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Logging alters tropical forest structure, while conversion to agriculture reduces

biodiversity and functioning
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Abstract: The impacts of degradation and deforestation on tropical forests are poorly
understood, particularly at landscape scales. We present an extensive ecosystem analysis of the
impacts of logging and conversion of tropical forest to oil palm from a large-scale study in
Borneo, synthesizing responses from 82 variables categorized into four ecological levels

spanning a broad suite of ecosystem properties: 1) structure and environment, 2) species traits, 3)
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biodiversity, and 4) ecosystem functions. Responses were highly heterogeneous and often
complex and non-linear. Variables that were directly impacted by the physical process of timber
extraction, such as soil structure, were sensitive to even moderate amounts of logging, whereas
measures of biodiversity and ecosystem functioning were generally resilient to logging but more

affected by conversion to oil palm plantation.

One-Sentence Summary : Logging tropical forest mostly impacts structure while biodiversity

and functions are more vulnerable to habitat conversion.

Main Text:

Tropical forests support biodiversity and provide ecosystem services such as stocks and
flows of carbon, nutrients and water, but their structure and functioning are threatened by
degradation and conversion to other land uses (7, 2). A major cause of tropical forest degradation
is selective logging for timber which can increase vulnerability to subsequent deforestation (3—
5). In Southeast Asia, many forests have experienced multiple rounds of selective logging, with
some then converted to oil palm plantations (6, 7), resulting in large-scale forest losses (3.25
Mha in Malaysia and Indonesia between 2000 and 2011 (&)) and increased carbon emissions
(4,051 MtCOs in the same countries over the same period (8)). Indeed, ~45% of Southeast Asian
oil palm plantations have been established through direct clearing of forest (9).

Knowledge of the full environmental impacts of logging and forest conversion in the
tropics to other land uses such as oil palm (the forest disturbance gradient) is limited (/0-12).
The logistical challenges of studying highly biodiverse tropical forest ecosystems means that

there are few comprehensive assessments of the impacts on biodiversity and the multiple
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ecosystem functions and services that tropical forests provide across the full disturbance gradient
at the landscape scale (/3). Here, we undertake a comprehensive assessment of how biodiversity,
structure, and functioning of tropical forest ecosystems are altered across a disturbance gradient
90 of increasing intensity of selective logging and conversion to oil palm plantation, and examine
the points along that gradient where changes from old-growth forest conditions are most
apparent.
We synthesize data from 82 metrics of ecosystem properties that collectively provide a
comprehensive assessment of environmental and ecological conditions, capturing aspects of the
95 forest structure and environment, as well as measures of biodiversity and ecosystem functioning.
Data were collected as part of a coordinated large-scale study in the Stability of Altered Forest
Ecosystems (SAFE) Project (/4) and associated sites of the Human Modified Tropical Forests
(HMTF) programme in the Malaysian state of Sabah, Borneo (Fig. 1a), where patterns of
deforestation are representative of other regions in Southeast Asia (/5). Study sites were located
100 in areas of intact and disturbed lowland dipterocarp rainforest and oil palm plantations.
We use a replicated experimental design and standardized analyses (sample sizes ranging from
27 to 373,968 across the 82 variables; Table S1) to quantify the impacts of selective logging and
land-use change across different intensities of disturbance from: (1) old-growth forest (OGF),
through (2) moderately logged (MLF) and (3) highly logged (HLF) forest, to (4) oil palm
105  plantation (OP). To allow us to synthesize the effects of habitat change on the whole ecosystem,
we focus on understanding the comprehensive impacts of changes, rather than assessing specific
drivers affecting each metric. Logged forest sites had an average of ca. 113 m® ha™' of timber
harvested during 1978, with a second cycle of harvesting in the late 1990s to early 2000s,

removing a further ~66 m* ha™ in three rounds (HLF sites) or ~37 m® ha in two rounds (MLF)

10
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110  (16). Forests along the disturbance intensity gradient were characterized by a decrease in basal
area of mature trees, a more open canopy, fewer large trees, and a higher proportion of pioneer
tree species (/7). Measurements with airborne LiDAR showed a progressive reduction of canopy
height and simplification of canopy structure from OGF to MLF and HLF (Fig. 1), culminating

in a homogeneous, single low layer in oil palm (/8).

115

Maliau Basin Danum Valley

(w) ybray Adouen

Old-growth forest Moderately logged forest ~ Highly logged forest Oil Palm
(OGF) (MLF) (HLF) (OP)

Fig. 1. Study sites and disturbance categories. (A) Location of the study sites in Sabah, Malaysian Borneo. (B)
Canopy height profiles of the study systems for representative 1 ha plots (from left to right): old-growth forest
(OGF), moderately logged forest (MLF), highly logged forest (HLF), and oil palm plantation (OP). Backgrounds
show the maximum canopy height for each pixel, and inset graphs show the plant area density (mean + 95% C.1.) of

120  the vertical forest structure estimated through LiDAR.

CATEGORIZING VARIABLES INTO ECOLOGICAL LEVELS
The 82 response variables (Tables S1-5) detail ecosystem properties sampled in OGF and

one or more of the disturbed habitat categories. Each property was categorized into one of four
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125  ecological levels, building in complexity and distance from the direct impacts of logging (/7).
Although the assignment of responses to levels is partly subjective, they provide a useful
framework for summarizing the ecosystem effects of logging and conversion, as each higher
level generally captures features of properties at lower levels. Level 1 (Structure and
Environment) comprised variables related to soil properties, microclimate, and forest structure

130 that are directly affected by the physical processes of timber extraction and oil palm cultivation.
Level 2 (Tree traits) constituted the traits of the remaining tree community, reflecting the change
in plant species composition caused by selective logging, as well as subsequent colonization and
growth of early successional species. Tree traits were grouped according to whether they
contributed to structural stability and defense (structural traits), leaf photosynthetic potential and

135 leaf longevity (photosynthesis traits), or foliar concentrations of key mineral nutrients (nutrient
traits). Level 3 (Biodiversity) quantified below- and above-ground multi-trophic and functional
biodiversity, from assemblages of soil microorganisms to consumers in higher trophic levels, that
strongly depend on the abiotic and structural conditions described in level 1, and the tree
community diversity and composition in level 2. Level 4 (Functioning) corresponded to

140  ecosystem functions, such as decomposition, which, within a given environment, are largely
defined by the composition of communities described in levels 2 and 3.

To allow comparison of multiple responses on a common scale, we transformed the raw
data if necessary to improve normality and then standardized all variables as z-scores (mean-
centering each variable by subtracting its mean value and dividing by its standard deviation)

145  before analyzing them using linear mixed-effects models to assess effects across the disturbance
gradient (the four disturbance categories: OGF, MLF, HLF and OP), while taking account of the

spatial hierarchical structure of our datasets (Fig. S1). To provide a comprehensive assessment,
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where possible, datasets were analyzed across multiple facets and spatial scales (Table S1). For
example, we calculated three measures of the effective number of species for some biodiversity
150 datasets (/9): effort-standardized species richness (Hill number ¢ = 0), Shannon diversity (¢ = 1),
and Simpson’s diversity (¢ = 2). Similarly, we analyzed the species richness of some groups at
the finest spatial grain at which those data were collected, but also aggregated data to coarser
grain sizes. Although positive or negative responses for some variables have clear desirable or
undesirable consequences, for others such as B-diversity, there is no obvious value judgment. We
155  therefore focus on examining whether each variable changed from values recorded within OGF,

and where along the gradient change occurred.

STRONG BUT HETEROGENEOUS RESPONSES TO DISTURBANCE ACROSS
ECOLOGICAL LEVELS

160 Overall, 60 of the 82 response variables showed statistically significant differences across
the disturbance intensity gradient (Likelihood Ratio Tests (LRT) against a null model with no
disturbance factor; Table S6). This was far greater than the expected level of false positives (~4
out of 82 with a significance level of p < 0.05) in the absence of any effect of disturbance (Fig. 2,
solid lines).This result was consistent when controlling for dataset identity through

165 randomization (84.27 % of variables significant) (/7). The proportion of significant results and
the degree of variation explained by disturbance intensity (the mean marginal R* from linear
mixed-effects models for group; Table S6), varied with the ecological level of the response
variable. Generally, the responses that showed the strongest effect of disturbance were those
most directly affected by logging (18) — level 1, environment and structure (mean marginal R* +

170  s.e. for datasets with OP included = 0.210 £ 0.034, 9 out of 12 variables LRT p < 0.05; OP
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excluded = 0.228 + 0.068, all 4 variables LRT p <0.05) and level 2, aggregated tree traits (first
axis values from a PCA; OP excluded = 0.253 £ 0.029, all 3 variables LRT p < 0.05).
Biodiversity measures (level 3) showed stronger responses to disturbance intensity in variables
where oil palm was sampled than those measured in forest habitats only (OP included = 0.232 +

175 0.023, 11 out of 13 variables LRT p < 0.05; OP excluded =0.113 + 0.021, 11 out of 12 variables
LRT p <0.05). Ecosystem functioning variables (level 4) showed weaker responses to
disturbance intensity overall, with little change across the gradient for some variables (OP
included = 0.081 +0.021, 2 out of 4 variables LRT p < 0.05; OP excluded = 0.087 = 0.023, 3 out
of 3 variables LRT p <0.05) (20).

180 There was high variability in the observed patterns of responses to the disturbance
gradient (Fig. 2). While some variables showed simple, monotonic responses (e.g., estimates of
biomass carbon stocks decreased with disturbance, while frequency of photosynthetic traits
associated with earlier successional species increased), other variables responded in a more
complex manner (e.g., stem respiration increased in MLF but decreased to levels lower than in

185  OGF in OP). Some patterns were also scale-dependent. For example, bat species richness
decreased linearly across the disturbance intensity gradient at fine scales, but was highest in
MLF at coarse scales, perhaps driven by an increase in community turnover and influxes of
disturbance-adapted species in logged forest (/6). Overall, different impacts of land-use change
were heterogeneous, often non-linear and frequently not strongly correlated. Therefore, the

190 impacts of logging and conversion defy simple interpretations, most likely due to a mixture of

complex interactions, feedbacks and system redundancy.


https://doi.org/10.1101/2022.12.15.520573
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.15.520573; this version posted October 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4
5= 5 < » ®Bacteria .
2B§ 2%a sEe 588 85
33 LT <ET \/ S8E NG P T (=)
2 58 o08= 025 U).gg RJ & =
= ox az € o Protists ) ) ® Soil e Stem
. _ o *Ectomycorrhiza-  «Fungi
axc O z =8 A o
=y © ©0 COc & =2 e g o - .~ _ ==
‘“g ‘TO ‘TO (7} :,_‘:) 4 ] Z - - ~e-
o =g :
= eArbuscular mycorrhiza
] = T> =
o > S [ex
gg \\\ 2] o Agat -8;‘:’ P £ P e ‘% ‘\‘\‘
2":5 _é © / Ay 8 8 rs ~e &g - 2
= o "o —
= = > &
=d o B % 9 e 5
o e -- [EASSE :;_._.__/ A Soue) 388 M'N(A) Qg .A?und' gg
b P8 +--- © Egs— ~- o P(area) Egs- g eP(mass)| 2 e Rich. S
- 5
g ] = = =
4 2 o e B o Total Mg e ke
d 53 £ Eg 322 MOTOHIK =5 @9
N ?o + Nay-} oE 2 82 /‘\o 83
2 E S 3 ¢32 o Total Ca —® 28
i o — o
o3 < [Ea. Y OGF MLF HLF OP o k] 2% o _
4 =€ < BRI B 1 S5T5 59 B e
-] <o o Pl o [aFg= 55
S n H & D)
. = 2> ) T T T T
x5, '
b =2 §§ & __,oehea :%g ’\\ E g’%@ s — OGF MLF HLF OP
=5 FE 1= oMass S o [ )
£S] [} = Q= = = =
(%] an T eGg=0 e g=10eq=2
5 o® So2 5
2 = oMass 528 ]
= o= eArea FTLYS T -s .C.e"l.ﬂ' -c‘%
3 ‘\v/’—. Z= oMass 38§ F= < < § eLignin @9
[ os & »Hemicel =
T T T T
[ °C N _eCN OGF MLF HLF OP ;
BE == S| & ---- oDrywgt na
2  elnorganicP C:P %
T T T T e
OGF MLF HLF OP -5 eTough. ‘_‘%‘%
§g _ | eThick. T29 ’\\
= «Drymat. =k
2T =
§§ ePhenol w528 :Z=?
S8 /%, #Tannin m%a 9 oo=2
° T2 ° O
T T T T >
OGF MLF HLF OP % eNested,
82 e Turn.
° o Total
2l

OGF MLF HLF OP
Fig. 2. Changes in different categories of the measured response variables across the disturbance gradient
when old-growth forest (OGF) is moderately logged (MLF), highly logged (HLF) and converted to oil palm
195  plantation (OP). Points show z-score standardized means (+ 95% C.1.). Sample sizes ranged from 27 to 373,968
depending on the dataset. Line type indicates whether a model with disturbance was significantly different from a
null model with no disturbance (solid lines = significant, p < 0.05; dashed lines = non-significant). Tree traits (level

2) were analyzed individually (Fig. S3) as well as in combination via the first axis of a PCA (red backgrounds).

200 RESPONSES ALONG THE DISTURBANCE GRADIENT
To investigate the relative robustness of the different variables to disturbance intensity,

we used sequential statistical contrasts to determine the stage along the disturbance gradient at

20
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which each variable was most affected: the initial logging of old-growth forest, further rounds of
logging, or conversion to oil palm. The variables showed a wide range of responses, but with

205 some ecological levels responding in broadly similar ways. Structural and environmental
components of the forest (level 1) were generally more sensitive to a moderate degree of logging
(Figs. 3, S2). This was especially the case for variables directly altered by the logging process
itself, such as soil bulk density that was compacted by machinery (27), and above-ground carbon
stock that was reduced by timber removal (22—24). This indicates that impacts on variables at

210 level 1 are likely due to the direct effects of the timber removal and the conversion process, even
several decades after they have taken place. Traits of the mature tree community (level 2) exhibit
major changes consistent with the effects of selective logging (Fig. S3) (8, 25), which actively
targets tree species with the most commercially desirable characteristics. Removing individuals
of these species effectively reduces the incidence of traits such as structural features that aid

215 longevity (25), while increasing the incidence of traits such as high photosynthetic rates and
rapid growth (22), which are associated with species of low commercial value and early
successional species that colonize open areas following logging.

In contrast, biodiversity components (level 3) were mostly altered by the conversion of

logged forest to oil palm (Figs. 3, S4) (6, 10, 26). This was particularly true of taxonomic groups

220  at higher trophic levels, such as birds (/0, 23), where increased mobility and behavioral plasticity
may buffer their sensitivity to change until conditions become drastically altered (27). In the
highly disturbed conditions of oil palm plantations, the major changes in plant food resources,
reduced structural complexity, and shift to hotter, drier, and more variable microclimatic
conditions, likely resulted in the reduced abundance and diversity of many taxa, and a

225 community composed of disturbance-tolerant species (28). The diversity of ectothermic groups,
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such as dung beetles, which can be particularly responsive to changes in microclimate (29),
showed a slightly increased sensitivity to the initial impacts of logging relative to endothermic
taxa, such as birds and bats. The richness of soil microorganisms showed the greatest sensitivity
to logging, although there were both negative (ectomycorrhizal fungi (30, 37)) and positive

230 (bacteria (32)) responses to disturbance. The impact on ectomycorrhizal fungi is likely to be
particularly important for conservation and restoration perspectives, given their role in
supporting canopy-dominant dipterocarps (33).

Finally, ecosystem functions (level 4; Figs. 3, S4) showed the weakest and most variable

patterns (marginal R* values shown by high transparency of bars in Fig. 3, Table S6). For

235 example, rates of dung removal were maintained in oil palm plantations, even though dung
beetle richness and abundance decreased significantly with disturbance (34), with a small
number of disturbance-tolerant species increasing their contribution to dung removal in disturbed
habitats (35). Such functional redundancy and compensation may confer greater resilience (here,
the ability to both resist and recover from change) of ecosystem functions to disturbance

240  (“insurance hypothesis™ (36) or “portfolio effect” (37)). For example, previous research at these
study sites found that, while certain taxonomic groups that dominated litter decomposition and
seed and invertebrate predation in old-growth forests declined along the logging gradient,
different taxonomic groups compensated by increasing their contribution, and so maintained
those ecosystem functions at similar levels (27). The relative stability of ecosystem functions

245  may also be related to the large spatial extent and connectivity of the habitat blocks investigated,
which can enhance the relationship between biodiversity and ecosystem functions and services

(38).
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Fig. 3. Impacts of different degrees and types of disturbance when old-growth forest (OGF) is moderately
logged (MLF), highly logged (HLF) and converted to oil palm plantation (OP). The overall effect of disturbance
was partitioned into a) three (for datasets that did sample in oil palm), or b) two (for datasets that did not sample in
oil palm) or single degree of freedom contrasts that compare: 1) the effect of logging old-growth forest (old-growth
255  vs logged forest: OGF vs MLF-HLF; green bars); 2) further logging of moderately logged forest (MLF vs HLF;
orange bars); and 3) converting forest to oil palm plantation (oil palm vs the combined forest types: OP vs OG-MLF-
HLF; blue bars). Sample sizes ranged from 27 to 373,968 depending on the dataset. The transparency for each
variable is inversely related to its explanatory power (the marginal R* from the linear mixed-effects model).
Response variables are categorized into ecological levels: those related to the forest structure and environment (level
260 1; blue text); those related to biodiversity (level 3; dark red text); and those related to ecosystem functioning (level

4; dark green text), and are ordered by the size of the effect of logging OGF (variables at the bottom are mostly

affected when OGF is logged, whereas those at the top are mostly affected when forest is converted to oil palm).
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IMPLICATIONS FOR TROPICAL FOREST CONSERVATION
Our findings increase understanding of the ecosystem-wide impacts of habitat change in

265  the tropics, with implications for land-use management and restoration. Although our large-scale
study shares the standard limitations of the space-for-time approach to observational data, by
adopting a unified framework that considers all measured variables, we reveal that selective
logging and forest conversion to oil palm plantation have different environmental impacts, and
that these vary depending on which aspects of the ecosystem are considered. Even a single type

270 of land use can have a range of impacts when the environment is assessed comprehensively to
encompass its abiotic and biotic structure, biological diversity, and the multiple ecosystem
functions and services that it provides. This emphasizes the importance of considering a broad
range of ecological properties when making land-management, conservation, and research
decisions.

275 Our finding that factors associated with forest structure and environment (level 1) are
highly sensitive to disturbance shows that even low intensity logging will result in changes in
these characteristics, and highlights the importance of maintaining areas of intact, undisturbed
forest. The large negative effects on biodiversity when forest is converted to oil palm are
consistent with findings from other studies in the region (23, 26), and confirm the value of

280 disturbed forest for the maintenance of high overall biodiversity at the landscape scale (39).
Therefore, while preserving areas of remaining old growth forests is important for conserving
unique aspects of their biodiversity and functioning, protecting logged forest can also contribute
to maintaining biodiversity and ecosystem functioning relative to landscapes with higher levels
of conversion to agriculture. This validates an increasing focus within tropical agricultural

285 systems of maintaining forest in sensitive areas within plantations, such as steep slopes and river
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margins (e.g., as highlighted by the Roundtable on Sustainable Palm Oil (RSPO) (40)), where it

can support both biodiversity (4/) and ecosystem processes (42). The reduction in some taxa,

such as birds and ectomycorrhizal fungi, and some ecosystem functions, such as mycelial

production, within oil palm also has implications for crop management, and could affect nutrient
290 cycling and predator control (20).

Understanding at which points on the deforestation gradient biodiversity and associated
ecosystem functions are most affected is important for identifying priority habitats for
conservation and restoration (39, 43, 44), and can aid decision-making in these complex, multi-
use landscapes (45, 46). However, it is important to consider multiple facets of these tropical

295 environments in order to avoid the risk of unintended consequences possible from more narrow
assessments. This study provides an initial comprehensive synthesis and overview of the
responses of a tropical forest ecosystem to degradation and deforestation. However, despite the
breadth of ecosystem properties investigated, this study represents only a single area and
ecosystem type: lowland tropical forest. Future research should establish whether these responses

300 are consistent across other tropical landscapes and in relation to the wider range of land-use

changes seen across the global tropics.
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350  https://zenodo.org/records/13161799. The DOIs for archived versions of the raw datafor all

datasets are listed in the methods and Tables S2-5.

Materials and Methods

355 Location and study design
All datasets come from lowland tropical forest or oil palm plantation in Sabah, Malaysian
Borneo (Fig. 1). Sampling within old-growth forest occurred in Maliau Basin and Danum Valley
Conservation Areas. These were compared with nearby areas of logged forest, including those
that are part of the Stability of Altered Forest Ecosystems (SAFE) Project (/4) — a long-term,

360 large-scale study of forest degradation and fragmentation. The SAFE Project area has undergone
multiple rounds of selective and clearance logging in preparation for oil palm planting. Sampling
in oil palm occurred within mature plantations adjacent to the SAFE Project.

Due to the large breadth of studies examined, datasets utilized multiple sampling sites

and structures, including points, transects and remotely-sensed data (Table S1). Detailed

365 descriptions of each dataset’s sampling design and data characteristics, as well as all analytical
steps and outputs, can be found within the RMarkdown document for each analysis at
https://zenodo.org/records/13161799 (47), and summarised in Tables S2-6. The majority of
datasets (77 %) were collected within a network of 1 ha forest plots used for investigating carbon
dynamics (22), hereafter ‘carbon plots’. We assigned carbon plots to three categories following

370  Riutta ef al. 2018 (22) (see Table 1 in that publication) along a disturbance gradient: old-growth
forest (OGF; n = 4), moderately logged forest (MLF; n = 2) and highly logged forest (HLF; n =

3), as well as a smaller plot of 60 x 60 m in oil palm (OP; n = 1). Individual studies used
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different combinations of the available carbon plots, outlined under the column ‘No. largest
groups’ in Table S1. Studies using other sampling schemes were placed into the appropriate
375 categories to enable comparison, as outlined in each RMarkdown document.
OGF plots had a larger basal area of mature trees (basal area of trees > 10 cm (m? ha):
OGF =30.6 —41.6; MLF =19.3 — 19.6; HLF = 6.81 — 13.9), a more closed canopy (mean
canopy gap fraction (%): OGF =7.04 — 11.3; MLF =11.2 - 12.8; HLF = 12.2 — 15.0), more
large trees (number of large trees (number of trees per ha with DBH > 50 cm): OGF = 26 — 56;
380  MLF =10-11; HLF = 0 — 6) and the lowest proportion of pioneer trees (% basal area composed
of pioneer trees: OGF =0.1 — 1.7; MLF = 6.9 — 21.5; HLF = 28.1 — 57.2) compared to other
habitats (all values taken from Table 1 in (22)).
The SAFE Project site was logged in 1978, removing around 113 m® ha™'. Areas of
heavily logged forest were logged again in the late 1990s to the early 2000s in three rounds
385 (salvage logging with a view to conversion), resulting in a cumulative extraction rate of 66 m’
ha™ (16). Areas of moderately logged forest were logged twice at approximately the same times,
but with around 37 m® ha™' removed during the second rotation (/6). Finally, the area was further
salvage-logged between 2013 and 2016, with the logging front gradually moving across from the
south to the north of the SAFE area, removing any remaining trees, but with small forest patches
390 on slopes being maintained (48). Oil palm plantations were established in 2000 and 2006.
For analyses, each study was decomposed into appropriate spatial hierarchies depending
on its sampling design. For example, studies within the 1 ha carbon plots were divided into 25
subplots of 20 x 20 m (400 m?), and these subplots were spatially clustered into groups of 5
quadrats of 2000 m* (Fig. S1). Other studies used the SAFE Project sampling design, where sites

395  are situated at the apices of a fractal series of triangles (/4). Each triangle, of area 9,000 m?,
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consists of 27 sampling points. Three triangles are grouped together into blocks (150,000 m?).

Where a study used neither carbon plots nor SAFE Project fractals, points were grouped spatially
as appropriate. Details for each dataset, including the number and grain size of spatial groups, are
outlined in Table S1, and more detailed descriptions of the processing carried out on each dataset

400 can be found in the accompanying RMarkdown document.

Datasets

A total of 82 datasets were compiled (49—62). In many cases, individual studies were analysed at

multiple facets and levels. For example, a study sampling bats was analysed as eight separate
405 datasets examining multiple facets of diversity at multiple scales. Datasets were categorized into

broad hierarchies representing ecological levels, where each higher strata can be considered an

emergent feature of the lower levels. Tables S3-6 give brief descriptions of data collection and

preparation for each dataset with RMarkdown documents outlining the process in detail.

410 STRUCTURE & ENVIRONMENT (level 1) — the abiotic environment and forest structure,
such as soil properties, microclimate and above-ground carbon. These are variables that are
directly affected by logging through direct manipulation of the forest structure with tree removal,

or soil compaction by machinery used to extract timber (217).

415 TREE TRAITS (level 2) — traits related to life-history strategies of trees present within plots.
Changes to the distribution of these traits is a direct consequence of the species selected for

removal, as well as the subsequent growth and recruitment of early-successional species in open

60
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areas generated after mature trees were extracted. Traits have been categorized into three groups
(25): a) structural traits related to investment in stability and defence; b) photosynthesis traits

420 related to leaf photosynthetic potential and leaf longevity; and ¢) nutrient traits related to
concentrations of key nutrients. Oil palm monocultures were not investigated for tree traits.
Descriptions of the individual traits can be found in Table S3. Traits within each of the three
groups were presented individually and also summarised via the first axis of a PCA ( Fig. 2; red
backgrounds in and Fig. S3). All tree traits were collected as part of a single campaign (25) using

425 the same locations and tree individuals over a single sampling period.

BIODIVERSITY (level 3) — below- and above-ground biodiversity at multiple trophic levels
(bacteria, protists and fungi, trees, beetles, bats and birds), as well as functional diversity
(spectral diversity). Species are dependent upon forest structure, microclimate and the tree

430  species remaining or establishing post-logging. Where possible we explored multiple facets of
diversity (a-diversity, B-diversity and abundance) at multiple scales (Table S1). For example, bat
data were analysed as abundance and species richness at the finest sampling grain sizes, but we
also aggregated data to coarser spatial grain sizes. Where possible, we analysed a-diversity as
three components using effort-standardised Hill numbers (79), as species richness (¢ = 0),

435  Shannon diversity (¢ = 1) and Simpson’s diversity (¢ = 2), which explores changes to the
structure of each community by either excluding species relative abundances (when g = 0)
through to considering species in proportion to their relative abundance (when ¢ = 1) and finally
estimating the effective number of dominant species in the community at a given site (when g =
2). For tree richness, where we could identify all individuals (= 10 cm DBH) within each

440 subplot, we did not standardise by effort. We also decomposed total presence-based Sorensen’s
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B-diversity into turnover and nestedness components (63, 64), in order to examine whether
differences between communities over space are due to species replacement from one site to
another, or community subsetting due to richness differences respectively.
FUNCTIONING (level 4) — ecosystem functions that are driven by the abundance and

445  composition of the relevant communities. Functions can be relatively resilient (which here
incorporates both the degree of resistance to disturbance, as well as its rate of recovery) to forest
degradation as the loss of a dominant functional group can be replaced by another (27). We
focussed on lower-level functions related to productivity (soil and stem respiration; net primary

productivity) and nutrient cycling (leaf litter fall and decomposition; dung removal).

450

Statistical analyses
For reproducibility and transparency, all data exploration, manipulation and analytical
procedures were carried out with RMarkdown scripts, which are made available at

455  https://zenodo.org/records/13161799 (47). All data manipulation, analyses and visualisation were
carried out in R 4.0+ (65) using the packages betapart (66), cowplot (67), dismo (68), dplyr (69),
extrafont (70), ggplot2 (71), gridExtra (72), gtable (73), INEXT (19, 74), lattice (75), Ime4 (76),
magrittr (77), MuMlIn (78), optimx (79, 80), readr (81), rgeos (82), rmarkdown (83), sp (84, 85),
tidyr (86), terra (87), vegan (88). Specific versions of packages used for each dataset are

460 recorded at the end of each RMarkdown document. To allow for comparability between many
datasets with multiple data types, analyses were kept relatively simple, using only disturbance
category as a predictor variable and without other explanatory co-predictors. We therefore only

examine patterns along the disturbance gradient and do not explore the processes behind them.
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For detailed investigations examining the causes of these patterns, please see the individual
465 publications for each dataset outlined in Tables S3-5. Although we follow convention in
presenting estimates of statistical significance, we focus on effect sizes, confidence intervals and

explained variance (89).

Change along the disturbance gradient

470  We examined the change in values of each dataset along the disturbance gradient (included as a
categorical variable with up to four levels depending on the dataset: OGF, MLF, HLF and OP),
using linear mixed-effects models to account for the different hierarchical sampling schemes of
datasets, using the Ime4 package, v1.1 _27-31 (76). Hierarchical components were included as
nested random effects as appropriate for the study, as well as a separate date component if

475 required for time-series data with temporal replicates (Table S1: column ‘Temporal replicates’).
Only disturbance, as a non-ordered categorical explanatory variable, was included as a fixed
effect (with 3 or 4 levels: OGF, MLF, HLF, OP). The generic model (using the R language

implementation of the Wilkinson and Rogers syntax (90) was:

480 y~x+(1|z'/2%) + (1)r)

where: y is one of the 82 forest property response variables listed in Tables S2-5; x is a fixed

factor for disturbance; z' and z* are random factors denoting nested spatial sampling structures as

appropriate to the dataset, and ¢ is a variable for time (e.g date) if a data set has repeated samples
485  through time. Exact model formulations were defined by the sampling structures of each dataset,

and can be seen in the RMarkdown document outlining the analysis in each case.
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Linear mixed-effects models are intrinsically more conservative than other statistical
models due to the shrinkage of coefficients, and therefore reduce the chances of false positives
(91). Rather than examining individual datasets for significance, we focus on the overall number
490 of significant relationships identified in each ecological level in relation to the number of false

positives we would expect from chance, given a p-value of 0.05.

We first inspected the data and applied the most appropriate transformation if required. If
a transformation was explored, we also constructed a model with non-transformed data for
comparison. Both sets of data, transformed and non-transformed, were z-score standardised for
495 analysis. We controlled for differences in the variance between disturbance categories through
the addition of weights as the inverse of the variance, calculated separately for transformed and

non-transformed data if necessary.

We assessed model assumptions using standard graphical assessments including plots of
the fitted values against residuals (the Tukey-Anscombe plot) and square-root transformed
500 residuals (the scale location plot), plots of the residual variance within disturbance categories and
quantile-quantile plots. We selected the model using transformed data if it was a visual
improvement over the model with non-transformed data, otherwise the model using non-
transformed data was retained. We calculated 95% confidence intervals of the best model using
parametric bootstrapping with 500 permutations, or by using the Wald statistic, where
505 bootstrapped models failed to converge.
We determined the significance of the model for each dataset using ANOVA by
comparison to a null model incorporating the same random effects structure, but without
disturbance category as a fixed effect, refitting the models with log-likelihood (ML) rather than

restricted log-likelihood (REML). We calculated the percentage of variance explained by
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510  disturbance through marginal (R*y. ) and conditional (R?.nq) coefficients of determination using
the MuMIn package (78). The p-values, marginal R* and effects sizes of the selected models of
all variables are presented in Table S6.

As some datasets in levels 1 and 3 were analysed across multiple facets (for example,
bats were examined for a-diversity and B-diversity at multiple spatial scales), we also performed

515 a sensitivity analysis controlling for dataset identity. Response variables were grouped according
to Table S1 and then we randomly drew one variable from each group and calculated the number
of significant and non-significant variables. We repeated this 1000 times and calculated the mean
proportion of significant to non-significant variables. The proportions when controlling for
dataset were very similar compared to when using all response variables (level 1: 81.25 %

520 significant for all variables, 82.48 % significant when randomising; level 3: 88 % significant for

all variables, 81.75 % significant when randomising).

Contrasts between disturbance categories

We examined where the changes in our observed values occurred along the disturbance gradient

525  using model contrasts, which decomposes the explained variance into pairwise comparisons
between the four habitat types. The proportions of explained variance were visually compared
using R’n.r. as an indication of the total variance explained by disturbance alone (i.e. there may
be cases where a contrast may explain a high proportion of the total explained variance in the
best model, but as a whole explain only a small amount of the overall variance between

530 disturbance categories). The exact calculation of the contrasts depended upon whether the dataset
had samples within OP or the three forest habitats only. One dataset (litter decomposition) that

had only sampled OGF and MLF was excluded from this part of the analysis.
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For datasets that had sampled OP, we examined two contrasts sequentially. The first
examined the difference between OP and all forest habitats (OGF, MLF and HLF) by generating
535 anew categorical variable (‘contrastOP’). The second contrast examined the difference between
OGF against the disturbed forest habitats (MLF and HLF) using a second categorical variable
(‘contrastOGF’). The remainder is the effect of re-logging of selectively-logged forest (MLF vs
HLF). Contrasts were fitted with the two new categorical variables in order, followed by the
remaining disturbance variable, retaining the random effect structure (i.e. a fixed effects structure
540 of ~ contrastOP + contrastOGF + Disturbance). We then calculated the variance explained by
each contrast, relative to the total explained variance as the sums of squares for that contrast as a
proportion of the total sums of squares explained by all contrasts of the Analysis of Variance
table. This produced three variance components: 1) the effect of converting all forest types to oil
palm (OP-OGF, OP-MLF and OP-HLF); 2) the effect of logging old-growth forest to medium-
545  or highly-logged forest (OGF-MLF and OGF-HLF); and 3) the effect of converting medium- to

highly-logged forest (MLF-HLF).

For datasets that had not sampled OP, we eliminated the first contrast comparing OP to
all forest habitats (i.e. a fixed effects structure of ~ contrastOGF + Disturbance). These datasets
therefore only compared 1) the effect of logging old-growth forest to medium- or highly-logged

550 forest (OGF-MLF and OGF-HLF); and 2) the effect of converting medium- to highly-logged

forest (MLF-HLF).
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