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Abstract— Several haematologic diseases, including malaria, diabetes, and sickle cell anaemia, 

result in a reduced red blood cell deformability. This deformability can be measured using a 
microfluidic device with channels of varying width. Nevertheless, it is challenging to algorithmically 

recognise large numbers of red blood cells and quantify their deformability from image data. Deep 
learning has become the method of choice to handle noisy and complex image data. However, it 

requires a significant amount of labelled data to train the neural networks. By creating images of cells 
and mimicking noise and plasticity in those images, we generate synthetic data to train a network to 

detect and segment red blood cells from video-recordings, without the need for manually annotated 
labels. Using this new method, we uncover significant differences between the deformability of RBCs 

infected with different strains of Plasmodium falciparum, providing clues to the variation in virulence 

of these strains. 
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1. Introduction 

The malaria parasite, which in 2020 caused an estimated 

627,000 deaths worldwide[1], spends part of its life cycle 

in human red blood cells (RBCs). In the most deadly of 

malaria parasites, Plasmodium falciparum, the in-

traerythrocytic developmental cycle lasts 48 hours, com-

prising the ring-, trophozoite-, and schizont-stages. Dur-

ing these stages, the parasite remodels the RBC by set-

ting up an extensive export process, which involves ap-

proximately 10% of the parasite's proteome[2]–[4]. As a 

result, the infected RBC (iRBC) becomes sticky and hy-

per-rigid. While these RBC modifications are critical for 

parasite survival, the stickiness and rigidity are also a 

cornerstone of virulence and, as such, they have been the 

topic of great interest in malaria research[2]–[4]. To 

study variations in rigidity, e.g., during the intraerythro-

cytic developmental cycle, or between different P. falci-

parum strains, hundreds to thousands of cells must be 

analysed to create statistically meaningful data. Progress 

in studying these RBC morphological changes, particu-

larly in membrane mechanics, has been hampered by the 

critical lack of a suitable assay to measure the changes in 

rigidity in a high throughput and accurate manner[5], 

[6]. However, recent advances in microfluidic devices al-

low measuring RBC mechanics in large quantities[7].  

Microfluidic devices (MDs) are tools to manipulate fluid 

on a scale from a few microns to a few hundred microns. 

Feature size in MDs is commensurate with individual 

cell size, thus making MDs useful for cell analysis[8]. 

MDs provide a low-cost, high-throughput method to 

study RBCs under varying conditions[7], [9]. For exam-

ple, the effect of small blood vessels on RBCs can be em-

ulated with the use of narrow constriction channels. 

Comparing the deformity index (DI) (i.e., the shape de-

formity) of an RBC before and after the tight passage 

then yields a deformity index difference (ΔDI) value per 

RBC indicating cell deformability. High-speed micro-

scope imaging records the events in such MDs, produc-

ing movies that can easily contain thousands of cells. 

Manually evaluating such a large number of cells, 

though, is a daunting task. One study investigating the 

effects of blood bank storage on RBC deformability 

partly automated some of the MD-video processing us-

ing conventional image processing techniques[10]. 

However, in general, these techniques are limited to pre-

programed solutions[11] and cannot handle unexpected 

events like motion blur, translucent cell edges, colliding 

cells, air bubbles, unusual cell shapes, background noise, 

MD artefacts, floating cell debris, cell-clusters, and illu-

mination variations (Figure 1 depicts an example of a 

typical video frame). As a result, MD-video processing 

still requires time-consuming human labour to predefine 

all the exceptions and design algorithms to handle them. 

An example of this, is the work of Saadat et al.[12], who 
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despite reporting tremendous success in determining 

the mechanical properties of RBCs in high-throughput, 

confirmed that image noise was detrimental for cell 

tracking and shape determination and were unable to 

handle abnormally shaped cells. Since all these factors 

are prevalent in iRBCs MD videos, a different approach 

should be considered. Machine learning, and in particu-

lar deep learning (DL) may be a more effective strategy 

to process the image data, including handling the many 

challenging technical and biological variations.  

The success of many recent DL projects can be attributed 

to the combination of clever neural architecture design 

and automated feature extraction from large da-

tasets[13]. In particular, the Convolutional Neural Net-

work (CNN) architecture performs well on image data 

and has been shown to solve many complex image data 

problems with high accuracy[14]–[17]. Most relevant 

here is that it has shown great results in image segmen-

tation —the per pixel labelling of images— under noisy 

conditions[11], [18], which in principle makes it an ideal 

candidate for handling MD video data. Given that DL is 

a data-driven approach, its performance directly de-

pends on the quality and quantity of the data trained on. 

However, many scientific disciplines lack the amount of 

labelled data required to power DL algorithms. The use 

of synthetic data, which is data created by computer al-

gorithms instead of collected from the real world, is one 

potential solution that is gaining traction in the DL com-

munity[19]. It provides a source of data that is similar to 

real-world data but with the benefits of having con-

sistent labels and complete control over all characteris-

tics of the data. 

In this study, we created a robust method to automati-

cally track and calculate DIs of RBCs from noisy MD vid-

eos with the goal of investigating the differences in RBC 

deformability between iRBCs of the geographically dis-

tinct Plasmodium falciparum strains K1[20] and 

NF135[21, p. 135]. We designed a CNN architecture with 

two output layers to translate the noisy videoframes into 

cell shapes and cell locations. We avoided the need for 

annotating a diverse, carefully labelled dataset of RBCs 

by training the CNN on synthetic data instead. We also 

created a Python programme that accepts the CNN out-

puts to extract the individual RBC journeys through the 

MD, remove colliding cells, and calculate cell ΔDIs. The 

extracted cell journeys were classified by a domain ex-

pert by stage of RBC infection. We confirm that there is 

a highly significant difference in RBC deformability be-

tween uninfected and early-stage infected RBCs, as well 

as a general trend of decreased deformability between 

the consecutive infection stages. Unexpectedly, we dis-

covered a significant difference in deformability be-

tween the K1 and the NF135 strains at all stages of infec-

tion.  

2. Results 

Generating synthetic data RBC images  

We generated a synthetic training dataset of 10,000 im-

age patches of 100x100 pixels that each could include 

RBCs, MD walls, and/or various artefacts. We here de-

scribe conceptually how this was done; see the Methods 

section for a more detailed description. RBCs in our ex-

perimental setting adopted either a round (Figure 2a) or 

a bullet-like shape (Figure 2c). Although the real-world 

data of RBCs and their background appear intricate (Fig-

ures 2a, 2c, and 2e), we were able to approximate them 

Figure 1. Topography of a typical microfluidic video frame. A typical 
video frame from a microfluidic device contains many objects other 
than the RBCs of interest. These non-cell objects, such as cell debris, 
microfluidic device walls, or other artefacts, in combination with vary-
ing focus and lighting conditions, interfere with the segmentation and 
tracking processes. 

Figure 2. Synthetic and real-world example images. (a) Variation of 
real-world ‘round’ shaped RBCs; (c) same as (a), but with ‘bullet’ 
shaped RBCs; (e) same as (a) and (c) but with focus on background 
variations. (b), (d), and (f) are manually selected images from the 
synthetic data that are similar to the corresponding images in (a), (c), 
and (e), respectively. Labels are given in two ways: 1) the segmen-
tation, indicating the probability per pixel that it belongs to an RBC, 
as illustrated in (g); and 2) a Gaussian distribution indicating the prob-
ability of pixels belonging to the centre of a RBC, as illustrated in (h). 
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reasonably well with just a limited set of simple rules 

(Figures 2b, 2d, and 2f).  For each of the synthetic col-

umns b, d, and f, we used the same procedure to gener-

ate the diversity shown, i.e., all generated images started 

from circles, lines,  or both. We warped these basic forms 

in a variety of ways using elastic-deformation, a popular 

technique for augmenting images[22]. To generate natu-

ral-looking textures, we used the Simplex-noise func-

tion, a function that produces gradient noise patterns 

that are commonly used in the game and film indus-

tries[23]. Doing so, we were able to generate the back-

ground (Figure 2f) and inner cell textures (Figure 2b). 

The noise patterns were also utilised as interpolation ra-

tio matrices, which enabled us to interpolate between 

simple textures to create more complex ones, to make 

cells partially translucent, and to add a colour gradient 

to the background. In addition to the cell textures, we 

added dark spot(s) to a fraction of the cells to simulate 

the presence of parasites (Figure 2b). Finally, we used a 

blur technique to reduce harsh edges, thereby making 

the images appear more natural. The backgrounds were 

created in duplicate. One containing all objects, and one 

without any transient objects but with altered colour in-

tensities to make the neural network robust for differ-

ences in lightning.  

All images were of course perfectly annotated because of 

the synthetic nature of the data. Each image had labels 

describing the cell's form (Figure 2g) and labels describ-

ing the cell's position (Figure 2h). The form labels con-

tained pixel-per-pixel binary segmentation values indi-

cating the probability that a pixel belonged to an RBC. 

For the cell location labels, each pixel was assigned the 

probability of being an RBC centre, modelled as a 2D 

Gaussian distribution with its peak at the cell centres (il-

lustrated as a heat-map in Figure 2h). The synthetic im-

ages were significantly smaller than the video frames, as 

can be appreciated by comparing Figure 1 with Figure 2. 

This allowed for a much smaller and more efficient CNN 

to be trained on while still containing enough context for 

the CNN to perform well. An interesting finding during 

testing was that exaggerating the objects' features helped 

the neural network generalise better. Making objects 

brighter or darker than they appeared in the videos, or 

having objects with more deformity than seen in the real 

data, for example, aided in making the neural network 

more robust. 

 

Red blood cell tracking and segmentation results 

Training the CNN on the synthetic data allowed us to 

recognise ‘real’ RBCs from the MD image data. The CNN 

produced two kinds of output: one showing where the 

cells were and the other showing what shape they had. 

Using the CNN's location outputs, a Python script 

tracked the cells throughout the video. Figure 3 depicts 

some of the resulting cell journeys, which were created 

by combining crops from each frame in which the cell 

was present. The accurate segmentation, which entails 

marking each pixel whether it is part of the cell or not, 

appeared to be more difficult than the recognition of 

RBCs. As intended, cells produced a strong signal, 

whereas most floating artefacts were ignored unless they 

came into direct contact with the cells (Figure 3b, eighth 

frame, bottom row). Such temporary associations, how-

ever, have minimal effects on the ΔDI calculations 

(Methods). The tracking script was tasked with ignoring 

cells that travelled in clusters or collided with other cells 

during the journey. This was to ensure that the collision 

effects would not interfere with later DI calculations. As 

discussed in the synthetic data section, we trained the 

CNN on round and bullet-like shaped cells, and, as ex-

pected, it was able to correctly identify and segment sim-

ilar real-world cells (Figure 3a). Moreover, the CNN was 

able to generalise to cells with abnormal shapes and tex-

tures, which are common for malaria iRBCs, as can be 

appreciated from Figure 3c for which we selected some 

striking ‘edge’ cases of cells with abnormal shapes. Since 

the CNN output contained the position of cells as peaks 

Figure 3. Cell tracking results. Original images are on top, segmenta-

tion results are at the bottom. (a) Examples of cell-journeys of cells 

with shapes similar to those in the training dataset. (b) Examples of 

cell-journeys with noise artefacts floating around the cell, which could 

potentially hinder correct cell-segmentations. Note that in the in the 

8th frame of the bottom journey, the artefact is in contact with the cell 

and becomes part of the cell-segmentation. (c) Cell journeys with un-

usual shapes not similar to the training data. This demonstrates the 

generalization abilities of the neural network. (d) Some ‘failure’ cases. 

The top journey contains two cells traveling together, which should 

have been excluded. This was probably caused by the fact that they 

were overlapping the whole journey making it look like a single cell 

to the neural network. The bottom one is debris that was seen as a cell 

by the neural network due to its large size. 
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of probability values, we could correct for false positives 

and false negatives by setting a threshold to the model's 

output. We observed that a threshold for recognising a 

cell that was set too high led to missing cells that were 

almost transparent in some of the frames. A too low 

threshold, however, returned an increasing number of 

false-positives, typically large chunks of cell debris or 

parasite clusters (e.g., Figure 1d, bottom row). We pre-

ferred false positives over false negatives since we did 

not want to overlook any true cells, and a visual inspec-

tion of the cell journeys allowed us to remove the obvi-

ous non-cells afterwards. The inspection also revealed 

unexpected 'double-cell' journeys overlooked by the 

tracking algorithm caused by the CNN recognising two 

overlapping individual cells as one single cell (e.g., the 

top row of Figure 3d).  

 

Quantitative comparison of annotations 

Although we visually confirmed the neural network per-

formed adequately in segmenting the cells, we also 

wanted to assess the results quantitatively. To assess the 

CNN's performance, we compared the RBC surface area 

as determined by three human curators with experience 

in analysing RBCs (GT, JK, and DR) with that of the 

CNN. Curators each were given samples from the 81,034 

unique cell pictures segmented by the CNN (cropped to 

54x54 pixels) without its output-prediction and were in-

structed to segment them by drawing polygons around 

them to indicate cell form. Agreements between shapes 

were quantified as fractions of overlapping pixels. As 

ambiguous or ‘edge cases’ are relatively hard to segment, 

we made sure they were well represented in the set 

(~20%). To get an indication of the overlap between the 

human and CNN segmentations, we also compared 

them among curators themselves. We found that, collec-

tively, the human curators had a median overlapping 

fraction of .950 with the CNN’s output, and a median 

fraction of .961 amongst themselves (Table 1). Given that 

the cells are centred in the images, we actually expected 

large portions of the labels to always overlap. As a sanity 

check, we also evaluated what these fractions would be 

if the CNN outputs were compared to randomly selected 

curated segmentations of the cells. When randomly 

paired, the median overlapping fraction drops to ~.90 

(Table 1, column 4). The small difference between human 

and CNN assessment, as well as the visual inspection of 

the CNN’s outputs, gave us confidence in the CNN’s 

ability to segment cells. Note that for the final ΔDI deter-

mination (Figure 4), we only used the median of the DI 

values between the shapes during and after the con-

striction (Methods). This was done to ensure that occa-

sional mis-segmentations (e.g., caused by cells being too  

TABLE 1 

Trained CNN assessment 

Curators Overlapping 

Samples 

Surface area 

median frac-

tion overlap-

ping 

Surface area 

median 

fraction 

overlapping, 

randomly 

paired 

Curator1 - 

CNN 

105 .947 ± .0384 .895 ± .0437 

Curator2 - 

CNN 

500 .953 ± .0464 .893 ± .0421 

Curator3 - 

CNN 

500 .947 ± .0457 .901 ± .0562 

All curators 

- CNN 

1105 .950 ± .0454 

 

.896 ± .0464 

Curator1 – 

Curator2 

105 .973 ± .0122 .898 ± .0409 

Curator1 – 

Curator3 

105 .949 ± .0243 

 

.902 ± .0431 

Curator2 – 

Curator3 

500 .960 ± .0256 

 

.904 ± .0425 

All curator 

combina-

tions com-

bined 

1105 .961 ± .0290 .904 ± .0401 

CNN – 

CNN 

81034 1.00 ± .000 .895 ± .0581 

 

transparent or touching floating cell debris) did not play 

a large role in the ΔDI calculations. These potential mis- 

segmentations were however not excluded from the 

samples on which Table 1 is based, allowing for an unbi-

ased assessment of the CNN’s capabilities. As a result, 

we anticipate that the final segmentations used for ΔDI 

calculations will even be more similar to the human cu-

rator results than Table 1 indicates.  

 

The effect of developmental stage and strain on de-

formability 

Having validated our synthetic data approach for train-

ing the CNN, we next focused on studying the effect of 

malaria strain and developmental stage on the ΔDI of 

iRBCs. In this study we compared two P. falciparum 

strains of different geographical origins: K1 from Thai-

land and NF135 from Cambodia. For both strains, we 

studied the parasite effect in the ring, trophozoite, and 

schizont developmental stages on the ΔDI and used un-

infected RBCs as controls for maximally deformable 

cells. In total, 1,716 cells were evaluated.  
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Infected RBCs have a lower ΔDI than non-infected ones, 

and the ΔDI is lowest in the largest and most mature de-

velopmental stage. Interestingly, we also find a signifi-

cant and consistent difference across the developmental 

stages between the two strains, with NF135-infected 

RBCs having a lower deformability than K1-infected 

RBCs, while there is no difference between the ΔDI of the 

uninfected RBCs. 

 

3. Discussion 

We described a deep learning approach that enabled us 

to investigate the effects of malaria strain and phase on 

the deformability of infected RBCs. To accomplish this, 

we used synthetic data to train a CNN to predict RBC 

surface areas and locations and process that information 

with a Python script. We demonstrated that the neural 

network performed well in noisy environments and 

could generalise not only to real-world data, but also to 

cells with abnormal shapes and textures. We found a sig-

nificant RBC deformability difference between the K1 

and NF135 strains throughout asexual blood-stage de-

velopment. To the best of our knowledge, we are the first 

to use deep learning for automatic RBC deformity 

quantification under noisy conditions and the first to use 

non-simulation synthetic data to solve this problem. 

The observed difference in the deformability between 

the strains is particularly interesting as differences in the 

membrane rigidity of iRBCs have been linked to viru-

lence in the asexual blood stages of the parasite and to 

the transmission of the sexual blood-stage parasites to 

the mosquito vector[5]. The variation between strains in 

the asexual blood stages tested here could be indicative 

of natural variation in parasite virulence[2]–[4]. While 

disease severity has been reported for the K1 strain[24], 

[25], there is no data on the disease severity of NF135. 

Although controlled human malaria infections (CHMI) 

with the NF135 strain in naive individuals did not report 

severe malaria during the relatively short infection pe-

riod[21, p. 135], direct patient comparisons would be re-

quired to confirm the hypothesis that the differences in 

the ΔDI observed between the strains correlate with dif-

ferences in virulence. However, the increased membrane 

rigidity combined with the drug resistance profiles of 

NF135[21, p. 135] could make this particular parasite 

strain vital to uncovering important molecular mecha-

nisms relevant to disease progression and parasite sur-

vival within the human host. Regardless of the interest 

surrounding NF135, the observed differences in mem-

brane rigidity between these two wild-type malaria 

strains using this technique underline its power to un-

cover discrete differences in membrane mechanics. This 

will undoubtedly aid in the comparison of strains as well 

as genetically modified parasites in the quest to unravel 

the molecular mechanisms of virulence. Furthermore, by 

applying the same strategy to studying sexual blood-

stage deformability, the importance of the relative levels 

of RBC rigidity for transmission can be explored. Finally, 

this technique can be used to study existing compounds 

and discover new ones aimed at reducing rheological 

changes in the iRBC that the current filtration-based 

screen would miss [26].  

It is well established that more diverse training data 

leads to more accurate DL models because deep learning 

can only interpolate between what it has observed dur-

ing training[27], [28]. As a consequence, DL often fails on 

edge cases, which are rare occurrences that are unlikely 

to be captured in a training dataset. With our synthetic 

data, we were able to add rare but critical edge situations 

purposefully at any desired quantity and with consistent 

labelling. We found that by exaggerating the data fea-

tures, the neural network learned to generalise better to 

new data. Also, by training on synthetic data while test-

ing on real-world data, we did not have to be concerned 

with data leakage between training and test sets, some-

thing that is becoming a major part of the DL replication 

crisis in many science-fields[29]. However, there are also 

Figure 4. ΔDI distributions of the various infection stages, per strain. 

Student’s t-test between each infection stage of both strains. The sig-

nificance of the Student’s t-test is indicated as follows: n.s. = P > 0.01; 

* = 0.01 > P > 0.001; ** = P < 0.001. The boxplots contain a middle 

line that indicates the median; the lower and upper ends of the box 

indicate the 25th and 75th percentiles; and the lower and upper ex-

tremities indicate the minimum and maximum values. The dotted red 

lines indicate the zero-deformity and the median-deformity of unin-

fected cells. 
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valid arguments against the use of synthetic data to an-

swer research questions. The most important one being 

that synthetic data will always be based on a rough ap-

proximation of the real world and thus also be limited 

by that. This could potentially result in false insights 

and, as a result, incorrect decision-making. After all, you 

can only get as much out of the data as you put in. What 

distinguishes this case is that the employed deep learn-

ing model is not attempting to learn something novel 

from the data but rather learns to take over the mundane 

task of cell segmentation under noisy conditions. The 

synthetic data used in this study is more than adequate 

for that task. The CNN is only used for what it is good 

at, namely pattern recognition, and statistical analysis is 

used to detect meaningful patterns in the data. This ap-

proach allows researchers to focus on their own 

strengths, such as hypothesis generation and testing, in-

stead of wasting time labelling data by hand. 

The cell detection and segmentation procedures took 

care of the majority of the labour involved in analysing 

MD videos. Yet, the extracted cells still had to be catego-

rised into the malaria stages manually. A natural next 

step could be to generate synthetic data representing all 

malaria stages so that a neural network could also learn 

to classify those. However, given the significant variance 

introduced by the random generators during data gen-

eration, which makes it difficult to replicate the small 

distinctions between malaria stages, as well as the 

method's simplicity, we do not feel this strategy is viable. 

Instead, we propose that the synthetic data be limited to 

cell tracking and extraction alone. We believe that man-

ually browsing and classifying the successfully pro-

cessed cell journeys with the corresponding segmenta-

tion results even has its advantages. For starters, it al-

lows researchers to define their own thresholds between 

malaria stages. Also, it enables researchers to disqualify 

obvious mistakes made by the programme (e.g., Figure 

3d), which benefits science by increasing trust in the re-

sults.  

Besides this study's objective, the technique discussed 

here is relevant to more than just studying malaria-in-

duced RBC effects. In the future, this analysis pipeline 

could be used to study RBC deformability in diseases 

such as sickle cell anaemia, thalassemia, and hereditary 

spherocytosis, to name a few. This tool can also be used 

to study RBC dynamics during other physiological pro-

cesses, such as hypoxia, oxidative stress, lipid peroxida-

tion, and the effects of red blood cell membrane drug 

binding. And these are only a few RBC-specific exam-

ples. We expect that by modifying the synthetic data, it 

can be extended beyond analysing RBCs to other single 

cells or droplets, but this would require further research 

to confirm. Thus, the proposed pipeline has the potential 

to open up a whole new avenue of study. 

To conclude, by showcasing the success of DL in one of 

the more difficult MD cases, we demonstrated that DL 

has the potential to significantly accelerate the analysis 

of single-cell studies that use microfluidic devices. We 

found that, in some cases, such as in this study, synthetic 

data can effectively complement DL. We anticipate that 

our approach will make the benefits of DL, which were 

previously restricted to manually labelling data, availa-

ble to a larger audience. However, we also believe that 

DL should be employed conservatively to promote re-

search transparency, which can only benefit science. The 

newly discovered effect of malaria strain on the deform-

ability of iRBCs suggests that our combination of DL 

with CNNs and synthetic data can be used to uncover 

factors underlying the reduced deformability of iRBCs 

in malaria. 

 

4. Methods 

Microfluidic devices and experimental protocol 

A microfluidic device consists of an inlet, 30 parallel 

channels (6 regions with 5 channels in each), and an out-

let (see Figure 5). A narrow channel was 7 μm wide and 

1 mm long, two adjacent channels were 13 μm apart. A 

microfluidic pattern was drawn in Autocad (Autodesk) 

and transferred to glass (JD Photo Data). A microfluidic 

master was fabricated by patterning SU8 2007 

Figure 5. An experimental setup to capture RBCs deformation. (a) 

Overview of a setup: a syringe with sacrificial fluid (HFE7500) and a 

200 μL pipet tip is connected to the inlet of a microfluidic device. A 

pipet tip is loaded with 50 μL of RBC sample. An outlet is connected 

to a waste vial. Deformation of RBCs is observed on the IX71 inverted 

microscope via a 100x oil immersion objective.  (b) An architecture of 

a microfluidic device: the inlet (circle at the top) splits into 6 sets of 

cannels; each set consists of five 7 μm narrow and 1000 μm long 

channels. Neighbouring channels are 13 μm apart. The outlet is lo-

cated at the bottom. The inset at the bottom-right of the panel shows 

the approximate position where experimental videos were acquired. 
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photoresist (Kayaku Advanced Materials) on a silicon 

wafer (50 mm dia.; Si-mat); the photoresist was pro-

cessed according to the manufacturer's guidelines. 

Briefly, photoresist was spun (20 seconds at 500 rpm; 30 

s at 3000 rpm; acceleration 300 rpm/s) on a wafer, baked 

at 65 °C for 1 minute, and at 95 °C for 2.5 minutes; To 

define the pattern, the wafer was exposed through a 

glass mask (dose 100 mJ/cm2; mask aligner MBJ3, Suss 

Microtec), baked at 65 °C for 1 minute, and at 95 °C for 3 

minutes. The pattern was developed in SU-8 developer 

(Kayaku Advanced Materials) and the obtained master 

was baked at 175 °C for 2 minutes. The height of fabri-

cated features was checked with a Dektak 6M stylus pro-

filer (Bruker) and was between 8.5 and 9 μm. The surface 

of the master was treated with 1H,1H,2H,2H-perfluo-

rooctyltrichlorosilane (Thermo Scientific) to promote the 

removal of elastomer; the master and 50 μL of silane 

were left in a desiccator for 1 h under vacuum, followed 

by 2 h in a 95 °C oven.   

 Microfluidic devices were made from Sylgard 184 Sili-

con Elastomer kit (Dow). Base and cross-linker parts 

were mixed in a ratio of 10:1 (w/w), poured over the mas-

ter to create a 5-7 mm thick layer, and degassed in the 

desiccator. PDMS was cured for at least 2 h at 65 °C in an 

oven. PDMS was separated from a master, and a biopsy 

punch (1 mm dia., Kai Medical) was used to bore 1 mm 

holes for the inlet and outlet. PDMS piece was cleaned 

with Scotch tape, rinsed with isopropanol, and blow 

dried with nitrogen gas. Finally, a glass coverslip (50 mm 

dia.) and the PDMS piece were treated with oxygen 

plasma (25 s, 65 W, Femto 1A, Diener Electronic), and 

sealed together. 

An experimental setup consisted of an IX71 (Olympus) 

microscope equipped with a 100x oil immersion objec-

tive (UPlanFLN, Olympus) and Miro ex4 (Vision Re-

search) camera. Sample flow was controlled by Nemesys 

low-pressure syringe pump (Cetoni).  

Ethanol was used to fill the narrow and shallow channels 

of a device and then replaced with PBS before introduc-

ing a sample. 

A PDMS connector: a 5 mm biopsy punch (Kai Medical) 

was used to cut out a PDMS cylinder from a 5-7 mm 

thick PDMS sheet. 1 mm hole was bored in the centre of 

a PDMS cylinder along the rotational symmetry axis.  

A 0.5 mL Gastight syringe (Hamilton) was filled with 

HFE7500 oil and connected to tubing (0.56 mm ID, 1.07 

mm OD, Adtech Polymer Engineering) using a 23G 

(blue) needle. A PDMS connector was used to connect 

tubing to a 200 μL pipet tip. Prior to loading the sample, 

a pipet tip was filled with HFE7500 oil from a syringe. 50 

μL of a sample was loaded into a tip and connected to a 

microfluidic chip; the other outlet was connected to a 

piece of tubing and a waste vial. 

A sample aliquot was pushed through a device at 50 to 

100 μL/h. Movies were acquired at a rate of 1000 fps. 

 

Malaria data 

Plasmodium falciparum strains K1 and NF135 were cul-

tured in standard culture conditions[30] in RPMI media 

supplemented with 10% human serum and maintained 

in 5% haematocrit of human RBCs. Samples for micro-

fluidic analysis were taken directly from the cultures and 

kept at 37 °C until they were directly added to the micro-

fluidic device.  

 

Synthetic RBCs  

As illustrated in Figure 6, the synthetic data consisted of 

images of 100x100 pixels with a single-colour (grayscale) 

dimension. Each image consisted of a noisy background 

(e.g., Figure 6a, panel 2) with some or all of the following 

objects: a single wall (Figure 6a, panel 3), static artefacts 

(Figure 6a, panels 4 and 6), floating objects (Figure 6a, 

panel 5), and a round (Figure 6b) or bullet-like shaped 

cell (Figure 6c). Besides drawing circles and lines, the 

main algorithms used are: elastic deformation[22] (Fig-

ure 6d), Gaussian distribution function (examples in Fig-

ure 6e), and simplex noise generation[23] (e.g., Figure 

6f). Elastic deformation is a function that can ‘randomly’ 

warp images, the ranges of which are determined by the 

parameters α and σ, which determine the range and in-

tensity of image-warping. The Gaussian function creates 

Figure 6. Creation of synthetic RBCs. (a) Steps in the creation of syn-

thetic backgrounds (b) Steps in the creation of synthetic round cells. c 

Similar as a, but for bullet-like cells. (d) Illustration of elastic warping, 

which was used to introduce variation to object shapes. (e) Gaussian 

distribution examples, which were used to smooth out rough edges 

(left), but also to generate the cell’s centre-probability labels (right) (f) 

Some examples from the OpenSimplex noise function. These are gra-

dient noise patterns that can be utilised to synthesise textures (as seen 

in a’s second panel, b’s third panel, or c’s fourth panel), but they can 

also be used to interpolate between two images, with the intensity of 

the noise value determining how much each of the two images per pixel 

should contribute to the combined image (e.g., a noise value for a given 

pixel of .7 corresponds to the combined pixel being 70% image 1 and 

30% image 2 for that pixel). 
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a two-dimensional bell-curve. It contains a single param-

eter, the standard deviation (σ). The σ can either be used 

directly or be calculated indirectly given a box-size (e.g., 

Figure 6e had box-sizes of 3 and 16 and an ideal σ was 

calculated for those sizes). The OpenSimplex function, 

which generates gradient-noise patterns, has three pa-

rameters: the zoom, which determines the 'size' of the 

noise (for example, the left image in Figure 6f has a 

smaller zoom value than the right image), the random 

seed, which serves as a starting point for the random 

number generator used by the algorithm, and the range, 

which normalises the noise to be within a certain range 

of values. The seeds were based on the local time. Be-

cause we employ a large number of randomly sampled 

integers to construct the synthetic data, these will be des-

ignated as rdm_range(n,m) in the remainder of the arti-

cle, signifying any integer randomly chosen between n 

and (including) m. Often, multiple images were interpo-

lated (combined) into a new image. Interpolation re-

quires two images (P1 and P2) and a third interpolation 

image (I) that contains information on how much each 

pixel in either image should contribute to the new com-

bined image (P3) and has only values ranging between 0 

and 1. Interpolation is then done using the formula: 

 

P3 = I * P1 + (1 – I) * P2                             (1) 

 

A base background (Figure 6a last panel) always started 

from a colour=rdm_range(65, 146) and added Simplex  

noise with zoom=1 and range=(0, 1). The image was then 

blurred with a Gaussian kernel with box-size=3x3. After-

wards, another Simplex noise-pattern with zoom=1 and 

range=(–15, 15), was added. These steps created the 

small fine noise (e.g., Figure 6a 2nd panel). Then, another 

Simplex noise-pattern with zoom=0.01 and range=(-

10,10) was also added to give the images some colour 

gradient (e.g., Figure 6a 3rd panel). The addition of a 

wall object was only done for 60% of the images. Wall 

objects were made by drawing 3 lines with colours 

rdm_range(85, 140), rdm_range(0, 15) and 

rdm_range(200, 255) and a thickness of rdm_range(1, 4) 

pixels for the first two lines and rdm_range(3 and 7) pix-

els for the last line. The drawn lines were then rotated 

randomly (together). About 40% of the images with a 

wall object were warped with elastic deformation with 

α=700 and σ=14. The remainder has an elastic defor-

mation with α=15 and σ=3. Finally, the wall object was 

blurred with a Gaussian kernel of 5x5 pixels and placed 

in the base background image (e.g., Figure 6a 3rd panel). 

Artefacts, as can be seen in Figure 6a’s 4th panel, were 

created seven-fold. They were made by drawing small 

black (colour=0) filled circles with a radius of range=(1, 

3) pixels, and warping them with elastic-deformation 

with α=300 and σ=12 before placing them in the base 

background on random locations. Floating objects (e.g., 

Figure 6a 5th panel), were created in 66% of the images. 

They were made by drawing two circles: one with a ra-

dius of rdm_range(2,5) pixels and the other with 

rdm_range(0,3) pixels. The colours for both circles were 

chosen to be either from rdm_range(200, 255) or from 

rdm_range(28,38). After drawing, they were blurred 

with a Gaussian kernel of 5x5 pixels and placed in the 

base-background image at a random position. The black, 

hair-like artefact, as can be seen in the 6th panel of Figure 

6a, was created by drawing a black line with a length of 

rdm_range(0, 25) pixels, and a thickness of rdm_range(1, 

3) pixels. This artefact was than warped with elastic de-

formation with α=500 and σ=6 and placed in the base-

image at a random position and random rotation. A sec-

ond base background, with all objects besides floating 

objects or cells, was also generated with a 50% chance of 

being lighter or darker. This to simulate the median-

frame the neural network also receives as input. 

Round blood cells started with a drawn circle with ra-

dius=16 pixels, thickness=rdm_range(1,4) pixels, and 

colour=rdm_range(110, 250). Then, a second circle was 

drawn with radius=14 pixels, thickness=rdm_range(1,3) 

pixels, and colour=0. After that, a filled circle was drawn 

with radius=13 pixels and colour=70 (e.g., 2nd panel of 

Figure 3b). The texture of the inner cell (e.g., the 3rd 

panel of Figure 6b) was created by replacing the inner 

circle with a Simplex noise pattern with zoom=0.2 and 

range either (50,100) or (0,220). A malaria parasite was 

simulated by drawing a warped black dot in the cell, 

warping was done with elastic deformation with α=300 

and σ=12 (e.g., the 4th panel of Figure 3b). After adding 

the parasite, the whole cell was warped with elastic de-

formation with α=200 and σ=either 8 or 12 (e.g., 5th panel 

of Figure 6b). The cell was then blurred with a Gaussian 

kernel of 3x3 pixels, and added to the centre of the base 

background (e.g., Figure 6b’s 6th panel) via interpola-

tion. Bullet cells started a bit differently. They started 

with two half circles with different curvatures and thick-

ness=2 (e.g., Figure 6c 1st panel). The centres were 

rdm_range(-20,10) pixels apart. The edges of the circles 

were connected with lines that were also extended on the 

left side with rdm_range(0,5) pixels (to simulate tail ex-

tension, e.g., Figure 6c’s 2nd panel). The cells were then 

either filled uniformly with colour=rdm_range(85, 140) 

(e.g., 3rd panel of Figure 6c) or filled with a texture (e.g., 

4th panel of Figure 6c). This texture was made of Simplex 

noise with zoom=.2 and range of either (50, 100) or (0, 

220). The bullet cell was then blurred with a Gaussian 

kernel of size (9,9), warped with elastic deformation with 

α=400 and σ=17, rotated with an angle of rdm_range(-30, 

30) degrees (e.g., Figure 6c, 5th panel), and then placed 

in the base background via interpolation (e.g., Figure 6c, 

6th panel). 
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Expert labelling of real RBCs 

A simple tool was created to aid in the manual labelling 

of retrieved RBCs. A domain expert was given 2.461 cell 

journeys to label via this tool. This, with the following 

categories: 1) uninfected; 2) ring stage; 3) trophozoite; 4) 

schizont; and 5) other. All images were shown without 

context (e.g., the source of the RBC cell journey) and 

shuffled at random prior to the classification process.  

 

Convolutional neural network architecture 

Inspired by the human ventral and dorsal visual path-

ways, we designed the neural network to include two 

output layers: one for segmentation to determine cell 

shapes, and one for detecting RBCs and their locations. 

There are seven hidden layers in the CNN. The first layer 

has a dilation parameter of 30, which adds a black border 

of 30 pixels around the input. Figure 7 shows that the 

dilation of the hidden layers goes up and down[31], 

which makes the receptive field bigger without the need 

for pooling layers. The kernel size is 5x5 for all layers, 

including the output layers. Batch normalisation and 

ReLU activation were applied to all hidden layers. The 

output layers have a Softmax activation function for the 

cell-segmentation output and a Sigmoid activation func-

tion for the cell-location output. Since no tensor flatten-

ing was used, this neural architecture design is able to 

handle larger inputs than it was trained on.  

 

Training, validation, and testing procedure 

A model based on the aforementioned architecture was 

trained on 10,000 synthetic data instances with an equal 

number of round and bullet-shaped cells. We trained on 

minibatches containing 32 samples each. The binary 

cross-entropy loss was used to calculate the loss between 

the CNN outputs and the labels. The loss values for both 

types of labels were summed. The Adam optimizer[32], 

with the standard learning rate of 10-3, was used to op-

timise the model parameters. The model parameters 

were saved with every ten minibatches of training. Train-

ing was automatically stopped after 22 epochs.  

The validation set was a single frame from 2 videos used 

in this study (K1_001_20201105.tif, and 

NF135_002_20201105.tif), and an unrelated mouse-RBC 

MD videoframe (002_2.5kfps.avi). The mouse video 

frame was selected to evaluate the model's generalisa-

tion abilities. The three frames contained 38 cell images 

in total. The optimal parameters were chosen by visually 

examining the model’s output from the three validation 

frames for each of the saved checkpoints. We refer to the 

GitHub page for the actual validation frames and the Ze-

nodo webserver for all the videos.  

We used data from all videos to test the segmentation 

output quality. First, the model was applied to all mov-

ies, yielding 2,461 cell-journeys with approximately 33 

sub-images each. Then, these cell sub-images were 

cropped from video frames with a size of 128x128 (with 

the cell exactly in the middle), yielding 81.034 images of 

Figure 7. Neural network architecture for segmentation and instancing of RBCs. The neural network consists of nine convolutional layers. 
The first layer adds padding around the input image, and the layers three through seven have an increase and then a decrease in dilation. 
The last two layers only consist of a convolutional layer and an activation function. Sigmoid was used for the instancing and Softmax for 
the segmentation. 
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single cells. A Python programme was created to assist 

with manual labelling. Human experts were randomly 

given single images of cells by the programme. These 

images were four times enlarged, and presented to an-

notators without any knowledge of the model's output. 

The programme enabled them to draw a polygon 

around the cell to define its form. The outputs of both 

human curators and the CNN were cropped to 54x54 

pixels and compared (Table 1). 

 

Cell tracking script  

The cell-tracking programme, written in Python, was de-

signed to track individual cells through the MD and to 

calculate the ΔDI. The script used the CNN’s output as 

its input. The tracking itself only requires the cell-loca-

tion output of the neural network. Since collisions be-

tween cells could negatively influence the deformity de-

termination, colliding cells and cells that travelled in 

clusters were excluded from ΔDI analysis by the pro-

gramme.  

Prior to processing, a ‘median frame’ was created for 

each MD video by selecting 100 frames at random from 

a specific movie and calculating the median value for 

each pixel. The videos were split and processed in paral-

lel in order to improve analysis time. Each movie was 

divided into 20 chunks, with 60 frames overlapping be-

tween consecutive chunks. Each frame was concatenated 

with the median frame to meet the CNN’s input dimen-

sion requirement. Feeding the concatenated frames to 

the model resulted in the segmentation (representing 

RBC shapes) and location-peak predictions for each 

frame. Per frame, all location-peak outputs were 

smoothed with a Gaussian-blur function with a kernel-

size of 3x3. The peak-centres with probability values 

larger than 0.3 and at least 10 pixels apart from other 

peaks were considered to potentially represent the cen-

tre (x,y) coordinates of cells. A ‘cell initialization thresh-

old’ was set at 70px, illustrated as a line in Figure 8. All 

cells detected left of this threshold were considered as 

‘new entering cell objects’. For all new cell objects, frame 

crops of 64x64 pixels around the middle of the cell ob-

jects, as well as a same-sized crop around the CNN seg-

mentation output, were stored in memory. To enable cell 

tracking, each cell object's next cell location was first pre-

dicted before processing the next frame. This was accom-

plished by adding the velocity of the cell to the position 

using the formula:  

(xt+1, yt+1) = (xt + (xt-xt-1), yt + (yt-yt-1))                (2)  

These predictions were then compared to the CNN’s cell-

location coordinates of the next frame to check if they 

were similar. A match was defined as a Euclidean dis-

tance that was less than twice the cell velocity and no 

larger than 30 pixels. Cell-objects that did not have a 

match with the location peaks were removed from 

memory. The crops of the frame and segmentation re-

sults were stored in memory alongside earlier crops for 

the cells that did match. The distances between all cell-

objects were then calculated, and cells with a distance of 

less than 35 pixels were erased from memory to ensure 

colliding cells were not part of the study. The process of 

predicting the next location of cell objects and matching 

them with CNN detections was repeated until the cell-

objects met the 'completion threshold', which was de-

fined as the frame-width minus 40 pixels (see Figure 8). 

Following that, all cell-crops were stored as cell-journey 

images (e.g., Figure 2). 

 

Shape and Deformity Index determination 

The deformity of an RBC is defined as the difference be-

tween the RBC's width (W) and height (H) ratios during 

and after constriction (formula 3).  

ΔDI =
𝑊a

𝐻a
 −  

𝑊d

𝐻d
                              (3) 

Each RBC, however, has many frames during the con-

striction and multiple frames after the constriction. 

Therefore, we calculated the DI for each frame and used 

the median DI value of the constriction and the median 

DI value outside the constriction to calculate the ΔDI. 

The rationale behind this was that this would result in a 

more robust ΔDI since noise factors, like those illustrated 

Figure 8. A schematic of the tracking algorithm. A cell initialization 
threshold indicates the start of a cell-journey. With every consecu-
tive frame, the cell’s new coordinates are predicted given the cell’s 
momentum. Cells are eliminated for research if they come within 
35 pixels of another cell. After a cell object passes the cell journey 
completion threshold it is marked as complete 
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in Figure 3B, could sometimes hinder making proper 

segmentations. 

Before calculating the DIs, cell-journeys with raw seg-

mentation CNN outputs were multiplied by 255 and 

saved as grayscale images (grayscale = 1 colour dimen-

sion per pixel instead of the 3 used in colour images). For 

DI calculation, the cell journey segmentation outputs 

were loaded in and first smoothed with a Gaussian func-

tion (σ value of 1) and then binarized using a threshold 

of 150. Some frames of the journeys still contained parts 

of nearby cells. Therefore, a ‘Flood Fill’[33] function was 

applied to all frame centres to isolate the cell segmenta-

tions from other cells. Afterwards, rectangles were 

drawn around all cell segmentations to create bounding 

boxes. The widths and heights of the boxes were used to 

compute the cell ratios.  

 

Data and code availability 

The microfluidic device videos have been deposited on 

the Zenodo webserver. 

(https://doi.org/10.5281/zenodo.7374342) 

The code used to generate the synthetic images, train the 

CNN and process all results are available at: 

https://github.com/cmbi/synthetic_cells 
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