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SUMMARY

The search for new approaches in cancer therapy requires a mechanistic understanding of cancer
vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective
therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer
activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk
acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells selectively via inhibition of
DNA methyltransferase enzymes, but the genes and mechanisms involved remain unclear. Here, we
apply an integrated multiomics and CRISPR functional genomics approach to identify genes and
processes associated with response to decitabine in AML cells. Our integrated multiomics approach
reveals RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically,
regulation of RNA decapping, splicing and RNA methylation emerge as important regulators of
cellular response to decitabine.

INTRODUCTION

Epigenetic dysregulation drives many of the hallmarks of cancer by enabling aberrant gene
expression programs which underlie cancer cellular plasticity and tumor heterogeneity phenotypes
that promote cancer initiation, progression, metastasis and drug resistance'. Indeed, one of the key
findings of the genomics era in cancer biology has been that most cancer genomes are epigenetically
abnormal and mutations in genes that regulate DNA methylation, such as DNMT3A/B, TETI-3 and
IDH1/2, are prevalent??. Together, these observations suggest that epigenetic dysregulation promotes
cancer but may also represent a targetable vulnerability. As such, there has been substantial interest
in the development of anti-cancer strategies which modulate cancer associated epigenetic programs
and dependencies*®. One such promising strategy which has shown success in the context of certain
subtypes of acute myeloid leukemia (AML) is to inhibit the activity of key enzymes required for
maintenance and regulation of DNA methylation by small molecule drugs, such as decitabine,
resulting in global DNA hypomethylation. There is clear evidence of clinical benefit of decitabine
treatment for AML patients who have cytogenetic abnormalities associated with unfavorable risk,
TP53 mutations or both (defined hereafter as high-risk AML patients)”®. Unfortunately, despite this
benefit, most AML patients eventually progress following decitabine treatment with a median overall
survival of less than 1 year. Problematically, relatively little progress has been made on improving
the clinical activity of DNA hypomethylating agents (HMA) such as decitabine in AML or other
cancers in part because the molecular determinants of response to HMAs are unclear.

A recent clinical study of molecular determinants of response to decitabine in AML patients has
suggested that mutations in DNMT3A4, IDH1/2 and TET?2 are not correlated with response to
decitabine®. In the same study, it was noted that 7P53 mutations are also not correlated with poor
clinical response to decitabine. These findings are unusual in two ways. First, it had previously been
hypothesized that tumors with mutations that drive aberrant DNA methylation profiles may be more
susceptible to HMAs. Secondly, 7P53 mutations are generally associated with drug resistance and
poor prognosis in many cancers, so it is unexpected that 7P53 mutations in AML seem to not play a
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role in determining clinical outcomes following treatment with decitabine. This result suggests that
decitabine’s anti-cancer activity in AML occurs through a 7P53 independent mechanism. Given the
central role 7P53 plays in canonical apoptotic BCL2 family protein dependent programmed cell
death, at one level this study appears to contradict recent clinical trial results in AML which
demonstrated superior clinical outcomes from the combination of HMAs and venetoclax, a BCL2
inhibitor thought to drive programmed cell death in cancer cells’. One explanation that could account
for both sets of clinical observations is that HMAs may drive cell death via an unknown 7P53
independent apoptotic pathway. A more robust understanding of decitabine’s mechanisms of anti-
cancer activity in 7P53-mutant tumors could enable innovative therapeutic strategies and a better
understanding of patients who do and do not respond robustly to HMAs. An alternate hypothesis for
how HMAs kill cancer cells arises from the observation that treatment with HMAs results in
accumulation of non-canonical transcripts including inverted SINE elements, endogenous retroviral
elements and cryptic transcription start sites encoded in long terminal repeats which collectively act
to induce immune activation!®4, Lastly, it has also been suggested that HMAs induce cellular
differentiation in AML which may contribute to therapeutic efficacy'>.

To identify genes that modulate decitabine’s anti-cancer activity in high-risk AML in an unbiased
manner, we performed genome-scale CRISPR genetic screens and integrated this data with
multiomics measurements of decitabine response in AML cells. Our results recapitulate multiple
known factors which modulate response to decitabine, including DCK, SLC29A41, MCL1 and BCL2,
indicating the utility and robustness of our approach for interrogating the biology of decitabine in
AML?16-22_ Central to our study was the finding that epitranscriptomic RNA modification and RNA
quality control pathways effectively modulate response to decitabine in AML cells. In short, we have
identified unexpected regulatory connections between DNA methylation, RNA methylation and
RNA quality control pathways, which may provide further insight into decitabine’s mechanism(s) of
action.
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RESULTS

A genome-scale CRISPRI screen in AML cells identifies genes modulating decitabine
sensitivity and resistance

We set out to perform a genome-scale genetic screen using our previously described CRISPR
interference (CRISPRi) functional genomics platform to identify genes that regulate cancer cell
response to decitabine (Fig. 1a), a clinically approved HMA?*-4, For this, we used the HL-60 cell
line, which is an established model of AML. The cell line is 7P53, NRAS and MYC mutant and
captures the biology of high-risk AML and more generally of an aggressive human cancer. To begin,
we generated an HL-60 CRISPRI cell-line model that stably expressed the dCas9-BFP-KRAB fusion
protein. We validated that the resulting CRISPRi1 HL-60 cell line, hereafter referred to as HL-601, is
highly active for targeted gene knockdowns (Supplementary Fig. 1a).

Decitabine (5-aza-2’-deoxycytidine) is a pro-drug that is converted intracellularly into 5-aza-2’-
deoxycytidine monophosphate!”-!%22, This nucleoside analogue is in turn incorporated into DNA
during replication, where it is thought to irreversibly and covalently trap and inhibit DNA
methyltransferases DNMT1/DNMT3A/DNMT3B (Fig. 1a). Trapping of DNMTs renders them
enzymatically inactive, resulting in global DNA hypomethylation and dysregulated gene expression.
This broad reprogramming of the gene expression landscape results in cell cycle arrest or cell death
through poorly characterized molecular mechanisms. At high doses, decitabine also causes DNA
replicative stress and DNA damage. To further characterize decitabine’s activity in an AML cell
model, we used publicly available data to analyze changes in genome-scale DNA methylation
patterns in HL-60 cells treated for 120 hours with a low dose of decitabine (Supplementary Fig. 1b-
d)®. As expected, we observed global hypomethylation of CpG dinucleotides and hypomethylation
of differentially methylated regions (DMRs) following treatment with decitabine. This confirms the
expected activity of decitabine, a non-specific DNMT inhibitor, in AML cells. As discussed above,
there is a hypothesis raised by clinical results that perhaps decitabine induces 7P53 independent but
BCL?2 family protein dependent apoptosis. To address this, we next assessed whether decitabine
treatment induces caspase 3/7 dependent apoptosis in our HL-60 model. We observed a dose
dependent increase in caspase 3/7 activation upon treatment with low concentrations of decitabine
(Supplementary Fig. le). Together, our results indicate that decitabine induces 7P53-independent
apoptosis and DNA hypomethylation in a model of high-risk AML and further supports our notion
that this model could provide insight into decitabine’s mechanism(s) of action.

For the genome-scale CRISPRIi screen design and all subsequent experiments, we chose to treat cells
with a clinically relevant low dose of decitabine (~IC30; 100 nM)?°. At this concentration,
decitabine’s anti-cancer activity is thought to predominantly arise due to global DNA
hypomethylation rather than via DNA replication stress?”-?%. The genome-scale pooled genetic screen
was performed by transducing the cell line with a human genome-scale CRISPRi sgRNA library at a
low multiplicity of infection such that a single sgRNA is expressed in most cells, and then cells were
selected with puromycin to remove uninfected cells from the population (Fig. 1b). In addition to


https://doi.org/10.1101/2022.12.14.518457
http://creativecommons.org/licenses/by/4.0/

O 00 NO UL WN B

A DA D W WWWWWWWWWNNNNNNNNNNRRRRRERRR R P
N P OWOWLOWOWNOOU DS WNRPRPO UOVOOMNOUDWNROOLWONOOUDNSWNIEREO

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.518457; this version posted October 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

time-zero samples, we also collected samples after growing the library in the presence and absence
of decitabine (in biological duplicates). Next-generation sequencing was used to quantify the relative
abundance of cells expressing each sgRNA in each sample. We then used measurements across the
entire library to calculate sgRNA- and gene-level phenotypic scores (Supplementary Fig. 2a).
Results obtained from the replicate screens were highly correlated with high data quality in both the
DMSO and decitabine experiments (Supplementary Fig. 2b-e). Analysis of our decitabine screen
data revealed a large number of genes that modulate cellular response to decitabine (1293 genes with
Mann-Whitney p-value < 0.05 and absolute value of rho score > 0.1) (Fig. 1c¢ and Supplementary
Table 1). These results may reflect the pleiotropic nature of DNA methylation biology.

Initial inspection of top hits from our decitabine CRISPRi screen in HL-60 cells recapitulated a
number of genes whose knockdown is known to impact drug resistance and sensitivity (Fig. 1¢). For
example, the top resistance hit was DCK, which phosphorylates decitabine resulting in conversion of
the pro-drug to the active drug!®!°. Another top resistance hit was SLC29A41, which is a solute carrier
protein required for decitabine entry into cells'®!°. Lastly, DCTD is thought to play a role in the
metabolism of decitabine and is revealed as a strong resistance hit as well?®. We also observed that
knockdown of BCL2 and MCLI sensitizes HL-60i to decitabine, as expected from the clinical
literature which suggests decitabine induces BCL2 family protein mediated cell death?*2!. The
recapitulation of known positive control hits in our screens indicate the utility and robustness of our
approach for interrogating the biology of decitabine in AML.

RNA dynamics modulate response to DNA hypomethylation induced by decitabine in AML
cells

Buoyed by these positive endogenous controls, we next examined the remaining CRISPRI hits to
search for new biological insights and to generate hypotheses on the cellular mechanisms of
decitabine action. First, we noted that the pathway-level analysis of our screen identifies mRNA
processing pathways as a top-scoring enriched term (Supplementary Fig. 2f and Supplementary
Table 2)*%3!, Further analysis of these top hits revealed a strong enrichment for two specific RNA
biological processes. Specifically, we observed that repression of RNA decapping enzymes such as
DCPI1A4, DCP2 and DCPS sensitizes HL-60 to decitabine (Fig.1c). We also observed that repression
of multiple genes (METTL3, YTHDF?2, ZC3H13 and CBLL]) that regulate RNA methylation marks,
specifically Né-methyladenosine or m®A, promoted resistance to decitabine. Together, these
observations suggest that modulation of specific RNA regulatory pathways is a key determinant of
response to DNA hypomethylation induced by decitabine. To independently validate the results from
our screen, we chose 10 hit genes from our decitabine HL-60 CRISPRi screen (2 sgRNAs/gene) and
used a mixed competition fluorescence cell survival CRISPRi knockdown assay to measure how
perturbation of individual genes modulates response to decitabine. Our validation experiments
demonstrated the reproducibility of our CRISPRi genome-scale screen measurements across all the
resistance and sensitivity genes tested (Fig. 1d-f and Supplementary Fig. 2g). Interestingly, we
observed that repression of PTEN, a tumor suppressor gene that is commonly mutated in cancer,
sensitized HL-60 cells to decitabine (Fig. le).
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We were intrigued by the connection between decitabine and RNA decapping quality control
processes. To begin, we confirmed that repression of DCP2 sensitizes cells to decitabine (Fig. le).
We chemically validated that RNA decapping is a pro-survival dependency by combining RG3039, a
clinical grade chemical inhibitor of DCPS, with decitabine?-*, We observed the combination of
decitabine and RG3039 had synergistic anti-cancer activity in vitro in two independent AML cell
models (Supplementary Fig. 3a-b). We also observed that the combination of decitabine and RG3039
synergistically induced caspase 3/7 activation and cell cycle arrest in HL-60 (Fig. 1g-h). Lastly, we
profiled the transcriptional consequences of treating cells with DMSO, decitabine alone, RG3039
alone or decitabine and RG3039 together. Because previous literature has demonstrated HMAs can
induce expression of endogenous retroviral elements, we mapped both protein coding transcript
expression and ERV transcript expression. We observed that treatment with decitabine or RG3039
alone drives a transcriptional response, and that the combination of decitabine with RG3039 induces
transcriptional responses shared with the single drug conditions but also drug combination specific
transcriptional changes (Supplementary Fig. 3c-d). Gene ontology analysis comparing decitabine to
decitabine plus RG3039 or DMSO to decitabine plus RG3039 demonstrated up regulation of term
enrichment for biological processes such as myeloid differentiation and immune function, as well as
down regulation for biological processes relating to methylation and protein translation
(Supplementary Fig. 3e). For example, we observed the upregulation of positive regulators of TNFa
cytokine production specifically in the decitabine plus RG3039 condition relative to decitabine alone
(Fig. 11). Additionally, we further examined myeloid differentiation as a top enriched process and
observed broadly that treatment with decitabine or RG3039 alone induced a signature of
differentiation relative to DMSO, and that this was further induced by the combined treatment of
decitabine plus RG3039, suggesting that AML differentiation occurs from treatment with decitabine
or RG3039 alone as well as in combination (Supplementary Fig. 3f-j). Lastly, prior studies have
shown decitabine treatment alone can induce expression of atypical transcripts which in turn can
induce an inflammatory response!%34. Our analysis of ERV transcriptional changes demonstrated that
the combination of decitabine plus RG3039 strongly induced specific ERV transcripts, such as
LTR67B (chr6:36350628—36351191), relative to DMSO or each single drug alone (Supplementary
Fig. 3k-1). Notably, most ERVs do not change expression, and changes in expression are often not
concordant across families or classes of ERVs. Together, this data suggests that RNA decapping is
one of multiple processes which can affect response to decitabine in AML cells.

Decitabine induces m°A hypermethylation of mRNA transcripts in AML cells

As highlighted above, we observed that repression of multiple genes encoding m®A methylation
machinery promotes cellular resistance to decitabine (Fig. 1¢,f). Top screen hits included the m°A-
writer METTL3, the m®A-reader YTHDF?2 and the methyltransferase complex components ZC3H13
and CBLLI. We validated that repression of METTL3, YTHDF2, and ZC3H13 promotes resistance to
DNMT inhibition by decitabine treatment in HL-60i1 over a time course using a mixed competition
fluorescence cell survival CRISPRi knockdown assay (Fig. 2a). This result suggests regulation of
RNA methylation modulates AML cell survival upon treatment with decitabine.
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To systematically examine the molecular effect of decitabine treatment on mSA RNA methylation,
we next performed methylated RNA immunoprecipitation sequencing (MeRIP-seq), a method for
detection of m®A modifications (Fig. 2b)*°. To assess the quality of this dataset, we first performed
peak calling in control DMSO-treated samples followed by downstream analysis to recapitulate
known features of the RNA modification sites across the transcriptome. We also performed a motif-
enrichment analysis to ensure the enrichment of the RGAC (JAG]GAC) motif sequence, a known
mPA motif, among predicted peaks (Fig. 2¢)*%*’. Finally, we confirmed the preferential localization
of RNA methylation peaks near the stop codon, which is consistent with prior literature (Fig. 2d)*®.

To then identify decitabine-induced hyper- and hypomethylated sites, we performed differential
RNA methylation analysis to compare treatment with decitabine to DMSO controls®. Interestingly,
we observed a significant increase in mA RNA methylation peaks across mRNAs of protein coding
genes upon decitabine treatment (Fig. 2e and Supplementary Table 3). Specifically, our analysis
identified 2064 decitabine induced hypermethylated peaks (logFC >1 and p-value <0.005) but only
1399 hypomethylated peaks (logFC <—1 and p-value <0.005) (Supplementary Fig. 4b-d).

Additionally, it has been observed in AML cell lines and patient data that treatment with different
HMAss such as decitabine induces transcriptional upregulation of different ERVs including
retroposons, LINEs and SINEs!244! Tt has also been shown that m°A RNA methylation regulates
the levels of ERVs*. To evaluate the effect of decitabine treatment on ERV RNA methylation, we
mapped our MeRIP-seq data to relevant annotations and followed similar analyses as discussed
above to examine differential RNA methylation changes in ERVs®. Interestingly, we observed a
significant enrichment of mSA methylation peaks across retroposon, LINE and SINE transcripts upon
decitabine treatment (Supplementary Fig. 4e-f). Specifically, our analysis here identified 37, 180 and
131 hypermethylated peaks (logFC >1 and p-value <0.005) but only 9, 45 and 48 hypomethylated
peaks (logFC <—1 and p-value <0.005) for retroposon, LINE and SINE transcripts, respectively.

Taken together, our findings suggest that treatment of AML cells with decitabine results in global
CpG DNA hypomethylation along with a concomitant increase in m°A RNA methylation, and that
HMA anti-cancer activity in AML cells may be modulated by genes that regulate m®A RNA
methylation.

A multiomics approach identifies genes regulated through méA modifications

RNA methylation has been implicated in various aspects of the RNA life cycle in the cell, from RNA
processing to RNA stability to translation, and more recently, crosstalk between epitranscriptome
and epigenome*-2, To further understand the connection between global DNA hypomethylation and
RNA dynamics in AML cells, we set out to interrogate, via an integrated multiomics approach, the
effects of decitabine-induced RNA hypermethylation on AML cells. Here, we aimed to integrate
comparisons between treatment with decitabine or DMSO from the following datasets: RNA-seq for
differential gene expression and RNA stability, MeRIP-seq for RNA methylation, Ribo-seq for
protein translation efficiency, and genome-scale CRISPRi functional genomics screening data. We
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first performed an RNA-seq time course experiment in the HL-60 AML model (Supplementary Fig.
5a) at 6, 72 and 120 hours following treatment with decitabine or DMSO. We used this data to
perform differential gene expression analysis across conditions. We also used REMBRANDTS, a
method we have previously developed for differential RNA stability analysis, to estimate post-
transcriptional modulations in relative RNA decay rates (Fig. 3a-b)**-%. We performed gene set
enrichment analysis of differential mRNA stability and expression across all three time points for the
HL-60 cell line (Supplementary Fig. 5b-c)*. For expression, we observed enrichment for largely
expected ontologies, such as immune receptor activity and regulation of cell killing!%-12:14.34,
Interestingly, for post-transcriptional modulations in RNA stability, we observed previously
unexplored terms, such as sterol biology. Moreover, to also capture patient heterogeneity, we
performed RNA-seq on a panel of five additional AML cell lines treated with decitabine or DMSO.
Across all six AML cell lines, we observed that decitabine treatment induced widespread changes in
RNA transcript abundance and RNA stability with varying degrees of concordant RNA expression
and stability changes (Fig. 3c-d).

Given that RNA m®A methylation marks have been previously implicated in translational control, we
used Ribo-seq to measure changes in the translational efficiency landscape of HL-60 cells treated
with decitabine or DMSO*7%0, Treatment with decitabine had little effect on translation efficiency,
and we did not observe a concerted change in the translation efficiency of hypermethylated mRNAs
(Supplementary Fig. 6a-d). In other words, changes in translation efficiency of mRNAs that are
differentially methylated in decitabine-treated cells are not likely to be responsible for cellular
sensitivity to this drug.

Having ruled out translational control as the mechanism through which RNA methylation may be
involved, we next sought to identify genes whose RNA hypermethylation drives cellular sensitivity
to decitabine through other post-transcriptional regulatory programs. Since m®A RNA methylation
has been shown to reduce RNA stability and expression, we intersected our set of decitabine-induced
hypermethylated genes with those that are downregulated in decitabine treated cells, and their lower
expression is associated with higher sensitivity to decitabine in our functional CRISPRi screen®!. In
this analysis, we observed ten genes that were sensitizing hits in the CRISPRi screen and upon
decitabine treatment, showed RNA hypermethylated peaks and lower mRNA levels (Fig. 4a-b). We
observed that these genes collectively regulate nuclear processes (INTS5, INOSOD, ZNF777,
MYBBPIA, RNF126, RBM14-RBM4)) or metabolism (SOLE, DHODH, PMPCA, SLC7A6). From
this list we selected SOLE and INTS5 and first validated that repression of each gene by CRISPRi
conferred sensitivity to decitabine treatment in HL-60 cells (Fig. 4c). We then validated that their
mRNA abundance is decreased and m®A methylation is increased following decitabine treatment
(Fig. 4d and Supplementary Fig. 7a-b). Consistently, we observed that SOLE and INTS5 pre-mRNA
levels do not change, showing that the decreased mRNA levels are not due to a decrease in
transcription. Additionally, we further examined mRNA stability of each gene in decitabine-treated
cells by using a-amanitin to inhibit RNA polymerase II and observed that mRNA decay rates were
significantly higher upon decitabine treatment (Fig. 4¢). Lastly, we were intrigued by whether the
increase in m®A methylation from decitabine occurred through METTL3 given the
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methyltransferase’s direct role in regulating m°A methylation. Interestingly, we observed that upon
METTL3 knockdown, decitabine treatment no longer resulted in a significant increase in méA
methylation, suggesting that the decitabine-induced hypermethylation of these transcripts occurs
through METTL3 (Fig. 4f). These results together suggest that we have identified a small number of
mRNAs that are downregulated upon decitabine treatment, likely through post-transcriptional
processes including increased méA methylation that is mediated by METTL3, and that these genes
may be functionally important for cellular response to decitabine.

To extend our observations, we also identified genes that (i) were downregulated upon decitabine
treatment across our panel of six AML cell lines, (ii) sensitizing hits in our HL-60 CRISPRi screen,
and (ii1) showed hypermethylated peaks upon decitabine treatment in our MeRIP-seq HL-60 data
(Fig. 4g-h). Although this analysis converges on a very small number of genes, we were nevertheless
intrigued by the possibility that several nominated genes could serve as a link between RNA
methylation and the cell death induced by decitabine.

Comparative CRISPRI functional genomics experiments reveal common and specific genes
modulating cellular response to decitabine in additional AML models

Given the known heterogeneity of AML, we chose to perform genome-scale CRISPRi screens in two
additional AML models to further examine the degree of common and specific mechanisms across
cell lines that regulate cellular response to decitabine. For this we used SKM-1 and MOLM-13 cells,
which are established models of AML. Comparing the known driver mutations in these AML
models, we noted that SKM-1 is 7P53 and KRAS mutant, which similarly to HL-60, captures the
biology of high-risk AML and more generally of an aggressive human cancer. Meanwhile, MOLM-
13 is FLT3-1TD and MLL-fusion but 7P53 wild-type. We also examined the genetic status of the
RNA-related genes of interest from our HL-60 screen and noted that these genes are not commonly
mutated across AML (Supplementary Fig. 8a-b). We engineered CRISPRIi cell lines for each model
and performed genome-scale CRISPRi screens to identify genes that regulate response to decitabine
(~IC30; 15-100 nM) as described above and compared the results with the HL-60 screen
(Supplementary Fig. 8c-f).

Similar to the HL-60 screen, we observed that the SKM-1 and MOLM-13 screens also captured
mRNA processing as an enriched term across top hits and positive control genes whose knockdown
is known to impact drug resistance, namely DCK, SLC2941 and DCTD (Supplementary Fig. 8d-f
and Supplementary Tables 4-5)!%192% Additionally, we observed that repression of METTL3
promoted resistance to decitabine across all three cell lines. As expected from the heterogeneity of
AML, we also observed differences across cell lines with respect to genes that modulate response to
decitabine. Interestingly, the two cell lines classified as T7P53-inactive (HL-60 and SKM-1), and are
representative of the high-risk AML patient cohort that benefits from the combination therapy of
decitabine and venetoclax, revealed BCL2 and MCL] as sensitizing hits in the presence of
decitabine, while the TP53-wild-type cell line (MOLM-13) did not?*-2!, Additionally, repression of
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genes encoding RNA decapping enzymes such as DCP2 and DCPS sensitized HL-60 and SKM-1
cells, but not MOLM-13 cells, to decitabine treatment.

In summary, comparison of genome-scale decitabine CRISPRIi screens in three AML models reveals
common and unique regulators of response. These findings are in line with our understanding of the
heterogeneity of AML biology and suggest that therapeutic strategies in AML should be evaluated in
multiple models representative of diverse tumors.

DISCUSSION

Our experiments identify previously known and unknown genes and pathways that modulate cellular
response to decitabine, a clinically approved HMA with poorly understood cellular mechanisms of
action. Our results unexpectedly reveal a key role for RNA dynamics in modulating the response to
DNA hypomethylation induced by decitabine.

Specifically, we observed that genes which are thought to regulate mRNA decapping promote
cellular resistance to decitabine. One hypothesis for why loss of RNA decapping enzyme activity
sensitizes AML cells to decitabine is that this RNA quality control pathway becomes an induced
dependency upon decitabine treatment due to repressed or aberrant transcripts that accumulate upon
decitabine-induced DNA hypomethylation. Alternatively, some RNA decapping proteins are also
key regulators of splicing, so it may be that this biology is more complex with respect to
transcription than currently appreciated®>62,

We also found that genes responsible for writing and reading m®A RNA methylation mediate cellular
response to decitabine. While emerging evidence suggests potential cellular crosstalk between DNA
and RNA methylation, the direct connection between the two processes, particularly in the context of
mC®A RNA methylation and DNMT inhibitors, remains underexplored>’->2%4, Our results demonstrate
that decitabine treatment induces global méA hypermethylation in AML cells, and that inhibition of a
key adenosine methyltransferase METTL3 promotes resistance to decitabine. Given that METTL3

has been previously shown to be a potential therapeutic vulnerability in AMLS>%6 it is intriguing to
posit why its inhibition may promote resistance to a drug used in clinic to treat high-risk AML.
Given all known human methyltransferase enzymes use S-adenosyl methionine (SAM) as a cofactor
for transfer of methyl groups, one hypothesis arises in which treatment of cells with decitabine
results in global inhibition of DNMTs, resulting in increased SAM levels and subsequently
hypermethylation of mRNAs leading to transcript instability and cell death. To our knowledge,
crosstalk between methyltransferase enzymes and different macromolecular substrates is not known,
and this hypothesis may merit further investigation.

Our efforts may have several translational implications for AML patients who are treated with
decitabine. First, we experimentally confirm that decitabine induces 7P53 independent apoptosis in
experimental models. In line with this, our results genetically re-nominate a clinically efficacious
combination therapy of decitabine and a BCL?2 inhibitor, which together likely induces synergistic
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apoptosis?*-2!. We also demonstrate through both genetic and chemical approaches that RNA
decapping pathways promote the survival of AML cells treated with decitabine in vitro. Lastly, we
observe dysregulation of specific transcripts that may have therapeutic relevance, such as SOLE,
where studies in various cancer models have suggested that its inhibition may suppress tumor

growth, or DHODH, which has previously been implicated in AML and currently has an inhibitor in

clinical trials for relapsed/refractory AMLS!,

We anticipate that our study serves as an integrated multiomics resource for understanding AML

cellular response to decitabine and nominates new connections between cell death, DNA methylation

and RNA dynamics.
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Data Availability

The data that support the findings of this study are openly available in NCBI Gene Expression
Omnibus (GEO) with reference number GSE222886 (RNA-seq, meRIP-seq, Ribo-seq).
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METHODS
Cell culture and reagents

HL-60 and KG-1 cells were obtained from the American Type Culture Collection. SKM-1, MOLM-
13 and OCI-AML3 cells were obtained from the Leibniz Institute DSMZ (German Collection of
Microorganisms and Cell Cultures). MOLM-14 cells were obtained from the Shannon Lab at the
University of California, San Francisco (UCSF). HEK-293T cells were obtained from the Weissman
Lab at UCSF. HL-60, OCI-AML3 and KG-1 cells were cultured in Iscove’s Modified Dulbecco’s
Medium (Gibco) supplemented with 20% fetal bovine serum (Seradigm), 100 U/mL penicillin
(Gibco), 100 ug/mL streptomycin (Gibco) and 0.292 mg/mL glutamine (Gibco). SKM-1, MOLM-13
and MOLM-14 cells were cultured in RPMI-1640 medium (Gibco) supplemented with 20% FBS,
penicillin, streptomycin and glutamine. HEK-293T cells were cultured in Dulbecco’s Modified Eagle
Medium (Gibco) supplemented with 10% FBS and penicillin, streptomycin and glutamine. All cell
lines were grown at 37°C and 5% CO, and were tested for mycoplasma contamination using the
MycoAlert PLUS Mycoplasma Testing Kit (Lonza) according to the manufacturer’s instructions.

Decitabine powder was obtained from Selleck Chemicals and stored at -20°C. A stock solution of
decitabine was created by reconstituting decitabine powder in dimethyl sulfoxide (DMSO) at a final
concentration of 10 mM. The stock solution was aliquoted and stored at -80°C until experimental
use. RG3039 and a-amanitin were obtained from MedChemExpress.

DNA transfections and lentivirus production

HEK-293T cells were transfected with pMD2.G, pCMV-dR8.91 and a transfer plasmid using the
TransIT-LT1 Transfection Reagent (Mirus Bio) and 8 ng/uL. polybrene. Culture medium was
exchanged with fresh medium supplemented with ViralBoost (Alstem) one day post-transfection.
Lentiviral supernatant was collected, filtered through a 0.44 um filter (Millipore) and used fresh (for
CRISPRIi screening) or concentrated via ultracentrifugation at 25,000 rpm for 90 minutes and frozen
(for all other methods) three days post-transfection.

CRISPRI screen

CRISPRi cell line generation

HL-60 cells were transduced with Efla-dCas9-BFP-KRAB and sorted twice for BFP positive cells
on a BD FACS Aria III. Sorted cells were diluted to single cell concentration (5, 1 or 0.2 cells per
well) and plated into 96-well plates. Individual clones were expanded and assayed for CRISPRi
activity by transducing sgRNAs targeting five essential genes (PLK1, HSPA9, AARS, POLRI1D,
DNAJC19) and assessing for relative depletion of GFP (i.e., sgRNA positive cells) via flow
cytometry between day 3 and day 9 post-transfection. The clone with the highest relative GFP
depletion was selected to be the HL-60 CRISPRIi cell line for downstream experiments. SKM-1 and
MOLM-13 cells were transduced with Efla-dCas9-BFP-KRAB and sorted twice for BFP positive
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cells on a BD FACS Aria III. Cells were then assayed for CRISPRIi activity by transducing sgRNAs
targeting two essential genes (PLK1, HSPA9) and assessing for relative depletion of GFP (i.e.,
sgRNA positive cells) via flow cytometry between day 3 and day 9 post-transfection.

CRISPRi screen experimental procedure

Genome-scale CRISPRi screens were performed similarly to those previously described?’. The
human CRISPRi-v2 sgRNA library (top 5 sgRNAs per gene) was transduced into HL-60, SKM-1
and MOLM-13 cells at 250 to 500-fold coverage. Cells were resuspended in lentiviral supernatant
with 8 pg/mL polybrene in 6-well plates and centrifuged at 1000 g for 2 hours at room temperature.
Cells were resuspended into fresh medium following spinfection. 72 hours following infection, cells
were seeded at 1,000,000 cells/mL for puromycin selection (0.5-1 ug/mL). Following puromycin
selection, “time-zero” samples were harvested at 500x library coverage. The remaining cells were
divided into two conditions, DMSO and decitabine, two replicates per condition. For the decitabine
condition, cells were treated with decitabine at low dose (~IC30; 15-100 nM) every 24 hours for 72
hours. For HL-60, cells were cultured in static T150 flasks (Corning) and split when appropriate
while maintaining 500x coverage; after 19 days of growth, cells were harvested at 500x coverage.
For SKM-1 and MOLM-13, cells were cultured in 250 mL OptimumGrowth (Thomson) shaking
flasks with a shaking speed of 120 rpm and split when appropriate while maintaining a minimum
coverage of 500x; after 12 days of growth, cells were harvested at 500-1000x coverage. Genomic
DNA was isolated from all samples and the sgRNA-encoding region was enriched, amplified and
processed for sequencing on the Illumina HiSeq 4000 (50 base pair single end reads) as previously
described™.

CRISPRi screen computational analysis

Sequencing reads were trimmed, aligned to the human CRISPRi-v2 sgRNA library and counted
using a previously described pipeline (https://github.com/mhorlbeck/ScreenProcessing). Growth (y)
and drug sensitivity/resistance (p) phenotypes were calculated based on sgRNA frequencies across
conditions?. Gene phenotypes were calculated by taking the mean of the top three sgRNA
phenotypes per gene by magnitude. Gene phenotype p-values were calculated using the Mann-
Whitney test comparing the gene-targeting sgRNAs with a set of non-targeting control sgRNAs. For
genes with multiple annotated transcription start sites (TSS), sgRNAs were first clustered by TSS,
and the TSS with the smallest Mann-Whitney p-value was used to represent the gene. Hits were
defined as genes with a phenotype Z-score greater or equal to 6. Z-scores were calculated by
dividing the gene phenotype by the standard deviation of the non-targeting sgRNA phenotypes?>.

To assess pathway-level enrichment of gene phenotypes in the CRISPRi screen, we used blitzGSEA,
a Python package for the computation of Gene Set Enrichment Analysis (GSEA)
(https://github.com/MaayanLab/blitzgsea)*’. We obtained gene ontology (GO) gene sets from
MSigDB (version 7.4.) and then conducted two separate analyses: (1) To identify smaller, focused
pathways associated with drug sensitivity or resistance, we performed GSEA analysis on genes

ranked by p phenotype and defined minimum and maximum thresholds for gene set size when
running the ‘gsea’ function (‘'min_size=15" and ‘max_size=150")*"73. Thus, positive normalized
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enrichment scores (NES) corresponded to gene sets enriched among positive p phenotypes (i.e.,
resistance phenotypes) and negative NES corresponded to gene sets enriched among negative p
phenotypes (i.e., sensitivity phenotypes). (2) To identify broader pathways associated with drug
response irrespective of p phenotype direction, we performed GSEA analysis on genes ranked by 1 —
Mann-Whitney p-value (calculated for each p phenotype as above) and set a minimum threshold for
gene set size (i.e., ‘min_size=200").

Individual sgRNA validation

Individual sgRNAs were validated using a competitive growth assay as previously described?.
Briefly, sgRNA protospacers with flanking BstXI and Blpl restriction sites were cloned into the
BstXI/Blpl-digested pCRISPRia-v2 plasmid (Addgene #84832). Protospacer sequences are listed in
Supplementary Table 1. Individual sgRNA vectors (including a non-targeting control sgRNA) were
then packaged into lentivirus as described above and transduced into HL-60 CRISPRIi cells in
duplicate. Three days after transduction, cells were treated with DMSO or 100 nM decitabine. The
proportion of sgRNA-expressing cells was measured by flow cytometry on an LSR IT (BD
Biosciences) gating for GFP expression. The individual sgRNA phenotype was calculated by
dividing the fraction of sgRNA-expressing cells in the treated condition by the fraction of sgRNA-
expressing cells in the untreated condition. To confirm gene knockdown at the transcriptional level,
mRNA abundances were measured in CRISPRI cells transduced with gene-targeting sgRNAs and
were quantified relative to mRNA abundances in cells transduced with a non-targeting control
sgRNA, as previously described’.

Reanalysis of public bisulfite sequencing data in HL-60 cells

Shareef et. al, as part of a study to introduce their extended-representation bisulfite sequencing
method, treated HL-60 cells with DMSO (GSM4518676) or 300 nM decitabine (GSM4518677) and
harvested cells after 5 days*. Raw FASTQ files were downloaded using the SRA Toolkit.
TrimGalore and Bismark were used to preprocess and map bisulfite-treated reads to the h38
reference genome and subsequently call cytosine methylation”. We followed the Bismark standard
pipeline, which includes four functions: (1) "bismark genome preparation’, (2) ‘bismark’, (3)
“deduplicate bismark’ and (4) "bismark methylation extractor’ which extracts context dependent
(CpG/CHG/CHH) methylation.

Differential CpG DNA methylation analysis was performed using the methylKit R package’. CpG
methylation data from Bismark was imported and the “getMethylationStats™ function was used to
calculate descriptive statistics. To search for differentially methylated tiles, the “tileMethylCounts’
function was used with options "win.size=1000" and “step.size=1000". Differentially methylated
regions (DMRs) scored by % methylation difference and g-value were calculated using the
“calculateDiffMeth’ function. A one-sample, one-sided (lower-tail) t-test was used to test for
statistically significant global DNA hypomethylation.
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DCPS and RG3039 drug synergy experiments

Cell viability assay and Bliss excess score calculation
Cells were seeded into 96-well plates at 100,000 cells/mL in duplicate and were treated with
decitabine (seven-point 1:3 dilution series from 0.5 uM to 0.002 uM), RG3039 (seven-point 1:4
dilution series from 10 uM to 0.010 uM) or the combination of both drugs at all possible dose
combinations. Control cells treated with DMSO were counted at day 3, and all cells were split at the
ratio required to dilute control cells to a concentration of 100,000 cells/mL. Raw fluorescence units
(RLUs) were assessed at day 3, day 5 and day 7 for each condition using the CellTiter-Glo (CTG)
luminescence-based assay (Promega). Diluted CTG reagent (100 uL 1:4 CTG reagent to PBS) was
added to cells (100 uL) and the mixture was pipetted up and down to ensure complete cell lysis.
Luminescence was then assayed using a GloMax Veritas Luminometer (Promega).
To calculate the proportion of viable cells, RLUs from the CTG assay were averaged between
replicates and normalized to the DMSO control. The proportion of inhibited cells was calculated as
one minus the proportion of viable cells. Drug synergy was determined by calculating the Bliss
excess score (Bliss 1956)77, i.e.

Bliss excess = I,z — I,

where 1,5 represents the observed proportion of inhibited cells at drug doses A and B and I,
represents the expected proportion of inhibited cells assuming Bliss independence, i.e.
fup = Ly + Iy — (Iy X I)

Cleaved caspase 3/7 assay

Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were treated with
decitabine (50 nM, 100 nM or 200 nM on days 0, 1 and 2) with and without RG3039 (2 uM on day
0). Cells were harvested on day 5 and the proportion of apoptotic cells was assessed using the
NucView 488 Caspase-3 Assay Kit (Biotium) according to the manufacturer’s instructions and an
Attune NxT flow cytometer (Thermo Fisher Scientific) gating on the BL-1 channel.

Cell cycle assay

Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were treated with
decitabine (50 nM, 100 nM or 200 nM on days 0, 1 and 2) with and without RG3039 (2 uM on day
0). Cells (500,000—1,000,000 per sample) were harvested on day 5 and the proportions of cells in
each phase of the cell cycle were assessed using the FxCycle Violet Kit (Thermo Fisher Scientific)
and an Attune NxT flow cytometer (Thermo Fisher Scientific) gating on the VL-1 channel. Briefly,
cells were washed once with PBS, fixed with 70% ethanol overnight at -20 °C, pelleted, and then
washed with PBS 1-2 times. Cells were then resuspended in 1 mL permeabilization buffer (PBS
with 1% FBS and 0.1% Triton X-100) and 1 uL Fx cycle and stained for 30 minutes in the dark
before being analyzed via flow cytometry.
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RNA-seq experimental procedures

3" RNA-seq

3’ RNA-seq was performed to assess differential gene expression following decitabine and/or
RG3039 treatment. Cells were seeded into 6-well plates at 100,000 cells/mL in duplicate and were
treated with decitabine (100 nM on days 0, 1 and 2), RG3039 (2 uM on day 0), both drugs or DMSO.
On day 3, RNA was extracted using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. RNA-seq libraries were prepared using the QuantSeq 3' mRNA-Seq Library Prep Kit
FWD for Illumina (Lexogen) and assessed on a BioAnalyzer 2100 (Agilent) for library
quantification and quality control. RNA-seq libraries were sequenced on an Illumina HiSeq 4000
using single-end, 50—base pair sequencing.

Stranded RNA-seq

Stranded RNA-seq was performed for experiments in which strand directionality was required for
downstream analysis. Cells were seeded into 6-well plates at 100,000 cells/mL in duplicate or
triplicate and were treated with decitabine (100 nM on days 0, 1 and 2) or DMSO. At 6, 72 and/or
120 hours, RNA was extracted using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. For HL-60 experiments, RNA-seq libraries were prepared using the ScriptSeq v2 kit
(EpiCentre). Total RNA was depleted using RiboZero Gold (EpiCentre) and purified using the
MinElute RNA kit (Qiagen). For all other cell lines, RNA-seq libraries were prepared using the
SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian kit (Takara) due to retirement of
the ScriptSeq v2 kit. Total RNA was depleted using the RiboGone module included with the
SMARTer kit. All RNA-seq libraries were assessed on a BioAnalyzer 2100 (Agilent) for library
quantification and quality control and sequenced on an Illumina HiSeq 4000 using single-end, 50—
base pair sequencing.

Differential gene expression analysis

The Salmon-tximport-DESeq? pipeline

We used a workflow hereafter referred to as the “Salmon-tximport-DESeq2 pipeline” to perform
differential gene expression analysis. Salmon (version 1.2.1) was first used to quantify transcript
abundance®. A Salmon index was generated using the GENCODE (version 34) genome annotation,
and subsequently the “salmon quant’ tool was used with the "--validateMappings option to calculate
transcript abundances’®. Then, the R package tximport was used to import Salmon results into R and
perform data preparation®*. The summarizeToGene' function was used to collapse transcript
abundances to the gene level. From here, the R package DESeq2 was used for differential gene
expression analysis>®. We first extracted normalized counts for each RNA-seq experiment using
DESeq?2 by running the “estimateSizeFactors™ function and then the "counts’ function with option
‘normalized=TRUE". For each individual experiment, the DESeq2 statistical model was modified
based on the experimental design. For experimental designs with multiple variables (e.g., multiple
drug conditions, time points, etc.), we used the likelihood ratio test (LRT) to perform differential
expression analysis. The LRT is conceptually similar to an analysis of variance (ANOVA)
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calculation in a linear regression model”. In these cases, we specified the model design in the
'DESeq2" function as '~0 + variable1 + variable2 + variablel:variable2’ and the option “test=LRT".
In simple experimental designs with one variable (e.g., DMSO vs. decitabine treatment), DESeq?2
was used with default options (i.e., a Wald test was used instead of a LRT). In these cases, the model
design was specified as "~cond’. For experiments with batch effects, the model design was specified
as '~cond + reps’.

Differential RNA stability analysis

The STAR-featureCounts-REMBRANDTS-limma pipeline

For analyses which required measurements of pre-mRNA and mature mRNA abundances from
RNA-seq samples (i.e., differential RNA stability analysis), we used a workflow hereafter referred to
as the “STAR-featureCounts-REMBRANDTS-limma pipeline”. RNA-seq sequencing reads were
first aligned to the hg38 reference genome using STAR (version 2.7.3a)°%. Then, featureCounts was
used to quantify intron and exon level counts. Finally, REMBRANDTS was used to calculate mRNA
stability as previously described (https://github.com/csglab/REMBRANDTS)?8. Briefly, the package
estimates a gene-specific bias function that is subtracted from Aexon—Aintron calculations to provide
unbiased mRNA stability measurements. To assess differential RNA stability changes, we used
limma, which was designed for microarray experiments and serves a similar function to DESeq2,
though it supports negative values (relevant for RNA stability analysis)®’. The model designs used
here are analogous to the designs for differential expression analysis described above.

Gene set enrichment analysis using PAGE algorithm

Briefly, PAGE quantizes differential measurements into equally populated bins and then, for every
given geneset, calculates the mutual information (MI) between each cluster bin and a binary vector
of pathway memberships for genes in a given gene set™. The significance of each MI value is then
assessed through a randomization-based statistical test and hypergeometric distribution to determine
whether there is over or under representation of a gene set in each cluster bin. The final result is a p-
values matrix in which rows are gene sets and columns are cluster bins (visualized as heatmaps).
Code for iPAGE and onePAGE analyses are available at https://github.com/abearab/pager.

iPAGE run for MSigDB gene sets

The iPAGE algorithm was used for gene set and pathway enrichment analysis on differential RNA
expression and stability results®”. MSigDB (version 7.4.) was downloaded and modified to be
compatible with iPAGE workflow’3. iPAGE was used in continuous mode, which accepts gene-level
numeric values (e.g., logFCs) as input.

onePAGE run for single gene set analysis

For a selected list of genes, the PAGE run is performed on the single gene set as first input and gene-
level numeric values (e.g., log fold changes) as the other input — this form of the analysis is called
onePAGE. This analysis applied to a specific gene set for multiple inputs (e.g., differentially
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expressed genes from different conditions) and results shown as heatmap where each row
corresponds to an input condition and each column corresponds to a cluster bin.

Pre-processing HERYV annotations for alignment tasks

Annotations in BED12 format were downloaded from the Human Endogenous RetroViruses
Database®’. To prepare these annotations for alignment tasks, i.e., building Salmon and STAR
indices, CGAT Apps was used to convert BED12 files to GTF format ("cgat bed2gff --as-gtf") and
the "getfasta’ module from bedtools (with options “-name+ -split’) was used to convert BED12 files
to FASTA format®*#!, Reproducible scripts for preparing ERV annotations for alignment tasks are
available at https://github.com/abearab/HER Vs.

RNA-seq workflows for specific experiments

Decitabine and RG3039 drug combination experiments

We performed 3’ RNA-seq on HL-60 cells treated with DM SO, decitabine alone, RG3039 alone or
both drugs for 72 hours in duplicate (see above for experimental procedures). Raw sequencing data
were processed using our Salmon-tximport-DESeq?2 pipeline (see above). DESeq2 was used to
conduct differential gene expression analysis using a likelihood ratio test and the model design "~0 +
decitabine + rg3039 + decitabine:rg3039°. Pathway enrichment was assessed using iPAGE (see
above). For PCA analysis, the "varianceStabilizingTransformation™ function from the DESeq2
package was used to prepare counts. The "plotPCA" function was used to calculate PC variances as
percentages. Finally, "ggplot2® was used to visualize a two-dimensional representation of the PCA
analysis. Bar plots were used to visualize mRNA abundances (measured as log2 of transcripts per
million [TPM]) of differentiation markers across conditions. Gene set enrichment was performed on
log2-fold-change (log2FC) values across conditions using the positive regulation of myeloid
differentiation GO term and the PAGE method described above. For differential ERV expression
analysis, processed ERV annotations (see above) in FASTA format were used to build an index for
Salmon workflow and then samples were processed through the Salmon-tximport-DESeq?2 pipeline
(see above). Upregulated ERV's were defined as p-value < 0.05 and log2FC > 2, and downregulated
ERVs were defined as p-value < 0.05 and log2FC < -2. The intersections of ERV data were
visualized using UpSet plots in Python®2.

Reanalysis of public RNA-seq data for HL-60 derived myeloid differentiation

Ramirez et al. studied the dynamics of gene regulation in human myeloid differentiation®’. We
reanalyzed their RNA-seq data for differential gene expression changes between parental HL-60 and
HL-60 derived macrophages, neutrophils and monocytes processed after 3 hours, 12 hours, 48 hours,
96 hours and 120 hours (GSE79044) using our Salmon-tximport-DESeq?2 pipeline (see above).
Pearson correlation coefficients were used to measure the correlation of log2-fold gene expression
changes between (1) drug treatment (i.e., decitabine and RG3039 vs. DMSO) and (2) HL-60
differentiation. UpSet plots in Python®? were used to show specific upregulated genes in each
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differentiated cell type. Lastly, the onePAGE algorithm was used to assess the enrichment of select
up or downregulated genes in neutrophils (see above).

HL-60 time-series experiments

We performed stranded RNA-seq on HL-60 cells treated with decitabine for 6 hours, 72 hours and
120 hours in duplicate (see above for experimental procedures). Differential expression analysis was
performed using our Salmon-tximport-DESeq2 pipeline (see above), using a likelihood ratio test and
a two-variable model design incorporating treatment condition (decitabine or DMSO) and time (6,
72 or 120 hours). Differential RNA stability analysis was performed using our STAR-featureCounts-
REMBRANDTS-limma pipeline (see above). Pathway enrichment for differential expression and
RNA stability data was assessed using iPAGE (see above).

AML cell line panel experiments

We performed stranded RNA-seq on AML cell lines treated with decitabine or DMSO for 72 hours
in three replicates (see above for experimental procedures). Differential expression analysis was
performed using our Salmon-tximport-DESeq?2 pipeline (see above), using a Wald test. Differential
RNA stability analysis was conducted using our STAR-featureCounts-REMBRANDTS-limma
pipeline (see above). Pearson correlation tests from the Hmisc and corrplot R packages were used to
assess correlation between differentially expressed genes in HL-60 and other AML cell lines. UpSet
plots in Python®? were used to identify and visualize genes across multiple cell lines that conferred
drug sensitivity in the CRISPRi screen (p score <—0.1 and p < 0.05), were RNA hypermethylated
(log2FC > 1 and p < 0.05) upon decitabine treatment, and either had decreased expression or RNA
stability (log2FC <—0.1 and p < 0.05) upon decitabine treatment.

MeRIP-seq

Experimental procedure

We performed MeRIP-seq as previously described on HL-60 cells treated with DMSO or decitabine
for 72 hours in biological duplicates®. First, 2 ug of the fragmented total RNA per sample was used
for RNA immunoprecipitation (IP) with 5 pg of the anti-m°A antibody (ABE572, Millipore). RNA-
seq libraries from input and IP samples were prepared using the SMARTer Pico Input Mammalian
v2 RNA-seq kit (Takara) and sequenced as SE50 runs on an Illumina HiSeq4000.

Alignment task for mRNAs of protein coding genes and ERVs

MeRIP-seq reads were aligned to the hg38 reference genome using STAR (version 2.7.3a) with
reference annotation GENCODE (version 34)°%78. Similarly, pre-processed annotations used to build
STAR indices for each type of HERV. Then, MeRIP-seq reads were aligned separately with each
STAR index to generate BAM files for the downstream tasks.

Experiment QC evaluations
Note that here the goal is to confirm the success of the experiment and only untreated samples are
analyzed here. First, the "exomepeak" function from the R package exomePeak was used to call m®A
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peaks from BAM files*. First, metagene plots were visualized using the Guitar R/Bioconductor
package®. Then, the sequences of predicted mA peaks were extracted using concepts described by
Meng et al®*. Briefly, the ‘bed2bed" tool from the Computational Genomics Analysis Toolkit (with
options "--method=merge --merge-by-name") and the "getfasta’ module from bedtools (with options
‘-name -s -split’) were used for sequence extraction®®®!, Finally, the FIRE algorithm was used in
non-discovery mode for enrichment analysis of known m®A motifs (i.e., RGAC or [AG]GAC) within
peak sequences, compared to randomly generated sequences®’.

Peak calling and differential RNA methylation analysis

RADAR (RNA methylAtion Differential Analysis in R) was used to perform peak calling and
differential methylation analysis*®. Differentially methylated peaks were defined as FDR < 0.1 and
logFC > 0.5. The logFC values for protein coding genes and each of ERVs used to test global
hypermethylation using Wilcoxon test and t-test functions with ‘mu=0°, “alternative="greater""
options. Results are shown as annotated volcano plots using ggplot2 in R. For peak visualization
across individual mRNA transcripts, the "plotGeneCov" function from the RADAR R package was
used to generate coverage plots. Then, the Gviz R Bioconductor package was used to draw detailed
information for each mRNA transcript®.

Reproducible scripts for RNA methylation analyses using integrated tools are maintained as a
GitHub project at https://github.com/abearab/imRIP.

Ribo-seq

Experimental procedure

Ribosome profiling was performed as previously described in biological duplicates®’. Approximately
10x10° cells were lysed in ice cold polysome buffer (20 mM Tris pH 7.6, 150 mM NaCl, 5 mM
MgCl2, 1 mM DTT, 100 pg/mL cycloheximide) supplemented with 1% v/v Triton X-100 and 25
U/mL Turbo DNase (Invitrogen). The lysates were triturated through a 27G needle and cleared for
10 min at 21,000 g at 4°C. The RNA concentrations in the lysates were determined with the Qubit
RNA HS kit (Thermo). Lysate corresponding to 15 pg RNA was diluted to 200 pl in polysome
buffer and digested with 0.75 ul RNasel (Epicentre) for 45 min at room temperature. The RNasel
was then quenched by 5 ul SUPERaseIN (Thermo).

Monosomes were isolated using MicroSpin S-400 HR (Cytiva) columns, pre-equilibrated with 3 mL
polysome buffer per column. 100 pl digested lysate was loaded per column (two columns were used
per 200 pl sample) and centrifuged 2 min at 600 g. The RNA from the flow through was isolated
using the RNA Clean and Concentrator-25 kit (Zymo). In parallel, total RNA from undigested
lysates were isolated using the same kit.

Ribosome protected footprints (RPFs) were gel-purified from 15% TBE-Urea gels as 17-35 nt
fragments. RPFs were then end-repaired using T4 PNK (New England Biosciences) and pre-
adenylated barcoded linkers were ligated to the RPFs using T4 Rnl2(tr) K227Q (New England
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Biosciences). Unligated linkers were removed from the reaction by yeast 5’-deadenylase (New
England Biosciences) and RecJ nuclease (New England Biosciences) treatment. RPFs ligated to
barcoded linkers were pooled, and rRNA-depletion was performed using riboPOOLs (siTOOLs) per
the manufacturer’s recommendations. Linker-ligated RPFs were reverse transcribed with ProtoScript
II RT (New England Biosciences) and gel-purified from 15% TBE-Urea gels. cDNA was then
circularized with CircLigase II (Epicentre) and used for library PCR. First, a small-scale library PCR
was run supplemented with 1X SYBR Green and 1X ROX (Thermo) in a qPCR instrument. Then, a
larger scale library PCR was run in a conventional PCR instrument, performing a number of cycles
that resulted in 2 maximum signal intensity during qPCR. Library PCR was gel-purified from 8%
TBE gels and sequenced on a SE50 run on an Illumina HiSeq4000.

Data preprocessing

The adapters in the sequencing reads were removed using cutadapt® (v3.1) with options --trimmed-
only -m 15 -a AGATCGGAAGAGCAC". The PCR duplicates in the reads were collapsed using
CLIPflexR (v0.1.19)%. The UMIs for each read were extracted using UMI-tools (v1.1.1)°° with the
options “extract—bc-pattern=NN" for the 5’ end and options "extract --3prime --bc-
pattern=NNNNN" for the 3’ end. Reads corresponding to rRNA and other non-nuclear mRNA were
removed by aligning out the reads using Bowtie2 (v2.4.2) on a depletion reference (rRNA, tRNA
and mitochondrial RNA sequences)®!. This depletion reference was built from the hg38 noncoding
transcriptome (Ensembl version 96)°>%. The reads that did not align to the depletion reference were
aligned to the hg38 mRNA transcriptome (Ensembl version 96) using Bowtie2 with options "--
sensitive --end-to-end --norc’. The mRNA transcriptome was built using the cDNA longest CDS
reads of Homo sapiens downloaded from the Ensembl release version. The resulting reads were
converted to BAM files and then sorted using samtools (v1.11). The duplicate reads in the sorted
files were removed using UMI-tools (v1.1.1) with options “dedup’.

t88

Differential translational efficiency (TE) analysis

Ribolog was used to compare translational efficiency across conditions
(https://github.com/goodarzilab/Ribolog)’*. Briefly, Ribolog applies a logistic regression to model
individual Ribo-seq and RNA-seq reads in order to provide estimates of logTER (i.e., logFC in TE)
and its associated p-value across the coding transcriptome.

RNA expression and mutational status in cancer cell lines

RNA expression and mutational data for selected genes and cell lines were collected from the CCLE
database (DepMap Public 21Q4). Cell line and gene level queries were performed using the Cancer
Data Integrator®® — https://github.com/GilbertLabUCSF/CanDI. CanDI modified data for
reproducible analysis is available at Harvard Dataverse — https://doi.org/10.7910/DVN/JIATOH.
Data were visualized in Python using the Matplotlib library.
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Multiomics data integration

To identify candidate genes among our multiomics datasets for downstream validation of our
decitabine-m®A model, we examined the intersection of three sets of genes: (1) sensitizing hits in the
CRISPRI screen, defined as p score < - 0.1 and p < 0.05; (2) genes with downregulated expression
upon decitabine treatment, defined as log2FC < -0.1 and p < 0.05; (3) genes with RNA
hypermethylation upon decitabine treatment, defined as logFC > 1 and p < 0.05. Intersections
between sets were visualized through a Venn diagram in Python.

Quantitative RT-PCR

Preparation of cells for RT-qPCR and MeRIP-RT-qPCR

For each experiment, HL-60 cells were treated with DMSO or decitabine for 72 hours with three
biological replicates per condition. To measure mRNA decay rates, cells were also treated with or
without a-amanitin (10 pg/ml) in the final 16 hours prior to cell harvest. For MeRIP-RT-qPCR, cells
were first transduced with a control sgRNA or METTL3-targeting sgRNA and sorted for fluorescent
positive cells prior to drug treatment.

RNA isolation

Total RNA was isolated using the Quick-RNA Microprep kit (Zymo) with on-column DNase
treatment per the manufacturer’s protocol. For MeRIP-RT-qPCR, 2 pg of the fragmented total RNA
per sample was used for RNA immunoprecipitation (IP) with 5 pg of the anti-m°A antibody
(ABES572, Millipore).

Quantitative RT-PCR

Transcript levels were measured using RT-qPCR by first reverse transcribing total RNA to cDNA
(Maxima H Minus RT, Thermo Fisher Scientific), then using fast SYBR green master mix (Applied
Biosystems) or Perfecta SYBR green supermix (QuantaBio) per the manufacturer’s instructions.
HPRT1 was used as an endogenous control.

INTSS5 primers

Exon-junction forward primer 5’-GGGATGTCCGCGCTGTG- 3’ and reverse primer 5’—
GGACAGCTCCTGAGCACTGA-3’. Exon-intron forward primer 5’~-GGGATGTCCGCGCTGTG—
3’ and reverse primer 5’~AGTTCTCGAGGTAGGATCCGGGT-3". Predicted m°A hypermethylated
loci forward primer 5>-TGCTGTCTGAGTTTATCCGGGCCA-3’ and reverse primer 5’—
TGGACCATGCACTAATCACAGGT-3".

SQOLE primers

Exon-junction forward primer 5>-CCCAGTTCGCCCTCTTCTCGGA- 3’ and reverse primer 5’—
GGTTCCTTTTCTGCGCCTCCTGG-3’. Exon-intron forward primer 5°—
CCCAGTTCGCCCTCTTCTCGGA-3’ and reverse primer 5’~ACCTGCCGCCTTTTGCAATTCA-
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3’. Predicted m°A hypermethylated loci forward primer 5>~-TTACTGGAGTCTGGCCGGCTCT-3’
and reverse primer 5’-CGAGTGGGTTTAAGGTTCTCCCCA-3".

Code availability

Reproducible code for mapping NGS reads to HER Vs, flexible pathway level analysis using the
PAGE algorithm, and integrated methods for MeRIP-seq analysis are publicly available at
https://github.com/abearab/HER Vs, https://github.com/abearab/pager and
https://github.com/abearab/imRIP, respectively. Original code for all analyses in this study are
available at https://github.com/GilbertLabUCSF/Decitabine-treatment.

Miscellaneous

Subfigures and plots were generated using GraphPad Prism (GraphPad Software, La Jolla, CA),
Python Matplotlib and R ggplot2. Cartoons of the dCas9 protein and sgRNA were adapted from
images by the Innovative Genomics Institute, UC Berkeley and UCSF. All figures were assembled
Adobe Illustrator (Adobe, Inc.).

in
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MAIN FIGURES

Figure 1. A genome-scale CRISPRi screen reveals gene knockdowns that confer sensitivity or resistance
to 5-aza-2’-deoxycytidine (decitabine)
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(a) The chemical structure of decitabine. (b) Schematic of a genome-scale CRISPRi screen performed in HL-
60 cells. (¢) Volcano plot of gene-level rho (p) phenotypes and Mann-Whitney p-values. Negative rho values
represent increased sensitivity to decitabine after knockdown, and positive rho values represent increased
resistance. (d-e) Validation of top screen hits. HL-60i cells were transduced with a control sgRNA (black) or
an active sgRNA (red or blue) and treated with DMSO or decitabine, and the proportion of sgRNA+ cells in
the decitabine condition relative to DMSO was observed over time. Data are shown as means + SD, two
sgRNAs per gene and two replicates per sgRNA. (f) Scatter plot showing the correlation between screen rho
phenotype and validation phenotype (day 14-15 post-infection) for each validated sgRNA. (g) A cleaved
caspase 3/7 assay shows the fraction of apoptotic HL-60 cells at day 5 following treatment with DMSO or
decitabine + RG3039. Data are shown as means + SD for three replicates. (h) A cell cycle assay shows the
fraction of HL-60 cells at different phases of the cell cycle at day 5 following treatment with DMSO or
decitabine = RG3039. Data are shown as means + SD for three replicates. (i) Normalized counts for genes in
GO0:1903557 (positive regulation of tumor necrosis factor superfamily cytokine production) upregulated upon
decitabine and RG3039 treatment.
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Figure 2. Decitabine treatment of HL-60 cells results in global m°A hypermethylation
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(a) Validation of CRISPRIi decitabine screen hits show that m®A-reader/writer complex genes promote
resistance to decitabine treatment upon knockdown in HL-60i cells. HL-601i cells were transduced with a
control sgRNA (black) or an active sgRNA (red or pink) and treated with DMSO or decitabine, and the
proportion of sgRNA+ cells in the decitabine condition relative to DMSO was observed over time. Data are
shown as means + SD, two sgRNAs per gene and two replicates per sgRNA. (b) Schematic of MeRIP-seq
experimental design and computational workflow. (¢) The FIRE algorithm (in non-discovery mode) shows the
known m°A motif RGAC ([AG]GAC) is enriched among predicted MeRIP-seq peaks relative to randomly
generated sequences with similar dinucleotide frequencies. Data are shown as a heatmap, where yellow
indicates over-representation and blue represents under-representation. Color intensity indicates the
magnitude of enrichment. (d) Metagene plot shows distribution of m°A sites along transcripts with differential
regional methylation and enrichment of m°A sites near the end codon. Transcripts are grouped into CDS
(protein coding region), 5° UTR (untranslated region) and 3> UTR methylation based on the identified m°A
sites. (e) Differential methylation analysis shows significant changes in RNA methylation peaks in HL-60
cells treated with decitabine (relative to DMSQO). Peaks are called using the RADAR algorithm and visualized
as annotated volcano plots. Wilcoxon and t-tests are used to assess statistical significance of global
hypermethylation.
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1  Figure 3. An analysis of differential gene expression and RNA stability across multiple AML cell lines
2 and time points following decitabine treatment

3
Differential mMRNA expression Differential mRNA stability C Differential mMRNA expression
- ey — OCTANLS
Time Time MOLM-14
(hours) == (hours) Gt pcC
6 = 6 04
|| 72 &= 2 SKM-1 0z
= m 120 _= M= MOLM-13 00
=: HL-60 at 120h 02
__ Condition ~ .. Condition HL-60 at 72h - .
. __DmMsO ~_  DMsO
— . Decitabine = . Decitabine R 7’\@&40}\\\09“ V@\Z @V\\LO'\ V@,\“
— . \/,Q: /@Q N @O @O
mRNA = YT
expression - —.. mRNA
(Z-score) = stability
s (Z-score) D
I , = I 3 Differential mRNA stability
= 2
1 = = OCI-AML3
0 ! MOLM-14
= , 0 KG-1 PCCN
B 1 SKM-1 02
I -2 = i MOLM-13 00
-3 B HL-60 at 120h [} :i
E I -3 HL-60 at 72h
f = & 05‘\6‘\ 2 @,\ N
_—= ﬁo"’@r&l& 1;0§ S “‘O@\
= _-— & Q\v'@/ﬁa
4
5
6  (a-b) RNA-seq reveals genes with significant changes in (a) gene expression and (b) RNA stability in HL-60
7  cells following treatment with decitabine vs. DMSO. Data are shown as heatmaps displaying counts (of two
8  replicates) row-normalized into Z-scores, grouped by treatment condition and time. Differential RNA
9  expression was calculated using our Salmon-tximport-DESeq2 pipeline. RNA stability was predicted using

10  the REMBRANDTS algorithm and differential RNA stability was calculated using limma. (e-d) RNA-seq

11  shows varying degrees of concordance of differential (¢) gene expression and (d) RNA stability across a panel
12 of six AML cell lines. The correlation analysis was performed on the logFC values from (¢) DESeq?2 and (d)
13  limma results for cells treated with decitabine vs. DMSO. Data are shown as correlation matrices with
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1  Figure 4. Charting genes likely downregulated due to m®A hypermethylation in HL-60 cells treated
2 with decitabine and validating SQLE and INTS5
3
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(a) Venn diagram visualization of three sets of genes across multiomics datasets (i.e., CRISPRi screen, RNA-
seq and MeRIP-seq) for HL-60 cells treated with decitabine vs. DMSO. 10 overlapping genes were shown to
have (1) a sensitizing phenotype in our CRISPRi screen, (2) RNA hypermethylation upon decitabine
treatment and (3) downregulation of mRNA upon decitabine treatment. (b) Normalized RNA-seq counts for
SOLE and INTS5 in HL-60 cells treated with decitabine vs. DMSO at 6 hours, 72 hours and 120 hours. Data
are shown as two replicates and p-values were generated using a likelihood ratio test in DESeq2 comparing
the decitabine and DMSO conditions at 72 hours. (¢) Validation of CRISPRi decitabine screen hits show that
SQLE and INTS5 knockdown promotes sensitivity to decitabine treatment in HL-60i cells. HL-60i cells were
transduced with a control sgRNA (black) or an active sgRNA (blue) and treated with DMSO or decitabine,
and the proportion of sgRNA+ cells in the decitabine condition relative to DMSO was observed over time.
Data are shown as means + SD, two sgRNAs per gene and two replicates per sgRNA. (d) MeRIP-RT-qPCR in
HL-60 cells treated with DMSO (gray) or decitabine (colored) validates decitabine-induced mRNA decay and
RNA hypermethylation of SOLE and INTSS5 transcripts. Three sets of primers were designed to capture
abundances of pre-mRNA (top), mature mRNA (middle) and predicted m°A hypermethylated loci for each
gene (bottom). Data are shown as three replicates and one-tailed Mann-Whitney U-tests were used to assess
statistical significance. (e¢) RT-qPCR validation of decitabine-induced mRNA decay of SOLE and INTSS5 using
a-amanitin. HL-60 cells were treated with DMSO (gray) or decitabine (colored) + a-amanitin and RT-qPCR
captured mRNA abundance. Relative decay was defined as the ratio between samples with and without o-
amanitin for each respective condition. Data are shown as three replicates, and one-tailed Mann-Whitney U-
tests were used to assess statistical significance. (f) MeRIP-RT-qPCR in HL-60 cells reveals METTL3 as a
regulator of decitabine-induced m°A hypermethylation of SOLE and INTS5. Cells were transduced with a
control sgRNA or METTL3-targeting sgRNA, treated with DMSO (gray) or decitabine (colored), and MeRIP-
RT-qPCR captured abundance of predicted m°A hypermethylated loci. Data are shown as three replicates and
one-tailed Mann-Whitney U-tests were used to assess statistical significance. (g-h) UpSet plots visualizing the
intersection between genes which were (1) RNA hypermethylated upon decitabine treatment in HL-60 and (2)
sensitizing hits in the HL-60 CRISPRi screen with (g) genes downregulated and (h) RNA destabilized across
six AML cell lines.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. HL-60i validation and analysis of decitabine induced CpG DNA methylation

changes in a public dataset
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(a) Relative depletion of five sgRNAs targeting essential genes at day 9 (relative to day 3) in the HL-601i cell
line, demonstrating functional CRISPRIi activity. Each sgRNA was introduced into HL-60i via lentiviral
transduction at infection rates of ~5—20%. GFP expression was used as a surrogate for sgRNA expression and
the starting infection percentage for each sgRNA was normalized to 1. Cells were monitored over time via
flow cytometry. Data are shown as means + SD for two replicates. (b-d) Reanalysis of a public bisulfite-
sequencing dataset (GSE149954) showing frequencies of base resolution CpG methylation in HL-60 cells
treated with (b) DMSO or (¢) 300 nM decitabine. (d) Volcano plot of differentially methylated regions
(DMRs) comparing cells treated with decitabine vs. DMSO. A one-sided t-test shows statistically significant
global hypomethylation of DNA CpG islands. (e) Apoptosis assay measuring cleaved caspase 3/7 at day 5
following treatment with DMSO or decitabine. Data are shown as means + SD for three replicates. Data were
derived from the same experiment as Figure 1G.
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1  Supplementary Figure 2. CRISPRi decitabine screen phenotype score metrics and quality control
2 analysis for HL-60 screen
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(a) Definition of CRISPRi screen phenotypes. (b-d) Distributions of sgRNA phenotypes per each HL-60
screen replicate show many sgRNAs are highly active relative to the negative control sgRNA distribution. (d-
e) Scatter plots show robust correlation between HL-60 screen replicates for the gamma and tau phenotypes.
Targeting and non-targeting sgRNAs included in the library are color coded black and gray, respectively. (f)
GSEA plot showing enrichment of GO:0006397 (mRNA processing) among all screened genes ranked by
Mann-Whitney p-value (corresponding to each gene’s p phenotype calculation). Normalized enrichment
scores (NES) were calculated using the blitzGSEA Python package. (g) CRISPRi knockdown levels of nine
hit genes in HL-60 cells. Data are plotted as mRNA abundance for each gene-targeting sgRNA relative to a
non-targeting control sgRNA.

34


https://doi.org/10.1101/2022.12.14.518457
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.518457; this version posted October 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1

A

HL-60 inhibition

I R e

KG-1 inhibition

& 890 896 899 926 927 942 931
I

B

HL-60 Bliss excess

Supplementary Figure 3. Characterizing synergy between decitabine and RG3039 in AML
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(a) Dose response matrices for HL-60 and KG-1 treated with dose combinations of decitabine and RG3039.
Heatmaps display % cell inhibition (generated using a CellTiter-Glo assay; see methods for calculations) at
each dose combination. Data are shown as means of two replicates. (b) Bliss excess scores (i.e., observed %
cell inhibition — predicted % cell inhibition assuming Bliss independence; see methods for calculations) at
each dose combination. Data are shown as means of two replicates. (¢) PCA analysis of 3° RNA-seq (in
duplicate) performed on HL-60 treated with DMSO, decitabine alone, RG3039 alone or both drugs. (d)
DESeq?2 analysis of 3’ RNA-seq data reveals differentially expressed genes. Data are shown as a heatmap
displaying counts row-normalized into Z-scores. (e) iPAGE analysis shows enrichment of gene ontologies
(GOs) (heatmap rows) among differentially expressed genes (heatmap columns) in HL-60 treated with
decitabine and RG3039 (top) or decitabine alone (bottom) vs. DMSO. Genes were first ranked based on
log2FC from left to right and divided into eleven equally populated bins. Red boxes show enrichment and
blue boxes show depletion. For each comparison, GOs are only shown if two of the first (i.e., upregulated
GO) or last (i.e., down regulated GO) bins scored above 2. (f) Normalized RNA-seq counts for differentiation
markers CD14 and CD11B in HL-60 cells treated with DMSO, decitabine, RG3039, or decitabine plus
RG3039. Data are shown as means of two replicates. (g-h) Expression patterns for genes involved in positive
regulation of myeloid leukocyte differentiation (GO:0002763). (g) GSEA plot shows enrichment of the
G0:0002763 term in the combined drug treatment (decitabine plus RG3039) relative to DMSO or decitabine
alone. Normalized enrichment scores (NES) were calculated using the blitzGSEA Python package. (h)
Normalized counts for genes in GO:0002763 upregulated upon decitabine and RG3039 treatment. (i)
Treatment with decitabine plus RG3039 is more highly correlated with macrophage, monocyte, and neutrophil
differentiation transcriptional signatures (derived from the public dataset GSE79044) compared to treatment
with either drug alone. Data are shown as correlation matrices with Pearson’s correlation coefficients (PCC).
(j) An UpSet plots visualizes genes upregulated upon combined treatment with decitabine and RG3039 (top).
PAGE analysis was performed to test for enrichment of genes involved in neutrophil differentiation, with
results shown as a heatmap with rows as each logFC input and columns as cluster bins (bottom). Normalized
counts for select genes most highly upregulated in the combination treatment (right). (k) An UpSet plot
visualizes upregulated and downregulated endogenous retroviruses (ERVs) across treatment conditions.
Upregulated ERVs (log2FC > 1 and p-value < 0.05) are labeled as “up”, downregulated ERVs (log2FC < —1
and p-value < 0.05) are labeled as “down” and all other ERVs are labeled as “no change”. (1) Scatter plots
show differential ERV expression (as log2FC) in cells treated with decitabine or RG3039 alone (x-axis) vs.
both drugs (y-axis). Pseudoautosomal boundary-like A (PABL_A) family members are highlighted in light
blue. The labeled points correspond to the PABL_A chr9:9641512-9642657 locus, which is only upregulated
in the decitabine and RG3039 drug combination.
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1  Supplementary Figure 4. MeRIP-seq workflow to identify differentially methylated peaks associated
2 with decitabine treatment in HL-60 cells
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6  (a) Schematic of MeRIP-seq computational workflow. (b-d) Visualization of m°A peaks across mRNA
7  transcripts of (b) ARID4B, (¢) PTEN and (d) ATRX. Peaks were called using the RADAR algorithm and plots
8  were generated using the RADAR and Gviz R packages. MeRIP-seq experiments were performed in
9  biological duplicates for each condition. (e) Differential methylation analysis shows significant changes in

10  RNA methylation peaks in HL-60 cells treated with decitabine relative to DMSO. Global hypermethylation is
11  observed in the decitabine condition for different families of ERVs. Peaks are called using the RADAR

12 algorithm and visualized as annotated volcano plots. Wilcoxon and t-tests are used to assess statistical

13  significance of global hypermethylation. (f) Coverage plot for a representative hypermethylated peak in the
14  L1MD3 3end LINE transcript upon decitabine treatment (pink) compared to DMSO control (blue).

15

37


https://doi.org/10.1101/2022.12.14.518457
http://creativecommons.org/licenses/by/4.0/

1
2
3

O 00 NO U b

10

12
13

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.518457; this version posted October 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Figure 5. Pathway-level changes in mRNA expression and stability associated with

decitabine treatment in HL-60 cells
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(a) Schematic of RNA-seq workflows in HL-60 cells. Two parallel workflows describe analysis of differential
mRNA stability (left) and differential mRNA expression (right). (b-c¢) Gene set enrichment analysis with the
iPAGE algorithm shows enrichment of GOs (heatmap rows) among changes in (b) RNA stability and (¢) gene
expression (heatmap columns; ranked and quantized into equal bins) upon decitabine treatment. The logFC
values for HL-60 cells treated with decitabine vs. DMSO at 6 hours (top), 72 hours (middle) and 120 hours
(bottom) were assessed separately. Highly-enriched GOs with genes upregulated or downregulated upon

decitabine treatment are shown.
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1  Supplementary Figure 6. Translational efficiency (TE) changes associated with decitabine treatment in

2 HL-60 cells
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6  (a) Schematic of Ribo-seq experimental workflow. (b) Volcano plot visualization of Ribolog-calculated
7  translational efficiency ratios (TERs) between the decitabine and DMSO conditions. (¢) Bar plots showing
8  enrichment of P-sites in the first frame of coding sequence (CDS) but not UTRs, consistent with ribosome
9  protected fragments derived from protein coding mRNAs. (d) Ribosome occupancy profiles based on the 5'

10  and 3' reads mapped to a reference codon for one sample (decitabine treated HL-60, single replicate).
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Supplementary Figure 7. RNA m°A hypermethylated peaks from MeRIP-seq in HL-60 following

decitabine treatment
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(a-d) Visualization of m°A peaks across mRNA transcripts of (a) SOLE, (b) INTSS5, (¢) DHODH and (d)

MYBBPIA. Peaks were called using the RADAR algorithm and plots were generated using the RADAR and

Gviz R packages. MeRIP-seq experiments were performed in biological duplicates for each condition.
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1  Supplementary Figure 8. Analysis of SKM-1 and MOLM-13 cell lines and genome-scale CRISPRi
2 decitabine screens: quality control and comparisons to the HL-60 screen.
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(a) RNA expression levels for genes of interest (shown as log2 normalized counts) across AML cell lines vs.
other cancer types using the CCLE database (DepMap Public 21Q4) curated with Cancer Data Integrator
(CanD]). In total, 54 AML cell lines and 1,771 other cancer type cell lines are shown, with the 6 AML cell
lines used in this study highlighted. (b) Mutational status of genes of interest across the 6 AML cell lines used
in this study. (¢) Scatter plots show robust correlation between replicates for the gamma and tau phenotypes in
SKM-1 (left) and MOLM-13 (right) genome-scale CRISPRi decitabine screens. (d) GSEA plots for the SKM-
1 (top) and MOLM-13 (bottom) screens show enrichment of the GO:0006397 (mRNA processing) term
among all screened genes ranked by Mann-Whitney p-value (corresponding to each gene’s p phenotype
calculation). Normalized enrichment scores (NES) were calculated using the blitzGSEA Python package. (e)
Venn diagrams of significant hits across screens in three AML cell lines show overlapping and cell-line
specific resistance (top) and sensitizing (bottom) phenotypes. Hits were selected by absolute gene-level rho
(p) score values above 0.1 and Mann-Whitney p-values less than 0.05. (f) Scatter plots of gene-level rho (p)
scores comparing the HL-60 screen to the SKM-1 (top) and MOLM-13 (bottom) screens. Several hits of
interest shared across cell lines are labeled in black.
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Supplementary Table 1. HL-60 CRISPRI decitabine screen
Gene-level phenotype scores and sgRNA protospacer sequences for validation assays.

Supplementary Table 2. Pathway-level analysis of HL-60 CRISPRi drug phenotype scores
Gene set enrichment analysis (GSEA) results using gene ontology (GO) gene sets. Two distinct GSEA
analyses were performed (see methods).

Supplementary Table 3. Differential RNA methylation analysis
Differential analysis of MeRIP-seq data with RADAR (decitabine vs. DMSO).

Supplementary Table 4. SKM-1 and MOLM-13 CRISPRI decitabine screens
Gene-level phenotype scores for each screen and comparison of CRISPRi drug phenotype across three AML
cell lines.

Supplementary Table 5. Pathway-level analysis of AML cell lines CRISPRIi drug phenotype scores
Merged results from gene set enrichment analysis (GSEA) using gene ontology (GO) gene sets across three
AML cell lines. Two distinct GSEA analyses were performed (see methods).
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