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Abstract
Extrachromosomal elements of bacterial cells such as plasmids are notorious for their

importance in evolution and adaptation to changing ecology. However, high-resolution

population-wide analysis of plasmids has only become accessible recently with the advent of

scalable long-read sequencing technology. Current typing methods for the classification of

plasmids remain limited in their scope which motivated us to develop a computationally

efficient approach to simultaneously recognize novel types and classify plasmids into

previously identified groups. Our method can easily handle thousands of input sequences

which are compressed using a unitig representation in a de Bruijn graph. We provide an

intuitive visualization, classification and clustering scheme that users can explore

interactively. This provides a framework that can be easily distributed and replicated,

enabling a consistent labelling of plasmids across past, present, and future sequence

collections. We illustrate the attractive features of our approach by the analysis of

population-wide plasmid data from the opportunistic pathogen Escherichia coli and the

distribution of the colistin resistance gene mcr-1.1 in the plasmid population.
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Introduction
Bacteria can exchange genetic material via Horizontal Gene Transfer (HGT) mediated by

Mobile Genetic Elements (MGEs) such as temperate phages and plasmids. Plasmids act as

key vehicles for the dissemination of important traits such as antimicrobial resistance (AMR)

and virulence both within and between species (1, 2). The introduction and broad

implementation of long-read sequencing for the assembly of bacterial genomes have led to a

dramatic increase in the number of complete plasmid sequences (3).

Clustering and classifying complete plasmid sequences into meaningful groups is a crucial

step to understanding the epidemiology of plasmid-encoded genes (4). Without a consistent

plasmid typing scheme, it is challenging to examine, for example, whether AMR genes are

disseminated by a single or several plasmid types, or if particular plasmid types are

overrepresented in successful bacterial clones. Current plasmid typing tools struggle to

account for the extreme modularity observed in plasmids, where large genomic blocks can

be rapidly gained or lost. Traditionally, plasmids have been classified according to their

replicon and associated incompatibility (Inc) groups using tools such as PlasmidFinder (5, 6).

However, replicon-based typing suffers from the presence of multiple replicons within the

same sequence, offers a limited resolution for epidemiological purposes (4) and is only

well-established in particular bacteria phyla (e.g. Proteobacteria). Another strategy consists

of typing plasmids based on their relaxase, a protein involved in plasmid mobilisation (7, 8),

which is in turn limited to plasmids transmissible by conjugation.

Network analyses based on k-mers or average nucleotide identities (ANI) have been

proposed as an alternative classification framework (9, 10). This strategy was implemented

in the recent release of COPLA, a novel tool to classify sequences into discrete plasmid

taxonomic units (PTUs) based on ANI distances and hierarchical stochastic block modelling

(11). MOB-suite is another tool that classifies sequences but relies on k-mers observed in

the entire plasmid (12, 13). MOB-suite uses Mash distances coupled with complete linkage

clustering to partition plasmid sequences by maximising consistency with replicon and

relaxase schemes. The use of COPLA is mainly restricted to typing small sets of sequences

due to its computation-intensive algorithm while MOB-suite is more scalable. MOB-suite

uses a single Mash threshold to cluster plasmid sequences into discrete groups and can fail

to accurately cluster collections of MGEs with different sequence sizes or gene gain/loss

rates.
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Here, we present mge-cluster, a novel approach to consistently type and classify MGE.

Mge-cluster provides a classification framework that allows for the typing of thousands of

input sequences with a runtime faster than existing algorithms and moderate memory usage.

Furthermore, in the light of new MGE data, it offers an option to type these new sequences

with an existing mge-cluster model and avoids the need to reanalyse previously typed

sequences. Mge-cluster considers the entire sequence content by extracting the unitig

sequences which are extended nodes (k-mers) in a compressed de Bruijn graph. The

presence/absence of unitigs is embedded into a 2D-representation using openTSNE

(14–16), a non-linear dimensionality reduction algorithm that permits the addition of new

points to an existing embedding. The non-linear aspect of the tSNE algorithm allows for

plasmid clusters to be identified at multiple scales of genetic variation. The HDBSCAN

clustering algorithm is then finally used to define plasmid clusters in the resulting 2D

embedding (17).

We demonstrate the features of mge-cluster by generating a plasmid classification

framework for the opportunistic pathogen Escherichia coli, one of the leading causes of

bloodstream and urinary tract infections globally with a large number of complete plasmid

sequences available. In this organism, virulence factors are usually associated with

plasmids, which drive the virulence of enteroinvasive, enteropathogenic, enterohemorrhagic,

enteroaggregative, and extraintestinal pathogenic E. coli (18, 19). Moreover, plasmids are

key hosts for AMR determinants such as extended-spectrum β-lactamases and mobile

colistin resistance genes contributing to the emergence of E. coli multi-drug resistant

infections.

Overall, mge-cluster provides a fast and consistent classification framework for MGEs that

can be easily distributed to enhance the analysis and tracking of these elements.
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Results

Test case: Generating a typing scheme for Escherichia coli plasmids

To evaluate the applicability and robustness of mge-cluster, we generated a plasmid typing

scheme for E.coli plasmids. We considered all plasmids from the curated PLSDB plasmid

database (20, 21) that includes samples from distinct isolation sources, hosts and countries.

This dataset contained highly similar sequences that could lead to an overestimation of the

performance of mge-cluster. Thus, redundant sequences were filtered using cd-hit-est (see

Methods) to select a single representative plasmid among highly similar sequences (n =

6,185). The discarded plasmid sequences (n = 675) were used as a further test set for

benchmarking the runtime and memory required for mge-cluster.

After removing uninformative unitigs (k=31) with low variance (0.01, n=680,491), mge-cluster

considered 211,198 unitigs as input to generate the classification framework. The resulting

unitigs had an average size of 37.52 bp (median=33.00 bp). This left 189 plasmids (3.1%,

189/6,185) without unitigs and these plasmids were excluded from subsequent clustering

analysis resulting in 5,996 remaining plasmids in the analysis. The filtered unitig

presence/absence matrix was embedded with openTSNE (perplexity=100) and clusters were

called using HDBSCAN (min_cluster=30). In total, we obtained 41 discrete plasmid clusters

grouping 4,784 sequences (79.8%, 4,784/5,996) with 1,212 sequences remaining

unassigned (20.2%, 1,212/5,996) (Figure 1, Supplementary Table S1).

The chosen perplexity value can impact the non-linear resultant embedding such that low

perplexity values tend to preserve the local structure better, while sometimes artificially

introducing some structure when none exists. Conversely, high perplexity values tend to

preserve more of the global structure at the cost of merging small clusters together. We

evaluated the impact of varying this mge-cluster parameter (perplexity=10, 30, 50, 200) by

comparing their resulting clustering assignments using the adjusted Rand index. This index

can vary from 0 (completely distinct typing models) to 1 (identical typing models) while

adjusting for randomly assigning two sequences belonging to the same cluster. We observed

that mge-cluster produced assignments robustly (average Rand index=0.95) to the chosen

perplexity values when considering sequences assigned by two resulting models (Table 1).

In addition, we show that the mge-cluster discrepancy between models can be explained by

the sequences which are unassigned by one of the models but clustered in the other (Table

1). Consequently, we encourage users to run mge-cluster by setting distinct perplexity

values to evaluate cluster stability.
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Plasmids can rapidly incorporate or lose genomic modules or even co-integrate with other

sequences present in the same cell, which drastically affects their size. For each cluster

(n=41) (perplexity=100, min_cluster=30), the interquartile range (IQR) of the sequence

length was on average 18.66 kbp but with pronounced differences depending on the cluster

(Supplementary Table S2). As an example, cluster 26 (Figure 1) with a mean length of 94.6

kbp showed an IQR of 0.26 kbp indicating an almost intact plasmid backbone, while, cluster

19 (Figure 1) with a mean length of 159.4 kbp had an IQR of 51.2 kbp indicating the

presence of distinct gained/lost genomic modules shared by only a fraction of the plasmids

assigned to this cluster.

Figure 1. OpenTSNE embedding based on unitigs (k=31) of 5,996 E. coli plasmids. Each point

corresponds to a plasmid sequence and their assigned cluster (C) is labelled based on the cluster ID

(n=41) defined by HDBSCAN. Sequences belonging to an HDBSCAN cluster are coloured (from red

to blue) based on their membership probability. Unassigned sequences correspond to plasmids with a

membership probability of 0 of belonging to any defined cluster and are coloured in grey. The ellipses

(in black) delimit the cluster coordinates and were estimated using the Khachiyan algorithm

implemented in the ggforce R package. To facilitate finding clusters 19, 26, 29, 30 and 33, which are

highlighted as examples in the text, we indicated their positions with an arrow in the plot.
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To quantify the percentage of shared sequences among plasmids from the same cluster, we

used pyani to retrieve average nucleotide identity (ANI) and coverage values (22). On

average, plasmids shared 62.3% of their sequence (pyani coverage) with other members

from the same cluster with an associated ANI of 95.7%. We observed that the average

coverage shared between plasmids varied substantially among clusters indicating distinct

degrees of plasmid modularity as previously exemplified with the IQR of the sequence length

(Supplementary Table S2). Clusters 29, 30 and 33, formed by large plasmids, displayed a

low pyani coverage indicating that plasmids from those clusters shared only a minor fraction

of their sequence. To further understand the content of each mge-cluster, we visualized the

diversity of replicons (Supplementary Figure S1) predicted by the MOB-typer module of

MOB-suite (12) based largely on PlasmidFinder (6).

Comparison of mge-cluster against other plasmid typing tools

To assess the level of concordance with current typing schemes,  we compared the

mge-cluster results against the gold standard methods for plasmid typing. MOB-suite

provides a five-character fixed-length code (2 letters and 3 digits) to identify sequences

belonging to the same group (termed ‘primary_cluster_id’) (Supplementary Table 3), while

COPLA provides a PTU designation (Supplementary Table 4). However, the CPU time (167

minutes, 22 min wall-clock time) and memory (319.5 Mb) required for COPLA to predict the

plasmid type of a single sequence (NZ_CP024805.1) hampered us from predicting the entire

E. coli dataset of 6,185 plasmids for a full comparison with mge-cluster. However, 695

sequences (11.2%, 695/6,185) from our dataset were typed in the original publication

describing COPLA [10] and were further considered in this comparison.

To compare the overall clustering concordance, we considered the adjusted Rand index

which fluctuates from 0 (different clusters) to 1 (same clusters). We observed a moderate

agreement between mge-cluster and MOB-suite with an index of 0.61, while for COPLA the

adjusted Rand index was 0.53 (Figure 2, no threshold). Notably, we observed that by

increasing the membership probability threshold of mge-cluster to assign plasmids to

particular clusters, we observed a higher level of overlap between the tools reaching a

maximum adjusted Rand index value of 0.77 (Figure S2, threshold=0.9).
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Figure 2. Concordance of mge-cluster results compared to MOB-suite (in purple) and COPLA (in

orange) based on adjusted Rand index values. For each sequence assigned to a cluster by

mge-cluster, the tool returns a membership probability. This probability was used to set several

thresholds (ranging from no threshold to 0.9) to assign the plasmid sequences and assess their

concordance against MOB-suite and COPLA. Each point in the comparison is sized according to the

number of sequences used to compute the adjusted Rand index value between the tools.

To define which mge-clusters had a higher level of overlap with MOB-suite and COPLA

types, we calculated the Simpson diversity of each mge-cluster. For instance, if all plasmids

from a particular mge-cluster were designated as a single type by MOB-suite and COPLA,

this Simpson diversity value would be 0. In contrast, the presence of multiple types defined

by MOB-suite and COPLA would result in diversity values close to 1. The diversity of

MOB-suite and COPLA types was represented in Supplementary Figures S2 and S3,

respectively.
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The overall Simpson diversity per cluster was 0.46 and 0.21 for MOB-suite and COPLA,

respectively. We observed that by increasing the membership probability threshold, the

average diversity of MOB-suite types was substantially reduced up to 0.23 (threshold=0.9)

with no changes in the case of COPLA (0.21, threshold=0.9) (Figure 3). COPLA produced

the same PTU designation (PTU-FE) for 10 distinct mge-clusters which resulted in a lower

Simpson diversity than for MOB-suite at the cost of merging together plasmids with a distinct

core gene content (Supplementary Figure S3). This PTU-FE type was reported in COPLA’s

publication as problematic because several plasmid configurations were present resulting in

a low intra-cluster density (10).

Figure 3. Diversity of MOB-suite (in purple) and COPLA (in orange) types for each mge-cluster

(n=41). The diversity (Simpson value) could range from 0 (agreement with mge-cluster) to 1 (no

agreement). The probability assigned to each plasmid by mge-cluster was considered to set several

thresholds (ranging from no threshold to 0.9) to assign the plasmid sequences and assess their

concordance with MOB-suite and COPLA.
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MOB-suite showed a consistent agreement (Simpson value < 0.2) in 13 mge-clusters (Figure

3, Supplementary Table S2). The disagreement between both tools occurred in the

mge-clusters with an average small plasmid length (< 10 kbp) (clusters: 2, 7, 12, 14, 20, 21).

These clusters consisted of sequences with a predominant replicon type (Supplementary

Figure S1), however, MOB-suite predicted those sequences in distinct clusters

(Supplementary Figure S2). MOB-suite confirmed with a high Simpson diversity value, that

clusters 29, 30 and 33 were formed by large plasmids from distinct types (Supplementary

Table S2).

For the rest of the clusters, we observed that mob-cluster only tended to group sequences

that were highly similar in their gene content (high identity and coverage). To illustrate this,

we considered a random sequence from mge-cluster 31 predicted with a different type by

MOB-suite (NZ_LT985213.1 for AA735, NZ_CP010138.1 for AA334) and performed a gene

synteny analysis (Supplementary Figure S4). We could observe that these two sequences,

despite being classified by MOB-suite as distinct types (AA735 and AA334), had a blastn

coverage and identity of 73.1% and 99.6%, respectively. The synteny analysis revealed both

sequences had an IncFII replicon with a well-conserved synteny (Supplementary Figure S4).

However, NZ_LT985213.1 had incorporated an extra module corresponding to the

co-integration of an IncFIA replicon. MOB-suite uses a stringent Mash threshold (0.06) to

group plasmid sequences. Therefore, sequences that share a highly similar plasmid

backbone but have gained/lost genomic modules or even co-integrated other plasmids tend

to be grouped by MOB-suite into distinct types. In the case of mge-cluster, plasmids

acquiring an extra genomic module have a lower membership probability of belonging to the

cluster since their unitig content differs but are still part of the same cluster. This behaviour

explains why the increase in the membership threshold of mge-cluster results in a higher

agreement with MOB-suite (Figure 2).

Predicting novel sequences with an existing mge-cluster model
Mge-cluster was built to generate a classification network that can also assign the same

cluster names without the requirement to re-analyze any previous dataset and to keep

consistent cluster names (--existing mode). We considered the sequences discarded by

cd-hit-est (n=675) to benchmark the runtime and memory required by mge-cluster to assign

these sequences to the previous clusters. In addition, these sequences should be embedded

and assigned to the same cluster as the representative sequence from the cd-hit-est step.
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Mge-cluster predicted these 675 samples using less CPU and wall-clock time (23.3 minutes,

~4 min wall-clock time) than for MOB-suite (CPU time 32.2 minutes, ~ 26 minutes).

However, the peak memory usage of mge-cluster (15.9 Gb) was substantially higher than for

MOB-suite (4.5 Gb). From these 675 samples, 15 sequences corresponded to cd-hit clusters

for which its representative sequence was discarded in the mge-cluster model because of

the absence of unitigs and were not evaluated further. Mge-cluster correctly assigned 99.2%

(655/660) of the plasmids to the same cluster as their corresponding reference sequence

(Suppl. Figure S5). In five cases (0.8%, 5/660), mge-cluster predicted another cluster,

including four cases where the model returned an unassignment (-1) category.

Next, we evaluated the performance of mge-cluster predicting plasmids not present in E. coli

and thus unseen by the pipeline to build the mge-cluster model. For this, we considered all

Staphylococcus aureus plasmids (n=1,021) from the PLSDB database because of the

absence of plasmid transmission events between these two species (9, 10). Mge-cluster did

not detect any E.coli-specific unitigs (0/211,198) for 972 S. aureus plasmids (95%) and thus

those sequences were not assigned to any of the mge-clusters from the E. coli model

(Supplementary Table S5). This is due to the high specificity of the unitigs used in the

mge-cluster model which had a minimum size of 31 bp and an average size of 37.52 bp.

From the remaining 49 plasmids (5%), 28 plasmids were not assigned to any cluster, 12

plasmids were assigned to the mge-cluster 29 and 8 plasmids to the mge-cluster 30. We

confirmed that the plasmids assigned to mge-clusters 29 and 30, had a low number of

unitigs present and thus corresponded to samples with a vector of nearly all zeros. In those

cases, mge-cluster embedded those sequences into clusters 29 and 30 which we previously

highlighted as random noise clusters.

Lastly, we assessed the performance of mge-cluster predicting plasmids likely shared in

other bacterial species from the same family (Enterobacterales) as E. coli. For this, we

selected plasmids from the incompatibility group N (IncN) since they have a conserved core

genome, which was used to develop a specific plasmid multilocus sequence typing (pMLST)

scheme (6) and have been reported across several bacterial species belonging to

Enterobacterales (23). We considered all IncN non-E.coli plasmids from the PLSDB

database containing uniquely a single replication gene (n=206) and predicted their clustering

assignment with the E. coli mge-cluster model (Supplementary Table S6). We observed that

most IncN plasmids (80.6%, 166/206) were predicted as part of the mge-cluster 27 which

contains a majority of E. coli plasmids belonging to this incompatibility group (Supplementary

Figure 1a) and thus confirming that this plasmid type is shared and has a conserved

genomic backbone among Enterobacterales. In total, 34 plasmids (16.5%) could not be
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assigned to any mge-cluster and were labelled as (-1) showing that some of these IncN

plasmids might have acquired or recombined with other genomic modules and thus have a

clearly distinct unitig content. The remaining plasmids (2.9%, 6/206) were scattered among

mge-clusters 29 (n=4), 14 (n=1) and 30 (n=1).

Cluster distribution and visualization of a gene of interest in the embedding space

The typing scheme offered by mge-cluster is optimal for visualizing the genomes carrying

any particular gene of special interest and tracking its distribution in future sequencing

studies. To illustrate this, we considered the AMR gene mcr-1.1 which confers resistance to

colistin, a last-resort antibiotic for treating infections caused by multi-drug resistant E. coli.

This AMR gene was first reported in 2016 on a plasmid with an IncI2-type backbone (24)

that can be mobilised among distinct MGEs by the presence of an ISApl1 transposon

element situated upstream of the gene (25).

We observed that 327 plasmids contained the mcr-1.1 gene, the vast majority of these

present in only three mge-clusters: 3 (n=168), 1 (n=71) and 16 (n=53) (Figure 4). This was in

agreement with previous reports (26, 27) showing this AMR gene to be mainly spread by the

plasmid backbones IncI2 (mge-cluster 3), IncHI2 (mge-cluster 1) and IncX4 (mge-cluster 16)

(Supplementary Figure S1). However, we also observed that the AMR gene was present in

nine additional mge-clusters (30/327, 9.2%) (Figure 4) and 5 sequences (1.5%) could not be

assigned to any mge-cluster. This illustrates how a consistent typing provided by mge-cluster

can be used to explore whether these nine clusters represent spillover events of the gene to

other plasmid backbones for which the gene might be further disseminated using new

plasmid types.
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Figure 4. Distribution of the mcr-1.1 gene on the embedding space created by mge-cluster. The

plasmids (n=327) containing the gene are coloured in the plot according to their cluster labels. The

clusters (n=12) containing at least a single sequence having the mcr-1.1 gene are indicated with an

ellipse using the Khachiyan algorithm implemented in the ggforce R package. The sequences which

were not assigned to any mge-cluster were labelled as ‘-1’ (light green) in the legend.

Discussion
The number of MGEs available in public databases has exploded since the introduction of

long-read sequencing technologies. However, the contextualization and comparison of

MGEs are hampered by their high rates of recombination which result in the absence of a

conserved marker that can be broadly used by standard phylogenetic methods. Mge-cluster

responds to this need by generating discrete clusters from sequences generally evolving

through a fast and dynamic turnover of gene gain/loss events.
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We demonstrated the potential of mge-cluster by developing an E. coli model to classify

plasmid sequences. We observed that the clusters generated by mge-cluster typically

consisted of sequences with a shared plasmid backbone (coverage ~62%) but distinct

accessory content. Mge-cluster and MOB-suite showed a moderate level of agreement

between clustering solutions. Some of the disagreement between the tools is explained by

mge-cluster grouping together plasmid sequences that have acquired an extra replicon

sequence due to the cointegration of another plasmid. This characteristic of mge-cluster is

particularly beneficial for tracking a plasmid in the context of longitudinal studies for which

the same plasmid can rapidly gain/lose genomic modules. The current version of COPLA

makes the typing of large collections unfeasible due to the CPU time required to run a single

sample. Moreover, in the particular case of E. coli, COPLA erroneously merges clusters from

distinct plasmids under the PTU-FE group. In contrast to MOB-suite and COPLA,

mge-cluster does not require a predefined distance threshold to generate the typing model

which facilitates broad applicability across distinct species and datasets.

For epidemiological purposes, clusters obtained with mge-cluster should be interpreted in a

similar manner as MLST (28) or BAPS groups (29) that cluster strains based on

chromosomal housekeeping gene alleles and genome alignments respectively. Even if two

plasmids from different samples belong to the same cluster, we cannot directly assume a

plasmid transmission scenario. For this, mge-cluster can be considered as a starting point to

perform secondary analyses such as SNP phylogenies based on the resulting cluster core

genome. These secondary analyses can confirm or refute transmission links, as recently

illustrated in two studies presented by Ludden et al. and Hawkey et al. (30, 31). These types

of sequencing studies may benefit from the usage of mge-cluster to define plasmid discrete

groups which opens the possibility of sharing their models with other groups for further

tracking the distribution of a plasmid or gene-of-interest.

While we demonstrated the use of mge-cluster using a single species, the pipeline can also

be run on more diverse datasets such as the combination of plasmid sequences from the

Enterobacterales family. To showcase mge-cluster we considered complete plasmid

sequences, but the pipeline could also be utilised to type the bins resulting from tools

predicting and extracting plasmids from short-read sequencing data (12, 32, 33). We

anticipate that mge-cluster can in addition be used for generating discrete clusters from

other types of MGEs with sufficient gene content diversity including phages, integrative and

conjugative elements (ICEs) or flanking sequences surrounding a gene-of-interest (e.g AMR

gene).
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The ability of mge-cluster to rapidly assign new plasmids with a consistent type facilitates the

comparison of plasmids derived from distinct collections and boosts our capacity to conduct

MGE surveillance in general.
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Materials and Methods

Mge-cluster workflow

Mge-cluster is a Python package installable through bioconda

https://anaconda.org/bioconda/mge-cluster, freely available under the open-source MIT

license https://gitlab.com/sirarredondo/mge_cluster. Figure 5 illustrates the two different

operational modes of mge-cluster: --create and --existing. In both cases, mge-cluster takes

as input a file that indicates the absolute or relative paths to the nucleotide sequence files

(.fasta format). The --create mode will generate a new classification scheme for the

sequences provided as input by the user while the --existing mode will return embedding

coordinates and cluster assignments considering a previous, existing mge-cluster model.

Both modes can be run with the multithreading option (--threads) to reduce mge-cluster

runtime.
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Figure 5. Summary of the mge-cluster workflow. The tool is composed of two distinct operational

modes: --create (left) and --existing (right). Both modes require as input a file listing the absolute or

relative paths of the nucleotide sequences. The --create mode of mge-cluster requires the following

arguments (--kmer, --variance, --perplexity, --exaggeration and --min_cluster) to generate discrete

clusters from the sequences provided in the input. The --existing mode of mge-cluster requires the

files (in yellow) generated by the --create mode to predict the clusters of a new batch of nucleotide

sequences.

Operational mode --create: Unitigs as classification features

Unitigs defined as extended nodes in a compressed de Bruijn graph were selected as

features for building the classification framework. Unitig-caller (--call mode, version 1.2.1)

https://github.com/bacpop/unitig-caller which implements Bifrost Build (34) is used with a

k-mer size specified by the mge-cluster (argument --kmer) to generate a presence/absence

matrix of the unitigs present in the input file.

Bifrost initially considers a de Bruijn graph structure defined as a direct graph:

V corresponds to the number of vertices (k-mers) present and E to the edges connecting the

distinct vertices. Thus, the vertices V present in graph G can be defined by:

The edges E can be defined as direct connections between two vertices of V:

For each , we define the in-degree and out-degree as the number

of edges in E towards and from v respectively.

Paths in the graph can be defined as finite sequences of distinct vertices connected

by edges . Bifrost then considers

all non-branching paths, defined as paths p in which all vertices have an

and excluding the first and last vertices in p.

Each non-branching path is merged into a single vertex, termed unitig in Bifrost. Those

unitigs represent extensions of the initial k-mers (vertices) that are longer in length than the

original k-mer size. Unitig-caller then creates a presence/absence matrix of those unitigs.

We can define M, as a binary matrix with dimensions, in which s is the total number of
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sequences present in the input file and u corresponds to the total number of unitigs extracted

by Bifrost.

Unitigs were chosen over other features (e.g. gene presence/absence) because identical

unitig definitions could be computed between distinct datasets, an essential characteristic for

the --existing prediction mode of mge-cluster. To reduce the memory use required to build

the typing scheme, we remove unitigs with a variance less than 0.01 (default) using the

function VarianceThreshold of the python package sklearn (version 1.0.2) (35). In this

manner, we remove unitigs (features in the model) that have the same value for all samples

and thus do not provide any relevant information for the embedding process. This variance

threshold can be modified by the user in mge-cluster (argument --variance).

Operational mode --create: Embedding the presence/absence of unitigs into a lower

number of dimensions

We considered the implementation of the tSNE algorithm available in the python package

openTSNE (version 0.6.1) (15) to generate a 2D embedding based on M, the unitigs

presence/absence matrix. This new implementation improved the global positioning of the

points and introduced the possibility of mapping new points into an existing, reference

embedding. The multidimensional presence/absence matrix of unitig-caller can be

represented as for which corresponds to a datapoint

(sequence) with u defined as the number of dimensions (number of unitigs passing the

variance threshold). In our case, openTSNE is run to find a 2D dimensional embedding

in which the original distance between and is preserved in

and . The similarity between two data points in the original space is measured with

Jaccard distances (flag --metric). The perplexity value is one of the main parameters of

openTSNE that affects how the similarity between two data points in the original space is

preserved in the resulting embedding space. Large perplexity values tend to preserve the

global structure of the data better while obscuring some of the local structure potentially

resulting in small clusters being merged together. Small perplexity values generate tight

dense clusters preserving the local structure better but ignore the overall global structure for
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which the distance and position of the clusters in the resulting embedding can no longer be

considered.

The TSNE function can be run with different perplexity values specified by the user with the

mge-cluster arguments --perplexity, using  ‘exact’ as the method for finding the nearest

neighbor (flag --neighbors). For reproducibility purposes, we fixed the seed of the random

number generator with the flag --random_state.

Operational mode --create: Calling plasmid clusters in the embedding space

To define which clusters were present in the embedding space

created by openTSNE, we required a clustering algorithm that (i) did not force us to provide

the number of clusters present in the data, (ii) tolerated noisy data since plasmid modularity

can result in sequences that are hybrids between two neighbouring clusters, (iii) tolerated

clusters with different density and sizes (iv) allowed the assignment of new data points to an

existing clustering solution. Based on these four premises, we selected the HDBSCAN

algorithm (17), an improved version of dbscan that finds highly stable clusters over a range

of epsilon values (the main parameter of dbscan).

HDBSCAN defines the mutual reachability distance (extracted from HDBSCAN

documentation) as , where

is the original metric distance (Euclidean) and the distance to its kth

neighbour. This mreach distance is used to transform the embedding space into a new

space where points with low core distances remain together while pushing away sparser

points. This distance is considered to create a graph structure in which nodes

P correspond to the original data points while D are all edges with weight equal to

. HDBSCAN then transforms HG into a minimum spanning tree to look into

the hierarchy of connected components. Lastly, HDBSCAN uses the parameter

--min_cluster_size to define the minimum number of points that are required to define a

cluster. This parameter is then used to generate a condensed tree to select clusters with

high persistence. Lastly, HDBSCAN outputs for each point their assigned cluster and

membership probability.

The python package hdbscan (version 0.8.28) with the primary function HDBSCAN is run to

specify a default minimum cluster size (flag --min_cluster_size) defined by the user in

mge-cluster (argument --min_cluster).
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The main output of this operational mode consists of a comma-separated file (csv) with the

embedding coordinates given by openTSNE (columns ‘tsne1D’, ‘tsne2D’), the cluster

assigned and membership probability returned by HDBSCAN (column ‘Standard_Cluster’

and ‘Membership_Probability’ and the last column (‘Sample_Name’) indicating the header

extracted from the given nucleotide sequences.

Operational mode --create: Storing and distributing an mge-cluster model

Mge-cluster was specifically designed to generate a classification scheme that can easily be

distributed and reused by other users. The following files constitute a mge-cluster model: i)

*.unitigs.fasta, the fasta file containing the unitigs with a variance higher than specified in the

argument --variance, ii) *.embedding.pbz2, embedding model created by openTSNE to

transform the unitig presence/absence matrix into 2D and iii) *clusters.pbz2, clustering

model created by HDBSCAN to call clusters in the resulting embedding from openTSNE.

Operational mode --existing: Prediction of a new batch of sequences using an

existing mge-cluster model

For predicting the embedding coordinates and the cluster assignment of a new batch of

plasmid sequences with an existing mge-cluster model, we designed the --existing

operational mode. In this mode, mge-cluster requires an input file pointing to the nucleotide

sequences of interest and the folder with the files constituting a mge-cluster model (Figure

5).

Mge-cluster performs the following steps: i) computes the same unitig definitions present in

the file *unitigs.fasta, using unitig-caller (--query mode), ii) uses the transform function from

openTSNE python package to embed the new points to the existing embedding present in

the file *embedding.pbz2, iii) assigns the new points to the existing HDBSCAN clusters

present in the file *clusters.pbz2 using the approximate_predict function from the hdbscan

python package.

Mge-cluster showcase: Generating an E. coli model to classify plasmid sequences

To showcase mge-cluster, we developed an E. coli model to classify plasmid sequences. We

considered all plasmid sequences (n=6,864) with the species ‘Escherichia coli’ annotated in

the PLSDB database (20). Sequences from this database can contain near identical

plasmids which could bias the downstream validation of mge-cluster. To select a single
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representative sequence among highly similar plasmids, we used cd-hit-est (version 4.8.1) to

remove redundant sequences within a 0.99 sequence identity threshold (-c 0.99 -s 0.9 -aL

0.9) (36, 37). Cd-hit-est generated 6,185 groups encompassing plasmid sequences with high

similarity and coverage, from these only a single representative sequence was chosen. The

discarded sequences were used to benchmark the CPU time, runtime and memory required

by mge-cluster to predict sequences considering an existing mge-cluster model. These

sequences were also used as a quality check to ensure that mge-cluster returned the same

cluster assignment as their cd-hit-est group.

We clustered the set of 6.185 non-redundant plasmids using mge-cluster. The perplexity was

set to 100 (--perplexity), with a minimum cluster size of 30 (--min_cluster). Unitigs were

discarded if their variance exceeded 0.01 (--variance). We used the script

average_nucleotide_identity.py included in the pyani package (version 0.2.11) to calculate

the average coverage and average nucleotide identity (ANI) of the plasmids within each

cluster (38). We performed distinct runs of mge-cluster setting distinct perplexity values (10,

30, 50, 200) to compare the resulting clustering solution against the presented mge-cluster

model (perplexity=100). For this, we considered the adjusted Rand index implemented in the

function adjustedRandIndex from the mclust R package (version 5.4.7) (39). For

representing the embedding created by openTSNE and the clusters defined by HDBSCAN,

we used ggplot2 (version 3.3.6) and considered the Khachiyan algorithm implemented in the

ggforce R package (40) to draw ellipses around the clusters.

The clustering given by mge-cluster was compared against the current typing schemes: i)

‘primary_cluster_id’ reported by the module MOB-typer of MOB-suite (12), a five-character

fixed-length code that groups plasmids using complete-linkage clustering based on Mash

distances (default distance = 0.06) and ii) plasmid taxonomic units (PTUs) reported by

COPLA based on ANI distances and hierarchical stochastic block modelling (11). Due to the

CPU time and memory required by COPLA to predict a single sample, we could not perform

the typing and comparison of all the 6,185 plasmid sequences included in the model.

Instead, from these 6,185 sequences, we considered 695 plasmids typed with a PTU in a

recent publication introducing COPLA (10).

To quantify the concordance of the clustering solutions, we compared MOB-suite and

COPLA against mge-cluster considering the adjusted Rand index (39). This metric compares

two clustering solutions for the same set of points and returns a value ranging from 0 (no

similarity) to 1 (identical clustering). The pairwise comparisons were only performed with

sequences with a defined cluster for any of the typing tools, thus discarding plasmids
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labelled as -1 for mge-cluster or with an unknown PTU (‘-’) by COPLA. To further inspect the

level of concordance between typing schemes, for each mge-cluster we computed its

Simpson diversity for replicon, MOB-suite clusters (‘primary_cluster_id’) and COPLA PTUs.

We considered the function diversity implemented in the vegan R package (version 2.5-7)

specifying the ‘simpson’ index. This value can range from 0 (no diversity, same clustering

solution) to 1 (high diversity, distinct clustering solution). To illustrate the differences between

the clusterings given by mge-cluster and MOB-suite, we performed a gene synteny analysis

with clinker (version v0.0.21) (41) using two randomly chosen sequences belonging to the

same mge-cluster but differing in their MOB-suite cluster. To visualize the diversity of

clustering solutions within each mge-cluster, we used the treemapify R package (version

2.5.5) which produces treemaps for displaying nested and hierarchical data (42).

To assess the performance of mge-cluster assigning plasmid sequences with a distinct gene

content and origin, we considered all plasmid sequences (n=1,020) with the species

‘Staphylococcus aureus’ annotated from the PLSDB database and used the operational

mode --existing of mge-cluster to assign these sequences to the clusters defined in the E.

coli mge-cluster model. In the same manner, we typed all IncN plasmids (n=206) from

PLSDB belonging to a species different to E. coli annotated in the database and having

uniquely a single replication gene in the field ‘PlasmidFinder’.

To illustrate the potential of mge-cluster to track the distribution of a gene-of-interest, we

searched for AMR genes in our E. coli dataset using AMRFinderPlus (version 3.10.18)

indicating as organism (-O) Escherichia, specifying the --plus flag and other default settings

(43). From the resulting report, we searched for plasmid sequences encoding for the gene

mcr-1.1 (NCBI Reference Sequence accession NG_050417.1).

Data and code availability
The mge-cluster package can be installed from bioconda

https://anaconda.org/bioconda/mge-cluster under the open-source MIT license. Extensive

documentation on mge-cluster usage is available at

https://gitlab.com/sirarredondo/mge-cluster.

The code required to reproduce the results and figures presented in this manuscript is

available as a Rmarkdown document at

https://gitlab.com/sirarredondo/mge-cluster_manuscript
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The plasmid sequences retrieved from the PLSDB database used to generate the E. coli

mge-cluster for plasmid classification are publicly available at NCBI and their accession

numbers listed on Supplementary Table S1. The accession numbers from the S. aureus and

non-E.coli IncN plasmids retrieved from the PLSDB database and considered to assess the

performance of mge-cluster typing new MGE data are available in Supplementary Tables S5

and S6 respectively.

The E. coli mge–cluster model presented in this manuscript is available as a figshare item at

https://doi.org/10.6084/m9.figshare.21674078.v1

Tables

mge-cluster
perplexity

Assigned
points

Unassigned
points

Number of
clusters

Rand index - only
assigned points

Rand index - all points

10 3,778 2,218 45 0.90 (3,502) 0.29 (5,996)

30 5,187 809 44 0.95 (4,651) 0.61 (5,996)

50 4,887 1,109 45 0.96 (4,579) 0.70 (5,996)

200 4,528 1,468 38 0.98 (4,392) 0.70 (5,996)

Table 1. Comparison of the mge-cluster models over a range of perplexity values (10, 30, 50, 200).

The models were compared against the mge-cluster solution, corresponding to a perplexity value of

100. The Rand index was first computed considering only points assigned to a cluster by the two

clustering solutions and thus ignoring points which were either unassigned by one of the two models.

Secondly, the Rand index was computed with all points (assigned and unassigned) to highlight the

discrepancy between the models is mainly caused by sequences clustered by one of the two models

but unassigned by the other.
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Supplementary Figures

Supplementary Figure S1. Replicon diversity reported by the module MOB-typer of MOB-suite in each

mge-cluster (n=41). For each mge-cluster, the area of the plot is proportionally split into distinct tiles

based on the number of plasmids with the same replicon combination. For each tile, the replicon

combination is indicated in the center. In some cases, the tile may not contain any text because (i) the

replicon combinations are rare resulting on a small tile where the text indicating the replicon(s)

present cannot be fitted or (ii) multiple replicons are present in the plasmid resulting on a long text that

surpasses the area of the tile.
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Supplementary Figure S2. MOB-suite cluster diversity (‘primary_cluster_id’) present in each

mge-cluster (n=41). For each mge-cluster, the area of the plot is proportionally split into distinct tiles

based on the number of plasmids with the MOB-suite plasmid type. For each tile, the MOB-suite type

is indicated in the center. In some cases, the tile may not contain any text because the MOB-suite

type is rare among the mge-cluster resulting in a small area where the text cannot be fitted.
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Supplementary Figure S3. COPLA plasmid taxonomic unit (PTU) diversity present in each

mge-cluster. For each mge-cluster, the area of the plot is proportionally split into distinct tiles based on

the number of plasmids with a particular COPLA PTU. This diversity is uniquely based on 695 plasmid

sequences previously typed in COPLA’s original publication (10). In some cases, COPLA labelled

sequences as ‘-’ corresponding to plasmids with an unknown PTU.

Supplementary Figure S4. Gene synteny plot between the sequences NZ_LT985213.1 (top)

NZ_CP010138.1 (bottom) belonging to mge-cluster 31. These two sequences were randomly picked

and represented the two major types (AA735 and AA334, respectively) defined by MOB-suite. The

plot was created with clinker (41) based on the genome annotation (.gbk) computed with prokka (44),

and homologous genes with a minimum identity of 80% are indicated with a link between the two

sequences.
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Supplementary Figure S5. Embedding and assignment of the plasmid sequences (n=675) that were

originally discarded by cd-hist-est, and considered as a benchmarking set. These sequences are

labelled based on their predicted HDBSCAN cluster and coloured based on whether their assignment

was correct (in green) or incorrect (in orange).
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