 model, we examined how a single herpesvirus (CMV) can contribute to accelerated hallmarks of aging and
114 dementia. As CMV exhibits species tropism, we used the well described Smith strain of murine CMV
115 (MCMV) in our studies(Fisher and Lloyd, 2020). We employed a murine model that integrates intermittent
116 infection and natural aging starting with young adult mice aged 8 weeks (Figure 1A). In immunocompetent
117 individuals, human CMV infection is asymptomatic, or results in mild flu-like symptoms and general
118 malaise. Our murine model behaves similarly, exhibiting slight but significant changes in body weight 2-3
119 days post infection (DPI), but rapid recovery equaling mock-infected mice by 5 DPI (Figure 1B). Repeat
120 MCMV exposures at 3-, 6-, and 9-months post infection (MPI) do not result in significant changes in body
121 weight (Figure S1A). Additionally, there were no significant changes in weight at 1 MPI (Figure 1C) and
122 mice exposed to intermittent infection did not exhibit significant changes in weight loss over 12 months
123 (Figure S1B). Plasma IgM specific to MCMV exhibited high concentrations 7 DPI after initial infection
124 (Figure 1D) but were reduced by 1 MPI. Subsequently, MCMV specific IgM concentrations increased with
125 reinfection. MCMV specific IgG concentrations correlated strongly with MCMV specific IgM plasma
126 concentration and significantly increased as a function of challenge number and remained quantitatively
127 similar from 6-12 MPI (Figure 1E). All mock-infected mice failed to elicit an antibody response against
128 MCMV, confirming the infection status remained negative throughout our experimental timeline. To
129 validate our measured results were not the result of active viral shedding, PCR analysis was completed
130 using salivary glands. MCMV can be detected at high viral loads in the salivary gland (Campbell et al.,
131 2008). At 7 DPI we observed high levels of UL123, a viral gene expressed early during replication.
132 Expression of UL123 decreases by 1 MPI (Figure S1C). There was no replicating MCMV detected in salivary
133 glands at 6- or 12-month timepoints suggesting a functional immune response and establishment of
134 MCMV latency.

135 Previous reports have suggested that in MCMV models, pro-inflammatory cytokine responses
136 may inhibit the innate immune response contributing to viral pathogenesis (Stacey et al., 2017; Stacey et
137 al., 2011). We observe differential expression of cytokines in relation to infection frequency, time, and the
138 origin of the sample (Figure 1F). In blood at 7 DPI, we observed significant upregulation of pro-and anti-
139 inflammatory cytokines including IL-1 β , IL-6, TNF α , IL-12p40, IL-12p70, CCL5, and IL-10 as compared to
140 mock infected animals. (Figure 1G, Figure S1D). CCL5 has previously been identified as a commonly
141 increased chemokine following CMV infection (Caldeira-Dantas et al., 2018; Wang et al., 2004). In
142 contrast, at 7 DPI, we observed mild pro-inflammatory cytokine increases in brain homogenate that was
143 limited to IL-12(p40) and CCL-5 (Figure 1H, Figure S1E). Interestingly, at 1 MPI, we observed an elevated
144 expression of inflammatory cytokines similar to that measured in the periphery at 7 DPI (Figure 1H, Figure
145 S1E). At this timepoint, the inflammation in the periphery was resolved (Figure S1F). However, at 12 MPI,
146 after 4 MCMV challenges, inflammatory cytokine levels in the brain are consistently lower in expression
147 (Figure 1H, Figure S1E) compared to the mock infected controls. This pattern of cytokine expression was
148 not observed in mock-infected mice (Figure S1G). Based on these findings, we conclude that peripheral
149 inflammation results in a delayed inflammatory response in the CNS.

150

151 **Intermittent MCMV infection alters the transcriptional profile of brain cells**

152 We next used Multiome analysis (simultaneous single cell gene expression and ATAC-seq) to
153 examine transcriptional changes in various cell populations. Whole brain lysate from mock-infected 12
154 MPI animals was compared to 12 MPI animals that had experienced intermittent CMV infection.
155 Dimensionality reduction analysis using UMAP showed clustering of 7 distinct cell populations based on
156 single-cell RNA expression (Figure 2A), single-cell chromatin accessibility (Figure 2B) and integrated
157 scATAC/scRNA (Figure 2C). To confirm observations from single cell transcriptional data, we assessed
158 brain cells phenotypically and metabolically using spectral flow cytometry (Table S1, Figure S2A). At all

159 timepoints examined, there were minor changes in the percent of brain cell populations (Figure 2E, 2F,
160 2G). We observed significant increases in T-cell populations in infected mice at all time points, indicating
161 enhanced extravasation from the bloodstream into the neural parenchyma. Of the other cell types
162 assayed, there were no significant changes between Mock and MCMV infected animals at any timepoint.
163 However in young adult mice, at 7 DPI, we observed increased proliferation rates in activated
164 microglia/macrophages and T cells (Figure 2H). These were accompanied by decreased proliferation of
165 brain microvascular endothelial cells (BMECs) (Figure 2H). Taken together, these findings demonstrate
166 expanding immune populations in response to initial infection or the subsequent inflammatory response.
167 T-cell populations exhibited changes in proliferation rate, as measured by Ki-67 positivity, with a decrease
168 at 1 MPI and an increase at 12 MPI respectively (Figure 2I, 2J).

169

170 **Blood brain barrier metabolic pathways are altered with increased MCMV exposure**

171 Our current data does not suggest that MCMV in our model directly infects the brain. Others have
172 reported similar findings (Reuter et al., 2004). If peripheral MCMV infection can influence changes in the
173 brain, the initial site of interaction is likely the BBB. Our Multiome data showed significant changes in
174 transcriptional expression of brain endothelial cells associated with metabolism (Slc1a3 and Atp1a2) and
175 BBB function (Cdh5, Cldn5, plpp3, Pla2g7, and Pecm1) (Figure 2D). Due to these findings, we focused on
176 characterizing the metabolic profile of BMECs. We used glucose transporter 1 (GLUT1), hexokinase 2
177 (HKII), translocase of the outer mitochondrial membrane 20 (TOMM20) and voltage dependent anion
178 channel 1 (VDAC1) as proxies for glycolytic and OXPHOS pathways (Figure 3A). In our characterization of
179 BMECs we identified a large population that had high expression of eNOS while a minority exhibited low
180 eNOS expression. Interestingly, in MCMV infected animals at 7 DPI, both total and eNOS low BMECs had
181 elevated expression of GLUT1 relative to mock infected animals (Figure 3B). This is contrasted with a
182 downregulation of GLUT1 in total BMECs (Figure 3C) and downregulation in the eNOS high group at late

183 timepoints, as compared to the mock infected controls (Figure 3D). Hexokinase expression at 7 DPI was
184 unchanged (Figure S3A), decreased at 1 MPI (Figure S3B), and only increased at 12 MPI in the eNOS low
185 group (Figure S3C). Taken together, initial infection appears to enhance glycolytic function, but that
186 change is transient and trends towards decreased glycolysis as a function of repeat infection and age. In
187 contrast, mitochondrial pathways trended towards enhancement in young adult mice at 7 DPI as indicated
188 by VDAC1 (Figure 3E) and TOMM20 (Figure S3D) expression. At 1 MPI VDAC1 expression (Figure 3F) is
189 decreased and TOMM20 (Figure S3E) remains unchanged. By 12 MPI, total BMECs and the eNOS high
190 group have significantly upregulated VDAC1 expression which suggests increased OXPHOS function as
191 VDAC1 is the primary channel for ATP/ADP exchange in mitochondria (Figure 3G). Expression of the
192 protein transporter TOMM20 was upregulated in eNOS high groups at 7 DPI (Figure S3D), unchanged at 1
193 MPI (Figure S3E), and downregulated at 12 MPI (Figure S3F). Previous research has demonstrated that,
194 despite having access to sufficient oxygen, BMECs are highly glycolytic (McDonald et al., 2022). The young
195 adult mice, at 7 DPI, protein expression results suggest that MCMV enhances this metabolic preference.
196 However in aged mice, by 12 MPI, these cells have been reprogrammed to enhance OXPHOS as indicated
197 by VDAC1 protein expression. The impact of these changes is unknown but they suggest altered BMEC
198 metabolic function and possibly BBB integrity.

199
200 **Hallmarks of mitochondrial dysfunction and oxidative stress are elevated in BMECs intermittently
201 exposed to MCMV**

202 To better understand the impact of altered expression of metabolic markers, we isolated BMECs
203 from the BBB and completed Seahorse bioanalyzer analysis (Figure 4A). At 1 MPI there were no significant
204 changes to OXPHOS including mitochondrial basal respiration, proton leak, non-mitochondrial respiration
205 or mitochondrial ATP production rate (Figure 4B, 4C). Similarly, there were no changes in maximal
206 respiration, spare respiratory capacity or total ATP production rate between mock and infected mice

207 (Figure S4A). Intriguingly in the aged mice, 12 MPI, the basal respiration rate, the minimal work required
208 by the mitochondria to meet metabolic demand, was significantly increased in MCMV-infected mice
209 (Figure 4D, 4E). This suggests that BMEC mitochondria from infected mice work harder to attain the same
210 level of metabolic homeostasis as BMECs from mock-infected mice. No changes in maximal respiration or
211 spare capacity (Figure S4B) were observed. Critically, we measured significant increases in proton leak and
212 non-mitochondrial respiration (Figure 4E) in BMEC from MCMV infected mice, suggesting the presence of
213 oxidative and mitochondrial stress. Mitochondrial ATP production rate was not found to be increased
214 (Figure 4E). To validate our findings, live cell examination of mitochondria was performed by flow
215 cytometry on CD31⁺ cells isolated from the brain. No changes in mitochondrial mass were detected at 1
216 MPI (Figure 4F) but increases were observed in aged mice, 12 MPI (Figure 4G), when comparing mock- vs
217 MCMV-infected. Critically, mitochondria-specific superoxide was significantly upregulated only in mice
218 exposed to intermittent infection (Figure 4H, Figure 4I). Together, these data suggest intermittent MCMV
219 infection decreases BMEC mitochondrial efficiency and increases oxidative stress.

220

221 **MCMV infection metabolically rewires astrocytes as a function of age**

222 We next asked if metabolic changes were restricted to the BBB or if additional changes were
223 occurring in the brain parenchyma. Due to their close interactions and functional cooperation with the
224 BBB, astrocytes were further examined. In addition to total astrocytes we also further subdivided this
225 group into their pro-inflammatory (A1) and anti-inflammatory (A2) phenotypes. Astrocytes uptake
226 metabolites and proteins from the BBB to supply nutrients to neurons (Figure 5A). Global decreases in
227 astrocytic metabolic function, both glycolysis and OXPHOS, have been associated with AD and result in
228 insufficient metabolic support for neighboring neurons (Andersen et al., 2022). GLUT1 in astrocytes is
229 responsible for uptake of glucose from the bloodstream (Zlokovic, 2011) and AD patients have lower
230 glucose levels in the brain (Herholz et al., 2002; Marcus et al., 2014; Mosconi et al., 2010). In young adult

231 mice, 7 DPI and 1 MPI, GLUT1 expression in astrocytes is unchanged between mock and MCMV-infected
232 mice but decreases in aged mice, 12 MPI (Figure 5B). HKII levels are significantly decreased at 1 MPI but
233 are unchanged at 12 MPI (Figure S5A).

234 OXPHOS function, as indicated by the protein import channel subunit TOMM20, demonstrated a
235 significant decrease in expression at 12 MPI in the MCMV-infected mice. TOMM20 expression is
236 unchanged in A1 astrocytes at 7 DPI but increases in A2 astrocytes (Figure S5B). However, in aged mice,
237 12 MPI, total astrocytes showed decreased TOMM20 expression (Figure 5C), findings that repeated in A1
238 and A2 populations (Figure S5C). These findings suggest that mitochondrial function is altered due to
239 infection burden. No changes in VDAC1 were observed (Figure S5D). Mitochondrial mass did not change
240 at 7 DPI in ACSA-2 positive cells but there was significantly less superoxide production in MCMV-infected
241 animals (Figure 5D). At 1 MPI both mass and superoxide production were similar in both groups of animals
242 (Figure 5E). By 12 MPI the mitochondrial mass of astrocytes in the MCMV-infected mice was significantly
243 decreased, however they were producing similar levels of superoxide (Figure 5F). These findings agree
244 with the decreases in TOMM20; however the similar levels of superoxide suggest increased oxidative
245 stress. Our results suggest that different cell populations in the brain, exhibit distinct metabolic changes
246 in response to intermittent CMV infection and age.

247

248 **Increased T cell accumulation in the brain**

249 An increased percent of live T cells was detected in both young adult, 7 DPI and 1 MPI, and aged
250 mice, 12 MPI, indicating increased extravasation from the vasculature (Figure 2E, 2F, 2G, 6A, and 6B). In
251 the 1 MPI cohort, T cells had decreased expression of OXPHOS and glycolysis metabolic markers relative
252 to mock infected animals (Figure 6A). In the 12 MPI cohort, T cells had higher expression of OXPHOS and
253 glycolysis metabolic markers relative to mock infected animals (Figure 6B). Additionally, these cells had
254 significantly decreased H3K27me3 expression suggesting a more transcriptionally active population. The

255 highly bioenergetic nature of these cells and retention in the parenchyma despite the absence of active
256 infection or inflammation suggest that they represent a population of tissue resident T memory cells.
257 Previous literature using a similar MCMV model described brain resident memory CD8 T cells acting as
258 inhibitors of MCMV reactivation (Brizic et al., 2018). The presence of resident memory T cells in the CNS
259 may contribute to disease progression as the CNS has conventionally been perceived as an immune
260 privileged environment.

261

262 **Cognition is impaired with intermittent MCMV infection**

263 To understand the physical manifestations of our collective molecular results, we completed
264 cognitive assays on all mice used in the experiments described in this manuscript. Hot plate (Figure S6A)
265 and passive avoidance (Figure S6D) assays were completed to identify innate differences in nociceptive
266 ability and fear-aggravated learning. At 1- (Figure S6B) and 12 MPI (Figure S6C), both groups exhibit similar
267 latency to behavior and number of behaviors demonstrating that their nociceptive capabilities are intact
268 and similar between groups (Woolfe and Macdonald, 1944). At 1- (Figure S6E) and 12 MPI (Figure S6F),
269 both groups exhibit near perfect retention of learning after 24 hours. This is indicative that fear-based
270 learning events (shock) with high salience are still able to be learned regardless of infection status. In
271 young adult mice, 7 DPI, Y-maze spontaneous alternation assessment of short-term recognition memory
272 (Figure 6C) demonstrated very similar number of alternations and spontaneous, correct alternations
273 (Figure 6D). At 1 MPI, MCMV-infected mice exhibited a significantly lower number of total alternations,
274 but no significant changes to spontaneous alternations (Figure 6E). Interestingly, in aged mice, 12 MPI (3
275 months after last infection), no difference in total alternations was measured but there was a significant
276 decrease in spontaneous alternations, indicative of impaired spatial working memory (Figure 6F).

277 Additionally, we observed a trend towards decreased spontaneous alternations when comparing
278 young adult, 1 MPI, and aged, 12 MPI, mock-infected mice (Figure 6G). These findings are in agreement

279 with previous studies of cognitive impairment in BALB/cJ mice in which cognitive decline was first
280 measurable at 12 months of age (Esquivel et al., 2020). We see a significant decrease in cognition with
281 infection status and age when comparing 1 MPI mock and 12 MPI MCMV-infected cohorts. Collectively,
282 our results suggest that increased viral burden, metabolically reprograms BMEC and glial metabolism,
283 driving BBB dysfunction, T cell infiltration and cognitive decline (Figure 6H). This suggests synergy between
284 viral burden and age as they relate to cognitive decline.

285

286 **DISCUSSION**

287 Dementia, including AD, are identified clinically, years to decades after initiation and progression
288 of disease. Pathogens and the resulting immune response have been correlated to AD but mechanistic
289 evidence integrating an infection and aging is lacking. Here, we addressed the impact of viral infection on
290 several aspects of AD pathology as a function of age. The data demonstrate that intermittent CMV
291 infection exacerbates age-associated mitochondrial dysfunction and oxidative stress. First, repeated
292 MCMV infection increased basal mitochondrial function over time. Second, mitochondrial specific ROS
293 was elevated in aged, repeated MCMV exposed mice. Third, intermittent infection resulted in significant
294 cognitive impairment. Importantly, the intermittently infected mice, even at the latest timepoint, appear
295 and behave just like the mock infected animals.

296 We report that intermittent CMV challenge impacts the metabolic function of endothelial cells in
297 the BBB. The degree of functional change increases with viral burden and age. How these changes are
298 mediated continue to be investigated. Metabolic pathways in BMECs are not altered during primary acute
299 infection in young adult mice. Instead, reprogramming occurs incrementally with increased viral burden
300 in advanced age. Inflammatory cytokines have been strongly associated with changes to BBB permeability
301 (Yang et al., 2019). We observed increased inflammatory markers in the blood at 7 DPI, but only minor
302 changes in the brain (Figure 1). In brain lysate, IL-12p40 was significantly increased correlating with

303 published data showing that siRNA knock-down of IL-12p40 in SAMP8 mice ameliorated AD
304 neuropathology (Tan et al., 2014). IL-12(p40) antagonizes IL-12 function and upregulation is needed for
305 efficient MCMV clearance (Carr et al., 1999). CCL5 was also significantly increased and aids in migration
306 of MCMV-specific CD8⁺ T cells (Caldeira-Dantas et al., 2018). CMV encodes a highly specific RANTES decoy
307 receptor (Wang et al., 2004) illustrating the importance of this cytokine during CMV infection. Both
308 cytokines continue to be significantly upregulated 1 MPI, possibly due to paracrine effects of low-level
309 viral persistence or residual viral products. Interestingly, both have been linked to Alzheimer's disease
310 (Vacinova et al., 2021; Vom Berg et al., 2012). At 1 MPI, we detect low levels of MCMV replication in the
311 salivary gland (Figure 1). IL-1 β and TNF α have been implicated in MCMV reactivation *in vivo* (Cook et al.,
312 2006; Simon et al., 2005) possibly establishing a cycle of intermittent reactivation. We did not include
313 assays to quantify MCMV reactivation in this study design, but the significant increase in IgM levels at the
314 6- and 12-MPI timepoints suggest that MCMV may reactivate more in these cohorts. It has been reported
315 that CMV reactivates more frequently as a function of increased age (Hemmersbach-Miller et al., 2020).
316 Inefficient control of MCMV reactivation by the immune system may explain the emergence of subtle but
317 significant changes at 12 MPI. Surprisingly, cytokine concentrations in the brain are significantly decreased
318 in MCMV infected mice at 12 MPI. Mice were last exposed to MCMV 3 months prior to testing of cytokines
319 so we expected concentrations similar to mock conditions, but not lower concentrations. It is possible
320 that hypoactivation is driving low levels, suggesting dysfunction in one or more glial populations.
321 Alternatively, this may be a response to the delayed expression of inflammatory cytokines seen at 1 MPI.
322 It is also possible that anti-inflammatory mechanisms are over stimulated. Collectively, all scenarios
323 suggest dysregulation of cytokine-associated mechanisms in the brain.

324 Our -omics approach concurs strongly with the molecular changes we observe. In endothelial cells
325 we measure significant transcriptional changes related to BBB permeability and function. Cadherin-5
326 (Cdn5), claudin-5 (Clnd5), and CD31 (Pecam1) are crucial for maintaining tight junction integrity and

327 permeability (Ma et al., 2017; Wimmer et al., 2019). Increased expression of CD31 has been linked to
328 neuroinflammation and accumulation of leukocytes (Wimmer et al., 2019). Phospholipid phosphatase 3
329 (Plpp3) and phospholipase A2 (Pla2g7) are associated with vascular maintenance. Interestingly,
330 phospholipase A2 has recently been shown to regulate phospholipid catabolism during inflammatory and
331 oxidative stress responses (Li et al., 2021; Lv et al., 2021; Spadaro et al., 2022). Decreased expression
332 correlated with lower levels of pro-inflammatory cytokines. The sodium-potassium transporter (ATP1A2)
333 and amino acid transporter (Slc1a3) expression changes support the hypothesis of altered metabolic
334 pathways in brain endothelial cells from MCMV infected mice.

355 The BBB is the interface between the brain and the periphery and includes BMECs, astrocytes,
356 and pericytes that actively regulate the movement of proteins, nutrients, ions, and small molecules.
357 Systemic inflammation could exert effects on the BBB by affecting the BMECs. Our metabolic profiling of
358 BMECs indicated a significant initial increase in GLUT1 expression in MCMV infected animals which is
359 consistent with previous findings where CMV has been reported to upregulate glycolysis pathways during
360 infection (Combs et al., 2020; Harrison et al., 2022; Munger et al., 2006; Yu et al., 2011). Similar
361 upregulation of glycolysis pathways has been reported in AD brains (Mooradian et al., 1997). However,
362 we noted a significant decrease in GLUT1 expression at 12 MPI. This is an area of active exploration in our
363 lab. GLUT1 is the main mediator of glucose uptake for the brain and alterations have been shown to
364 initiate BBB changes, altering tight junction integrity (Winkler et al., 2015). Reduced GLUT1 may be
365 indicative of reprogrammed BMEC metabolism, shifting dependency to OXPHOS which explains increased
366 basal respiration in 12 MPI mice. This would be similar to a recent report showing CRISPR-Cas9 GLUT1
367 truncation decreased BMEC bioenergetics and negatively impacted neuro angiogenesis (Pervaiz et al.,
368 2022). Expression of claudin-5, the dominant tight junction protein in the BBB, has been shown to
369 decrease in parallel with GLUT1 following suppression of the Wnt/β-catenin pathway (Wang et al., 2022).

350 Our previous research has demonstrated that CMV infection dysregulates this pathway (Angelova et al.,
351 2012; Zwezdaryk et al., 2016) providing a possible mechanism for these changes.

352 In addition to the glycolytic changes discussed above, mitochondrial function is significantly
353 altered in MCMV infected BMECs in aged mice, 12 MPI. Our group previously published that CMV infection
354 induces mitochondrial dysfunction in fibroblasts and glioblastoma cell lines (Combs et al., 2020; Harrison
355 et al., 2022). Our current and previous findings are consistent with literature associating metabolism and
356 mitochondrial dysfunction with dementia (Gao et al., 2020; Wilkins and Swerdlow, 2021). VDAC1, the
357 primary channel for the exchange of ADP for ATP through the mitochondrial membrane is intrinsically
358 linked to both the metabolic and the apoptotic functions of mitochondria. The increases in VDAC1
359 expression and mitochondrial mass with age and infection suggest increased dependence on OXPHOS.
360 Our Seahorse data demonstrate minimal change to mitochondrial ATP production implying OXPHOS is
361 being used for non-bioenergetic purposes. Intriguingly, VDAC1 has been reported to be elevated in the
362 brains of AD patients and in APP transgenic mice (Cuadrado-Tejedor et al., 2011; Manczak and Reddy,
363 2012). In the context of AD, VDAC1 is required for A β uptake and apoptosis (Smilansky et al., 2015). Our
364 VDAC1 observations may coincide with hexokinase-influenced glycolytic changes mediating BBB activity
365 (Pastorino et al., 2005). Our model correlates strongly with these studies and demonstrate that further
366 studies exploring VDAC1 function in our model are warranted. Decreased TOMM20 expression was also
367 observed. TOMM20 is responsible for the import of proteins targeted to the mitochondria. A Parkinson's
368 Disease model provided evidence that overexpression of TOMM20 protected against α -synuclein-induced
369 mitochondrial dysfunction and subsequent neurodegeneration (De Miranda et al., 2020). Based on these
370 observations, decreased TOMM20 levels in our model may suggest impaired A β clearance due to
371 dysfunctional mitochondrial transport functions.

372 Age and senescence related decreases in glycolysis and OXPHOS have previously been reported
373 in BMECs suggesting that MCMV infection may accelerate an aging phenotype relative to mock infected

374 animals (Sakamuri et al., 2022). Uncoupling of the ETC may explain the increased proton leak and play a
375 protective role by mitigating ROS production and therefore oxidative damage (Divakaruni and Brand,
376 2011). Previous research has shown that increased ROS production in the absence of increased ATP
377 production leads to endothelial cell activation and recruitment of immune cells which is supported by our
378 results (Li et al., 2017). Most intriguing is the detection of increased mitochondrial specific superoxide
379 (Figure 4). ROS has been well documented to contribute to neurodegenerative disorders (Valko et al.,
380 2007) specifically neuronal death due to A β accumulation (Zhang et al., 2009). We measured an increase
381 in total mitochondria suggesting mitochondrial fission is occurring. This is likely due to metabolic stress
382 and can be induced by CMV infection (Combs et al., 2019; Norris and Youle, 2008). It would be interesting
383 to define the impact on mitophagy to understand if damaged mitochondria remaining in the BBB further
384 contribute to BBB functional changes and progression of AD related pathologies.

385 Astrocytes, the abundant glial cells that reinforce the BMEC tight junctions in the BBB, act as the
386 primary nutrient uptake agents for the brain. Similar to BMECs, astrocytes expressed significantly
387 decreased levels of GLUT1 at 12 MPI. Astrocytic glycolysis is essential for neuron health as glycolysis-
388 derived lactate is taken up by neurons and used in OXPHOS in axon terminals. Studies have demonstrated
389 that astrocytic glycolysis decreases with age and is thought to contribute to AD-related impairments (Yao
390 et al., 2011). Additionally, astrocytic lactate is critical for providing neurons with the energy needed to
391 function properly and form memories (Descalzi et al., 2019). The impact of reduced glucose supply across
392 the BBB into the cerebral parenchyma was not investigated in our model but may play a critical role linking
393 metabolic rewiring to cognitive changes via reduced nutrient availability to neurons. Measuring glucose
394 and lactate concentrations in cortical and hippocampal regions may provide key insights linking
395 intermittent infection with cognitive decline in our model.

396 The increased presence of T cells in the brain with intermittent infection and age is largely
397 unexplained with our approach but could be driven by increased ROS. We do not detect chronic

398 inflammation in the periphery or the brain. A leaky BBB would provide increased and easier access for T
399 cells to cross the BBB and these changes correlate with infection, but this alone does not fully explain our
400 results. The highly metabolic nature of these T cells (Figure 6) suggest that they may be tissue resident T
401 cells. Murine polyomavirus infection has been reported to produce a set of brain resident memory T cells
402 (Shwetank et al., 2017). Similar results were observed in Vesicular stomatitis virus (VSV) treated mice and
403 it is thought that their persistence in the CNS may be problematic in an environment unaccustomed to
404 immune surveillance (Wakim et al., 2010). However, these viruses are neurotropic and CMV has
405 significant difficulty crossing the BBB in mature immunocompetent mice (Reuter et al., 2004). Future
406 studies will assess BBB permeability in this model.

407 The most compelling results linking our molecular results with a physical outcome are our
408 cognitive function behavior tests. Foot-shock based passive avoidance test results were very similar
409 between animals at all timepoints indicating the ability to learn fear-based, high salience stimuli
410 effectively. An aging study in BALB/C mice only found significant differences in passive avoidance
411 cognition beginning at 24 months of age (Puglisi-Allegra et al., 1986), so our findings at 12 months were
412 expected. We employed the Y-maze as a measure of spontaneous alternation. Successful alternations
413 between arms indicate an intact short-term recognition memory and by extension suggest intact medial
414 pre-frontal cortex and hippocampal functions. At 1 MPI MCMV-infected mice trend towards a decreased
415 percent of correct alternations in the maze, possible due to lingering sickness behavior (Figure 6) or
416 resulting from the impact of increased pro-inflammatory cytokines in the brain (Figure 1). These events
417 cannot explain the cognitive decline observed at 12 MPI as there is a decreased concentration of pro-
418 inflammatory cytokines (Figure 1). Similarly, age-related activity can be disregarded as both mock and
419 MCMV-infected animals exhibited similar number of alternations in the same timeframe and cognitive
420 performance is determined as a function of total movement in the maze. The significant decrease in
421 cognitive function when merging the cofactors age and infection strongly points to a synergy between

422 CMV infection and age. A study in BALB/c mice was first able to detect cognitive decline using the Y-maze
423 when comparing 4 month old mice to 12 month old mice (Esquivel et al., 2020). The fact that we detected
424 impaired cognition with age matched controls at the 12 MPI timepoint strongly suggests that MCMV
425 infection accelerates cognitive decline.

426 CMV seropositivity has previously been associated with numerous pathologies including breast
427 and brain cancers (Cobbs et al., 2002; Cui et al., 2018; Harkins et al., 2010), suggesting it may play an
428 oncomodulatory role in disease development and/or progression. Anti-viral therapy targeting CMV has
429 been used to treat patients with glioblastoma and has been shown to increase both overall and
430 progression-free survival (Stragliotto et al., 2020a; Stragliotto et al., 2020b). We have demonstrated that
431 systemic inflammation produces a delayed neuroinflammatory response which may be an initiation event
432 for accelerated cognitive decline. We have linked these changes to altered metabolism in BMECs and
433 enhanced production of ROS suggesting mitochondrial dysfunction and oxidative stress may be driving
434 accelerated disease progression. MCMV is our model pathogen, however, any pathogen, including SARS-
435 CoV-2, which produces transient systemic inflammation, may have the potential to contribute to
436 accelerated cellular aging. It is the additive nature of these pathogen exposures over time which we
437 suspect synergize with myriad other factors to accelerate aging and disease pathology.

438 Our experimental design includes limitations. We attempted a reductionist approach in which our
439 animals were repeatedly exposed to a single pathogen, very dissimilar to the diverse pathogens
440 experienced throughout life. We also employed a mouse model which is phenotypically “normal” with
441 respect to many of the risk factors strongly correlated with the development of dementia or AD. Our goal
442 was to determine if repeated infection, mimicking the intermittent reactivation or reinfection of CMV that
443 occurs throughout life, without any other complicating factors, could recapitulate some aspects of an AD
444 phenotype. Further, it is unknown, and likely variable, how frequently CMV reactivates in an
445 immunocompetent individual. Our model assumes a single reactivation each decade. For this study,

446 prioritized assessment of structures and processes governing the brain-immune interface so we did not
447 measure A β plaques or accumulation of tau tangles, hallmarks of AD. This study also used female mice
448 only, future studies will include males to compare results from current models of dementia and aging
449 (Esquivel et al., 2020). Many of our assays used whole brain or a hemisphere. Despite the generation of
450 exciting data, a region-specific analysis would be of great benefit to further understand how intermittent
451 infection is impacting specific areas of the BBB. Applying this model to transgenic animals predisposed to
452 AD development would provide additional insight into specific cell populations or molecular pathways
453 that change over time. These are all approaches currently being considered by our team.

454 In summary, our data demonstrate that intermittent CMV infection alters metabolic pathways in
455 the BBB and accelerates cognitive decline. This model makes use of a genotypically and phenotypically
456 normal mouse strain with no predisposition to cognitive deficits or dementia pathology. At 14 months of
457 age, the mice are equivalent to a human in their forties, at which point a human developing dementia
458 would still be in the pro-dromal, symptomless phase. Similar to the course of human disease, MCMV-
459 infected mice are clinically indistinguishable from the controls. Thus our model demonstrates synergy
460 between infection burden and age as potential contributing factors in AD progression. Our work strongly
461 supports a role for pathogens as risk factors in dementia related pathologies. These findings may change
462 the way that we address pathogen exposure and infections especially in populations at a higher risk of
463 developing of dementia.

464

465 **AKNOWLEDGEMENTS**

466 The authors would like to thank Constance Porretta of the Flow Cytometry Shared Resource Lab for her
467 assistance in developing and running the multiplexed spectral flow panel. We also would like to thank
468 Robin Kamucheka for her help using De Novo's FCS Express 7 for our flow analysis and Dr. Raul Freitas,
469 Ms. India Pursell and Ms. Miayla Marcus for technical input. Finally, we would like to thank Dr. Kejing Song

470 from the NextGen Sequencing Core for processing our Multiome samples and the Genomics,
471 Bioinformatics, and Spatial Multiomics Core for help with data analysis.
472 M.A.A.H was supported by a Louisiana Board of Regents predoctoral fellowship (LEQS 2017-22-GF-11).
473 P.V.K & R.M. are supported by grants from the NIH, 1R01AG074489 (NIA) and 1R01NS114286 (NINDS).
474 R.M is supported by 1R56AG072676. J.K.K was supported by the Louisiana Board of Regents Endowed
475 Chairs for Eminent Scholars program and PHS grant R35HL139930. E.B. EC is supported by K01MH117343.
476 S.M.J is supported by NIGMS P30GM145498. S.M.J and K.J.Z are supported by NIGMS (P20GM103629).
477 K.J.Z and E.B. EC are supported by pilot grants from the Infectious Disease Society of America (IDSA) and
478 the Tulane Brain Institute.

479

480 **AUTHOR CONTRIBUTIONS**

481 Conceptualization, M.A.A.H., E.B. EC., and K.J.Z.; Methodology, M.A.A.H. and K.J.Z.; Formal Analysis,
482 M.A.A.H., M.J.J., M.M.H. M.S.K., and S.K., K.J.Z.; Investigation, M.A.A.H., S.L.M., G.A.R., D.J.R., C.H.M.,
483 S.SVP.S., H.W., L.P.G, M.J.J., and E.B. EC.; Resources, K.J.Z., E.B.N., C.S., and J.K.K.; Data Curation, M.A.A.H.
484 and K.J.Z.; Writing, M.A.A.H. and K.J.Z.; Review and Editing, S.L.M., S.SVP.S., S.K., J.K.K., S.M.J., R.M., and
485 E.B. EC; Visualization, M.A.A.H., M.M.H., M.S.K., S.K., E.B. EC, K.J.Z; Supervision, K.J.Z., S.K., R.M., and P.K.;
486 Project Administration, K.J.Z.; Funding Acquisition K.J.Z. and S.M.J.

487

488 **DECLARATION OF INTERESTS**

489 The authors declare no competing interests.

490

491 **REFERENCES**

492 Andersen, J.V., Schousboe, A., and Verkhratsky, A. (2022). Astrocyte energy and neurotransmitter
493 metabolism in Alzheimer's disease: Integration of the glutamate/GABA-glutamine cycle. *Prog Neurobiol*
494 217, 102331.

495 Angelova, M., Zwezdaryk, K., Ferris, M., Shan, B., Morris, C.A., and Sullivan, D.E. (2012). Human
496 cytomegalovirus infection dysregulates the canonical Wnt/beta-catenin signaling pathway. *PLoS Pathog*
497 8, e1002959.

498 Ashleigh, T., Swerdlow, R.H., and Beal, M.F. (2022). The role of mitochondrial dysfunction in Alzheimer's
499 disease pathogenesis. *Alzheimers Dement*.

500 Barnes, L.L., Capuano, A.W., Aiello, A.E., Turner, A.D., Yolken, R.H., Torrey, E.F., and Bennett, D.A. (2015).
501 Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. *J Infect Dis*
502 211, 230-237.

503 Bate, S.L., Dollard, S.C., and Cannon, M.J. (2010). Cytomegalovirus seroprevalence in the United States:
504 the national health and nutrition examination surveys, 1988-2004. *Clin Infect Dis* 50, 1439-1447.

505 Batista, C.R.A., Gomes, G.F., Candelario-Jalil, E., Fiebich, B.L., and de Oliveira, A.C.P. (2019).
506 Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. *Int J Mol
507 Sci* 20.

508 Betsinger, C.N., Jankowski, C.S.R., Hofstadter, W.A., Federspiel, J.D., Otter, C.J., Jean Beltran, P.M., and
509 Cristea, I.M. (2021). The human cytomegalovirus protein pUL13 targets mitochondrial cristae architecture
510 to increase cellular respiration during infection. *Proc Natl Acad Sci U S A* 118, 1-12.

511 Brizic, I., Susak, B., Arapovic, M., Huszthy, P.C., Hirsl, L., Kvestak, D., Juranic Lisnic, V., Golemac, M., Pernjak
512 Pugel, E., Tomac, J., *et al.* (2018). Brain-resident memory CD8(+) T cells induced by congenital CMV
513 infection prevent brain pathology and virus reactivation. *Eur J Immunol* 48, 950-964.

514 Cai, H., Cong, W.N., Ji, S., Rothman, S., Maudsley, S., and Martin, B. (2012). Metabolic dysfunction in
515 Alzheimer's disease and related neurodegenerative disorders. *Curr Alzheimer Res* 9, 5-17.

516 Caldeira-Dantas, S., Furmanak, T., Smith, C., Quinn, M., Teos, L.Y., Ertel, A., Kurup, D., Tandon, M., Alevizos,
517 I., and Snyder, C.M. (2018). The Chemokine Receptor CXCR3 Promotes CD8(+) T Cell Accumulation in
518 Uninfected Salivary Glands but Is Not Necessary after Murine Cytomegalovirus Infection. *J Immunol* 200,
519 1133-1145.

520 Campbell, A.E., Cavanaugh, V.J., and Slater, J.S. (2008). The salivary glands as a privileged site of
521 cytomegalovirus immune evasion and persistence. *Med Microbiol Immunol* 197, 205-213.

522 Carr, J.A., Rogerson, J.A., Mulqueen, M.J., Roberts, N.A., and Nash, A.A. (1999). The role of endogenous
523 interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for
524 endogenous IL-12 p40. *J Interferon Cytokine Res* 19, 1145-1152.

525 Cobbs, C.S., Harkins, L., Samanta, M., Gillespie, G.Y., Bharara, S., King, P.H., Nabors, L.B., Cobbs, C.G., and
526 Britt, W.J. (2002). Human cytomegalovirus infection and expression in human malignant glioma. *Cancer*
527 *Res* 62, 3347-3350.

528 Combs, J.A., Norton, E.B., Saifudeen, Z.R., Bentrup, K.H.Z., Katakam, P.V., Morris, C.A., Myers, L., Kaur, A.,
529 Sullivan, D.E., and Zwezdaryk, K.J. (2020). Human Cytomegalovirus Alters Host Cell Mitochondrial Function
530 during Acute Infection. *J Virol* 94, 1-19.

531 Combs, J.A., Norton, E.B., Saifudeen, Z.R., Honer Zu Bentrup, K., Katakam, P.V., Morris, C.A., Myers, L.,
532 Kaur, A., Sullivan, D.E., and Zwezdaryk, K.J. (2019). Human Cytomegalovirus Alters Host Cell Mitochondrial
533 Function During Acute Infection. *J Virol*.

534 Cook, C.H., Trgovcich, J., Zimmerman, P.D., Zhang, Y., and Sedmak, D.D. (2006). Lipopolysaccharide, tumor
535 necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in
536 immunocompetent mice. *J Virol* 80, 9151-9158.

537 Crowe, W.E., Maglova, L.M., Ponka, P., and Russell, J.M. (2004). Human cytomegalovirus-induced host cell
538 enlargement is iron dependent. *Am J Physiol Cell Physiol* 287, C1023-1030.

539 Cuadrado-Tejedor, M., Vilarino, M., Cabodevilla, F., Del Rio, J., Frechilla, D., and Perez-Mediavilla, A.
540 (2011). Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer's disease
541 transgenic mice: an insight into the pathogenic effects of amyloid-beta. *J Alzheimers Dis* 23, 195-206.

542 Cui, J., Wang, Q., Wang, H.B., Wang, B., and Li, L. (2018). Protein and DNA evidences of HCMV infection in
543 primary breast cancer tissues and metastatic sentinel lymph nodes. *Cancer Biomark* 21, 769-780.

544 De Miranda, B.R., Rocha, E.M., Castro, S.L., and Greenamyre, J.T. (2020). Protection from alpha-Synuclein
545 induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor
546 TOM20. *NPJ Parkinsons Dis* 6, 38.

547 Descalzi, G., Gao, V., Steinman, M.Q., Suzuki, A., and Alberini, C.M. (2019). Lactate from astrocytes fuels
548 learning-induced mRNA translation in excitatory and inhibitory neurons. *Commun Biol* 2, 247.

549 Dickerson, F., Stallings, C., Origoni, A., Katsafanas, E., Schweinfurth, L.A., Savage, C.L., and Yolken, R.
550 (2014). Association between cytomegalovirus antibody levels and cognitive functioning in non-elderly
551 adults. *PLoS One* 9, e95510.

552 Divakaruni, A.S., and Brand, M.D. (2011). The regulation and physiology of mitochondrial proton leak.
553 *Physiology (Bethesda)* 26, 192-205.

554 Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H.,
555 Bertram, L., Blennow, K., *et al.* (2016). Preclinical Alzheimer's disease: Definition, natural history, and
556 diagnostic criteria. *Alzheimers Dement* 12, 292-323.

557 Esquivel, N., Garcia, Y., Lores, B., Gutierrez, M., and Rodriguez, C. (2020). Characterization of aged male
558 BALB/ccenp mice as a model of dementia. *Lab Anim Res* 36, 7.

559 Fisher, M.A., and Lloyd, M.L. (2020). A Review of Murine Cytomegalovirus as a Model for Human
560 Cytomegalovirus Disease-Do Mice Lie? *International journal of molecular sciences* 22.

561 Gao, F., Zuo, B., Wang, Y., Li, S., Yang, J., and Sun, D. (2020). Protective function of exosomes from adipose
562 tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. *Life Sci* 255, 117719.

563 Guzman-Velez, E., Diez, I., Schoemaker, D., Pardilla-Delgado, E., Vila-Castelar, C., Fox-Fuller, J.T., Baena,
564 A., Sperling, R.A., Johnson, K.A., Lopera, F., *et al.* (2022). Amyloid-beta and tau pathologies relate to
565 distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer's disease. *Proc Natl Acad
566 Sci U S A* 119, e2113641119.

567 Harkins, L.E., Matlaf, L.A., Soroceanu, L., Klemm, K., Britt, W.J., Wang, W., Bland, K.I., and Cobbs, C.S.
568 (2010). Detection of human cytomegalovirus in normal and neoplastic breast epithelium. *Herpesviridae*
569 1, 8.

570 Harris, S.A., and Harris, E.A. (2015). Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative
571 Factors in Sporadic Alzheimer's Disease. *J Alzheimers Dis* 48, 319-353.

572 Harrison, M.A.A., Hochreiner, E.M., Benjamin, B.P., Lawler, S.E., and Zwezdaryk, K.J. (2022). Metabolic
573 Reprogramming of Glioblastoma Cells during HCMV Infection Induces Secretome-Mediated Paracrine
574 Effects in the Microenvironment. *Viruses* 14.

575 Hemmersbach-Miller, M., Alexander, B.D., Pieper, C.F., and Schmader, K.E. (2020). Age matters: older age
576 as a risk factor for CMV reactivation in the CMV serostatus-positive kidney transplant recipient. *Eur J Clin
577 Microbiol Infect Dis* 39, 455-463.

578 Herholz, K., Salmon, E., Perani, D., Baron, J.C., Holthoff, V., Frolich, L., Schonknecht, P., Ito, K., Mielke, R.,
579 Kalbe, E., *et al.* (2002). Discrimination between Alzheimer dementia and controls by automated analysis
580 of multicenter FDG PET. *Neuroimage* 17, 302-316.

581 Hoehl, S., Berger, A., Ciesek, S., and Rabenau, H.F. (2020). Thirty years of CMV seroprevalence-a
582 longitudinal analysis in a German university hospital. *Eur J Clin Microbiol Infect Dis* 39, 1095-1102.

583 Holtappels, R., Pahl-Seibert, M.F., Thomas, D., and Reddehase, M.J. (2000). Enrichment of immediate-
584 early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool
585 during latent murine cytomegalovirus infection of the lungs. *J Virol* 74, 11495-11503.

586 Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., and Bohr, V.A. (2019). Ageing as a
587 risk factor for neurodegenerative disease. *Nat Rev Neurol* 15, 565-581.

588 Hritcu, L., Ciobica, A., Stefan, M., Mihasan, M., Palamiuc, L., and Nabeshima, T. (2011). Spatial memory
589 deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of
590 Parkinson's disease. *Neurosci Res* 71, 35-43.

591 Kahn, M.S., Kranjac, D., Alonzo, C.A., Haase, J.H., Cedillos, R.O., McLinden, K.A., Boehm, G.W., and
592 Chumley, M.J. (2012). Prolonged elevation in hippocampal Abeta and cognitive deficits following repeated
593 endotoxin exposure in the mouse. *Behav Brain Res* 229, 176-184.

594 Katan, M., Moon, Y.P., Paik, M.C., Sacco, R.L., Wright, C.B., and Elkind, M.S. (2013). Infectious burden and
595 cognitive function: the Northern Manhattan Study. *Neurology* 80, 1209-1215.

596 Kim, G.H., Kim, J.E., Rhie, S.J., and Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative
597 Diseases. *Exp Neurobiol* 24, 325-340.

598 Kline, K.A., and Bowdish, D.M. (2016). Infection in an aging population. *Curr Opin Microbiol* 29, 63-67.

599 Kranjac, D., McLinden, K.A., Deodati, L.E., Papini, M.R., Chumley, M.J., and Boehm, G.W. (2012). Peripheral
600 bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in
601 mice. *Brain Behav Immun* 26, 109-121.

602 Lee, K.H., Kwon, D.E., Do Han, K., La, Y., and Han, S.H. (2020). Association between cytomegalovirus end-
603 organ diseases and moderate-to-severe dementia: a population-based cohort study. *BMC Neurol* 20, 216.

604 Li, J., O, W., Li, W., Jiang, Z.G., and Ghanbari, H.A. (2013). Oxidative stress and neurodegenerative
605 disorders. *Int J Mol Sci* 14, 24438-24475.

606 Li, Q., Feng, C., Li, L., Xu, G., Gu, H., Li, S., Li, D., Liu, M., Han, S., and Zheng, B. (2021). Lipid Receptor G2A-
607 Mediated Signal Pathway Plays a Critical Role in Inflammatory Response by Promoting Classical
608 Macrophage Activation. *J Immunol* 206, 2338-2352.

609 Li, X., Fang, P., Yang, W.Y., Chan, K., Lavallee, M., Xu, K., Gao, T., Wang, H., and Yang, X. (2017).
610 Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both
611 physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. *Can J
612 Physiol Pharmacol* 95, 247-252.

613 Lovheim, H., Olsson, J., Weidung, B., Johansson, A., Eriksson, S., Hallmans, G., and Elgh, F. (2018).
614 Interaction between Cytomegalovirus and Herpes Simplex Virus Type 1 Associated with the Risk of
615 Alzheimer's Disease Development. *J Alzheimers Dis* 61, 939-945.

616 Lurain, N.S., Hanson, B.A., Martinson, J., Leurgans, S.E., Landay, A.L., Bennett, D.A., and Schneider, J.A.
617 (2013). Virological and immunological characteristics of human cytomegalovirus infection associated with
618 Alzheimer disease. *J Infect Dis* 208, 564-572.

619 Lv, S.L., Zeng, Z.F., Gan, W.Q., Wang, W.Q., Li, T.G., Hou, Y.F., Yan, Z., Zhang, R.X., and Yang, M. (2021). Lp-
620 PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3
621 inflammasome activation. *Acta Pharmacol Sin* 42, 2016-2032.

622 Ma, S.C., Li, Q., Peng, J.Y., Zhouwen, J.L., Diao, J.F., Niu, J.X., Wang, X., Guan, X.D., Jia, W., and Jiang, W.G.
623 (2017). Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial
624 cell proliferation, migration, and adhesion to prevent lung cancer metastasis. *CNS Neurosci Ther* 23, 947-
625 960.

626 Manczak, M., and Reddy, P.H. (2012). Abnormal interaction of VDAC1 with amyloid beta and
627 phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. *Hum Mol Genet* 21, 5131-
628 5146.

629 Marcus, C., Mena, E., and Subramaniam, R.M. (2014). Brain PET in the diagnosis of Alzheimer's disease.
630 *Clin Nucl Med* 39, e413-422; quiz e423-416.

631 McDonald, C.J., Blankenheim, Z.J., and Drewes, L.R. (2022). Brain Endothelial Cells: Metabolic Flux and
632 Energy Metabolism. *Handb Exp Pharmacol* 273, 59-79.

633 McLinden, K.A., Kranjac, D., Deodati, L.E., Kahn, M., Chumley, M.J., and Boehm, G.W. (2012). Age
634 exacerbates sickness behavior following exposure to a viral mimetic. *Physiol Behav* 105, 1219-1225.

635 Moir, R.D., Lathe, R., and Tanzi, R.E. (2018). The antimicrobial protection hypothesis of Alzheimer's
636 disease. *Alzheimers Dement* 14, 1602-1614.

637 Mooradian, A.D., Chung, H.C., and Shah, G.N. (1997). GLUT-1 expression in the cerebra of patients with
638 Alzheimer's disease. *Neurobiol Aging* 18, 469-474.

639 Mosconi, L., Berti, V., Glodzik, L., Pupi, A., De Santi, S., and de Leon, M.J. (2010). Pre-clinical detection of
640 Alzheimer's disease using FDG-PET, with or without amyloid imaging. *J Alzheimers Dis* 20, 843-854.

641 Muddapu, V.R., Dharshini, S.A.P., Chakravarthy, V.S., and Gromiha, M.M. (2020). Neurodegenerative
642 Diseases - Is Metabolic Deficiency the Root Cause? *Front Neurosci* 14, 213.

643 Munger, J., Bajad, S.U., Coller, H.A., Shenk, T., and Rabinowitz, J.D. (2006). Dynamics of the cellular
644 metabolome during human cytomegalovirus infection. *PLoS Pathog* 2, e132.

645 Norris, K.L., and Youle, R.J. (2008). Cytomegalovirus proteins vMIA and m38.5 link mitochondrial
646 morphogenesis to Bcl-2 family proteins. *J Virol* 82, 6232-6243.

647 Pastorino, J.G., Hoek, J.B., and Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts
648 the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and
649 potentiates chemotherapy-induced cytotoxicity. *Cancer Res* 65, 10545-10554.

650 Pervaiz, I., Zahra, F.T., Mikelis, C.M., and Al-Ahmad, A.J. (2022). An in vitro model of glucose transporter 1
651 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells. *J Neurochem* **162**,
652 483-500.

653 Puglisi-Allegra, S., Cabib, S., Ebel, A., Kempf, J., and Castellano, C. (1986). Passive avoidance behavior in
654 mice: interaction between age and genotype. *Exp Aging Res* **12**, 107-109.

655 Reuter, J.D., Gomez, D.L., Wilson, J.H., and Van Den Pol, A.N. (2004). Systemic immune deficiency
656 necessary for cytomegalovirus invasion of the mature brain. *J Virol* **78**, 1473-1487.

657 Saffran, H.A., Pare, J.M., Corcoran, J.A., Weller, S.K., and Smiley, J.R. (2007). Herpes simplex virus
658 eliminates host mitochondrial DNA. *EMBO Rep* **8**, 188-193.

659 Sakamuri, S., Sure, V.N., Kolli, L., Liu, N., Evans, W.R., Sperling, J.A., Busija, D.W., Wang, X., Lindsey, S.H.,
660 Murfee, W.L., *et al.* (2022). Glycolytic and Oxidative Phosphorylation Defects Precede the Development
661 of Senescence in Primary Human Brain Microvascular Endothelial Cells. *Geroscience* **44**, 1975-1994.

662 Sharon-Friling, R., Goodhouse, J., Colberg-Poley, A.M., and Shenk, T. (2006). Human cytomegalovirus
663 pUL37x1 induces the release of endoplasmic reticulum calcium stores. *Proc Natl Acad Sci U S A* **103**, 19117-
664 19122.

665 Shwetank, Abdelsamed, H.A., Frost, E.L., Schmitz, H.M., Mockus, T.E., Youngblood, B.A., and Lukacher,
666 A.E. (2017). Maintenance of PD-1 on brain-resident memory CD8 T cells is antigen independent. *Immunol
667 Cell Biol* **95**, 953-959.

668 Simon, C.O., Seckert, C.K., Dreis, D., Reddehase, M.J., and Grzimek, N.K. (2005). Role for tumor necrosis
669 factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. *J Virol* **79**,
670 326-340.

671 Smilansky, A., Dangoor, L., Nakdimon, I., Ben-Hail, D., Mizrachi, D., and Shoshan-Barmatz, V. (2015). The
672 Voltage-dependent Anion Channel 1 Mediates Amyloid beta Toxicity and Represents a Potential Target
673 for Alzheimer Disease Therapy. *J Biol Chem* **290**, 30670-30683.

674 Spadaro, O., Youm, Y., Shchukina, I., Ryu, S., Sidorov, S., Ravussin, A., Nguyen, K., Aladyeva, E., Predeus,
675 A.N., Smith, S.R., *et al.* (2022). Caloric restriction in humans reveals immunometabolic regulators of health
676 span. *Science* **375**, 671-677.

677 Spaggiari, G.M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M.C., and Moretta, L. (2008).
678 Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role
679 of indoleamine 2,3-dioxygenase and prostaglandin E2. *Blood* **111**, 1327-1333.

680 Stacey, M.A., Clare, S., Clement, M., Marsden, M., Abdul-Karim, J., Kane, L., Harcourt, K., Brandt, C.,
681 Fielding, C.A., Smith, S.E., *et al.* (2017). The antiviral restriction factor IFN-induced transmembrane protein
682 3 prevents cytokine-driven CMV pathogenesis. *J Clin Invest* **127**, 1463-1474.

683 Stacey, M.A., Marsden, M., Wang, E.C., Wilkinson, G.W., and Humphreys, I.R. (2011). IL-10 restricts
684 activation-induced death of NK cells during acute murine cytomegalovirus infection. *J Immunol* **187**, 2944-
685 2952.

686 Stragliotto, G., Pantalone, M.R., Rahbar, A., Bartek, J., and Soderberg-Naucler, C. (2020a). Valganciclovir
687 as Add-on to Standard Therapy in Glioblastoma Patients. *Clin Cancer Res* **26**, 4031-4039.

688 Stragliotto, G., Pantalone, M.R., Rahbar, A., and Soderberg-Naucler, C. (2020b). Valganciclovir as Add-On
689 to Standard Therapy in Secondary Glioblastoma. *Microorganisms* **8**.

690 Suliman, H.B., Welty-Wolf, K.E., Carraway, M., Tatro, L., and Piantadosi, C.A. (2004). Lipopolysaccharide
691 induces oxidative cardiac mitochondrial damage and biogenesis. *Cardiovasc Res* **64**, 279-288.

692 Swerdlow, R.H. (2020). The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the
693 metabolic link to Alzheimer's disease. *Int Rev Neurobiol* **154**, 207-233.

694 Taisne, C., Lussignol, M., Hernandez, E., Moris, A., Mouna, L., and Esclatine, A. (2019). Human
695 cytomegalovirus hijacks the autophagic machinery and LC3 homologs in order to optimize cytoplasmic
696 envelopment of mature infectious particles. *Sci Rep* **9**, 4560.

697 Tan, M.S., Yu, J.T., Jiang, T., Zhu, X.C., Guan, H.S., and Tan, L. (2014). IL12/23 p40 inhibition ameliorates
698 Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. *J Alzheimers Dis* **38**,
699 633-646.

700 Tarr, A.J., McLinden, K.A., Kranjac, D., Kohman, R.A., Amaral, W., and Boehm, G.W. (2011). The effects of
701 age on lipopolysaccharide-induced cognitive deficits and interleukin-1beta expression. *Behav Brain Res*
702 **217**, 481-485.

703 Vacinova, G., Vejrazkova, D., Rusina, R., Holmerova, I., Vankova, H., Jarolimova, E., Vcelak, J., Bendlova,
704 B., and Vankova, M. (2021). Regulated upon activation, normal T cell expressed and secreted (RANTES)
705 levels in the peripheral blood of patients with Alzheimer's disease. *Neural Regen Res* **16**, 796-800.

706 Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., and Telser, J. (2007). Free radicals and
707 antioxidants in normal physiological functions and human disease. *Int J Biochem Cell Biol* **39**, 44-84.

708 Vastag, L., Koyuncu, E., Grady, S.L., Shenk, T.E., and Rabinowitz, J.D. (2011). Divergent effects of human
709 cytomegalovirus and herpes simplex virus-1 on cellular metabolism. *PLoS Pathog* **7**, e1002124.

710 Vom Berg, J., Prokop, S., Miller, K.R., Obst, J., Kalin, R.E., Lopategui-Cabezas, I., Wegner, A., Mair, F.,
711 Schipke, C.G., Peters, O., *et al.* (2012). Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like
712 pathology and cognitive decline. *Nat Med* **18**, 1812-1819.

713 Wakim, L.M., Woodward-Davis, A., and Bevan, M.J. (2010). Memory T cells persisting within the brain
714 after local infection show functional adaptations to their tissue of residence. *Proc Natl Acad Sci U S A* **107**,
715 17872-17879.

716 Wang, D., Bresnahan, W., and Shenk, T. (2004). Human cytomegalovirus encodes a highly specific RANTES
717 decoy receptor. *Proc Natl Acad Sci U S A* **101**, 16642-16647.

718 Wang, Q., Huang, X., Su, Y., Yin, G., Wang, S., Yu, B., Li, H., Qi, J., Chen, H., Zeng, W., *et al.* (2022). Activation
719 of Wnt/beta-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease. *Brain*.

720 Warren-Gash, C., Forbes, H.J., Williamson, E., Breuer, J., Hayward, A.C., Mavrodaris, A., Ridha, B.H., Rossor,
721 M.N., Thomas, S.L., and Smeeth, L. (2019). Human herpesvirus infections and dementia or mild cognitive
722 impairment: a systematic review and meta-analysis. *Sci Rep* **9**, 4743.

723 Wilkins, H.M., and Swerdlow, R.H. (2021). Mitochondrial links between brain aging and Alzheimer's
724 disease. *Transl Neurodegener* **10**, 33.

725 Wilkins, H.M., Troutwine, B.R., Menta, B.W., Manley, S.J., Strope, T.A., Lysaker, C.R., and Swerdlow, R.H.
726 (2022). Mitochondrial Membrane Potential Influences Amyloid-beta Protein Precursor Localization and
727 Amyloid-beta Secretion. *J Alzheimers Dis* **85**, 381-394.

728 Wimmer, I., Tietz, S., Nishihara, H., Deutsch, U., Sallusto, F., Gosselet, F., Lyck, R., Muller, W.A., Lassmann,
729 H., and Engelhardt, B. (2019). PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-
730 Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. *Front Immunol* **10**, 711.

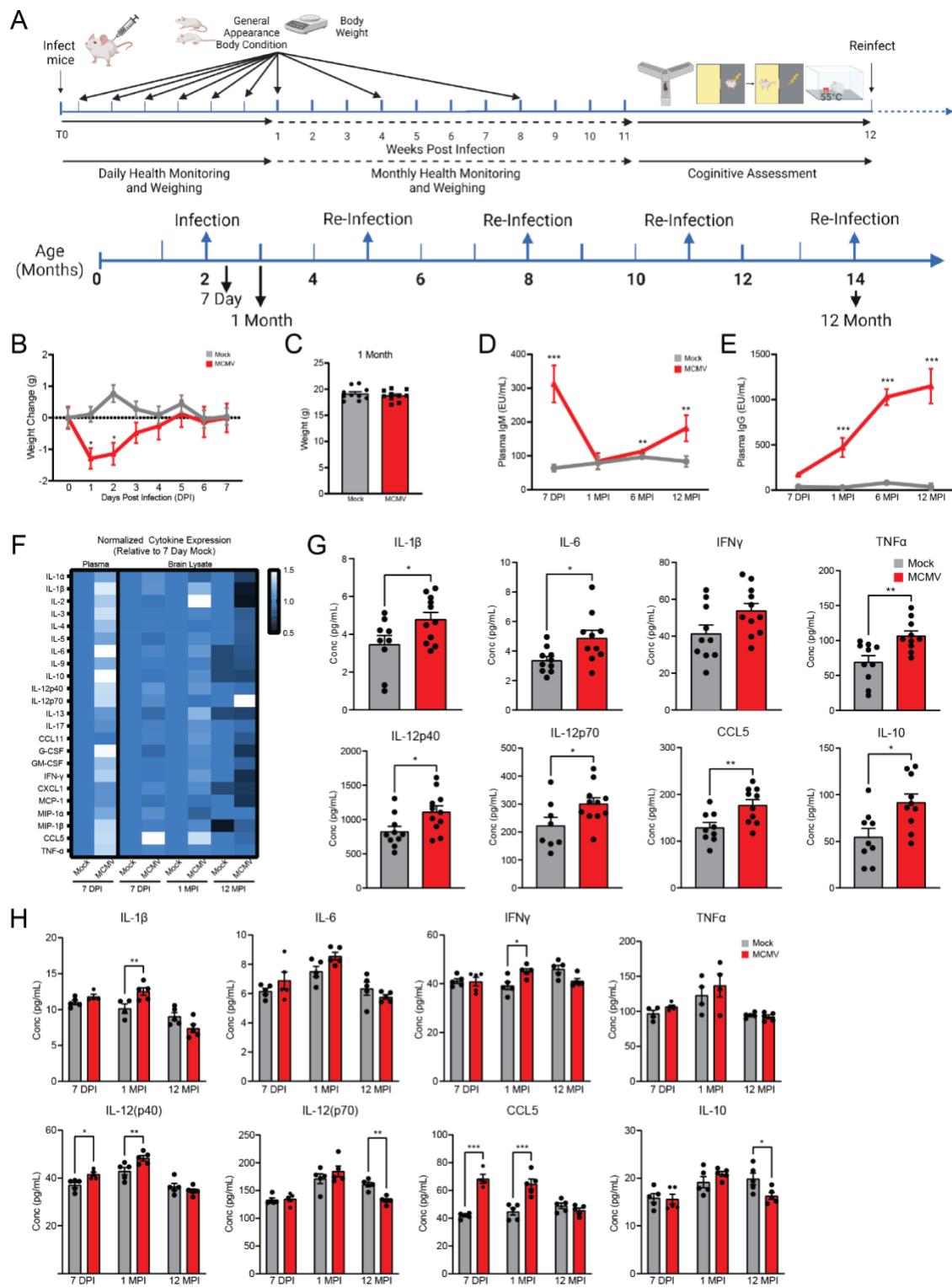
731 Winkler, E.A., Nishida, Y., Sagare, A.P., Rege, S.V., Bell, R.D., Perlmuter, D., Sengillo, J.D., Hillman, S., Kong,
732 P., Nelson, A.R., *et al.* (2015). GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal
733 dysfunction and degeneration. *Nat Neurosci* **18**, 521-530.

734 Wolfe, G., and Macdonald, A.D. (1944). THE EVALUATION OF THE ANALGESIC ACTION OF PETHIDINE
735 HYDROCHLORIDE (DEMEROL). *Journal of Pharmacology and Experimental Therapeutics* **80**, 300.

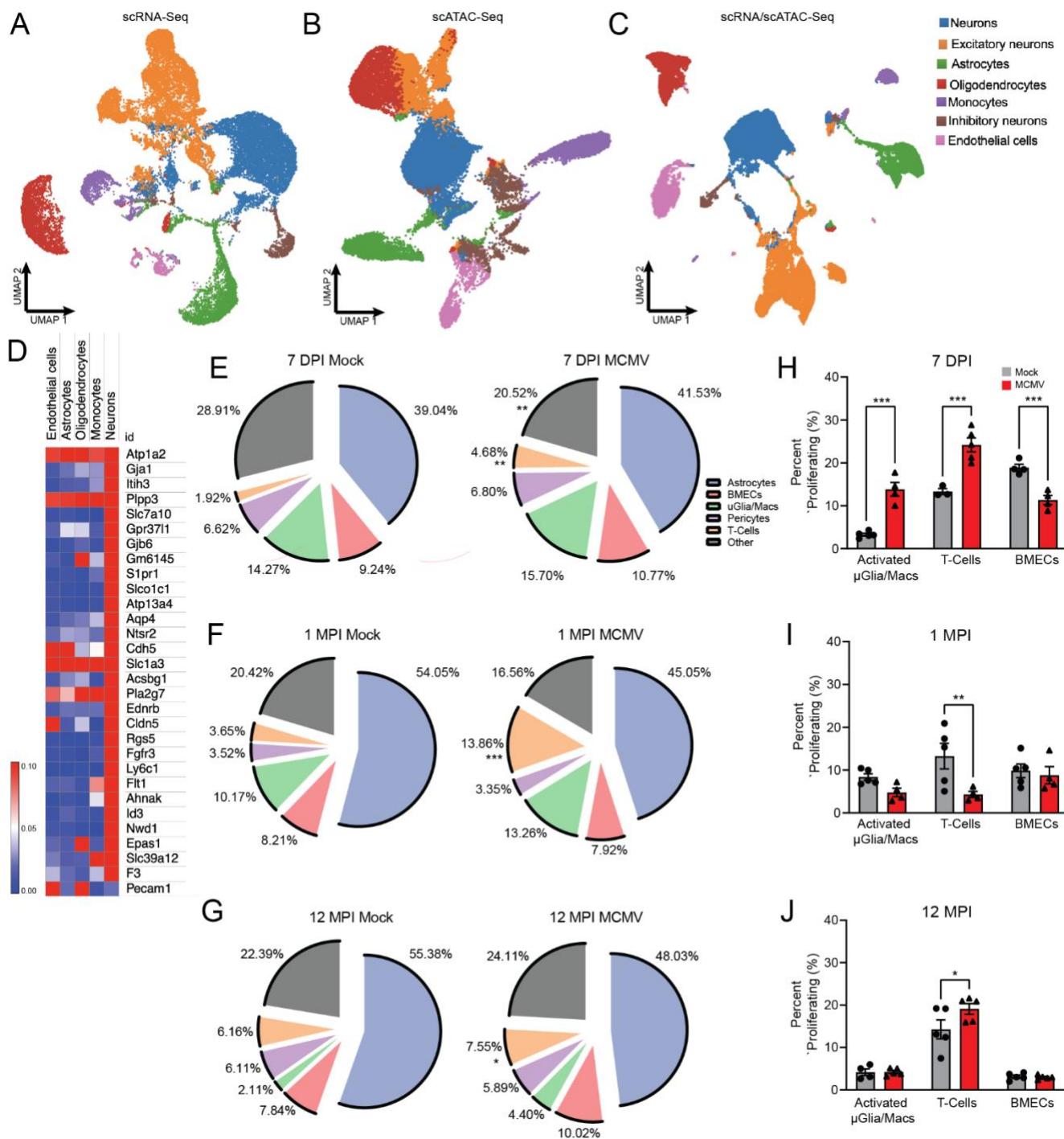
736 Yang, C., Hawkins, K.E., Dore, S., and Candelario-Jalil, E. (2019). Neuroinflammatory mechanisms of blood-
737 brain barrier damage in ischemic stroke. *Am J Physiol Cell Physiol* **316**, C135-C153.

738 Yao, J., Rettberg, J.R., Klosinski, L.P., Cadenas, E., and Brinton, R.D. (2011). Shift in brain metabolism in late
739 onset Alzheimer's disease: implications for biomarkers and therapeutic interventions. *Mol Aspects Med*
740 **32**, 247-257.

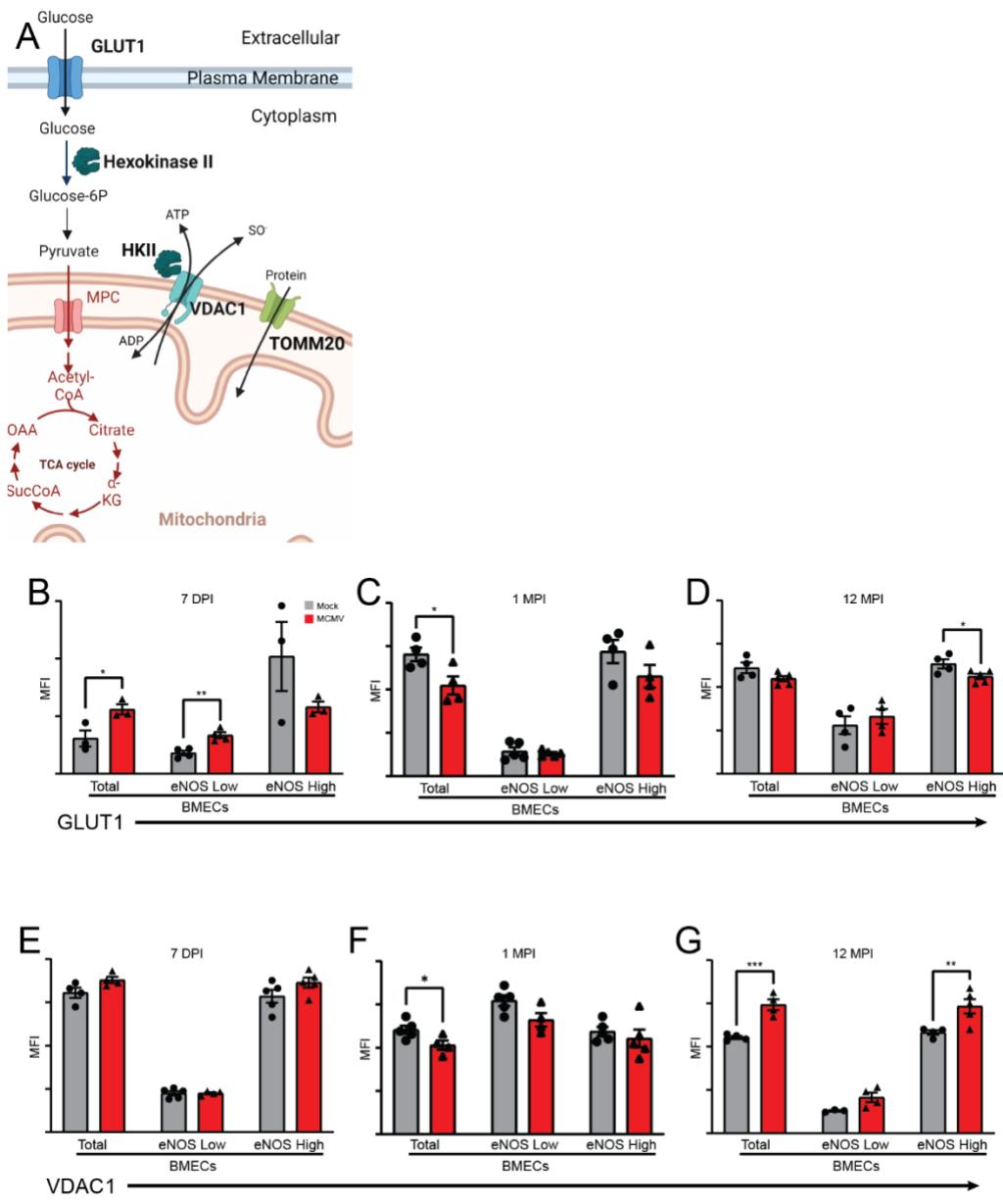
741 Yu, Y., Maguire, T.G., and Alwine, J.C. (2011). Human cytomegalovirus activates glucose transporter 4
742 expression to increase glucose uptake during infection. *J Virol* 85, 1573-1580.

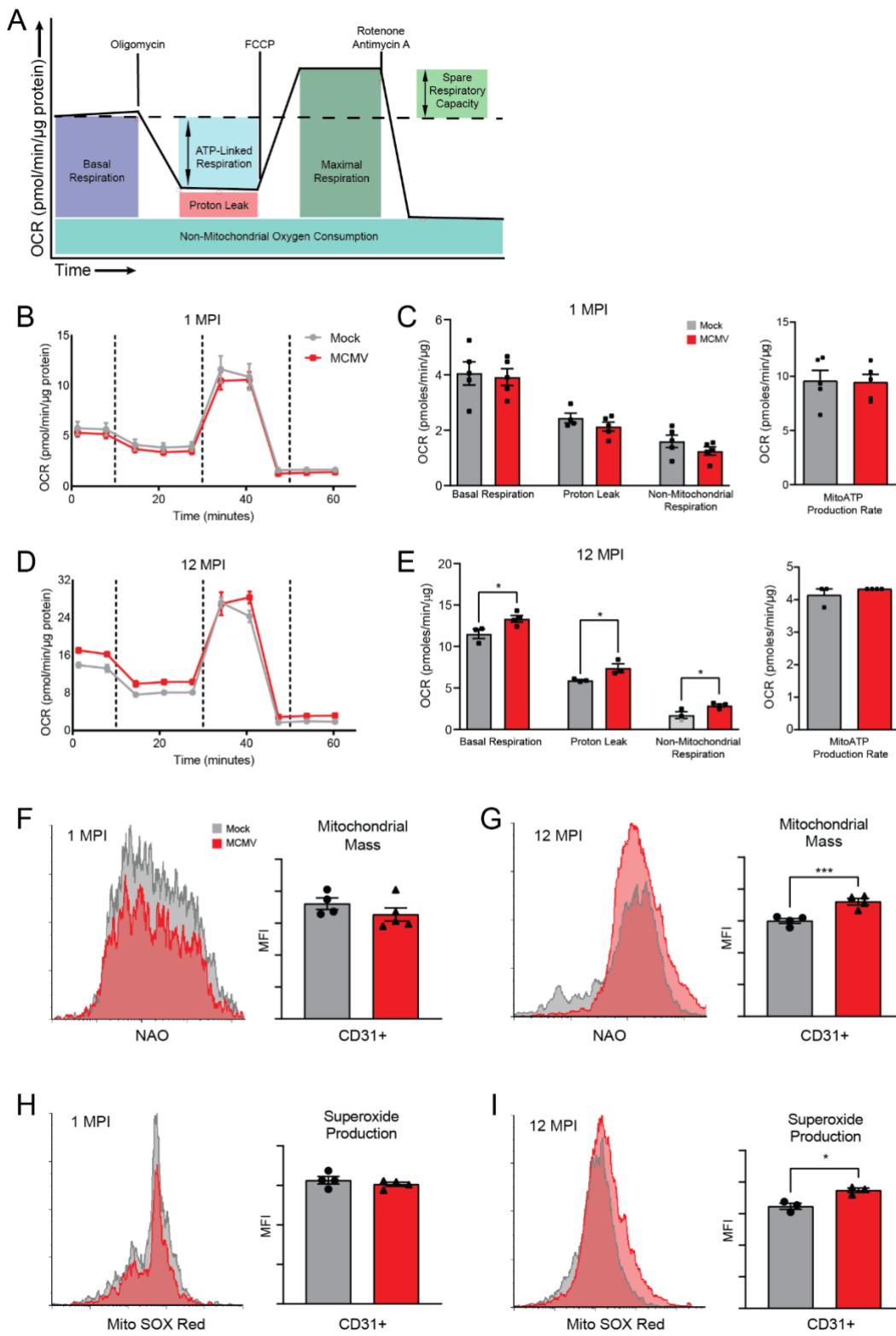

743 Zhang, X.D., Wang, Y., Wu, J.C., Lin, F., Han, R., Han, F., Fukunaga, K., and Qin, Z.H. (2009). Down-regulation
744 of Bcl-2 enhances autophagy activation and cell death induced by mitochondrial dysfunction in rat
745 striatum. *J Neurosci Res* 87, 3600-3610.

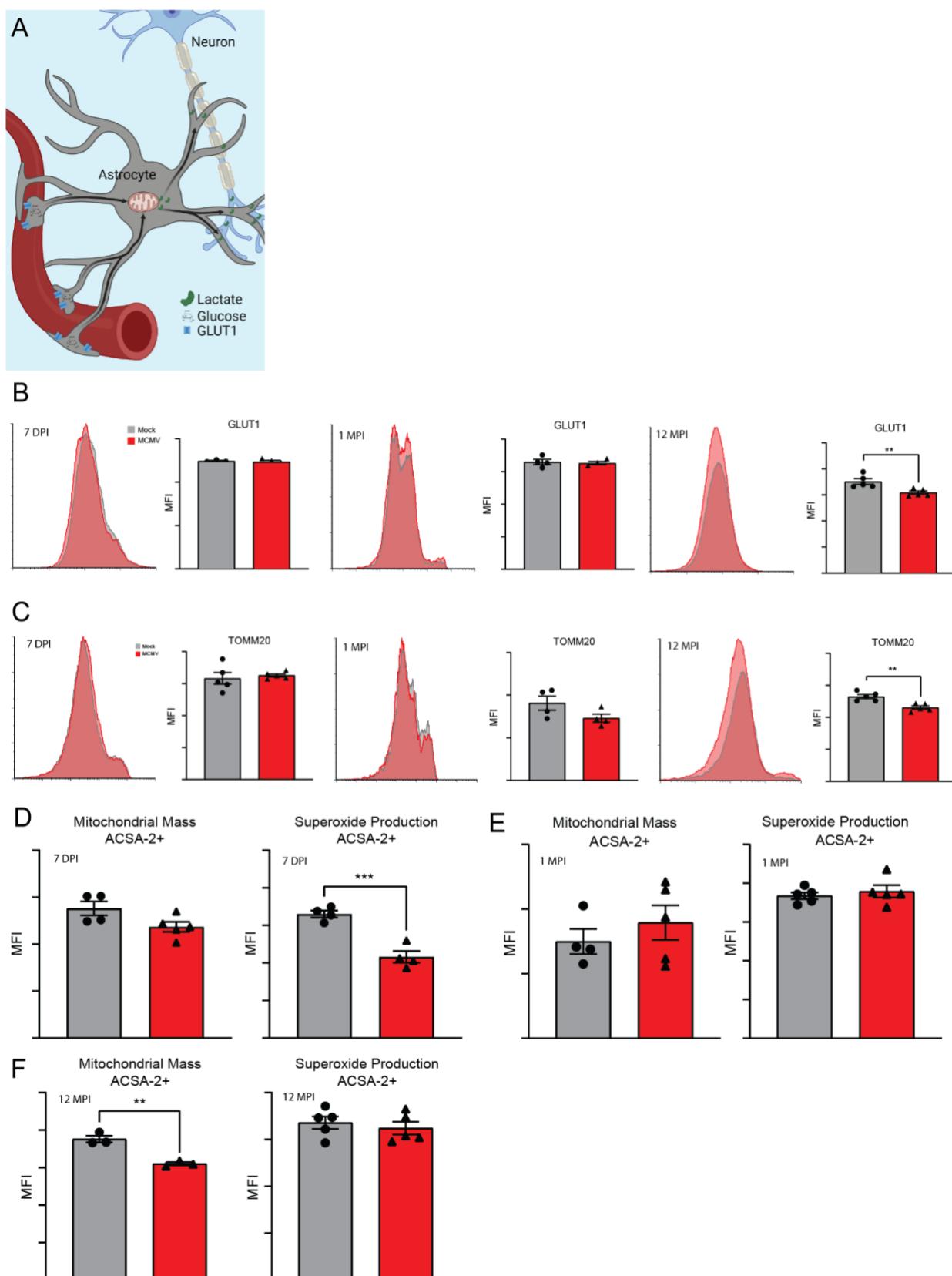
746 Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., *et al.* (2019).
747 Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. *Sci Rep* 9, 5790.


748 Zlokovic, B.V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer's disease and other
749 disorders. *Nat Rev Neurosci* 12, 723-738.

750 Zwezdaryk, K.J., Combs, J.A., Morris, C.A., and Sullivan, D.E. (2016). Regulation of Wnt/beta-catenin
751 signaling by herpesviruses. *World J Virol* 5, 144-154.


752


Figure 1: Intermittent MCMV infection exhibits delayed inflammatory cytokine expression in the brain. (A) Schematic outlining the experimental design and re-infection timeline. (B) Weight change in mice over 1 week following initial infection. (C) Weight of mock- (grey) and MCMV-infected (red) mice at 1 month post infection. ELISA-derived concentration of MCMV-specific (D) IgM and (E) IgG from plasma across time. (F) Heatmap of cytokine expression in plasma and brain homogenate at 7 DPI, 1 MPI, and 12 MPI normalized to 7 DPI mock infected measurements. Levels of IL-1 β , IL-6, interferon IFN γ , TNF α , IL-12p40, IL12-p70, CCL5, and IL-10 from (G) plasma at 7 DPI (H) and brain homogenate at 7 DPI, 1 MPI, and 12 MPI as measured by a multiplex immunoassay. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. DPI = days post infection, MPI = months post infection. EU = ELISA units.


Figure 2: Intermittent MCMV infection alters the transcriptional profile of brain cells. Multiome libraries were generated and integrated. UMAP clustering of cell types based on single cell expression (A), chromatin accessibility (B) and integrated scATAC/scRNA (C). (D) Heatmap of transcriptional changes plotted by cell type. Population distributions as a percentage of live cells isolated in mock- and MCMV-infected mice at (E) 7 DPI, (F) 1 MPI, (G) 12 MPI as assessed by flow cytometry. Percentage of proliferating cells in different cell populations as measured by Ki-67 positivity at (H) 7DPI, (I) 1 MPI, and (J) 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

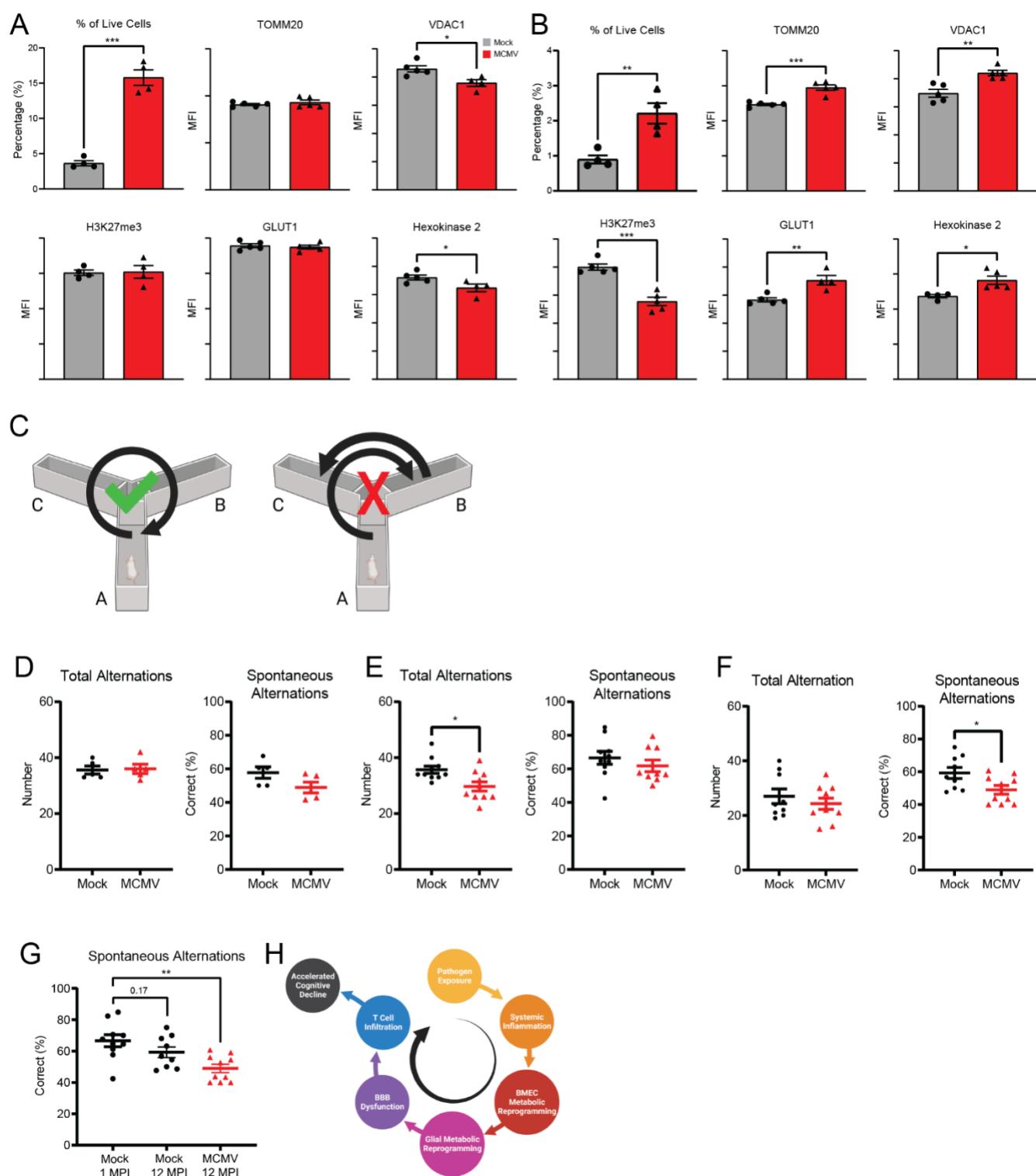

Figure 3: Blood brain barrier metabolic pathways are rewired with increased MCMV exposure. (A) Cartoon identifying key proteins in glycolysis and mitochondrial function. Flow cytometry was used to examine expression of GLUT1 in populations of BMECs at (B) 7 DPI, (C) 1 MPI, and (D) 12 MPI. Expression of VDAC1 in populations of BMECs at (E) 7 DPI, (F) 1 MPI, and (G) 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. eNOS = endothelial nitric oxide synthase, MFI = mean fluorescent intensity.

Figure 4: Hallmarks of mitochondrial dysfunction and oxidative stress are elevated in BMECs intermittently exposed to MCMV. (A) Cartoon illustrating how mitochondrial function was measured in BMECs using the Seahorse XFe24 MitoStress Kit. All samples were normalized to protein concentration. Representative data output of BMECs from the (B) 1 MPI and (D) 12 MPI timepoints. Basal Respiration, Proton Leak, Non-Mitochondrial Oxygen Consumption and mitochondrial ATP production rate were derived from the (C) 1 MPI and (E) 12 MPI measurements. Mitochondrial mass was determined by flow cytometry at (F) 1 MPI and (G) 12 MPI using nonyl acridine orange (NAO). Superoxide production was assessed using mitoSOX Red at (H) 1 MPI and (I) 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. OCR = oxygen consumption rate, MPI = months post infection.

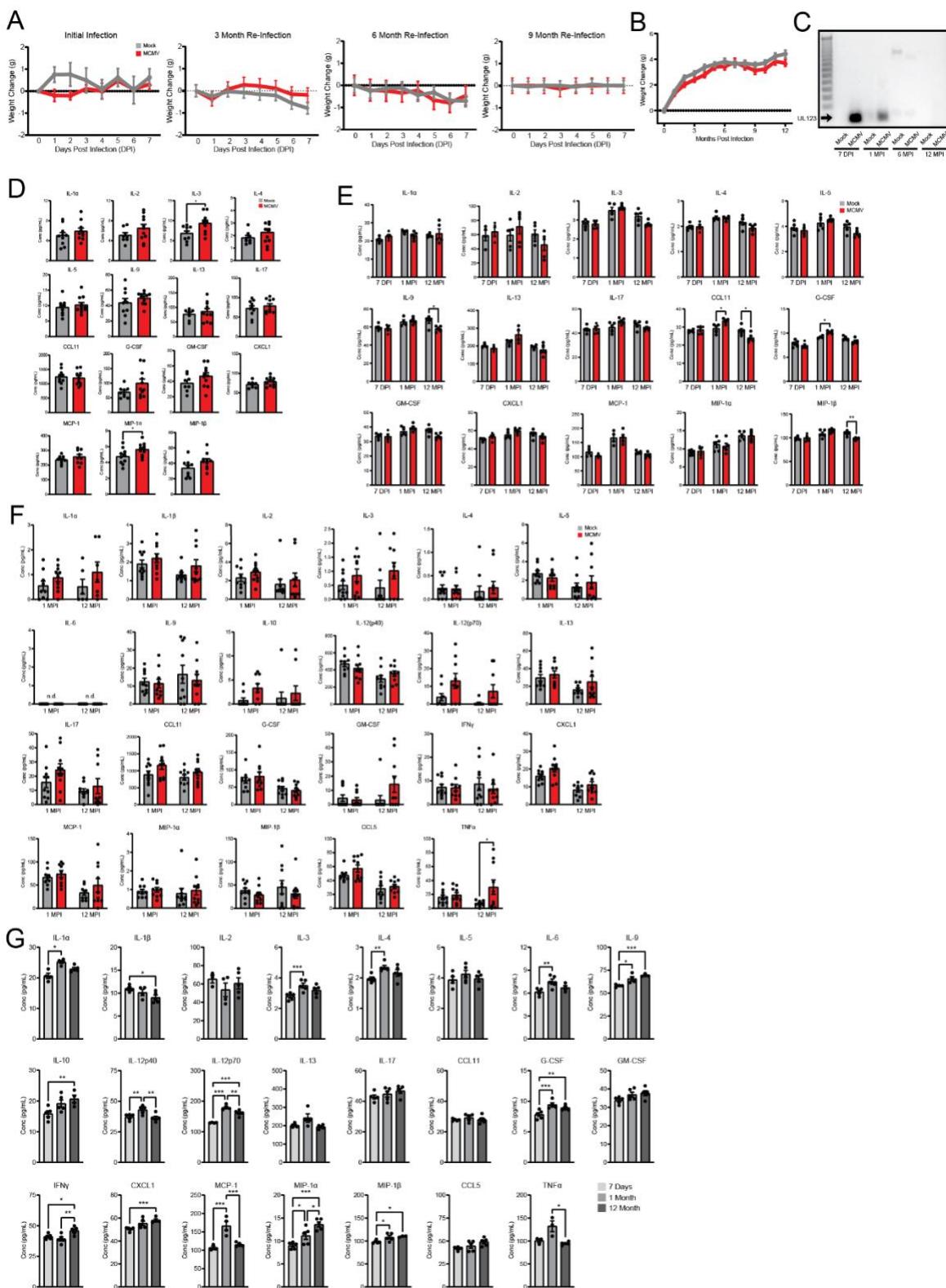

Figure 5: MCMV infection metabolically rewires astrocytes as a function of age. (A) Cartoon demonstrating the flow of metabolites from the bloodstream through astrocytes to neurons. Flow cytometry expression of (B) GLUT1 and (C) TOMM20 in astrocytes at 7 DPI, 1 MPI and 12 MPI. Mitochondrial mass and superoxide production were determined using nonyl acridine orange and mitoSOX red staining respectively and are quantified at (5D) 7 DPI, (5E) 1 MPI, and (5F) 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. DPI = days post infection, MPI = months post infection. ACSA-2 = astrocyte cell surface antigen 2.

Figure 6: Cognition is impaired with intermittent MCMV infection. Proliferation, epigenetic, and metabolic markers of CNS resident T cells were examined using flow cytometry at (A) 1 MPI and (B) 12 MPI. (C) Schematic describing correct versus incorrect alternations in the Y-maze. Quantification of number of alternations and percentage of spontaneous correct alternations at (D) 7 DPI, (E) 1 MPI, and (F) 12 MPI mice. (G) Comparison of spontaneous alternations examining the interactions between age and infection status. (H) Diagram presenting the model of pathogen associated accelerated cognitive aging. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. MPI = months post infection, MFI = mean fluorescent intensity.

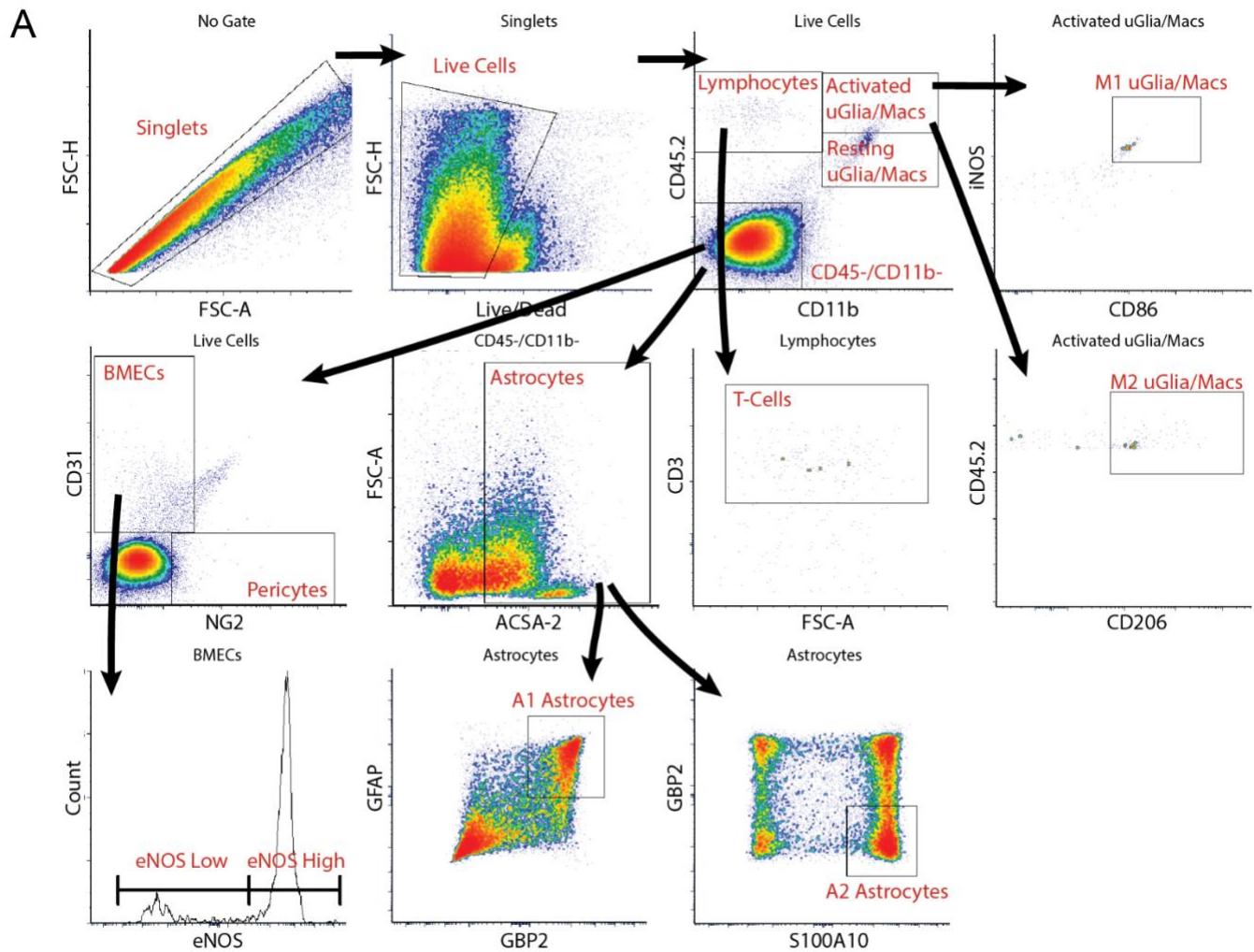
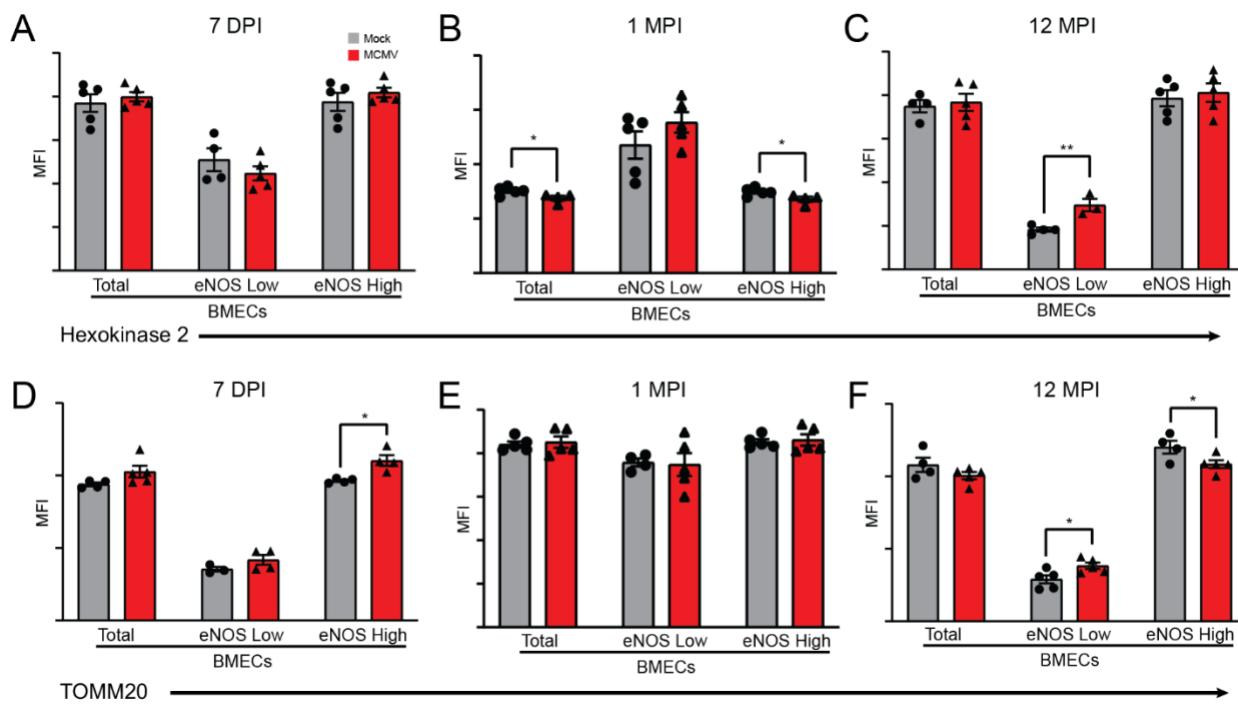
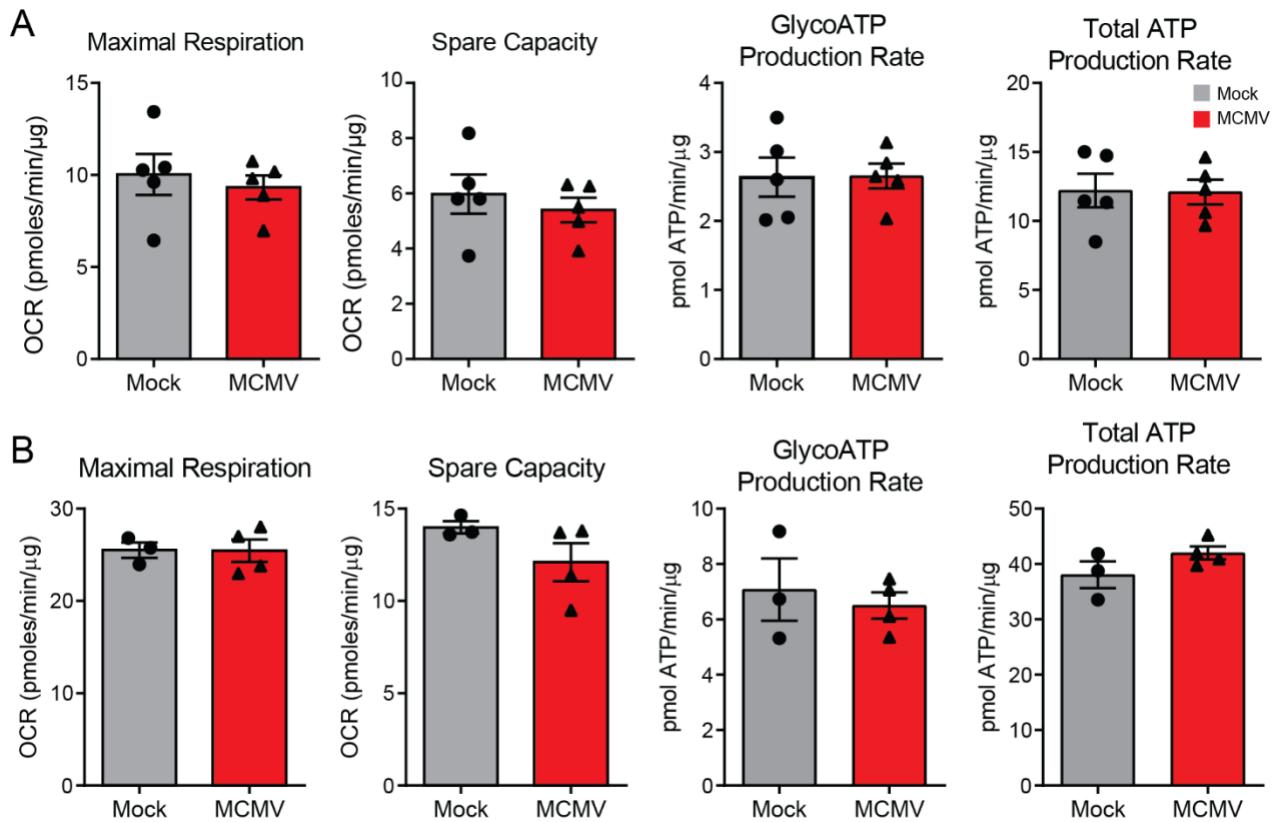
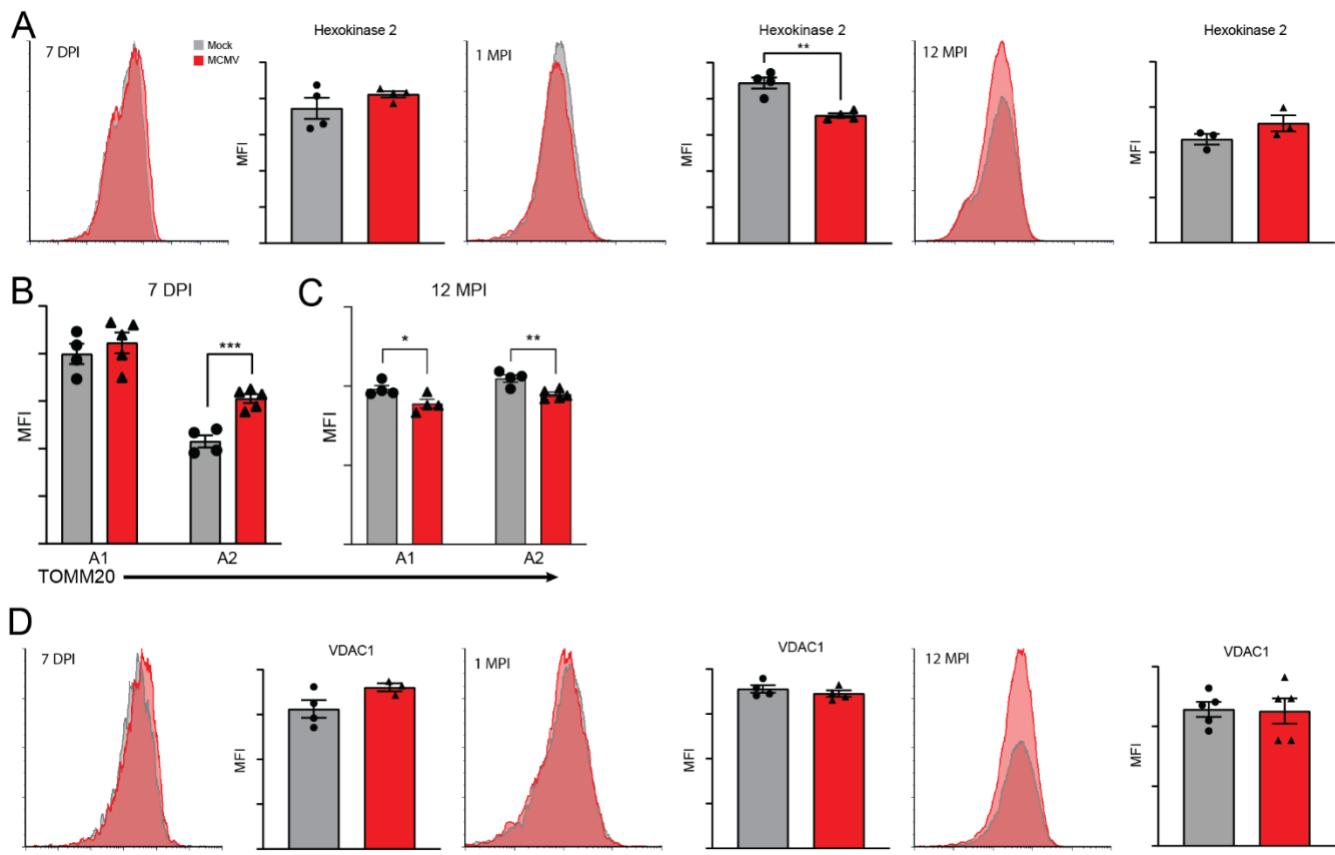

Marker	Color/Format
Ki67	BV421
TOMM20	AF405
GBP2	CF405M
CD3	BV510
Live/Dead	Yellow 575
CD31	BV605
CD11b	BV650
CD206	BV711
CD45.2	BV750
eNOS3	AF488
GFAP	Alexa Fluor 532
H3K27me3	PE
Claudin-5	PE-Texas Red
iNOS2	PE-Atto 594
Hexokinase 2	PerCP-Cy5.5
CD86	PE-Vio770
ACSA2	APC
GLUT-1	Alexa Fluor 647
CD163	AF680
S100A10(p11)	AF700
VDAC1	APC-Cy7
NG2	AF790

Table S1: Antibodies and fluorophores.



Supplemental Figure 1: Intermittent MCMV infection exhibits delayed inflammatory cytokine expression in the brain.


(A) Weight change in mock- and MCMV-infected mice over 7 DPI from initial infection through the 9-month infection time point. (B) Monthly weight of animals from initial infection through 12 MPI. (C) Agarose gel displaying UL123 qRT-PCR products from salivary glands at 7 DPI, 1 MPI, 6 MPI, and 12 MPI. Cytokine levels from (D) plasma at 7 DPI and (E) brain homogenate at 7 DPI, 1 MPI, and 12 MPI as measured by a multiplex immunoassay. Cytokine levels in (F) plasma at 1 and 12 MPI, and (G) brain homogenate in mock infected animals at 7 DPI, 1 MPI, and 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. DPI = days post infection, MPI = months post infection.


Figure S2: Brain phenotyping flow cytometry panel gating strategy.

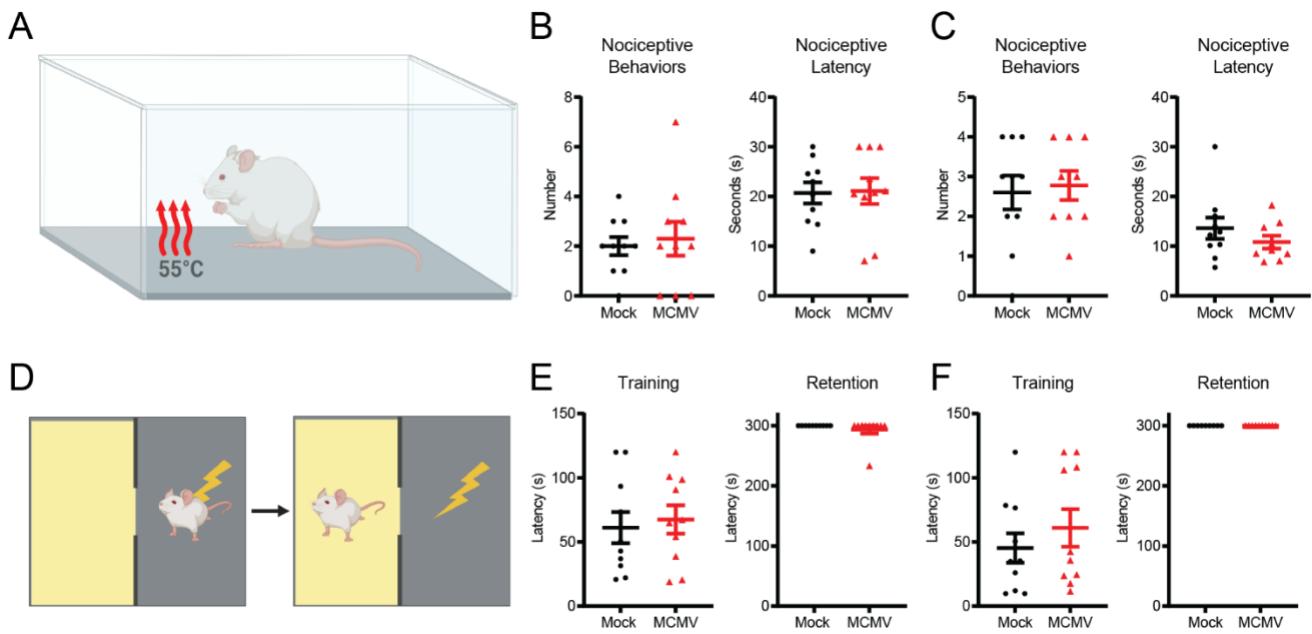

Figure S3: Blood brain barrier metabolic pathways are rewired with increased MCMV exposure. Flow cytometry was used to examine expression of Hexokinase 2 in populations of BMECs at (A) 7 DPI, (B) 1 MPI, and (C) 12 MPI. Expression of TOMM20 in populations of BMECs at (D) 7 DPI, (E) 1 MPI, and (F) 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. eNOS = endothelial nitric oxide synthase, MFI = mean fluorescent intensity.

Figure S4: Hallmarks of mitochondrial dysfunction and oxidative stress are elevated in BMECs intermittently exposed to MCMV. Maximal Respiration, Spare Respiratory Capacity, GlycoATP Production Rate, and Total ATP Production Rate were derived from the (S4A) 1 MPI and (S4B) 12 MPI measurements. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. OCR = oxygen consumption rate.

Figure S5: MCMV infection metabolically rewrites astrocytes as a function of age. Flow cytometry expression of (A) Hexokinase 2 in astrocytes at 7 DPI, 1 MPI and 12 MPI. TOMM20 expression in A1 and A2 astrocytes at (B) 7 DPI and (C) 12 MPI. (D) VDAC1 expression in astrocytes at 7 DPI, 1 MPI, and 12 MPI. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$. DPI = days post infection, MPI = months post infection, MFI = mean fluorescent intensity.

Figure S6: Cognition is impaired with intermittent MCMV infection. (A) Cartoon of the hot plate assay. Quantification of the number and latency to produce nociceptive behaviors in the hot plate assay at (B) 1 MPI and (C) 12 MPI. (D) Cartoon of the passive avoidance foot shock assay. Quantification of latency to enter the dark, foot-shock chamber during training and 24-hour retention testing in (E) 1 MPI (F) 12 MPI animals. Graphs represent pooled data from at least three individual animals. Mean \pm the SEM. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$.

VIRUS PROPAGATION AND QUANTIFICATION

Murine cytomegalovirus (MCMV) Smith strain was passaged through mice and quantified via plaque assay as previously described (Brune et al., 2001; Zurbach et al., 2014). Briefly, mice were i.p. injected with MCMV and sacrificed at 14 days post infection. Salivary glands were homogenized in PBS, aliquoted, and stored at -80°C. Virus was quantified by plaque assay using M2-10B4 cells and a viscous overlay followed by fixation with formaldehyde and staining with 0.02% methylene blue.

ANIMALS, INFECTIONS, AND SAMPLE COLLECTIONS

Female BALB/cJ mice aged 6 weeks were obtained from Charles River and housed in disposable, sterile cages in groups of 5 with food and water provided *ad libitum*. All animal experiments were approved by the Tulane University Institutional Animal Care and Use Committee. MCMV infections were conducted via i.p. injection with 5×10^4 plaque forming units in 100uL sterile PBS. They were maintained on a diurnal light cycle (8-6). Mice were euthanized via i.p. injection with a sub-lethal dose of ketamine and xylazine followed by exsanguination. Blood collected via cardiac puncture was processed for plasma. Mice were then perfused with ice-cold PBS and tissues were collected and processed as needed.

BEHAVIORAL TESTING

Behavior in mice was evaluated using the Y-maze, Passive Avoidance, and Hot Plate tasks at 1 month post initial infection or 12 months post initial infection. The behavior tests described below were performed in the order they are listed. All behavioral testing was performed between 0800 and 1400 hrs. All animals underwent testing by a pair of treatment blinded researchers. Peroxiguard was used to disinfect and deodorize the apparatuses between each mouse trial.

Y-Maze: The Y-Maze was employed as a measurement of spontaneous alternation/short-term recognition memory (Swonger and Rech, 1972). Mice were placed in the three-armed maze with arm length of 38 cm, width of 8.25 cm, and height of 13.25 cm facing the end of arm designated "A". Mice were allowed to freely explore the maze for 8 minutes. Movement around the maze was recorded by an overhead camera and tracked using ANY-Maze 7.1 software. Mice were provided with large black geometric spatial clues on white backgrounds to help them navigate and discriminate between arms. Spontaneous alternation was calculated as percentage of correct alternations between the three arms without revisiting the previous arm. Total alternation (number of total arm entries minus 2).

Passive Avoidance: As a measure of single-trial fear based aversive learning, mice were subjected to the step-through inhibitory (passive) avoidance task (Jarvik and Kopp, 1967). In this assay mice are placed in a two-chamber device with a guillotine door between them. One chamber is brightly lit while the other is dark. The floor of both chambers contains metal rungs on the floor connected to a shock delivery apparatus (Maze Engineers). For the training portion of the test, mice were placed in the brightly illuminated side (approx.. 1300 lux) and allowed to explore until they entered the dark chamber. Once the mouse entered the dark chamber the door was closed and the mouse was administered a 2 second foot shock (0.25 mA). Mice that did not enter the dark chamber within 120 seconds were gently pushed to the dark chamber and a foot shock was administered. After the training trial was completed, animals were tested for learning ability (10 minutes after training trial) and memory retention (24 hours later) by placing the mice

in the bright chamber and recording latency to enter dark chamber. These retention trials were limited to 300 seconds.

Hot Plate: To examine nociceptive ability, mice were exposed to the hot plate test (Woolfe and Macdonald, 1944). The hot plate (Maze Engineers) was set to 55.0°C and the mouse was placed onto the plate surface. Latency to first nociceptive behavior as well as total number of nociceptive behaviors was recorded for the 30 second duration of the experiment. Nociceptive behaviors were defined as shaking or flicking of hindlimbs and jumping.

SINGLE CELL MULTIOME ATAC AND GENE EXPRESSION SEQUENCING

Nuclei Isolation: Nuclei isolation for multiome sequencing was performed following protocol revision D (10X Genomics) with minor modifications. Following euthanasia and perfusion, the brain was extracted and flash frozen in liquid nitrogen. The brain was lysed with 0.1x lysis buffer and homogenized with scissors and a pellet pestle. Homogenate was then incubated for 3 minutes on ice and lysis stopped via the addition of wash buffer. The suspension was filtered through a 70 µm filter and then subjected to a 30% Percoll Plus centrifugation to remove myelin. Nuclei were washed and resuspended in nuclei buffer. Finally, nuclei were visualized on a cell counter for nuclear membrane integrity (lack of blebbing) and counting.

Library Prep and Sequencing: The Chromium Next GEM Single Cell Multiome ATAC and GEX protocol (CG000338) and 10x reagent kit were used to prepare ~10,000 nuclei/sample for the Multiome sequencing. Briefly, nuclei suspensions were incubated with a Transposon Mix and DNA fragments were transposed and barcoded. The transposed nuclei were partitioned into nanoliter-scale Gel Bead-In EMulsion (GEMs). The barcoded transposed DNA and barcoded full-length cDNA from poly-adenylated mRNA were generated and amplified by PCR. P7 and a sample index were added to transposed DNA during ATAC library construction via PCR. Barcoded cDNA enzymatic fragmentation, end-repair, A-tailing, and adaptor ligation were followed by PCR amplification. Both final ATAC libraries and 3' Gene Expression libraries generated contained standard Illumina P5 and P7 paired-end constructs. Library quality controls were performed by using an Agilent High Sensitivity DNA kit with Agilent 2100 Bioanalyzer and quantified by Qubit 2.0 fluorometer. Libraries were sequenced separately with individual parameter settings. Pooled libraries at 650 pM were sequenced with paired end dual index configuration on an Illumina NextSeq 2000 using Illumina P3 100 cycle kit. Cell Ranger arc version 2.0.0 (10X Genomics) was used to process raw sequencing data and mapped to mouse genome mm10-2020-A to generate differentially expressed genes between specified cell clusters represented by Loupe Cell Browser (10X Genomics).

Multiome Data Analysis: Cell Ranger ARC v2.0 (10x Genomics) was used to process raw sequencing data for further downstream analyses. After filtering, we used 27,798 cells with high quality transcriptome and epigenome profiles. We followed the algorithms Seurat (v4.0) R package (v4.0.2) to generate the uniform manifold approximation and projection (UMAP) embeddings and differentially expressed (DE) gene. Fragment files were used as input for Seurat analysis. The input fragment file was processed as chunks per chromosome and stored in HDF5 format (hierarchical data format version 5), allowing rapid access and efficient read and write functions during analysis. The quality control steps involved the removal of all low-quality cells and predicted heterotypic doublets from our analysis. We used Morpheus (<https://software.broadinstitute.org/morpheus/>) software to generate the top 30 DE genes

heatmap. A relative color scheme uses the minimum 0 and maximum 0.1 values in each row to convert values to colors.

RNA ISOLATION AND qRT-PCR

Salivary glands were flash frozen in liquid nitrogen and stored at -80°C. RNA was isolated from 30 mg of salivary gland using the RNeasy minikit from Qiagen. iScript cDNA synthesis kit was used to create cDNA from 1 ug of RNA. qRT-PCR was conducted on 50 ng of each sample using Sso Advanced SYBR Green Supermix and primers for MCMV immediate early gene 1 (UL123) and murine 36B4 which was used as a housekeeping gene. qPCR products were run on a 2% agarose gel to confirm product size.

FLOW CYTOMETRY

Brains were processed for flow cytometry as previously described (Calvo et al., 2020). Briefly, they were incubated with 5mg collagenase II and homogenized in MACS C-tubes with 5 mg collagenase II and 100U DNase I in HBSS with 3mM calcium chloride. Myelin debris was removed via a 30% Percoll Plus gradient. Cells were washed and resuspended in PBS with 0.4% BSA.

Neuro Flow Panel: Cells were incubated with fixable live dead stain and Fc block for 15 minutes at RT. Following washes with 20% BD Horizon Brilliant Stain Buffer, cells were incubated in an extracellular antibody cocktail for 20 minutes at RT. Cells were washed, fixed and permeabilized with eBioscience FoxP3 Transcription Factor staining kit for 45 minutes. Fixed cells were washed and incubated with intracellular antibodies for 45 minutes at room temperature. Following washes, cells were resuspended in PBS with 0.5% BSA and flow cytometry was conducted on a Cytek Aurora. Data was analyzed using FCS Express 7.14.

Live Cell Mitochondrial Panel: Cells were incubated in a cocktail of anti-CD31 BV605 antibody at 1:100, 1 μ M nonyl acridine orange (mitochondrial mass), 2.5 μ M MitoSOX Red (superoxide production), and 250 nM MitoTracker Red FM (mitochondrial membrane potential) for 45 minutes at 37°C. Following washes in PBS, cells were resuspended in PBS with Sytox Blue dead cell stain, incubated for 15 minutes, and flow cytometry was performed on a BD LSRFortessa. Data was analyzed using FCS Express 7.14.

CYTOKINE ANALYSIS

Mouse brains were minced briefly in BioRad Cell Lysis Buffer followed by homogenization in MACS S-tubes and freezing at -80°C. Following thaw, lysate was sonicated briefly and then centrifuged to pellet debris before being quantified by BCA. Brain lysate was diluted to 4mg/mL in Bio-Plex diluent.

Both plasma and brain lysate cytokine levels were assessed using a Bio-Plex murine cytokine 23-plex assay kit at a dilution of 1:2 according to manufacturer recommendations. Briefly, samples were added to a 96-well plate with magnetic beads and incubated for 30 minutes while shaking. Wells were washed three times and followed by addition of detection antibodies for 30 minutes at room temperature. Three more washes were conducted and then streptavidin-PE was added and incubated for 10 minutes. After another three washes samples were read on the Bio-Plex 200 system with HTF. Standard curves were created for each cytokine from 1-32,000 pg/mL, a five-parameter logistic regression was fit, and sample cytokine concentrations were interpolated.

ELISA

Antigen-specific quantitative ELISAs were performed using similar methods as described in ref. (Norton et al., 2015). Briefly, 96-well plates were coated with 0.25 µg/well of UV-inactivated MCMV. Serial dilutions of plasma from animals were incubated for an hour at room temperature followed by detection using AP-conjugated rabbit anti-mouse IgG or IgM. ELISAs were quantified using dilutions of purified mouse standards IgG1-κ or IgM-κ and the results were expressed as ELISA units/mL (EU/mL).

BRAIN MICROVESSEL ISOLATION

Excised brains were stored in ice-cold PBS. Brain microvessels (BMVs) were isolated as previously described {Sakamuri, 2022 #1160;Sakamuri, 2022 #1218}. Briefly, hemispheres were rolled on filter paper to remove surface vessels. Brains were homogenized in PBS, centrifuged, and the pellet was resuspended in 17.5% dextran solution. This process was repeated, and each time floating white matter was removed from the pellet prior to resuspension. The resuspended vessels were serially filtered through a 300 µm and 40 µm filters and then the BMV pellet is resuspended in Seahorse XF DMEM media.

SEAHORSE

BMVs were loaded into Seahorse XFe24 cell plates with one mouse used for each well. Plates were centrifuged and incubated for 1 hour at 37°C in a non-CO₂ incubator. Mitochondrial function was assessed using the Mito Stress Test Kit. Basal media contained 25 mM glucose, 10 mM sodium pyruvate, and 2 mM glutamate. The assay was completed using the manufacturers recommended protocols with following injections: Oligomycin (5 µM), FCCP (5 µM), and Rotenone/Antimycin A (2 µM/10 µM). Total protein per well was determined via BCA and oxygen consumption rates were normalized to total protein for each well. Normalized OCR was used to determine basal and maximal respiration, ATP coupled respiration, proton leak, and spare respiratory capacity.

STATISTICAL ANALYSIS

Statistical analyses were performed using Graphpad Prism v9. All data are expressed as the mean plus standard error of the mean (SEM) from at least three independent experiments or animals. Comparisons between groups were assessed using unpaired *t*-tests, ordinary one-way ANOVA, or repeated measures ANOVA followed by Dunett's multiple comparisons test where appropriate. Outliers were identified and excluded where necessary using the ROUT method with a maximum desired false discovery rate (Q) of 2%. For all comparisons, a *p* < 0.05 was considered significant.

Brune, W., Hengel, H., and Koszinowski, U.H. (2001). A mouse model for cytomegalovirus infection. *Curr Protoc Immunol Chapter 19*, Unit 19 17.

Calvo, B., Rubio, F., Fernandez, M., and Tranque, P. (2020). Dissociation of neonatal and adult mice brain for simultaneous analysis of microglia, astrocytes and infiltrating lymphocytes by flow cytometry. *IBRO Rep 8*, 36-47.

Jarvik, M.E., and Kopp, R. (1967). An improved one-trial passive avoidance learning situation. *Psychol Rep 21*, 221-224.

Norton, E.B., Bauer, D.L., Weldon, W.C., Oberste, M.S., Lawson, L.B., and Clements, J.D. (2015). The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. *Vaccine* 33, 1909-1915.

Sakamuri, S.S., Sure, V.N., Kolli, L., Evans, W.R., Sperling, J.A., Bix, G.J., Wang, X., Atochin, D.N., Murfee, W.L., Mostany, R., et al. (2022). Aging related impairment of brain microvascular bioenergetics involves oxidative phosphorylation and glycolytic pathways. *J Cereb Blood Flow Metab* 42, 1410-1424.

Swonger, A.K., and Rech, R.H. (1972). Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze. *J Comp Physiol Psychol* 81, 509-522.

Woolfe, G., and Macdonald, A.D. (1944). THE EVALUATION OF THE ANALGESIC ACTION OF PETHIDINE HYDROCHLORIDE (DEMEROL). *Journal of Pharmacology and Experimental Therapeutics* 80, 300.

Zurbach, K.A., Moghbeli, T., and Snyder, C.M. (2014). Resolving the titer of murine cytomegalovirus by plaque assay using the M2-10B4 cell line and a low viscosity overlay. *Virol J* 11, 71.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rat monoclonal anti-Ki-67 (clone 11F6)	BioLegend	Cat# 151208; RRID:AB_2629748
Rabbit recombinant anti-TOMM20 (clone EPR15581-54)	abcam	Cat# ab186735; RRID:AB_2889972
Rabbit polyclonal anti-GBP2	Biorbyt	Cat# orb763167
Rat monoclonal anti-CD3 (clone 17a2)	BioLegend	Cat# 100234; RRID:AB_2562555
Rat monoclonal anti-CD31 (clone 390)	BioLegend	Cat# 102427; RRID:AB_2563982
Rat monoclonal anti-CD11b (clone M1/70)	BioLegend	Cat# 101259; RRID:AB_2566568
Rat monoclonal anti-CD206 (clone C068C2)	BioLegend	Cat# 141727; RRID:AB_2565822
Mouse monoclonal anti-CD45.2 (clone 104)	BioLegend	Cat# 109857; RRID:AB_2832376
Mouse monoclonal anti-NOS3	Santa Cruz Biotechnology	Cat# sc-376751; RRID:AB_2832203
Mouse monoclonal anti-GFAP (clone spm248)	Novus Biologicals	Cat# NBP2-34401AF532
Rabbit monoclonal anti-Tri-Methyl-Histone H3 (Lys27) (clone C36B11)	Cell Signaling Technology	Cat# 40724; RRID:AB_2799182
Mouse monoclonal anti-Claudin 5 (clone 4C3C2)	Thermo Fisher Scientific	Cat# 35-2500; RRID:AB_2533200
Rat monoclonal anti-Nos2 (clone W16030C)	BioLegend	Cat# 696802; RRID:AB_2687097
Rabbit recombinant anti-Hexokinase II (clone EPR20839)	Abcam	Cat# ab228819; RRID:AB_2868547
Rat monoclonal anti-CD86 (clone PO3.3)	Miltenyi Biotec	Cat# 130-105-135; RRID:AB_2660750
Rat monoclonal anti-ACSA-2 (clone IH3-18A3)	Miltenyi Biotec	Cat# 130-117-535; RRID:AB_2727978
Rabbit monoclonal anti-Glucose Transporter GLUT1 (clone EPR3915)	Abcam	Cat# ab195020; RRID:AB_2783877
Rabbit polyclonal anti-CD163/M130	Bioss	Cat# bs-2527R; RRID:AB_10856166
Mouse recombinant anti-S100A10	biotechne	Cat# FAB2377N
Mouse monoclonal anti-VDAC1/Porin (clone 20B12)	Abcam	Cat# ab14734; RRID:AB_443084
Mouse monoclonal anti-NG2 (clone G-9)	Santa Cruz Biotechnology	Cat# sc-166251; RRID:AB_2261269
Rabbit Anti-mouse IgG AP	Sigma	A1902
Goat Anti-mouse IgM AP	Southern Biotech	Cat# 1021-04
Bacterial and virus strains		
Murine Cytomegalovirus Smith Strain	ATCC	VR-1399
Chemicals, peptides, and recombinant proteins		
Collagenase II	Cell Signaling Technologies	CST #77336
Sodium Carbonate	Sigma	S2127
Sodium Bicarbonate	Sigma	S8875

Sodium Azide	Sigma	S2002
Magnesium chloride hexahydrate	Sigma	M2773
Diethanolamine	Sigma	D8885
IgG1, Kappa from murine myeloma	Sigma	M9269
IgM, Kappa from murine myeloma	Sigma	M3795
4-Nitrophenyl phosphate disodium salt hexahydrate	Sigma	N2765
Percoll PLUS	Cytiva	#17544502
DNase 1	Worthington Biochem	LS006333
Ketaset	Zoetis	
AnaSed LA	Vet One	13985-704-10
Bovine Serum Albumin	Sigma Aldrich	A9418-100G
iScript cDNA Synthesis Kit	Bio-Rad	Cat #1708891
SsoAdvanced Universal SYBR Green Supermix	Bio-Rad	Cat #1725271
Live/Dead Fixable Yellow dead cell stain	Thermo Fisher Scientific	L34959
Brilliant Stain Buffer Plus	BD Biosciences	Cat# 566385
eBioscience Fixation/Permeabilization Concentrate	Invitrogen	Cat# 00-5123-43
eBioscience Fixation/Permeabilization Diluent	Invitrogen	Cat# 00-5223-56
eBioscience Permeabilization Buffer (10X)	Invitrogen	Cat# 00-8333-56
Peroxiguard Disinfectant	Lighthouse Life Sciences	
UltraComp eBeads Plus Compensation Beads	Invitrogen	Cat# 01-3333-42
Seahorse XF DMEM medium, pH 7.4, 500 mL.	Agilent	103575-100
DMEM, high glucose	Thermo	11965092
Fetal Bovine Serum Premium Select	R&D Systems	S11550
Tween-20	Fisher Scientific	BP337-500
Certified Molecular Biology Agarose	Bio-Rad	Cat #161-3100
5x DNA Loading Buffer Blue	Meridian Bioscience	Cat #BIO-37045
SYBR™ Safe DNA Gel Stain	Thermo Fisher Scientific	Cat# S33102
ACK Lysing Buffer	Thermo Fisher Scientific	Cat# A1049201
UltraPure™ 0.5M EDTA, pH 8.0	Thermo Fisher Scientific	Cat# 15575020
SYTOX™ Blue Nucleic Acid Stain - 5 mM Solution in DMSO	Thermo Fisher Scientific	S11348
MitoTracker™ Red FM Dye, for flow cytometry	Thermo Fisher Scientific	M46751
MitoSOX™ Mitochondrial Superoxide Indicators, for live-cell imaging	Thermo Fisher Scientific	M36008
Nonyl Acridine Orange (Acridine Orange 10-Nonyl Bromide)	Thermo Fisher Scientific	A1372
GlutaMAX Supplement	Thermo Fisher Scientific	35050061
16% Formaldehyde Solution Methanol-Free	Thermo Fisher Scientific	Cat# 28906
Methylene Blue (Certified Biological Stain), Fisher Chemical™	Fisher Scientific	M291-25
Critical commercial assays		
Micro BCA Protein Assay Kit	Thermo Fisher Scientific	Cat# 23235

Bio-Plex Pro Mouse Cytokine Grp I Panel 23-Plex	Bio-Rad	Cat #M60009RDPD
Bio-Plex Cell Lysis Kit	Bio-Rad	Cat #A1049201
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Bundle	10X Genomics	Cat #1000283
NextSeq 2000 P3 Reagents (100 Cycles)	Illumina	Cat #20040559
High Sensitivity DNA Kit	Agilent	Cat #5067-4626
Seahorse Mito Stress Test	Agilent	Cat #103015-100
RNeasy Mini Kit (250)	Qiagen	Cat# 74106
Deposited data		
Multiome Data	GeoAccession	Number Pending
Experimental models: Cell lines		
M2-10B4	ATCC	CRL-1972
Experimental models: Organisms/strains		
Mouse: BALB/cAnNCrl	Charles River	Cat #028
Oligonucleotides		
Primer: m36B4 Forward 5'-CGACCTGGAAGTCCAATAC-3'	Griessl et al. (2017)	
Primer: m36B4 Reverse 5'-ATCTGCTGCATCTGCTTG-3'	Griessl et al. (2017)	
Primer: mUL123 Forward 5'-TCAGCCATCAACTCTGCTACCAAC-3'	Tang-Feldman et al. (2006)	
Primer: mUL123 Reverse 5'-ATCTGAAACAGCCGTATATCATCTTG-3'	Tang-Feldman et al. (2006)	
Software and algorithms		
Gen5 v3.11	Agilent	
Wave v2.6.1.53	Agilent	
ANY-maze v7.1	ANY-maze	
CFX Maestro v4.1.2433.1219	Bio-Rad	
Bioplex Manager v6.1	Bio-Rad	
SpectroFlo v3.0	Cytek	
Prism 9.4.1	GraphPad	
Biorender	Biorender.com	
Cell Ranger ARC v2.0.0	10X Genomics	
Loupe Cell Browser	10X Genomics	
Morpheus	Broad Institute	
FCS Express 7 Research Edition v7.14.0020	De Novo Software	
FACSDiva v9.0	BD Biosciences	
Other		
gentleMACS C-tube	Miltenyi Biotec	130096334
gentleMACS Dissociator	Miltenyi Biotec	130-093-235
Passive Avoidance Chamber and Shock Control	Maze Engineers	
Hot Plate	Maze Engineers	
Control Company 3389 Variable Speed Peristaltic Tubing Pump	Mitchell Instrument Co	CNC-3389
Cytek Aurora	Cytek	
Illumina NextSeq 2000	Illumina	
2100 Bioanalyzer	Agilent	
Synergy HTX	Agilent	BTS1LFTA
Seahorse XFe24 Analyzer	Agilent	
405TS Microplate Washer	Agilent	Cat# 405TS

Bio-Plex 200 System with HTF	Bio-Rad	#171-000205
Bio-Plex Pro™ Wash Station	Bio-Rad	#30-034376
CFX Connect Real-Time PCR Detection System	Bio-Rad	Cat# 1855201
iMark Microplate reader	Bio-Rad	Cat #1681135
LSRFortessa Flow Cytometer	BD Biosciences	