

1 A high-throughput COPD bronchosphere model for 2 disease-relevant phenotypic compound screening

3 Pranjali Beri^{1*}, Young Jae Woo¹, Katie Schierenbeck¹, Kaisheng Chen¹, S. Whitney Barnes¹,
4 Olivia Ross¹, Douglas Krutil¹, Doug Quackenbush¹, Bin Fang¹, John Walker¹, William
5 Barnes¹, Erin Toyama^{1*}

6 ¹Novartis Institutes for Biomedical Research, San Diego, 92121, USA

7 *pranjali.beri@novartis.com, *erin.toyama@novartis.com (co-corresponding authors)

8 *Abstract Count:* 207

9 *Main Text Count:* (excluding abstract, figure legends, and references)

10 *Figure Count:* 5

11 *Table Count:* 1

12 *Supplemental Figure Count:* 6

13 *Supplemental Table Count:* 8

14 **Keywords:** COPD, bronchosphere, high-throughput, cigarette smoke extract, phenotypic
15 screening

16

17 Abstract

18 COPD is the third leading cause of death worldwide, but current therapies for COPD are only
19 effective at treating the symptoms of the disease rather than targeting the underlying pathways
20 that are driving the pathogenic changes. The lack of targeted therapies for COPD is in part due
21 to a lack of knowledge about drivers of disease progression and the difficulty in building relevant
22 and high throughput models that can recapitulate the phenotypic and transcriptomic changes
23 associated with pathogenesis of COPD. To identify these drivers, we have developed a cigarette
24 smoke extract (CSE)-treated bronchosphere assay in 384-well plate format that exhibits CSE-
25 induced decreases in size and increase in luminal secretion of MUC5AC. Transcriptomic changes
26 in CSE-treated bronospheres resemble changes that occur in human smokers both with and
27 without COPD compared to healthy groups, indicating that this model can capture human smoking
28 signature. To identify new targets, we ran a small molecule compound deck screening with
29 diversity in target mechanisms of action and identified hit compounds that attenuated CSE
30 induced changes, either decreasing spheroid size or increasing secreted mucus. This work
31 provides insight into the utility of this bronchosphere model in examining human respiratory
32 diseases, the pathways implicated by CSE, and compounds with known mechanisms of action
33 for therapeutic development.

34 Introduction

35 Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide,
36 accounting for approximately 6% of global deaths in 2019(1). It is characterized by irreversible
37 airflow obstruction and persistent inflammation, most commonly in response to cigarette smoke
38 exposure(2–5). The airways of COPD patients are characterized by structural changes to the
39 airway epithelial cells that contribute to airflow obstruction, such as: increased mucus production
40 and secretion (particularly MUC5AC), decreased mucus clearance through ciliated cell

41 dysfunction, and decreased ion channel activity leading to decreased airway hydration which
42 normally thins mucus and makes it easier to clear(3,6,7). The mechanisms behind these
43 phenotypic changes are still not well understood, and current treatments of COPD mainly consist
44 of corticosteroids and bronchodilators that aim to relax the airway to improve airflow(8). To enable
45 the discovery of novel and effective therapies for COPD, we need scalable high-throughput
46 disease models that can capture the relevant complex phenotypic and transcriptomic changes
47 associated with the disease.

48 Since the primary cause of COPD in patients is cigarette smoking, a commonly utilized
49 method of inducing a COPD-like phenotype *in vitro* is to expose airway epithelial cells to cigarette
50 smoke in one of three formats: cigarette smoke condensate (CSC)(9), cigarette smoke extract
51 (CSE)(10), or whole smoke (WS)(11). Often these models are not well suited for therapeutic drug
52 discovery efforts for three main reasons. One, they lack sufficient complexity because they do not
53 utilize differentiated bronchial epithelial cells, which is necessary to recapitulate the mixture of
54 cellular subpopulations that make up the airway epithelium (12–14). Two, they do not investigate
55 the effects of long-term exposure to cigarettes, often treating for shorter bursts which models
56 acute exposure but does not reveal longer term changes such as mucus secretion shifts(14,15).
57 Or three, the more complex models are often constructed within air-liquid interface plates. These
58 models are not scalable for use in high-throughput screening which requires at least a 384-well
59 plate format to enable the screening of larger small molecule libraries that are typical of a drug
60 discovery pipeline (10,11,16,17). Airway organoids, or bronchospheres, are 3D self-assembling
61 structures that can be differentiated from primary human airway basal cells, where the mature
62 bronchospheres are composed of distinct subpopulations of cells present in the airways
63 epithelium, such as ciliated cells and secretory cells (i.e. goblet cells)(18). They are advantageous
64 in that they can be scaled down to 384-well plate formats and do not require air-liquid interface
65 plates^{16,17}. However, a COPD-mimetic disease model using these bronchospheres has not been
66 previously generated. While bronchospheres could be generated from COPD patient-derived
67 basal cells, it is advantageous to induce a disease phenotype in healthy cells to understand key
68 disease drivers while minimizing donor-to-donor variability introduced by the inherent
69 heterogeneity of COPD(19,20).

70 Here we present a 384-well *in vitro* bronchosphere model that recapitulates key aspects
71 of the COPD disease phenotype. Treatment of human bronchial epithelial cell (HBEC)-derived
72 bronchospheres to 3% CSE over one, two, and three weeks of treatment resulted in a decrease
73 in bronchosphere size, which is an indicator of loss of swelling or hydration state in the lumen(21–
74 23), and an increase in luminal secretion of MUC5AC across all timepoints, providing two
75 separate phenotypic readouts of responses to CSE. Bulk RNAseq analysis shows an overlap in
76 the differentially expressed genes (DEGs) in the *in vitro* model with comparisons from three
77 independent patient smoker vs non-smoker datasets, and DEGs in the CSE-treated
78 bronchospheres show enrichment in COPD-relevant GO terms, KEGG pathways, and Human
79 MSigDB signatures. We used this reproducible, disease-relevant model in a diverse mechanism
80 of action (MoA) compound screen where hit compounds were able to attenuate the two key
81 phenotypic changes. Overall, this study has yielded insights into the pathways that are involved
82 in the aberrant phenotype that presents after cigarette smoke exposure and can lead to potential
83 therapeutic avenues in the treatment of COPD.

85 **Results**

86 **Bronchospheres treated with CSE exhibit reduced spheroid area and** 87 **increased MUC5AC secretion across all timepoints.**

88 To generate a high-throughput disease model for COPD drug discovery, bronchospheres derived
89 from HBECs from three independent healthy donors were first cultured in 384-well plates in 2.5D
90 culture on Matrigel. We found that co-culture with an NIH 3T3 feeder cell population in the plate
91 bottom resulted in larger spheroids with more obvious lumen formation (Figure 1A and
92 Supplemental Figure 1A). Previous studies have shown that differentiation of bronchosphere
93 cultures for two weeks is sufficient to generate distinct cellular subtypes(18,24) (Supplemental
94 Figure 1B), so bronchosphere cultures were differentiated for two weeks prior to continuous CSE
95 treatment for 1, 2, or 3 weeks (Figure 1B) with either 3% CSE or 0% CSE control. At each time
96 point, bronchosphere cultures were imaged live to observe changes in size due to CSE treatment,
97 then fixed and stained for expression of secreted mucins (MUC5AC and MUC5B) in the lumen
98 (Figure 1B).

99 CSE treatment resulted in a significant decrease in bronchosphere size at all time points,
100 with greater decreases occurring after 2 and 3 weeks of treatment (Figure 1C and D). Since an
101 important disease phenotype of COPD is the increased secretion of airway mucus, particularly
102 MUC5AC(10,24), we wanted to demonstrate that this change can be captured in the CSE-treated
103 bronchospheres. To quantify changes in MUC5AC, we calculated the change in area of the
104 secreted mucin clusters within the bronchosphere lumen and divided by the total spheroid area,
105 thus obtaining the ratio of the total spheroid area occupied by the mucin cluster. We found that
106 bronchospheres treated with CSE had an increase in luminal MUC5AC ratio compared to control
107 at all three time points (Figure 1E-F), while there was no change in the MUC5B ratio relative to
108 control (Figure 1G). These data indicate that the CSE-treated bronchospheres undergo multiple
109 phenotypic changes in response to CSE-treatment that can be quantified and utilized in
110 phenotypic screening applications.

111 **Bronchosphere model treated with CSE captures smoking signature in** 112 **humans**

113 To further investigate how well the model recapitulates the airways of advanced smokers, we
114 isolated RNA from bronchospheres treated with 0 or 3% CSE for 1, 2, or 3 weeks and performed
115 bulk RNA sequencing and analysis to calculate CSE treatment dependent differentially expressed
116 genes (DEGs) (Figure 2A). In addition to time-point specific DEGs, DEGs after pooling all time
117 points were calculated to maximize power in identifying the CSE-treated bronchosphere signature
118 using mixed model (See Methods for more detail). With FDR controlled at 5% and DEGs further
119 restricted to a greater than 2 fold-change difference, there were 408 DEGs in the pooled analysis,
120 437 DEGs in 1 week treated alone, 446 DEGs in 2 weeks treated alone, and 510 DEGs in 3
121 weeks treated alone (Figure 2A and Supplemental Table S2).

122 Smoking signatures from human samples were generated from three published datasets
123 (See Methods)(25–27). For GSE20257 by Shaykhiev et al.(25), three comparisons were tested:
124 1) excluding COPD, smokers were compared against non-smokers (Shaykhiev-1), 2) including
125 COPD, smokers were compared against non-smokers (Shaykhiev-2), and 3) Non-smokers
126 compared against COPD smokers (Shaykhiev-3). For GSE7895 by Beane et al.(26), three

127 comparisons were examined: 1) linear effect of smoking dependencies in the order of never
128 smokers, former smokers, and current smokers (Beane-1), 2) never smokers vs current smokers
129 (Beane-2), and 3) former smokers vs. current smokers (Beane-3). For GSE63127 by Tilley et
130 al.(27), smokers were compared against non-smokers (Tilley-1). Up and down-regulated DEGs
131 were calculated for each comparison (Supplemental Table S3) and Gene-Set Enrichment
132 Analysis (GSEA) was performed with the hypothesis that up-regulated DEGs from CSE-treated
133 bronchosphere models will be enriched in the up-regulated genes from human smoking data, and
134 vice versa (Supplemental Table S4). As expected, up-regulated genes in all seven smoking
135 signatures were significantly associated with positive enrichment scores, suggesting that DEGs
136 up-regulated in the bronchospheres upon CSE treatment is over-represented in genes increased
137 in the smoking cohorts (Figure 2B). To a smaller degree, DEGs down-regulated in the
138 bronchospheres after CSE treatment were also enriched in the down-regulated smoking
139 signatures (Figure 2B). Seventy-five top up-regulated and seventy-five top down-regulated genes
140 from Tilley-1 comparison were selected to visualize gene expression patterns across the other
141 six smoking comparisons using human data and four CSE-treatment comparisons using
142 bronchosphere model (Figure 2C). The Tilley dataset was prioritized in gene list selection
143 because it had the largest sample size; therefore, its biology is most likely generalizable amongst
144 all other smoking effect analyses. While the effect sizes from the human smoking signature were
145 larger than the CSE treated bronchosphere model, the direction of effects across all datasets
146 were consistent (Figure 2C). CYP1A1(28), GPX2(29), ALDH3A1(30), and CYP4F11(31) were the
147 top up-regulated genes and were strongly associated with responses to CSE, which further
148 bolstered that the bronchosphere model with CSE treatment is a good *in vitro* representation of
149 human smoking trait. Among down-regulated genes, GLIS3 was a known COPD risk gene from
150 GWAS(32,33), and MMP7 has a known promoter polymorphism associated with early onset
151 COPD(34). Of note, we also observed that CFTR was downregulated in the CSE-treated
152 bronchospheres, which can, in part, explain the observed loss of size with CSE treatment(6,21,22)
153 (Supplemental Table S2).

154 GSEA was performed to understand which biological pathways were significantly impacted by
155 CSE treatment in the bronchosphere model (Supplemental Table S5). Epithelial Mesenchymal
156 Transition (EMT) from MsigDB Hallmark ($P=1.6\times 10^{-9}$), Extracellular Structure Organization
157 ($P=1.7\times 10^{-9}$) and Extracellular Matrix (ECM) Organization ($P=1.2\times 10^{-7}$) were enriched with down-
158 regulated genes (Figure 2D-E). The enrichment of down-regulated genes in these pathways
159 increased with weeks after CSE treatment (Figure 2D-E). Cilium Organization ($P=3.4\times 10^{-9}$),
160 Cilium Assembly ($P=1.2\times 10^{-8}$), Supramolecular Fiber Organization ($P=5.9\times 10^{-5}$), Positive
161 Regulation of Epithelial Cell Migration ($P=4.4\times 10^{-4}$), Positive Regulation of Cell Motility ($P=5.3\times 10^{-4}$)
162 were also enriched in down-regulated DEGs, suggesting reduced cell mobility upon CSE
163 treatment (Figure 2D-E). IFN- α Response ($P=1.8\times 10^{-5}$), IFN- γ Response ($P=7.7\times 10^{-5}$), and
164 Inflammation Response ($P=6.6\times 10^{-4}$) were also enriched with down-regulated DEGs (Figure 2D-
165 E). This suggests that ECM reorganization(35), cell mobility(36), and IFN responses(37) may be
166 negatively impacted by CSE treatment. On the other hand, up-regulated DEGs were over-
167 represented in Fatty Acid Metabolism ($P=2.3\times 10^{-6}$), Steroid Metabolic Process ($P=3.9\times 10^{-6}$),
168 Xenobiotic Metabolism ($P=4.4\times 10^{-6}$), suggesting increased metabolism upon CSE treatment
169 (Figure 2D-E). From ClinVar 2019, primary ciliary dyskinesia was the only disease associated
170 with DEGs in the bronchosphere model after 5% FDR correction ($P=3.7\times 10^{-8}$, NES=-2.2).

171 **Phenotypic screen with a small molecule diversity deck identifies**
172 **compounds that attenuate the size and mucus changes induced by**
173 **CSE treatment**

174 To demonstrate the phenotypic screening potential of this system and identify pathways that are
175 involved in the decreased spheroid size and increased luminal mucus due to CSE treatment, we
176 ran a limited small molecule screen on bronchospheres treated with CSE for two weeks (Figure
177 3A and Supplemental Table S7). Compounds used in the screen make up a diversity deck
178 consisting of 301 non-proprietary compounds selected to hit a broad range of targets to identify
179 pathways that might be responsible for the observed phenotypic changes. Compound treatment
180 began at day 7 of CSE treatment, where bronchospheres were exposed to either DMSO or
181 compounds at 1 or 10 μ M final concentrations for the remaining 7 days of CSE treatment.
182 Bronchospheres were imaged live at the 2-week endpoint then fixed and stained for MUC5AC
183 ratio changes in the bronosphere lumen. After applying filters to remove compounds that cause
184 toxicity or worsen the phenotype in the other screen, 26 final hits were identified that either
185 decreased MUC5AC ratio (Figure 3B and Supplemental Table S8) or increased spheroid size
186 (Figure 3C and Supplemental Table S8).

187 To validate the primary hits, a second screen was run with the same experimental
188 parameters to identify which compounds recapitulated their effects. Of all the compounds that
189 restored spheroid size in the primary screen, only Compound 206 (1 μ M, HDAC4/5 inhibitor)
190 validated in the secondary screen (Figure 4A-B). Meanwhile, of the compounds that reduced
191 MUC5AC in the primary screen, Compounds 186 (1 μ M, SMN2 splicing modulator), 16 (10 μ M,
192 NPY5R inhibitor), 41(10 μ M, EGFR inhibitor), 158(10 μ M, PIKfyve inhibitor), 243(10 μ M,
193 CBP/EP300 inhibitor), and 253(10 μ M, HDAC6 inhibitor) validated in the secondary screen (Figure
194 4C-D). These hits were identified by filtering out the compounds that caused toxicity as monitored
195 by a significant decrease in number of spheroids (Supplemental Figure 3A-B) and/or a significant
196 decrease in the stained total nuclear intensity (Supplemental Figure 3C-D). Compounds that
197 worsened the phenotype in the other screen were also filtered out (Supplemental Figure 4).

198 To ensure that the identified hits were not causing unforeseen phenotypic changes to the
199 bronchospheres that were not identified in the quantitative filtration process, TMRM live dye-
200 stained bronosphere images were compiled and compounds that induced aberrant phenotypes
201 compared to DMSO + 3% CSE control bronchospheres were manually filtered (Supplemental
202 Figure 5). An unhealthy phenotype was one where there was an obvious loss of central lumen,
203 uncharacteristic clumping, or rough spheroid boundaries. The final list of hits and their restoration
204 of swell or mucus secretion is shown in Figure 5. An inhibitor of HDAC4 and HDAC5 (LMK235)
205 was found to attenuate the decrease in spheroid size due to CSE treatment, while inhibitors of
206 CBP/EP300 (CPI637), EGFR (AEE788), and HDAC6 (CHEMBL3415627) were found to
207 attenuate the increase in MUC5AC in the bronosphere lumen due to CSE treatment (Main
208 Table 1). Taken together, these data show that this platform can be utilized to identify key
209 pathways that are involved in disease-associated changes caused by exposure to byproducts of
210 cigarette smoke.

211

212 **Table 1: Final list of hit compound from the validation screen and their corresponding**
213 **targets.**

Hit Category	Compound #	Concentration (μM)	Public Identifier	Target
Swell	206	1	LMK235(52)	HDAC4/5
Mucus	41	10	AEE788(53)	EGFR
Mucus	243	10	CPI637(54)	CBP/EP300
Mucus	253	10	CHEMBL3415627(55)	HDAC6

214

215 Discussion

216 To discover effective therapies that target the underlying disease pathology for COPD, there is a
217 pressing need for models that recapitulate the relevant disease biology with applicable readouts.
218 Past attempts to create COPD models *in vitro* have not been able to capture both the complexity
219 of cell differentiation prior to treatment or disease-relevant long term CSE exposure(12–15), or
220 they lack the throughput necessary to effectively run drug discovery and target identification
221 efforts(10,11). We have developed a high-throughput 384-well bronchosphere model which can
222 mimic a COPD-like phenotype after long-term treatment with CSE. We were able to show that
223 CSE-treatment for 1, 2, and 3 weeks results in a decrease in bronchosphere area and an increase
224 in secreted MUC5AC in the bronchosphere lumen, both of which are phenotypes that have been
225 previously shown in COPD-mimetic assay platforms and lend themselves to measurement by
226 high-content images to provide quantitative high-throughput readouts of therapeutic efficacy for
227 phenotypic screening(16,24).

228 While it is important to identify key phenotypes that are responsive to CSE exposure and
229 suitable for high-throughput screening, it is equally important to ensure that we validate that the system
230 mimics the changes that occur in humans due to long-term cigarette smoke exposure.
231 We performed RNAseq of bronospheres exposed to CSE for 1, 2, and 3 weeks and compared
232 it against transcriptomic smoking signatures from three independent human datasets. We were
233 able to show that genes upregulated in our bronchosphere model were enriched in the
234 upregulated genes in all human smoking datasets, while genes downregulated in our system were
235 also enriched in the downregulated genes across all smoking signatures from human samples.
236 When looking at the top 75 upregulated and top 75 downregulated genes in the Tilley-1
237 comparison, we found that the direction of expression changes in our bronchosphere model was
238 consistent with the expression changes in the human smoking datasets. Downregulated genes in
239 our *in vitro* system were enriched in pathways and processes associated with EMT, ECM
240 organization, and cell motility, suggesting that cell motility and cell-ECM interactions were
241 negatively affected by CSE treatment. Of note, the downregulated genes were also enriched in
242 pathways involved in cilium assembly and organization. Loss of cilia and downregulation in genes
243 associated with ciliary cells were strongly associated with COPD(38,39), so this further indicates
244 that the bronchosphere model recapitulates human disease states at the transcriptomics level.
245 Upregulated genes were enriched in pathways involved in steroid(40) and xenobiotic
246 metabolism(41), and these molecular functions were previously shown to be upregulated in
247 smokers, suggesting increased metabolism upon CSE treatment. Upregulated genes were also
248 enriched in pathways associated with oxidative phosphorylation and cellular response to oxidative

249 stress, which were also associated with CSE treatment(41,42) and involved in the pathogenesis
250 of COPD(43). The combination of phenotypic and transcriptomic changes occurring in the
251 bronchospheres after CSE treatment provides a robust indication that the CSE-treated
252 bronchospheres mimic the changes occurring in human smokers. Utilizing this model can
253 accelerate drug discovery and benefit respiratory scientists with a translatable model system more
254 consistent with human tissues in comparisons to animal models.

255 To demonstrate the screening potential of this system, we ran a small-molecule deck of
256 301 compounds of known, diverse mechanisms of action (MoA). Bronchospheres were treated
257 with either DMSO or a compound of interest for 7 days, starting at day 7 of CSE exposure and
258 ending at the 2-week endpoint. We were able to identify 26 hit compounds in the primary screen
259 that either increased size or decreased MUC5AC in the lumen compared to control
260 bronchospheres (DMSO + 3% CSE). Upon validation of the compounds, we were able to further
261 reconfirm one hit that restored spheroid size (inhibitor of HDAC4/5) and three hits that reduced
262 MUC5AC (inhibitors for EGFR, HDAC6, and CBP/EP300). Activation of EGFR(44) has been
263 shown to contribute to COPD-associated phenotypes such as mucus overproduction and
264 secretion, which would explain why inhibition reduces the MUC5AC levels within the
265 bronchospheres lumen despite CSE treatment. Upregulation of HDAC6 has been implicated in
266 ciliary shortening due to CSE treatment and has been shown to be upregulated in smokers both
267 with and without COPD(45,46). However, the link between HDAC4, HDAC5, EP300 and COPD
268 are not as established. Intriguingly, these proteins are involved in histone modifications and will
269 be interesting to examine how CSE, as an environmental stimulus, may epigenetically modulate
270 transcriptome and phenotypic changes using our bronosphere model. Lastly, our initial pilot
271 screen can be expanded to a larger follow-up screen, which may identify compounds with higher
272 efficacy and specificity, resulting in better understanding of key drivers for CS-induced changes
273 in COPD and better therapeutic solutions(47).

274 **Methods:**

275 **Tissue Culture**

276 Normal human bronchial epithelial cells (HBECs) from 3 independent donors (Supplemental
277 Table S1) were obtained from Lonza (CC-2540) and cultured in BEGM growth media (Lonza CC-
278 3170), ranging in age from 12 to 38 years old. NIH/3T3 cells (ATCC CRL-1568) were cultured in
279 3T3 growth media consisting of DMEM/High Glucose (Hyclone SH30022.01), 10% FBS (Corning
280 35-015-CV), and 1% penicillin/streptomycin (Hyclone SV30010). Bronosphere differentiation
281 media consists of 50% BEBM (CC-3171) and 50% DMEM/High Glucose supplemented with
282 Bronchial Epithelial Cell Growth Medium SingleQuotsTM (Lonza CC-4175).

283 To generate 3D bronosphere cultures, 3T3s (100 cells/well) were seeded in 384-well
284 PhenoPlates (Perkin Elmer CUSG02184) in 3T3 growth media and incubated overnight at 37°C,
285 5% CO₂. 3T3 media was removed from the wells using a multichannel pipette and 10µL of 50%
286 Matrigel (Corning 356230) in bronosphere differentiation media was added to each well and
287 incubated at 37°C for a minimum of 30 minutes to solidify the gel. HBECs were seeded at 100
288 cells/well in 30µL differentiation media with 5% Matrigel. The plates are incubated overnight at
289 37°C, 5% CO₂ and 40µL of differentiation media per well was added the following day. Media
290 changes occurred every 2-3 days; plate were aspirated down to 40µL per well and 40µL of fresh
291 differentiation media was added on top. All trans-retinoic acid (Sigma R2625) was added fresh to

292 differentiation media before each media change (50nM final concentration). Bronchospheres
293 were cultured in differentiation media for a minimum of 14 days to encourage differentiation of
294 distinct airway epithelial subtypes, as previously reported(24).

295 **CSE generation and treatment of bronchospheres**

296 1R6F Small Batch cigarettes (Center for Tobacco Reference Products, University of Kentucky)
297 were connected to a gas mixing chamber (Chemglass CG-1114-13) containing DMEM/high
298 glucose. 100% CSE was generated by drawing smoke from 2 cigarettes per 10mL of DMEM at a
299 continuous flow rate of 3.5 scfh, after which it was sterile filtered using a 0.22μm-pore vacuum
300 filter.

301 **Live imaging and analysis of spheroid size**

302 The day before the indicated timepoint, 5μL of 425nM TMRM dye (ThermoFisher, Cat# T668) in
303 differentiation media was added to each well (final well concentration was 25nM) and the plates
304 were incubated overnight. Images were acquired at 4X magnification using the ImageXpress
305 confocal microscope (Molecular Devices).

306 Image segmentation is done using the open-source deep-learning based segmentation tool
307 Cellpose (<https://github.com/mouseland/cellpose>). For spheroids segmentation, the Cellpose
308 pretrained model “CP” is used with proper object diameter parameter, which is roughly equals to
309 average spheroid sizes of a specific experiment run. Segmentation results are manually inspected
310 to ensure reasonable segmentation quality and the diameter value was adjusted when necessary,
311 in rare cases. Ilastik (<https://www.ilastik.org/>), the open-source interactive learning toolkit is then
312 used to calculate features for each spheroid such as size and total signal intensity, using both the
313 raw image and segmentation results from Cellpose as import, an object classification model with
314 one class classification was built and applied to the entire dataset plate-by-plate using the batch
315 mode. Spheroids features calculated from each image are then assembled into TIBCO Spotfire
316 (<https://www.tibco.com>) and final views showing well-level aggregated values such as spheroids
317 size or intensity were plotted and calculated within Spotfire for further analysis. Spheroid areas
318 were normalized to the average CSE 0% value per donor for each time point, to account for donor-
319 to-donor size differences.

320 **Fluorescent imaging and analysis of luminal mucus content**

321 On timepoint day, plates were aspirated down to 30μL and 30μL of 8% paraformaldehyde
322 (Electron Microscopy Sciences 15714-S) in PBS was added per well. Plates were fixed for 1 hour
323 then washed three times with PBS. Wells were blocked with blocking buffer—final concentration
324 0.1% bovine serum albumin (Milipore Sigma A7030), 0.2% Triton-X (Fisher Scientific BP151-100),
325 0.04% Tween-20 (Fisher Scientific BP337-100), 10% goat serum (Gibco 16210) in PBS—and
326 incubated for 1.5 hours. Plates were then aspirated to 40μL and 10μL of primary antibodies diluted
327 1:100 in blocking buffer was added to each well (final dilution 1:500) and incubated overnight at
328 room temperature. Primary antibodies used were: MUC5AC (Thermo MA5-12178), MUC5B
329 (Sigma HPA008246-100UL), α-acetylated tubulin (Sigma T6793-.2ML). Plates were washed
330 three times with PBS with 0.2% Triton-X and 0.04% Tween-20 (IF wash buffer), then 10μL of
331 secondary antibodies diluted 1:100 and Hoechst (Invitrogen H3570) diluted 1:1000 (final dilutions
332 1:500 and 1:5000) was added to each well and incubated for 4 hours at room temperature.
333 Secondary antibodies used were: AlexaFluor 488 goat anti-mouse (Invitrogen A11001) and

334 AlexaFluor 647 goat anti-rabbit (Invitrogen A21245). Plates were washed three times with IF wash
335 buffer then three times with PBS. Plates were imaged at 5X magnification using the Opera Phenix
336 High Content Screening System (Perkin Elmer). 2D maximum projection(MIP) images are
337 generated from raw z-stack images to streamline downstream analysis.

338 Segmentation is done using the open-source deep-learning based segmentation tool
339 Cellpose (<https://github.com/mouseland/cellpose>). For spheroids segmentation, the Cellpose
340 pretrained model “CP” is used with proper object diameter parameter, which is roughly equals to
341 average spheroid sizes of a specific experiment run. Segmentation results are manually inspected
342 to ensure reasonable segmentation quality and the diameter value was adjusted when necessary
343 in rare cases. Ilastik (<https://www.ilastik.org/>), the open-source interactive learning toolkit is then
344 used to calculate features for each spheroid such as size and total signal intensity, using both the
345 raw image and segmentation results from Cellpose as import, an object classification model with
346 one class classification was built and applied to the entire dataset plate-by-plate using the batch
347 mode. In addition to the original spheroid channel, two more mucus antibody-specific staining
348 channels are also imaged. The total mucus-specific intensity and the area occupied within each
349 spheroid from each additional image channel need to be calculated. To do that we rely on
350 CellProfiler (<https://cellprofiler.org/>), an open-source cell image analysis software. A CellProfiler
351 pipeline was built by segmenting mucus active area from both mucus channels within each
352 spheroid mask generated by Cellpose in previous step, then the percentage of mucus active area
353 and the total intensity in each spheroid are calculated. Spheroids features calculated from both
354 Ilastik object classification and CellProfiler pipeline for each image are then combined and
355 assembled into TIBCO Spotfire (<https://www.tibco.com>) and final views showing well-level
356 aggregated values of mucus percentage occupation and total signal inside spheroids were
357 calculated and plotted within Spotfire for further analysis.

358 **RNA isolation and bulk RNA sequencing**

359 At all timepoints, RNA was isolated from 0 or 3% CSE-treated bronchospheres using the Qiagen
360 RNeasy Mini Kit (Qiagen 74106). The RNA yield was measured using Agilent TapeStation (4200
361 TapeStation System) at 260 nm. 150 ng of total RNA was used to make RNA sequencing libraries
362 using the TruSeq Stranded mRNA Prep Kit (Illumina 20020595). Libraries were run on a 50-cycle
363 NovaSeq (SP flowcell, 2 lanes) sequencing run and yielded an average sequencing depth of 15
364 million reads per sample. Reads were generated from a NovaSeq instrument with bcl2fastq from
365 Illumina, v 2.20.0.422-2 and were aligned to a combined human/mouse genome provided by
366 10xGenomics, version 2020-A with STAR aligner v2.7.3a(48). Gene counts were assessed with
367 RSEM v1.3(49). and were normalized using DESeq2 v.1.28.1, in R version 4.0(50). The output
368 was log2(x+1) normalized.

369 **Smoking signatures**

370 GEO datasets comparing smoking effects in human cohorts were examined and data from
371 GSE20257, GSE7895, and GSE63127 were acquired. GSE20257 had GPL570 array data for 53
372 healthy non-smokers, 59 healthy smokers, and 23 COPD smokers(25). GSE7895 had GPL96
373 array data for 21 never smokers, 31 former smokers, and 52 current smokers(26). GSE63127
374 had GPL570 array data for 87 non-smokers and 143 smokers(27). Log2 transformed data were
375 examined and linear regression was performed to identify smoking signatures using different
376 comparison groups. The models controlled for age and sex.

377 Primary compound screen and hit analysis

378 A detailed schematic of the screen set-up is shown in Figure 3. Bronchospheres were
379 differentiated for two weeks, after which they were treated with either 0 or 3% CSE for an
380 additional 2 weeks. On day 7 of CSE treatment, bronchospheres were treated with either DMSO
381 or compounds from the MoA deck at 1 or 10 μ M concentrations. On day 11, the bronchospheres
382 were re-treated with compounds and cultured until day 14 (2 weeks) of CSE treatment. On day
383 13, 5 μ L of 425nM TMRM dye (ThermoFisher, Cat# T668) in differentiation media was added to
384 each well (final well concentration was 25nM) and the plates were incubated overnight. Images
385 were acquired at the 2-week endpoint (day 14 of CSE treatment) at 4X magnification using the
386 ImageXpress confocal microscope (Molecular Devices) to observe changes to spheroid size due
387 to compound treatment. Bronosphere plates were then fixed with paraformaldehyde and
388 stained for MUC5AC, MUC5B, and nuclei to observe changes in luminal MUC5AC due to
389 compound treatment (see previous section “*Fluorescent imaging and analysis of luminal mucus*
390 *content*”).

391 For swell (spheroid size increase) hits, average spheroid size per well was normalized to
392 the median spheroid area of DMSO + 3% CSE treated bronchospheres for each plate.
393 Compounds needed to have a fold change that was greater than 2 * (Median Absolute Deviation
394 [MAD] of DMSO + 3% CSE condition) to be considered hits. To filter out compounds that
395 appeared to cause toxicity, number of spheroids per well needed to be within 3 * MAD of DMSO
396 + 0% CSE, which had lower counts than the 3% CSE and was therefore used as the healthy cut
397 off. Similarly for mucus reduction hits, average MUC5AC ratio per well was normalized to the
398 median MUC5AC ratio of DMSO + 3% CSE treated bronchospheres for each plate and converted
399 to a Log2(Fold Change). Compounds needed to have a -Log2FC that was greater than 2 * (MAD
400 of DMSO + 3% CSE condition) to be considered hits. To filter out compounds that appeared to
401 cause toxicity, total nuclear intensity per well needed to be within 3 * MAD of DMSO + 3% CSE,
402 which had lower intensity than 0% CSE and was therefore used as the healthy cut off. Additionally,
403 the spheroid counts per well from the swell data was further used to determine toxicity in the mucus
404 hits. A compound was considered a *swell hit* if at least 2 well replicates had a fold change greater
405 than 2 * MAD of DMSO + 3% CSE, all three well replicates had spheroid counts within 3 * MAD
406 of DMSO + 0% CSE, and if at least two of the wells did not increase MUC5AC ratio by greater
407 than 2 * MAD above DMSO + 3% CSE. A compound was considered a *mucus hit* if at least 2 well
408 replicates had both a -Log2FC greater than 2 * MAD of DMSO + 3% CSE and a total nuclear
409 intensity within 3 * MAD of , all three well replicates had spheroid counts within 3 * MAD of DMSO
410 + 0% CSE, and if it did not decrease bronchospheres area by greater than 2 * MAD below DMSO
411 + 3% CSE. The results of the primary screen are showing in Figure 3 and the data associated
412 with the scatter plots is in Supplemental Table S8. The box plots for the DMSO treated
413 bronchospheres that were used as cutoffs for the screen are shown in Supplemental Figure 6.
414 While 28 compounds were identified as hits, two of the compounds (Compound# 144 and 196,
415 refer to Supplemental Table S7 for compound information by numerical code) were not internally
416 available in a second batch for validation and were therefore excluded from the validation screen,
417 resulting in 26 hit compounds.

418 Secondary hit validation screen and analysis

419 The 26 compounds that were hits from the primary screen were tested in a secondary validation
420 screen with the same experimental set-up as the primary screen but different batches of the

421 compounds (not the exact batch as was used in the primary screen). Compounds were tested at
422 1 and 10 μ M concentrations, with compound treatment at day 7 and 11 of CSE treatment, with the
423 assay endpoint at day 14 (2 weeks) of CSE treatment. Spheroids were imaged live with TMRM
424 for swell/spheroid size changes, then fixed and stained for MUC5AC ratio changes. Average
425 spheroid area and MUC5AC ratio raw values were plotted in GraphPad Prism and a one-way
426 ANOVA with Dunnett's multiple comparisons test was run to identify validated hits.

427 **Statistical analysis for RNA sequencing analysis**

428 Because human bronchial epithelial cells in the experiment were based on three subjects
429 (Supplemental Table S1), principal component analysis (PCA) was performed to assess donor
430 effects. First and second principal components (PCs) were capturing donor effects such as
431 alcohol status, age, and sex. Cigarette smoking excrement (CSE) related signals were captured
432 in the third and fourth PCs. Therefore, mixed model utilized to identify differential expressed genes
433 (DEGs) accounting for donor status as random effects. After testing the model sex effect was fully
434 accounted by Donor variable and the following model was implemented for each time point:
435 *Gene expression* $\sim 1 + \text{alcohol status} + \text{Age} + (1|\text{Donor})$. PCA was performed again to verify
436 that the first PC, the major source of variation, is from CSE and second largest variation is due to
437 weeks of CSE treatment (Supplemental Figure 2). To maximize power to identify CSE dependent
438 DEGs, analysis pooling all time points were conducted with the following model:
439 *Gene expression* $\sim 1 + \text{days treated} + \text{alcohol status} + \text{Age} + (1|\text{Donor})$. Benjamini-Hochberg
440 procedure was performed to correct for multiple testing. Gene-Set Enrichment Analysis (GSEA)
441 was performed using fgsea package in R(51). Minimum and maximum gene-set size were 5 and
442 500, respectively, and statistical inference was made with 50,000 permutations. All association
443 results were corrected for multiple-testing using Benjamini-Hochberg procedure and significant
444 associations were controlled at 5% FDR. Significantly associated pathways with gene-set overlap
445 size larger than 30 genes were selected for visualization.

446 **Statistical analysis for all other graphs**

447 Unless otherwise indicated, statistical analysis was performed using GraphPad Prism9, and the
448 threshold for significance was set at $p < 0.05$. Detailed information on the statistical analysis of
449 each figure is written in the corresponding figure legend.

450 **Acknowledgements**

451 The authors would like to thank Dr. Fred King, Dr. Barun Okram, Dr. Paul Rucker, Dr. Dean
452 Phillips, Dr. Jimmy Elliot, Dr. Kevin White, Khaushik Subramanian, Stephen Attle, Dr. Michael
453 O'Sullivan, and Dr. David Rowlands for helpful discussion and/or guidance in development of
454 methodology or experimental design.

455

456 **Author Declarations**

457 **Conflicts of Interest**

458 All authors are current or prior employees (were employees at the time of their contributions to
459 the paper) of Novartis.

460 **Author contributions statement**

461 Conceptualization: P.B., W.B., E.T.; Methodology: P.B., K.S., D.K., D.Q.; Data Generation and
462 Analysis: P.B., Y.J.W., K.S., K.C., S.W.B., O.R.; Writing Manuscript: P.B., Y.J.W., K.C.;
463 Supervision: B.F., J.W., W.B., E.T. Funding: Novartis Institute of Biomedical Research. All authors
464 reviewed and approved this manuscript.

465 **Data availability**

466 The RNAseq data reported in this paper will be uploaded (and the accession number provided)
467 prior to paper acceptance. The data that supports the results in the paper are available in the
468 article or supplementary information. Additional data for the figures are available from the
469 corresponding author upon reasonable request.

470

471 **References**

- 472 1. Organization WH. Global health estimates: leading causes of death. Cause-specific mortality,
473 2000–2019. 2019. 2021.
- 474 2. Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. *The Lancet* [Internet]. 2022 Jun 11;399(10342):2227–42. Available from:
475 [https://doi.org/10.1016/S0140-6736\(22\)00470-6](https://doi.org/10.1016/S0140-6736(22)00470-6)
- 476 3. Kim V, Criner GJ. Chronic Bronchitis and Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med* [Internet]. 2013 Feb 1;187(3):228–37. Available from:
477 <https://doi.org/10.1164/rccm.201210-1843CI>
- 478 4. Barnes PJ. Chronic Obstructive Pulmonary Disease. *New England Journal of Medicine* [Internet].
479 2000 Jul 27;343(4):269–80. Available from: <https://doi.org/10.1056/NEJM200007273430407>
- 480 5. Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel
481 epidemics of the 21st century. *Int J Environ Res Public Health*. 2009;6(1):209–24.
- 482 6. Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, et al. Cigarette
483 smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid
484 dehydration. *The FASEB Journal* [Internet]. 2012 Feb 1;26(2):533–45. Available from:
485 <https://doi.org/10.1096/fj.11-192377>
- 486 7. Short B, Carson S, Devlin AC, Reihill JA, Crilly A, MacKay W, et al. Non-typeable *Haemophilus*
487 *influenzae* chronic colonization in chronic obstructive pulmonary disease (COPD). *Crit Rev Microbiol* [Internet].
488 2021 Mar 4;47(2):192–205. Available from:
489 <https://doi.org/10.1080/1040841X.2020.1863330>
- 490 8. Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. *New England Journal of
491 Medicine* [Internet]. 2017 Sep 7;377(10):965–76. Available from:
492 <https://doi.org/10.1056/NEJMra1608969>
- 493 9. Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, et al. Epigenomic alterations and gene
494 expression profiles in respiratory epithelia exposed to cigarette smoke condensate. *Oncogene* [Internet].
495 2010;29(25):3650–64. Available from: <https://doi.org/10.1038/onc.2010.129>
- 496 10. Bodas M, Moore AR, Subramaniyan B, Georgescu C, Wren JD, Freeman WM, et al. Cigarette
497 Smoke Activates NOTCH3 to Promote Goblet Cell Differentiation in Human Airway Epithelial

500 Cells. Am J Respir Cell Mol Biol [Internet]. 2021 Jan 14;64(4):426–40. Available from:
501 <https://doi.org/10.1165/rcmb.2020-0302OC>

502 11. Gindele JA, Kiechle T, Benediktus K, Birk G, Brendel M, Heinemann F, et al. Intermittent exposure
503 to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-
504 liquid interface culture. Sci Rep [Internet]. 2020;10(1):6257. Available from:
505 <https://doi.org/10.1038/s41598-020-63345-5>

506 12. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O. Cigarette smoke alters
507 primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci Rep [Internet].
508 2015;5(1):8163. Available from: <https://doi.org/10.1038/srep08163>

509 13. Anzalone G, Arcleo G, Buccieri F, Montalbano AM, Marchese R, Albano GD, et al. Cigarette
510 smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD
511 patients. Sci Rep [Internet]. 2019;9(1):15682. Available from: [https://doi.org/10.1038/s41598-019-52179-5](https://doi.org/10.1038/s41598-019-
512 52179-5)

513 14. Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, et al. Involvement of
514 cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun [Internet].
515 2019;10(1):3145. Available from: <https://doi.org/10.1038/s41467-019-10991-7>

516 15. Chen D, Gregory AD, Li X, Wei J, Burton CL, Gibson G, et al. RIP3-dependent necroptosis
517 contributes to the pathogenesis of chronic obstructive pulmonary disease. JCI Insight [Internet].
518 2021 Jun 22;6(12). Available from: <https://doi.org/10.1172/jci.insight.144689>

519 16. Wu X, Bos IST, Conlon TM, Ansari M, Verschut V, van der Koog L, et al. A transcriptomics-guided
520 drug target discovery strategy identifies receptor ligands for lung regeneration. Sci Adv [Internet].
521 2022 Sep 2;8(12):eabj9949. Available from: <https://doi.org/10.1126/sciadv.abj9949>

522 17. Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for
523 Lung Repair and Disease. Cells [Internet]. 2021 Jun 26;10(7):1602. Available from:
524 <https://www.mdpi.com/2073-4409/10/7/1602>

525 18. Hild M, Jaffe AB. Production of 3-D airway organoids from primary human airway basal cells and
526 their use in high-throughput screening. Curr Protoc Stem Cell Biol. 2016;37(1):IE-9.

527 19. Ragland MF, Benway CJ, Lutz SM, Bowler RP, Hecker J, Hokanson JE, et al. Genetic Advances
528 in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am J Respir Crit Care Med
529 [Internet]. 2019 Mar 25;200(6):677–90. Available from: [https://doi.org/10.1164/rccm.201808-1455SO](https://doi.org/10.1164/rccm.201808-
530 1455SO)

531 20. Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. The
532 Lancet [Internet]. 2022;399(10342):2227–42. Available from:
533 <https://www.sciencedirect.com/science/article/pii/S0140673622004706>

534 21. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttlinger L, Klay D, et al. Long-term
535 expanding human airway organoids for disease modeling. EMBO J [Internet]. 2019 Feb
536 15;38(4):e100300. Available from: <https://doi.org/10.15252/embj.2018100300>

537 22. Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM, Klein OD, et al. Inflation-
538 collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell
539 [Internet]. 2021;28(9):1516-1532.e14. Available from:
540 <https://www.sciencedirect.com/science/article/pii/S1934590921001594>

541 23. de Winter-de Groot KM, Janssens HM, van Uum RT, Dekkers JF, Berkers G, Vonk A, et al.
542 Stratifying infants with cystic fibrosis for disease severity using intestinal organoid swelling as a

543 biomarker of CFTR function. European Respiratory Journal [Internet]. 2018 Sep 1;52(3):1702529.
544 Available from: <http://erj.ersjournals.com/content/52/3/1702529.abstract>

545 24. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, et al. Notch2 Is Required for
546 Inflammatory Cytokine-Driven Goblet Cell Metaplasia in the Lung. *Cell Rep* [Internet]. 2015 Jan
547 13;10(2):239–52. Available from: <https://doi.org/10.1016/j.celrep.2014.12.017>

548 25. Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M, Strulovici-Barel Y, et al. Cigarette smoking
549 reprograms apical junctional complex molecular architecture in the human airway epithelium in
550 vivo. *Cellular and Molecular Life Sciences* [Internet]. 2011;68(5):877–92. Available from:
551 <https://doi.org/10.1007/s00018-010-0500-x>

552 26. Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects
553 of tobacco smoke exposure on airway epithelial gene expression. *Genome Biol* [Internet].
554 2007;8(9):R201. Available from: <https://doi.org/10.1186/gb-2007-8-9-r201>

555 27. Tilley AE, Staudt MR, Salit J, van de Graaf B, Strulovici-Barel Y, Kaner RJ, et al. Cigarette
556 Smoking Induces Changes in Airway Epithelial Expression of Genes Associated with Monogenic
557 Lung Disorders. *Am J Respir Crit Care Med* [Internet]. 2016 Jan 15;193(2):215–7. Available from:
558 <https://doi.org/10.1164/rccm.201412-2290LE>

559 28. Rico de Souza A, Traboulsi H, Wang X, Fritz JH, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon
560 Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the
561 Dioxin Response Element. *Front Immunol* [Internet]. 2021;12. Available from:
562 <https://www.frontiersin.org/articles/10.3389/fimmu.2021.630427>

563 29. Singh A, Rangasamy T, Thimmulappa RK, Lee H, Osburn WO, Brigelius-Flohé R, et al.
564 Glutathione Peroxidase 2, the Major Cigarette Smoke-Inducible Isoform of GPX in Lungs, Is
565 Regulated by Nrf2. *Am J Respir Cell Mol Biol* [Internet]. 2006 Dec 1;35(6):639–50. Available from:
566 <https://doi.org/10.1165/rcmb.2005-0325OC>

567 30. Jang JH, Bruse S, Liu Y, Duffy V, Zhang C, Oyamada N, et al. Aldehyde dehydrogenase 3A1
568 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity. *Free
569 Radic Biol Med* [Internet]. 2014;68:80–6. Available from:
570 <https://www.sciencedirect.com/science/article/pii/S0891584913015335>

571 31. Steiling K, Lenburg ME, Spira A. Airway gene expression in chronic obstructive pulmonary
572 disease. *Proc Am Thorac Soc*. 2009;6(8):697–700.

573 32. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, et al.
574 Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type
575 and phenotype associations. *Nat Genet* [Internet]. 2019;51(3):494–505. Available from:
576 <https://doi.org/10.1038/s41588-018-0342-2>

577 33. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. New
578 genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease
579 associations across multiple ancestries. *Nat Genet* [Internet]. 2019;51(3):481–93. Available from:
580 <https://doi.org/10.1038/s41588-018-0321-7>

581 34. Tacheva T, Dimov D, Anastasov A, Zhelyazkova Y, Kurzawski M, Gulubova M, et al. Association
582 of the MMP7-181A> G promoter polymorphism with early onset of chronic obstructive pulmonary
583 disease. *Balkan Journal of Medical Genetics*. 2017;20(2):59–65.

584 35. Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, et al. Dynamic changes in lung
585 responses after single and repeated exposures to cigarette smoke in mice. *PLoS One* [Internet].
586 2019 Feb 28;14(2):e0212866-. Available from: <https://doi.org/10.1371/journal.pone.0212866>

587 36. Silva D, Cáceres M, Arancibia R, Martínez C, Martínez J, Smith PC. Effects of cigarette smoke
588 and nicotine on cell viability, migration and myofibroblastic differentiation. *J Periodontal Res*
589 [Internet]. 2012 Oct 1;47(5):599–607. Available from: <https://doi.org/10.1111/j.1600-0765.2012.01472.x>

591 37. Tebow G, Sherrill DL, Lohman IC, Stern DA, Wright AL, Martinez FD, et al. Effects of Parental
592 Smoking on Interferon γ Production in Children. *Pediatrics* [Internet]. 2008 Jun 1;121(6):e1563–9.
593 Available from: <https://doi.org/10.1542/peds.2007-2795>

594 38. Gohy S, Carlier FM, Fregimilicka C, Detry B, Lecocq M, Ladjemi MZ, et al. Altered generation of
595 ciliated cells in chronic obstructive pulmonary disease. *Sci Rep* [Internet]. 2019;9(1):17963.
596 Available from: <https://doi.org/10.1038/s41598-019-54292-x>

597 39. Brekman A, Walters MS, Tilley AE, Crystal RG. FOXJ1 Prevents Cilia Growth Inhibition by
598 Cigarette Smoke in Human Airway Epithelium In Vitro. *Am J Respir Cell Mol Biol* [Internet]. 2014
599 May 14;51(5):688–700. Available from: <https://doi.org/10.1165/rcmb.2013-0363OC>

600 40. Kaur G, Singh K, Maremenda KP, Li D, Chand HS, Rahman I. Differential plasma exosomal long
601 non-coding RNAs expression profiles and their emerging role in E-cigarette users, cigarette,
602 waterpipe, and dual smokers. *PLoS One* [Internet]. 2020 Dec 8;15(12):e0243065-. Available from:
603 <https://doi.org/10.1371/journal.pone.0243065>

604 41. Yun JH, Morrow J, Owen CA, Qiu W, Glass K, Lao T, et al. Transcriptomic Analysis of Lung
605 Tissue from Cigarette Smoke–Induced Emphysema Murine Models and Human Chronic
606 Obstructive Pulmonary Disease Show Shared and Distinct Pathways. *Am J Respir Cell Mol Biol*
607 [Internet]. 2017 Mar 1;57(1):47–58. Available from: <https://doi.org/10.1165/rcmb.2016-0328OC>

608 42. Hoffmann RF, Zarrintan S, Brandenburg SM, Kol A, de Bruin HG, Jafari S, et al. Prolonged
609 cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells.
610 *Respir Res* [Internet]. 2013;14(1):97. Available from: <https://doi.org/10.1186/1465-9921-14-97>

611 43. Kirkham PA, Barnes PJ. Oxidative Stress in COPD. *Chest* [Internet]. 2013;144(1):266–73.
612 Available from: <https://www.sciencedirect.com/science/article/pii/S0012369213604766>

613 44. Singanayagam A, Footitt J, Marcynski M, Radicioni G, Cross MT, Finney LJ, et al. Airway mucins
614 promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. *J Clin*
615 *Invest* [Internet]. 2022 Apr 15;132(8). Available from: <https://doi.org/10.1172/JCI120901>

616 45. Saco T v, Breitzig MT, Lockey RF, Kolliputi N. Epigenetics of mucus hypersecretion in chronic
617 respiratory diseases. *Am J Respir Cell Mol Biol*. 2018;58(3):299–309.

618 46. Horndahl J, Svärd R, Berntsson P, Wingren C, Li J, Abdillahi SM, et al. HDAC6 inhibitor ACY-1083
619 shows lung epithelial protective features in COPD. *PLoS One*. 2022;17(10):e0266310.

620 47. Sundar IK, Nevid MZ, Friedman AE, Rahman I. Cigarette smoke induces distinct histone
621 modifications in lung cells: implications for the pathogenesis of COPD and lung cancer. *J*
622 *Proteome Res*. 2014;13(2):982–96.

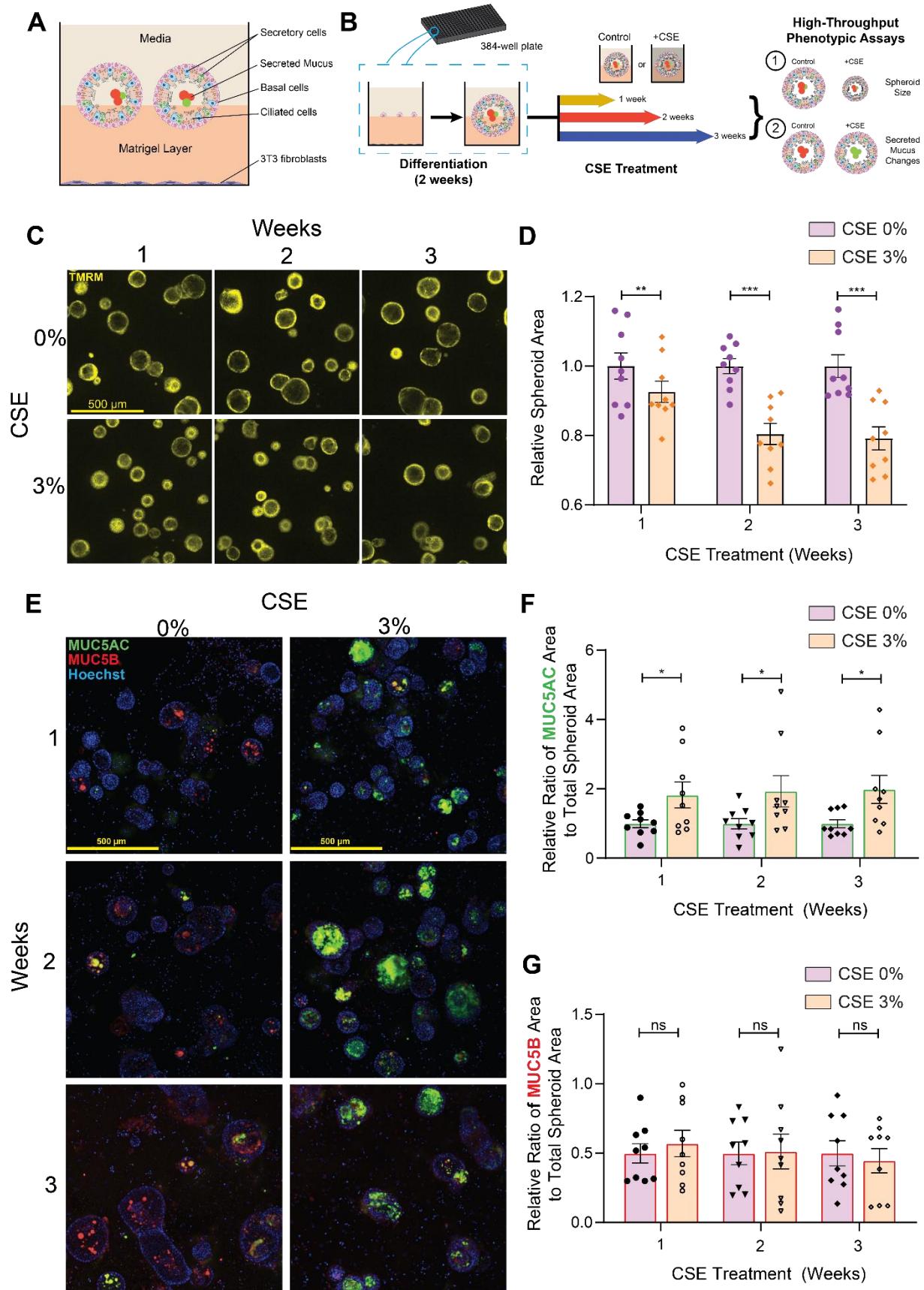
623 48. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
624 RNA-seq aligner. *Bioinformatics* [Internet]. 2013 Jan 1;29(1):15–21. Available from:
625 <https://doi.org/10.1093/bioinformatics/bts635>

626 49. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a
627 reference genome. *BMC Bioinformatics* [Internet]. 2011;12(1):323. Available from:
628 <https://doi.org/10.1186/1471-2105-12-323>

629 50. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
630 data with DESeq2. *Genome Biol* [Internet]. 2014;15(12):550. Available from:
631 <https://doi.org/10.1186/s13059-014-0550-8>

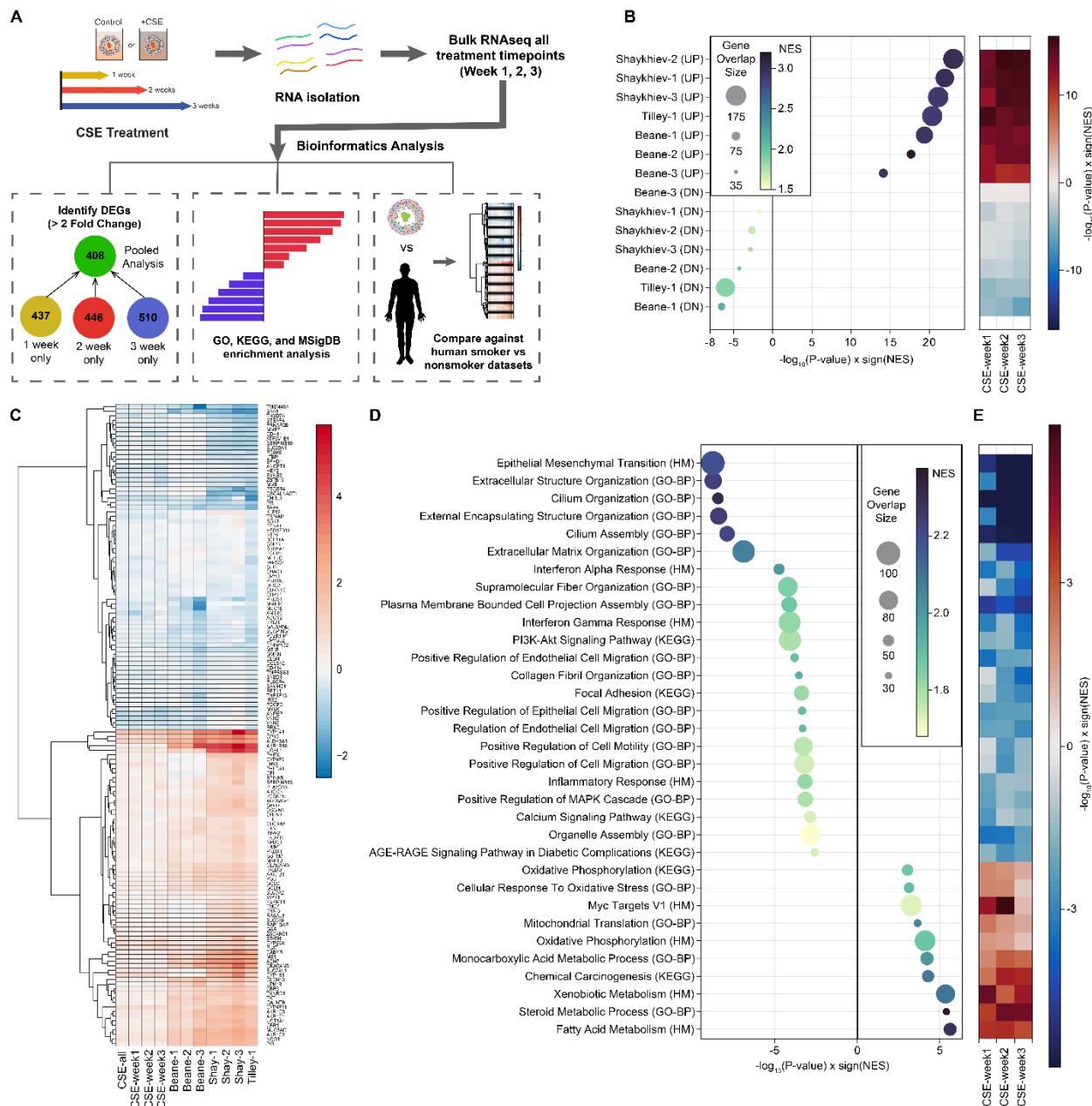
632 51. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set
633 enrichment analysis. *bioRxiv* [Internet]. 2021 Jan 1;060012. Available from:
634 <http://biorxiv.org/content/early/2021/02/01/060012.abstract>

635 52. Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, et al. Histone Deacetylase
636 (HDAC) Inhibitors with a Novel Connecting Unit Linker Region Reveal a Selectivity Profile for
637 HDAC4 and HDAC5 with Improved Activity against Chemoresistant Cancer Cells. *J Med Chem*
638 [Internet]. 2013 Jan 24;56(2):427–36. Available from: <https://doi.org/10.1021/jm301254q>


639 53. Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, et al. AEE788: A Dual Family
640 Epidermal Growth Factor Receptor/ErbB2 and Vascular Endothelial Growth Factor Receptor
641 Tyrosine Kinase Inhibitor with Antitumor and Antiangiogenic Activity. *Cancer Res* [Internet]. 2004
642 Jul 15;64(14):4931–41. Available from: <https://doi.org/10.1158/0008-5472.CAN-03-3681>

643 54. Ryan KR, Giles F, Morgan GJ. Targeting both BET and CBP/EP300 proteins with the novel dual
644 inhibitors NEO2734 and NEO1132 leads to anti-tumor activity in multiple myeloma. *Eur J
645 Haematol* [Internet]. 2021 Jan 1;106(1):90–9. Available from: <https://doi.org/10.1111/ejh.13525>

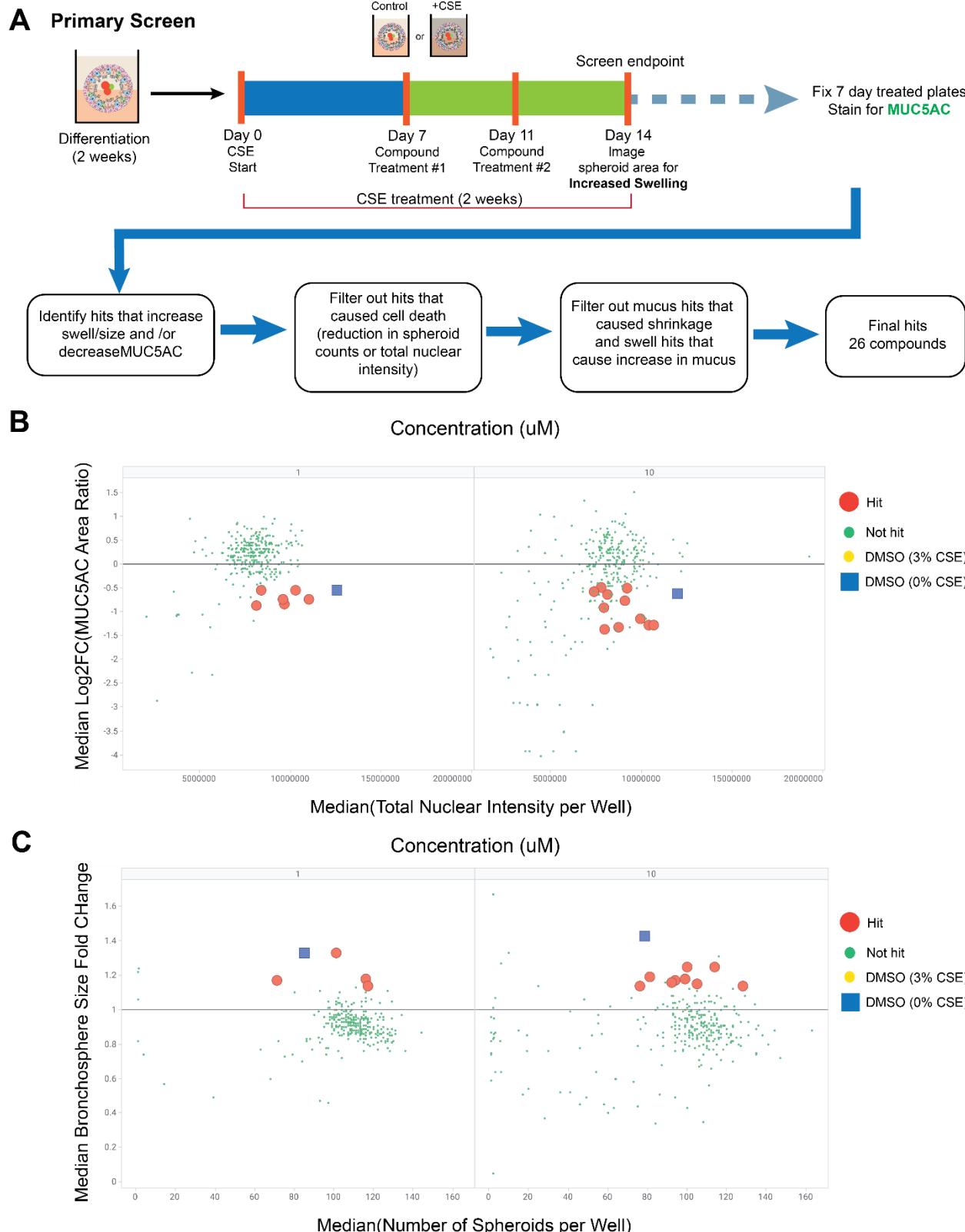
646 55. Lin X, Chen W, Qiu Z, Guo L, Zhu W, Li W, et al. Design and Synthesis of Orally Bioavailable
647 Aminopyrrolidinone Histone Deacetylase 6 Inhibitors. *J Med Chem* [Internet]. 2015 Mar
648 26;58(6):2809–20. Available from: <https://doi.org/10.1021/jm502011f>


649

650

652 **Figure 1: CSE-treated bronchospheres have decreased spheroid area and increased**
653 **MUC5AC secretion in the lumen compared to control. A)** Schematic of a well within a 384-
654 well plate with bronchosphere organoids in 2.5D culture with a 3T3 feeder cell layer at the well
655 bottom. **B)** Schematic of the experimental workflow. Bronchospheres were seeded and
656 differentiated over two weeks, after which they were exposed to 0 or 3% CSE for 1-, 2-, and 3-
657 week continuous treatment. At each timepoint, spheroids were imaged live to assess changes in
658 size, then fixed and stained for secreted mucins. **C)** Representative images of live
659 bronchospheres stained with TMRM dye that show changes in area with CSE treatment. **D)** Bar
660 plot of spheroid area at all timepoints treated with 0 or 3% CSE. Conditions are comprised of 3
661 biological replicates from 3 independent donors. Datapoints were normalized to the average of
662 the control condition for each donor and at each timepoint, due to donor-to-donor variability.
663 Data is represented as mean \pm SEM and each timepoint was analyzed by paired two-tailed t-
664 test, **p<0.01, ***p<0.001. **E)** Representative images of bronchospheres stained for MUC5AC
665 and MUC5B that show increased MUC5AC secretion in the bronchospheres lumen with CSE
666 treatment. **F)** Bar plot of ratio of MUC5AC and **G)** MUC5B cluster area to total spheroid area.
667 Conditions are comprised of 3 biological replicates from 3 independent donors. Datapoints were
668 normalized to the average of the control condition for each donor and at each timepoint, due to
669 donor-to-donor variability. Data is represented as mean \pm SEM and each timepoint was
670 analyzed by paired two-tailed t-test, *p<0.05.

671

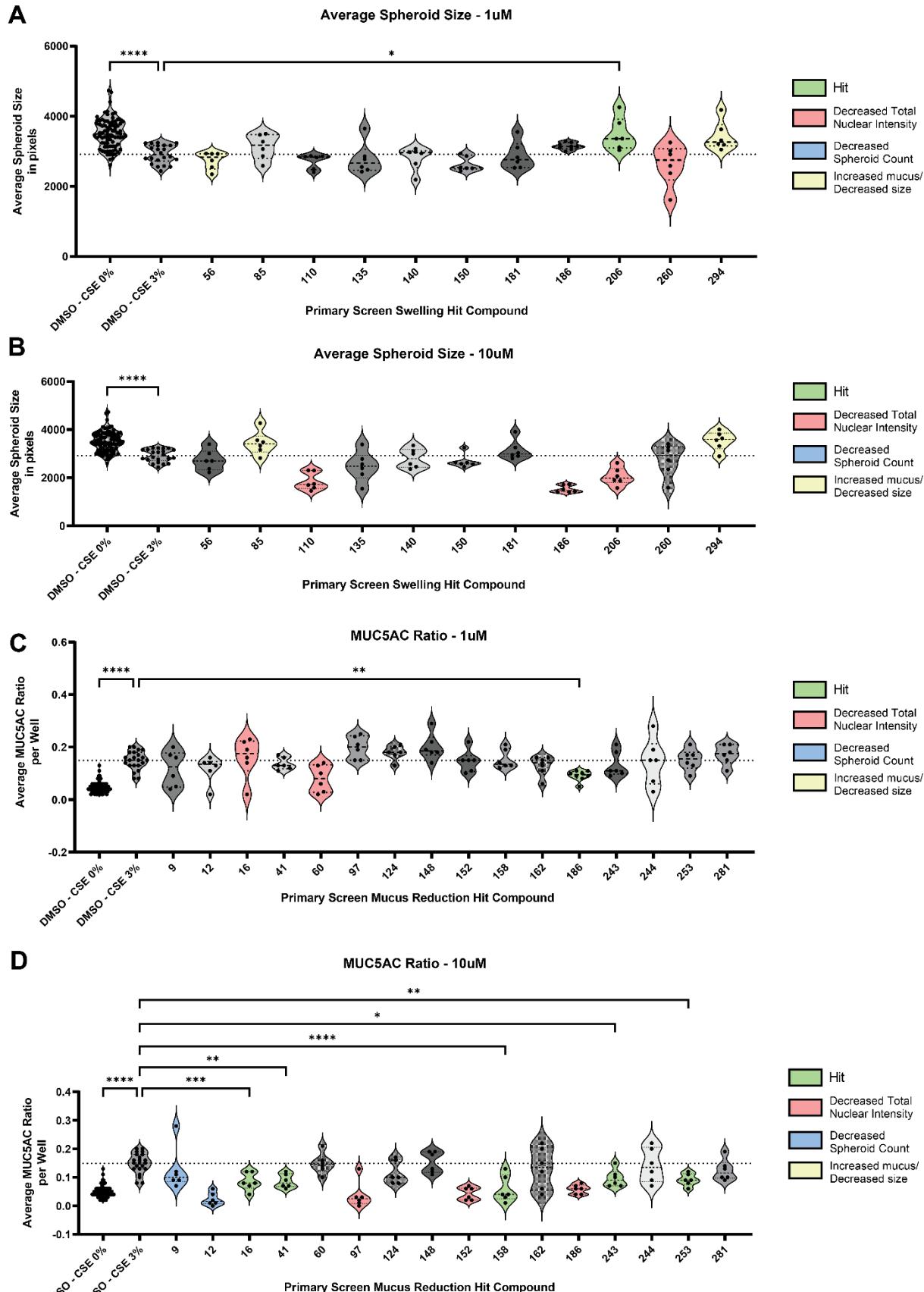


672

673 **Figure 2: CSE-treated bronchospheres capture smoke signatures in humans. A)**
674 Schematic of RNA sequencing and bioinformatics analysis. The number of DEGs at each
675 timepoint and pooled timepoints were calculated with FDR controlled at 5% and fold-change >2.
676 **B)** Enrichment of up- and down-regulated genes from CSE-treated bronchospheres in smoking
677 signatures comprised of 7 different comparisons generated from 3 separate datasets (a legend
678 of the comparisons is provided in Supplemental Table S6). The heatmap on the right indicates
679 enrichment at each timepoint with the 7 dataset comparisons. As expected, a positive
680 enrichment score with the UP comparisons indicates that upregulated genes in the CSE-
681 bronchospheres are enriched in the upregulated genes of the human signatures, while a
682 negative enrichment score with the DN comparisons indicates that the downregulated genes in
683 the CSE-treated bronchospheres are enriched in the downregulated genes of the human

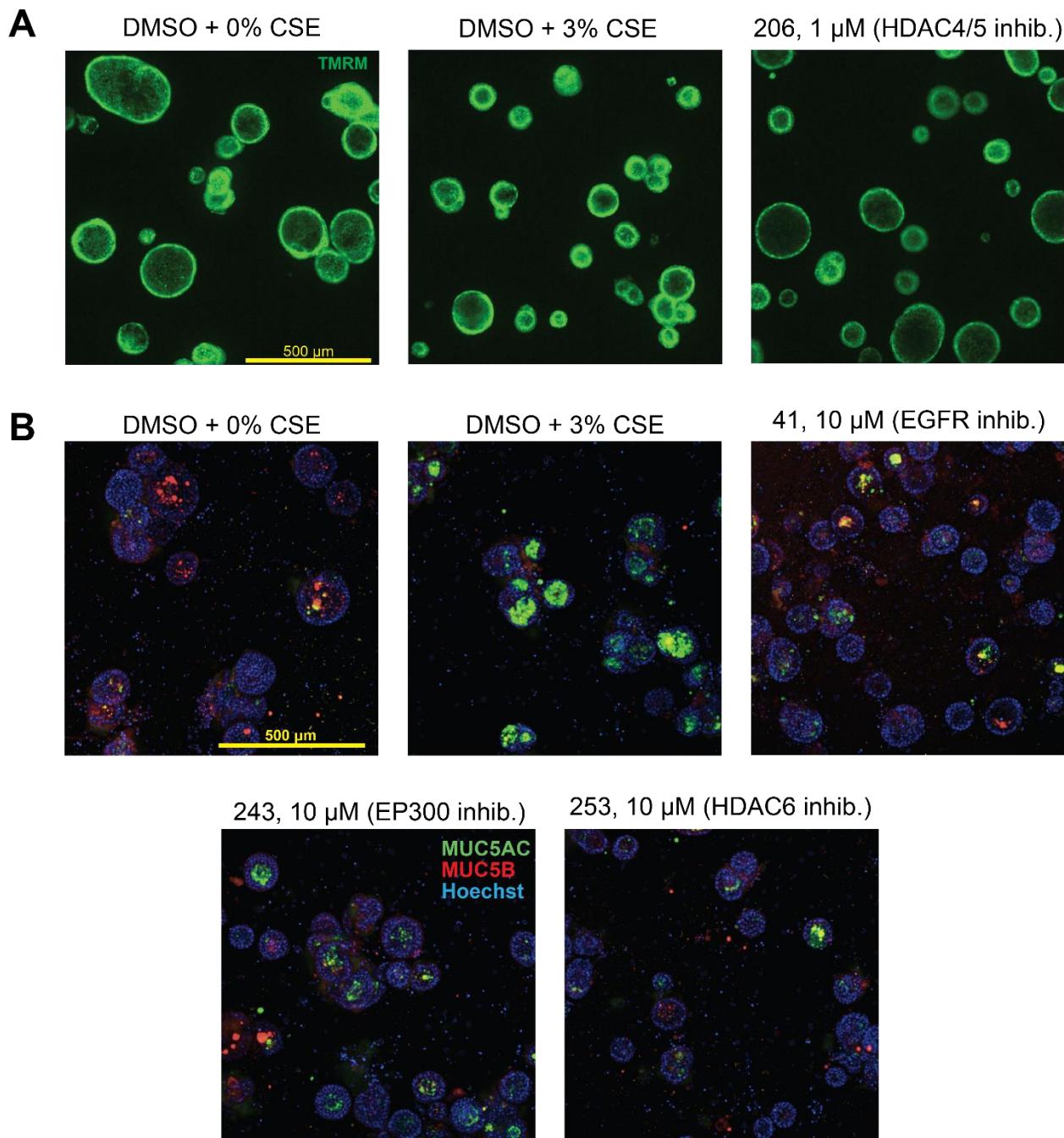
684 signatures. **C)** Heat map visualization of gene expression changes (β estimates) of 75 top up-
685 regulated and 75 top down-regulated genes from Tilley-1 comparison against the other patient
686 comparisons as well as in the in vitro datasets, both pooled and individual timepoints. **D)** GSEA
687 shows up- and down-regulated pathways in CSE-treated bronchospheres. Significantly
688 associated pathways with gene-set overlap size larger than 30 genes were selected for
689 visualization.

690



691

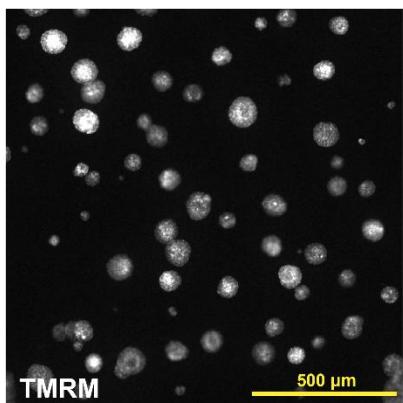
692 **Figure 3: Primary small molecule screen to identify attenuators of CSE-induced decrease**
 693 **in size and increase in MUC5AC. A)** Schematic of primary screen set-up, endpoints, and


694 identification of hits. Compounds were tested at 1 and 10 μ M concentrations with n=3 replicates
695 per compound and concentration. The deck consisted of 301 compounds of diverse
696 mechanisms of action. Hit compounds at 1 and 10 μ M concentrations that **B)** increased spheroid
697 size (swell) or **C)** decreased MUC5AC staining in the lumen relative to DMSO and CSE 3%-
698 treated bronchospheres. A detailed explanation of hit selection for both readouts is provided in
699 the methods.

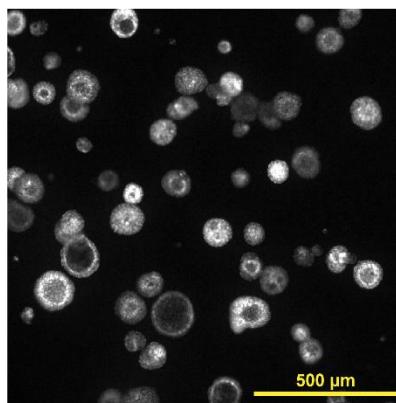
700

702 **Figure 4: Validation of primary screen hits reveals compounds that recapitulate**
703 **increased spheroid size (swell) or decreased MUC5AC in the lumen.** Compounds that were
704 identified in the primary screen as modulators of spheroid size/swell were tested at **A)** 1 μ M and
705 **B)** 10 μ M concentrations to see if they would recapitulate the phenotype. Compound 206 (1 μ M)
706 significantly increased spheroid size relative to DMSO + CSE 3% control bronchospheres.
707 Compounds that were identified in the primary screen as modulators of MUC5AC reduction
708 were tested at **C)** 1 μ M and **D)** 10 μ M concentrations to see if they would recapitulate the
709 phenotype. Compounds 186 (1 μ M), 16 (10 μ M), 41(10 μ M), 158(10 μ M), 243(10 μ M), and
710 253(10 μ M) significantly reduced MUC5AC ration within the spheroid lumen compared to DMSO
711 + CSE 3% control bronchospheres. Compounds that appeared to cause toxicity were identified
712 by observing a significant decrease in spheroid counts in the swell readout or a significant
713 decrease in the total nuclear intensity of the MUC5AC ratio readout. These data are reported in
714 Supplemental Figure 3. Compounds that correctly attenuated the phenotype but produce the
715 opposite phenotype in the other readout (i.e., increased spheroid area but also significantly
716 increased MUC5AC ratio in the lumen) were also filtered out. These data are reported in
717 Supplemental Figure 4. All individual data points represent biological replicates. All plots were
718 analyzed by ordinary one-way ANOVA with Dunnett's multiple comparisons test. *p<0.05;
719 **p<0.01, **p<0.01, ***p<0.001, ****p<0.0001.

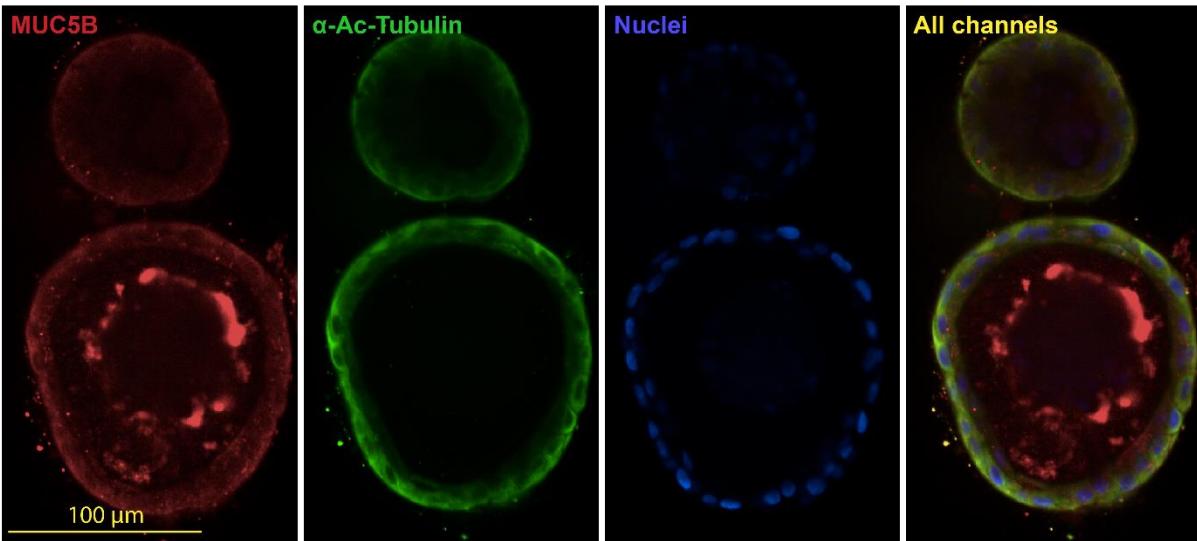
720


722 **Figure 5: Attenuation of spheroid size decrease or MUC5AC increase by hit compounds.**
723 Final hit compounds (with hit concentration and corresponding target) that **A**) increased
724 bronchosphere size compared to DMSO + 3% CSE control bronchospheres or **B**) decreased
725 secreted MUC5AC. Mucus reduction hit compounds were further refined by manually comparing
726 TMRM live dye-stained images of compound treated vs. control bronchospheres to observe
727 aberrant phenotype that could indicate an unhealthy state. These images are shown in
728 Supplemental Figure 5.

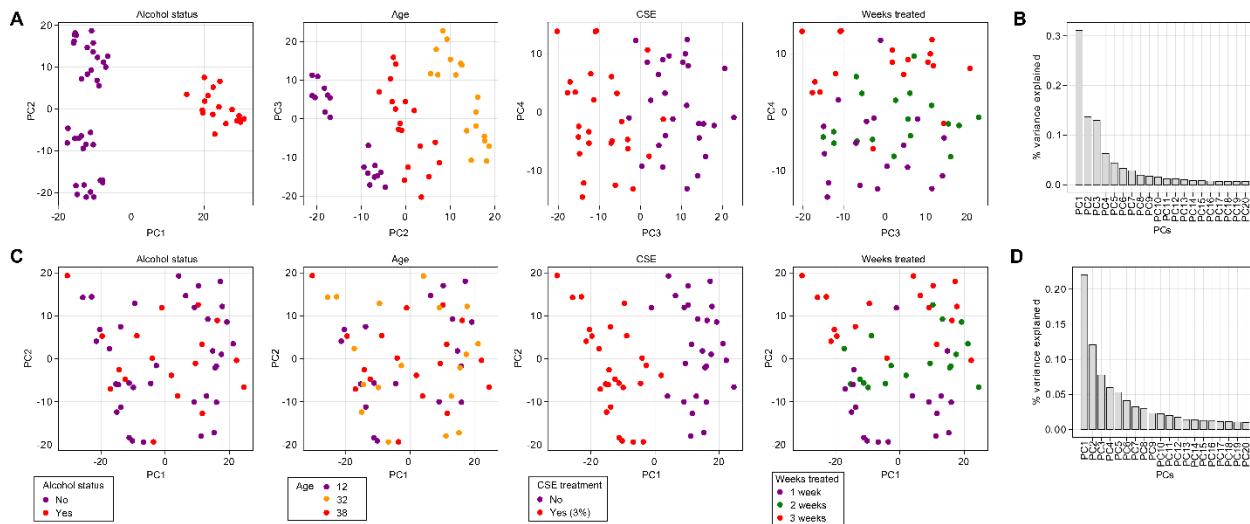
729


A

2 weeks after initial seeding

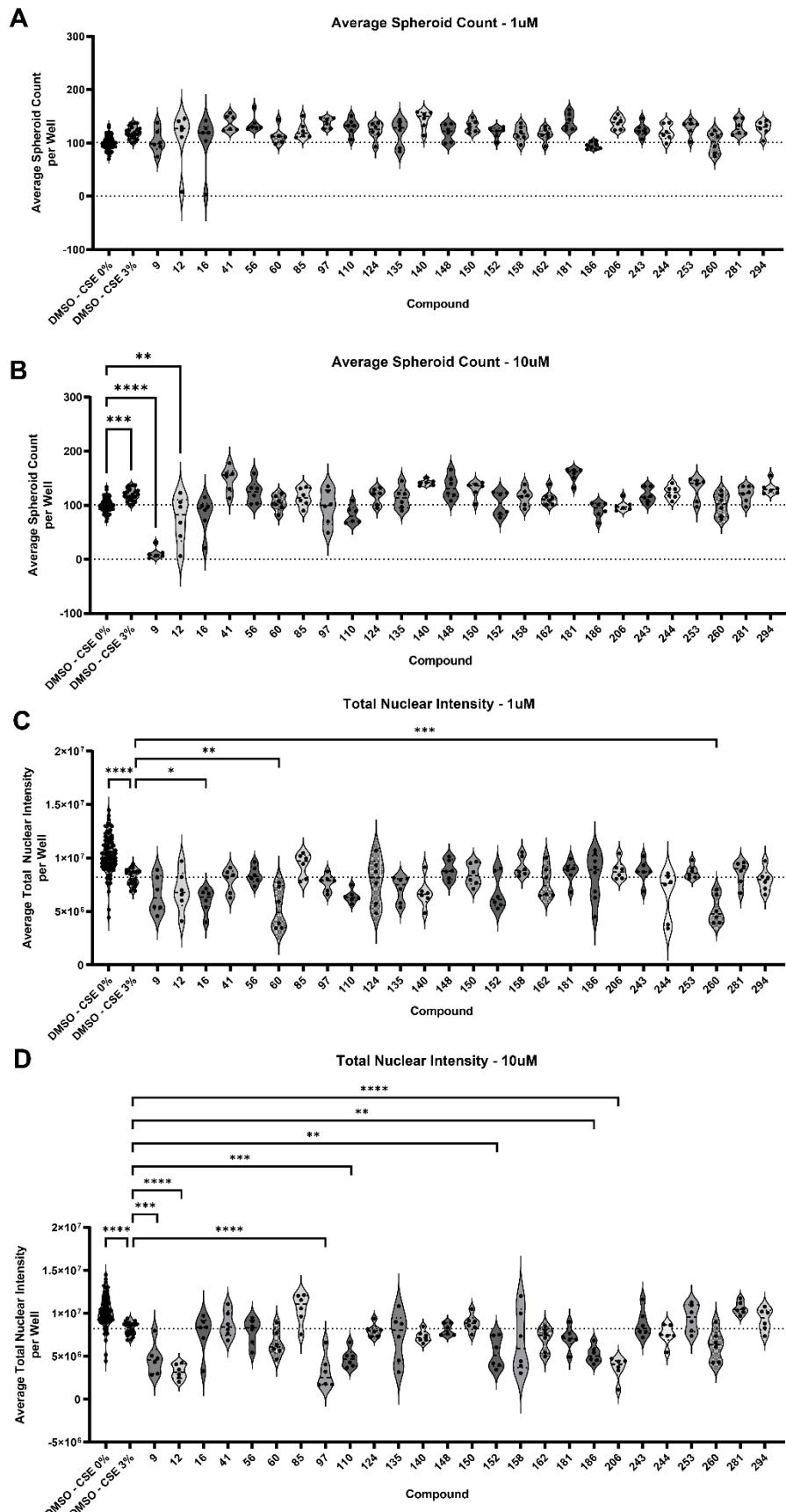

HBECs alone

HBECs + 3T3 co-culture


B

730

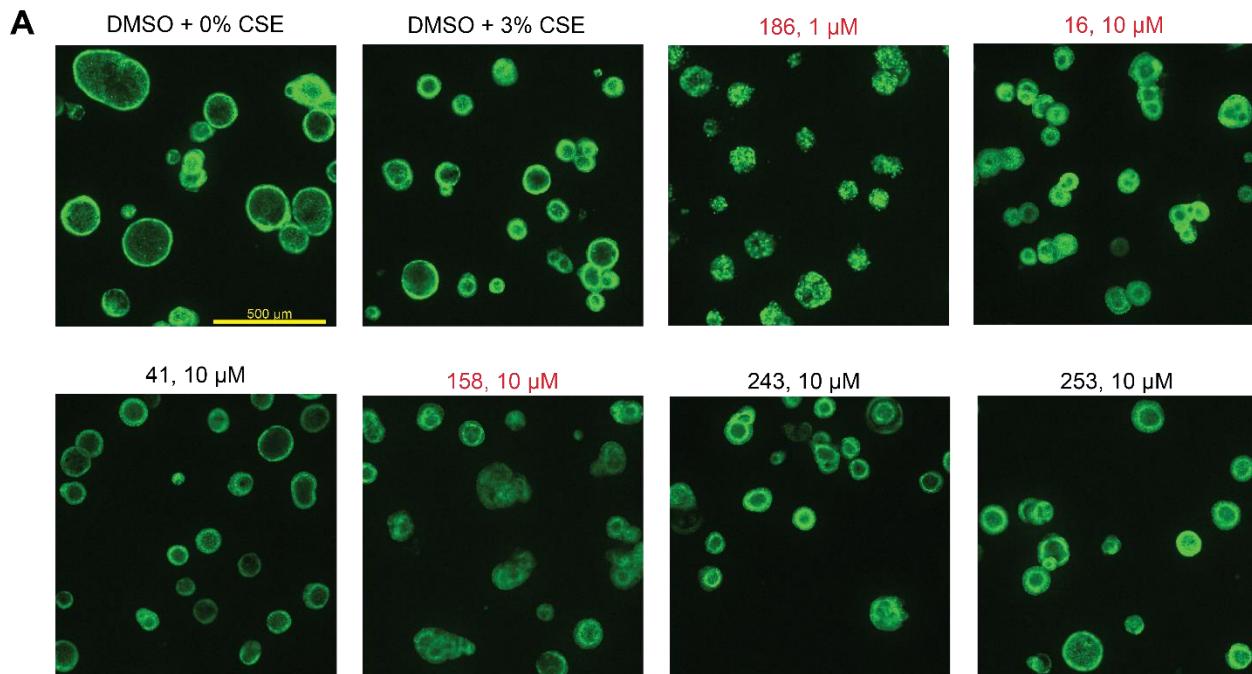
731 **Supplemental Figure 1: Bronchosphere differentiation. A)** Bronchospheres 2 weeks after
732 initial seeding, with and without 3T3 feeder layer. **B)** After two weeks, bronchospheres stain
733 positive for MUC5B and α -acetylated tubulin, indicating that they have differentiated to contain
734 secretory and ciliated cell subtypes, as previously shown(18,24).


735

736

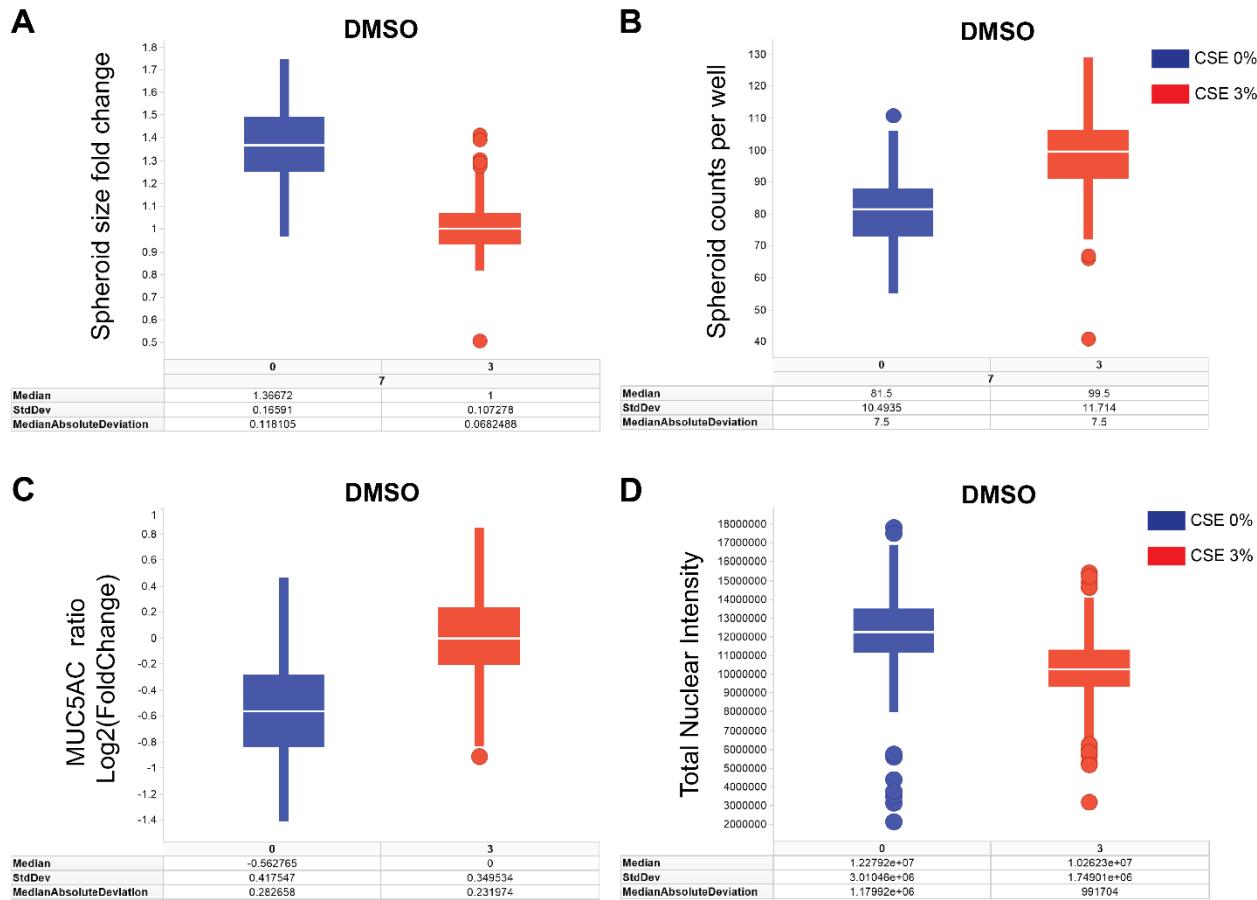
737 **Supplemental Figure 2: PC effects after DESeq2 only normalization vs mixed model. A)**
738 Scatter plots visualizing PC effects after DESeq2 normalization only. **B)** Bar plot describing the
739 % of variance explained by each PC after DESeq2 normalization only. The major PCs capture
740 donor specific effects, meaning that the most variance in the data is not reflective of CSE
741 treatment effect. **C)** Scatter plots visualizing PC effects after removing the donor, age, and
742 alcohol status using mixed model. The major PCs capture CSE treatment effect. **D)** Bar plot
743 describing the % of variance explained by each PC after covariate adjustment using mixed
744 model.

745


747 **Supplemental Figure 3: Utilizing reduction in spheroid counts and/or total nuclear**
748 **intensity to determine toxic effects of compounds.** Compounds that were identified in the
749 primary screen as modulators of both phenotypes were tested at 1 μ M and 10 μ M. The number
750 of spheroids per well (spheroid counts) was measured from the spheroid size/swell readout with
751 TMRM live dye staining, while the total nuclear intensity per well (total nuclear intensity) was
752 measured from the MUC5AC ratio readout with Hoechst staining after fixation. Spheroid counts
753 per well were calculated for compound treatment at **A)** 1 μ M and **B)** 10 μ M concentrations. Total
754 nuclear intensity per well was calculated for compound treatment at **C)** 1 μ M and **D)** 10 μ M
755 concentrations. Compounds that were found to significantly decrease counts or nuclear intensity
756 were considered toxic and filtered out of final hit selection. They are indicated appropriately in
757 Figure 4. All individual data points represent biological replicates. All plots were analyzed by
758 ordinary one-way ANOVA with Dunnett's multiple comparisons test. *p<0.05; **p<0.01,
759 **p<0.01, ***p<0.001, ****p<0.0001.

760

762 **Supplemental Figure 4: Spheroid size changes due to primary mucus reduction hits and**
763 **mucus changes due to primary swell hits.** Compounds that were identified in the primary
764 screen as modulators of *MUC5AC reduction* were tested at **A) 1**µM and **B) 10**µM
765 concentrations to see if they affect spheroid size. No compounds caused significant shrinkage
766 that were not already identified through the toxicity readouts in Supplemental Figure 3.
767 Compounds that were identified in the primary screen as modulators of *spheroid size/swell* were
768 tested at **C) 1**µM and **D) 10**µM concentrations to see if they affect MUC5AC ratio. Compound
769 186 (1µM) is the only compound that was a primary hit in both swell and MUC5AC ratio and is
770 plotted in both readouts in both Figure 4 and Supplemental Figure 4 and is identified as a hit
771 compound in Figure 4C. Compounds 56 (1µM), 85 (10µM), and 294 (1 and 10µM) significantly
772 increased MUC5AC ratio compared to DMSO + CSE 3% control and were therefore filtered out
773 of swell hit selection. These compounds are appropriately labeled in Figure 4. Hits (colored
774 green) identified in **A)-D)** were not selected as final hits since they did not produce the desired
775 effect in the primary screen (Figure 3). All individual data points represent biological replicates.
776 All plots were analyzed by ordinary one-way ANOVA with Dunnett's multiple comparisons test.
777 *p<0.05; **p<0.01, **p<0.01, ***p<0.001, ****p<0.0001.


778

779

780 **Supplemental Figure 5: Refinement of mucus reduction hits via visual confirmation of**
781 **live bronchosphere images. A)** TMRM live dye-stained images of bronchospheres treated
782 with hit compounds and concentrations. The images reveal that Compound 186 (1 μ M), 16
783 (10 μ M), and 158 (10 μ M) cause phenotypic changes to the bronchospheres that indicate an
784 unhealthy state compared to DMSO + 3% CSE control, such as rough spheroid boundaries or
785 loss of a clear lumen (indicated in red). These compounds have thus been filtered out of the
786 final hit list.

787

788

789 **Supplemental Figure 6: Median absolute deviation values of DMSO-treated**
790 **bronchospheres (CSE 0 and 3%) used for hit-picking cutoffs.** DMSO-treated spheroids at
791 both 0 and 3% CSE were plotted after plate normalization (see details in “*Primary compound*
792 *screen and hit analysis*” section of Methods) to obtain the median absolute deviation (MAD) for
793 **A)** the spheroid size fold change and **B)** the spheroid counts per well from the spheroid size
794 assay, and **C)** the MUC5AC ratio Log2(Fold Change) and **D)** the total nuclear intensity from the
795 MUC5AC reduction assay.