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Abstract— Several haematologic diseases, including malaria, diabetes, and sickle cell anaemia,
result in a reduced red blood cell deformability. This deformability can be measured using a
microfluidic device with channels of varying width. Nevertheless, it is challenging to algorithmically
recognise large numbers of red blood cells and quantify their deformability from image data. Deep
learning has become the method of choice to handle noisy and complex image data. However, it
requires a significant amount of labelled data to train the neural networks. By creating images of cells
and mimicking noise and plasticity in those images, we generate synthetic data to train a network to
detect and segment red blood cells from video-recordings, without the need for manually annotated
labels. Using this new method, we uncover significant differences between the deformability of RBCs
infected with different strains of Plasmodium falciparum, providing clues to the variation in virulence

of these strains.
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1. Introduction

The malaria parasite, which in 2020 caused an estimated
627,000 deaths worldwide[1], spends part of its life cycle
in human red blood cells (RBCs). In the most deadly of
malaria parasites, Plasmodium falciparum, the in-
traerythrocytic developmental cycle lasts 48 hours, com-
prising the ring-, trophozoite-, and schizont-stages. Dur-
ing these stages, the parasite remodels the RBC by set-
ting up an extensive export process, which involves ap-
proximately 10% of the parasite's proteome[2]-[4]. As a
result, the infected RBC (iRBC) becomes sticky and hy-
per-rigid. While these RBC modifications are critical for
parasite survival, the stickiness and rigidity are also a
cornerstone of virulence and, as such, they have been the
topic of great interest in malaria research[2]-[4]. To
study variations in rigidity, e.g., during the intraerythro-
cytic developmental cycle, or between different P. falci-
parum strains, hundreds to thousands of cells must be
analysed to create statistically meaningful data. Progress
in studying these RBC morphological changes, particu-
larly in membrane mechanics, has been hampered by the
critical lack of a suitable assay to measure the changes in
rigidity in a high throughput and accurate manner[5],
[6]. However, recent advances in microfluidic devices al-
low measuring RBC mechanics in large quantities[7].

Microfluidic devices (MDs) are tools to manipulate fluid
on a scale from a few microns to a few hundred microns.

Feature size in MDs is commensurate with individual
cell size, thus making MDs useful for cell analysis[8].
MDs provide a low-cost, high-throughput method to
study RBCs under varying conditions[7], [9]. For exam-
ple, the effect of small blood vessels on RBCs can be em-
ulated with the use of narrow constriction channels.
Comparing the deformity index (DI) (i.e., the shape de-
formity) of an RBC before and after the tight passage
then yields a deformity index difference (ADI) value per
RBC indicating cell deformability. High-speed micro-
scope imaging records the events in such MDs, produc-
ing movies that can easily contain thousands of cells.
Manually evaluating such a large number of cells,
though, is a daunting task. One study investigating the
effects of blood bank storage on RBC deformability
partly automated some of the MD-video processing us-
ing conventional image processing techniques[10].
However, in general, these techniques are limited to pre-
programed solutions[11] and cannot handle unexpected
events like motion blur, translucent cell edges, colliding
cells, air bubbles, unusual cell shapes, background noise,
MD artefacts, floating cell debris, cell-clusters, and illu-
mination variations (Figure 1 depicts an example of a
typical video frame). As a result, MD-video processing
still requires time-consuming human labour to predefine
all the exceptions and design algorithms to handle them.
An example of this, is the work of Saadat et al.[12], who
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Figure 1. Topography of a typical microfluidic video frame. A typical
video frame from a microfluidic device contains many objects other
than the RBCs of interest. These non-cell objects, such as cell debris,
microfluidic device walls, or other artefacts, in combination with vary-
ing focus and lighting conditions, interfere with the segmentation and
tracking processes.

despite reporting tremendous success in determining
the mechanical properties of RBCs in high-throughput,
confirmed that image noise was detrimental for cell
tracking and shape determination and were unable to
handle abnormally shaped cells. Since all these factors
are prevalent in iRBCs MD videos, a different approach
should be considered. Machine learning, and in particu-
lar deep learning (DL) may be a more effective strategy
to process the image data, including handling the many
challenging technical and biological variations.

The success of many recent DL projects can be attributed
to the combination of clever neural architecture design
and automated feature extraction from large da-
tasets[13]. In particular, the Convolutional Neural Net-
work (CNN) architecture performs well on image data
and has been shown to solve many complex image data
problems with high accuracy[14]-[17]. Most relevant
here is that it has shown great results in image segmen-
tation —the per pixel labelling of images— under noisy
conditions[11], [18], which in principle makes it an ideal
candidate for handling MD video data. Given that DL is
a data-driven approach, its performance directly de-
pends on the quality and quantity of the data trained on.
However, many scientific disciplines lack the amount of
labelled data required to power DL algorithms. The use
of synthetic data, which is data created by computer al-
gorithms instead of collected from the real world, is one
potential solution that is gaining traction in the DL com-
munity[19]. It provides a source of data that is similar to
real-world data but with the benefits of having con-
sistent labels and complete control over all characteris-
tics of the data.

In this study, we created a robust method to automati-
cally track and calculate DIs of RBCs from noisy MD vid-
eos with the goal of investigating the differences in RBC

deformability between iRBCs of the geographically dis-
tinct Plasmodium falciparum strains K1[20] and
NF135[21, p. 135]. We designed a CNN architecture with
two output layers to translate the noisy videoframes into
cell shapes and cell locations. We avoided the need for
annotating a diverse, carefully labelled dataset of RBCs
by training the CNN on synthetic data instead. We also
created a Python programme that accepts the CNN out-
puts to extract the individual RBC journeys through the
MD, remove colliding cells, and calculate cell ADIs. The
extracted cell journeys were classified by a domain ex-
pert by stage of RBC infection. We confirm that there is
a highly significant difference in RBC deformability be-
tween uninfected and early-stage infected RBCs, as well
as a general trend of decreased deformability between
the consecutive infection stages. Unexpectedly, we dis-
covered a significant difference in deformability be-
tween the K1 and the NF135 strains at all stages of infec-
tion.

2. Results
Generating synthetic data RBC images

We generated a synthetic training dataset of 10,000 im-
age patches of 100x100 pixels that each could include
RBCs, MD walls, and/or various artefacts. We here de-
scribe conceptually how this was done; see the Methods
section for a more detailed description. RBCs in our ex-
perimental setting adopted either a round (Figure 2a) or
a bullet-like shape (Figure 2c). Although the real-world
data of RBCs and their background appear intricate (Fig-
ures 2a, 2¢c, and 2e), we were able to approximate them

Figure 2. Synthetic and real-world example images. (a) Variation of
real-world ‘round’ shaped RBCs; (c) same as (a), but with ‘bullet’
shaped RBCs; (e) same as (a) and (c) but with focus on background
variations. (b), (d), and (f) are manually selected images from the
synthetic data that are similar to the corresponding images in (a), (c),
and (e), respectively. Labels are given in two ways: 1) the segmen-
tation, indicating the probability per pixel that it belongs to an RBC,
as illustrated in (g); and 2) a Gaussian distribution indicating the prob-
ability of pixels belonging to the centre of a RBC, as illustrated in (h).
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reasonably well with just a limited set of simple rules
(Figures 2b, 2d, and 2f). For each of the synthetic col-
umns b, d, and f, we used the same procedure to gener-
ate the diversity shown, i.e,, all generated images started
from circles, lines, or both. We warped these basic forms
in a variety of ways using elastic-deformation, a popular
technique for augmenting images[22]. To generate natu-
ral-looking textures, we used the Simplex-noise func-
tion, a function that produces gradient noise patterns
that are commonly used in the game and film indus-
tries[23]. Doing so, we were able to generate the back-
ground (Figure 2f) and inner cell textures (Figure 2b).
The noise patterns were also utilised as interpolation ra-
tio matrices, which enabled us to interpolate between
simple textures to create more complex ones, to make
cells partially translucent, and to add a colour gradient
to the background. In addition to the cell textures, we
added dark spot(s) to a fraction of the cells to simulate
the presence of parasites (Figure 2b). Finally, we used a
blur technique to reduce harsh edges, thereby making
the images appear more natural. The backgrounds were
created in duplicate. One containing all objects, and one
without any transient objects but with altered colour in-
tensities to make the neural network robust for differ-
ences in lightning.

All images were of course perfectly annotated because of
the synthetic nature of the data. Each image had labels
describing the cell's form (Figure 2g) and labels describ-
ing the cell's position (Figure 2h). The form labels con-
tained pixel-per-pixel binary segmentation values indi-
cating the probability that a pixel belonged to an RBC.
For the cell location labels, each pixel was assigned the
probability of being an RBC centre, modelled as a 2D
Gaussian distribution with its peak at the cell centres (il-
lustrated as a heat-map in Figure 2h). The synthetic im-
ages were significantly smaller than the video frames, as
can be appreciated by comparing Figure 1 with Figure 2.
This allowed for a much smaller and more efficient CNN
to be trained on while still containing enough context for
the CNN to perform well. An interesting finding during
testing was that exaggerating the objects' features helped
the neural network generalise better. Making objects
brighter or darker than they appeared in the videos, or
having objects with more deformity than seen in the real
data, for example, aided in making the neural network
more robust.

Red blood cell tracking and segmentation results

Training the CNN on the synthetic data allowed us to
recognise ‘real’ RBCs from the MD image data. The CNN
produced two kinds of output: one showing where the
cells were and the other showing what shape they had.
Using the CNN's location outputs, a Python script

tracked the cells throughout the video. Figure 3 depicts
some of the resulting cell journeys, which were created
by combining crops from each frame in which the cell
was present. The accurate segmentation, which entails
marking each pixel whether it is part of the cell or not,
appeared to be more difficult than the recognition of
RBCs. As intended, cells produced a strong signal,
whereas most floating artefacts were ignored unless they
came into direct contact with the cells (Figure 3b, eighth
frame, bottom row). Such temporary associations, how-
ever, have minimal effects on the ADI calculations
(Methods). The tracking script was tasked with ignoring
cells that travelled in clusters or collided with other cells
during the journey. This was to ensure that the collision
effects would not interfere with later DI calculations. As
discussed in the synthetic data section, we trained the
CNN on round and bullet-like shaped cells, and, as ex-
pected, it was able to correctly identify and segment sim-
ilar real-world cells (Figure 3a). Moreover, the CNN was
able to generalise to cells with abnormal shapes and tex-
tures, which are common for malaria iRBCs, as can be
appreciated from Figure 3c for which we selected some
striking ‘edge’ cases of cells with abnormal shapes. Since
the CNN output contained the position of cells as peaks
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Figure 3. Cell tracking results. Original images are on top, segmenta-
tion results are at the bottom. (a) Examples of celljourneys of cells
with shapes similar to those in the training dataset. (b) Examples of
cell-journeys with noise artefacts floating around the cell, which could
potentially hinder correct cell-segmentations. Note that in the in the
8th frame of the bottom journey, the artefact is in contact with the cell
and becomes part of the cell-segmentation. (c) Cell journeys with un-
usual shapes not similar to the training data. This demonstrates the
generalization abilities of the neural network. (d) Some ‘failure’ cases.
The top journey contains two cells traveling together, which should
have been excluded. This was probably caused by the fact that they
were overlapping the whole journey making it look like a single cell
to the neural network. The bottom one is debris that was seen as a cell
by the neural network due to its large size.
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of probability values, we could correct for false positives
and false negatives by setting a threshold to the model's
output. We observed that a threshold for recognising a
cell that was set too high led to missing cells that were
almost transparent in some of the frames. A too low
threshold, however, returned an increasing number of
false-positives, typically large chunks of cell debris or
parasite clusters (e.g., Figure 1d, bottom row). We pre-
ferred false positives over false negatives since we did
not want to overlook any true cells, and a visual inspec-
tion of the cell journeys allowed us to remove the obvi-
ous non-cells afterwards. The inspection also revealed
unexpected 'double-cell' journeys overlooked by the
tracking algorithm caused by the CNN recognising two
overlapping individual cells as one single cell (e.g., the
top row of Figure 3d).

Quantitative comparison of annotations

Although we visually confirmed the neural network per-
formed adequately in segmenting the cells, we also
wanted to assess the results quantitatively. To assess the
CNN's performance, we compared the RBC surface area
as determined by three human curators with experience
in analysing RBCs (GT, JK, and DR) with that of the
CNN. Curators each were given samples from the 81,034
unique cell pictures segmented by the CNN (cropped to
54x54 pixels) without its output-prediction and were in-
structed to segment them by drawing polygons around
them to indicate cell form. Agreements between shapes
were quantified as fractions of overlapping pixels. As
ambiguous or ‘edge cases’ are relatively hard to segment,
we made sure they were well represented in the set
(~20%). To get an indication of the overlap between the
human and CNN segmentations, we also compared
them among curators themselves. We found that, collec-
tively, the human curators had a median overlapping
fraction of .950 with the CNN'’s output, and a median
fraction of .961 amongst themselves (Table 1). Given that
the cells are centred in the images, we actually expected
large portions of the labels to always overlap. As a sanity
check, we also evaluated what these fractions would be
if the CNN outputs were compared to randomly selected
curated segmentations of the cells. When randomly
paired, the median overlapping fraction drops to ~.90
(Table 1, column 4). The small difference between human
and CNN assessment, as well as the visual inspection of
the CNN'’s outputs, gave us confidence in the CNN’s
ability to segment cells. Note that for the final ADI deter-
mination (Figure 4), we only used the median of the DI
values between the shapes during and after the con-
striction (Methods). This was done to ensure that occa-
sional mis-segmentations (e.g., caused by cells being too

TABLE 1
Trained CNN assessment

Curators Overlapping Surface area Surface area
Samples median frac- median
tion o.verlap- fraction
ping overlapping,
randomly
paired
Curator] - 105 947 + .0384 .895 +.0437
CNN
Curator2 - 500 953 +.0464 .893 +.0421
CNN
Curator3 - 500 947 + .0457 .901 +.0562
CNN
All curators 1105 950 +.0454 .896 +.0464
-CNN
Curatorl — 105 973 +.0122 .898 +.0409
Curator2
Curator] — 105 949 +.0243 902 +.0431
Curator3
Curator2 — 500 960 +.0256 .904 + .0425
Curator3
All curator 1105 961 +.0290 .904 +.0401
combina-
tions com-
bined
CNN - 81034 1.00 +.000 .895 +.0581
CNN

transparent or touching floating cell debris) did not play
a large role in the ADI calculations. These potential mis-
segmentations were however not excluded from the
samples on which Table 1 is based, allowing for an unbi-
ased assessment of the CNN’s capabilities. As a result,
we anticipate that the final segmentations used for ADI
calculations will even be more similar to the human cu-
rator results than Table 1 indicates.

The effect of developmental stage and strain on de-
formability

Having validated our synthetic data approach for train-
ing the CNN, we next focused on studying the effect of
malaria strain and developmental stage on the ADI of
iRBCs. In this study we compared two P. falciparum
strains of different geographical origins: K1 from Thai-
land and NF135 from Cambodia. For both strains, we
studied the parasite effect in the ring, trophozoite, and
schizont developmental stages on the ADI and used un-
infected RBCs as controls for maximally deformable
cells. In total, 1,716 cells were evaluated.
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Figure 4. ADI distributions of the various infection stages, per strain.
Student’s t-test between each infection stage of both strains. The sig-
nificance of the Student’s t-test is indicated as follows: n.s. = P > 0.01;
*=0.01>P>0.001; * =P < 0.001. The boxplots contain a middle
line that indicates the median; the lower and upper ends of the box
indicate the 25th and 75th percentiles; and the lower and upper ex-
tremities indicate the minimum and maximum values. The dotted red
lines indicate the zero-deformity and the median-deformity of unin-
fected cells.

Infected RBCs have a lower ADI than non-infected ones,
and the ADI is lowest in the largest and most mature de-
velopmental stage. Interestingly, we also find a signifi-
cant and consistent difference across the developmental
stages between the two strains, with NF135-infected
RBCs having a lower deformability than Kl-infected
RBCs, while there is no difference between the ADI of the
uninfected RBCs.

3. Discussion

We described a deep learning approach that enabled us
to investigate the effects of malaria strain and phase on
the deformability of infected RBCs. To accomplish this,
we used synthetic data to train a CNN to predict RBC
surface areas and locations and process that information
with a Python script. We demonstrated that the neural
network performed well in noisy environments and
could generalise not only to real-world data, but also to
cells with abnormal shapes and textures. We found a sig-
nificant RBC deformability difference between the K1
and NF135 strains throughout asexual blood-stage de-
velopment. To the best of our knowledge, we are the first
to use deep learning for automatic RBC deformity

quantification under noisy conditions and the first to use
non-simulation synthetic data to solve this problem.

The observed difference in the deformability between
the strains is particularly interesting as differences in the
membrane rigidity of iRBCs have been linked to viru-
lence in the asexual blood stages of the parasite and to
the transmission of the sexual blood-stage parasites to
the mosquito vector[5]. The variation between strains in
the asexual blood stages tested here could be indicative
of natural variation in parasite virulence[2]-[4]. While
disease severity has been reported for the K1 strain[24],
[25], there is no data on the disease severity of NF135.
Although controlled human malaria infections (CHMI)
with the NF135 strain in naive individuals did not report
severe malaria during the relatively short infection pe-
riod[21, p. 135], direct patient comparisons would be re-
quired to confirm the hypothesis that the differences in
the ADI observed between the strains correlate with dif-
ferences in virulence. However, the increased membrane
rigidity combined with the drug resistance profiles of
NF135[21, p. 135] could make this particular parasite
strain vital to uncovering important molecular mecha-
nisms relevant to disease progression and parasite sur-
vival within the human host. Regardless of the interest
surrounding NF135, the observed differences in mem-
brane rigidity between these two wild-type malaria
strains using this technique underline its power to un-
cover discrete differences in membrane mechanics. This
will undoubtedly aid in the comparison of strains as well
as genetically modified parasites in the quest to unravel
the molecular mechanisms of virulence. Furthermore, by
applying the same strategy to studying sexual blood-
stage deformability, the importance of the relative levels
of RBC rigidity for transmission can be explored. Finally,
this technique can be used to study existing compounds
and discover new ones aimed at reducing rheological
changes in the iRBC that the current filtration-based
screen would miss [26].

It is well established that more diverse training data
leads to more accurate DL models because deep learning
can only interpolate between what it has observed dur-
ing training[27], [28]. As a consequence, DL often fails on
edge cases, which are rare occurrences that are unlikely
to be captured in a training dataset. With our synthetic
data, we were able to add rare but critical edge situations
purposefully at any desired quantity and with consistent
labelling. We found that by exaggerating the data fea-
tures, the neural network learned to generalise better to
new data. Also, by training on synthetic data while test-
ing on real-world data, we did not have to be concerned
with data leakage between training and test sets, some-
thing that is becoming a major part of the DL replication
crisis in many science-fields[29]. However, there are also
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valid arguments against the use of synthetic data to an-
swer research questions. The most important one being
that synthetic data will always be based on a rough ap-
proximation of the real world and thus also be limited
by that. This could potentially result in false insights
and, as a result, incorrect decision-making. After all, you
can only get as much out of the data as you put in. What
distinguishes this case is that the employed deep learn-
ing model is not attempting to learn something novel
from the data but rather learns to take over the mundane
task of cell segmentation under noisy conditions. The
synthetic data used in this study is more than adequate
for that task. The CNN is only used for what it is good
at, namely pattern recognition, and statistical analysis is
used to detect meaningful patterns in the data. This ap-
proach allows researchers to focus on their own
strengths, such as hypothesis generation and testing, in-
stead of wasting time labelling data by hand.

The cell detection and segmentation procedures took
care of the majority of the labour involved in analysing
MD videos. Yet, the extracted cells still had to be catego-
rised into the malaria stages manually. A natural next
step could be to generate synthetic data representing all
malaria stages so that a neural network could also learn
to classify those. However, given the significant variance
introduced by the random generators during data gen-
eration, which makes it difficult to replicate the small
distinctions between malaria stages, as well as the
method's simplicity, we do not feel this strategy is viable.
Instead, we propose that the synthetic data be limited to
cell tracking and extraction alone. We believe that man-
ually browsing and classifying the successfully pro-
cessed cell journeys with the corresponding segmenta-
tion results even has its advantages. For starters, it al-
lows researchers to define their own thresholds between
malaria stages. Also, it enables researchers to disqualify
obvious mistakes made by the programme (e.g., Figure
3d), which benefits science by increasing trust in the re-
sults.

Besides this study's objective, the technique discussed
here is relevant to more than just studying malaria-in-
duced RBC effects. In the future, this analysis pipeline
could be used to study RBC deformability in diseases
such as sickle cell anaemia, thalassemia, and hereditary
spherocytosis, to name a few. This tool can also be used
to study RBC dynamics during other physiological pro-
cesses, such as hypoxia, oxidative stress, lipid peroxida-
tion, and the effects of red blood cell membrane drug
binding. And these are only a few RBC-specific exam-
ples. We expect that by modifying the synthetic data, it
can be extended beyond analysing RBCs to other single
cells or droplets, but this would require further research

to confirm. Thus, the proposed pipeline has the potential
to open up a whole new avenue of study.

To conclude, by showcasing the success of DL in one of
the more difficult MD cases, we demonstrated that DL
has the potential to significantly accelerate the analysis
of single-cell studies that use microfluidic devices. We
found that, in some cases, such as in this study, synthetic
data can effectively complement DL. We anticipate that
our approach will make the benefits of DL, which were
previously restricted to manually labelling data, availa-
ble to a larger audience. However, we also believe that
DL should be employed conservatively to promote re-
search transparency, which can only benefit science. The
newly discovered effect of malaria strain on the deform-
ability of iRBCs suggests that our combination of DL
with CNNs and synthetic data can be used to uncover
factors underlying the reduced deformability of iRBCs
in malaria.

4. Methods
Microfluidic devices and experimental protocol

A microfluidic device consists of an inlet, 30 parallel
channels (6 regions with 5 channels in each), and an out-
let (see Figure 5). A narrow channel was 7 pm wide and
1 mm long, two adjacent channels were 13 um apart. A
microfluidic pattern was drawn in Autocad (Autodesk)
and transferred to glass (JD Photo Data). A microfluidic
fabricated by patterning SU8 2007

master was
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Figure 5. An experimental setup to capture RBCs deformation. (a)
Overview of a setup: a syringe with sacrificial fluid (HFE7500) and a
200 L pipet tip is connected to the inlet of a microfluidic device. A
pipet tip is loaded with 50 uL of RBC sample. An outlet is connected
to a waste vial. Deformation of RBCs is observed on the IX71 inverted
microscope via a 100x oil immersion objective. (b) An architecture of
a microfluidic device: the inlet (circle at the top) splits into 6 sets of
cannels; each set consists of five 7 um narrow and 1000 pm long
channels. Neighbouring channels are 13 pm apart. The outlet is lo-
cated at the bottom. The inset at the bottom-right of the panel shows
the approximate position where experimental videos were acquired.
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photoresist (Kayaku Advanced Materials) on a silicon
wafer (50 mm dia.; Si-mat); the photoresist was pro-
cessed according to the manufacturer's guidelines.
Briefly, photoresist was spun (20 seconds at 500 rpm; 30
s at 3000 rpm; acceleration 300 rpm/s) on a wafer, baked
at 65 °C for 1 minute, and at 95 °C for 2.5 minutes; To
define the pattern, the wafer was exposed through a
glass mask (dose 100 mJ/cm2; mask aligner MBJ3, Suss
Microtec), baked at 65 °C for 1 minute, and at 95 °C for 3
minutes. The pattern was developed in SU-8 developer
(Kayaku Advanced Materials) and the obtained master
was baked at 175 °C for 2 minutes. The height of fabri-
cated features was checked with a Dektak 6M stylus pro-
filer (Bruker) and was between 8.5 and 9 um. The surface
of the master was treated with 1H,1H,2H,2H-perfluo-
rooctyltrichlorosilane (Thermo Scientific) to promote the
removal of elastomer; the master and 50 uL of silane
were left in a desiccator for 1 h under vacuum, followed
by 2 hina 95 °C oven.

Microfluidic devices were made from Sylgard 184 Sili-
con Elastomer kit (Dow). Base and cross-linker parts
were mixed in a ratio of 10:1 (w/w), poured over the mas-
ter to create a 5-7 mm thick layer, and degassed in the
desiccator. PDMS was cured for at least 2 h at 65 °C in an
oven. PDMS was separated from a master, and a biopsy
punch (1 mm dia., Kai Medical) was used to bore 1 mm
holes for the inlet and outlet. PDMS piece was cleaned
with Scotch tape, rinsed with isopropanol, and blow
dried with nitrogen gas. Finally, a glass coverslip (50 mm
dia.) and the PDMS piece were treated with oxygen
plasma (25 s, 65 W, Femto 1A, Diener Electronic), and
sealed together.

An experimental setup consisted of an IX71 (Olympus)
microscope equipped with a 100x oil immersion objec-
tive (UPlanFLN, Olympus) and Miro ex4 (Vision Re-
search) camera. Sample flow was controlled by Nemesys
low-pressure syringe pump (Cetoni).

Ethanol was used to fill the narrow and shallow channels
of a device and then replaced with PBS before introduc-
ing a sample.

A PDMS connector: a 5 mm biopsy punch (Kai Medical)
was used to cut out a PDMS cylinder from a 5-7 mm
thick PDMS sheet. 1 mm hole was bored in the centre of
a PDMS cylinder along the rotational symmetry axis.

A 0.5 mL Gastight syringe (Hamilton) was filled with
HFE7500 oil and connected to tubing (0.56 mm ID, 1.07
mm OD, Adtech Polymer Engineering) using a 23G
(blue) needle. A PDMS connector was used to connect
tubing to a 200 pL pipet tip. Prior to loading the sample,
a pipet tip was filled with HFE7500 oil from a syringe. 50
uL of a sample was loaded into a tip and connected to a

microfluidic chip; the other outlet was connected to a
piece of tubing and a waste vial.

A sample aliquot was pushed through a device at 50 to
100 pL/h. Movies were acquired at a rate of 1000 fps.

Malaria data

Plasmodium falciparum strains K1 and NF135 were cul-
tured in standard culture conditions[30] in RPMI media
supplemented with 10% human serum and maintained
in 5% haematocrit of human RBCs. Samples for micro-
fluidic analysis were taken directly from the cultures and
kept at 37 °C until they were directly added to the micro-
fluidic device.

Synthetic RBCs

As illustrated in Figure 6, the synthetic data consisted of
images of 100x100 pixels with a single-colour (grayscale)
dimension. Each image consisted of a noisy background
(e.g., Figure 6a, panel 2) with some or all of the following
objects: a single wall (Figure 6a, panel 3), static artefacts
(Figure 6a, panels 4 and 6), floating objects (Figure 6a,
panel 5), and a round (Figure 6b) or bullet-like shaped
cell (Figure 6c). Besides drawing circles and lines, the
main algorithms used are: elastic deformation[22] (Fig-
ure 6d), Gaussian distribution function (examples in Fig-
ure 6e), and simplex noise generation[23] (e.g., Figure
6f). Elastic deformation is a function that can ‘randomly’
warp images, the ranges of which are determined by the
parameters a and o, which determine the range and in-
tensity of image-warping. The Gaussian function creates

'~ NNINXC
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c f
BERRRN =
Figure 6. Creation of synthetic RBCs. (a) Steps in the creation of syn-
thetic backgrounds (b) Steps in the creation of synthetic round cells. ¢
Similar as a, but for bullet-like cells. (d) lllustration of elastic warping,
which was used to introduce variation to object shapes. (e) Gaussian
distribution examples, which were used to smooth out rough edges
(left), but also to generate the cell’'s centre-probability labels (right) (f)
Some examples from the OpenSimplex noise function. These are gra-
dient noise patterns that can be utilised to synthesise textures (as seen
in a’'s second panel, b’s third panel, or c’s fourth panel), but they can
also be used to interpolate between two images, with the intensity of
the noise value determining how much each of the two images per pixel
should contribute to the combined image (e.g., a noise value for a given

pixel of .7 corresponds to the combined pixel being 70% image 1 and
30% image 2 for that pixel).
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a two-dimensional bell-curve. It contains a single param-
eter, the standard deviation (o). The o can either be used
directly or be calculated indirectly given a box-size (e.g.,
Figure 6e had box-sizes of 3 and 16 and an ideal o was
calculated for those sizes). The OpenSimplex function,
which generates gradient-noise patterns, has three pa-
rameters: the zoom, which determines the 'size' of the
noise (for example, the left image in Figure 6f has a
smaller zoom value than the right image), the random
seed, which serves as a starting point for the random
number generator used by the algorithm, and the range,
which normalises the noise to be within a certain range
of values. The seeds were based on the local time. Be-
cause we employ a large number of randomly sampled
integers to construct the synthetic data, these will be des-
ignated as rdm_range(n,m) in the remainder of the arti-
cle, signifying any integer randomly chosen between n
and (including) m. Often, multiple images were interpo-
lated (combined) into a new image. Interpolation re-
quires two images (P1 and P2) and a third interpolation
image (I) that contains information on how much each
pixel in either image should contribute to the new com-
bined image (P3) and has only values ranging between 0
and 1. Interpolation is then done using the formula:

P:=I*Pi+(1-T)*P: 1)

A base background (Figure 6a last panel) always started
from a colour=rdm_range(65, 146) and added Simplex
noise with zoom=1 and range=(0, 1). The image was then
blurred with a Gaussian kernel with box-size=3x3. After-
wards, another Simplex noise-pattern with zoom=1 and
range=(-15, 15), was added. These steps created the
small fine noise (e.g., Figure 6a 2nd panel). Then, another
Simplex noise-pattern with zoom=0.01 and range=(-
10,10) was also added to give the images some colour
gradient (e.g., Figure 6a 3rd panel). The addition of a
wall object was only done for 60% of the images. Wall
objects were made by drawing 3 lines with colours
rdm_range(85, 140), rdm_range(0, 15) and
rdm_range(200, 255) and a thickness of rdm_range(1, 4)
pixels for the first two lines and rdm_range(3 and 7) pix-
els for the last line. The drawn lines were then rotated
randomly (together). About 40% of the images with a
wall object were warped with elastic deformation with
a=700 and o0=14. The remainder has an elastic defor-
mation with a=15 and 0=3. Finally, the wall object was
blurred with a Gaussian kernel of 5x5 pixels and placed
in the base background image (e.g., Figure 6a 3rd panel).
Artefacts, as can be seen in Figure 6a’s 4th panel, were
created seven-fold. They were made by drawing small
black (colour=0) filled circles with a radius of range=(1,
3) pixels, and warping them with elastic-deformation
with a=300 and 0=12 before placing them in the base

background on random locations. Floating objects (e.g.,
Figure 6a 5th panel), were created in 66% of the images.
They were made by drawing two circles: one with a ra-
dius of rdm_range(2,5) pixels and the other with
rdm_range(0,3) pixels. The colours for both circles were
chosen to be either from rdm_range(200, 255) or from
rdm_range(28,38). After drawing, they were blurred
with a Gaussian kernel of 5x5 pixels and placed in the
base-background image at a random position. The black,
hair-like artefact, as can be seen in the 6th panel of Figure
6a, was created by drawing a black line with a length of
rdm_range(0, 25) pixels, and a thickness of rdm_range(1,
3) pixels. This artefact was than warped with elastic de-
formation with a=500 and 0=6 and placed in the base-
image at a random position and random rotation. A sec-
ond base background, with all objects besides floating
objects or cells, was also generated with a 50% chance of
being lighter or darker. This to simulate the median-
frame the neural network also receives as input.

Round blood cells started with a drawn circle with ra-
dius=16 pixels, thickness=rdm_range(1,4) pixels, and
colour=rdm_range(110, 250). Then, a second circle was
drawn with radius=14 pixels, thickness=rdm_range(1,3)
pixels, and colour=0. After that, a filled circle was drawn
with radius=13 pixels and colour=70 (e.g., 2nd panel of
Figure 3b). The texture of the inner cell (e.g., the 3rd
panel of Figure 6b) was created by replacing the inner
circle with a Simplex noise pattern with zoom=0.2 and
range either (50,100) or (0,220). A malaria parasite was
simulated by drawing a warped black dot in the cell,
warping was done with elastic deformation with a=300
and 0=12 (e.g., the 4th panel of Figure 3b). After adding
the parasite, the whole cell was warped with elastic de-
formation with =200 and o=either 8 or 12 (e.g., 5th panel
of Figure 6b). The cell was then blurred with a Gaussian
kernel of 3x3 pixels, and added to the centre of the base
background (e.g., Figure 6b’s 6th panel) via interpola-
tion. Bullet cells started a bit differently. They started
with two half circles with different curvatures and thick-
ness=2 (e.g., Figure 6c 1st panel). The centres were
rdm_range(-20,10) pixels apart. The edges of the circles
were connected with lines that were also extended on the
left side with rdm_range(0,5) pixels (to simulate tail ex-
tension, e.g., Figure 6¢’s 2nd panel). The cells were then
either filled uniformly with colour=rdm_range(85, 140)
(e.g., 3rd panel of Figure 6c) or filled with a texture (e.g.,
4th panel of Figure 6c¢). This texture was made of Simplex
noise with zoom=.2 and range of either (50, 100) or (0,
220). The bullet cell was then blurred with a Gaussian
kernel of size (9,9), warped with elastic deformation with
a=400 and 0=17, rotated with an angle of rdm_range(-30,
30) degrees (e.g., Figure 6¢, 5th panel), and then placed
in the base background via interpolation (e.g., Figure 6c,
6th panel).
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Figure 7. Neural network architecture for segmentation and instancing of RBCs. The neural network consists of nine convolutional layers.
The first layer adds padding around the input image, and the layers three through seven have an increase and then a decrease in dilation.
The last two layers only consist of a convolutional layer and an activation function. Sigmoid was used for the instancing and Softmax for

the segmentation.

Expert labelling of real RBCs

A simple tool was created to aid in the manual labelling
of retrieved RBCs. A domain expert was given 2.461 cell
journeys to label via this tool. This, with the following
categories: 1) uninfected; 2) ring stage; 3) trophozoite; 4)
schizont; and 5) other. All images were shown without
context (e.g., the source of the RBC cell journey) and
shuffled at random prior to the classification process.

Convolutional neural network architecture

Inspired by the human ventral and dorsal visual path-
ways, we designed the neural network to include two
output layers: one for segmentation to determine cell
shapes, and one for detecting RBCs and their locations.
There are seven hidden layers in the CNN. The first layer
has a dilation parameter of 30, which adds a black border
of 30 pixels around the input. Figure 7 shows that the
dilation of the hidden layers goes up and down[31],
which makes the receptive field bigger without the need
for pooling layers. The kernel size is 5x5 for all layers,
including the output layers. Batch normalisation and
ReLU activation were applied to all hidden layers. The
output layers have a Softmax activation function for the
cell-segmentation output and a Sigmoid activation func-
tion for the cell-location output. Since no tensor flatten-
ing was used, this neural architecture design is able to
handle larger inputs than it was trained on.

Training, validation, and testing procedure

A model based on the aforementioned architecture was
trained on 10,000 synthetic data instances with an equal
number of round and bullet-shaped cells. We trained on
minibatches containing 32 samples each. The binary
cross-entropy loss was used to calculate the loss between
the CNN outputs and the labels. The loss values for both
types of labels were summed. The Adam optimizer[32],
with the standard learning rate of 10-3, was used to op-
timise the model parameters. The model parameters
were saved with every ten minibatches of training. Train-
ing was automatically stopped after 22 epochs.

The validation set was a single frame from 2 videos used
in this study (K1_001_20201105.tif, and
NF135_002_20201105.tif), and an unrelated mouse-RBC
MD videoframe (002_2.5kfps.avi). The mouse video
frame was selected to evaluate the model's generalisa-
tion abilities. The three frames contained 38 cell images
in total. The optimal parameters were chosen by visually
examining the model’s output from the three validation
frames for each of the saved checkpoints. We refer to the
GitHub page for the actual validation frames and the Ze-
nodo webserver for all the videos.

We used data from all videos to test the segmentation
output quality. First, the model was applied to all mov-
ies, yielding 2,461 celljourneys with approximately 33
sub-images each. Then, these cell sub-images were
cropped from video frames with a size of 128x128 (with
the cell exactly in the middle), yielding 81.034 images of
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single cells. A Python programme was created to assist
with manual labelling. Human experts were randomly
given single images of cells by the programme. These
images were four times enlarged, and presented to an-
notators without any knowledge of the model's output.
The programme enabled them to draw a polygon
around the cell to define its form. The outputs of both
human curators and the CNN were cropped to 54x54
pixels and compared (Table 1).

Cell tracking script

The cell-tracking programme, written in Python, was de-
signed to track individual cells through the MD and to
calculate the ADI. The script used the CNN'’s output as
its input. The tracking itself only requires the cell-loca-
tion output of the neural network. Since collisions be-
tween cells could negatively influence the deformity de-
termination, colliding cells and cells that travelled in
clusters were excluded from ADI analysis by the pro-
gramme.

Prior to processing, a ‘median frame’ was created for
each MD video by selecting 100 frames at random from
a specific movie and calculating the median value for
each pixel. The videos were split and processed in paral-
lel in order to improve analysis time. Each movie was
divided into 20 chunks, with 60 frames overlapping be-
tween consecutive chunks. Each frame was concatenated
with the median frame to meet the CNN’s input dimen-
sion requirement. Feeding the concatenated frames to
the model resulted in the segmentation (representing
RBC shapes) and location-peak predictions for each
frame. Per frame, all location-peak outputs were
smoothed with a Gaussian-blur function with a kernel-
size of 3x3. The peak-centres with probability values
larger than 0.3 and at least 10 pixels apart from other
peaks were considered to potentially represent the cen-
tre (x,y) coordinates of cells. A ‘cell initialization thresh-
old’ was set at 70px, illustrated as a line in Figure 8. All
cells detected left of this threshold were considered as
‘new entering cell objects’. For all new cell objects, frame
crops of 64x64 pixels around the middle of the cell ob-
jects, as well as a same-sized crop around the CNN seg-
mentation output, were stored in memory. To enable cell
tracking, each cell object's next cell location was first pre-
dicted before processing the next frame. This was accom-
plished by adding the velocity of the cell to the position
using the formula:

(e, ym) = (xe+ (xt-xt1), yrt (yf—yf—l)) 2)
These predictions were then compared to the CNN’s cell-
location coordinates of the next frame to check if they
were similar. A match was defined as a Euclidean dis-
tance that was less than twice the cell velocity and no
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Cell initialization
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Cell journey
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@ = Cell object initialization = Terminated cell object

(O = Cell object @)= Cell object with completed journey

Figure 8. A schematic of the tracking algorithm. A cell initialization
threshold indicates the start of a cell-journey. With every consecu-
tive frame, the cell's new coordinates are predicted given the cell’'s
momentum. Cells are eliminated for research if they come within
35 pixels of another cell. After a cell object passes the cell journey
completion threshold it is marked as complete

larger than 30 pixels. Cell-objects that did not have a
match with the location peaks were removed from
memory. The crops of the frame and segmentation re-
sults were stored in memory alongside earlier crops for
the cells that did match. The distances between all cell-
objects were then calculated, and cells with a distance of
less than 35 pixels were erased from memory to ensure
colliding cells were not part of the study. The process of
predicting the next location of cell objects and matching
them with CNN detections was repeated until the cell-
objects met the 'completion threshold', which was de-
fined as the frame-width minus 40 pixels (see Figure 8).
Following that, all cell-crops were stored as cell-journey
images (e.g., Figure 2).

Shape and Deformity Index determination

The deformity of an RBC is defined as the difference be-
tween the RBC's width (W) and height (H) ratios during
and after constriction (formula 3).

ADI =% _ %a 3)

Each RBC, however, has many frames during the con-
striction and multiple frames after the constriction.
Therefore, we calculated the DI for each frame and used
the median DI value of the constriction and the median
DI value outside the constriction to calculate the ADI.
The rationale behind this was that this would result in a
more robust ADI since noise factors, like those illustrated

a Hgq
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in Figure 3B, could sometimes hinder making proper
segmentations.

Before calculating the DlIs, celljourneys with raw seg-
mentation CNN outputs were multiplied by 255 and
saved as grayscale images (grayscale = 1 colour dimen-
sion per pixel instead of the 3 used in colour images). For
DI calculation, the cell journey segmentation outputs
were loaded in and first smoothed with a Gaussian func-
tion (o value of 1) and then binarized using a threshold
of 150. Some frames of the journeys still contained parts
of nearby cells. Therefore, a ‘Flood Fill'[33] function was
applied to all frame centres to isolate the cell segmenta-
tions from other cells. Afterwards, rectangles were
drawn around all cell segmentations to create bounding
boxes. The widths and heights of the boxes were used to
compute the cell ratios.

Data and code availability

The microfluidic device videos have been deposited on
the Zenodo webserver.

(https://doi.org/10.5281/zenodo.7374342)

The code used to generate the synthetic images, train the
CNN and process all
https://github.com/cmbi/synthetic_cells

results are available at:
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