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Abstract 

Combining walking with a demanding cognitive task is traditionally expected to elicit 
decrements in gait and/or cognitive task performance. However, it was recently shown that, in a 
cohort of young adults, most participants ‘paradoxically’ improved performance when walking 
was added to performance of a Go/NoGo response inhibition task. The present study aims to 
extend these previous findings to an older adult cohort, to investigate whether this paradoxical 
improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging 
(MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait 
kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a 
treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, 
independent of age, was found to correlate with slower responses to stimuli and with walking-
related EEG amplitude modulations over latencies and topographies related to the cognitive 
component of inhibition. On the other hand, aging, independent of response accuracy during 
walking, was found to correlate with slower treadmill walking speeds and attenuation in 
walking-related EEG amplitude modulations over latencies and topographies associated with the 
motor component of inhibition. Older adults whose response accuracy improved during walking 
manifested neural signatures of both behavioral improvement and aging, suggesting that their 
flexibility in reallocating neural resources while walking might be maintained for the cognitive 
but not for the motor inhibitory component. These distinct neural signatures of aging and 
behavior can potentially be used to identify ‘super-agers’, or individuals at risk for cognitive 
decline due to aging or neurodegenerative disease. 
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Introduction 

Aging has been typically associated with loss of cognitive flexibility (1-3), neuronal loss (4-7) 
and disruption of functional connectivity between brain regions (8, 9). Especially during the 
earlier stages, modest decline in various executive function domains may be masked by ongoing 
adaptive processes that compensate for aging-related structural and functional deficits. 
Employing a paradigm that combines cognitive task performance while walking, a special 
implementation of dual-tasking (10-12), provides a way to systematically ‘load’ neural circuits 
and may help to unmask emerging decline in cognitive and gait-motoric domains (13-15). In 
most cases, exposing younger and older adults to dual-task conditions that combine a walking 
challenge with a demanding cognitive task has been shown to elicit decrements in gait and/or 
cognitive task performance in the older compared to the younger group, consistent with the 
‘cognitive-motor interference’ (CMI) hypothesis (1, 16-28). There are also studies, however, 
reporting absence of such dual-task-related deterioration with age under certain dual-task 
walking conditions (29-31). As such, while dual-task load appears to tax neural resources beyond 
compensatory capacity in most studies of aging individuals, this is not always the case. 
Exceeding compensatory capacity is undoubtedly a function of the complexity of the cognitive 
task, the intensity and modality of the walking task (e.g. overground versus treadmill walking), 
the cognitive flexibility and fitness level of each individual, and the age-range of the older group 
(20, 32-35). 

Even within groups of people spanning a narrow age-range, there is variability in behavioral 
performance with associated differences in neural activity. Previous studies have uncovered 
associations between distinct behaviors and event-related potential (ERP) amplitude and latency 
signatures in young adults (36-38). Work from our group showed clear links between behavior 
and neurophysiology in a dual-task context (39), whereby ‘paradoxical’ improvement in 
response accuracy during walking in young adults was accompanied by frontal ERP amplitude 
modulations during key stages of inhibitory processing. Walking-related neural activity changes 
were absent in young adults whose response accuracy either declined or did not change 
significantly when dual-tasking (39). Based on previous work in a cohort of older adults, it is 
anticipated that, at the group level, there will be deterioration in cognitive task performance 
during walking compared to sitting, aligning with CMI (1, 17, 21) . However, it remains to be 
seen whether all older adults show performance deterioration when walking, or whether, like 
younger adults, some older adults will actually improve their performance. Our research group 
recently (39) showed that, in a young adult cohort in which most participants improved 
performance during walking, there were a few individuals experiencing clear walking-related 
performance decrements. Here we extend these previous findings to an older, healthy adult 
cohort. The goal is to determine whether some portion of the older adult population will show 
cognitive control improvements when walking and to identify objective neural markers of this 
improvement. Such measures may prove useful as predictive markers of those who have 
resilience against future cognitive deficits versus those at greater risk for cognitive impairment, 
and could also shed light on potential adaptive strategies for therapeutic targeting.  

As mentioned above, aging has been repeatedly linked to weakening of executive functions (13, 
40-42). One of the canonical executive control functions, the ability to inhibit an inappropriate 
response, is known to be impaired by age-related neurodegenerative processes such as 
Parkinson’s disease (43-46). Coupling response inhibition tasks with walking has been shown to 
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cause pronounced performance declines and increased competition in prefrontal neural circuits in 
older adults (47). One commonly used approach to study response inhibition is the so-called 
visual Go/NoGo task (1, 39, 48-54). These tasks typically involve setting up a response regime 
whereby participants must respond very regularly to the great majority of stimuli presented (‘Go’ 
stimuli), such that there is a prepotent inclination to execute such a response, while introducing 
occasional ‘lure’ NoGo stimuli that require participants to withhold their response.  During 
successful ‘NoGo’ trials where the participant successfully inhibits their response, two prominent 
stimulus-locked ERP components (known as the N2 and the P3) are observed. The N2 is a 
negative voltage deflection peaking around 200-350 ms post-stimulus-onset (55-57) and is 
associated with conflict monitoring processes (52, 54, 58, 59). The N2 has a midline 
frontocentral scalp distribution and its major generators have been localized to the anterior 
cingulate cortex (ACC) (54, 55, 58-61). The subsequent P3 component complex is seen as a 
positive voltage deflection at latencies between 300-600 ms post-stimulus-onset (48, 62), and is 
characterized by a broad scalp distribution spanning parietal, central and frontal scalp regions 
(48, 63, 64). There is evidence that during the P3 stage, both motor and cognitive components of 
inhibitory processing are implemented (63, 65). Apart from reflecting suppression of the 
prepotent button press, which has been localized to motor and mid-cingulate cortical generators 
(59, 64, 66-69), the P3 ERP component has also been linked to top-down adjustments in 
inhibitory behavior subserved by predominantly left-lateralized prefrontal sources (53, 64, 66, 
67).  

When paired with walking, the visual Go/NoGo response inhibition task has been shown to 
effectively distinguish between younger and older adults in terms of dual-task-related changes, 
both in response accuracy and in N2/P3 amplitudes and latencies during successful inhibitions 
(1). In young adults, on average, preservation or improvement of response accuracy during 
walking compared to sitting, was accompanied by reduced walking-related N2 and P3 
amplitudes (1, 39, 48). On the other hand, older adults exhibited, on average, significant response 
accuracy reduction during walking, but also attenuated ERP amplitude differences between 
sitting and walking (1). These findings were interpreted as illustrating an age-related reduction in 
flexibly adapting neural processes in response to the increased task demands imposed by 
walking.  

Here, we set out to establish whether some minority of older healthy adult participants would 
show a similar paradoxical improvement in response inhibition task performance during walking 
to that which we had observed in a significant proportion of younger adults in our prior work. If 
so, the next obvious question was how such improvers might reallocate neural resources when 
dual-tasking compared to the older adults who show the more typical performance decrements 
under the same conditions. A general hypothesis here was that we would observe more flexible 
reallocation of neural resources, manifested as amplitude modulations in the N2 and P3 
components during walking, in those older adults who showed improvement, akin to patterns 
observed in young adult improvers. Elucidating the neural underpinnings of this dual-task-related 
improvement can provide a deeper insight into how healthy aging impacts the reallocation of 
neural resources when task demands increase, and why some people seem to be able to maintain 
flexibility in reallocating resources across age whereas others cannot. 
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Materials and Methods 

Participants 

Thirty-four (34) young adults (18-30 years old; age = 22.09 ± 3.12 years; 17 female, 17 male; 30 
right-handed, 4 left-handed) and thirty-seven (37) older adults (62-79 years old; age = 70.32 ± 
4.54 years; 16 female, 21 male; 29 right-handed, 8 left-handed) participated in the study. 
Twenty-six (26) of the 34 young adults were common between the present study and Patelaki 
and colleagues (39). The Montreal Cognitive Assessment (MoCA) was administered to older 
adults, to ensure that no aging-related cognitive impairment was present. All individuals included 
in the older cohort scored ≥20 in the MoCA, since a cut-off of 20 has been shown to maximize 
diagnostic accuracy (70). One 70-year-old adult was excluded from the older cohort due to a 
MoCA score of 17 (this individual was not counted as a member of the 37-patricipant older 
cohort). On average, adults of the older cohort scored 26.41 ± 2.20 on the MoCA (score range = 
20-30, maximum possible MoCA score = 30). 

All participants provided written informed consent, reported no diagnosed neurological 
disorders, no recent head injuries, and normal or corrected-to-normal vision. The Institutional 
Review Board of the University of Rochester approved the experimental procedures 
(STUDY00001952). All procedures were compliant with the principles laid out in the 
Declaration of Helsinki for the responsible conduct of research. Participants were paid the lab-
standard hourly rate for time spent in the lab. 

Experimental Design 

A Go/NoGo response inhibition cognitive task was employed. During each experimental block, 
images were presented in the central visual field for 67 ms with a fixed stimulus-onset-
asynchrony of 1017 ms.  On average, images subtended 20° horizontally by 16° vertically. The 
task was coded using the Presentation software (version 20.1, Neurobehavioral Systems, Albany, 
CA, USA). Participants were instructed to press the button of a wireless game controller using 
their dominant hand as fast and accurately as possible if the presented image was different from 
the preceding image (‘Go’ trial). They were instructed to withhold pressing the button if the 
presented image was the same as the preceding image (‘NoGo’ trial) (Fig. 1). Participants 
performed blocks of 240 trials in which 209 (87%) were Go trials and 31 (13%) were NoGo 
trials. NoGo trials were randomly distributed within each block, and it was ensured that NoGo 
pictures were never presented consecutively. 

Four behavioral conditions of the task were defined: 1) correct rejections, defined as the NoGo 
trials on which participants successfully withheld their response, 2) false alarms, defined as the 
NoGo trials on which participants incorrectly pressed the response button, 3) hits, defined as the 
Go trials on which participants correctly pressed the response button, and 4) misses, defined as 
the Go trials on which participants failed to press the response button.  
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Experimental blocks were performed while the participants were either sitting or walking on a 
treadmill (Tuff Tread, Conroe, TX, USA), at a distance of 2.25 m approximately from the 
projection screen on which the images were projected (Barco F35 AS3D, 1920x1080 pixels). A 
safety harness was worn while walking to guard against falls (https://youtu.be/HS-5Qk5tvDE). 
An experimental session consisted of 16 blocks: 1 training block at the beginning, 7 sitting 
blocks, 7 walking blocks, and a walking-only block (walking on the treadmill without a cognitive
task). The order of sitting and walking blocks was pseudorandomized; no more than 3 
consecutive walking blocks occurred to prevent fatiguing the participants. Participants were 
allowed to take short breaks between the blocks. Blocks lasted 4 minutes each. Most participants 
took at least 1 break during the experiment. If a break was requested, typically it did not last 
longer than 10 minutes. Participants were asked to select a treadmill speed corresponding to 
brisk walking for them. On average, young adults walked at 4.64 ± 0.42 km/h, and older adults at 
2.74 ± 0.84  km/h. 

The pictures used for stimuli were drawn from the International Affective Picture System (IAPS) 
database (71). The IAPS database contains pictures of varied emotional valence and semantic 
content. Positive, neutral and negative pictures were all used, however analyzing the emotional 
valence or semantic content of stimuli is beyond the scope of this study.  

EEG data were recorded using a BioSemi Active Two System (BioSemi Inc., Amsterdam, The 
Netherlands) and a 64-electrode configuration following the International 10-20 system. Neural 
activity was digitized at 2048 Hz. Full-body motion capture was recorded using a 16 camera 
OptiTrack system (Prime 41 cameras), and Motive software (OptiTrack, NaturalPoint, Inc., 
Corvallis, OR, USA) in a ~37 m2 space. Cameras recorded 41 markers on standard anatomical 
landmarks along the torso, the head and both arms, hands, legs and feet at 360 frames per 
second. Stimulus triggers from Presentation (Neurobehavioral Systems Inc., Berkeley, CA, 
USA), behavioral responses from the game controller button, motion tracking data and EEG data 
were time-synchronized using Lab Streaming Layer (LSL) software (Swartz Center for 
Computational Neuroscience, University of California, San Diego, CA, USA; available at: 
https://github.com/sccn/labstreaminglayer). Motion capture data were recorded using custom 

Fig. 1. Illustration of the Go/NoGo response inhibition experimental design. Participants are 
instructed to respond on Go trials and withhold response on NoGo trials. 
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software written to rebroadcast the data from the Motive software to the LSL lab recorder. EEG 
data were recorded from available LSL streaming plugins for the BioSemi system. Behavioral 
event markers were recorded using the built-in LSL functionality in the Presentation software. 
The long-term test-retest reliability of the MoBI approach has been previously detailed (72). All 
behavioral, EEG and motion kinematic data processing and basic analyses were performed using 
custom MATLAB scripts (MathWorks Inc., Natick, MA, USA) and/or functions from EEGLAB 
(73). Custom analysis code will be made available on GitHub (https://github.com/CNL-R) upon 
publication.  

Cognitive Task Performance Processing & Analysis 

The timing of each button press relative to stimulus onset, the participant’s response times (RTs), 
were recorded using the Response Manager functionality of Presentation and stored with 
precision of 1/10 millisecond. The Response Manager was set to accept responses only after 183 
ms post-stimulus-onset within each experimental trial. Any responses prior to that were 
considered delayed responses to the previous trial and were ignored. This RT threshold was 
selected to filter out as many delayed-response trials as possible, without rejecting any valid 
trials for which the responses were merely fast (74). 

Two behavioral conditions of the cognitive task were examined in terms of EEG activity in this 
study, 1) correct rejections and 2) hits. For correct rejections, only trials that were preceded by a 
hit were included to ensure that the inhibitory component was present. 

Two behavioral measures were calculated: 1) the d’ score (sensitivity index) and 2) mean RT 
during (correct) Go trials, namely hits. D’ is a standardized score and it is computed as the 
difference between the Gaussian standard scores for the false alarm rate (percentage of 
unsuccessful NoGo trials) and the hit rate (percentage of successful Go trials) (75, 76). D’ was 
preferred over correct rejection rate (percentage of successful NoGo trials) as a measure of 
accuracy of inhibitory performance, since it removes the bias introduced by different response 
strategies adopted across participants. For a more detailed explanation, the reader is referred to 
the ‘Cognitive task performance processing & analysis’ section of Methods, in Patelaki and 
colleagues (39). 

EEG Activity Processing & Analysis 

EEG signals were first filtered using a zero-phase Chebyshev Type II filter (filtfilt function in 
MATLAB, passband ripple Apass = 1 dB, stopband attenuation Astop = 65 dB) (77), and 
subsequently down-sampled from 2048 Hz to 512 Hz. Next, ‘bad’ electrodes were detected 
based on kurtosis, probability, and spectrum of the recorded data, setting the threshold to 5 
standard deviations of the mean, as well as covariance, with the threshold set to ±3 standard 
deviations of the mean (77). These ‘bad’ electrodes were removed and interpolated based on 
neighboring electrodes, using spherical interpolation. All the electrodes were re-referenced 
offline to a common average reference. 

It has been shown that 1-2 Hz highpass filtered EEG data yield the optimal Independent 
Component Analysis (ICA) decomposition results in terms of signal-to-noise ratio (78, 79). In 
order to both achieve a high-quality ICA decomposition and retain as much low-frequency (< 1 
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Hz) neural activity as possible, after running Infomax ICA (runica function in EEGLAB, the 
number of retained principal components matched the rank of the EEG data) on 1-45 Hz 
bandpass-filtered data and obtaining the decomposition matrices (weight and sphere matrices), 
these matrices were transferred and applied to 0.01-45 Hz bandpass-filtered data. High-pass 
filtering was selected to be conservative based on evidence that high-pass filters ≤ 0.1 Hz 
introduce fewer artifacts into the ERP waveforms (80). ICs were labeled using the ICLabel 
algorithm (81). ICs whose sum of probabilities for the 5 artifactual IC classes (‘Muscle’, ‘Eye’, 
‘Heart’, ‘Line Noise’, ‘Channel Noise’) was higher than 50% were labeled as artifacts and were 
thus rejected. The remaining ICs were back-projected to the sensor space (79, 82). 

Subsequently, the resulting neural activity was split into temporal epochs. For both correct 
rejection and hit trials, epochs were locked to the stimulus onset, beginning 200 ms before and 
extending until 800 ms after stimulus onset of the trial. Both correct rejection and hit epochs 
were baseline-corrected relative to the pre-stimulus-onset  interval from -100 to 0 ms. Epochs 
with a maximum voltage greater than ±150 µV or that exceeded 5 standard deviations of the 
mean in terms of kurtosis and probability were excluded from further analysis. Epochs that 
deviated from the mean by ±50 dB in the 0-2 Hz frequency window (eye movement detection) 
and by +25 or -100 dB in the 20-40 Hz frequency window (muscle activity detection) were 
rejected as well. For the sitting condition, on average 26% of the trials (27% for young adults 
and 26% for older adults) were rejected based on these criteria, resulting in 940 ± 214 accepted 
trials for hits (958 ± 191 for young adults and 924 ± 234 for older adults) and 87 ± 37 accepted 
trials for correct rejections (89 ± 39 for young adults and 85 ± 35 for older adults). For the 
walking condition the respective percentage was 40% (44% for young adults and 37% for older 
adults), resulting in 767 ± 272 accepted trials for hits (743 ± 299 for young adults and 788 ± 247 
for older adults) and 73 ± 36 accepted trials for correct rejections (74 ± 40 for young adults and 
72 ± 32 for older adults). Event-related potentials (ERPs) were measured by averaging epochs 
for (2 motor-task)x(2 cognitive-task) conditions, namely 4 experimental conditions in total. The 
motor task conditions were 1) sitting and 2) walking; and the cognitive task conditions were 1) 
correct rejections and 2) hits.  

Gait Processing & Analysis 

Heel markers on each foot were used to track gait kinematics. The three dimensions (3D) of 
movement were defined as follows: X is the dimension of lateral movement (right-and-left 
relative to the motion of the treadmill belt), Y is the dimension of vertical movement (up-and-
down relative to the motion of the treadmill belt), and Z is the dimension of fore-aft movement 
(parallel to the motion of the treadmill belt). The heel marker motion in 3D is described by the 3 
time series of the marker position over time in the X, Y and Z dimension, respectively. Gait 
cycle was defined as the time interval between two consecutive heel strikes of the same foot. 
Heel strikes were identified as the local maxima of the Z position waveform over time. To ensure 
that no ‘phantom’ heel strikes were captured, only peaks with a prominence greater than 0.1 m 
were kept (findpeaks function in MATLAB, minimum peak prominence parameter was set to 0.1 
m).  

Stride-to-stride variability was quantified as the mean Euclidean distance between consecutive 
3D gait cycle trajectories, using the Dynamic Time Warping algorithm (DTW) (83, 84). DTW is 
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an algorithm for measuring the similarity between time series, and its efficacy in measuring 3D 
gait trajectory similarity is well-established (85-87).  

In the case of one-dimensional signals, if Xm=1,2,..,M the reference signal and Yn=1,2,..,N the test 
signal, then DTW finds a sequence {ix, iy} of indices (called warping path), such that X(ix) and 
Y(iy) have the smallest possible distance. The ix and iy are monotonically increasing indices to 
the elements of signals X, Y respectively, such that elements of these signals can be indexed 
repeatedly as many times as necessary to expand appropriate portions of the signals and thus 
achieve the optimal match. This concept can be generalized to multidimensional signals, like the 
3D gait cycle trajectories of interest here. The minimal distance between the reference and the 
test signals (gait trajectories here) is given by formula (1): 

                                               �������� 	 ∑ �����, ������
����

           �1� 

Gait cycle trajectories with a kurtosis that exceeded 5 standard deviations of the mean were 
rejected as outliers. Also, before DTW computation, gait cycle trajectories were resampled to 
100 samples. Since DTW essentially calculates the sum of the Euclidean distances between 
corresponding points of two interrogated trajectories, ensuring that all trajectories are resampled 
to the same length helps avoid bias in the algorithm computations.  

The actual measure that was used to quantify each participant’s stride-to-stride variability is the 
mean across DTW distances occurring from all stride-to-stride comparisons. Right-foot and left-
foot stride-to-stride DTW distances were pooled to calculate the mean DTW distance per 
participant. 

Statistical Analyses 

Cognitive Task Performance 

Response Accuracy 

Walking-minus-sitting d’ scores and sitting d’ scores were correlated with age using a Spearman 
rank correlation, to test potential associations between age and dual-task-related change in 
response accuracy, and between age and response accuracy during the ‘baseline’ sitting 
condition, respectively. Due to the bimodal distribution of the age variable, with one of the 
modes corresponding to young adults (YAs, age range = 18-30 years) and the second to older 
adults (OAs, age range = 62-79 years), all correlations performed in the context of this study 
used the non-parametric Spearman rank correlation, since the normality assumption of Pearson’s 
correlation was violated. If walking-minus-sitting d’ scores were found to significantly correlate 
with age, then d’ score difference between sitting and walking was tested within both age groups 
(YAs, OAs) using paired t-tests in case of normally distributed data, and Wilcoxon signed rank 
tests in case of non-normally distributed data. Follow-up testing aimed to determine whether the 
potential significant correlation was driven by a specific age group. 

To allow for a closer inspection of walking-related effects in response accuracy, participants 
were subsequently classified into 3 groups, based on whether their d’ score during walking was 
1) significantly higher than during sitting (d’walking > d’sitting; response accuracy improved 
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significantly while walking; IMP), 2) not statistically different from their d’ score during sitting 
(d’walking ≈ d’sitting; response accuracy did not change significantly while walking; NC = No 
Change), or 3) significantly lower than during sitting (d’walking < d’sitting; response accuracy 
declined significantly while walking; DEC). According to the methodology described in Patelaki 
and colleagues (39), the individual walking-minus-sitting d’ score of each participant was 
defined as significant if it lay outside of the 95% confidence interval of the normal distribution 
that had a mean value of zero and a standard deviation equal to that of the walking-minus-sitting 
d’ score distribution of the entire cohort, pooled across age.  

Response Speed 

Walking-minus-sitting mean response time (RT) during hits was subjected to 2 partial Spearman 
rank correlations: 1) with walking-minus-sitting d’ score controlling for age, to assess potential 
associations between dual-task-related response accuracy change and dual-task-related response 
speed change, free from any effects of age, and 2) with age controlling for walking-minus-sitting 
d’ score, to test potential associations between age and dual-task-related response speed change, 
free from any effects of dual-task-related response accuracy change. If either of the correlations 
above was found to be significant, then mean RT difference between sitting and walking was 
tested as a follow-up, either within each of the 3 behavioral groups (IMPs, NCs, DECs) if 
correlation 1 was significant, or within both age groups (YAs, OAs) if correlation 2 was 
significant. For follow-up testing purposes, paired t-tests were used if the data were normally 
distributed, and Wilcoxon signed rank tests if the data were non-normally distributed. 

EEG Activity 

The EEG statistical analyses were performed using the FieldTrip toolbox (88)  
(http://fieldtriptoolbox.org). As mentioned in the Introduction, significant age-related changes in 
ERP amplitudes during walking were expected to be detected during N2 and P3 latencies during 
correct rejections (approximately [200, 350] ms and [350,600] ms, respectively (1, 48, 55-57, 
62)). However, Malcolm and colleagues (1), who reported these findings, studied these effects 
only at 3 midline electrode sites, namely FCz (frontocentral), Cz (central) and CPz 
(centroparietal) electrodes. Conducting statistical analyses only at predetermined latency 
intervals and a few electrode locations cannot fully elucidate the spatiotemporal distribution of 
the interrogated effects, therefore the alternative approach of cluster-based permutation tests was 
employed here (89). Using the same approach, Patelaki and colleagues (39) found significant 
walking-related ERP amplitude changes in young adults whose response accuracy improved 
while walking. In that study, cluster-based permutation statistics revealed such walking-related 
ERP effects during correct rejections over scalp regions that were expected based on the study 
hypothesis, such as frontocentral regions during N2 latencies, but also over scalp regions that 
were unanticipated, such as left prefrontal regions during P3 latencies, thereby satisfying both 
the hypothesis-driven and the exploratory component under a single analysis. The 
aforementioned walking-related neural activity findings were used for hypothesis generation in 
the present study, for the arm that aimed to investigate neural correlates of dual-task-related 
response accuracy changes. 

Walking-minus-sitting mean ERP amplitudes during hits and correct rejections were calculated 
at each electrode and timepoint for each participant, by subtracting the within-subject mean 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520469doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520469
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

sitting ERP waveform (across trials) from the within-subject mean walking ERP waveform. 
Subsequently, they were subjected to 2 partial Spearman rank correlations at each electrode-
timepoint pair: 1) with walking-minus-sitting d’ score controlling for age, to assess potential 
associations between dual-task-related ERP amplitude change and dual-task-related response 
accuracy change, independent from any effects of age, and 2) with age controlling for walking-
minus-sitting d’ score, to test potential associations between dual-task-related ERP amplitude 
change and age, independent from any effects of dual-task-related response accuracy change. For 
each of the partial correlations, to identify spatiotemporal clusters of significant neural activity 
effects while accounting for multiplicity of pointwise electrode-timepoint testing, cluster-based 
permutation tests were performed using the Monte Carlo method (5000 permutations, 
significance level of the permutation tests � 	 0.050, probabilities corrected for performing 2-
sided tests) and the weighted cluster mass statistic (90) (cluster significance level � 	 0.05, non-
parametric cluster threshold). The results of the point-wise correlations from all 64 electrodes 
and all timepoints were displayed as a statistical clusterplot, which is a compact and easily 
interpretable visualization of the intensity, latency onset/offset, and topography of the detected 
walking-related ERP effects. The x, y, and z axes, respectively, represent time, electrode 
location, and the t-statistic (indicated by a color value) at each electrode-timepoint pair. The t-
statistic value at electrode-timepoint pairs that did not belong to any cluster of significant effects 
was masked, namely set to zero (depicted as a teal background).  

For Spearman correlations, the t-statistic was calculated based on formula (2) (r = correlation 
coefficient, N = sample size) (91): 

� 	  
�√� � 2

√1 � ��
      �2� 

Within either hits or correct rejections, if correlation 1 revealed any clusters of significant 
effects, then, for each cluster and each of the 3 behavioral groups (IMPs, NCs, DECs), mean 
ERP amplitude, averaged across electrode-timepoints pairs belonging to the cluster, was follow-
up tested for differences between sitting and walking. In a similar manner, within either hits or 
correct rejections, if correlation 2 revealed any clusters of significant effects, then, for each 
cluster and each of the age groups (YAs, OAs), mean ERP amplitude, averaged across electrode-
timepoints pairs belonging to the corresponding spatiotemporal cluster, was follow-up tested for 
differences between sitting and walking.  

For each correlation that was found to be significant, OA IMPs, which are the group of interest 
in this study, were follow-up tested for differences between sitting and walking in order to 
determine whether the effects that they exhibited were characteristic of the age (OA) or 
behavioral (IMP) group that they belong to. In case correlation 1 was significant, the purpose of 
the follow-up test would be to assess whether the effects in OA IMPs are consistent with the 
general IMP effects. In case correlation 2 was significant, the purpose of the follow-up test 
would be to assess whether the effects in OA IMPs are consistent with the general OA effects. 

Follow-up tests were performed using paired t-tests if the data were normally distributed, and 
Wilcoxon signed rank tests if the data were non-normally distributed. 
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Gait 

Two gait-related variables, namely self-selected treadmill walking speed and WT-minus-WO 
mean DTW distance (WT = walking with task, WO = walking only), were subjected to 2 partial 
Spearman rank correlations each. Each gait-related variable was partially correlated 1) with 
walking-minus-sitting d’ score controlling for age, to assess potential associations between the 
interrogated gait-related variable and dual-task-related response accuracy change, removing any 
effects of age, and 2) with age controlling for walking-minus-sitting d’ score, to test potential 
associations between the interrogated gait-related variable and age, removing any effects of dual-
task-related response accuracy change. For WT-minus-WO mean DTW distance, if correlation 1 
was found to be significant, then mean DTW distance difference between WO and WT was 
follow-up tested within each of the 3 behavioral groups (IMPs, NCs, DECs); similarly, if 
correlation 2 was found to be significant, mean DTW distance difference between WO and WT 
was follow-up tested within both age groups (YAs, OAs). Paired t-tests were used for follow-up 
testing in case of normally distributed data, and Wilcoxon signed rank tests in case of non-
normally distributed data. 

It should be pointed out that 1 young and 2 older adults were excluded from the stride-to-stride 
(DTW) variability analysis due to lack of walking-only kinematic data, thus resulting in a sample 
size of 68 participants (33 YAs, 35 OAs) for this analysis. 

Other correlations 

To determine whether dual-task-related change in response accuracy could be predicted based on 
sex, a partial Spearman rank correlation was performed to partially correlate sex with walking-
minus-sitting d’ score, controlling for age. Furthermore, a Spearman rank correlation was used to 
correlate MoCA score with walking-minus-sitting d’ score, in order to assess whether MoCA 
scores could predict dual-task-related change in response accuracy. 

Multiple Comparisons Correction 

The 2-stage step-up False Discovery Rate (FDR) method of Benjamini and colleagues (92) was 
applied on the combined set of all the p-values occurring from all the planned (partial) Spearman 
rank correlations in cognitive task performance, gait kinematic and EEG activity. The 
calculations were conducted in MATLAB (93). For each correlation, one p-value was obtained. 
Specifically, for each of the 4 EEG activity correlation analyses, besides controlling for multiple 
electrode-timepoint tests within the analysis using cluster-based statistics, the minimum p-value 
across p-values of all detected clusters was added to the abovementioned combined set for FDR 
calculation purposes. In total, this combined set comprised of 14 p-values. The significance level 
yielded by FDR procedure was αFDR = 0.0216 (false discovery rate = 5%). Therefore, all 
correlations whose uncorrected p-values were found to be less than or equal to 0.0216 were 
significant after FDR correction. Correlations that were found non-significant after FDR 
correction were not further examined. For those that were found significant, the follow-up 
paired-sample tests (t-test or Wilcoxon signed rank) that were conducted were not corrected 
(significance level α = 0.0500). 
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Results 

Cognitive Task Performance 

Response Accuracy 

When combining treadmill walking with a Go/NoGo response inhibition task, older adults (OAs) 
were previously shown to exhibit significantly greater dual-task-related deterioration in response 
accuracy compared to young adults (YAs), even though their mean response accuracy across 
motor load condition was found not to differ significantly from that of young adults (1). Here, 
the same dual task was employed and the potential effect of age on dual-task-related response 
accuracy change and on ‘baseline’ response accuracy during sitting were tested by correlating 
participants’ age with walking-minus-sitting d’ scores and with sitting d’ scores, respectively 
(higher d’ scores indicate better discriminability between Go and NoGo stimuli). While no 
significant correlation was revealed between age and sitting d’ scores (Spearman’s r = -0.11, p = 
0.3625), age was found to negatively correlate with dual-task-related d’ change (Spearman’s r = -
0.42, p = 0.0002, αFDR = 0.0216) indicating that response accuracy during walking – not response 
accuracy in the ‘baseline’ sitting condition – deteriorates significantly with age. This is 
consistent with previous findings (1).  

To test whether this significant correlation effect between age and walking-related response 
accuracy change was driven solely by effects in only one of the two age groups, the impact of 
walking on response accuracy was assessed within each age group separately using follow-up 
paired t-tests. In the YA cohort, d’ scores were significantly higher during walking compared to 
sitting (d’sitting = 2.12 ± 1.27, d’walking = 2.31 ± 1.11; t33 = 2.41, p = 0.0219, α = 0.0500, 
Cohen’s d = 0.41) indicating that treadmill walking improved young adults’ performance in the 
Go/NoGo task. In contrast, in the OA cohort, d’ scores were significantly lower during walking 
(d’sitting = 1.88 ± 0.96, d’walking = 1.66 ± 0.85; t36 = 2.85, p = 0.0023, α = 0.0500, Cohen’s d = 
0.54) indicating that older adults’ performance in the Go/NoGo task deteriorated when this was 
paired with treadmill walking. Based on these findings, walking-related change in response 
accuracy with age was driven both by improvement in the younger group and by decline in the 
older group. At a group level, the dual-task-related decline exhibited by OAs is consistent with 
the ‘cognitive-motor interference’ (CMI) hypothesis, while dual-task-related improvement that 
YAs exhibit appears to be inconsistent with the CMI hypothesis, though in agreement with 
previous findings (39). 

Fig. 2 shows the distributions of d’ scores during sitting and walking, in each of the two age 
groups. By inspecting d’ performance at an individual level, it was observed that while most 
YAs improved when dual-tasking and most OAs declined, there were also participants in each 
age group whose performance was distinct from the group average. Specifically, from the 34 
YAs, 20 improved when walking (IMPs), 6 did not change significantly across motor load 
condition (NCs) and 8 declined when walking (DECs). Interestingly, the distribution of the 37 
OAs across these 3 behavioral groups (IMPs, NCs, DECs) was essentially ‘inverted’ compared 
to the YA distribution, with 7 IMPs, 10 NCs and 20 DECs in the older cohort (Fig. 2). Of note, 
to determine whether change in response accuracy within each individual participant was 
significant or not, the method described in Patelaki and colleagues (39) was used. According to 
this method, the decision was based on whether the walking-minus-sitting d' score of the 
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participant lay outside of the 95% confidence interval of the normal distribution having a mean 
value of zero and a standard deviation equal to that of the walking-minus-sitting d' score 
distribution of the entire cohort pooled across age. If d’walking > d’sitting, namely the 
participant improved significantly during walking, they were classified into the IMP group. If 
d’walking ≈ d’sitting, namely the participant did not change significantly between walking and 
sitting, they were classified into the NC group. If d’walking < d’sitting, namely the participant 
deteriorated significantly during walking, they were classified into the DEC group.  

 

The observation that there were a few (7) older participants whose behavioral response to dual-
task load was uncharacteristic of their age, namely they improved during walking, highlighted 
the need for identifying distinct neural signatures of dual-task-related improvement with aging, 
to shed light on the neural processes underlying this seemingly paradoxical behavior. To this 
end, neural signatures of behavioral improvement during dual-task walking, independent of age, 
were calculated by partially correlating dual-task-related ERP amplitude changes (quantified as 
walking-minus-sitting mean ERP amplitudes) with dual-task-related d’ score changes (quantified 
as walking-minus-sitting d’ scores) while controlling for age. Similarly, to obtain neural 
signatures of aging, independently of behavior during dual-task walking, dual-task-related ERP 
activity changes were partially correlated with age while controlling for dual-task-related d’ 
score changes. ERP activity both during correct rejection trials and during hit trials was tested 
using these correlation analyses, in order to investigate whether the presence of the inhibitory 
component (correct rejections), or its absence (hits), played a role in the way that the employed 
dual task was managed by the neural resources across age. Additionally, to test whether potential 
changes in other physiological variables besides ERPs are age-related, or they reflect 

Fig. 2. Sitting and walking d’ score distributions, in young adults (YAs) and older adults 
(OAs). Each line corresponds to one participant. Participants who improved when walking 
(IMPs; d’walking > d’sitting) are shown in green, those who did not change significantly 
across motor load condition (NCs; d’walking ≈ d’sitting) are shown in blue, and those who 
declined when walking (DECs; d’walking > d’sitting) are shown in red. Black dots on the 
vertical line represent individual participants. The central mark of each box indicates the 
median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. 
The whiskers extend to the most extreme data points not considered outliers. There were no 
outliers here.  
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performance trade-offs, the following variables were partially correlated with age and dual-task-
related d’ score changes, similarly as above: dual-task-related response speed changes (walking-
minus-sitting mean response time during hits), dual-task-related stride-to-stride variability 
changes (quantified as WT-minus-WO mean DTW distance; WT = walking with task, WO = 
walking only, DTW = Dynamic Time Warping) and self-selected treadmill speed. Finally, to 
assess whether sex and cognitive assessment (MoCA) scores can predict walking-related change 
in response accuracy, these 2 outcome variables were correlated with walking-related d’ score 
changes. Motivated by the consistent finding of Go/NoGo response accuracy decline with age, 
uniquely observed under walking conditions, most correlation analyses outlined above were 
focused on dual-task-related effects in each of the interrogated physiological domains, namely 
gait, neurophysiology, and behavior in the cognitive task.  

Response Speed 

Fig. 3 shows the distributions of mean response times (RT) during sitting and walking, in each of 
the age groups.  

 

Walking-minus-sitting mean response time during hits was examined for associations with 1) 
walking-related change in response accuracy (walking-minus-sitting d’ score), controlling for 
age, and with 2) age, controlling for walking-related change in response accuracy, using partial 
Spearman rank correlations. Correlation 1 was found to be significantly positive (Spearman’s r = 
0.44, p = 0.0001, αFDR = 0.0216), while correlation 2 was found to be non-significant 
(Spearman’s r = 0.14, p = 0.2493). 

To test whether this significant correlation effect between walking-related change in response 
speed and accuracy was driven by effects in any one of the three behavioral groups (i.e., IMP, 
NC or DEC), the impact of walking on response speed was assessed within each behavioral 
group separately using two paired t-tests (IMP and NC groups) and 1 Wilcoxon signed rank test 
(DEC group). Slower response times were found during walking in IMPs (mean RT sitting = 368 

Fig. 3. Sitting and walking mean response time (RT) distributions during hits (correct Go 
trials), in YAs and OAs. Purple dots represent individual participants. Red ‘+’ symbols 
represent outliers. 
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± 70 ms, mean RT walking = 382 ± 59 ms; t27 = 2.34, p = 0.0273, α = 0.0500, Cohen’s d = 0.45), 
but no significant differences between sitting and walking were detected either in NCs (p = 
0.2098) or DECs (p = 0.3164). This finding indicates that walking-related improvement in 
response accuracy was accompanied by walking-related slowing in responses to stimuli, 
suggesting the existence of a speed-accuracy tradeoff when engaging in the dual task. 

EEG Activity 

Fig. 4 shows the grand mean ERP waveforms during sitting (blue) and walking (red) at 3 midline 
electrode locations: FCz, Cz and CPz. Observed ERPs during hits and correct rejections (CRs) 
are shown for both for younger (A) and for older adults (B). These electrodes were selected for 
illustration because the N2 and P3 ERP amplitudes during correct rejections are typically found 
to be maximal over these midline electrode locations (48, 52, 63). All ERP waveforms were 
aligned on the onset of stimulus presentation (vertical line - time = 0), and they were plotted 
from 200 ms pre-stimulus-onset to 800 ms post-stimulus-onset. The N2 component is the 
negative voltage deflection spanning ~200-350 ms post-stimulus-onset (55-57), and it is evident 
during both hits and correct rejections. Smaller N2 amplitudes were observed in OAs (Fig. 4B) 
compared to YAs (Fig. 4A) (1). The P3 component is the positive voltage deflection extending 
~350-600 ms post-stimulus-onset (48, 62), and it was more strongly evoked during correct 
rejections than during hits in both age groups (1). During correct rejections, in YAs, the P3 
component was maximal at Cz and CPz (Fig. 4A). In contrast, OAs exhibited marked P3 
deflections at all 3 midline locations (Fig. 4B). This observation suggests anteriorization of the 
P3 component with aging (1, 94, 95). Subsequent analyses will focus on partially correlating 
walking-related ERP amplitude changes during hits and correct rejections, first with walking-
related d’ score changes while controlling for age, and then with age while controlling for 
walking-related d’ score changes. This approach permits the dissociation of these two variables 
in terms of the walking-related neural activity changes that they are linked to.  
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Fig. 4. Grand mean sitting (blue) and walking (red) ERP waveforms, at 3 midline electrode 
locations: frontocentral midline (FCz), central midline (Cz) and centroparietal midline 
(CPz). ERPs are shown both during hits and during correct rejections (CRs), both for YAs 
(panel A) and for OAs (panel B). The shaded regions around the ERP traces indicate the 
Standard Error of the Mean (SEM) across participants of the same age group. 
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Correct Rejections 

Partial correlation with walking-minus-sitting d’ score, controlling for age 

This section aimed to test whether walking-related changes in neural activity during correct 
rejections correlated with walking-related change in response accuracy independently of age, and 
if so, at which scalp regions and during which stages of the inhibitory processing stream. 
Walking-minus-sitting mean ERP amplitude during correct rejections was calculated at each of 
the 64 electrodes and each epoch timepoint and it was subsequently partially correlated with 
walking-minus-sitting d’ score, controlling for age, using partial Spearman rank correlations. 
Cluster-based permutation tests were used to identify spatiotemporal clusters of significant 
neural activity effects while accounting for multiple electrode/timepoint comparisons.  

During correct rejection trials, walking-minus-sitting mean ERP amplitudes were found to 
positively correlate with walking-minus-sitting d’ score over frontal scalp regions, during 
latencies corresponding to multiple stages of inhibitory processing. These correlation effects are 
represented by the yellow clusters in the Fig. 5A statistical clusterplot (within-cluster mean 
Spearman’s r = 0.27, p = 0.0216, αFDR = 0.0216). Specifically, significant correlation effects 
were detected as early as a few milliseconds post-stimulus-onset until the end of the epoch (800 
ms post-stimulus-onset). To facilitate the study of these effects, 3 latency intervals were defined 
based on the existing response inhibition ERP literature: 1) sensory/perceptual interval ([0, 200] 
ms (96-98)), which encompasses the N1 component, 2) the conflict monitoring interval ([200, 
350] ms (55-57) ), which includes the N2 component, and 3) the control implementation interval 
([350, 800] ms (48, 62)), encompassing the P3 component. In the entire cohort pooled across 
age, as response accuracy increased during walking, walking-related ERP amplitudes were found 
to become less negative over frontocentral scalp during intervals 1 and 2, and predominantly left-
lateralized prefrontal scalp during interval 3 (Fig. 5A). The latencies corresponding to the 3 
intervals are demarcated by black dashed rectangles on the clusterplot. 
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Follow-up tests were performed to determine whether the effects detected in each of the intervals 
were driven by a specific type of dual-task-related behavior; in other words, whether the 
correlation effects were driven by any of the three behavioral groups (IMP, NC, DEC) defined 
above, in the ‘Cognitive Task Performance’ section. Specifically, for each latency interval and 
within each behavioral group, the mean ERP amplitude, averaged across electrode-timepoint  
belonging to the respective significant yellow cluster, was compared between sitting and walking 
using paired t-tests (or Wilcoxon signed rank tests when the data were non-normally distributed). 
Such significant ERP amplitude differences between sitting and walking were found in all 3 
latency intervals for IMPs (20 YAs, 7 OAs; pInterval-1 = 0.0002, pInterval-2 < 0.0001, pInterval-3 = 
0.0008, α = 0.0500), but in none of the 3 intervals for NCs (6 YAs, 10 OAs; pInterval-1 = 0.4321, 
pInterval-2 = 0.1958, pInterval-3 = 0.8881) or DECs (8 YAs, 20 OAs; pInterval-1 = 0.1791, pInterval-2 = 
0.9516, pInterval-3 = 0.6164). These results indicate that correlation effects were driven by 
significantly reduced ERP amplitudes during intervals 1 and 2, and significantly increased ERP 
amplitudes during interval 3, in IMPs when walking. The topographical maps of Fig. 5B show 
the scalp distribution of the walking-minus-sitting mean ERP amplitudes during correct rejection 
trials, averaged across IMPs, NCs and DECs, separately, for three 50-ms windows indicated by 
gray bars. These 50-ms windows were centered at the peak latency of N1, N2 and P3, 
respectively, calculated based on the grand mean waveform at FCz, averaged across behavior, 
age and motor load. N1 peaked at 140 ms, N2 at 270 ms and P3 at 470 ms post-stimulus-onset, 
approximately. For each window, the electrodes that exhibited significant correlation effects are 

Fig. 5. Correlation effects between dual-task-related neural activity change and dual-task-
related response accuracy change during correct rejection trials. A. Spatiotemporal clusters of 
walking-minus-sitting mean ERP amplitudes correlating with walking-minus-sitting d’ score 
during correct rejections, identified using cluster-based permutation tests. The statistical 
clusterplot shows the t-values for the electrode-timepoint pairs at which significant 
correlation was found. Positive t-values (yellow) indicate that, as walking d’ scores increased 
relative to sitting d’ scores, walking ERP amplitudes became less negative relative to the 
sitting ERP amplitudes. Such positive correlation effects were found over frontocentral scalp 
during intervals 1 and 2, and over predominantly left-lateralized prefrontal scalp during 
interval 3. The black dashed rectangles on the clusterplot demarcate the latencies 
corresponding to the 3 intervals. B. Grand mean sitting and walking ERP waveforms of IMPs 
(left), NCs (middle) and DECs (right), at a frontal midline electrode (Fz) that exhibited 
significant correlation effects. The topographical maps show the scalp distribution of the 
walking-minus-sitting mean ERP amplitudes during correct rejections, averaged within each 
of the behavioral groups (IMPs, NCs, DECs) separately, for 3 selected 50-ms windows (gray 
bars). Each 50-ms window corresponds to one interval. For each window, the electrodes that 
exhibited significant correlation effects are indicated by red dots on the topographical map of 
the behavioral group that was found to drive the correlation. The correlation was driven by 
IMPs for all 3 intervals. The Fz electrode to which the ERP waveforms correspond is circled 
in black on the maps. C. Follow-up visualizations within the OA IMP group. Grand mean 
sitting and walking ERP waveforms of OA IMPs at the Fz electrode, along with 
topographical maps of walking-minus-sitting mean ERP amplitudes for the same three 50-ms 
windows as in panel B. 
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denoted by red dots on the topographical map of the behavioral group that was found to drive the 
correlation. The correlation was driven by IMPs for all 3 intervals. Sitting and walking ERP 
waveforms during correct rejection trials for each behavioral group are depicted at Fz (frontal 
midline), since this electrode exhibited significant correlation effects (Fig. 5B).  

Walking-related ERP amplitude changes in OA IMPs were follow-up tested in the clusters of 
each of the intervals, to assess how the effects in this group compare to those in the general IMP 
group. For each latency interval, the mean ERP amplitude was compared between sitting and 
walking. Significant differences were found in all 3 latency intervals (pInterval-1 = 0.0169, pInterval-2 

= 0.0294, pInterval-3 = 0.0081, α = 0.0500), consistent with the findings in the general IMP group. 
Fig. 5C illustrates the neural activity effects exhibited by OA IMPs. The same ERP waveforms 
and topographical maps as in Fig. 5B are displayed for OA IMPs only. Indeed, the positive 
walking-minus-sitting mean ERP amplitudes reflecting less negative ERP amplitudes during 
walking, shown in yellow on the topographical maps, were present over cluster-related frontal 
topographies in OA IMPs. 

These data indicate that reduced walking-related ERP amplitudes over frontocentral regions 
during the N1and N2 stages of correct rejections, and increased walking-related ERP amplitudes 
over predominantly left-lateralized prefrontal regions during the P3 stage, constitute neural 
signatures of behavioral improvement in the cognitive task, independently of age.   

Partial correlation with age, controlling for walking-minus-sitting d’ score 

Walking-related changes in neural activity during correct rejections were tested for correlations 
with age, independently of walking-related change in response accuracy, across the entire 64-
electode set and all the epoch timepoints. Walking-minus-sitting mean ERP amplitude during 
correct rejections was partially correlated with age at each electrode-timepoint pair, controlling 
for walking-minus-sitting d’ score, using partial Spearman rank correlations. Cluster-based 
permutation tests were used to identify spatiotemporal clusters of significant neural activity 
effects while accounting for multiple electrode/timepoint comparisons. For consistency purposes, 
the same interval definitions as in the previous section are used here too.  

During correct rejection trials, walking-minus-sitting mean ERP amplitudes were found to 
negatively correlate with age over predominantly left-lateralized frontal scalp regions during 
interval 2 and early interval 3. These negative correlation effects are represented by the blue 
cluster in the Fig. 6A statistical clusterplot (within-cluster mean Spearman’s r = -0.23, p = 
0.0120, αFDR = 0.0216). Of note, the portion of this blue cluster which extended into interval 3 
was excluded from further analysis, because it was considered to add too little value due to its 
short duration and absence of any novel effects relative the interval-2 portion.  

Additionally, positive correlations with age were found over parietooccipital regions during 
interval 2 and over centroparietal regions during interval 3. These positive correlation effects are 
represented by the yellow cluster in the Fig. 6A statistical clusterplot (within-cluster mean 
Spearman’s r = 0.22, p = 0.0160, αFDR = 0.0216). All correlation effects detected here reflect age-
related increase in ERP amplitudes during walking relative to sitting. Specifically, at electrodes 
and latencies where ERP amplitudes were negative, they became more negative with age during 
walking relative to sitting; similarly, at electrodes and latencies where ERP amplitudes were 
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positive, they became more positive with age during walking relative to sitting. The latencies 
corresponding to intervals 2 and 3 are demarcated by black dashed rectangles on the clusterplot. 
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Follow-up tests were conducted to determine whether the detected effects were driven by either 
of the YA or OA age group. For YAs and OAs separately, the mean ERP amplitude, averaged 
across electrode-timepoint pairs, was compared between sitting and walking within the 
significant blue cluster of interval 2 and within the significant yellow clusters of intervals 2 and 3 
using paired t-tests (or Wilcoxon signed rank tests when the data were non-normally distributed). 
Significant amplitude differences were found in YAs (20 IMPs, 6 NCs, 8 DECs; pInterval-2-blue = 
0.0004, pInterval-2-yellow = 0.0001, pInterval-3-yellow < 0.0001, α = 0.0500), but not for OAs (7 IMPs, 10 
NCs, 20 DECs; pInterval-2-blue = 0.7954, pInterval-2-yellow = 0.2675, pInterval-3-yellow = 0.5614). Based on 
these results, correlation effects were driven by significantly reduced ERP amplitudes in YAs 
when walking, during both intervals 2 and 3. The topographical maps of Fig. 6B show the scalp 
distribution of the walking-minus-sitting mean ERP amplitudes during correct rejection trials, 
averaged across YAs and OAs, separately, for 2 selected 50-ms windows (gray bars). These 
windows correspond to intervals 2 and 3, and they are centered at 270 ms and 470 ms post-
stimulus-onset, respectively, the same convention as used in Fig. 5. The electrodes that exhibited 
significant correlation effects within each of the 2 windows are denoted by red dots on the 
topographical map of the age group that was found to drive the correlation, which is YAs for 
both intervals. Sitting and walking ERP waveforms during correct rejection trials for each age 
group are depicted at CPz, since this electrode exhibited significant correlation effects (Fig. 6B).  

Fig. 6. Correlation effects between dual-task-related neural activity change and age during 
correct rejection trials. A. Spatiotemporal clusters of walking-minus-sitting mean ERP 
amplitudes correlating with age during correct rejections, identified using cluster-based 
permutation tests. The statistical clusterplot shows the t-values for the electrode-timepoint 
pairs at which significant correlation was found. Negative t-values (blue) indicate that, as age 
increased, walking ERP amplitudes became more negative relative to the sitting ERP 
amplitudes. Negative correlation effects were found over predominantly left-lateralized 
frontal scalp regions during interval 2 and early interval 3. Positive t-values (yellow) indicate 
that, as age increased, walking ERP amplitudes became more positive relative to the sitting 
ERP amplitudes. Positive correlation effects were found over parietooccipital regions during 
interval 2 and over centroparietal regions during interval 3. The latencies of intervals 2 and 3 
are demarcated by black dashed rectangles on the clusterplot. B. Grand mean sitting and 
walking ERP waveforms of YAs (left) and OAs (right), at CPz that exhibited significant 
correlation effects. The topographical maps show the scalp distribution of the walking-minus-
sitting mean ERP amplitudes during correct rejections, averaged within each of the age 
groups (YAs, OAs) separately, for two 50-ms window (gray bars). These 2 windows 
correspond to intervals 2 and 3, respectively, and they are the same as in Fig. 5. For each 
window, the electrodes that exhibited significant correlation effects are indicated by red dots 
on the topographical map of the age group that was found to drive the correlation. The 
correlation was driven by YAs for both intervals. The CPz electrode to which the ERP 
waveforms correspond is circled in black on the maps. C. Follow-up visualizations for the 
OA IMP group. Grand mean sitting and walking ERP waveforms of OA IMPs at the CPz 
electrode, along with topographical maps of walking-minus-sitting mean ERP amplitudes for 
the same 50-ms windows as in panel B. 
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Walking-related ERP amplitude changes in OA IMPs were follow-up tested in the clusters of 
each of the 2 intervals, to assess how the effects in this group compare to those in the general OA 
group. For each latency interval, the mean ERP amplitude was compared between sitting and 
walking. No detectable differences were found in either interval (pInterval-2-blue = 0.9695, pInterval-2-

yellow = 0.5965, pInterval-3-yellow = 0.6029), consistent with the findings in the general OA group. 
Fig. 6C illustrates the neural activity effects exhibited by OA IMPs. The same ERP waveforms 
and topographical maps as in Fig. 6B are displayed for OA IMPs only. Indeed, the walking-
minus-sitting mean ERP amplitudes appeared attenuated in OA IMPs over cluster-related scalp 
topographies.  

Based on these data, attenuations of walking-related ERP amplitude modulations over 
parietooccipital and predominantly left-lateralized frontal regions during the N2 stage, and over 
centroparietal regions during the P3 stage are revealed as neural signatures of aging, 
independently of walking-related behavioral change in the cognitive task. 

Hits 

Partial correlation with walking-minus-sitting d’ score, controlling for age 

Walking-related changes in neural activity during hits were tested for correlations with walking-
related change in response accuracy independently of age, across the entire 64-electode set and 
all the epoch timepoints. Walking-minus-sitting mean ERP amplitude during hits was calculated 
at each electrode-timepoint pair and it was subsequently partially correlated with walking-minus-
sitting d’ score, controlling for age, using partial Spearman rank correlations. Cluster-based 
permutation tests revealed no clusters of significant spatiotemporal neural activity effects. 

Partial correlation with age, controlling for walking-minus-sitting d’ score 

Walking-related changes in neural activity during hits were tested for correlations with age 
independently of walking-related change in response accuracy, across the entire 64-electode set 
and all the epoch timepoints. Walking-minus-sitting mean ERP amplitude during hits was 
partially correlated with age at each electrode-timepoint pair, controlling for walking-minus-
sitting d’ score, using partial Spearman rank correlations. Cluster-based permutation tests 
revealed one cluster of significant spatiotemporal neural activity effects spanning left-lateralized 
centroparietal regions, which, however, did not remain significant after correction for multiple 
comparisons (p = 0.0468, αFDR = 0.0216). 

Gait 

Treadmill Walking Speed 

Self-selected treadmill walking speed was tested for associations with 1) walking-minus-sitting 
d’ score, controlling for age, and with 2) age, controlling for walking-minus-sitting d’ score, 
using partial Spearman rank correlations. While correlation 1 was found to be non-significant 
(Spearman’s r = -0.02, p = 0.8684), correlation 2 was found to be significantly negative 
(Spearman’s r = -0.68, p < 0.0001, αFDR = 0.0216), indicating that selection of slower walking 
speeds on the treadmill is driven by older age and not behavioral performance in the dual task. 
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Stride-to-Stride Variability 

Fig. 7 demonstrates the stride-to-stride variability distributions of young and older adults, with 
and without a concurrent cognitive task (WT and WO, respectively) (panel B), along with the 3D 
representations of trajectories of a series of strides for 1 young and 2 older participants (panel A). 

 

Potential associations were tested between WT-minus-WO mean DTW distance and 1) walking-
minus-sitting d’ score, controlling for age, as well as 2) age, controlling for walking-minus-
sitting d’ score, using partial Spearman rank correlations. Neither of the correlations was found 
to be significant (Correlation 1: Spearman’s r = -0.10, p = 0.4331; Correlation 2: Spearman’s r = 
0.05, p = 0.7060), thereby indicating that the impact of adding Go/NoGo task performance to 
treadmill walking did not change with age and, also, it was not associated with the impact of 
adding treadmill walking to Go/NoGo task performance. 

Other Correlations 

Sex 

To investigate whether dual-task-related change in response accuracy could be predicted based 
on sex, sex was partially correlated with walking-minus-sitting d’ score, controlling for age, 

Fig. 7. A. 3D representations of trajectories of a series of strides for 1 YA and 1 OA, while 
they concurrently engaged in the Go/NoGo task. Lateral is the dimension of movement right-
and-left relative to the motion of the treadmill belt.  Vertical is the dimension movement up-
and-down relative to the motion of the treadmill belt. Fore-aft is the dimension of movement 
parallel to the motion of the treadmill belt. Using Dynamic Time Warping (DTW), the 
variability from one stride to the next was quantified as DTW distance (see Methods) and the 
mean DTW distance of all stride-to-stride comparisons was extracted per participant. B. 
Mean DTW distance distributions during walking with task (WT) and walking only (WO), in 
YAs and OAs. Purple dots represent individual participants. Red ‘+’ symbols represent 
outliers. 

5 

D 
.  

= 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520469doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520469
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

using a partial Spearman rank correlation. No significant association between sex and walking-
related change in response accuracy was revealed (Spearman’s r = 0.06, p = 0.6205). 

Cognitive Assessment Score 

In older adults, to test whether dual-task-related change in response accuracy could be predicted 
based on performance in the MoCA cognitive assessment, MoCA score was correlated with 
walking-minus-sitting d’ score, using a Spearman rank correlation. No significant association 
between MoCA score and walking-related change in response accuracy was found (Spearman’s r 
= -0.22, p = 0.1963). 
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Discussion 

Overall, at the group level, there was a decline in response accuracy while walking that was 
related to age, consistent with previous studies (1, 17, 21). This relationship was driven by the 
tendency for a preponderance of the young adults to show response accuracy improvement when 
walking, whereas most of the older adults showed the opposite pattern, with reductions in 
walking-related response accuracy. This pattern became evident when walking-related response 
accuracy distributions were inspected at the single-participant level. In young adults, while there 
were some participants who declined (DECs; n = 8) or maintained performance (NCs; n = 6) 
during walking, most improved (IMPs; n = 20). On the other hand, task performance in most 
older adults declined during walking (DECs; n = 20), while those who improved (IMPs; n = 7) or 
maintained performance (NCs; n = 10) were fewer, revealing an essentially ‘inverted’ 
distribution compared to young adults. The young adult distribution was expected based on our 
prior work (39). However, to our knowledge, response accuracy changes in older adults during 
walking have not been studied at a single-participant level before. Subsequent analyses aimed to 
elucidate the finding of ‘paradoxical’ improvement during dual-tasking manifested by these 7 
older IMPs, by identifying effects in neurophysiology, gait activity and behavior linked to dual-
task-related improvement and aging. Improvement in response accuracy during walking was 
accompanied by response slowing, suggesting the presence of a speed-accuracy trade-off, as well 
as by walking-related ERP amplitude modulations during correct rejection trials (i.e. successful 
response inhibitions). Age was found to correlate with slower treadmill speeds, indicating age-
related weakening of ambulatory ability (99-101), and with attenuation in walking-related ERP 
amplitude modulations during correct rejections.  

A clear finding here is that those individuals, regardless of age category, who showed 
improvement in response inhibition accuracy during walking, were those who showed clear 
evidence for modulation of their ERP amplitudes across all three tested latency intervals during 
correct rejections. That is, we observed reductions of the N1 and N2 amplitudes frontocentrally, 
accompanied by an increase in P3 amplitude lateral-prefrontally (predominantly left), in 
improving adults during walking (Fig. 5B).  

These changes were observed over frontocentral scalp during the N1 and N2 latency intervals, 
and over predominantly left-lateralized prefrontal scalp during the P3 latency interval (see Fig. 
5A). The walking-related ERP amplitude modulations over frontocentral regions during the N2 
stage and over prefrontal regions during the P3 stage of correct rejections, which have been 
previously reported in young IMPs (39), are also apparent in older IMPs (Fig. 5C). Specifically, 
in young IMPs, reduced walking-related N2 amplitudes frontocentrally have been interpreted as 
reduced inhibitory conflict during walking, since the source of the N2 has been localized to the 
anterior cingulate cortex (ACC), which plays a central role in conflict monitoring (54, 55, 58, 59, 
102, 103). Also, walking-ERP amplitude modulations over lateral prefrontal regions during the 
P3 stage have been interpreted as more efficient recruitment of neural resources crucial for top-
down behavioral adjustments, which have been localized to the dorsolateral prefrontal cortex, 
especially in the left hemisphere (39, 51, 102, 104-106).  

In contrast to the predictions of CMI, others have proposed that moderate exercise, such as 
walking, can boost deployment of top-down attentional resources within the lateral prefrontal 
cortex, possibly mediated by increases in the concentration of catecholamines, serotonin, 
acetylcholine and cortisol (107-112). More efficient, exercise-induced engagement of these 
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prefrontal resources has been associated with increased arousal levels and improvement in task 
performance, which likely stems from the adoption of more proactive cognitive strategies to task 
execution (12, 113-117). Such a shift in the cognitive strategy of IMPs during walking could 
enhance anticipation of the subsequent ‘NoGo’ trials, thereby explaining why they presumably 
exhibit walking-related reduction in inhibitory conflict, as indexed by reduced frontocentral-N2 
amplitudes (39). The present findings indicate that the neural signatures previously found in 
young adults who improve during dual-task walking during N2 and P3 (39) also occur in older 
adults who improve during dual-task walking.  

This study additionally revealed a novel neural signature of behavioral improvement during 
walking, independent of age, specifically the observed walking-related ERP amplitude changes 
over frontocentral scalp during the N1 stage of correct rejections. The N1 is a negative voltage 
deflection peaking around 100-200 ms post-stimulus-onset (96-98), and it is thought to reflect 
sensory gating processes, which involve filtering out irrelevant stimulus information and 
allocating top-down attentional resources towards enhancing processing of relevant stimulus 
information (118-121). Neural generation of the N1 has been traced to multiple frontal and 
parieto-occipital sources, presumably representing the neural centers that top-down attentional 
control is exerted from and to, respectively (118, 122-124). The reduced walking-related ERP 
amplitudes over frontocentral scalp regions during N1 latencies manifested by IMPs suggest that, 
in this behavioral group, walking likely reduced the need for top-down attentional control over 
task-related sensory and perceptual processes. One possible explanation for IMPs not requiring 
as much top-down control during the N1 stage is that the neural resources needed at this early 
processing stage have already been sufficiently activated because of the more efficient frontal 
resource recruitment exhibited by the same group during the P3 stage of preceding NoGo trials. 
It is important to highlight that older adults who improved performance while walking also 
showed these ERP effects during N1 (Fig. 5C). Overall, the neural signatures of improving 
behavior during N1, N2 and P3 may be due to better management of the inhibitory conflict, 
which presumably stems from more flexible recalibration of neural processes related to the 
cognitive component of inhibition, in response to the increase in task demands. 

Young adults, regardless of response inhibition accuracy during walking, showed clear 
modulation of their ERP amplitudes across both tested latency intervals during correct rejections. 
Specifically, we observed reduction in N2 amplitude lateral-frontally (predominantly left) and 
parietooccipitally, and reduction in P3 amplitude centroparietally, in young adults during 
walking. In contrast, such modulations appeared attenuated in older adults, again, regardless 
walking-related response inhibition accuracy (Fig. 6B).  

The topography of these aging-related ERP effects implicates brain regions that are part of the 
motor inhibition network. Specifically, certain left-lateralized frontal areas, such as the left 
inferior frontal gyrus and the left lateral orbitofrontal cortex, have been shown to play a key role 
in implementing top-down inhibitory control over motor responses (53, 65-67, 125). Suppression 
of motor preparation processes related to pressing the button have been localized to premotor 
areas contralateral to the hand used to respond during Go trials (65, 66, 126). Since most 
participants of this study responded with their right hand (59 in total; 30 young and 29 older 
participants), these neural processes are expected to be reflected left-frontocentrally. Although 
significant caution must be exercised in inferring intracranial sources from scalp topographic 
maps, age-related effects when dual-tasking were predominantly found over left frontocentral 
scalp herein (Fig. 6B). Parietal regions have been long associated with motor attentional control, 
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housing mechanisms related to preparation and redirection of limb movements, and they are 
particularly activated during tasks that require sequential performance of movements (127-129). 
During the N2, parietal resources are presumably marshaled to efficiently reorient the motor plan 
from the prepotent tendency towards motor response execution to the desired motor response 
inhibition. Motor and midcingulate regions, located centrally, are known to be directly linked to 
suppression of the prepotent motor response during the P3 processing timeframe (59, 64, 66-69). 
In the present study, when walking is added to inhibitory task performance, ERP amplitude 
modulation over these regions in young adults suggests that this age group can flexibly 
recalibrate neural processes related to the motor component of inhibition. Conversely, 
attenuation of these modulations in older adults likely indicates that this flexibility is 
compromised with aging. This interpretation is consistent with previous research reporting age-
related functional and structural decline of motor circuitry (130-132). Importantly, these aging-
related modulations were present in older adults who improved during walking (Fig. 6C).  

Both aging-related and improvement-related neural signatures were manifest over the frontal 
scalp of improving older adults, during the N2 stage of correct rejections. Comparison of the 
scalp distribution of the clusters corresponding to each type of signature during the N2 interval 
shows that the frontocentral behavior-related cluster (red dots on the interval-2 topographical 
map in Fig. 5C), which has a predominantly midline scalp distribution, and the frontal age-
related cluster (red dots on the interval-2 topographical map in Fig. 6C), which has a 
predominantly left-lateralized scalp distribution, do not overlap in terms of the electrodes that 
they encompass. This observation further supports the idea that each type of frontal signature 
during N2 reflects dissociable neural processes underpinned by distinct generators, possibly 
those discussed in the paragraphs above. 

In previous studies, older adults were found to manifest attenuations in walking-related 
amplitude modulations both for the frontocentral-N2 and for the centroparietal-P3 component 
(1). In this study, we showed that improving older adults, while they still exhibited such 
attenuation for the centroparietal-P3 component, they interestingly exhibited walking-related 
amplitude modulation for the frontocentral-N2 component, which is an effect most commonly 
encountered in young adults. 

One limitation of the present study is that the behavioral effect it targets, namely improvement 
during walking, was found to have relatively low prevalence in the older adult population 
(~19%). As such, despite the relatively large sample size of 71 adults, only 7 older adults were 
found to show walking-related improvement in the cohort. Future studies could focus on 
elucidating walking-related improvement in aging by employing screening procedures to 
specifically identify older adults who improve when dual-task walking, thus increasing the 
sample size for this group. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520469doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520469
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Conclusions 

To summarize, aging was found to come with behavioral deterioration in most but not in all 
adults when combining a Go/NoGo response inhibition task with walking. This study revealed 
distinct neural signatures of aging and behavioral improvement during dual-task walking. Better 
response accuracy during walking was found to correlate with slower responses to stimuli, as 
well as with walking-related ERP amplitude modulations over frontocentral regions during the 
N1and N2 stages of correct rejections, and over predominantly left-lateralized prefrontal regions 
during the P3 stage. These neural signatures of behavioral improvement might reflect more 
flexible recalibration of neural processes related to the cognitive component of inhibition as task 
demands increase. On the other hand, aging was found to correlate with slower treadmill walking 
speeds, as well as with attenuation in walking-related ERP amplitude modulations over 
parietooccipital and predominantly left-lateralized frontal regions during the N2 stage and over 
centroparietal regions during the P3 stage of correct rejections. These neural signatures likely 
reflect age-related loss of flexibility in recalibrating neural processes related to the motor 
component of inhibition with increasing task demands. The smaller percentage of older adults 
(19%, versus 59% for young adults) who improved performance in the Go/NoGo task during 
walking exhibited both aging-related neural signatures and neural signatures of behavioral 
improvement. The coexistence of both types of neural signatures in improving older adults 
suggests that they likely maintain flexibility in recalibrating the neural processes underpinning 
the cognitive, but not the motor inhibitory component, when dual-task walking. As such, the 
neural signatures of behavioral improvement during dual-tasking could potentially serve as 
markers of ‘super-aging’. Both sets of neural signatures identified in the context of this study 
hold promise for being translated to clinical populations, such as patients with neurodegenerative 
diseases, to assess the degree of disease progression, to evaluate treatment outcomes and 
potentially to identify people, pre-clinically, at high risk for developing aging-related or disease-
related cognitive decline.  
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