

1 **Host Immunity to *Mycobacterium tuberculosis* Infection is Similar in Simian
2 Immunodeficiency Virus (SIV)-infected, Antiretroviral Therapy-treated and SIV-naïve
3 Juvenile Macaques**

4

5 Erica C. Larson,^{a,b}# Amy L. Ellis,^c Mark A. Rodgers,^a Abigail K. Gubernat,^a Janelle L. Gleim,^a
6 Ryan V. Moriarty,^c Alexis J. Balgeman,^c Yonne K. Menezes,^d Cassaundra L. Ameel,^a Daniel J.
7 Fillmore,^a Skyler M. Pergalske,^a Jennifer A. Juno,^e Pauline Maiello,^a Alexander G. White,^a H.
8 Jacob Borish,^a Dale I. Godfrey,^e Stephen J. Kent,^{e,f} Lishomwa C. Ndhlovu,^g Shelby L.
9 O'Connor,^{c,h} Charles A. Scanga^{a,b}#

10

11 ^aDepartment of Microbiology and Molecular Genetics, University of Pittsburgh School of
12 Medicine, Pittsburgh, Pennsylvania, USA

13 ^bCenter for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh,
14 Pennsylvania, USA

15 ^cDepartment of Pathology and Laboratory Medicine, University of Wisconsin - Madison,
16 Wisconsin, USA

17 ^dDepartment of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa
18 Catarina, Brazil

19 ^eDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and
20 Immunity, University of Melbourne, Melbourne, VIC, Australia

21 ^fMelbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and
22 Centre Clinical School, Monash University, Melbourne, VIC, Australia

23 ^gDepartment of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York,
24 New York, USA

25 ^hWisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin,
26 USA

27

28 Running Head: *M. tuberculosis* infection of SIV+ juvenile macaques

29 #Address correspondence to Erica C. Larson, erl72@pitt.edu, and Charles A. Scanga,

30 scangaca@pitt.edu

31 **Abstract**

32 Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral
33 therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic
34 mechanisms involved in TB progression in both HIV-naïve and HIV-infected children have not
35 been explored. Much of our current understanding is based on human studies in adults and adult
36 animal models. In this study, we sought to model childhood HIV/*Mycobacterium tuberculosis*
37 (Mtb) coinfection in the setting of ART and characterize T cells during TB progression.

38 Macaques equivalent to 4-8 year-old children were intravenously infected with SIVmac239M,
39 treated with ART three months later, and coinfecte with Mtb three months after initiating ART.
40 SIV-naïve macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden
41 did not differ between SIV-infected, ART-treated and SIV-naïve macaques, although lung Mtb
42 burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies
43 of CD4+ and CD8+ T cells and unconventional T cell subsets (V γ 9+ γ 8 T cells, MAIT cells, and
44 NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naïve
45 macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T
46 cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung
47 granulomas obtained at necropsy, nor did they differ in the frequency of immune checkpoint and
48 proliferative markers. Thus, ART treatment of juvenile macaques, three months after SIV
49 infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-
50 naïve macaques.

51

52 Keywords: HIV/TB coinfection, HIV, TB, T cells, Antiretroviral therapy (ART), pediatrics

53

54 **Introduction**

55 Pediatric tuberculosis (TB) caused by the bacterium, *Mycobacterium tuberculosis* (Mtb),
56 is a major global health concern. In 2019, around 1.2 million children under the age of 15 fell ill
57 with TB and over 200,000 children died of TB, including children with HIV-associated TB (1).
58 HIV-infected children have higher rates of mortality due to TB than HIV-uninfected children (2).
59 Children account for roughly 10% of HIV-associated TB deaths, which amounted to ~20,000
60 lives in 2020 (1, 2). Antiretroviral therapy (ART) reduces TB risk and mortality by suppressing
61 viral replication and restoring CD4+ T cell levels, but TB risk does not completely return to the
62 level seen in HIV-naive children (3-7). Moreover, pediatric TB often manifests differently than
63 adults and disease progression is influenced by age (8, 9). Miliary TB and TB meningitis is more
64 common in infants and young children (< 2 years old), while pulmonary TB is more common in
65 older children (9). HIV infection exacerbates TB disease in children and is associated with
66 greater lung involvement and cavitation regardless of age (10, 11). Given the severity of TB in
67 children, especially those with HIV, there is a clear need to elucidate immune mechanisms
68 underlying TB progression in children as it may help inform diagnostic and treatment strategies.

69 Much of what is known about pediatric TB is through the lens of human adult studies and
70 adult animal models. However, this overlooks the dynamic nature of the developing, pediatric
71 immune system (12). Throughout childhood, T cell composition is incredibly dynamic and does
72 not stabilize until adulthood (13-16). Rapid accumulation of circulating memory CD4+ and
73 CD8+ T cells occurs during the first few years of life in both children and young nonhuman
74 primates (NHP) (13, 17, 18). Given that CD4+ and CD8+ T cells are critical for Mtb control (19,
75 20) and the predominant immature nature of CD4+ and CD8+ T cells during the first few years
76 of life, this may be a contributing factor to severe TB disease observed in young children.

77 However, the role of CD4+ and CD8+ T cells in TB pathogenesis in children is largely
78 understudied. In addition, HIV infection is well-known to cause CD4+ and CD8+ T cell
79 dysfunction through CD4+ T cell depletion and T cell exhaustion (21-24). ART has been shown
80 to restore CD4+ T cell levels and improve CD8+ T cell function, but the immune restoration is
81 incomplete (25-28). Similarly, unconventional T cells, such as $\gamma\delta$ T cells, MR1-restricted
82 mucosal-associated invariant T (MAIT) cells, and CD1d-restricted natural killer T (NKT) cells
83 have received little attention in pediatric TB despite their ability to recognize non-peptide Mtb
84 antigens, and may play a possible role in early Mtb control (29-33). V δ 2+ $\gamma\delta$ T cells, a subset of
85 $\gamma\delta$ T cells which forms T cell receptor heterodimers with V γ 9, and MAITs are virtually absent in
86 early life in humans (16). Moreover, unconventional T cell subsets are depleted during HIV
87 infection and only partially restored by ART (34-36). Whether their role in TB progression
88 differs between HIV, ART-treated children and HIV-naïve children has yet to be thoroughly
89 investigated.

90 NHP are an excellent model to study TB as they closely recapitulate the immune
91 responses and pathogenesis observed in humans (37, 38). NHP are also susceptible to SIV, a
92 close relative of HIV, which results in HIV-like disease progression and AIDS development in
93 some macaque species (39). Previously, in adult Mauritian cynomolgus macaques, we found that
94 Mtb coinfection of ART-naïve, SIV-infected animals had worsened TB disease compared to
95 SIV-naïve macaques (40), in alignment with studies in humans (41-43). In a separate study, we
96 observed granulomas obtained from SIV/Mtb coinfecting macaques early in the course of Mtb
97 infection had immunologic differences compared to animals infected with Mtb alone, such as
98 fewer CD4+ T cells, more CD8+ T cells, and elevated frequencies of PD-1+ and TIGIT+ T cells,
99 indicative of chronic immune activation (44). Although these studies inform our understanding

100 of TB immunity in coinfecting adults, very few NHP studies to date have modeled pediatric TB
101 (45-47).

102 This is the first study to characterize CD4+ and CD8+ T cell populations over the course
103 of infection using an NHP model of pediatric TB and HIV/Mtb coinfection. Juvenile macaques,
104 ~1-2 years of age (equivalent to 4-8 years in humans), were either infected with Mtb alone or
105 were infected with SIV, treated with ART, and then coinfecting with Mtb. We found very few
106 differences in TB disease progression and Mtb burden between SIV-infected, ART-treated and
107 SIV-naïve macaques. While we did observe immunological changes following SIV infection,
108 such as fewer CD4+ T cells and more CD8+ T cells in airways, these returned to pre-SIV levels
109 following ART initiation. The frequencies of CD4+ and CD8+ T cells in airways remained
110 similar between SIV-infected, ART-treated and SIV-naïve macaques 8 weeks after Mtb
111 infection, although. Frequencies of unconventional T cell subsets (V γ 9+ γ δ T cells, MAIT cells,
112 and NKT cells) did not differ over the course of SIV nor between SIV-infected, ART-treated and
113 SIV-naïve macaques following Mtb infection. Similarly, T cell composition of granulomas did
114 not differ between the two groups. Thus, juvenile macaques treated with ART within 3 months
115 of SIV infection appear to experience similar TB progression and mount similar T cell responses
116 to Mtb coinfection as animals infected with Mtb alone.

117

118 **Results**

119 *T cell subsets and phenotype of CD4+ and CD8+ T cells in airways do not differ, except for*
120 *CCR5, between SIV-infected, ART-treated and SIV-naïve juvenile macaques.*

121 Ten juvenile macaques were infected intravenously with SIVmac239M and, as expected,
122 peak viremia was detected approximately 10 days post infection followed by viral load reduction

123 and establishment of set-point viremia, which varied widely among animals. Three months after
124 infection, ART was initiated in all animals and reduced viremia to below the limit of detection
125 (Figure 1). Plasma viral load remained undetectable in all animals after ART initiation, with the
126 exceptions of 34519 and 34619 which had transient viremia that did not exceed 10^3 viral copies
127 (Figure 1). All 10 SIV-infected, ART-treated animals, as well as 10 age-matched SIV-naïve
128 animals, were then infected with approximately 5-11 colony forming units (CFU) of a barcoded
129 Mtb (Table S1). ART continued to suppress viral replication after Mtb challenge in SIV-infected
130 animals (Figure 1).

131 Mtb is predominantly transmitted through inhaled droplets and first encounters host
132 immune cells when deposited in the airways. Thus, we assessed T cell composition and
133 characterized T cell phenotype in the airways of the animals during SIV infection and ART
134 treatment by flow cytometric analysis of cells recovered by bronchoalveolar lavage (BAL). The
135 composition of T cell subsets dramatically shifted following SIV infection, with a notable
136 decrease in the CD4+ proportion (blue) and a corresponding increase in the CD8+ proportion
137 (red) (top row, Figure 2A). The T cell composition shifted again following ART, returning to
138 proportions similar to those observed prior to SIV infection (Figure 2A). T cell proportions were
139 similar between SIV-infected, ART-treated macaques (top row) and macaques infected with Mtb
140 alone (bottom row), both prior to and 8 weeks after Mtb infection (Figure 2A). These changes in
141 T cell subsets also were noted when data are presented as frequencies of the total CD3+
142 population (Figure 2B-J). We observed a significant decline in CD4+ T cells with a concomitant
143 rise in CD8+ T cell frequencies in the airways following SIV infection and a return to pre-SIV
144 frequencies after initiating ART (Figure 2B, C). At the time of Mtb coinfection, CD4+ T cell
145 frequencies in BAL were similar between SIV-infected, ART-treated animals and SIV-naïve

146 controls and did not change appreciably after Mtb infection (Figure 2B). CD8+ T cells exhibited
147 a subtle, but significant, decline in both groups following Mtb coinfection (Figure 2C).
148 CD4+CD8+ T cell frequencies increased following Mtb infection in both groups (Figure 2D),
149 which has been reported previously (48). We did not observe significant differences in
150 CD3+CD4-CD8- T cells or consistent changes in unconventional T cell subsets, including $\gamma\delta$ T
151 cells (V γ 9+), NKT cells (CD1d tetramer+), MAIT cells (MR1 tetramer+ V α 7.2+), and MAIT-
152 like cells (MR1 tetramer+V α 7.2-) between the two groups following Mtb coinfection (Figure
153 2E-I).

154 We did observe some phenotypic changes in CD4+ and CD8+ T cells in airways over the
155 course of the study. There was a transient spike in proliferation, as measured by ki-67, in CD4+
156 and CD8+ T cells at 4 weeks post-SIV infection which then subsided following ART to levels
157 similar to those observed in uninfected macaques (Figure S1A, B). CD4+ and CD8+ T cell
158 proliferation was previously shown to correspond to the rise in viral replication during acute SIV
159 infection (49-51). Following Mtb infection, the frequency of PD-1+ CD4+ T cells, but not PD-1+
160 CD8+ T cells, declined significantly (Figure S1C, D). The frequency of TIGIT+ CD4+ and
161 CD8+ T cells fluctuated, with notable increases in frequency of TIGIT+ CD4+ T cells 4 weeks
162 post SIV infection and of TIGIT+ CD8+ T cells following Mtb infection (Figure S1E, F). A
163 small, but significant, drop in the frequency of CXCR3+ CD8+ T cells, but not CD4+ T cells,
164 was noted following Mtb coinfection (Figure S1G, H). CCR6-expressing CD4+ and CD8+ T
165 cells significantly increased in frequency in both groups following Mtb coinfection (Figure S1I,
166 J). As CCR6 mediates cell migration during inflammation and immune response (52), this
167 increased frequency of CCR6+ CD4+ and CD8+ T cells most likely indicates enhanced
168 trafficking to the airways in response to Mtb (53).

169 The frequency of CCR5, on the other hand, significantly declined in CD8+ T cells, and to
170 a lesser extent in CD4+ T cells ($p = 0.0534$), in SIV-infected, ART-treated macaques following
171 Mtb coinfection (Figure 3A, B). CCR5 is a coreceptor utilized by HIV/SIV for infection of
172 CD4+ T cells and is closely linked to T cell loss (54, 55). This decline was also reflected by a
173 loss of absolute CCR5+ CD4+ and CD8+ T cell numbers in the airways (Figure 3C). SIV-
174 infected, ART-treated animals had significantly fewer CD4+ and CD8+ T cells in their airways
175 (~0.39 and 0.40 log decrease, respectively) than compared SIV naïve animals (Figure 3C). Given
176 the role of CD4+ and CD8+ T cells in Mtb control, we were interested in whether this subtle loss
177 of conventional T cells in the airways impacted overall TB progression.

178

179 *No difference in lung inflammation or Mtb dissemination.*

180 We previously reported a dramatic increase in lung inflammation and Mtb dissemination
181 in SIV-infected, ART-naïve adult macaques between 4-8 weeks post Mtb compared to adult
182 macaques infected with Mtb alone, indicating a loss of Mtb control in the SIV-infected group
183 (40). Here, we used PET/CT to determine whether lung inflammation and Mtb dissemination
184 differed over the course of Mtb infection in our juvenile SIV-infected, ART-treated macaques
185 compared to juvenile macaques infected with Mtb alone. We measured FDG uptake, a surrogate
186 for inflammation, to quantify lung inflammation and to enumerate granulomas over time as a
187 measure of Mtb dissemination (Figure 4). SIV-infected, ART-treated macaques coinfecte
188 Mtb did not differ from macaques infected with Mtb alone in terms of total lung FDG activity
189 over the course of Mtb infection (Figure 4A). Similarly, both groups exhibited similar numbers
190 of granulomas over the Mtb infection course (Figure 4B). One SIV-infected, ART-treated animal
191 had rapidly progressive TB disease and reached humane endpoint just 6 weeks post-Mtb

192 coinfection and is represented as a single datapoint at 4 weeks. When measured at the final time
193 point, there were no significant differences in lung inflammation ($p = 0.2415$) or the number of
194 granulomas ($p = 0.4601$) between SIV-infected, ART-treated macaques coinfecte with Mtb and
195 macaques infected with Mtb alone (Figure 4C, D), indicating similar TB progression in the two
196 groups.

197

198 *TB pathology, bacterial burden, and bacterial dissemination were similar in SIV-infected, ART-*
199 *treated and SIV-naïve juvenile macaques, except for lung CFU.*

200 Following Mtb infection, erythrocyte sedimentation rates were normal in both SIV-
201 infected, ART-treated macaques and SIV-naïve macaques while culturable bacilli were variably
202 detected in BAL and gastric aspirates from both groups (Table S1). At necropsy, we used an
203 established scoring system to assess total TB pathology across several tissue compartments:
204 lungs, thoracic lymph nodes, and extrapulmonary sites (56). While the individual pathology
205 scores varied widely, there were no significant differences in the group medians between SIV-
206 infected, ART-treated macaques coinfecte with Mtb and macaques infected with Mtb alone
207 (Figure 5A-D).

208 We plated tissue samples for CFU to determine Mtb burden. Somewhat surprisingly, the
209 median total thoracic burden of Mtb, comprised of CFU from both lung and thoracic lymph
210 nodes, was slightly lower in SIV-infected, ART-treated macaques compared to macaques
211 infected with Mtb alone although this difference did not reach statistical significance ($p =$
212 0.0961; Figure 5E). Interestingly, the bacterial load was significantly lower when only the lungs
213 were considered ($p = 0.0278$; Figure 5F). In contrast, the median bacterial load in thoracic lymph
214 nodes between the groups was similar ($p = 0.2489$; Figure 5G). Culture-negative lung

215 granulomas identified at necropsy were considered to have been sterilized by the host. Both
216 groups had similar percentages of lung granulomas with culturable bacilli, indicating comparable
217 capacity to eliminate viable Mtb in SIV-infected, ART-treated animals and those that were
218 infected with Mtb alone (Figure 5H).

219 To assess Mtb dissemination, Mtb DNA was isolated from CFU+ tissue samples and the
220 number and distribution of uniquely tagged bacilli was quantified across individual animals and
221 tissue types. We did not find differences in the median number of uniquely tagged bacilli per
222 animal between cohorts (Figure S2A). The number of uniquely tagged bacilli identified in
223 granulomas and thoracic lymph nodes did not differ between SIV-naïve and SIV-infected, ART-
224 treated, animals (Figure S2B). However, consistent with previous reports of lymph node seeding
225 from multiple granulomas (57, 58), we observed a significantly higher number of uniquely
226 tagged bacilli in thoracic lymph nodes when compared to granulomas. This was the case for both
227 SIV-naïve ($p = 0.0397$) and SIV-infected, ART-treated animals ($p = 0.0002$) indicating similar
228 dissemination between these groups.

229 We also analyzed the bacterial load in individual granulomas from each animal. The
230 number of culturable Mtb within individual granulomas varied widely both within individual
231 animals as well as between animals from each group (Figure 6A). However, there was no
232 significant difference in the median CFU of individual granulomas between those from SIV-
233 infected, ART-treated macaques coinfecte with Mtb and those from macaques infected with
234 Mtb alone ($p = 0.2047$; Figure 6B). Thus, both the severity of TB, Mtb bacterial load, and Mtb
235 dissemination were similar in SIV-naïve and SIV-infected, ART-treated animals.

236

237 *Cytokine responses to Mtb-specific antigens were similar in the lungs of SIV-infected, ART-
238 treated macaques coinfecte*d with Mtb and macaques infected with Mtb alone.

239 Cell suspensions were prepared from lung tissue without apparent granulomas
240 irrespective of whether the tissue would be determined to have culturable Mtb. The cells were
241 stimulated with Mtb whole cell lysate to assess CD4+ and CD8+ T cell responses to Mtb-specific
242 antigens in the lung (Figure 7). There were no differences in IFN γ or TNF production between
243 SIV-infected, ART-treated macaques coinfected with Mtb and macaques infected with Mtb alone
244 in either CD4+ and CD8+ T cells (Figure 7A-D), indicating similar Mtb-specific cytokine
245 responses between the two groups.

246

247 *Granuloma composition and phenotype did not differ between Mtb-infected SIV-infected, ART-
248 treated and SIV-naïve macaques.*

249 Granulomas are the hallmark of TB disease. While normal granuloma formation is
250 known to be affected in HIV/Mtb coinfected adults (59, 60), very little is known about TB
251 granuloma formation dynamics and composition in children coinfected with HIV, regardless of
252 whether they are treated with ART or not. Histopathology of excised granulomas was assessed
253 by an experienced veterinary pathologist and no generalizable histological differences could be
254 determined in the granulomas from SIV-naïve and SIV-infected, ART-treated animals (data not
255 shown).

256 We used flow cytometry to compare the cellular composition of TB granulomas in lungs
257 of SIV-infected, ART-treated macaques with those in SIV-naïve macaques. We did not observe
258 any difference in overall T cell composition (Figure 8A) or in frequencies of T cell subsets

259 (Figure 8B-H), nor did T cell frequencies differ in other tissue compartments, including lymph
260 nodes, spleen, and blood (Figure S3).

261 Lastly, we investigated the frequency of CCR5 and several other phenotypic markers
262 (PD-1, TIGIT, and ki-67) on CD4+ and CD8+ T cells isolated from lung granulomas (Figure 9
263 and 10). Unlike the airways, CCR5+ CD4+ and CD8+ T cells did not significantly differ
264 between SIV-infected, ART-treated macaques and macaques infected with Mtb alone (Figure
265 9A, B). For the other phenotypic markers (Figure 10), there were no significant differences
266 between the two groups apart from TIGIT+ CD4+ T cells ($p = 0.0647$; Figure 10B), which
267 trended slightly higher in frequency in SIV/ART/Mtb macaques, and ki-67+ CD8+ T cells,
268 which were significantly more frequent in granulomas from SIV-naïve animals ($p = 0.0092$;
269 Figure 10F). However, the difference in the median frequency of ki-67+ cells between the two
270 groups was incredibly low (< 0.12% of CD8+ T cells in both groups) and warrants caution about
271 ascribing biological significance to this result. Together, these data demonstrate that CD4+ and
272 CD8+ T cells in granulomas from SIV-infected, ART-treated macaques are quite similar to those
273 from macaques infected with Mtb alone.

274

275 Our findings show that, while some differences were detected between SIV-infected,
276 ART-treated juvenile macaques that are coinfecte with Mtb, compared to macaques infected
277 with just Mtb, the overall immune response and TB progression appear to be remarkably similar.

278

279 ***Discussion***

280 TB progression in HIV+ and HIV-naïve children is not well understood due to challenges
281 in diagnosis, monitoring, and limited epidemiological data (1, 61). Studies from the pre-

282 antibiotic era have noted that infants and young children are at greater risk of developing
283 pulmonary TB and more severe, disseminated forms of TB (*e.g.*, miliary TB or TB meningitis)
284 (9). This risk declines between the ages of 2 and 10 followed by an increased risk of pulmonary
285 TB during puberty (9). HIV increases TB risk and results in more severe TB disease (2-4, 10,
286 11). It has yet to be thoroughly investigated how TB, both on its own and with a concurrent HIV
287 infection, manifests in the presence of a developing immune system. Conventional and
288 unconventional T cell compartments are in constant flux throughout childhood (13-16),
289 highlighting the need to elucidate immune mechanisms behind TB pathogenesis where adult
290 models may fall short. Only a handful of studies have modeled TB progression using young
291 animals (45-47) and there are no studies that have modeled the impact of HIV coinfection on TB
292 progression in juvenile macaques.

293 Here, we established a model of pediatric HIV/Mtb coinfection by infecting juvenile
294 macaques with SIV, initiating ART 3 months later, and coinfecting with Mtb 3 months later. We
295 compared TB progression in the SIV-infected, ART-treated juveniles with that in similarly aged
296 animals infected with Mtb alone. We chose to implement ART in this study as ART coverage in
297 children is improving worldwide (62) and is an increasingly likely real-world scenario. Prior to
298 Mtb coinfection, the SIV-infected animals were aviremic, indicative of successful viral control
299 by ART (Figure 1). Both groups exhibited similar progression of TB disease by PET/CT (Figure
300 4), pathology scores, Mtb dissemination and Mtb burden, with the exception of lower lung CFU
301 in SIV-infected, ART-treated animals (Figures 5, 6; Figure S2). These results are in stark
302 contrast with our previous study of adult macaques coinfecte with SIV/Mtb in which all
303 coinfecte animals developed rapid dissemination of TB within the first 8 weeks of Mtb
304 coinfection and extensive TB pathology (40). This difference is most likely due to the ART that

305 was provided to the SIV-infected juveniles in the current study, consistent with the efficacy of
306 ART reported in both adults (63, 64) and children (3-7, 65). We cannot rule out age as a potential
307 contributor to the differences observed in TB progression in SIV-infected adult macaques (40)
308 and the juveniles reported here since we did not coinfect SIV-infected, ART-naïve juveniles.
309 However, clinical studies suggest that HIV-naïve children are slightly more susceptible, and not
310 more resistant, to severe forms of TB than adults (8, 9). The striking degree to which TB disease
311 in our SIV-infected juveniles paralleled that in SIV-naïve juveniles suggests strongly that ART
312 may be responsible for constraining TB progression in SIV-infected juvenile macaques.

313 In humans, ART only partially restores immune function and resistance to Mtb in HIV+
314 subjects (63, 64). Thus, we characterized the T cell responses to Mtb in the SIV-infected, ART-
315 treated animals relative to those in animals infected with Mtb alone. Since Mtb primarily
316 establishes infection in the lung, we investigated T cell-mediated immunity in the airways
317 throughout the study and in granulomas and lung tissue harvested 12 weeks after Mtb infection.
318 We showed previously that SIV-related changes occur across T cell subsets in several lung
319 compartments, including airways, granulomas, and lung tissue, in SIV-infected, ART-naïve adult
320 macaques coinfecte with Mtb (44). Adult macaques coinfecte with SIV/Mtb exhibited fewer
321 CD4+ T cells in blood and more CD8+ T cells in airways (44). Similarly, in the SIV-infected
322 juvenile macaques here, we observed decreased CD4+ T cells and increased CD8+ T cells in the
323 airways prior to ART initiation (Figure 2). However, following ART treatment, both T cell types
324 returned to pre-SIV levels indicating a restoration of CD4+ and CD8+ T cell levels in the
325 airways by ART. The unconventional T cell populations, V γ 9+ γ δ T cells, MAIT and NKT cells,
326 which are widely thought to play a role in early Mtb infection (29-33), varied in frequency
327 between animals and there was no consistent change in these populations during SIV infection,

328 ART, or Mtb coinfection. Following Mtb infection, no striking differences were observed
329 between the groups in either conventional T cell subsets or unconventional T cells in the airways
330 (Figure 2), aside from the elevated CD4+CD8+ T cells that is likely due to Mtb-mediated
331 immune activation (48).

332 In addition to analyzing cells from the airway, we analyzed both lung tissue and
333 individual granulomas. The latter is especially important since substantial heterogeneity can exist
334 between granulomas, even from within the same animal (66). We did not observe differences in
335 granuloma composition of T cell subsets, conventional or unconventional, nor were there any
336 consistent differences in other tissues analyzed between SIV-naïve and SIV/ART-treated Mtb
337 coinfecting macaques (Figure 8 and Figure S3). IFN γ and TNF responses upon Mtb-specific
338 stimulation of CD4+ and CD8+ T cells isolated from lungs were also similar between SIV-
339 infected, ART-treated macaques coinfecting with Mtb and macaques infected with Mtb alone
340 (Figure 7). Both cytokines are associated with Mtb control (67, 68). Notably, we previously
341 identified a defect in TNF production in SIV/Mtb coinfecting adult macaques which may, at least
342 in part, be responsible for the loss of control over Mtb in SIV-infected animals (44). A similar
343 TNF defect in lymphocytes from lung tissue was not observed in the SIV-infected juvenile
344 macaques studied here and may be attributed to the ART regimen. Mtb-specific responses in
345 CD4+ and CD8+ T cells in blood from HIV/Mtb coinfecting individuals have been shown to
346 increase following ART, indicative of restoration of immune responses (69, 70). Consistent with
347 other studies in human and NHP (26, 71), our data suggests that these similarities in IFN γ and
348 TNF may be attributed to immune restoration from the ART regimen.

349 Chronic immune activation has been implicated in immune dysfunction associated with
350 HIV/SIV infection (72, 73). PD-1 and TIGIT are inhibitory receptors that are critical in

351 modulating immune activation and play an important role in Mtb control (74-77). Importantly,
352 PD-1 and TIGIT expression can be upregulated on both exhausted, as well as activated, T cells.
353 Previously, we found that frequencies of PD-1+ and TIGIT+ T cells are notably higher in lung
354 tissue and granulomas from SIV-infected, ART-naïve adult macaques and appear to be activated,
355 regardless of whether they are coinfecte with Mtb (44). This is consistent with the hypothesis
356 that this immune activation phenotype is due to chronic SIV infection and is maintained
357 throughout SIV/Mtb coinfection (44, 73). Interestingly, in this study, there was no difference
358 between the two groups of juvenile macaques in PD-1 or TIGIT expression on CD4+ and CD8+
359 T cells from either airways (Figure S1) or granulomas (Figure 10), aside from the decline in PD-
360 1+ CD4+ T cells in airways following Mtb infection. Signaling pathways associated with
361 inflammation and immune activation have been shown to decline during the first 6 months of
362 ART in whole blood from HIV-1/Mtb coinfecte individuals (78). Similarly, our data suggest
363 that ART may have alleviated the chronic immune activation associated with uncontrolled viral
364 replication.

365 We did observe transient changes in proliferation and cell trafficking in airways over the
366 course of the SIV and Mtb infections. Proliferation of both CD4+ and CD8+ T cells spiked 4
367 weeks after SIV infection (Figure S1), which closely mirrored the spike in plasma viremia
368 (Figure 1). Similar elevations in CD4+ and CD8+ T cell proliferation were previously observed
369 in blood, lymph nodes, and gut shortly after SIV infection (49-51). This burst of T cell
370 proliferation corresponds to elevations in T cell apoptosis (50) and likely indicates a
371 compensatory response to restore CD4+ T cell levels depleted by rampant viral replication, while
372 simultaneously boosting CD8+ T cells, well-known antiviral effector cells. We observed an
373 increase in the frequency of CCR6+CD4+ and CCR6+CD8+ T cells in both groups following

374 Mtb infection. CCR6 is a chemokine receptor expressed on both dendritic cells and T cells (52).
375 CCR6 expression on T cells promotes migration of Th1 and Th17 responses to sites of
376 inflammation and it is associated with Mtb control (53). In our study, ART-treated SIV infection
377 did not appear to affect the expression of CCR6 on CD4+ and CD8+ T cells in the airways
378 during Mtb coinfection compared to animals infected with Mtb alone.

379 CCR5 is an important chemokine receptor for T cell migration during inflammation and
380 is a co-receptor for HIV/SIV (22). Mtb-specific CD4 T cells upregulate CCR5 during latent TB
381 infection and are preferentially depleted during HIV infection (79, 80). We observed a decline in
382 the frequency of CCR5+ CD4+ T cells as well as a subtle, but significant, loss of absolute
383 CCR5+ CD4+ T cells in the airways of SIV-infected, ART-treated macaques following Mtb
384 coinfection (Figure 3). However, we did not observe a loss of CCR5+ CD4+ T cells in
385 granulomas (Figure 9A). CCR5 is expressed at higher frequencies on T cells in airways
386 compared to other compartments like blood (81). It is possible that the elevated expression of
387 CCR5 on CD4 T cells in airways combined with Mtb coinfection created a target-rich
388 environment for SIV, thereby resulting in their selective depletion (22). Interestingly, others have
389 shown that CCR5+ CD4+ T cells are rapidly depleted in granulomas from untreated Mtb/SIV
390 coinfecting macaques (82). These data suggest that ART may have prevented depletion of CCR5+
391 CD4+ T cells in granulomas of our SIV-infected macaques. CCR5 is also expressed on type 1
392 CD8+ T cells, which largely secrete IFN γ (55). SIV infection has been reported to cause
393 significant depletion of CCR5+ CD8+ T cells at mucosal sites, such as jejunum (55). Others have
394 reported CCR5 expression decline on circulating CD8+ T cells from HIV-infected progressors
395 (83). We observed a significant decline in the frequency of CCR5+ CD8+ T cells and total
396 CCR5+ CD8+ T cells in the airways after Mtb coinfection in SIV-infected, ART-treated juvenile

397 macaques (Figure 3B, C). It is possible that CCR5 was downregulated on CD8+ T cells during
398 Mtb coinfection, however, the decline of absolute CCR5+ CD8+ T cells suggests a loss of these
399 cells. In granulomas, on the other hand, we did not observe a significant loss of CCR5+ CD8+ T
400 cells (Figure 9B). Unlike CD4+ T cells, which have a clear mechanism of depletion via direct
401 viral infection, the mechanism behind this tissue-dependent loss of CD8+ T cells during SIV
402 infection is not well understood and warrants further investigation. Nevertheless, TB outcome
403 did not differ between the two groups, indicating that the loss CCR5+ T cells in the airways did
404 not exert a substantial effect on TB resistance.

405 In summary, we found that SIV-infected, ART-treated juvenile macaques control TB
406 similarly to juvenile macaques infected with Mtb alone. Further, immune responses to Mtb do
407 not appear to be substantially impaired in SIV-infected juvenile macaques on ART. One
408 limitation of our study was that we did not have an ART-naïve group of SIV-infected juveniles
409 with which to directly compare the effect of ART on TB pathogenesis in SIV-infected juvenile
410 macaques. There is ample evidence in humans (69, 70, 78) that supports our hypothesis that ART
411 may have restored anti-Mtb immunity and control of TB in SIV-infected juvenile macaques.
412 ART previously was shown to reduce the risk of SIV-induced reactivation of latent TB infection
413 (LTBI) in adult macaques (71), and ART may be an important tool to reduce TB reactivation in
414 HIV+ people with LTBI (84). Our study is the first to suggest that early implementation of ART
415 can restore the rate of TB progression in macaques already infected with SIV to that of SIV-
416 naïve macaques, and the first time ART has been studied in a pediatric coinfection model.
417 Whether later ART initiation would result in a similar host responses and rate of TB progression
418 warrants further investigation. Although, early ART has been noted to have beneficial effects on
419 CD8 T cells in HIV-infected children (85). Our data indicate that early ART initiation provides

420 not only viral control but may also reduce TB severity and mortality in children living with HIV.

421 Indeed, ART is highly beneficial in reducing mortality in children infected with HIV (86).

422 Unfortunately, ART coverage worldwide in children still lags behind adults (62) and this study

423 further justifies increasing ART coverage in this vulnerable population.

424

425 ***Materials and Methods***

426 **Animal studies**

427 Juvenile (~1-2 years of age, equivalent to children 4-8 years-old) Mauritian cynomolgus

428 macaques (*Macaca fascicularis*) were obtained from Bioculture US (Immokalee, FL) (Table S1).

429 MHC haplotype was determined by MiSeq sequencing and animals with the presence of at least

430 one copy of the M1 MHC haplotype were selected for this study (87).

431 Animal protocols and procedures were approved by the University of Pittsburgh

432 Institutional Animal Care and Use Committee (IACUC) which adheres to guidelines established

433 in the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals, as well as

434 the Weatherall Report (8th Edition). The University is fully accredited by AAALAC

435 (accreditation number 000496), and its OLAW animal welfare assurance number is D16-00118.

436 The IACUC reviewed and approved the study protocols 19014337 and 22010433, under

437 Assurance Number A3187-01.

438 Animal welfare was monitored as described previously (44). In brief, all animals were

439 checked at least twice daily to assess appetite, attitude, activity level, hydration status, etc.

440 Following Mtb infection, the animals were monitored closely for clinical signs of TB (*e.g.*,

441 weight loss, tachypnea, dyspnea, or coughing). Physical exams, including weights, were

442 performed on a regular basis. Animals were sedated for all veterinary procedures (*e.g.*, blood

443 draws) using ketamine or other approved drugs. Regular PET/CT imaging was conducted and
444 has proven to be very useful for monitoring TB progression. Our veterinary technicians
445 monitored animals especially closely for any signs of pain or distress. If any were noted,
446 appropriate supportive care (*e.g.*, dietary supplementation and rehydration) and treatments
447 (analgesics) were given. Any animal considered to have advanced disease or intractable pain
448 from any cause, was deemed to have reached the humane endpoint, sedated with ketamine and
449 humanely euthanized using sodium pentobarbital.

450

451 **SIV and Mtb infections of macaques**

452 One group of juvenile macaques was infected intravenously with SIVmac239M (10,000
453 IU) (Figure S4). SIVmac239 is a molecularly barcoded virus stock generated from clonal
454 SIVmac239 (88). A daily ART regimen of dolutegravir (DTG; 2.5 mg/mL, *s.c.*), tenofovir
455 disoproxil fumarate (TDF; 5.1 mg/mL, *s.c.*), and emtricitabine (FTC; 40 mg/mL, *s.c.*) (89) was
456 initiated three months after SIV infection and continued for the remainder of the study. DTG was
457 kindly provided by ViiV Healthcare (Middlesex, UK) and TDF and FTC were kindly provided
458 by Gilead (Foster City, CA).

459 For Mtb infection, SIV-naïve ($n = 10$) and SIV-infected ($n = 10$) juvenile animals were
460 infected with a low dose (5 - 11 CFU) of Mtb Erdman via bronchoscopic instillation, as
461 described previously (56), and followed for 12 weeks post Mtb infection (Figure 9).

462

463 **Clinical and microbiological monitoring**

464 All animals were assessed twice daily for general health and monitored closely for
465 clinical signs of TB (coughing, weight loss, tachypnea, dyspnea, etc.) following Mtb infection.

466 Monthly gastric aspirates (GA) and bronchoalveolar lavage (BAL) samples were tested for Mtb
467 growth. GA and BAL samples with culturable Mtb (+) or that were sterile (-) are indicated in
468 Table S1. Blood was drawn at regular intervals to measure erythrocyte sedimentation rate and to
469 provide peripheral blood mononuclear cells (PBMC) and plasma.

470

471 **PET/CT imaging and analysis**

472 Radiolabeled 2-deoxy-2-(¹⁸F)fluoro-D-glucose (FDG) PET/CT was performed just prior
473 to Mtb infection and then monthly after Mtb infection. Imaging was performed using a
474 MultiScan LFER-150 PET/CT scanner (Mediso Medical Imaging Systems, Budapest, Hungary)
475 housed within our BSL3 facility as previously described (90, 91). Co-registered PET/CT images
476 were analyzed using OsiriX MD software (version 12.5.2, Pixmeo, Geneva, Switzerland) to
477 enumerate granulomas and to calculate the total FDG avidity of the lungs, exclusive of lymph
478 nodes, which is a quantitative measure of total inflammation in the lungs (90, 92). Thoracic
479 lymphadenopathy and extrapulmonary dissemination of Mtb to the spleen and/or liver were also
480 assessed qualitatively on these scans.

481

482 **Necropsy**

483 Necropsies were performed as previously described (40, 44) 12 weeks after Mtb
484 infection. One SIV-infected, ART-treated animal (35319) met humane endpoint criteria and
485 necropsied 6 weeks after Mtb coinfection (Table S1). A final FDG PET/CT scan was performed
486 no more than three days prior to necropsy to document disease progression and to guide
487 collection of individual granulomas (56). Animals were heavily sedated with ketamine,
488 maximally bled, and humanely euthanized using sodium pentobarbital (Beuthanasia, Schering-

489 Plough, Kenilworth, NJ). Granulomas matched to the final PET/CT images were harvested along
490 with other TB pathologies (e.g., consolidations and pneumonia), thoracic and extrathoracic
491 lymph nodes, lung tissue, as well as portions of liver and spleen. Quantitative gross pathology
492 scores were calculated and reflect overall TB disease burden for each animal (56). Tissue
493 samples were divided and a portion was fixed in 10% neutral buffered formalin (NBF) for
494 histopathology; the remainder was homogenized to a single-cell suspension as described
495 previously (56). Serial dilutions of these homogenates were plated onto 7H11 agar, incubated at
496 37°C, 5% CO₂ for three weeks, and colonies were enumerated. Samples yielding colonies were
497 considered CFU+. Bacterial load in lungs, thoracic lymph nodes, liver, and spleen, as well as
498 total thoracic CFU, were calculated as described previously (48). NBF-fixed tissue was
499 embedded in paraffin, sectioned, and stained with hematoxylin and eosin for histopathologic
500 examination.

501

502 **Flow cytometry of BAL and tissue**

503 In general, cells collected from BAL and necropsy were stained following a similar
504 protocol. Cells were counted and aliquoted at 1x10⁶ cells/well in a 96-well plate and stained
505 immediately to ensure proper assessment of conventional and unconventional T cell subsets.
506 Cells from lung lobes, lymph nodes, and spleen were stimulated for 14 hours total with either
507 Mtb H37Rv whole cell lysate (20 µg/mL; BEI Resources) or *M. smegmatis* (MOI 5:1) at 37°C.
508 In brief, stimulators were added and incubated for 2 hours, then brefeldin A (1 µg/mL) was
509 added for the remainder of the stimulation time. Cells were reconstituted in 500 nM dasatinib in
510 ELISpot media (RPMI 1640 + 10% human albumin + 1% glycine + 1% HEPES buffer) to
511 improve tetramer staining. MR1 (5-OPRU; PE) and CD1d (PBS-57; APC) tetramers were added

512 to wells and incubated for 30 minutes at room temperature (NIH Tetramer Core Facility, Atlanta,
513 GA). Antibody for V α 7.2 (Table S2) was added, incubated for an additional 30 minutes at room
514 temperature, and washed twice with PBS containing dasatinib. Cells were stained with a viability
515 dye (Table S2) for 10 minutes at room temperature and washed with FACS containing dasatinib.
516 Cells were stained with surface antibody cocktail (Table S2) for 20 minutes at 4°C, were fixed in
517 1% PFA, and permeabilized with BD Cytofix/Cytoperm™ (BD; Cat No. 554714) for 10 minutes
518 at room temperature. Cells were stained intracellularly for 20 minutes at room temperature,
519 washed, and analyzed immediately.

520 Flow cytometry of BAL and tissue samples was performed using a Cytek Aurora (BD).
521 FCS files were analyzed using FlowJo software for Macintosh (version 10.1). Gating strategies
522 for BAL and tissue data are shown in Figure S5 and S6, respectively. For most samples, we
523 acquired 50,000 events in the lymphocyte gate. However, when this was not possible (i.e. for
524 some small granulomas), we applied a cutoff threshold of CD3 events >100. Samples below that
525 threshold were excluded from further analysis. Absolute CCR5+ CD4+ and CD8+ T cell counts
526 were calculated by multiplying the frequency of CCR5+ or CCR5- CD4+ and CD8+ T cells from
527 the live leukocyte gate with the hemocytometer count.

528

529 **Sequencing of barcode identifiers in Mtb**

530 Mtb genomic DNA was isolated as previously described (58) and Mtb barcodes were
531 sequenced as previously described (93). Only CFU+ samples were included in Mtb barcode
532 analyses. Briefly, genomic DNA was isolated and samples were quantified and diluted to 10
533 ng/uL. Samples were then amplified twice using 2x Q5 Master Mix (New England BioLabs) and
534 two unique primer sets, one to add a molecular counter to distinguish unique input templates, and

535 one to add the Illumina TruSeq adapter sequences, were used. Primer sequences can be found in
536 Table S3. Samples were then sequenced using a 2x150 MiSeq cartridge with v2 chemistry at a
537 concentration of 4 pM and a 20% PhiX spike. A computational pipeline courtesy of Dr. Michael
538 Chase and the Fortune lab was used to determine the number and proportion of unique barcode
539 sequences in each sample from FASTQ files (93). Only barcodes present at a frequency of 1% or
540 greater were included. All figures were generated using Prism 9 and Adobe Illustrator 2019.

541

542 **Statistics**

543 For comparing longitudinal BAL data, linear mixed models with subject as a random
544 variable were used to test treatment groups over time (Table S4). Fixed effect tests were used to
545 assess whether there were differences among treatment groups or among time points. All time
546 points were then compared with Tukey HSD (honestly significant difference) test using the
547 Tukey-Kramer multiple comparison adjustment. Linear models were run in JMP® Pro
548 (v.14.3.0). A two-way repeated measures ANOVA was used to test if there were differences in
549 the number of barcodes between infection group (Mtb vs. SIV/ART/Mtb) and tissue type
550 (granulomas vs. thoracic lymph nodes) and Bonferroni's multiple comparison adjusted p-values
551 were reported (Figure S2B).

552 For all other data, the Shapiro-Wilk normality test was used to check for normal
553 distribution of data. Unpaired normally distributed data were analyzed using t tests, while
554 unpaired non-normally distributed data were analyzed with the Mann-Whitney U test. Statistical
555 tests were performed in Prism (version 8.2.1; GraphPad). All tests were two-sided, and statistical
556 significance was designated at a *P* value of < 0.05. *P* values between 0.05 and 0.10 were
557 considered trending.

558

559 **Sequence availability**

560 All Mtb barcode sequences are available on the Sequence Read Archive (SRA) under
561 accession number PRJNA900591.

562

563 ***Acknowledgements***

564 We would like to thank our collaborator at the University of Melbourne, Dr. Daniel
565 Pellicci for his valuable discussions and technical input. We thank the veterinary and laboratory
566 staffs of the TB Research Group at the University of Pittsburgh for their hard work. We are
567 grateful to Dr. Philana Ling Lin, MD, MPH for necropsy assistance and to Dr. Edwin Klein,
568 DVM for his expert review of the histopathology slides. We thank ViiV Healthcare for providing
569 DTG and Gilead Sciences Inc for providing TDF and FTC. The MR1 tetramer technology was
570 developed jointly by Dr. James McClusky, Dr. Jamie Rossjohn, and Dr. David Fairlie, and the
571 material was produced by the NIH Tetramer Core Facility as permitted by the University of
572 Melbourne (94). We thank the NIH Tetramer Core Facility (contract number 75N93020D00005)
573 for providing MR1 and CD1d tetramers. This work was supported by the National Institutes of
574 Health award AI142662.

575

576 **References**

- 577 1. World Health Organization. 2020. Global tuberculosis report 2020. Geneva: World Health
578 Organization. <https://www.who.int/publications/i/item/9789240013131>
- 579 2. Palme IB, Gudetta B, Bruchfeld J, Muhe L, Giesecke J. 2002. Impact of human
580 immunodeficiency virus 1 infection on clinical presentation, treatment outcome and survival in a
581 cohort of Ethiopian children with tuberculosis. *Pediatr Infect Dis J* 21:1053-61.
- 582 3. Dodd PJ, Prendergast AJ, Beecroft C, Kampmann B, Seddon JA. 2017. The impact of HIV and
583 antiretroviral therapy on TB risk in children: a systematic review and meta-analysis. *Thorax*
584 72:559-575.
- 585 4. Braitstein P, Nyandiko W, Vreeman R, Wools-Kaloustian K, Sang E, Musick B, Sidle J,
586 Yiannoutsos C, Ayaya S, Carter EJ. 2009. The clinical burden of tuberculosis among human
587 immunodeficiency virus-infected children in Western Kenya and the impact of combination
588 antiretroviral treatment. *Pediatr Infect Dis J* 28:626-32.
- 589 5. Mu W, Zhao Y, Sun X, Ma Y, Yu L, Liu X, Zhao D, Dou Z, Fang H, Zhang F. 2014. Incidence
590 and associated factors of pulmonary tuberculosis in HIV-infected children after highly active
591 antiretroviral therapy (HAART) in China: a retrospective study. *AIDS Care* 26:1127-35.
- 592 6. Martinson NA, Moultrie H, van Niekerk R, Barry G, Coovadia A, Cotton M, Violari A, Gray GE,
593 Chaisson RE, McIntyre JA, Meyers T. 2009. HAART and risk of tuberculosis in HIV-infected
594 South African children: a multi-site retrospective cohort. *Int J Tuberc Lung Dis* 13:862-7.
- 595 7. Jensen J, Alvaro-Meca A, Micheloud D, Diaz A, Resino S. 2012. Reduction in mycobacterial
596 disease among HIV-infected children in the highly active antiretroviral therapy era (1997-2008).
597 *Pediatr Infect Dis J* 31:278-83.
- 598 8. Jenkins HE, Yuen CM, Rodriguez CA, Nathavitharana RR, McLaughlin MM, Donald P, Marais
599 BJ, Becerra MC. 2017. Mortality in children diagnosed with tuberculosis: a systematic review
600 and meta-analysis. *Lancet Infect Dis* 17:285-295.
- 601 9. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Starke JJ, Enarson DA, Donald PR,
602 Beyers N. 2004. The natural history of childhood intra-thoracic tuberculosis: a critical review of
603 literature from the pre-chemotherapy era. *Int J Tuberc Lung Dis* 8:392-402.
- 604 10. Schaaf HS, Marais BJ, Whitelaw A, Hesseling AC, Eley B, Hussey GD, Donald PR. 2007.
605 Culture-confirmed childhood tuberculosis in Cape Town, South Africa: a review of 596 cases.
606 *BMC Infect Dis* 7:140.
- 607 11. Madhi SA, Huebner RE, Doedens L, Aduc T, Wesley D, Cooper PA. 2000. HIV-1 co-infection in
608 children hospitalised with tuberculosis in South Africa. *Int J Tuberc Lung Dis* 4:448-54.
- 609 12. Simon AK, Hollander GA, McMichael A. 2015. Evolution of the immune system in humans from
610 infancy to old age. *Proc Biol Sci* 282:20143085.
- 611 13. Trück J, van der Burg M. 2020. Development of adaptive immune cells and receptor repertoires
612 from infancy to adulthood. *Current Opinion in Systems Biology* 24:51-55.
- 613 14. Kumar BV, Connors TJ, Farber DL. 2018. Human T Cell Development, Localization, and
614 Function throughout Life. *Immunity* 48:202-213.
- 615 15. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, Wara DW,
616 Douglas SD, Luzuriaga K, McFarland EJ, Yogeve R, Rathore MH, Levy W, Graham BL, Spector
617 SA. 2003. Lymphocyte subsets in healthy children from birth through 18 years of age: the
618 Pediatric AIDS Clinical Trials Group P1009 study. *J Allergy Clin Immunol* 112:973-80.
- 619 16. Jalali S, Harpur CM, Piers AT, Auladell M, Perriman L, Li S, An K, Anderson J, Berzins SP,
620 Licciardi PV, Ashurst TM, Konstantinov IE, Pellicci DG. 2022. A high-dimensional cytometry
621 atlas of peripheral blood over the human life span. *Immunol Cell Biol* 100:805-821.
- 622 17. Janković V, Messaoudi I, Nikolich-Zugich J. 2003. Phenotypic and functional T-cell aging in
623 rhesus macaques (*Macaca mulatta*): differential behavior of CD4 and CD8 subsets. *Blood*
624 102:3244-51.

625 18. Pitcher CJ, Hagen SI, Walker JM, Lum R, Mitchell BL, Maino VC, Axthelm MK, Picker LJ.
626 2002. Development and homeostasis of T cell memory in rhesus macaque. *J Immunol* 168:29-43.

627 19. Serbina NV, Lazarevic V, Flynn JL. 2001. CD4(+) T cells are required for the development of
628 cytotoxic CD8(+) T cells during *Mycobacterium tuberculosis* infection. *J Immunol* 167:6991-
629 7000.

630 20. van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. 2000. Control of latent
631 Mycobacterium tuberculosis infection is dependent on CD8 T cells. *Eur J Immunol* 30:3689-98.

632 21. Baker CA, Clark R, Ventura F, Jones NG, Guzman D, Bangsberg DR, Cao H. 2007. Peripheral
633 CD4 loss of regulatory T cells is associated with persistent viraemia in chronic HIV infection.
634 *Clin Exp Immunol* 147:533-9.

635 22. Okoye AA, Picker LJ. 2013. CD4(+) T-cell depletion in HIV infection: mechanisms of
636 immunological failure. *Immunol Rev* 254:54-64.

637 23. Hoffmann M, Pantazis N, Martin GE, Hickling S, Hurst J, Meyerowitz J, Willberg CB, Robinson
638 N, Brown H, Fisher M, Kinloch S, Babiker A, Weber J, Nwokolo N, Fox J, Fidler S, Phillips R,
639 Frater J, Spartac, Investigators C. 2016. Exhaustion of Activated CD8 T Cells Predicts Disease
640 Progression in Primary HIV-1 Infection. *PLoS Pathog* 12:e1005661.

641 24. Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. 2019. T-cell exhaustion
642 in HIV infection. *Immunol Rev* 292:149-163.

643 25. Rutishauser RL, Hartogensis W, Deguit CD, Krone M, Hoh R, Hecht FM, Pilcher CD, Bacchetti
644 P, Deeks SG, Hunt PW, McCune JM. 2017. Early and Delayed Antiretroviral Therapy Results in
645 Comparable Reductions in CD8(+) T Cell Exhaustion Marker Expression. *AIDS Res Hum*
646 *Retroviruses* 33:658-667.

647 26. Jensen SS, Fomsgaard A, Larsen TK, Tingstedt JL, Gerstoft J, Kronborg G, Pedersen C, Karlsson
648 I. 2015. Initiation of Antiretroviral Therapy (ART) at Different Stages of HIV-1 Disease Is Not
649 Associated with the Proportion of Exhausted CD8+ T Cells. *PLoS One* 10:e0139573.

650 27. Gras L, May M, Ryder LP, Trickey A, Helleberg M, Obel N, Thiebaut R, Guest J, Gill J, Crane
651 H, Dias Lima V, d'Arminio Monforte A, Sterling TR, Miro J, Moreno S, Stephan C, Smith C,
652 Tate J, Shepherd L, Saag M, Rieger A, Gillor D, Cavassini M, Montero M, Ingle SM, Reiss P,
653 Costagliola D, Wit F, Sterne J, de Wolf F, Geskus R. 2019. Determinants of Restoration of CD4
654 and CD8 Cell Counts and Their Ratio in HIV-1-Positive Individuals With Sustained Virological
655 Suppression on Antiretroviral Therapy. *J Acquir Immune Defic Syndr* 80:292-300.

656 28. Alvarez P, Mwamzuka M, Marshed F, Kravietz A, Ilmet T, Ahmed A, Borkowsky W, Khaitan A.
657 2017. Immune activation despite preserved CD4 T cells in perinatally HIV-infected children and
658 adolescents. *PLoS One* 12:e0190332.

659 29. Shao L, Zhang W, Zhang S, Chen CY, Jiang W, Xu Y, Meng C, Weng X, Chen ZW. 2008.
660 Potent immune responses of Ag-specific Vgamma2Vdelta2+ T cells and CD8+ T cells associated
661 with latent stage of *Mycobacterium tuberculosis* coinfection in HIV-1-infected humans. *Aids*
662 22:2241-50.

663 30. Shen L, Frencher J, Huang D, Wang W, Yang E, Chen CY, Zhang Z, Wang R, Qaqish A, Larsen
664 MH, Shen H, Porcelli SA, Jacobs WR, Jr., Chen ZW. 2019. Immunization of V γ 2V δ 2 T cells
665 programs sustained effector memory responses that control tuberculosis in nonhuman primates.
666 *Proc Natl Acad Sci U S A* 116:6371-6378.

667 31. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick
668 GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA,
669 Hansen TH, Lewinsohn DM. 2010. Human mucosal associated invariant T cells detect bacterially
670 infected cells. *PLoS Biol* 8:e1000407.

671 32. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA. 2003. T-cell responses to CD1-
672 presented lipid antigens in humans with *Mycobacterium tuberculosis* infection. *Infect Immun*
673 71:3076-87.

674 33. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. 2008. Innate invariant NKT cells
675 recognize *Mycobacterium* tuberculosis-infected macrophages, produce interferon-gamma, and
676 kill intracellular bacteria. *PLoS Pathog* 4:e1000239.

677 34. Juno JA, Eriksson EM. 2019. $\gamma\delta$ T-cell responses during HIV infection and antiretroviral therapy.
678 *Clin Transl Immunology* 8:e01069.

679 35. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, Somsouk M, Deeks
680 SG, Martin JN, Moll M, Shacklett BL, Sandberg JK. 2013. Activation, exhaustion, and persistent
681 decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection.
682 *Blood* 121:1124-35.

683 36. Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. 2014. NKT cell depletion in
684 humans during early HIV infection. *Immunol Cell Biol* 92:578-90.

685 37. Capuano SV, 3rd, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel S, Fuhrman C, Klein
686 E, Flynn JL. 2003. Experimental *Mycobacterium* tuberculosis infection of cynomolgus macaques
687 closely resembles the various manifestations of human *M. tuberculosis* infection. *Infect Immun*
688 71:5831-44.

689 38. Scanga CA, Flynn JL. 2014. Modeling tuberculosis in nonhuman primates. *Cold Spring Harb
690 Perspect Med* 4:a018564.

691 39. Schmitz JE, Korioth-Schmitz B. 2013. Immunopathogenesis of simian immunodeficiency virus
692 infection in nonhuman primates. *Curr Opin HIV AIDS* 8:273-9.

693 40. Rodgers MA, Ameel C, Ellis-Connell AL, Balgeman AJ, Maiello P, Barry GL, Friedrich TC,
694 Klein E, O'Connor SL, Scanga CA. 2018. Preexisting Simian Immunodeficiency Virus Infection
695 Increases Susceptibility to Tuberculosis in Mauritian Cynomolgus Macaques. *Infect Immun* 86.

696 41. Kerkhoff AD, Barr DA, Schutz C, Burton R, Nicol MP, Lawn SD, Meintjes G. 2017.
697 Disseminated tuberculosis among hospitalised HIV patients in South Africa: a common condition
698 that can be rapidly diagnosed using urine-based assays. *Sci Rep* 7:10931.

699 42. Rugină S, Dumitru IM, Resul G, Cernat RC, Petcu AE. 2014. Disseminated tuberculosis in HIV-
700 infected patients from the Regional HIV/AIDS Center Constanța, Romania. *Germs* 4:16-21.

701 43. Schutz C, Barr D, Andrade BB, Shey M, Ward A, Janssen S, Burton R, Wilkinson KA, Sossen B,
702 Fukutani KF, Nicol M, Maartens G, Wilkinson RJ, Meintjes G. 2019. Clinical, microbiologic,
703 and immunologic determinants of mortality in hospitalized patients with HIV-associated
704 tuberculosis: A prospective cohort study. *PLOS Medicine* 16:e1002840.

705 44. Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski
706 TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. 2021. Pre-existing Simian
707 Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with
708 Activation during Early *Mycobacterium* tuberculosis Coinfection and Impairs TNF Responses in
709 Granulomas. *J Immunol* 207:175-188.

710 45. Cepeda M, Salas M, Folwarczny J, Leandro AC, Hodara VL, de la Garza MA, Dick EJ, Jr.,
711 Owston M, Armitige LY, Gauduin MC. 2013. Establishment of a neonatal rhesus macaque model
712 to study *Mycobacterium* tuberculosis infection. *Tuberculosis (Edinb)* 93 Suppl:S51-9.

713 46. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, Shen Y, Halliday L, Fortman J,
714 McAllister M, Estep J, Hunt R, Vasconcelos D, Du G, Porcelli SA, Larsen MH, Jacobs WR, Jr.,
715 Haynes BF, Letvin NL, Chen ZW. 2009. A Critical Role for CD8 T Cells in a Nonhuman Primate
716 Model of Tuberculosis. *PLOS Pathogens* 5:e1000392.

717 47. Qiu L, Huang D, Chen CY, Wang R, Shen L, Shen Y, Hunt R, Estep J, Haynes BF, Jacobs WR,
718 Jr., Letvin N, Du G, Chen ZW. 2008. Severe tuberculosis induces unbalanced up-regulation of
719 gene networks and overexpression of IL-22, MIP-1alpha, CCL27, IP-10, CCR4, CCR5, CXCR3,
720 PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. *J Infect
721 Dis* 198:1514-9.

722 48. Diedrich CR, Gideon HP, Rutledge T, Baranowski TM, Maiello P, Myers AJ, Lin PL. 2019.
723 CD4CD8 Double Positive T cell responses during *Mycobacterium* tuberculosis infection in
724 cynomolgus macaques. *J Med Primatol* 48:82-89.

725 49. Benhassan-Chahour K, Penit C, Dioszeghy V, Vasseur F, Janvier G, Rivière Y, Dereuddre-
726 Bosquet N, Dormont D, Le Grand R, Vaslin B. 2003. Kinetics of lymphocyte proliferation during
727 primary immune response in macaques infected with pathogenic simian immunodeficiency virus
728 SIVmac251: preliminary report of the effect of early antiviral therapy. *J Virol* 77:12479-93.

729 50. Pandrea I, Gaufin T, Gautam R, Kristoff J, Mandell D, Montefiori D, Keele BF, Ribeiro RM,
730 Veazey RS, Apetrei C. 2011. Functional cure of SIVagm infection in rhesus macaques results in
731 complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion. *PLoS Pathog*
732 7:e1002170.

733 51. Koopman G, Mortier D, Hofman S, Koutsoukos M, Bogers W, Wahren B, Voss G, Heeney JL.
734 2009. Acute-phase CD4+ T-cell proliferation and CD152 upregulation predict set-point virus
735 replication in vaccinated simian-human immunodeficiency virus strain 89.6p-infected macaques.
736 *J Gen Virol* 90:915-926.

737 52. Ito T, Carson WF, Cavassani KA, Connett JM, Kunkel SL. 2011. CCR6 as a mediator of
738 immunity in the lung and gut. *Exp Cell Res* 317:613-9.

739 53. Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, Alvarez X,
740 Velu V, Kaushal D, Rengarajan J. 2020. Pulmonary *Mycobacterium tuberculosis* control
741 associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment.
742 *JCI Insight* 5.

743 54. Ahsan MH, Gill AF, Lackner AA, Veazey RS. 2012. Acute and chronic T cell dynamics in the
744 livers of simian immunodeficiency virus-infected macaques. *J Virol* 86:5244-52.

745 55. Wang X, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Xu H. 2019. Chemokine receptor
746 CCR5 correlates with functional CD8(+) T cells in SIV-infected macaques and the potential
747 effects of maraviroc on T-cell activation. *Faseb j* 33:8905-8912.

748 56. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Scanga CA, Flynn JL. 2018. Rhesus
749 Macaques Are More Susceptible to Progressive Tuberculosis than Cynomolgus Macaques: a
750 Quantitative Comparison. *Infect Immun* 86.

751 57. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM,
752 Flynn JL. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite
753 within-host variability in bacterial killing. *Nat Med* 20:75-9.

754 58. Martin CJ, Cadena AM, Leung VW, Lin PL, Maiello P, Hicks N, Chase MR, Flynn JL, Fortune
755 SM. 2017. Digitally Barcoding *Mycobacterium tuberculosis* Reveals In Vivo Infection Dynamics
756 in the Macaque Model of Tuberculosis. *MBio* 8.

757 59. de Noronha AL, Báfica A, Nogueira L, Barral A, Barral-Netto M. 2008. Lung granulomas from
758 *Mycobacterium tuberculosis/HIV-1* co-infected patients display decreased in situ TNF
759 production. *Pathol Res Pract* 204:155-61.

760 60. Diedrich CR, O'Hern J, Wilkinson RJ. 2016. HIV-1 and the *Mycobacterium tuberculosis*
761 granuloma: A systematic review and meta-analysis. *Tuberculosis (Edinb)* 98:62-76.

762 61. Thomas TA. 2017. Tuberculosis in Children. *Pediatr Clin North Am* 64:893-909.

763 62. UNAIDS. 2021. UNAIDS data 2021.
764 https://www.unaids.org/en/resources/documents/2021/2021_unaids_data

765 63. Lawn SD, Myer L, Edwards D, Bekker LG, Wood R. 2009. Short-term and long-term risk of
766 tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South Africa.
767 AIDS 23:1717-25.

768 64. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD. 2012. Tuberculosis incidence rates during 8
769 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in
770 the community. *PLoS One* 7:e34156.

771 65. Anigilaje EA, Aderibigbe SA, Adeoti AO, Nweke NO. 2016. Tuberculosis, before and after
772 Antiretroviral Therapy among HIV-Infected Children in Nigeria: What Are the Risk Factors?
773 *PLoS One* 11:e0156177.

774 66. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T,
775 Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. 2015. Variability in tuberculosis

776 granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is
777 associated with sterilization. *PLoS Pathog* 11:e1004603.

778 67. Green AM, Difazio R, Flynn JL. 2013. IFN- γ from CD4 T cells is essential for host survival and
779 enhances CD8 T cell function during *Mycobacterium tuberculosis* infection. *J Immunol* 190:270-
780 7.

781 68. Allie N, Grivennikov SI, Keeton R, Hsu NJ, Bourigault ML, Court N, Fremond C, Yeremeev V,
782 Shebzukhov Y, Ryffel B, Nedospasov SA, Quesniaux VF, Jacobs M. 2013. Prominent role for T
783 cell-derived tumour necrosis factor for sustained control of *Mycobacterium tuberculosis*
784 infection. *Sci Rep* 3:1809.

785 69. Chiacchio T, Petruccioli E, Vanini V, Cuzzi G, La Manna MP, Orlando V, Pinnelli C, Sampaolesi
786 A, Antinori A, Caccamo N, Goletti D. 2018. Impact of antiretroviral and tuberculosis therapies on
787 CD4(+) and CD8(+) HIV/M. tuberculosis-specific T-cell in co-infected subjects. *Immunol Lett*
788 198:33-43.

789 70. Riou C, Jhilmeet N, Rangaka MX, Wilkinson RJ, Wilkinson KA. 2020. Tuberculosis Antigen-
790 Specific T-Cell Responses During the First 6 Months of Antiretroviral Treatment. *J Infect Dis*
791 221:162-167.

792 71. Sharan R, Ganatra SR, Bucsan AN, Cole J, Singh DK, Alvarez X, Gough M, Alvarez C, Blakley
793 A, Ferdin J, Thippesappa R, Singh B, Escobedo R, Shivanna V, Dick EJ, Jr., Hall-Ursone S,
794 Khader SA, Mehra S, Rengarajan J, Kaushal D. 2022. Antiretroviral therapy timing impacts latent
795 tuberculosis infection reactivation in a *Mycobacterium tuberculosis/SIV* coinfection model. *J Clin
796 Invest* 132.

797 72. Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. 2017. HIV as a Cause of Immune Activation
798 and Immunosenescence. *Mediators of Inflammation* 2017:6825493.

799 73. Sharan R, Bucsan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D.
800 2020. Chronic Immune Activation in TB/HIV Co-infection. *Trends Microbiol* 28:619-632.

801 74. Pollock KM, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapembwa MS, Kon OM, Sampson RD,
802 Taylor GP, Lalvani A. 2016. PD-1 Expression and Cytokine Secretion Profiles of *Mycobacterium
803 tuberculosis*-Specific CD4+ T-Cell Subsets; Potential Correlates of Containment in HIV-TB Co-
804 Infection. *PLoS One* 11:e0146905.

805 75. Kauffman KD, Sakai S, Lora NE, Namasivayam S, Baker PJ, Kamenyeva O, Foreman TW,
806 Nelson CE, Oliveira-de-Souza D, Vinhaes CL, Yaniv Z, Lindestam Arleham CS, Sette A,
807 Freeman GJ, Moore R, Sher A, Mayer-Barber KD, Andrade BB, Kabat J, Via LE, Barber DL.
808 2021. PD-1 blockade exacerbates *Mycobacterium tuberculosis* infection in rhesus macaques. *Sci
809 Immunol* 6.

810 76. Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M, Walzl G, Wilkinson RJ, Burgers WA,
811 Hanekom WA. 2018. PD-1 Expression on *Mycobacterium tuberculosis*-Specific CD4 T Cells Is
812 Associated With Bacterial Load in Human Tuberculosis. *Front Immunol* 9:1995.

813 77. Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, Hammond KB, Clayton KL, Ishii
814 N, Abdel-Mohsen M, Liegler T, Mitchell BI, Hecht FM, Ostrowski M, Shikuma CM, Hansen SG,
815 Maurer M, Korman AJ, Deeks SG, Sacha JB, Ndhlovu LC. 2016. TIGIT Marks Exhausted T
816 Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in
817 HIV and SIV Infection. *PLoS Pathog* 12:e1005349.

818 78. Wilkinson KA, Schneider-Luftman D, Lai R, Barrington C, Jhilmeet N, Lowe DM, Kelly G,
819 Wilkinson RJ. 2021. Antiretroviral Treatment-Induced Decrease in Immune Activation
820 Contributes to Reduced Susceptibility to Tuberculosis in HIV-1/Mtb Co-infected Persons. *Front
821 Immunol* 12:645446.

822 79. Geldmacher C, Schuetz A, Ngwenyama N, Casazza JP, Sanga E, Saathoff E, Boehme C, Geis S,
823 Maboko L, Singh M, Minja F, Meyerhans A, Koup RA, Hoelscher M. 2008. Early depletion of
824 *Mycobacterium tuberculosis*-specific T helper 1 cell responses after HIV-1 infection. *J Infect Dis*
825 198:1590-8.

826 80. Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ, Casazza JP,
827 Ambrozak DR, Louder M, Ampofo W, Pollakis G, Hill B, Sanga E, Saathoff E, Maboko L,
828 Roederer M, Paxton WA, Hoelscher M, Koup RA. 2010. Preferential infection and depletion of
829 Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. *J Exp Med* 207:2869-81.
830 81. Santucci MB, Bocchino M, Garg SK, Marruchella A, Colizzi V, Saltini C, Fraziano M. 2004.
831 Expansion of CCR5+ CD4+ T-lymphocytes in the course of active pulmonary tuberculosis. *Eur*
832 *Respir J* 24:638-43.
833 82. Foreman TW, Nelson CE, Kauffman KD, Lora NE, Vinhaes CL, Dorosky DE, Sakai S, Gomez F,
834 Fleegle JD, Parham M, Perera SR, Lindestam Arlehamn CS, Sette A, Brenchley JM, Queiroz
835 ATL, Andrade BB, Kabat J, Via LE, Barber DL. 2022. CD4 T cells are rapidly depleted from
836 tuberculosis granulomas following acute SIV co-infection. *Cell Rep* 39:110896.
837 83. Meijerink H, Indrati AR, van Crevel R, Joosten I, Koenen H, van der Ven AJAM. 2014. The
838 number of CCR5 expressing CD4+ T lymphocytes is lower in HIV-infected long-term non-
839 progressors with viral control compared to normal progressors: a cross-sectional study. *BMC*
840 *Infectious Diseases* 14:683.
841 84. Sterling TR, Lin PL. 2020. Treatment of latent M. tuberculosis infection and use of antiretroviral
842 therapy to prevent tuberculosis. *J Clin Invest* 130:5102-5104.
843 85. Frange P, Montange T, Le Chenadec J, Batalie D, Fert I, Dollfus C, Faye A, Blanche S, Chacé A,
844 Fourcade C, Hau I, Levine M, Mahlaoui N, Marcou V, Tabone M-D, Veber F, Hoctin A, Wack T,
845 Avettand-Fenoël V, Warszawski J, Buseyne F. 2021. Impact of Early Versus Late Antiretroviral
846 Treatment Initiation on Naive T Lymphocytes in HIV-1-Infected Children and Adolescents –
847 The-ANRS-EP59-CLEAC Study. *Frontiers in Immunology* 12.
848 86. Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, Jean-Philippe P, McIntyre JA.
849 2008. Early antiretroviral therapy and mortality among HIV-infected infants. *N Engl J Med*
850 359:2233-44.
851 87. Budde ML, Wiseman RW, Karl JA, Hanczaruk B, Simen BB, O'Connor DH. 2010.
852 Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I
853 haplotypes by high-resolution pyrosequencing. *Immunogenetics* 62:773-80.
854 88. Fennessey CM, Pinkeych M, Immonen TT, Reynaldi A, Venturi V, Nadella P, Reid C, Newman
855 L, Lipkey L, Oswald K, Bosche WJ, Trivett MT, Ohlen C, Ott DE, Estes JD, Del Prete GQ,
856 Lifson JD, Davenport MP, Keele BF. 2017. Genetically-barcoded SIV facilitates enumeration of
857 rebound variants and estimation of reactivation rates in nonhuman primates following
858 interruption of suppressive antiretroviral therapy. *PLoS Pathog* 13:e1006359.
859 89. Borducchi EN, Cabral C, Stephenson KE, Liu J, Abbink P, Ng'ang'a D, Nkolola JP, Brinkman
860 AL, Peter L, Lee BC, Jimenez J, Jetton D, Mondesir J, Mojta S, Chandrashekhar A, Molloy K,
861 Alter G, Gerold JM, Hill AL, Lewis MG, Pau MG, Schuitemaker H, Hesselgesser J, Gelezunas
862 R, Kim JH, Robb ML, Michael NL, Barouch DH. 2016. Ad26/MVA therapeutic vaccination with
863 TLR7 stimulation in SIV-infected rhesus monkeys. *Nature* 540:284-287.
864 90. Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR, Cottle E, Dunn
865 MD, Frye LJ, Gilliland TH, Olsen EL, O'Malley KJ, Schwarz MM, Tomko JA, Walker RC, Xia
866 M, Hartman MS, Klein E, Scanga CA, Flynn JL, Klimstra WB, McElroy AK, Reed DS, Duprex
867 WP. 2020. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease
868 discernible by PET/CT imaging and shedding of infectious virus from both respiratory and
869 gastrointestinal tracts. *PLoS Pathog* 16:e1008903.
870 91. Sarnyai Z, Nagy K, Patay G, Molnár M, Rosenqvist G, Tóth M, Takano A, Gulyás B, Major P,
871 Halldin C, Varrone A. 2019. Performance Evaluation of a High-Resolution Nonhuman Primate
872 PET/CT System. *J Nucl Med* 60:1818-1824.
873 92. White AG, Maiello P, Coleman MT, Tomko JA, Frye LJ, Scanga CA, Lin PL, Flynn JL. 2017.
874 Analysis of 18FDG PET/CT Imaging as a Tool for Studying Mycobacterium tuberculosis
875 Infection and Treatment in Non-human Primates. *J Vis Exp* doi:10.3791/56375.

876 93. Moriarty RV, Rodgers MA, Ellis AL, Balgeman AJ, Larson EC, Hopkins F, Chase MR, Maiello
877 P, Fortune SM, Scanga CA, O'Connor SL. 2022. Spontaneous Control of SIV Replication Does
878 Not Prevent T Cell Dysregulation and Bacterial Dissemination in Animals Co-Infected with *M.*
879 *tuberculosis*. *Microbiol Spectr* 10:e0172421.

880 94. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R,
881 Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-
882 Nielsen L, Rossjohn J, McCluskey J. 2014. T-cell activation by transitory neo-antigens derived
883 from distinct microbial pathways. *Nature* 509:361-5.

884

885 **Figure Legends**

886 **Figure 1. Plasma viremia of SIV-infected, ART-treated macaques over the course of SIV**

887 **and Mtb coinfection.** Plasma viral copy equivalents were determined by qRT-PCR. Each point

888 indicates an individual animal. Horizontal dashed line represents the limit of detection.

889

890 **Figure 2. Composition of T cell subsets in airways over time.** BALs were collected over the

891 course of SIV and Mtb infection. A) Proportions of T cell subsets by median event counts. B-J)

892 Frequencies of T cell subsets over time relative to CD3+ gate. Individual animals indicated by

893 symbols. SIV-infected, ART-treated Mtb coinfecting macaques are indicated by orange lines and

894 macaques infected with Mtb alone are indicated by teal lines. A mixed statistical model was

895 performed to determine significance with fixed effects (time and group) and random effects

896 (individual animals). Bars with asterisks indicate significance between time points; # 0.05 < p <

897 0.1, * p < 0.05, and *** p < 0.0001.

898

899 **Figure 3. CCR5+ CD4+ and CD8+ T cells in airways at 8 weeks post Mtb infection.** BAL

900 cells were collected over the course of SIV and at 8 weeks post Mtb infection and stained for

901 flow cytometry. A&B) Individual animals indicated by symbols. SIV-infected, ART-treated Mtb

902 coinfecting macaques are indicated by orange lines and macaques infected with Mtb alone are

903 indicated by teal lines. A mixed statistical model was performed to determine significance with

904 fixed effects (time and group) and random effects (individual animals). Bars with asterisks

905 indicate significance between time points; # 0.05 < p < 0.1, * p < 0.05, and ** p < 0.01. A)

906 Frequencies of CCR5+ CD4+ T cells over the course of the study. B) Frequencies of CCR5+

907 CD8+ T cells over the course of the study. C) Absolute CCR5+/- CD4+ and CD8+ T cells in

908 airways at 8 weeks post Mtb. Absolute cell counts were calculated from the hemacytometer cell
909 count. Individual samples indicate individual animals and bars indicate group medians. Mann
910 Whitney U tests was performed to determine significance between groups. P-values are shown.

911

912 **Figure 4. TB progression by PET/CT imaging.** A) Lung FDG activity over time. SIV-infected,
913 ART-treated Mtb coinfecting macaques (orange lines) and macaques infected Mtb alone (teal
914 lines). Individual animals are shown. B) The number of granulomas identified by PET-CT at 4,
915 8, and 12 weeks (pre-necropsy). SIV-infected, ART-treated Mtb coinfecting macaques (orange
916 lines) and macaques infected Mtb alone (teal lines). Individual animals are shown. C) Total lung
917 FDG activity at time of necropsy. Bars indicate medians of group. An unpaired t test of group
918 medians was performed. *P*-value is shown. D) The number of granulomas identified at necropsy
919 (12 wks *p.i. Mtb*). Bars indicate medians of group. A Mann Whitney U test of group medians
920 was performed. *P*-value is shown.

921

922 **Figure 5. TB pathology and CFU at 12 weeks post Mtb infection.** Bars indicate medians of
923 group. Unpaired t tests of group medians were performed. *P*-values are shown. A) Total
924 pathology score. B) Lung pathology score. C) Thoracic lymph node pathology score. D)
925 Extrapulmonary pathology score. E) Total thoracic CFU (lung CFU + thoracic lymph nodes
926 CFU). F) Lung CFU. G) Thoracic lymph nodes CFU. H) Percent CFU+ granulomas or clusters.

927

928 **Figure 6. Bacterial burden in individual granulomas.** A) CFU per granuloma by animal.
929 Symbols represent CFU from individual granulomas. Bars indicate median CFU per animal. Mtb
930 only animals (left panel) and SIV/ART/Mtb animals (right panel). B) Combined CFU for Mtb

931 only and SIV/ART/Mtb groups. Outlined symbols indicate median per animal and non-outlined
932 symbols indicate individual granulomas. Bars indicate median CFU per animal per group and an
933 unpaired t test was performed to determine significance. The p-value is shown.

934

935 **Figure 7. Cytokine responses in lung tissue.** Lung tissue was stimulated with H37Rv whole
936 cell lysate for 14 hours. Cytokine production was corrected for against unstimulated controls.
937 Bars indicate medians of pooled data. Mann Whitney U tests were performed to determine
938 significance. *P*-values are shown. A) IFN γ production in CD4+ T cells. B) TNF production in
939 CD4+ T cells. C) IFN γ production in CD8+ T cells. D) TNF production in CD8+ T cells.

940

941 **Figure 8. T cell subsets in granulomas.** A) Proportion of T cell subsets in individual
942 granulomas by median event counts. B-H) Frequencies of T cell subsets in granulomas relative
943 to CD3+ gate. B) CD4+ T cells. C) CD8+ T cells. D) CD4+CD8+ T cells. E) CD4-CD8- T cells.
944 F) V γ 9+ T cells. G) CD1d tet+ T cells. H) MR1 tet+ T cells. Outlined symbols indicate median
945 per animal and unlined symbols indicate individual samples. Bars indicate group medians.
946 Wilcoxon tests of group medians were performed to determine significance. *P*-values are shown.

947

948 **Figure 9. CCR5 frequency of CD4+ and CD8+ T cells isolated from granulomas.**
949 Frequencies of CCR5+ CD4+ and CD8+ T cells in granulomas. Outlined symbols indicate
950 median per animal and unlined symbols indicate individual samples. Bars indicate group
951 medians. A) CCR5+ CD4+ T cells. An unpaired t test was performed of group medians to
952 determine significance. B) CCR5+ CD8+ T cells. A Mann Whitney U test of group medians was
953 performed to determine significance. *P*-values are shown.

954

955 **Figure 10. PD-1, TIGIT, and ki-67 frequency of CD4+ and CD8+ T cells isolated from**
956 **granulomas.** Frequencies of phenotype markers in granulomas relative to CD4+ or CD8+ gate.
957 Outlined symbols indicate median per animal and unlined symbols indicate individual samples.
958 Bars indicate group medians. Mann Whitney U tests of group medians were performed to
959 determine significance. *P*-values are shown. A) PD-1+ CD4+ T cells. B) TIGIT+ CD4+ T cells.
960 C) ki-67+ CD4+ T cells. D) PD-1+ CD8+ T cells. E) TIGIT+ CD8+ T cells. F) ki-67+ CD8+ T
961 cells.

962

963 **Supplementary Materials**

964 **Table S1. Juvenile macaques *Mtb* outcome data**

965

966 **Table S2. List of antibodies used for flow cytometry.**

967

968 **Table S3. List of primers used for uniquely tagged Mtb.**

969

970 **Table S4. Statistics of BAL T cell composition.** A mixed statistical model was performed to
971 determine significance with fixed effects (time and group) and random effects (individual
972 animals). Tukey Pairwise comparisons were performed between time points.

973

974 **Figure S1. Phenotype of CD3+CD4+ and CD3+CD8+ T cells in airways over time.**

975 Proliferation (ki-67), activation/exhaustion (PD-1 & TIGIT), and chemokine receptors (CXCR3
976 & CCR6) were measured on CD4+ and CD8+ T cells by flow cytometry. Individual animals

977 indicated by symbols. SIV-infected, ART-treated Mtb coinfecte animals are indicated by
978 orange lines and animals infected with Mtb alone are indicated by teal lines. A mixed statistical
979 model was performed to determine significance with fixed effects (time and group) and random
980 effects (individual animals). Bars with asterisks indicate significance between time points; # 0.05
981 $< p < 0.1$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** $p < 0.0001$.

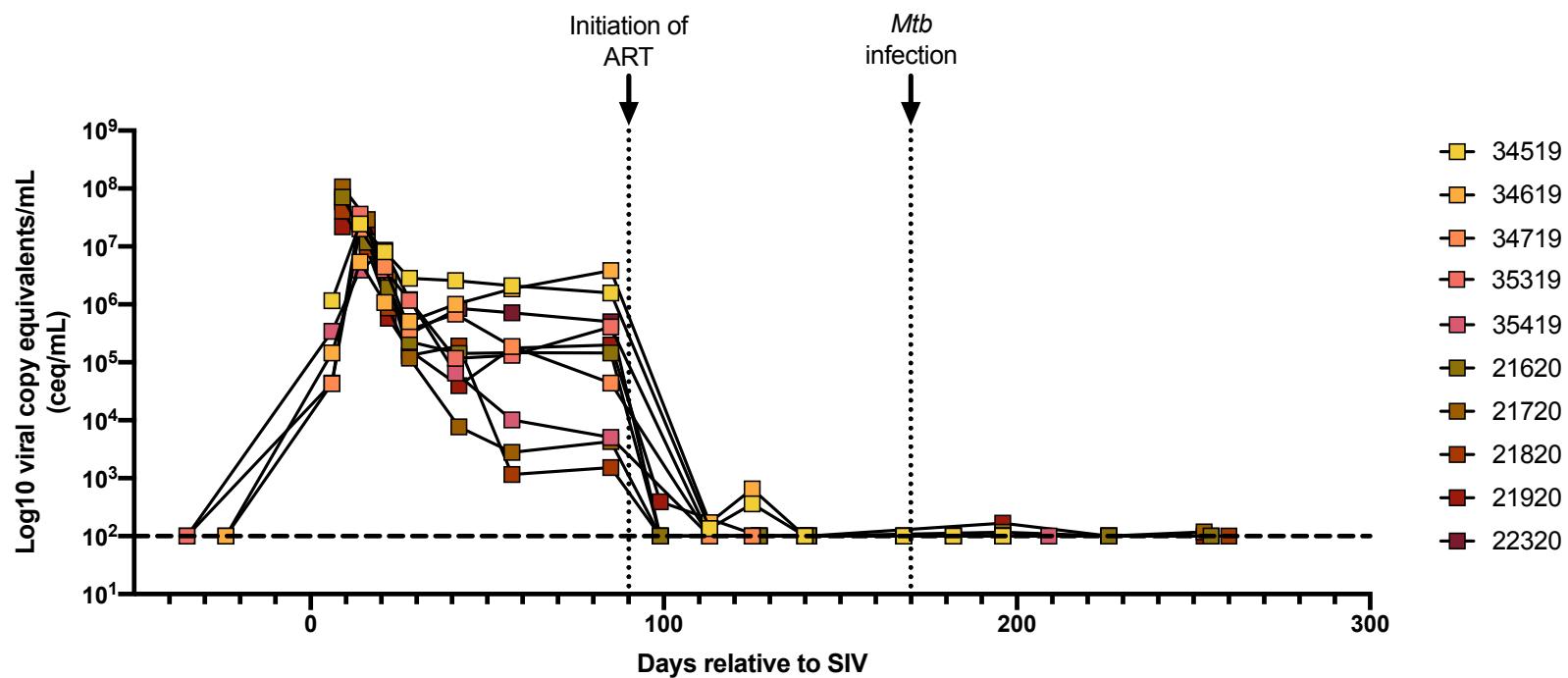
982

983 **Figure S2. Bacterial dissemination in macaques infected with Mtb alone or SIV-infected,**
984 **ART-treated Mtb coinfecte macaques.** A) Total number of uniquely tagged Mtb lineages
985 found in each animal. Significance was determined using Mann Whitney U tests. Each dot
986 indicates an individual animal. B) Number of barcodes identified within granulomas or thoracic
987 lymph nodes. A two-way repeated measures ANOVA with Bonferroni's multiple comparison
988 was used to determine differences in the number of barcodes between infection group and tissue
989 type. Each dot indicates an individual animal.

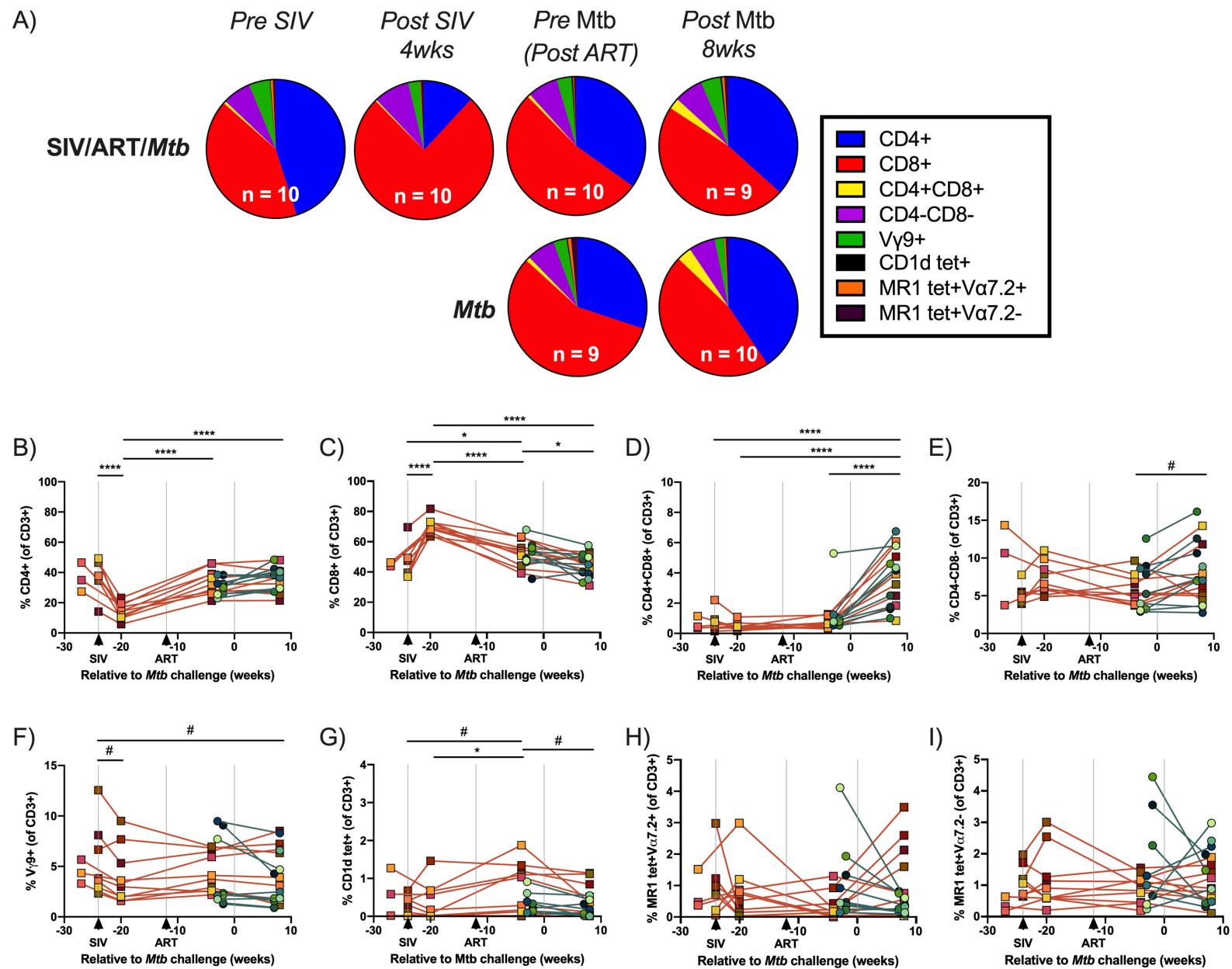
990

991 **Figure S3. T cell subsets in lung tissue, thoracic lymph nodes, extrathoracic lymph nodes,**
992 **spleen, and PBMC.** Frequencies of T cell subsets relative to CD3+ gate. Outlined symbols
993 indicate median per animal and unlined symbols indicate individual samples. Bars indicate group
994 medians. Mann Whitney U tests of group medians were performed to determine significance. *P*-
995 values are shown. A) CD4+ T cells. B) CD8+ T cells. C) CD4+CD8+ T cells. D) CD4-CD8- T
996 cells. E) V γ 9+ γ 8 T cells. F) CD1d tet+ NKT cells. G) MR1 tet+ MAIT cells.

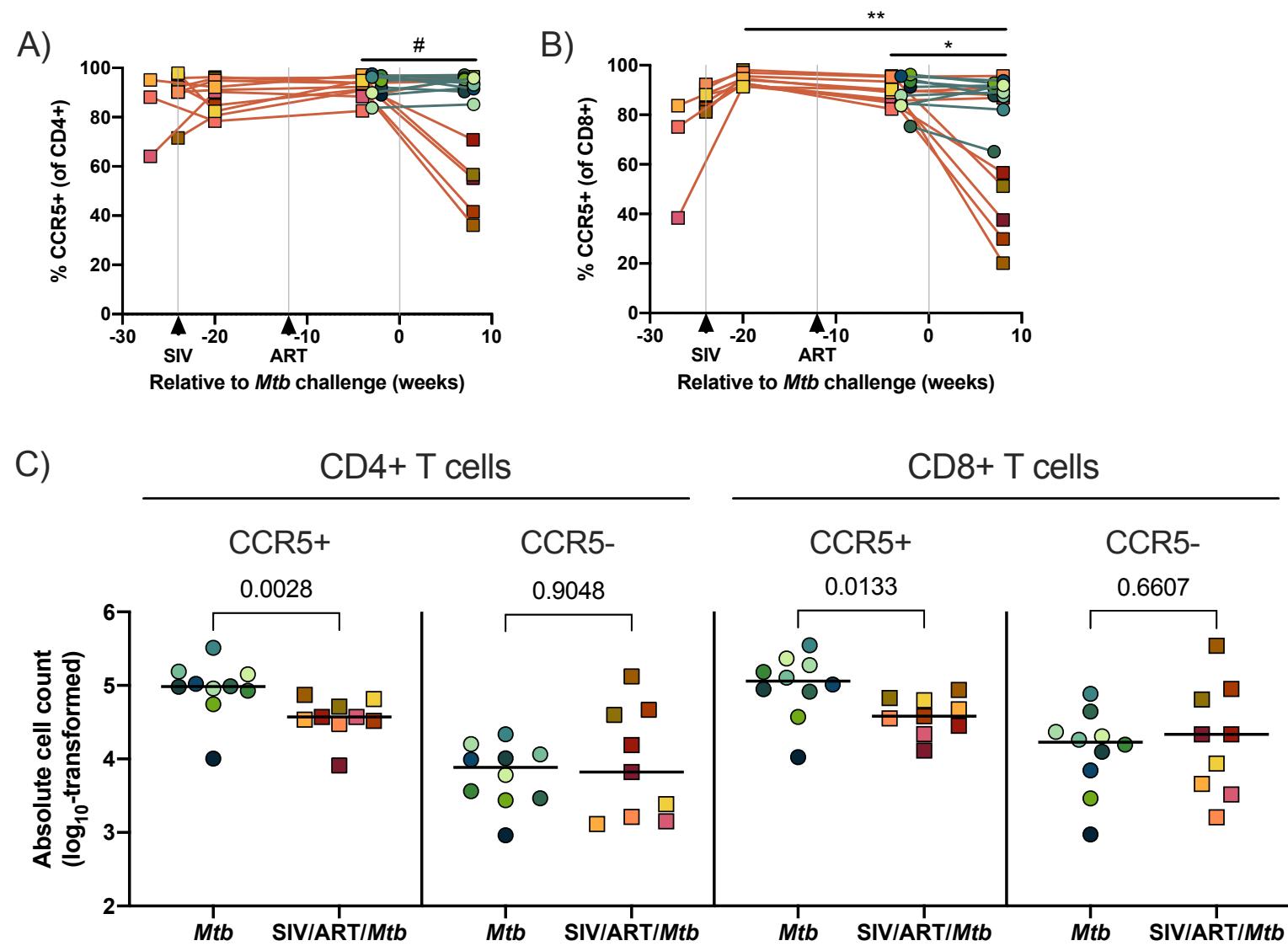
997

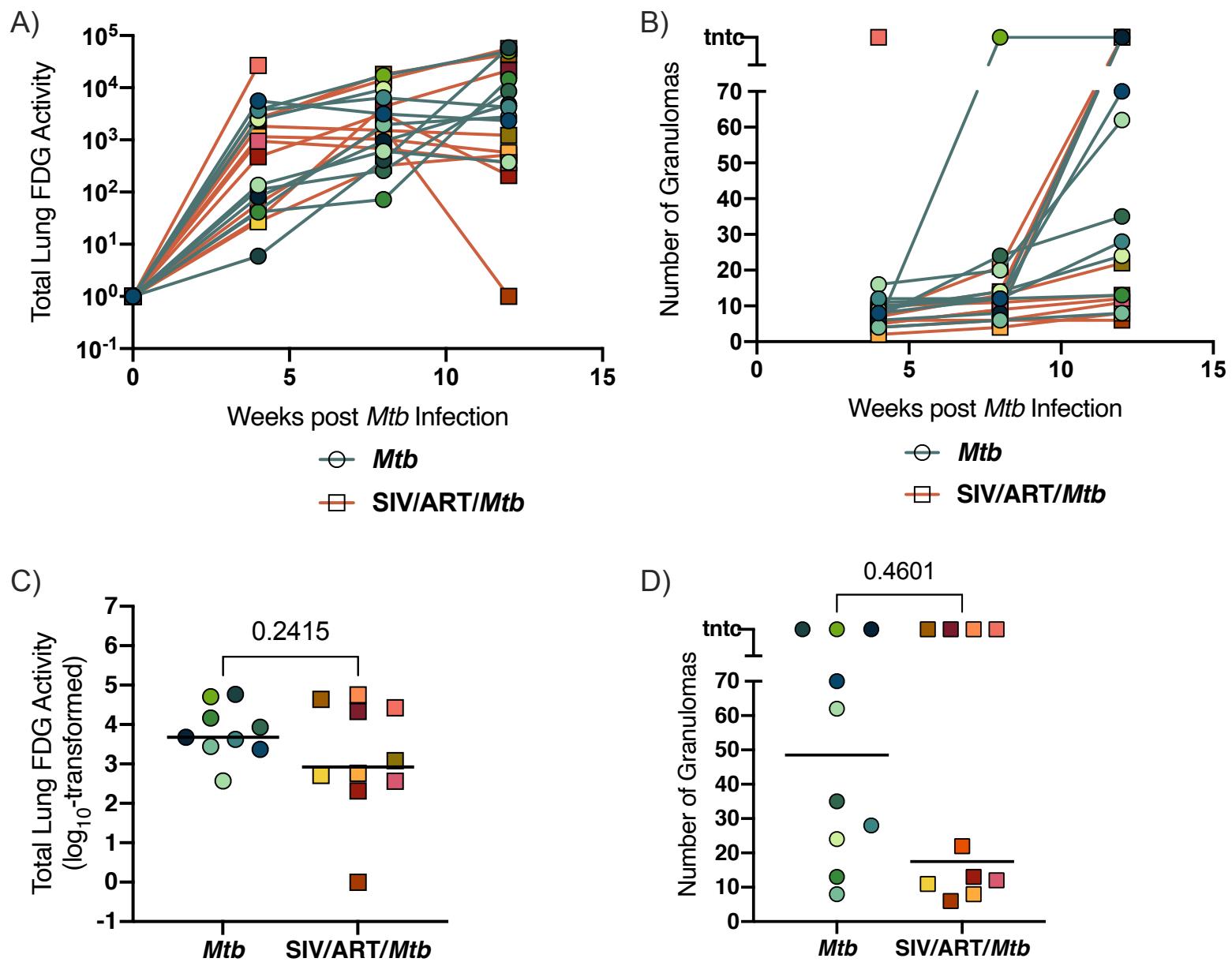

998 **Figure S4. Timeline of juvenile SIV-infected, ART-treated Mtb co-infection study.**

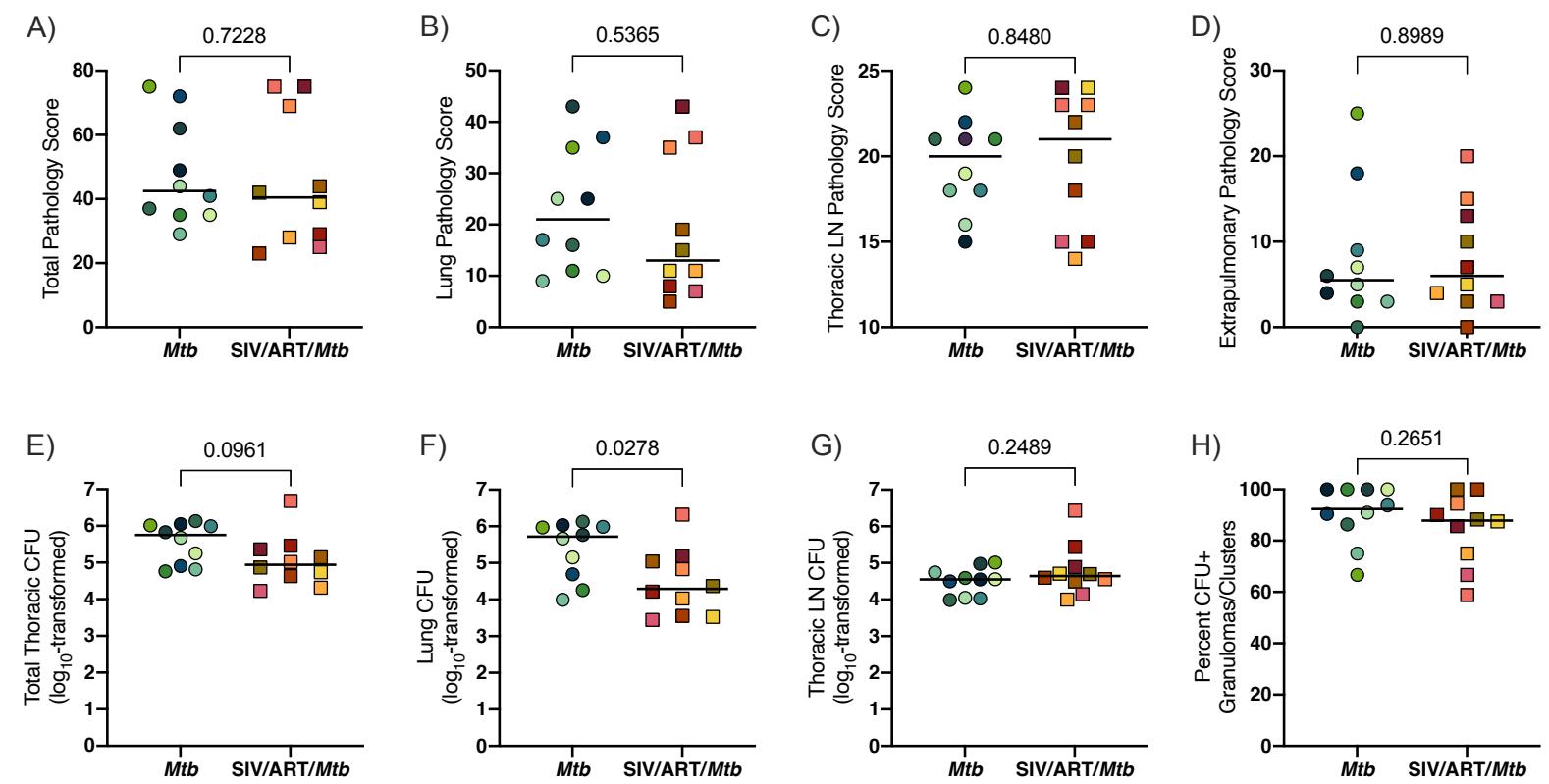
999

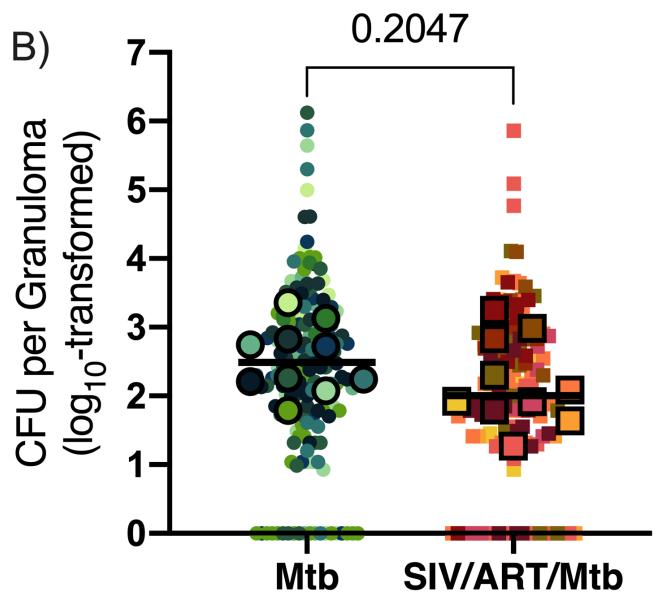
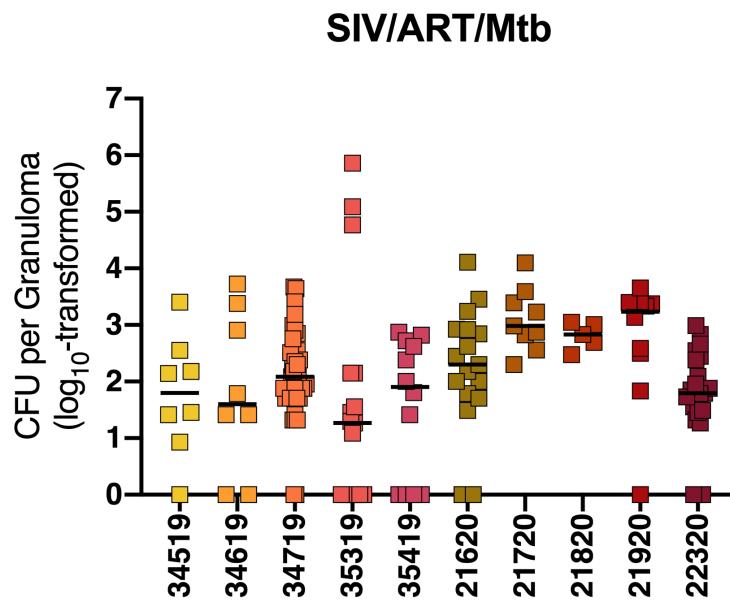
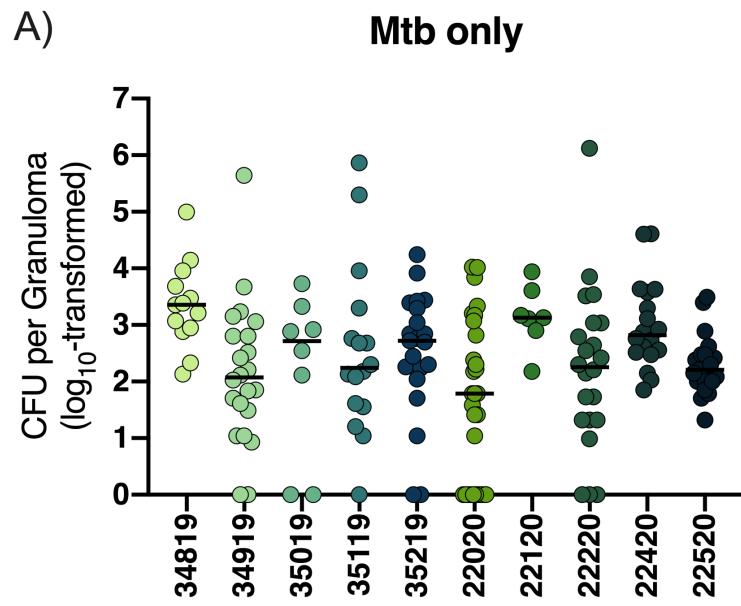

1000 **Figure S5. Representative gating strategy of BAL.** A) BAL cells were stained with antibodies
1001 in Table S2 according to the methods. Shown is a representative gating schematic for
1002 unconventional T cells (V γ 9+ γ δ T cells, CD3+V γ 9+; MAIT cells, CD3+ MR1 5-OP-RU
1003 tetramer+; NKT cells, CD3+ CD1d PBS-57 tetramer+) and conventional T cells (CD3+CD8+
1004 and CD3+CD4+ cells after exclusion of markers from unconventional T cells). B) T cell subset
1005 populations (if event count > 50-100) were gated for the following markers: ki-67, PD-1, TIGIT,
1006 CCR5, CCR6, and CXCR3.

1007


1008 **Figure S6. Representative gating strategy of necropsy tissues (granulomas, lung, thoracic**
1009 **and extrathoracic lymph nodes, spleen, and PBMC).** A) Tissue samples collected at necropsy
1010 were stained with antibodies in Table S2 according to the methods. Shown is a representative
1011 gating schematic for unconventional T cells (NKT cells, CD3+ CD1d PBS-57 tetramer+; MAIT
1012 cells, CD3+ MR1 5-OP-RU tetramer+; V γ 9+ γ δ T cells, CD3+V γ 9+) and conventional T cells
1013 (CD3+CD8+ and CD3+CD4+ cells after exclusion of markers from unconventional T cells). B)
1014 In instances where the parent population of cells was greater than 50-100 events, unconventional
1015 and conventional T cells were then gated for expression of memory markers (CD28/CD95) as
1016 well as CCR5, CCR7, PD-1, ki-67, TIGIT, Granzyme B, TNF, and IFN γ .


Figure 1. Plasma viremia of SIV-infected, ART-treated macaques over the course of SIV and *Mtb* coinfection. Plasma viral copy equivalents were determined by qRT-PCR. Each point indicates an individual animal. Horizontal dashed line represents the limit of detection.


Figure 2. Composition of T cell subsets in airways over time. BALs were collected over the course of SIV and Mtb infection. A) Proportions of T cell subsets by median event counts. B-J) Frequencies of T cell subsets over time relative to CD3+ gate. Individual animals indicated by symbols. SIV-infected, ART-treated Mtb coinfecting macaques are indicated by orange lines and macaques infected with Mtb alone are indicated by teal lines. A mixed statistical model was performed to determine significance with fixed effects (time and group) and random effects (individual animals). Bars with asterisks indicate significance between time points; # $0.05 < p < 0.1$, * $p < 0.05$, and **** $p < 0.0001$.




Figure 3. CCR5+ CD4+ and CD8+ T cells in airways at 8 weeks post Mtb infection. BAL cells were collected over the course of SIV and at 8 weeks post Mtb infection and stained for flow cytometry. A&B) Individual animals indicated by symbols. SIV-infected, ART-treated Mtb coinfecting macaques are indicated by orange lines and macaques infected with Mtb alone are indicated by teal lines. A mixed statistical model was performed to determine significance with fixed effects (time and group) and random effects (individual animals). Bars with asterisks indicate significance between time points; # $0.05 < p < 0.1$, * $p < 0.05$, and ** $p < 0.01$. A) Frequencies of CCR5+ CD4+ T cells over the course of the study. B) Frequencies of CCR5+ CD8+ T cells over the course of the study. C) Absolute CCR5+/- CD4+ and CD8+ T cells in airways at 8 weeks post Mtb. Absolute cell counts were calculated from the hemacytometer cell count. Individual samples indicate individual animals and bars indicate group medians. Mann Whitney U tests was performed to determine significance between groups. P-values are shown.

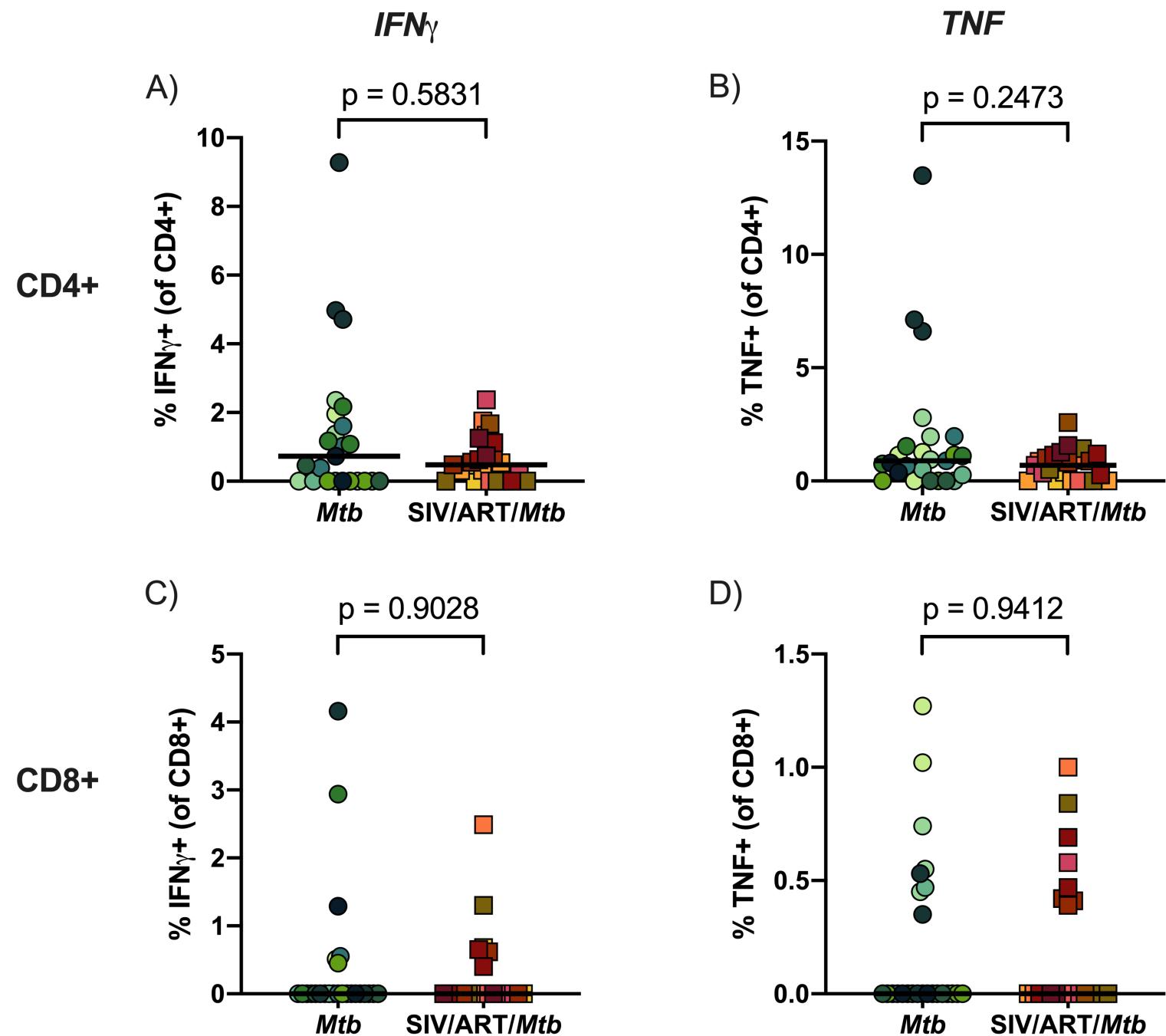

Figure 4. TB progression by PET/CT imaging. A) Lung FDG activity over time. SIV-infected, ART-treated *Mtb* coinfecting macaques (orange lines) and macaques infected *Mtb* alone (teal lines). Individual animals are shown. B) The number of granulomas identified by PET-CT at 4, 8, and 12 weeks (pre-necropsy). SIV-infected, ART-treated *Mtb* coinfecting macaques (orange lines) and macaques infected *Mtb* alone (teal lines). Individual animals are shown. C) Total lung FDG activity at time of necropsy. Bars indicate medians of group. An unpaired t test of group medians was performed. *P*-value is shown. D) The number of granulomas identified at necropsy (12 wks *p.i. Mtb*). Bars indicate medians of group. A Mann Whitney U test of group medians was performed. *P*-value is shown.

Figure 5. TB pathology and CFU at 12 weeks post *Mtb* infection. Bars indicate medians of group. Unpaired t tests of group medians were performed. *P*-values are shown. A) Total pathology score. B) Lung pathology score. C) Thoracic lymph node pathology score. D) Extrapulmonary pathology score. E) Total thoracic CFU (lung CFU + thoracic lymph nodes CFU). F) Lung CFU. G) Thoracic lymph nodes CFU. H) Percent CFU+ granulomas or clusters.

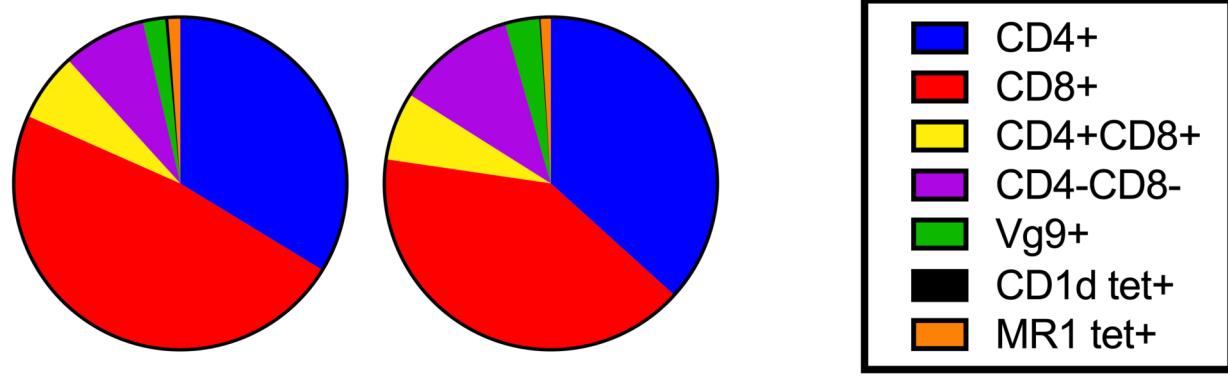


Figure 6. Bacterial burden in individual granulomas. A) CFU per granuloma by animal. Symbols represent CFU from individual granulomas. Bars indicate median CFU per animal. Mtb only animals (left panel) and SIV/ART/Mtb animals (right panel). B) Combined CFU for Mtb only and SIV/ART/Mtb groups. Outlined symbols indicate median per animal and non-outlined symbols indicate individual granulomas. Bars indicate median CFU per animal per group and an unpaired t test was performed to determine significance. The p-value is shown.

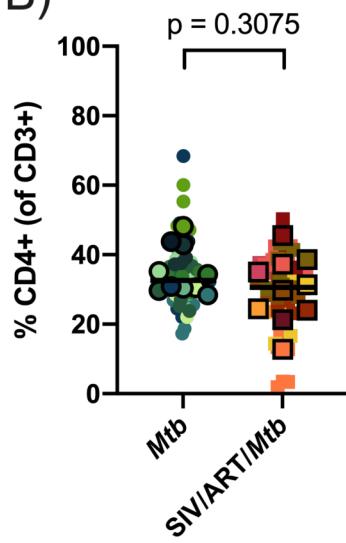
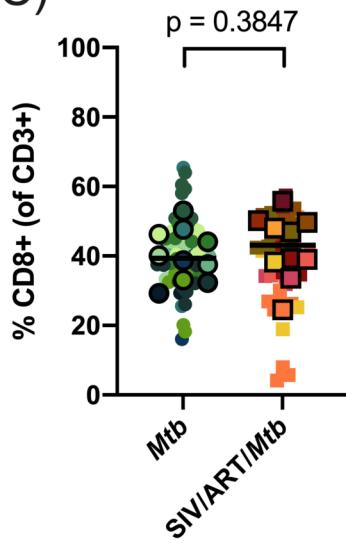
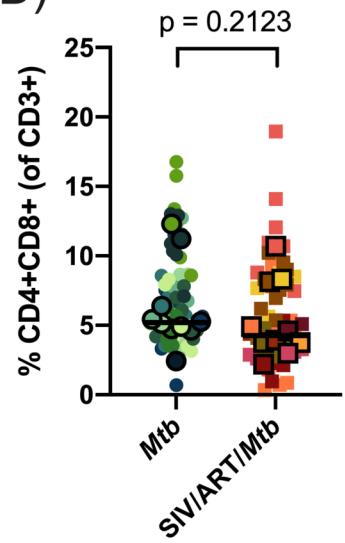
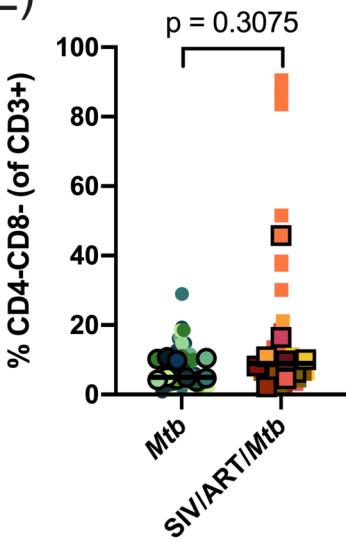
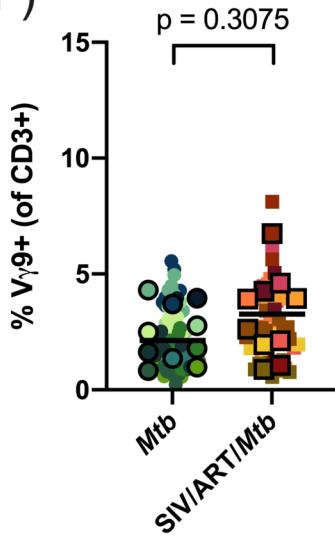


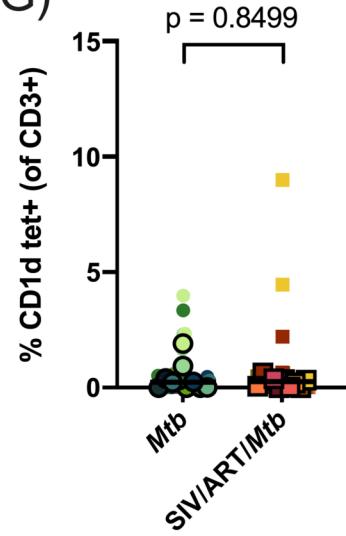
Figure 7. Cytokine responses in lung tissue. Lung tissue was stimulated with H37Rv whole cell lysate for 14 hours. Cytokine production was corrected for against unstimulated controls. Bars indicate medians of pooled data. Mann Whitney U tests were performed to determine significance. *P*-values are shown. A) IFN γ production in CD4+ T cells. B) TNF production in CD4+ T cells. C) IFN γ production in CD8+ T cells. D) TNF production in CD8+ T cells.

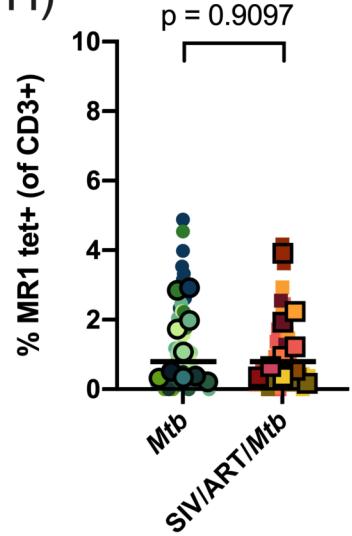

A)

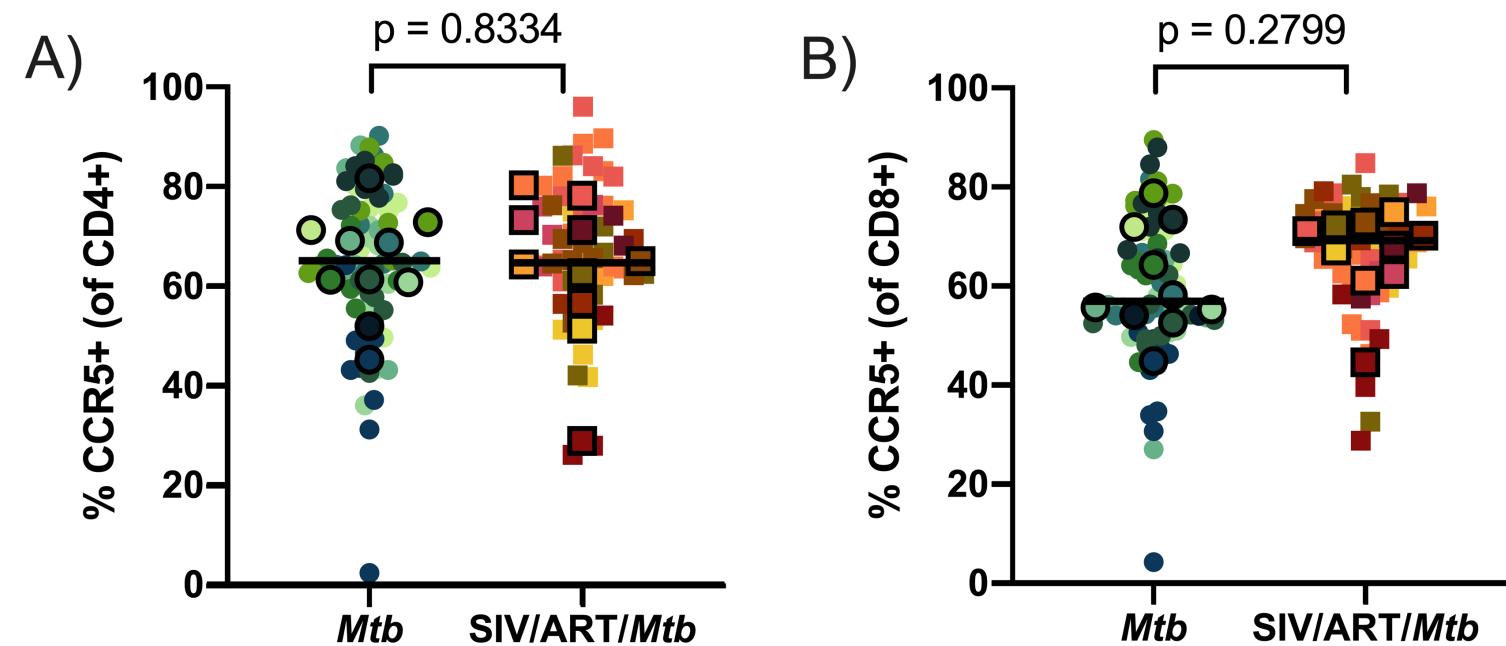

B)


C)


D)


E)


F)


G)

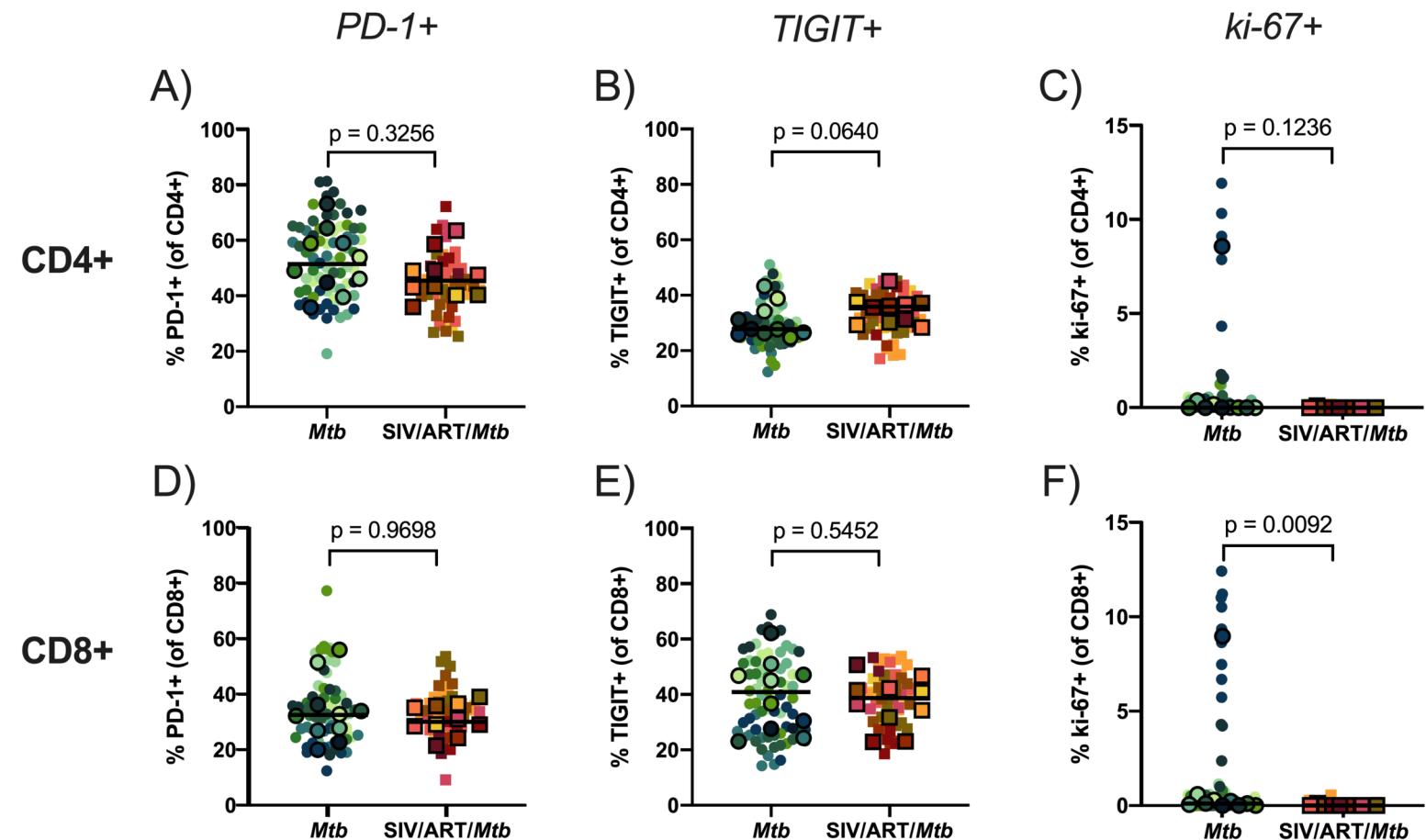

H)

Figure 8. T cell subsets in granulomas. A) Proportion of T cell subsets in individual granulomas by median event counts. B-H) Frequencies of T cell subsets in granulomas relative to CD3+ gate. B) CD4+ T cells. C) CD8+ T cells. D) CD4+CD8+ T cells. E) CD4-CD8- T cells. F) V γ 9+ T cells. G) CD1d tet+ T cells. H) MR1 tet+ T cells. Outlined symbols indicate median per animal and unlined symbols indicate individual samples. Bars indicate group medians. Wilcoxon tests of group medians were performed to determine significance. P -values are shown.

Figure 9. CCR5 frequency of CD4+ and CD8+ T cells isolated from granulomas. Frequencies of CCR5+ CD4+ and CD8+ T cells in granulomas. Outlined symbols indicate median per animal and unlined symbols indicate individual samples. Bars indicate group medians. A) CCR5+ CD4+ T cells. An unpaired t test was performed of group medians to determine significance. B) CCR5+ CD8+ T cells. A Mann Whitney U test of group medians was performed to determine significance. *P*-values are shown.

Figure 10. PD-1, TIGIT, and ki-67 frequency of CD4+ and CD8+ T cells isolated from granulomas. Frequencies of phenotype markers in granulomas relative to CD4+ or CD8+ gate. Outlined symbols indicate median per animal and unlined symbols indicate individual samples. Bars indicate group medians. Mann Whitney U tests of group medians were performed to determine significance. *P*-values are shown. A) PD-1+ CD4+ T cells. B) TIGIT+ CD4+ T cells. C) ki-67+ CD4+ T cells. D) PD-1+ CD8+ T cells. E) TIGIT+ CD8+ T cells. F) ki-67+ CD8+ T cells.