

***In vitro* and *in vivo* infection models reveal connection between periplasmic protease Prc and alternative peptidoglycan synthase PBP3_{SAL} in *Salmonella enterica* serovar Typhimurium**

Kim Vestö¹, Rikki F. Frederiksen^{1,2}, Iina Snygg¹, Anna Fahlgren^{2,3}, Maria Fällman^{2,3} & Mikael Rhen^{1,2}

¹Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

8 ²Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for
9 Microbial Research (UCMR), Umeå University, Umeå, Sweden

³Department of Molecular Biology, Umeå University, Umeå, Sweden

Corresponding author: Mikael Rhen (Mikael.Rhen@ki.se)

13 Department of Microbiology, Tumor and Cell Biology, Biomedicum A5, Karolinska Institutet, Solnavägen 9,
14 17165 Solna

Abstract

18 A hallmark in salmonellosis is the ability of the bacteria to proliferate within host cells. Most
19 notably, *Salmonella* proliferates within professional phagocytes in a vacuolar compartment.
20 During proliferation *Salmonella* has to build new cell wall, but how this is regulated within the
21 intraphagosomal niche is not known. Here we show that genetically inactivating the
22 periplasmic protease Prc, involved in cleaving peptidoglycan-processing enzymes, results in
23 decreased fitness in macrophage-like RAW264.7 cells and in BALB/c mice, and in a decreased
24 tolerance to redox stress. All these *prc* mutant phenotypes were conditional depending on
25 *pbp3sal*, a recently defined parologue for *ftsI* coding for the essential penicillin binding protein
26 3. These phenotypic connections between Prc and PBP3_{SAL} adds to the phenotypes governed
27 by Prc, and possibly adds PBP3_{SAL} to the pool of target proteins involved in cell wall
28 homeostasis that are regulated by Prc.

29

30

31 **Introduction**

32 Many bacterial pathogens, such as the Gram-negative enteric bacterium *Salmonella enterica*,
33 include an intracellular growth phase as an essential part of the infection pathogenesis (1,2).
34 The pathogenesis of human typhoid fever is characterized by the systemic dissemination of
35 *Salmonella* into the liver, spleen, and bone marrow after first traversing the intestine (1).
36 Within the host the path of the bacteria likely includes at least two intracellular growth phases;
37 transcytosis of the bacteria through the intestinal epithelial cell layer (3,4) and replication in
38 phagocytes (5). As the causative agents of typhoid and paratyphoid fever, respectively *S. Typhi*
39 and *S. Paratyphi*, are strictly human adapted whereby studies on typhoid and paratyphoid
40 fever have relied on systematic murine salmonellosis models to provide detail to their
41 pathogenesis (6). Accompanying studies chiefly relying on *S. Typhimurium* have clearly
42 corroborated intracellular replication in phagocytes and a use of dendritic cells as transport
43 vehicles for systemic spread (5,7–9). Due to the ability of phagocytes to produce reactive
44 oxygen species, *Salmonella* possesses several modes of adaptation to oxidative stress as a
45 virulence trait to ensure intracellular replication (10,11).

46 When proliferating within macrophages *Salmonella* synthesizes new peptidoglycan, as
47 indicated by peptidoglycan synthesis genes being transcribed in the intramacrophagal niche
48 (12) and that intracellular salmonellae can be treated with peptidoglycan synthesis inhibitors
49 (13). An integral part of cell wall synthesis in proliferating bacteria is to create the septum, i.e.
50 the structure that will divide the bacterium into two daughter cells. In *Enterobacteriaceae*, the
51 peptidoglycan synthase responsible for the completion of the septum synthesis is the essential
52 penicillin-binding protein 3 (PBP3) (14,15). However, recently Castanheira *et. al.* (16)
53 discovered that *Salmonella* possesses a non-essential homologue to PBP3, named PBP3_{SAL}.
54 Furthermore, Castanheira *et. al.* (16) showed that an environment mimicking the intracellular
55 compartment *Salmonella* replicates in enhances production of PBP3_{SAL}. In contrast,
56 expression of the canonic PBP3 was not induced in PBP3_{SAL}-inducing *in vitro* medium or in
57 murine RAW264.7 cells (17). This suggests a possible redundancy in the function of PBP3 that
58 has evolved for *Salmonella* to be able to adapt its peptidoglycan synthesis while remaining
59 intracellular (16).

60

61 An additional enzyme connected to peptidoglycan turnover is the periplasmic protease Prc
62 (also known as Tsp), entwined in regulation of cell wall metabolism due to its ability to
63 proteolytically process the C-termini of PBP3 (18–20), and to degrade both murein
64 endopeptidase MepS (also known as Spr) (21) and lytic the transglycosylase MltG in
65 *Escherichia coli* (22). Yet, at least in *E. coli*, a non-enzymatic outer membrane lipoprotein, Nlpl,
66 acts as a cofactor for Prc (21). Additionally *prc* was identified in a screen to be part of a locus
67 involved in survival of *Salmonella* within primary peritoneal murine macrophages (23). This
68 led us to further detail the role of Prc in the fitness of *Salmonella* during infection, and for
69 adaptation to host innate defense effectors.

70

71 **Material and Methods**

72 Bacterial strains

73 The bacterial strains used in this study were *S. Typhimurium* line SR-11. The $\Delta pbp3sal$ -
74 mutation and cloning to create the pBAD30::*prc* plasmid were constructed as described
75 previously (24). All strains used in the study and the associated primers to create mutants are
76 in Table 1 and Table 2.

77 Cell culture

78 The murine macrophage cell line RAW264.7 (25) was purchased from American Type Culture
79 Collection ATCC TIB-71) and cultured at 37°C under 5% CO₂ in maintenance media consisting
80 of RPMI 1640 (Gibco, 21875-034) supplemented with 10% heat-inactivated FBS (Fetal Bovine
81 Serum, Gibco), 2mM L-glutamine (Gibco, 25030-024), 20mM HEPES (Sigma-Aldrich, H0887),
82 and 10 μ g/ml gentamicin (Sigma-Aldrich, G1272).

83 Gentamicin protection assay

84 For the gentamicin protection assay the RAW264.7 cells were seeded into 24 well plates
85 (Sarstedt) in maintenance medium the day before infection at approximately 10⁵ cells per
86 well.

87 For infection, *Salmonella* were first cultured overnight in 2ml LB (10mg/ml NaCl, Sigma-
88 Aldrich) in 15ml Falcon tubes at 220rpm and 37°C. Next day the cultures were diluted 1:100

89 in fresh 2ml of LB in 15ml Falcon tubes and cultured for 2 hours at 220rpm and 37°C. The
90 OD_{600nm} of the cultures was determined using Ultrospec 1000 (Pharmacia Biotech) and the
91 volume of culture needed to be added to 10ml of infection media to have a final concentration
92 of 10⁶ colony-forming units (CFUs)/ml was calculated using the formula ((0.484/OD_{600nm}) x 21)
93 where the output is the amount of μ l needed for the 10ml. For genetic complementation
94 experiments, LB was supplemented with 100 μ g/ml ampicillin (Sigma-Aldrich) and 0.02% L-
95 arabinose (Sigma-Aldrich) in each incubation.

96 Bacteria were added to 10ml of infection media (RPMI 1640 and 20mM HEPES) in three
97 duplicates at a MOI of 10 after removing the maintenance media. One set of duplicate wells
98 was used to enumerate the CFUs taken up by the RAW264.7 cells two hours post-infection.
99 The second set of duplicate wells was used to enumerate the CFUs for overnight growth of
100 the bacteria within the RAW264.7 cells 20 hours post-infection. A third set of duplicate wells
101 was identical to the second but with addition of 10ng/ml interferon- γ (IFN- γ ; Sigma-Aldrich)
102 to the media.

103 Following addition of bacteria to the wells, the plate was centrifuged at 500 rpm (48 relative
104 centrifugal force, Eppendorf Centrifuge 5810R) with slow start and stop for 10 minutes in
105 order to aid with internalization of the bacteria. This was followed by one hour incubation at
106 37°C under 5% CO₂. After the incubation the infection media was replaced by maintenance
107 media supplemented with 50 μ g/ml gentamicin, and incubated for 1 hour at 37°C under 5%
108 CO₂ in order to kill bacteria not internalized.

109 One set of duplicate wells were washed twice with 1ml PBS followed by incubation at room
110 temperature with 1ml of 0.5% sodium deoxycholate (Sigma-Aldrich) in PBS for 5 minutes in
111 order to lyse macrophages and release the bacteria. After 5 minutes the wells were vigorously
112 pipetted and 100 μ l of the content was transferred into Eppendorf tubes containing 900 μ l of
113 PBS in order to perform serial dilution and plating on LB agar plates to enumerate the CFUs of
114 internalized bacteria with the CFU values denoted "uptake". The second set of duplicate wells
115 the killing media was replaced by maintenance media. The third set was replaced with
116 maintenance media supplemented with 10 μ g/ml IFN- γ and incubated for 20 hours at 37°C
117 under 5% CO₂. Next day the second and third sets were treated as above to release the
118 bacteria and the CFUs enumerated from the LB agar plates denoted as "overnight growth".

119 The growth of intracellular bacteria was done by taking the ratio of CFU of overnight growth
120 divided by the uptake for each mutant or wild-type to get a value for the proliferation within
121 the macrophages. This value was then normalized to the wild-type value in order to reveal
122 possible fitness defects in intracellular proliferation in comparison to wild-type and denoted
123 "normalized fitness".

124

125 Drop-on-lawn tests. Sensitization phenotypes were conducted essentially as described by
126 Vestö *et al.* (24) however replacing vancomycin with either hydrogen peroxide or ascorbic acid
127 (both purchased from Sigma Aldrich).

128

129 Competition infection in mice

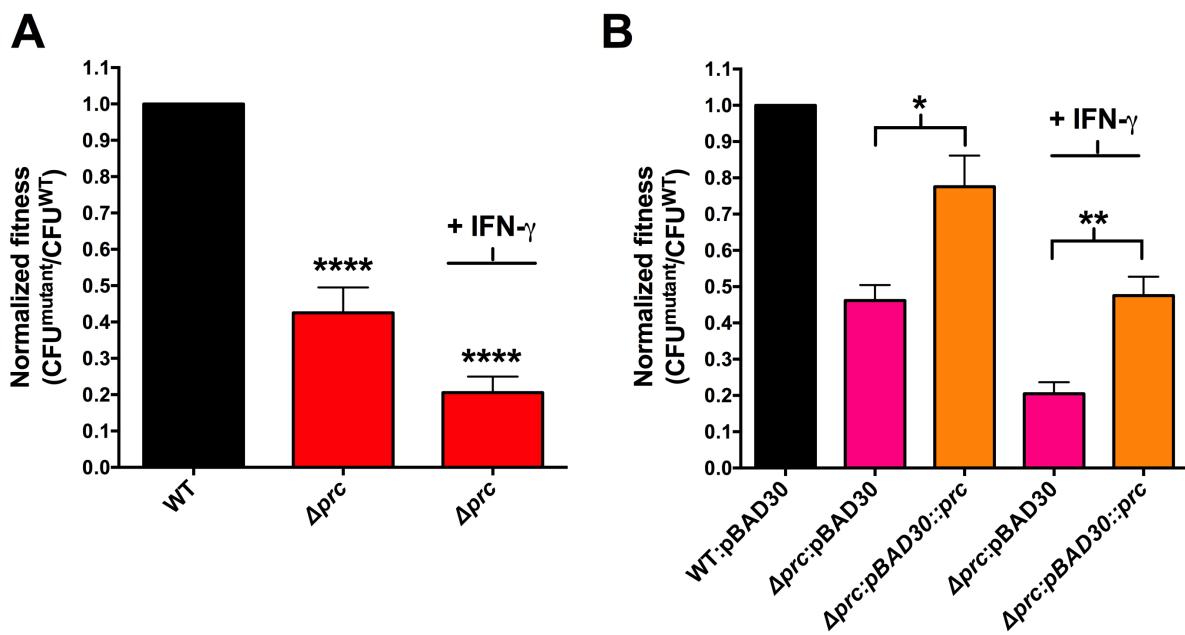
130 For the *in vivo* infection model a competition experiment in 8 week old female BALB/c mice
131 (Charles River) was performed. Bacteria were grown overnight at 37°C at 100rpm in LB
132 (5mg/ml NaCl, VWR) with 50µg/ml kanamycin or 50µg/ml chloramphenicol (Sigma-Aldrich)
133 supplemented for the mutants. The following day, overnight cultures were diluted 1:20 in LB
134 and grown for 4 hours to approximately and OD_{600nm} of 1.0 in Erlenmeyer flasks. The cultures
135 were diluted to 10⁴ CFUs/ml in PBS, mixed in a 1:1 ratio between wild-type and mutant, and
136 100µl of this mixture was administered by intraperitoneal injection into mice. To confirm the
137 inoculum, CFUs were enumerated following serial dilution and plating on LB agar plates
138 followed by incubation overnight at 37°C.

139 Three days post infection the mice were anesthetized and sacrificed by cervical dislocation
140 and liver, spleen, and gallbladder recovered and homogenized (GentleMACS dissociator) in
141 cold PBS. The homogenates were serially diluted in cold PBS and plated on LB agar plates
142 followed by incubation overnight at 37°C. The following day plates with 100-250 colonies were
143 replica plated onto LB agar plates and LB agar plates supplemented with either kanamycin or
144 chloramphenicol, depending on the mutant that was competed against wild-type, in order to
145 determine the proportion of wild-type to mutant in the population. The replica plating was
146 done by placing a sterile velvet pad on the plates and transferring the velvet to fresh plates as
147 noted above. The calculation of the competitive index was performed by calculating the ratio

148 between the CFUs of the wild-type and the CFUs of the mutant when recovering them from
149 the organs after normalizing the wild-type and the mutant to their respective input CFUs.

150 For the experiment the mice were housed in accordance with the Swedish National Board for
151 Laboratory Animals guidelines. All animal procedures were approved by the Animal Research
152 Ethics Committee of Umeå (Dnr A 27-2017). Mice were allowed to acclimate to the new
153 environment for one week before experimental onset.

154


155 **Statistics**

156 One-way ANOVA with Dunnett's correction was performed for assays comparing multiple
157 mutants with wild-type at the same time. Student's t-test was done when an assay involved
158 only two different bacteria i.e. a mutant and a wild-type. The statistics were performed using
159 GraphPad Prism v6.0g (GraphPad Software, Inc., USA).

160

161 **Results**

162 **Prc is needed for full fitness during overnight growth in RAW264.7 cells.** To study the role of
163 Prc in *Salmonella* during infection we generated a *prc* deletion mutant in line SR-11 lacking *prc*
164 and performed *in vitro* and *in vivo* infection assays. When studying phenotypes of the Δprc -
165 mutant in our *in vitro* infection model using murine macrophage RAW264.7 cells, we observed
166 that the fitness of the Δprc -mutant was significantly lower than that for the wild-type following
167 an overnight incubation (Fig. 1A). This difference between the fitness of the Δprc -mutant
168 compared to wild-type was even more pronounced when the RAW264.7 cells were treated
169 with interferon- γ (IFN- γ) prior to the overnight incubation (Fig. 1A). The gene *prc* is likely part
170 of an operon (26). Hence, to confirm that the fitness defect of the Δprc -mutant was due to the
171 lack of Prc we complemented the mutant by expressing *prc* *in trans* resulting in a partly, yet
172 significant, complementing the fitness defect (Fig. 1B).

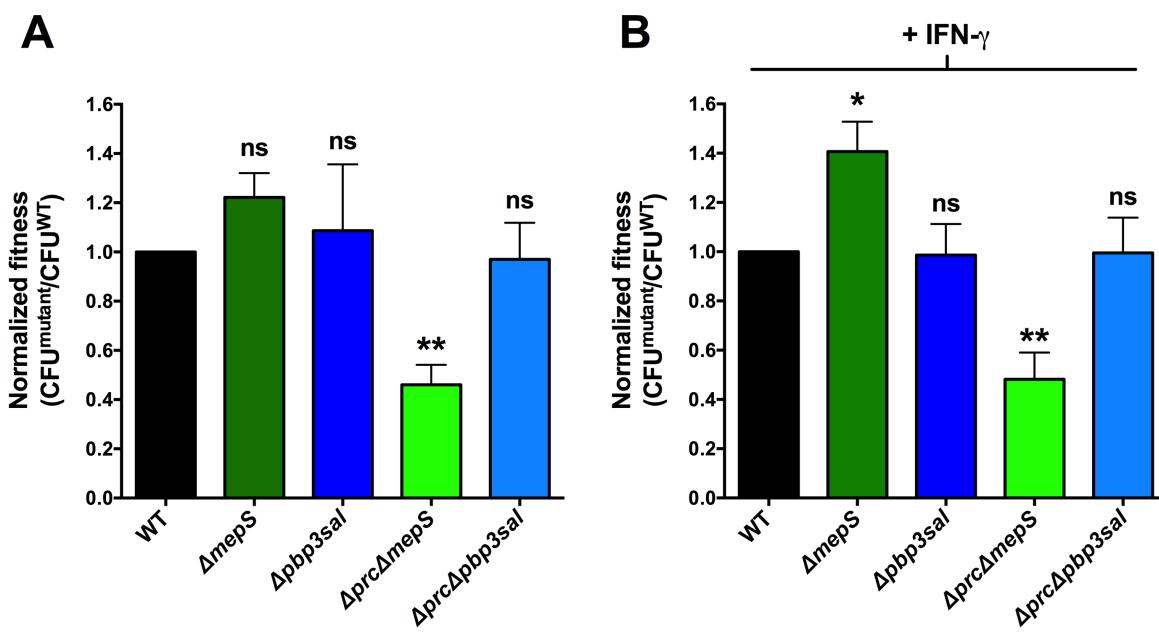

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

Figure 1. *In vitro* infection assay of murine macrophage RAW264.7 cells using the gentamicin protection assay. Each of the mutant constructs are normalized towards its respective wild-type, meaning that the non-IFN- γ treated samples are normalized towards a non-IFN- γ -treated wild-type and IFN- γ -treated mutants against IFN- γ -treated wild-type. The wild-type is represented as a single column due to the wild-type being normalized against itself in both non-treated and IFN- γ -treated condition. Each experiment was repeated at least three times. A) Normalized fitness of the Δprc -mutant in comparison to wild-type (WT) in infection of RAW264.7 cells as defined by the ratio of CFU yield following overnight growth as compared to the CFU of bacteria taken up by the RAW264.7 cells normalized to WT in both non-activated and IFN- γ -activated RAW264.7 cells. B) Normalized fitness of Δprc -mutant complemented using pBAD30::prc plasmid in both non-activated and IFN- γ -activated RAW264.7 cells. IFN- γ also affected wild-type bacteria with the wild-type in non-IFN- γ -activated RAW264.7 cells growing to a fitness ratio on average of 72 (fitness ratio = CFU_{overnight growth}/CFU_{uptake}), while in the IFN- γ -activated RAW264.7 cells the fitness ratio is 12 i.e. the IFN- γ -activation of the RAW264.7 cells inhibits the overnight growth of the wild-type 6-fold. One-way ANOVA with Dunnett's correction was performed with statistical significance denoted as * = p < 0.05, ** = p < 0.01, **** = p < 0.0001.

190
191
192
193
194
195
196
197
198
199

The effect on fitness by Prc in RAW264.7 cells is PBP3_{SAL}-dependent. Phenotypes associated with genetically knocking out the periplasmic protease Prc are thought to be due to the accumulation of the murein endopeptidase MepS as lack of *prc* results in a 10-fold increase in the amount of MepS in the bacteria (21). Additionally, phenotypes of bacteria lacking *prc* can be suppressed by further removal of *mepS*, a mechanism that has been shown for various phenotypes in both *E. coli* and *Salmonella* (21,24,27,28). To reveal if altered MepS levels contributed to the fitness phenotype in RAW264.7 cells of the Δprc -mutant we generated a double mutant lacking both these genes. When the resulting $\Delta prc\Delta mepS$ -mutant was subjected to infection of RAW264.7 cells, the fitness defect still remained (Fig. 2). This lack of

200 suppression was not due to the $\Delta mepS$ -mutation itself being detrimental for the growth of
201 *Salmonella* in the RAW264.7 cells (Fig. 2).

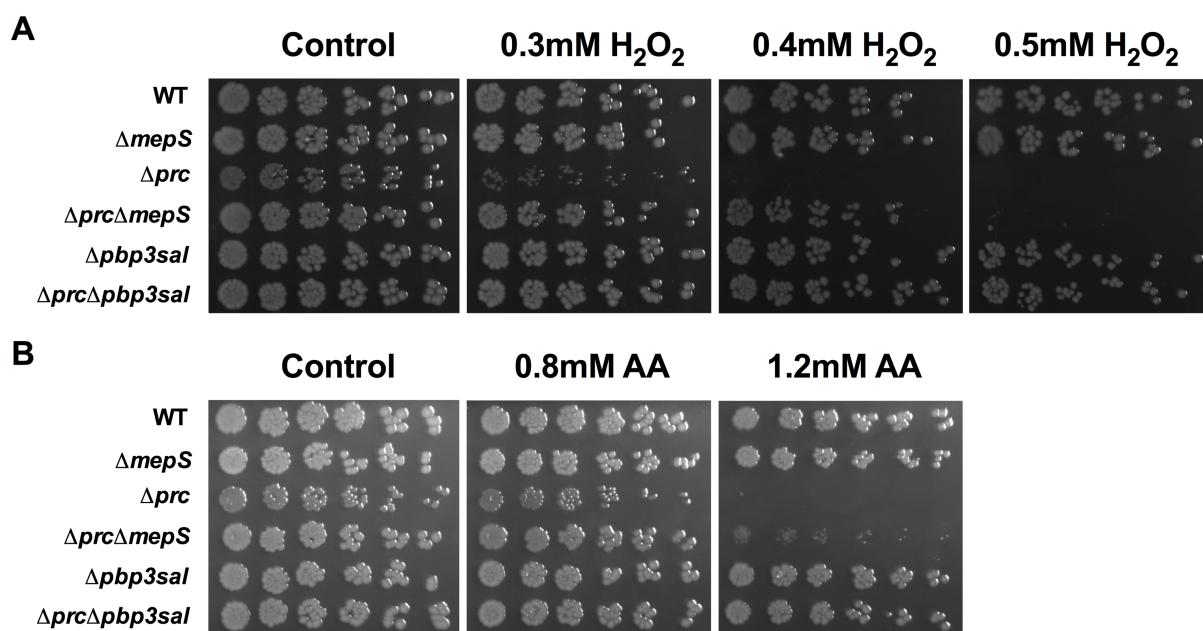
202

203 **Figure 2.** *In vitro* infection assay of murine macrophage RAW264.7 cells using gentamicin
204 protection assay. Normalized fitness to wild-type (WT) of various mutants in both non-activated
205 (A) and IFN- γ -activated (B) RAW264.7 cells following overnight growth. Each experiment
206 repeated at least three times. The bar for wild-type is normalized against itself and the mutants
207 are normalized against the wild-type exposed to the same condition i.e. mutants in non-activated
208 RAW264.7 cells are normalized against wild-type grown in non-activated RAW264.7 cells and
209 likewise IFN- γ -activated normalized against IFN- γ -activated wild-type. As stated in figure 1 the
210 IFN- γ -activation of the RAW264.7 cells inhibits the overnight growth of the wild-type 6-fold
211 meaning that the wild-type in (A) has a 6-fold yield to the wild-type in (B). One-way ANOVA with
212 Dennett's correction was performed with statistical significance denoted as ns = not significant,
213 * = p < 0.05, ** = p < 0.01.

214

215 As the removal of *mepS* failed to suppress the fitness defect of the Δprc -mutant in the
216 RAW264.7 cells we opted for a candidate approach in trying to find a suppressor mutation for
217 the Δprc -mutant fitness defect. Another protein that has been shown to functionally interact
218 with Prc, albeit in *E. coli*, is the peptidoglycan synthase PBP3. Prc has been shown to cleave
219 PBP3 (18–20), yet further studies on the phenotypic and genetic associations of Prc and PBP3
220 are cumbersome due to the essentiality of PBP3 (29). However, due to the recent
221 characterization of a parologue to PBP3, named PBP3_{SAL}, by Castanheira *et. al.* (16) we
222 postulated that PBP3_{SAL} activity could possibly be another direct or indirect target of Prc. When
223 we removed *ppb3sal* from the Δprc -mutant we observed that the fitness defect was
224 completely suppressed during overnight growth in both non-IFN- γ -activated and IFN- γ -

225 activated RAW264.7 cells, an effect not due to the lack of *pbp3sal* itself resulting in higher
226 proliferation than wild-type (Fig. 2).


227

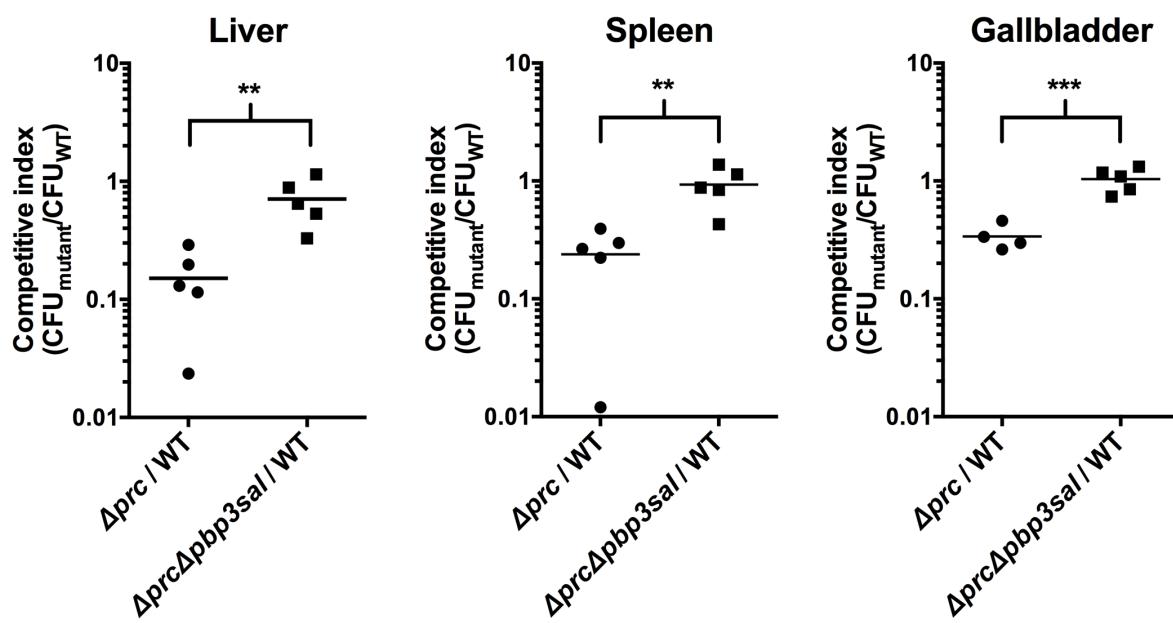
228 **Prc is needed for tolerance to oxidative and reducing compounds in a PBP3_{SAL}-dependent**
229 **manner.** Replication of *S. Typhimurium* in phagocytic cells is associated with exposure to
230 oxidative stress (10,11). To explain the decreased fitness of the Δprc -mutant in the phagocytic
231 RAW264.7 cell line, we tested the mutant for sensitization to oxidative stress. In this indeed
232 the mutant appeared less tolerant to hydrogen peroxide *in vitro*, as compared to the wild-type
233 (Fig. 3A).

234 We have previously shown that RAW264.7 cells infected with *S. Typhimurium* is
235 heterogeneous with a proportion of hypoxic cells containing large amounts of bacteria, and
236 with another normoxic proportion of cells containing few or no bacteria (30). Thus, we tested
237 whether the Δprc -mutant was sensitized to reducing stress. Indeed, the mutant was sensitized
238 to ascorbic acid (Fig. 3B).

239 Significantly, sensitizations to either hydrogen peroxide or ascorbic acid were fully suppressed
240 by deleting *pbp3sal*, but only partially suppressed by a *mepS* deletion (Fig. 3A & 3B). Thus, the
241 decrease in growth yield of the mutant could relate to its inability to survive in the hypoxic cell
242 population, otherwise permissive for replication of the wild-type.

243

244


245 **Figure 3.** Drop-on-lawn test probing redox sensitization. Bacterial suspensions (10^5 CFU per ml)
246 were diluted 1:2 to 1:64 in a succession and 5 μ l drops were placed on the nutrient plates from
247 the right to the left. Plates were supplemented with either hydrogen peroxide or ascorbic acid
248 (AA) with non-supplemented plates and the wild-type (WT) serving as controls.

249

250 **Prc is needed for full fitness in BALB/c mice in a PBP3_{SAL}-dependent matter.** To extend our
251 findings from cell cultures and in vitro redox stress measurements, we performed a
252 competition infection in BALB/c mice. In this we observed that the Δ prc-mutant had a
253 substantially decreased fitness as it was readily outcompeted by the wild-type when
254 enumerating CFUs from liver, spleen and gallbladder, as evident by the Δ prc/WT competition
255 resulting in a competitive index of <1 for all the organs (Fig. 4). Similarly to the *in vitro* model
256 of RAW264.7 cells the removal of *pbp3sal* from the Δ prc-mutant also reverted the fitness
257 defect of the Δ prc-mutant in the BALB/c mice as seen by the fact that the Δ prc Δ pbp3sal-
258 mutant yielded equal CFUs from liver, spleen and gallbladder as the wild-type (Fig. 4).

259

260

261

262 **Figure 4.** Competitive infection in BALB/c mice. Mutant and wild-type (WT) bacteria were mixed in
263 1:1 ratio and inoculated intraperitoneally into 8-week-old female BALB/c mice. Each data point
264 indicates an individual mouse. At day 3 of the infection the ratio of mutant to wild-type were
265 enumerated from liver, spleen and gallbladder in order to define the competitive index for each
266 mutant in relation to the wild-type. A competitive index of <1 means that the recovered CFU from
267 the organs was higher for the wild-type than for the mutant and a competitive index of >1 means
268 that there was a higher CFU recovered for the mutant than for the wild-type following infection.
269 Student's t-test was performed with statistical significance denoted as ** = p<0.01 and *** =
270 p<0.001.

271 Discussion

272 In the past Fields *et. al.* (9) created a set of transposon mutants in *S. Typhimurium* unable to
273 grow in macrophages from which Bäumler *et. al.* (23) subsequently described the loci needed
274 for intramacrophagal survival. At the time seven out of 30 mutations were affecting known
275 genes, one of which was one coding for periplasmic protease Prc (23). Here we confirmed this
276 observation by further extending it into an *in vivo* model while also genetically confirming via
277 complementation the need for *prc* in an *in vitro* cell culture model. We furthermore define
278 new redox-associated phenotypes for a *prc* mutant that could explain attenuation of a *S.*
279 *Typhimurium prc* mutant in infection models.

280 While Prc was initially described as a phage tail specific periplasmic protease in
281 *E. coli*, Prc has other substrates (31), such as MepS coding for a muramyl endopeptidase (21).
282 The concomitant regulation of the MepS levels by Prc is of great importance as the phenotypes
283 associated with a Δprc -mutation, mainly in *E. coli*, are seemingly due to accumulation in MepS
284 levels (21,32). Indeed, examples of published Δprc -mutant phenotypes in *E. coli*, including

285 growth defect at an elevated temperature (27) and hypo-osmotic media (21), as well as
286 decreased sensitivity to mecillinam (28) have been shown to be suppressed by inactivation of
287 *mepS*. Furthermore, the novobiocin sensitization of a *prc* mutant was recently shown by us to
288 be suppressed by a *mepS* mutant (24). Deleting *mepS*, in *S. Typhimurium* did however not
289 suppress the virulence-associated attenuations of the *prc* mutant, with an exception of a
290 partial complementation of the fitness loss under redox stress. However, the attenuations in
291 virulence traits were suppressed by deleting *pbp3sal* coding for an alternative PBP3 in
292 *Salmonella*, and with orthologues in *Citrobacter* spp. and *Enterobacter* spp. (16). Thus, at least
293 in *S. Typhimurium*, may possess MepS independent activities.

294 Relevant for the peptidoglycan turnover, Prc also degrades the muramyl
295 endopeptidase MltG and PBP3 (22). Thus the cause of the observed virulence-associated
296 attenuations of the *S. Typhimurium* Δ *prc* mutant could be multifold. However that one can
297 restore the pathogenicity-associated fitness costs by deleting *pbp3sal* points to a functional,
298 direct or indirect, interaction between Prc and PBP3_{SAL}. In *E. coli* PBP3 is reported to form both
299 homo- and PBP3/PBP1B heterodimers (33). Considering the rather homologous central
300 protein domains in PBP3 and PBP3_{SAL}, possibly also PBP3_{SAL} could undergo oligomerization. In
301 *S. Typhimurium* line SR-11 used here and in line SL1344 used by Castenheira *et al.* (16),
302 expression of *pbp3sal* is increased under phagocyte-like growth conditions (34). Thereby, in
303 the absence of Prc, concomitant accumulation of periplasmic proteins involved in cell wall
304 synthesis could cause abbreviations in functional protein complexes, possibly involving
305 PBP3_{sal}, eventually resulting in decreased fitness.

306 Regardless, our data strongly implicate a role of an inherited intact
307 peptidoglycan dynamics for virulence fitness characters in *S. Typhimurium*. This would be in
308 concert with several recent publications. For example, treatment of human typhoid fever,
309 caused by *S. Typhi* with the β -lactam ceftriaxone to some extent associates with relapses (13).
310 Interestingly, in this respect Castenheira *et al.* (17) demonstrated that PBP3_{SAL} is needed for
311 establishment of relapses after ceftriaxon treatment in a murine infection model. As for other
312 pathogens, PBPs have been implicated in virulence of *Brucella melitensis* (35) and in redox
313 tolerance of *Listeria monocytogenes* (36), while exposing *Staphylococcus aureus* to sublethal
314 vancomycin affects virulence gene expression (37).

315

316

317 **Funding**

318 This work was supported by the Swedish Research Council (Vetenskapsrådet) with grant Dnr
319 4-30 16-2013 for M.R., Knut and Alice Wallenberg Foundation grant Dnr 2016.0063. for M.F.
320 & M.R., and M.R. as a visiting scholar in Umeå with grant Dnr 349-2007-8673.

321

322 **Conflicts of interest**

323 The authors report no conflict of interest.

324

325

326 **References**

- 327 1. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal
328 and non-typhoidal *Salmonella enterica* serovars differ. *Front Microbiol* [Internet]. 2014
329 Aug 4 [cited 2020 Aug 10];5. Available from:
330 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120697/>
- 331 2. Gibani MM, Britto C, Pollard AJ. Typhoid and paratyphoid fever: a call to action. *Curr*
332 *Opin Infect Dis*. 2018 Oct;31(5):440–8.
- 333 3. Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, et al. *Salmonella*
334 *typhi* uses CFTR to enter intestinal epithelial cells. *Nature*. 1998 May;393(6680):79–82.
- 335 4. Kops SK, Lowe DK, Bement WM, West AB. Migration of *Salmonella typhi* through
336 Intestinal Epithelial Monolayers: An In Vitro Study. *Microbiol Immunol*. 1996;40(11):799–
337 811.
- 338 5. Richter-Dahlfors A, Buchan AMJ, Finlay BB. Murine Salmonellosis Studied by Confocal
339 Microscopy: *Salmonella typhimurium* Resides Intracellularly Inside Macrophages and
340 Exerts a Cytotoxic Effect on Phagocytes In Vivo. *J Exp Med*. 1997 Aug 18;186(4):569–80.
- 341 6. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Garry Adams L, Bäumler AJ. Animal models of
342 *Salmonella* infections: enteritis versus typhoid fever. *Microbes Infect*. 2001 Nov;3(14–
343 15):1335–44.
- 344 7. Haraga A, Ohlson MB, Miller SI. *Salmonellae* interplay with host cells. *Nat Rev Microbiol*.
345 2008 Jan;6(1):53–66.
- 346 8. Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the
347 pathogen and the host immune system. *Nat Rev Microbiol*. 2004 Sep;2(9):747–65.

348 9. Fields PI, Swanson RV, Haidaris CG, Heffron F. Mutants of *Salmonella typhimurium* that
349 cannot survive within the macrophage are avirulent. *Proc Natl Acad Sci.* 1986 Jul
350 1;83(14):5189–93.

351 10. Burton NA, Schürmann N, Casse O, Steeb AK, Claudi B, Zankl J, et al. Disparate Impact of
352 Oxidative Host Defenses Determines the Fate of *Salmonella* during Systemic Infection in
353 Mice. *Cell Host Microbe.* 2014 Jan 15;15(1):72–83.

354 11. Rhen M. *Salmonella* and Reactive Oxygen Species: A Love-Hate Relationship. *J Innate
355 Immun.* 2019;11(3):216–26.

356 12. Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, et al. RNA-seq
357 Brings New Insights to the Intra-Macrophage Transcriptome of *Salmonella Typhimurium*.
358 *PLOS Pathog.* 2015 Nov 12;11(11):e1005262.

359 13. Butler T. Treatment of typhoid fever in the 21st century: promises and shortcomings.
360 *Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis.* 2011 Jul;17(7):959–63.

361 14. Botta G, Park J. Evidence for Involvement of Penicillin-Binding Protein-3 in Murein
362 Synthesis During Septation but Not During Cell Elongation. *J Bacteriol.* 1981;145(1):333–
363 40.

364 15. Wientjes FB, Nanninga N. Rate and topography of peptidoglycan synthesis during cell
365 division in *Escherichia coli*: concept of a leading edge. *J Bacteriol.* 1989 Jun
366 1;171(6):3412–9.

367 16. Castanheira S, Cestero JJ, Rico-Pérez G, García P, Cava F, Ayala JA, et al. A Specialized
368 Peptidoglycan Synthase Promotes *Salmonella* Cell Division inside Host Cells. *mBio*
369 [Internet]. 2017 Dec 29 [cited 2020 Aug 8];8(6). Available from:
370 <https://mbio.asm.org/content/8/6/e01685-17>

371 17. Castanheira S, López-Escarpa D, Pucciarelli MG, Cestero JJ, Baquero F, Portillo FG del. An
372 alternative penicillin-binding protein involved in *Salmonella* relapses following
373 ceftriaxone therapy. *eBioMedicine* [Internet]. 2020 May 1 [cited 2022 Jul 8];55. Available
374 from: [https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964\(20\)30146-8/fulltext](https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30146-8/fulltext)

376 18. Hara H, Nishimura Y, Kato J, Suzuki H, Nagasawa H, Suzuki A, et al. Genetic analyses of
377 processing involving C-terminal cleavage in penicillin-binding protein 3 of *Escherichia
378 coli*. *J Bacteriol.* 1989 Nov;171(11):5882–9.

379 19. Hara H, Yamamoto Y, Higashitani A, Suzuki H, Nishimura Y. Cloning, mapping, and
380 characterization of the *Escherichia coli* prc gene, which is involved in C-terminal
381 processing of penicillin-binding protein 3. *J Bacteriol.* 1991 Aug;173(15):4799–813.

382 20. Nagasawa H, Sakagami Y, Suzuki A, Suzuki H, Hara H, Hirota Y. Determination of the
383 cleavage site involved in C-terminal processing of penicillin-binding protein 3 of
384 *Escherichia coli*. *J Bacteriol.* 1989 Nov;171(11):5890–3.

385 21. Singh SK, Parveen S, SaiSree L, Reddy M. Regulated proteolysis of a cross-link-specific
386 peptidoglycan hydrolase contributes to bacterial morphogenesis. *Proc Natl Acad Sci U S*
387 *A*. 2015 Sep 1;112(35):10956–61.

388 22. Hsu PC, Chen CS, Wang S, Hashimoto M, Huang WC, Teng CH. Identification of MltG as a
389 Prc Protease Substrate Whose Dysregulation Contributes to the Conditional Growth
390 Defect of Prc-Deficient *Escherichia coli*. *Front Microbiol* [Internet]. 2020 [cited 2021 Jan
391 2];11. Available from:
392 <https://www.frontiersin.org/articles/10.3389/fmicb.2020.02000/full?report=reader>

393 23. Bäumler AJ, Kusters JG, Stojiljkovic I, Heffron F. *Salmonella typhimurium* loci involved in
394 survival within macrophages. *Infect Immun*. 1994 May 1;62(5):1623–30.

395 24. Vestö K, Huseby DL, Snygg I, Wang H, Hughes D, Rhen M. Muramyl Endopeptidase Spr
396 Contributes to Intrinsic Vancomycin Resistance in *Salmonella enterica* Serovar
397 *Typhimurium*. *Front Microbiol* [Internet]. 2018 [cited 2019 Sep 13];9. Available from:
398 <https://www.frontiersin.org/articles/10.3389/fmicb.2018.02941/full>

399 25. Raschke WC, Baird S, Ralph P, Nakoinz I. Functional macrophage cell lines transformed
400 by Abelson leukemia virus. *Cell*. 1978 Sep;15(1):261–7.

401 26. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An
402 Infection-Relevant Transcriptomic Compendium for *Salmonella enterica* Serovar
403 *Typhimurium*. *Cell Host Microbe*. 2013 Dec 11;14(6):683–95.

404 27. Hara H, Abe N, Nakakouji M, Nishimura Y, Horiuchi K. Overproduction of Penicillin-
405 Binding Protein 7 Suppresses Thermosensitive Growth Defect at Low Osmolarity due to
406 an spr Mutation of *Escherichia coli*. *Microb Drug Resist*. 1996 Jan 1;2(1):63–72.

407 28. Lai GC, Cho H, Bernhardt TG. The mecillinam resistome reveals a role for peptidoglycan
408 endopeptidases in stimulating cell wall synthesis in *Escherichia coli*. *PLOS Genet*. 2017 Jul
409 27;13(7):e1006934.

410 29. Nguyen-Distèche M, Fraipont C, Buddelmeijer N, Nanninga N. The structure and function
411 of *Escherichia coli* penicillin-binding protein 3. *Cell Mol Life Sci CMLS*. 1998 Apr
412 1;54(4):309–16.

413 30. Wrande M, Vestö K, Puiac Banesaru S, Anwar N, Nordfjell J, Liu L, et al. Replication of
414 *Salmonella enterica* serovar *Typhimurium* in RAW264.7 Phagocytes Correlates With
415 Hypoxia and Lack of iNOS Expression. *Front Cell Infect Microbiol* [Internet]. 2020 [cited
416 2021 Jul 15];0. Available from:
417 <https://www.frontiersin.org/articles/10.3389/fcimb.2020.537782/full>

418 31. Keiler KC, Silber KR, Downard KM, Papayannopoulos IA, Biemann K, Sauer RT. C-terminal
419 specific protein degradation: activity and substrate specificity of the Tsp protease.
420 *Protein Sci Publ Protein Soc*. 1995 Aug;4(8):1507–15.

421 32. Singh SK, SaiSree L, Amrutha RN, Reddy M. Three redundant murein endopeptidases
422 catalyse an essential cleavage step in peptidoglycan synthesis of *Escherichia coli*K12. *Mol*
423 *Microbiol.* 2012 Dec 1;86(5):1036–51.

424 33. Bertsche U, Kast T, Wolf B, Fraipont C, Aarsman MEG, Kannenberg K, et al. Interaction
425 between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in *Escherichia coli*.
426 *Mol Microbiol.* 2006;61(3):675–90.

427 34. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of
428 macrophage infection by gene expression profiling of intracellular *Salmonella enterica*.
429 *Mol Microbiol.* 2003 Jan 1;47(1):103–18.

430 35. Banai M, Adams LG, Frey M, Pugh R, Ficht TA. The myth of *Brucella* L-forms and possible
431 involvement of *Brucella* penicillin binding proteins (PBPs) in pathogenicity. *Vet Microbiol.*
432 2002 Dec 20;90(1):263–79.

433 36. Parsons C, Costolo B, Brown P, Kathariou S. Penicillin-binding protein encoded by *pbp4* is
434 involved in mediating copper stress in *Listeria monocytogenes*. *FEMS Microbiol Lett.*
435 2017 Nov 1;364(20):fnx207.

436 37. Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J, et al. Global proteome
437 analysis of vancomycin stress in *Staphylococcus aureus*. *Int J Med Microbiol.* 2013 Dec
438 1;303(8):624–34.

439 38. Sukupolvi S, Vaara M, Helander IM, Viljanen P, Mäkelä PH. New *Salmonella typhimurium*
440 mutants with altered outer membrane permeability. *J Bacteriol.* 1984 Aug;159(2):704–
441 12.

442

443

444

445

446 **Table 1.** Strains used in study.

Strain	Genotype	Source
KV82	<i>S. Typhimurium</i> SR-11 wild-type	(38)
KV386	<i>S. Typhimurium</i> SR-11 Δ prc (a.k.a Δ tsp)	(24)
KV244	<i>S. Typhimurium</i> SR-11 Δ mepS (a.k.a. Δ spr)	(24)
KV603	<i>S. Typhimurium</i> SR-11 Δ pbp3sal	This study
KV605	<i>S. Typhimurium</i> SR-11 Δ prc Δ pbp3sal	This study
KV387	<i>S. Typhimurium</i> SR-11 Δ prc Δ mepS	(24)
KV399	<i>S. Typhimurium</i> SR-11 Δ prc:pBAD30	(24)

KV415	<i>S. Typhimurium</i> SR-11 Δ prc:pBAD30::prc	(24)
KV83	<i>S. Typhimurium</i> SR-11 wild-type:pBAD30::prc	(24)
KV374	<i>S. Typhimurium</i> SR-11 Δ prc::chloramphenicol	(24)
KV591	<i>S. Typhimurium</i> SR-11 Δ prc Δ pbp3sal::kanamycin	(24)

447

448 **Table 2.** Primers used in study.

Name	Sequence
FPBP3Salrec (Knock out for PBP3 _{SAL})	TTTCCCGTTAAATCAATCACCTGAAAAATGATTGGCTGGGTGTAGGCTGGAGCTGCTTC
RPBP3Salrec (Knock out for PBP3 _{SAL})	GGGCGCAAGTGTAAACCGAATTGCGCCCCGGAAAATCCTCATATGAATATCCTCCTAG
FPBP3Sal(c) (confirm mutation)	TAGCGATTGTTGCAAAGGC
RPBP3Sal(c) (confirm mutation)	AGCGGCTGATGGCAAAGCG
FTspEcoRI (construct pBAD30::prc)	CATGAATTCAAGGAGGATGTTCTGAAACGGAGGCCA
RTspHindIII (construct pBAD30::prc)	CATGAAGCTTTACTTATTGGCTGCCGCCT

449

450

451

452

453