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1) Abstract 

A major focus for genomic prediction has been on improving trait prediction accuracy using combinations 

of algorithms and the training data sets available from plant breeding multi-environment trials (METs). Any 

improvements in prediction accuracy are viewed as pathways to improve traits in the reference population 

of genotypes and product performance in the target population of environments (TPE). To realise these 

breeding outcomes there must be a positive MET-TPE relationship that provides consistency between the 

trait variation expressed within the MET data sets that are used to train the genome-to-phenome (G2P) 

model for applications of genomic prediction and the realised trait and performance differences in the TPE 

for the genotypes that are the prediction targets. The strength of this MET-TPE relationship is usually 

assumed to be high, however it is rarely quantified. To date investigations of genomic prediction methods 

have not given adequate attention to quantifying the structure of the TPE and the MET-TPE relationship 

and its potential impact on training the G2P model for applications of genomic prediction to accelerate 

breeding outcomes for the on-farm TPE. We provide a perspective on the importance of the MET-TPE 

relationship as a key component for the design of genomic prediction methods to realize improved rates of 

genetic gain for the target yield, quality, stress tolerance and yield stability traits in the on-farm TPE. 
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2) Introduction 

Plant breeding is grounded in prediction (Goldman, 2000; Duvick, 2001; Cooper et al., 2014a; Voss-Fels et 

al., 2019). Plant breeding programs are the operational implementation of coordinated sequences of 

prediction methods, organised to continuously create, evaluate and select new genotypes over multiple 

breeding program cycles (Duvick et al., 2004; Cobb et al., 2019; Technow et al., 2021). The cycles are 

designed to iteratively improve on the outcomes from previous cycles. Breeding objectives are framed to 

develop product outcomes (varieties, hybrids, clones, populations). These products are to be used by 

farmers within the Genotype-by-Environment-by-Management (GxExM) context of agricultural systems of 

the target population of environments (TPE); which includes the biophysical environment and the 

agronomic management practices adopted by farmers (Cooper et al., 2020, 2021; Kholová et al., 2021; 

Ronanki et al., 2022). Through successful adoption and use of the improved products by farmers, breeding 

programs can improve food productivity and so contribute to enhanced global food security. However, 

there are many persistent gaps documented between the current levels of crop productivity in agricultural 

systems and the targets required to achieve food security. Thus, there is continued interest in improving 

the design of breeding programs to target the creation of new products to help close yield gaps (Cooper et 

al., 2020; Messina et al., 2022a). Application of genomic prediction technologies has emerged as a major 

theme of breeding program design in the 21st Century (Meuwissen et al., 2001; Heffner et al., 2009; Cooper 

et al., 2014a; Voss-Fels et al., 2019; Rogers et al., 2021; Varshney et al., 2021). Here we discuss and extend 

the “breeder’s equation” as a framework to help evaluate opportunities to enhance genomic breeding 

outcomes through enhanced design of METs to provide the relevant training data sets with the required 

MET-TPE alignment (Cooper et al., 2014a, b; Gaffney et al., 2015; González-Barrios et al., 2019; Rogers et 

al., 2021; Smith et al., 2021a, b). Attention to improve the MET-TPE alignment as a criterion in the design of 

MET training data sets supports effective use of environmental covariates, crop models and high-

throughput phenotyping in combination with genome-to-phenome (G2P) modelling algorithms to enhance 

genomic prediction for the TPE (Cooper et al., 2014a, b; Gaffney et al., 2015; Messina et al., 2018; 

Diepenbrock et al., 2021).  

The basic form of the “breeder’s equation” provides a framework to predict the response to selection (∆𝐺) 

from one cycle (L) of a breeding program, following application of a selection strategy. Here we consider 

selection strategies that incorporate applications of genomic prediction (Heffner et al., 2009; Cooper et al., 

2014a; Voss-Fels et al., 2019). Selection pressure is implemented by applying truncation selection to the 

distributions of observed or predicted values for one or more traits within the reference population of 

genotypes (RPG) of a breeding program; for example, selection to increase crop yield, improve grain quality 

and improve abiotic and biotic stress tolerances to reduce the extent of yield losses due to the occurrence 

of the frequent stresses in the TPE (Chenu et al., 2011; Kholová et al., 2013; Hajjarpoor et al., 2021; Messina 

et al., 2022a). The structure of the breeder’s equation has a long history in animal and plant breeding (Lush, 

1937; Hallauer and Miranda, 1988; Nyquist and Baker, 1991; Comstock, 1996) and is frequently used as a 

quantitative framework for the design and optimisation of crop breeding programs (Araus and Cairns, 2014; 

Cobb et al., 2019; Kholová et al., 2021; Cooper and Messina, 2022). For applications of genomic prediction, 

a common form of the breeder’s equation is given as: 

∆𝐺 = 𝑖𝑟𝑎𝜎𝑎    (eqn 1) 

Where 𝑖 represents the selection differential applied to the selection units, based on the trait variation 

within the RPG, 𝑟𝑎 represents the prediction accuracy for breeding values for the selection units within the 

RPG, and 𝜎𝑎 represents the additive genetic variation among the selection units within the RPG for the 

traits that are targeted for improvement by selection. For genomic breeding, the quantification of 

prediction accuracy 𝑟𝑎 is based on G2P models for traits that are constructed using suitable training data 

sets. These training data sets are created algorithmically using the genetic fingerprints and trait phenotypes 

for the genotypes included in breeding multi-environment trials (METs) used as training data sets. The 

foundation of the MET training data sets is typically based on data collected from the relevant stages of the 
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breeding program (Cooper et al., 2014a; Smith et al., 2021a). Characterisations of the sample of 

environments present in the MET can be used to create environmental predictors to be included in the G2P 

model to adjust genomic predictions to account for effects of GxE interactions (Jarquín et al., 2014; 

Messina et al., 2018; de los Campos et al., 2020; Diepenbrock et al., 2021). Importantly, the samples of 

environments included in the METs are considered to represent the environmental composition of the TPE 

(Comstock and Moll, 1963; Nyquist and Baker 1991; Cooper and DeLacy, 1994). The environmental 

composition of the METs can be augmented in many ways using specifically designed field-based and 

controlled-environment experiments (Cooper et al., 1995, 1997, 2014a, b; Campos et al., 2004; van Eeuwijk 

et al., 2019; Langstroff et al., 2022; Cooper and Messina, 2022). Many assumptions are made when 

applying the breeder’s equation, as represented by equation (1). We consider some of these assumptions 

in more detail as they relate to the prediction of response to selection for improved on-farm performance 

within the TPE. In particular we focus on the influence of the MET-TPE relationship in the presence of GxE 

interactions within the TPE of the breeding program and use this as the basis for deriving the extended 

breeder’s equation introduced here.    

3.1 Extending the breeder’s equation to take aim at the TPE 

The breeder’s equation, as represented in equation (1), quantifies the per cycle rate of change of the trait 

mean value for the RPG (Nyquist and Baker, 1991; Cobb et al. 2019). However, the breeder’s equation does 

not explicitly quantify the directionality of the change in trait values relative to their requirements for the 

TPE. To enable efficient design of a breeding program, targeted on creation of new products to close on-

farm yield gaps, it is desirable to have a form of the breeder’s equation that includes both the rate and the 

directionality components of genetic gain for the TPE. Applying correlated response selection theory 

(Falconer, 1952; Cooper and DeLacy, 1994; Rogers et al., 2021; Cooper and Messina, 2022), we provide an 

extended form of the breeder’s equation that combines both the rate and directionality components of 

trait change under the influence of selection. Considering the environmental composition of the MET to be 

a sample of the environmental composition of the TPE (𝑀𝐸𝑇 ∈ 𝑇𝑃𝐸), an equation for trait genetic gain 

within the TPE, based on selection decisions made using predictions from G2P trait information obtained 

from METs (∆𝐺(𝑀𝐸𝑇,𝑇𝑃𝐸)), can be given as: 

∆𝐺(𝑀𝐸𝑇,𝑇𝑃𝐸) = 𝑖𝑀𝐸𝑇𝑟𝑎(𝑀𝐸𝑇)𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸)𝜎𝑎(𝑇𝑃𝐸)   (eqn 2) 

Two of the terms in equation (2) are equivalent to terms in equation (1): 𝑖𝑀𝐸𝑇 is the selection differential 

applied to phenotypic and G2P prediction information obtained from analyses of the MET training data 

sets, as for 𝑖 in equation (1), 𝑟𝑎(𝑀𝐸𝑇) is the prediction accuracy for the selection units based on applications 

of the training data available from the MET, as for 𝑟𝑎 in equation (1). In equation (2) the 𝜎𝑎 term of 

equation (1) is replaced by the product of two terms 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) and 𝜎𝑎(𝑇𝑃𝐸). The term 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) is the 

genetic correlation between the additive genetic effects estimated by applying G2P models developed 

using the MET training data sets, and the additive genetic effects for the trait targets required for realised 

trait performance in the TPE. The term 𝜎𝑎(𝑇𝑃𝐸) represents the additive genetic variation for the traits 

within the TPE. Additional forms of equation (2) can be given, for example for prediction at the level of the 

total genotypic trait performance level. Equally equation (2) can be further extended to examine the 

contributions of quantitative trait loci (QTL) and combinations of haplotypes and specific QTL to the 

additive or total genotypic variance for multiple traits in the RPG for the TPE.    

Applying the extended form of the breeder’s equation given in equation (2), statements can be made 

regarding the design of genomic prediction strategies based on applications of equation (1).  

• Firstly, if the environmental composition of the MET is an accurate sample of the environmental 

composition of the TPE then it can be expected that 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) → 1 and equations (1) and (2) will 

converge to the same form of the breeder’s equation, as given in equation (1); in this case the 𝜎𝑎 of 

equation (1) converges to the 𝜎𝑎(𝑇𝑃𝐸) of equation (2). However, if there is GxE interaction and 
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divergence in environmental composition between the MET and the TPE, 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) < 1 can occur, 

diminishing prediction accuracy for the TPE. Under such circumstances it can be expected that realised 

genetic gain in the TPE will be lower than predicted when based on studies confined to pursuing G2P 

modelling algorithms for improved prediction accuracy within the bounds of the MET training data 

sets; in this case the 𝜎𝑎 of equation (1) can diverge from the 𝜎𝑎(𝑇𝑃𝐸) of equation (2). Whenever there 

is historical evidence that realised genetic gains in the on-farm TPE are lower than the predicted gains, 

the magnitude of 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) should be investigated to quantify its potential impact on the expected 

realised prediction accuracy that can be achieved in the TPE based on prediction accuracy derived 

from the training data available through the MET.  

• Secondly, whenever there is evidence of GxE interactions within the TPE, including GxExM interactions, 

and there is the potential for divergence between the environmental composition and trait data 

obtained from current METs and those expected for the future TPE, as is often projected for the 

influences of climate change, the extended form of the breeder’s equation (2) provides a more 

appropriate framework than equation (1) for quantifying the impact of such changes on the design and 

optimisation of prediction-based breeding strategies.  

• Thirdly, for long-term breeding programs, consideration should be given to characterisation of the TPE 

and the design of MET experiments to obtain empirical estimates of the genetic correlation 

𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) and determination of the genetic and environmental factors contributing to 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) < 

1. The effects of climate change on the environmental composition of the TPE and associated changes 

in trait contributions to yield and GxE interactions for current and future cropping systems represents 

one clear area for urgent consideration in the design of METs to address the MET-TPE alignment 

(Braun et al., 2010; Chapman et al., 2012; Lobell et al., 2015; Ceccarelli and Grando, 2020; IPCC, 2021; 

Snowdon et al., 2021; Bustos-Korts et al., 2021; Cooper et al., 2021, Cooper and Messina, 2022).  

To demonstrate the implications of GxE interactions on realized genetic gain in the on-farm TPE we 

consider two examples of the application of the extended form of the breeder’s equation to investigate the 

MET-TPE alignment and its potential impact on the 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) component of equation (2). The first 

considers a familiar theoretical example from the study of crossover GxE interactions (Haldane, 1947; 

Ceccarelli, 1989, 1994; Cooper and DeLacy, 1994; van Eeuwijk et al., 2001). The second considers an 

empirical example based on a previously published MET-TPE data set for wheat in Australia (Cooper et al., 

1995, 1997, 2001). The wheat example was previously used to investigate the implications of GxE 

interactions for grain yield in the TPE, and also the MET-TPE relationship for design of METs to accelerate 

genetic gain for yield from wheat breeding in a TPE where complex GxE interactions for grain yield are 

ubiquitous (Brennan et al., 1981; Cooper and DeLacy, 1994; Cooper et al., 1995, 1997, 2001; Basford and 

Cooper, 1998, Chenu et al., 2011; Lobell et al., 2015; Bustos-Korts et al., 2021; Resende et al., 2021). 

3.2 Investigating the MET-TPE Alignment: Theoretical Example 

Theoretical and empirical considerations of the influences of GxE interactions for breeding have 

consistently emphasised the importance of crossover GxE interactions (Figure 1a; Haldane 1947; Ceccarelli 

1989, 1994; Cooper and DeLacy 1994; Cooper et al. 2021; Rogers et al. 2021; Smith et al. 2021a, b). 

Examples of such crossover interactions in breeding METs have been demonstrated at the genotypic 

(Cooper et al. 1995, 1997, van Eeuwijk et al. 2001, Xiong et al. 2021; Smith et al. 2021b) and QTL levels 

(Boer et al. 2007, Millet et al. 2019). For the theoretical example of crossover GxE interactions shown in 

Figure 1a, the yield performance responses for two genotypes (G2 and G8) in two environments (Env_1 and 

Env_2) are considered. The potential impact of the crossover interactions depicted in Figure 1a on selection 

decisions can be examined using equation (2) by considering the influence of changes in the frequency of 

occurrence of the two environments within the both the MET and TPE on the genetic correlation 

𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) term from equation (2). Here we consider the genotypic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) between 

weighted average yield of the two genotypes between the MET and the TPE, where the weights are based 

on the frequencies of occurrence of the two environments in the MET and the TPE (Podlich et al. 1999). 
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This provides a simulated scan of the range of possible MET-TPE alignment scenarios based on the potential 

range in frequency of occurrence of the two environments within the MET and the TPE.  

In Figure 1b the genotypic covariance 𝜎𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) of the average performance of the two genotypes in the 

MET and the TPE is plotted against the frequency of Env_1 in the MET and the TPE. The genotypic 

covariance is the numerator of the genetic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) term of equation (2) and is used here in 

place of 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) to smooth out the response surface for illustration purposes. The shape of the 

response surface for the genotypic covariance (Figure 1b) fluctuates between negative and positive values 

depending on the frequency of occurrence of both environments in the MET and the TPE. Two aspects are 

noted. 

• Firstly, when the frequencies of both environments are close to 0.5 in the MET or TPE the genetic 

covariance, and thus the genetic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸), approaches 0 (Figure 1b). In such situations 

selection decisions will require direct investigation of the GxE interactions and consideration of how to 

target breeding for both environments instead of selection for average performance in the MET to 

improve average performance in the TPE, as simulated here (Figure 1a).  

• Secondly, as the frequencies of the environments within the MET and the TPE deviate from 0.5 

towards 1.0 for Env_1 and towards 0.0 for Env_2, or towards 0.0 for Env_1 and towards 1.0 for Env_2, 

then the influence of the MET-TPE alignment becomes increasingly important. When there is MET-TPE 

alignment of the environment frequencies the genotypic covariance is positive and the crossover GxE 

interaction is less problematic for selection decisions (Figure 1b). However, if there is poor MET-TPE 

alignment of the environment frequencies, for example a high frequency of Env_1 in the MET when 

Env_1 actually has a low frequency in the TPE, then the genotypic covariance can become negative 

(Figure 1b). In this situation selection based on the information obtained from the MET will result in 

poor selection decisions that are not aligned with the needs of the TPE, even if a high prediction 

accuracy, based on the value of 𝑟𝑎 from equation (1) and of 𝑟𝑎(𝑀𝐸𝑇) from equation (2), is 

demonstrated for any prediction method within the confines of the MET training data set.  

3.3 Investigating the MET-TPE Alignment: Empirical Example  

Building on the theoretical example (Figure 1a, b), we apply the extended breeder’s equation to quantify 

the impact of the MET-TPE alignment for an empirical example by estimating the genotypic correlation 

𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) term of equation (2) for a range of wheat MET-TPE alignment scenarios for north-eastern 

Australia (Figure 1c, d). We utilise grain yield data available from a previously published wheat data set 

(Cooper et al., 1995, 1997, 2001). The example provides grain yield data for 15 genotypes and 53 

environments. Importantly, for current considerations, the 53 environments were previously organised to 

represent a breeding MET (27 environments) and the TPE (26 environments) for the north-eastern region 

of the Australian wheat belt (Brennan et al., 1981; Cooper et al., 1995, 1997; Chenu et al., 2011). The MET 

was specifically designed in an attempt to represent the current understanding of GxE interactions and 

MET-TPE alignment scenarios for the wheat breeding program at that time. The set of 15 genotypes was 

chosen to represent groupings of key germplasm from the reference population of genotypes for the wheat 

breeding program (Cooper and DeLacy, 1994; Cooper et al., 1995, 1997, 2001). Further, we identify that the 

data for the two genotypes (G2 and G8), used to illustrate crossover GxE interactions in the theoretical 

example (Figure 1a), were chosen from the larger set of 15 genotypes included in the empirical example 

(Figure 1c). Also, the two environments (Env_1 and Env_2) used in the theoretical example were taken 

from the empirical example. Thus, the numerical values for the example of crossover GxE interaction for 

grain yield (Figure 1a) used for the theoretical investigations (Figure 1b) were representative of important 

crossover GxE interactions under consideration within the target breeding program, as considered in the 

empirical example (Figure 1c, d; Brennan et al., 1981; Cooper and DeLacy, 1994; Basford and Cooper, 1998; 

Cooper et al., 2001).  
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Improving grain yield stability for the TPE of the north-eastern region of the Australian wheat-belt was a 

primary objective of the wheat breeding program at that time. A weighted selection strategy, combined 

with field-based managed-environments, was developed to account for GxE interactions (Cooper et al., 

1995, 1997, 2001; Podlich et al., 1999). Spatial and temporal variability for water availability was identified 

as primary driver of grain yield variation within the TPE, and drought was considered to be a major source 

of crossover GxE interactions for grain yield. Thus, the environments included in the MET were managed to 

sample a gradient of water availability scenarios, ranging from severe drought to water-sufficient 

environments, by managing combinations of irrigation and nitrogen inputs at a restricted number of 

locations. The TPE set of environments was designed by sampling a range of water availability scenarios 

from a wider range of locations and years within the north-eastern region of Australia. The objective was to 

design a MET for the stages of the wheat breeding program that could be consistently managed at a few 

locations to provide a stratified sample of the range of water availability environments expected within the 

TPE (Cooper et al., 1995, 1997, 2001).  

Grain yield GxE interactions were previously identified for both the MET and TPE data sets (Cooper et al., 

1995, 1997, 2001). Crossover GxE interactions were frequent (Figure 1a; Cooper and DeLacy, 1994). For the 

purposes of demonstrating an application of equation (2) to the empirical wheat example, the prior 

envirotyping was used to identify two groups of environment-types for both the MET and TPE sets; 

environment-type 1 (E1) characterised by mild water-deficits, and environment-type 2 (E2) characterised 

by severe water-deficits. There were GxE interactions between the two environment-types within the MET 

and TPE sets (Figure 2; Cooper et al., 1995, 1997, 2001). There was a moderate to weak positive genotypic 

correlation for grain yield variation among the 15 genotypes between both environment-types E1 and E2 

for the MET (Figure 2a) and TPE (Figure 2b). Importantly, for interpretation of the genotypic correlation 

𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) between the MET and TPE (Figure 1d), the genotypic correlation for grain yield variation 

between the mild stress environment-type E1 was positive and strong between the MET and the TPE 

(Figure 2c). However, there was no relationship for grain yield variation between the severe drought stress 

environment-type E2 between the MET and the TPE (Figure 2d). The details of the lack of relationship for 

environment-type E2 are discussed in detail elsewhere (Cooper et al., 1995, 1997). In summary the MET 

was designed to focus on the expected water availability gradient in the absence of other abiotic and biotic 

stresses that could also occur within the TPE. Occurrences of these other abiotic and biotic stresses within 

the TPE set were interpreted to be contributing factors to the low relationship observed for severe drought 

stress environment-type E2 between the MET and TPE (Figure 2d). In the absence of the drought stress for 

environment-type E1 these other abiotic and biotic stresses were less influential on the genotypic 

correlation for grain yield (Figure 2c).  

For purposes of demonstrating an application of the extended breeder’s equation to the wheat MET-TPE 

data set (Figure 1c, d) it is sufficient to note that there was GxE interaction for grain yield between 

Environment-types E1 and E2 in both the MET (Figure 2a) and the TPE (Figure 2b) data sets and that there 

was positive predictability between the MET and TPE sets for environment-type E1 (Figure 2c), but no 

predictability for environment-type E2 (Figure 2d). Using this level of envirotyping we can simulate the 

influence of changes in the MET-TPE alignment on 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) and prediction of average grain yield in the 

TPE based on average grain yield estimated from the MET (Figure 1d). Following the same procedures 

applied to the theoretical example (Figure 1a, b), the potential range of MET-TPE alignment scenarios was 

simulated by changing the frequencies of environment-types E1 and E2 within the MET and the TPE in steps 

of 0.1 from 0.0 to 1.0, calculating the weighted average grain yield of the 15 genotypes for both the MET 

and TPE, taking into consideration the frequencies of both environment-types, and calculating the 

genotypic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) between the estimates of weighted average grain yield for the 15 

genotypes between the MET and TPE for all MET-TPE alignment combinations. We then plotted the 

𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) against the frequency of environment-type E1 in the MET and TPE to generate a simulated 

𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) genotypic correlation response surface for all MET-TPE alignment configurations (Figure 1d). 
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The genotypic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) between the simulated MET and TPE alignments ranged from a high 

value of 0.90 to a low value of -0.07 (Figure 1d). The 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) response surface for the wheat example 

has interesting features. Firstly, there is a relatively broad plateau of high 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) values for many of 

the MET-TPE alignment scenarios. This plateau of high 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) values occurred for scenarios where the 

frequency of the water-sufficient environment-type E1 was higher than 0.5 in both the MET and TPE (Figure 

1d), taking advantage of the high predictability between environment-type E1 in the MET and TPE (Figure 

2c). Secondly, when the frequency of environment-type E1 falls below 0.5 in the MET or TPE, and therefore 

the frequency of the water-limited environment-types E2 increases above 0.5, the 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) is degraded 

from the high levels of the plateau (Figure 1d), reflecting the increased influence of the poor predictability 

between the MET and TPE for the water-limited environment-type E2 (Figure 2d). This impact of the MET-

TPE alignment on predictability for performance in the TPE using MET results will apply to all levels of 

prediction, including genomic prediction, phenotypic prediction and combined prediction approaches.  

For the specific environment-type configuration realised for the empirical example (Figure 2), the estimate 

of 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) for prediction of average grain yield for the TPE based on average gain yield obtained for the 

MET was intermediate (Figure 1c); 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) = 0.70 for MET f(E1) = 0.41, f(E2) = 0.59 and for TPE f(E1) = 

0.31, f(E2) = 0.69. Thus, the MET-TPE alignment for the empirical example was located on the 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) 

response surface (Figure 1d) slightly off of the plateau of higher 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) levels, but still above the 

precipice where the 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) value is severely degraded. This empirical realisation of MET-TPE alignment 

is just one of the many possible scenarios that can occur as the frequencies of environment-types change 

between the MET and the TPE (Figure 1d).  

The empirical wheat example (Figures 1, 2) was used to demonstrate the utility of the extended form of the 

breeder’s equation for applications in prediction-based breeding. Here we have emphasised the use of the 

extended breeder’s equation as a useful framework to guide the design MET data sets for training G2P 

models for applications of genomic prediction and genomic selection at different stages of a breeding 

program to take aim at the TPE (Cooper et al., 2014a, b; Gaffney et al. 2015; Messina et al. 2022a). Many 

other possible prediction scenarios can also be investigated, and these will be the subject of future 

research.  

4) Discussion 

Design of breeding programs, and crop improvement strategies in general, to take aim at the crop 

productivity requirements of the TPE is critical to both accelerate and achieve realised genetic gain on-farm 

that contributes to closing yield gaps (Messina et al., 2022a), improving global food security (Cooper et al., 

2021; Kholová et al., 2021; Rogers et al., 2021), and the many other requirements for sustainable 

agricultural systems (Messina et al., 2022b). However, in most considerations of breeding program design 

and optimisation there is no direct connection between the optimisation considerations that use the 

framework of the breeder’s equation, as in equation (1), and the understanding of the TPE. Thus, there is 

often a disconnect between the attention to rate of genetic gain, the directionality of the breeding program 

and its MET-TPE alignment with the requirements of the on-farm TPE. In the presence of GxE interactions 

and low 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) this MET-TPE disconnect can result in low realised genetic gain under the on-farm 

conditions of the TPE, even when high prediction accuracy, based on 𝑟𝑎 in equation (1) or more explicitly 

𝑟𝑎(𝑀𝐸𝑇) in equation (2), is demonstrated for genomic prediction methods evaluated within the confines of 

the MET. The extended form of the breeder’s equation, introduced here as equation (2), provides a 

framework to remove this disconnect and to support design of prediction-based breeding strategies that 

take aim at the TPE by emphasising the influence of the MET-TPE alignment on realised genetic gain for the 

on-farm TPE (Cooper et al., 2014a, b; Gaffney et al. 2015; Messina et al. 2022a). Here we demonstrated 

such application of the extended breeder’s equation framework through investigation of 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸), 

rather than assuming 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) = 1, as is the case for the traditional form of the breeder’s equation.  
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We have introduced and demonstrated the utility of the extended form of the breeder’s equation through 

applications to a theoretical and empirical example. In summary the following key points were presented. 

Theoretical considerations: We extended the breeder’s equation, introducing the genetic correlation 

𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) to explicitly incorporate and quantify the relationship between a MET and the TPE, as a 

framework for designing METs to take aim at the TPE. Three further considerations are important: (1) the 

traditional form of the breeder’s equation assumes that the genetic correlation  𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) = 1; (2) in the 

presence of GxE interactions the genetic correlation 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) can be decomposed to take into account 

the genetic variance-covariance structure among the environment-types within the TPE (Cooper and 

DeLacy, 1994; van Eeuwijk et al., 2001; Smith et al., 2005, 2021a, b; Rogers et al., 2021); and (3) the genetic 

correlation 𝑟𝑎(𝑀𝐸𝑇,𝑇𝑃𝐸) can be applied to the continuum of selection units of interest to breeders, 

extending from the level of sequence information, accounting for QTL and chromosomal haplotypes, to 

total multi-trait, multi-QTL predicted genotypic performance or breeding value obtained for any G2P model 

that is derived from relevant training data sets that can be generated from METs together with augmented 

data sources from specialised phenotyping facilities (Cooper et al., 2014a,b; Gaffney et al., 2015; 

Diepenbrock et al., 2021).    

Taking aim at specific target environment-types, for example specific biotic or abiotic stresses, is not 

uncommon in plant breeding (Blum, 1988; Millet et al., 2019). However, taking aim at the TPE as a mixture 

of environment-types (Podlich et al., 1999; Cooper et al., 2014a,b; Gaffney et al., 2015; Rogers et al., 2021; 

Smith et al., 2021a, b; Messina et al., 2022a,b) is much less common than taking aim at specific 

environment-types. Taking aim at the TPE requires detailed consideration of the mixture of target 

environment-types within the TPE (Chapman et al., 2000; Chenu et al., 2011; Kholová et al., 2013; Cooper 

et al., 2014a, b; Lobell et al., 2015; Hajjarpoor et al., 2021; Resende et al., 2021), the extent of GxE 

interactions between environment-types (Figure 2) and the details of the genetic variance-covariance 

structure among the environment-types, and appropriate attention to weighting the sources of G2P 

information for traits, that is available from the environment-types sampled in the MET training data sets, 

by their frequencies of occurrence and relative importance in the TPE (Podlich et al., 1999; Cooper et al., 

2014a, b; Gaffney et al., 2015; Messina et al., 2018; Smith et al., 2021b). 

Empirical considerations: We demonstrated the application of the extended form of the breeder’s 

equation by applying it to a grain yield data set designed for a wheat breeding program, where the 

environments had previously been grouped into MET and TPE sets with a characterisation of the different 

environment-types in both the MET and TPE sets (Figures 1 and 2; Cooper et al., 1995, 1997, 2001). This 

prior characterisation of environment-types and the MET-TPE alignment was conducted prior to the more 

comprehensive characterisation of the wheat TPE for north-eastern Australia (Chenu et al., 2011; Bustos-

Korts et al., 2021) and so we provided some additional interpretation of GxE interactions for yield related to 

water availability and the incidence of drought and their influences on the genetic correlation 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) 

in terms of the more recent TPE characterisation (Figures 1 and 2). 

Future research: The extended form of the breeder’s equation is particularly relevant as a framework for 

the design of breeding strategies to target climate resiliency to address the impacts of climate change on 

the environmental composition of the short, medium and long-term future diverse geographical TPEs 

expected for our global agricultural systems (Chapman et al. 2012; IPCC, 2021; Cooper and Messina, 2022). 

Future work will explore developments and other applications of the extended breeder’s equation to assist 

design of prediction-based breeding programs to tackle the effects of climate change, where it is expected 

that frequencies of environment-types within the TPE will change with time (Chapman et al., 2012; Lobell 

et al., 2015; Hammer et al. 2020; Snowdon et al., 2020; Cooper et al., 2021; IPCC, 2021; Bustos-Korts et al., 

2021; Cooper and Messina, 2022). 
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Figure 1 Two examples of the potential influences of Genotype by Environment (GxE) interactions for grain yield on 
the expected genetic correlation between the average genotype performance in a multi-environment trial (MET) and 
the target population of environments (TPE) as the frequencies of environment types change between the sample of 
environments obtained in the MET and their presence in the TPE: (a) Schematic yield reaction-norms for two wheat  
genotypes (G3, G8) in two environments (Env_1, Env_2) demonstrating crossover GxE interaction; (b) Response 
surface of the expected genotypic covariance 𝜎𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸) between average genotype yield performance in a MET and 

in the TPE as the frequencies of the two environments (Env_1, Env_2) change within the MET and TPE; (c) Scatter plot 
of the average grain yield for 15 wheat genotypes based on two independent sets of environments representing both 
the MET and the TPE; (d) Response surface of the expected genotypic correlation, 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸)  

from equation (2), 

between average genotype yield performance in a MET and in the TPE as the frequencies of two environment-types 
(E1 = Mild water deficit, E2 = Severe water-deficit) change within the MET and TPE data sets. The filled symbol on the 
response surface positions the estimate of 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸)  

for the grain yield data shown in sub-figure 2c (MET f(E1) = 

0.41, TPE f(E1) = 0.31, 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸)  
= 0.70). Data for grain yield estimates were obtained from the study reported by 

Cooper et al. (1997). 
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Figure 2 Scatter diagrams comparing average grain yield predicted for 15 wheat genotypes for two environment-types 
(E1 = Mild water deficit, E2 = Severe water-deficit) obtained from independent data sets representing a multi-
environment trial (MET) and the target population of environments (TPE): (a) Comparison between grain yield 
predicted for environment-types E1 and E2 in the MET data set, 𝑟𝑔(𝐸1,𝐸2|𝑀𝐸𝑇); (b) Comparison between grain yield 

predicted for environment-types E1 and E2 in the TPE data set, 𝑟𝑔(𝐸1,𝐸2|𝑇𝑃𝐸); (c) Comparison of grain yield predicted 

for environment-type E1 between the MET and the TPE data sets, 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸|𝐸1); (d) Comparison of grain yield 

predicted for environment-type E2 between the MET and the TPE data sets, 𝑟𝑔(𝑀𝐸𝑇,𝑇𝑃𝐸|𝐸2). Data for grain yield 

predictions were obtained from the study reported by Cooper et al. (1997).  
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