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1) Abstract

A major focus for genomic prediction has been on improving trait prediction accuracy using combinations
of algorithms and the training data sets available from plant breeding multi-environment trials (METs). Any
improvements in prediction accuracy are viewed as pathways to improve traits in the reference population
of genotypes and product performance in the target population of environments (TPE). To realise these
breeding outcomes there must be a positive MET-TPE relationship that provides consistency between the
trait variation expressed within the MET data sets that are used to train the genome-to-phenome (G2P)
model for applications of genomic prediction and the realised trait and performance differences in the TPE
for the genotypes that are the prediction targets. The strength of this MET-TPE relationship is usually
assumed to be high, however it is rarely quantified. To date investigations of genomic prediction methods
have not given adequate attention to quantifying the structure of the TPE and the MET-TPE relationship
and its potential impact on training the G2P model for applications of genomic prediction to accelerate
breeding outcomes for the on-farm TPE. We provide a perspective on the importance of the MET-TPE
relationship as a key component for the design of genomic prediction methods to realize improved rates of
genetic gain for the target yield, quality, stress tolerance and yield stability traits in the on-farm TPE.
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2) Introduction

Plant breeding is grounded in prediction (Goldman, 2000; Duvick, 2001; Cooper et al., 2014a; Voss-Fels et
al., 2019). Plant breeding programs are the operational implementation of coordinated sequences of
prediction methods, organised to continuously create, evaluate and select new genotypes over multiple
breeding program cycles (Duvick et al., 2004; Cobb et al., 2019; Technow et al., 2021). The cycles are
designed to iteratively improve on the outcomes from previous cycles. Breeding objectives are framed to
develop product outcomes (varieties, hybrids, clones, populations). These products are to be used by
farmers within the Genotype-by-Environment-by-Management (GXExM) context of agricultural systems of
the target population of environments (TPE); which includes the biophysical environment and the
agronomic management practices adopted by farmers (Cooper et al., 2020, 2021; Kholova et al., 2021;
Ronanki et al., 2022). Through successful adoption and use of the improved products by farmers, breeding
programs can improve food productivity and so contribute to enhanced global food security. However,
there are many persistent gaps documented between the current levels of crop productivity in agricultural
systems and the targets required to achieve food security. Thus, there is continued interest in improving
the design of breeding programs to target the creation of new products to help close yield gaps (Cooper et
al., 2020; Messina et al., 2022a). Application of genomic prediction technologies has emerged as a major
theme of breeding program design in the 21t Century (Meuwissen et al., 2001; Heffner et al., 2009; Cooper
et al., 2014a; Voss-Fels et al., 2019; Rogers et al., 2021; Varshney et al., 2021). Here we discuss and extend
the “breeder’s equation” as a framework to help evaluate opportunities to enhance genomic breeding
outcomes through enhanced design of METs to provide the relevant training data sets with the required
MET-TPE alignment (Cooper et al., 2014a, b; Gaffney et al., 2015; Gonzéalez-Barrios et al., 2019; Rogers et
al., 2021; Smith et al., 202143, b). Attention to improve the MET-TPE alignment as a criterion in the design of
MET training data sets supports effective use of environmental covariates, crop models and high-
throughput phenotyping in combination with genome-to-phenome (G2P) modelling algorithms to enhance
genomic prediction for the TPE (Cooper et al., 20144, b; Gaffney et al., 2015; Messina et al., 2018;
Diepenbrock et al., 2021).

The basic form of the “breeder’s equation” provides a framework to predict the response to selection (AG)
from one cycle (L) of a breeding program, following application of a selection strategy. Here we consider
selection strategies that incorporate applications of genomic prediction (Heffner et al., 2009; Cooper et al.,
2014a; Voss-Fels et al., 2019). Selection pressure is implemented by applying truncation selection to the
distributions of observed or predicted values for one or more traits within the reference population of
genotypes (RPG) of a breeding program; for example, selection to increase crop yield, improve grain quality
and improve abiotic and biotic stress tolerances to reduce the extent of yield losses due to the occurrence
of the frequent stresses in the TPE (Chenu et al., 2011; Kholova et al., 2013; Hajjarpoor et al., 2021; Messina
et al., 2022a). The structure of the breeder’s equation has a long history in animal and plant breeding (Lush,
1937; Hallauer and Miranda, 1988; Nyquist and Baker, 1991; Comstock, 1996) and is frequently used as a
quantitative framework for the design and optimisation of crop breeding programs (Araus and Cairns, 2014;
Cobb et al., 2019; Kholova et al., 2021; Cooper and Messina, 2022). For applications of genomic prediction,
a common form of the breeder’s equation is given as:

AG = iryo, (eqnl)

Where i represents the selection differential applied to the selection units, based on the trait variation
within the RPG, 1, represents the prediction accuracy for breeding values for the selection units within the
RPG, and g, represents the additive genetic variation among the selection units within the RPG for the
traits that are targeted for improvement by selection. For genomic breeding, the quantification of
prediction accuracy 1, is based on G2P models for traits that are constructed using suitable training data
sets. These training data sets are created algorithmically using the genetic fingerprints and trait phenotypes
for the genotypes included in breeding multi-environment trials (METs) used as training data sets. The
foundation of the MET training data sets is typically based on data collected from the relevant stages of the
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breeding program (Cooper et al., 2014a; Smith et al., 2021a). Characterisations of the sample of
environments present in the MET can be used to create environmental predictors to be included in the G2P
model to adjust genomic predictions to account for effects of GxE interactions (Jarquin et al., 2014;
Messina et al., 2018; de los Campos et al., 2020; Diepenbrock et al., 2021). Importantly, the samples of
environments included in the METs are considered to represent the environmental composition of the TPE
(Comstock and Moll, 1963; Nyquist and Baker 1991; Cooper and Delacy, 1994). The environmental
composition of the METs can be augmented in many ways using specifically designed field-based and
controlled-environment experiments (Cooper et al., 1995, 1997, 2014a, b; Campos et al., 2004; van Eeuwijk
et al., 2019; Langstroff et al., 2022; Cooper and Messina, 2022). Many assumptions are made when
applying the breeder’s equation, as represented by equation (1). We consider some of these assumptions
in more detail as they relate to the prediction of response to selection for improved on-farm performance
within the TPE. In particular we focus on the influence of the MET-TPE relationship in the presence of GxE
interactions within the TPE of the breeding program and use this as the basis for deriving the extended
breeder’s equation introduced here.

3.1 Extending the breeder’s equation to take aim at the TPE

The breeder’s equation, as represented in equation (1), quantifies the per cycle rate of change of the trait
mean value for the RPG (Nyquist and Baker, 1991; Cobb et al. 2019). However, the breeder’s equation does
not explicitly quantify the directionality of the change in trait values relative to their requirements for the
TPE. To enable efficient design of a breeding program, targeted on creation of new products to close on-
farm yield gaps, it is desirable to have a form of the breeder’s equation that includes both the rate and the
directionality components of genetic gain for the TPE. Applying correlated response selection theory
(Falconer, 1952; Cooper and Delacy, 1994; Rogers et al., 2021; Cooper and Messina, 2022), we provide an
extended form of the breeder’s equation that combines both the rate and directionality components of
trait change under the influence of selection. Considering the environmental composition of the MET to be
a sample of the environmental composition of the TPE (MET € TPE), an equation for trait genetic gain
within the TPE, based on selection decisions made using predictions from G2P trait information obtained
from METs (AG (mer,rPE)), Can be given as:

AGmEeT,TPE) = IMETT a(MET)T a(MET,TPE)Oa(TPE) (eqn 2)

Two of the terms in equation (2) are equivalent to terms in equation (1): iy gy is the selection differential
applied to phenotypic and G2P prediction information obtained from analyses of the MET training data
sets, as for i in equation (1), 7q(mgr) is the prediction accuracy for the selection units based on applications
of the training data available from the MET, as for 7, in equation (1). In equation (2) the g, term of
equation (1) is replaced by the product of two terms 74 yer rpg) @nd 0 4(rpg). The term 7o yer rpE) is the
genetic correlation between the additive genetic effects estimated by applying G2P models developed
using the MET training data sets, and the additive genetic effects for the trait targets required for realised
trait performance in the TPE. The term o, (7pg) represents the additive genetic variation for the traits
within the TPE. Additional forms of equation (2) can be given, for example for prediction at the level of the
total genotypic trait performance level. Equally equation (2) can be further extended to examine the
contributions of quantitative trait loci (QTL) and combinations of haplotypes and specific QTL to the
additive or total genotypic variance for multiple traits in the RPG for the TPE.

Applying the extended form of the breeder’s equation given in equation (2), statements can be made
regarding the design of genomic prediction strategies based on applications of equation (1).

e Firstly, if the environmental composition of the MET is an accurate sample of the environmental
composition of the TPE then it can be expected that v, yer,rpr) = 1 and equations (1) and (2) will
converge to the same form of the breeder’s equation, as given in equation (1); in this case the g, of
equation (1) converges to the o4 (rpg) of equation (2). However, if there is GxE interaction and
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divergence in environmental composition between the MET and the TPE, 7, ygr,rpE) < 1 €an occur,
diminishing prediction accuracy for the TPE. Under such circumstances it can be expected that realised
genetic gain in the TPE will be lower than predicted when based on studies confined to pursuing G2P
modelling algorithms for improved prediction accuracy within the bounds of the MET training data
sets; in this case the g, of equation (1) can diverge from the o4 (rpg) of equation (2). Whenever there
is historical evidence that realised genetic gains in the on-farm TPE are lower than the predicted gains,
the magnitude of r4(ygr rpE) Should be investigated to quantify its potential impact on the expected
realised prediction accuracy that can be achieved in the TPE based on prediction accuracy derived
from the training data available through the MET.

e Secondly, whenever there is evidence of GxE interactions within the TPE, including GXExM interactions,
and there is the potential for divergence between the environmental composition and trait data
obtained from current METs and those expected for the future TPE, as is often projected for the
influences of climate change, the extended form of the breeder’s equation (2) provides a more
appropriate framework than equation (1) for quantifying the impact of such changes on the design and
optimisation of prediction-based breeding strategies.

e Thirdly, for long-term breeding programs, consideration should be given to characterisation of the TPE
and the design of MET experiments to obtain empirical estimates of the genetic correlation
TqmeT,TPE) @nd determination of the genetic and environmental factors contributing to 74 (yer,rPE) <
1. The effects of climate change on the environmental composition of the TPE and associated changes
in trait contributions to yield and GxE interactions for current and future cropping systems represents
one clear area for urgent consideration in the design of METs to address the MET-TPE alignment
(Braun et al., 2010; Chapman et al., 2012; Lobell et al., 2015; Ceccarelli and Grando, 2020; IPCC, 2021;
Snowdon et al., 2021; Bustos-Korts et al., 2021; Cooper et al., 2021, Cooper and Messina, 2022).

To demonstrate the implications of GXE interactions on realized genetic gain in the on-farm TPE we
consider two examples of the application of the extended form of the breeder’s equation to investigate the
MET-TPE alignment and its potential impact on the 7,y g7 7pE) COMponent of equation (2). The first
considers a familiar theoretical example from the study of crossover GxE interactions (Haldane, 1947
Ceccarelli, 1989, 1994; Cooper and Delacy, 1994; van Eeuwijk et al., 2001). The second considers an
empirical example based on a previously published MET-TPE data set for wheat in Australia (Cooper et al.,
1995, 1997, 2001). The wheat example was previously used to investigate the implications of GxE
interactions for grain yield in the TPE, and also the MET-TPE relationship for design of METs to accelerate
genetic gain for yield from wheat breeding in a TPE where complex GxE interactions for grain yield are
ubiquitous (Brennan et al., 1981; Cooper and Delacy, 1994; Cooper et al., 1995, 1997, 2001; Basford and
Cooper, 1998, Chenu et al., 2011; Lobell et al., 2015; Bustos-Korts et al., 2021; Resende et al., 2021).

3.2 Investigating the MET-TPE Alignment: Theoretical Example

Theoretical and empirical considerations of the influences of GxE interactions for breeding have
consistently emphasised the importance of crossover GxE interactions (Figure 1a; Haldane 1947; Ceccarelli
1989, 1994; Cooper and Delacy 1994; Cooper et al. 2021; Rogers et al. 2021; Smith et al. 20214, b).
Examples of such crossover interactions in breeding METs have been demonstrated at the genotypic
(Cooper et al. 1995, 1997, van Eeuwijk et al. 2001, Xiong et al. 2021; Smith et al. 2021b) and QTL levels
(Boer et al. 2007, Millet et al. 2019). For the theoretical example of crossover GxE interactions shown in
Figure 1a, the yield performance responses for two genotypes (G2 and G8) in two environments (Env_1 and
Env_2) are considered. The potential impact of the crossover interactions depicted in Figure 1a on selection
decisions can be examined using equation (2) by considering the influence of changes in the frequency of
occurrence of the two environments within the both the MET and TPE on the genetic correlation
TamEer,rPE) term from equation (2). Here we consider the genotypic correlation 7y ygr 7pE) between
weighted average yield of the two genotypes between the MET and the TPE, where the weights are based
on the frequencies of occurrence of the two environments in the MET and the TPE (Podlich et al. 1999).
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This provides a simulated scan of the range of possible MET-TPE alignment scenarios based on the potential
range in frequency of occurrence of the two environments within the MET and the TPE.

In Figure 1b the genotypic covariance a4yt rpE) Of the average performance of the two genotypes in the
MET and the TPE is plotted against the frequency of Env_1 in the MET and the TPE. The genotypic
covariance is the numerator of the genetic correlation 74 (ygr rpE) term of equation (2) and is used here in
place of r4(mer,rPE) t0 SMOOth out the response surface for illustration purposes. The shape of the
response surface for the genotypic covariance (Figure 1b) fluctuates between negative and positive values
depending on the frequency of occurrence of both environments in the MET and the TPE. Two aspects are
noted.

e Firstly, when the frequencies of both environments are close to 0.5 in the MET or TPE the genetic
covariance, and thus the genetic correlation r¢(vgr rpr), approaches 0 (Figure 1b). In such situations
selection decisions will require direct investigation of the GxE interactions and consideration of how to
target breeding for both environments instead of selection for average performance in the MET to
improve average performance in the TPE, as simulated here (Figure 1a).

e Secondly, as the frequencies of the environments within the MET and the TPE deviate from 0.5
towards 1.0 for Env_1 and towards 0.0 for Env_2, or towards 0.0 for Env_1 and towards 1.0 for Env_2,
then the influence of the MET-TPE alignment becomes increasingly important. When there is MET-TPE
alignment of the environment frequencies the genotypic covariance is positive and the crossover GxE
interaction is less problematic for selection decisions (Figure 1b). However, if there is poor MET-TPE
alignment of the environment frequencies, for example a high frequency of Env_1 in the MET when
Env_1 actually has a low frequency in the TPE, then the genotypic covariance can become negative
(Figure 1b). In this situation selection based on the information obtained from the MET will result in
poor selection decisions that are not aligned with the needs of the TPE, even if a high prediction
accuracy, based on the value of 7, from equation (1) and of 7, ygr) from equation (2), is
demonstrated for any prediction method within the confines of the MET training data set.

3.3 Investigating the MET-TPE Alignment: Empirical Example

Building on the theoretical example (Figure 1a, b), we apply the extended breeder’s equation to quantify
the impact of the MET-TPE alignment for an empirical example by estimating the genotypic correlation
Tgmer,rPE) term of equation (2) for a range of wheat MET-TPE alignment scenarios for north-eastern
Australia (Figure 1c, d). We utilise grain yield data available from a previously published wheat data set
(Cooper et al., 1995, 1997, 2001). The example provides grain yield data for 15 genotypes and 53
environments. Importantly, for current considerations, the 53 environments were previously organised to
represent a breeding MET (27 environments) and the TPE (26 environments) for the north-eastern region
of the Australian wheat belt (Brennan et al., 1981; Cooper et al., 1995, 1997; Chenu et al., 2011). The MET
was specifically designed in an attempt to represent the current understanding of GxE interactions and
MET-TPE alignment scenarios for the wheat breeding program at that time. The set of 15 genotypes was
chosen to represent groupings of key germplasm from the reference population of genotypes for the wheat
breeding program (Cooper and Delacy, 1994; Cooper et al., 1995, 1997, 2001). Further, we identify that the
data for the two genotypes (G2 and G8), used to illustrate crossover GxE interactions in the theoretical
example (Figure 1a), were chosen from the larger set of 15 genotypes included in the empirical example
(Figure 1c). Also, the two environments (Env_1 and Env_2) used in the theoretical example were taken
from the empirical example. Thus, the numerical values for the example of crossover GxE interaction for
grain yield (Figure 1a) used for the theoretical investigations (Figure 1b) were representative of important
crossover GxE interactions under consideration within the target breeding program, as considered in the
empirical example (Figure 1c, d; Brennan et al., 1981; Cooper and Delacy, 1994; Basford and Cooper, 1998;
Cooper et al., 2001).
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Improving grain yield stability for the TPE of the north-eastern region of the Australian wheat-belt was a
primary objective of the wheat breeding program at that time. A weighted selection strategy, combined
with field-based managed-environments, was developed to account for GxE interactions (Cooper et al.,
1995, 1997, 2001; Podlich et al., 1999). Spatial and temporal variability for water availability was identified
as primary driver of grain yield variation within the TPE, and drought was considered to be a major source
of crossover GxE interactions for grain yield. Thus, the environments included in the MET were managed to
sample a gradient of water availability scenarios, ranging from severe drought to water-sufficient
environments, by managing combinations of irrigation and nitrogen inputs at a restricted number of
locations. The TPE set of environments was designed by sampling a range of water availability scenarios
from a wider range of locations and years within the north-eastern region of Australia. The objective was to
design a MET for the stages of the wheat breeding program that could be consistently managed at a few
locations to provide a stratified sample of the range of water availability environments expected within the
TPE (Cooper et al., 1995, 1997, 2001).

Grain yield GxE interactions were previously identified for both the MET and TPE data sets (Cooper et al.,
1995, 1997, 2001). Crossover GxE interactions were frequent (Figure 1a; Cooper and Delacy, 1994). For the
purposes of demonstrating an application of equation (2) to the empirical wheat example, the prior
envirotyping was used to identify two groups of environment-types for both the MET and TPE sets;
environment-type 1 (E1) characterised by mild water-deficits, and environment-type 2 (E2) characterised
by severe water-deficits. There were GxE interactions between the two environment-types within the MET
and TPE sets (Figure 2; Cooper et al., 1995, 1997, 2001). There was a moderate to weak positive genotypic
correlation for grain yield variation among the 15 genotypes between both environment-types E1 and E2
for the MET (Figure 2a) and TPE (Figure 2b). Importantly, for interpretation of the genotypic correlation
TgmeT,rPE) between the MET and TPE (Figure 1d), the genotypic correlation for grain yield variation
between the mild stress environment-type E1 was positive and strong between the MET and the TPE
(Figure 2c). However, there was no relationship for grain yield variation between the severe drought stress
environment-type E2 between the MET and the TPE (Figure 2d). The details of the lack of relationship for
environment-type E2 are discussed in detail elsewhere (Cooper et al., 1995, 1997). In summary the MET
was designed to focus on the expected water availability gradient in the absence of other abiotic and biotic
stresses that could also occur within the TPE. Occurrences of these other abiotic and biotic stresses within
the TPE set were interpreted to be contributing factors to the low relationship observed for severe drought
stress environment-type E2 between the MET and TPE (Figure 2d). In the absence of the drought stress for
environment-type E1 these other abiotic and biotic stresses were less influential on the genotypic
correlation for grain yield (Figure 2c).

For purposes of demonstrating an application of the extended breeder’s equation to the wheat MET-TPE
data set (Figure 1c, d) it is sufficient to note that there was GxE interaction for grain yield between
Environment-types E1 and E2 in both the MET (Figure 2a) and the TPE (Figure 2b) data sets and that there
was positive predictability between the MET and TPE sets for environment-type E1 (Figure 2c), but no
predictability for environment-type E2 (Figure 2d). Using this level of envirotyping we can simulate the
influence of changes in the MET-TPE alignment on 7, ygr,rpE) @and prediction of average grain yield in the
TPE based on average grain yield estimated from the MET (Figure 1d). Following the same procedures
applied to the theoretical example (Figure 1a, b), the potential range of MET-TPE alignment scenarios was
simulated by changing the frequencies of environment-types E1 and E2 within the MET and the TPE in steps
of 0.1 from 0.0 to 1.0, calculating the weighted average grain yield of the 15 genotypes for both the MET
and TPE, taking into consideration the frequencies of both environment-types, and calculating the
genotypic correlation ryvgr,rpE) between the estimates of weighted average grain yield for the 15
genotypes between the MET and TPE for all MET-TPE alighment combinations. We then plotted the
Tg(mEeT,TPE) a8ainst the frequency of environment-type E1 in the MET and TPE to generate a simulated
Tg(mET,TPE) 8€NOtypic correlation response surface for all MET-TPE alignment configurations (Figure 1d).
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The genotypic correlation 7y mgrTpE) between the simulated MET and TPE alignments ranged from a high
value of 0.90 to a low value of -0.07 (Figure 1d). The ry(mgr rpE) response surface for the wheat example
has interesting features. Firstly, there is a relatively broad plateau of high 7y (ygr rpE) Values for many of
the MET-TPE alignment scenarios. This plateau of high 7y ygr rpg) Values occurred for scenarios where the
frequency of the water-sufficient environment-type E1 was higher than 0.5 in both the MET and TPE (Figure
1d), taking advantage of the high predictability between environment-type E1 in the MET and TPE (Figure
2c). Secondly, when the frequency of environment-type E1 falls below 0.5 in the MET or TPE, and therefore
the frequency of the water-limited environment-types E2 increases above 0.5, the 1y g7, rpE) is degraded
from the high levels of the plateau (Figure 1d), reflecting the increased influence of the poor predictability
between the MET and TPE for the water-limited environment-type E2 (Figure 2d). This impact of the MET-
TPE alignment on predictability for performance in the TPE using MET results will apply to all levels of
prediction, including genomic prediction, phenotypic prediction and combined prediction approaches.

For the specific environment-type configuration realised for the empirical example (Figure 2), the estimate
of rgmerTpE) fOr prediction of average grain yield for the TPE based on average gain yield obtained for the
MET was intermediate (Figure 1c); 7gmerTPE) = 0.70 for MET f(E1) = 0.41, f(E2) = 0.59 and for TPE f(E1) =
0.31, f(E2) = 0.69. Thus, the MET-TPE alignment for the empirical example was located on the 7 yer rpE)
response surface (Figure 1d) slightly off of the plateau of higher 74 ygr rpE) levels, but still above the
precipice where the ;g7 rpE) Value is severely degraded. This empirical realisation of MET-TPE alignment
is just one of the many possible scenarios that can occur as the frequencies of environment-types change
between the MET and the TPE (Figure 1d).

The empirical wheat example (Figures 1, 2) was used to demonstrate the utility of the extended form of the
breeder’s equation for applications in prediction-based breeding. Here we have emphasised the use of the
extended breeder’s equation as a useful framework to guide the design MET data sets for training G2P
models for applications of genomic prediction and genomic selection at different stages of a breeding
program to take aim at the TPE (Cooper et al., 20144, b; Gaffney et al. 2015; Messina et al. 2022a). Many
other possible prediction scenarios can also be investigated, and these will be the subject of future
research.

4) Discussion

Design of breeding programs, and crop improvement strategies in general, to take aim at the crop
productivity requirements of the TPE is critical to both accelerate and achieve realised genetic gain on-farm
that contributes to closing yield gaps (Messina et al., 2022a), improving global food security (Cooper et al.,
2021; Kholova et al., 2021; Rogers et al., 2021), and the many other requirements for sustainable
agricultural systems (Messina et al., 2022b). However, in most considerations of breeding program design
and optimisation there is no direct connection between the optimisation considerations that use the
framework of the breeder’s equation, as in equation (1), and the understanding of the TPE. Thus, there is
often a disconnect between the attention to rate of genetic gain, the directionality of the breeding program
and its MET-TPE alignment with the requirements of the on-farm TPE. In the presence of GxE interactions
and low 7 (meT,rpE) this MET-TPE disconnect can result in low realised genetic gain under the on-farm
conditions of the TPE, even when high prediction accuracy, based on 7, in equation (1) or more explicitly
Tq(meT) IN €quation (2), is demonstrated for genomic prediction methods evaluated within the confines of
the MET. The extended form of the breeder’s equation, introduced here as equation (2), provides a
framework to remove this disconnect and to support design of prediction-based breeding strategies that
take aim at the TPE by emphasising the influence of the MET-TPE alighment on realised genetic gain for the
on-farm TPE (Cooper et al., 2014a, b; Gaffney et al. 2015; Messina et al. 2022a). Here we demonstrated
such application of the extended breeder’s equation framework through investigation of 74 (ygr 7pE),
rather than assuming rqyer,rPE) = 1, @s is the case for the traditional form of the breeder’s equation.
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We have introduced and demonstrated the utility of the extended form of the breeder’s equation through
applications to a theoretical and empirical example. In summary the following key points were presented.

Theoretical considerations: We extended the breeder’s equation, introducing the genetic correlation
rqmer,rpE) t0 explicitly incorporate and quantify the relationship between a MET and the TPE, as a
framework for designing METs to take aim at the TPE. Three further considerations are important: (1) the
traditional form of the breeder’s equation assumes that the genetic correlation 7,yerrpE) = 1; (2) in the
presence of GxE interactions the genetic correlation 7, ygrrpE) Can be decomposed to take into account
the genetic variance-covariance structure among the environment-types within the TPE (Cooper and
Delacy, 1994; van Eeuwijk et al., 2001; Smith et al., 2005, 20214, b; Rogers et al., 2021); and (3) the genetic
correlation 74 yer,rPE) Can be applied to the continuum of selection units of interest to breeders,
extending from the level of sequence information, accounting for QTL and chromosomal haplotypes, to
total multi-trait, multi-QTL predicted genotypic performance or breeding value obtained for any G2P model
that is derived from relevant training data sets that can be generated from METs together with augmented
data sources from specialised phenotyping facilities (Cooper et al., 2014a,b; Gaffney et al., 2015;
Diepenbrock et al., 2021).

Taking aim at specific target environment-types, for example specific biotic or abiotic stresses, is not
uncommon in plant breeding (Blum, 1988; Millet et al., 2019). However, taking aim at the TPE as a mixture
of environment-types (Podlich et al., 1999; Cooper et al., 2014a,b; Gaffney et al., 2015; Rogers et al., 2021;
Smith et al., 2021a, b; Messina et al., 2022a,b) is much less common than taking aim at specific
environment-types. Taking aim at the TPE requires detailed consideration of the mixture of target
environment-types within the TPE (Chapman et al., 2000; Chenu et al., 2011; Kholova et al., 2013; Cooper
et al., 20144, b; Lobell et al., 2015; Hajjarpoor et al., 2021; Resende et al., 2021), the extent of GxE
interactions between environment-types (Figure 2) and the details of the genetic variance-covariance
structure among the environment-types, and appropriate attention to weighting the sources of G2P
information for traits, that is available from the environment-types sampled in the MET training data sets,
by their frequencies of occurrence and relative importance in the TPE (Podlich et al., 1999; Cooper et al.,
2014a, b; Gaffney et al., 2015; Messina et al., 2018; Smith et al., 2021b).

Empirical considerations: We demonstrated the application of the extended form of the breeder’s
equation by applying it to a grain yield data set designed for a wheat breeding program, where the
environments had previously been grouped into MET and TPE sets with a characterisation of the different
environment-types in both the MET and TPE sets (Figures 1 and 2; Cooper et al., 1995, 1997, 2001). This
prior characterisation of environment-types and the MET-TPE alighment was conducted prior to the more
comprehensive characterisation of the wheat TPE for north-eastern Australia (Chenu et al., 2011; Bustos-
Korts et al., 2021) and so we provided some additional interpretation of GxE interactions for yield related to
water availability and the incidence of drought and their influences on the genetic correlation 7 ygr rpE)
in terms of the more recent TPE characterisation (Figures 1 and 2).

Future research: The extended form of the breeder’s equation is particularly relevant as a framework for
the design of breeding strategies to target climate resiliency to address the impacts of climate change on
the environmental composition of the short, medium and long-term future diverse geographical TPEs
expected for our global agricultural systems (Chapman et al. 2012; IPCC, 2021; Cooper and Messina, 2022).
Future work will explore developments and other applications of the extended breeder’s equation to assist
design of prediction-based breeding programs to tackle the effects of climate change, where it is expected
that frequencies of environment-types within the TPE will change with time (Chapman et al., 2012; Lobell
et al., 2015; Hammer et al. 2020; Snowdon et al., 2020; Cooper et al., 2021; IPCC, 2021; Bustos-Korts et al.,
2021; Cooper and Messina, 2022).
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Figure 1 Two examples of the potential influences of Genotype by Environment (GxE) interactions for grain yield on
the expected genetic correlation between the average genotype performance in a multi-environment trial (MET) and
the target population of environments (TPE) as the frequencies of environment types change between the sample of
environments obtained in the MET and their presence in the TPE: (a) Schematic yield reaction-norms for two wheat
genotypes (G3, G8) in two environments (Env_1, Env_2) demonstrating crossover GxE interaction; (b) Response
surface of the expected genotypic covariance gymEeT,TPE) bEtween average genotype yield performance in a MET and
in the TPE as the frequencies of the two environments (Env_1, Env_2) change within the MET and TPE; (c) Scatter plot
of the average grain yield for 15 wheat genotypes based on two independent sets of environments representing both
the MET and the TPE; (d) Response surface of the expected genotypic correlation, 74 wer rpg) from equation (2),
between average genotype yield performance in a MET and in the TPE as the frequencies of two environment-types
(E1 = Mild water deficit, E2 = Severe water-deficit) change within the MET and TPE data sets. The filled symbol on the
response surface positions the estimate of 7y yer rpg) for the grain yield data shown in sub-figure 2¢ (MET f(E1) =

0.41, TPE f(E1) = 0.31, rymerrpE) = 0.70). Data for grain yield estimates were obtained from the study reported by
Cooper et al. (1997).
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Figure 2 Scatter diagrams comparing average grain yield predicted for 15 wheat genotypes for two environment-types
(E1 = Mild water deficit, E2 = Severe water-deficit) obtained from independent data sets representing a multi-
environment trial (MET) and the target population of environments (TPE): (a) Comparison between grain yield
predicted for environment-types E1 and E2 in the MET data set, 7g(g1,g2\mer); (b) Comparison between grain yield
predicted for environment-types E1 and E2 in the TPE data set, 74(g1,g2j7pE); (c) Comparison of grain yield predicted
for environment-type E1 between the MET and the TPE data sets, 74 mer TrE|E1); (d) Comparison of grain yield
predicted for environment-type E2 between the MET and the TPE data sets, 7 (yer,7pE|E2)- Data for grain yield
predictions were obtained from the study reported by Cooper et al. (1997).
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