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35 Abstract

36  The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital
37 roleinintestinal ecology and human health. Here, we identify and characterize four mycobiome
38  enterotypes using ITS profiling of 3,363 samples from 16 cohorts across three continents,
39 including 572 newly profiled samples from China. These enterotypes exhibit stability across
40  populations and geographica locations and significant correlation with bacteria enterotypes.
41 Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype
42  dominated by Candida (i.e., fun_C_E enterotype) is enriched in the elderly population and confers
43  anincreased risk of multiple diseases associated with compromised intestinal barrier. In addition,
44  Dbidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway
45  associated with fun_C _E enterotype might mediate the association between the compromised
46  integtinal barrier and aging.

47

48 Teaser

49  As an integral part of the human gut microbiome, the fungi, which co-habit with prokaryotic
50  microbiome in the gut, play important role in the intestinal ecology and human health. Yet, the
51 overal structure of the human gut mycobiome and the inter-individual variation worldwide
52  remain largely unclear. Lai et al. analyzed the fungal profiles of 3,363 samples from 16 cohorts
53  across three continents, and identified four funga enterotypes that exhibit stability across
54  populations. They found that funga enterotypes showed age preference, where a Candida
55  dominated enterotype was enriched in the elderly population and confers an increased risk of
56  multiple diseases and more severe compromised intestinal barrier. Furthermore, they determined
57  one fungi-contributed aerobic respiration pathway could mediate the association between the
58  compromised intestinal barrier and aging.

59
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61 Introduction

62  The human gut microbiome, which consists of multi-kingdom microbes of prokaryotes, viruses,
63  protists and fungi, is essential to human health(1). Current research mainly focuses on the
64  prokaryotic and viral components of the gut ecology(2-4). However, the complicated associations
65  of other types of microorganisms, particularly fungi, with human health remain largely unknown.
66  Although the funga community, also known as mycobiome, comprises less than 1% of the entire
67  human gut microbiome(5), they have been shown to be involved in disease pathogenesis and
68  profoundly influence the host immune system(6, 7). For example, Candida albicans can cause
69 infections in immunocompromised human hosty(8), and alterations of the gut mycobiome
70  composition have been reported in multiple human diseases(9, 10). While fine-grained fungal
71 taxonomic markers associated with certain phenotypes have been reported(9, 11, 12), the overall
72 dgtructure of the gut mycobiome and the inter-individual variation in fungal composition remain
73 unclear.

74 Enterotypes, which have been proposed to summarize the human gut microbial
75  characterigtics, are effective in dratifying populations and providing a global overview of the
76  inter-individual variations in gut microbial composition(13, 14). Multiple studies have
77  consistently identified bacterial enterotypes, which were independent of the distribution of the
78 hosts age, geography, and gender(13-16) .Defined based on the prokaryotic compositional
79  patterns, the enterotypes could enhance understanding of human hedth and facilitate
80 intervention(17). As an integral part of the human gut multi-kingdom microbiome, the fungi share
81 microhabitats with the prokaryotic microbiome in the gut through different types of interactions,
82  such as mutualism, commensalism, and competition(18). Hence, they are important in shaping the
83  bacterial community’s intestinal ecology. However, the landscape of the human gut mycobiome
84  and whether fungal enterotype-like structures exist in the human gut are unclear.

85 In this study, we collected 3,363 fungal sequencing samples from 16 cohorts across Europe,
86  North America, and Asia, including our 572 newly sequenced samples from China. Four fungal
87  enterotypes were identified independent of populations and closely correlated with bacterial

88  enterotypes. We noticed strong effects of host phenotypes (including age and diseases) on the


https://doi.org/10.1101/2022.12.13.520343
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520343; this version posted December 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

89  funga enterotypes. Notably, the Candida (fun_C_E) enterotype enriched in the elderly population
90  showed a higher prevalence in patients of multiple diseases, even beyond the age influence, and
91  was associated with a severe compromised intestinal barrier. Furthermore, a fun_C_E-enriched
92  aerobic respiration pathway mediated the association between the compromised intestina barrier
93  and aging. Overall, our findings elucidated the highly structured nature of the gut mycobiome and
94  itsclinical relevance to human health.

95

96 Results

97  Landscape of human gut mycobiome composition and diversity

H”“I“l“

98 o
99 Fig. 1. Composition and diversity of the human gut mycobiome across studies and

100  geographic sites. a, Geographic distribution of study populations and associated fungal
101 enterotypes, where the datasets are sequenced with either ITS1 or ITS2 barcodes. b, Genus-level
102  gut mycobiome composition across the three continents (North America, Europe, and Asia). c,

103  Cumulative curves of the number of detected genera according to the number of sequenced
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104  samples from different study populations. d, The distribution of Shannon diversity across study
105  populations. The Venn diagram shows the number of fungal genera detected by ITS1- and ITS2-
106  based amplification. e, The correlation between the Shannon index of bacteria and that of fungi in
107  the Zuo et al(19) cohort, with shaded region representing 95% confidence intervals of the linear

108  regression.
109

110  To characterize the human gut fungal diversity and composition, we collected internal transcribed
111 spacer (ITS) sequencing data from 15 published projects (Supplementary Table 1)(12, 19-28). In
112 addition, we recruited 572 Chinese participants (Chinese Gut Mycobiome cohort, or CHGM) aged
113 from 17 to 89 years old and profiled their feca mycobiome with ITS1 sequencing. In total, 3,363
114  feca samples with ITS1- (960 samples) and 1TS2- (2,403 samples) sequencing data from 16
115 cohorts covering three continents (Europe, North America, and Asia) were included in our study
116  (Fig. 1a).

117 The gut mycobiome composition and the fungal diversity varied significantly across cohorts,
118  which may be partialy attributed to biological and technical factors such as geography and
119  seguencing methods (Fig. 1b-d; p < 0.001, PERMANOVA, see Supplementary Note). Though we
120  obtained atotal of 1,120 genus-level taxonomic groups after combining all samples, the observed
121 number of the fungal generawas still considerably below the estimated saturation level (Extended
122  DataFig. 1c), suggesting that a requirement for further increase in sample size to characterize the
123  comprehensive gut fungal diversity. At the genus level, Saccharomyces and Candida were the
124  most abundant genera across al samples, followed by Penicillium and Aspergillus (Fig. 1b). These
125  genera are also the most common commensal fungi in other human body sites, including skin,
126  lung, and oral cavity(29, 30), indicating their possible well-balanced symbiotic relationship with
127  humans.

128 The gut mycobiome, compared with the paired bacteriome, demonstrated a significantly
129  lower Shannon diversity yet higher between-individual dissimilarity (Extended Data Fig. le).
130  Such observation was in line with the previous studies showing that, in comparison with the gut
131 bacteriome, the gut mycobiome was less diverse but more individual-specific(21, 31). In addition,

132  we found a positive correlation between the pairwise dissmilarities of fungal and bacterial
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communities across studies that had matched mycobiome and bacteriome datasets (Extended Data
Fig. 1f), as well as asignificant positive correlation between the apha-diversity indices of the two
communities (Fig. 1e; Supplementary Table 3), suggesting the possible between-kingdom

interactions of gut microbiota.

Enterotypes of the human gut mycobiome
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Fig. 2. The enterotypes of the human gut mycobiome. a, Clugtering results of fungal
enterotypes on ITS1 and ITS2 datasets and visualized by principal coordinate analysis (PCoA).
The between-sample distances within each cluster compared to the median distance between
clusters (black line) are shown at the bottom right of each panel. The bar height is the median
distance, and the whiskers represent the 25™ and 75" quantiles. b, A four-enterotype classifier
trained on the ITS2-sequencing datasets was applied to predict enterotypesin the ITS1-sequencing
datasets. “Without drivers’ refers to excluding the driver genera Candida, Saccharomyces,
Aspergillus, Saccharomycetales.sp, and Ascomycota.sp when training the classifiers. ¢, The
concordance of enterotype-associated fungal genera and enrichment trends across different cohorts,
and log(FC) denotes the log-transformed fold change of the average relative abundance of the
genera within respective enterotypes relative to that of others. Asterisks represent the statistical

significance of the multiple testing corrected on-sided non-parametric Wilcoxon test (*adjusted p
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152 < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001). d, The correlations between fungal
153  enterotypes and bacterial enterotypes in the CHGM cohort. The color reflects the O/E ratio (the
154  ratio of observed count to expected count), and asterisks represent the statistical significance of

155  Fisher’s exact test for each pair of comparison: *p < 0.05, **p < 0.01.
156

157  To investigate the overall structural and compositional patterns of the human gut mycobiome, we
158  dratified the genus-level fungal compositions of the 3,363 samples into distinct groups, i.e.,
159  enterotypes (Methods). The clustering analysis revealed that both ITS1- and 1TS2-combined
160  datasets formed four distinct clusters (Fig. 2a, Extended Data Fig. 24), and these enterotypes were
161 highly concordant across clustering results obtained at other taxonomic levels (Extended Data Fig.
162  2d). Thisfinding remained unchanged even at a removal of the half samples (Extended Data Fig.
163  2b). Three of these funga enterotypes were found in both ITS1- and ITS2-sequencing datasets,
164  where Saccharomyces, Candida, and Aspergillus were the most abundant genera, respectively
165  (Extended Data Fig. 2e). Therefore, we defined the Saccharomyces-dominated enterotype as
166  fun_S E, and the Candida- and Aspergillus-dominated enterotypes as fun C E and fun_A_E,
167  respectively. In addition to these three enterotypes, we also observed a fourth enterotype in both
168 ITSL and ITS2 (Fig. 2a). However, the fourth enterotype in ITSL was dominated by an
169  unclassified Ascomycota phylum (Ascomycota.sp, presented in 15.1% of ITS1 samples), while in
170  ITS2 it was driven by an unclassified Saccharomycetales order (Saccharomycetales.sp, presented
171 in 5.5% of ITS2 samples). Such a difference observed for the fourth enterotype between ITS1 and
172  ITS2 can be attributed to different amplicon-targeted regions by ITS1 and ITS2. Hierarchical
173  clustering on the combined datasets (ITS1 and ITS2) shows that these two enterotypes can be
174  grouped together, suggesting that these two enterotypes had similar structures (Extended Data Fig.
175  2c). Thus we defined the fourth enterotype asfun_AS _E hereinafter.

176 We further confirmed the robustness of the enterotypes by performing a cross-dataset
177  validation anaysis between the ITS1- and ITS2-combined datasets with a LASSO logigtic
178  regression model (Methods). In the first instance, the model’s high prediction accuracy (Fig. 2b,
179  Extended Data Fig. 3) supported the fungal enterotypes robustness. We also obtained a good

180  performance of cross-validation in the absence of these enterotypes driver genera, revealing the
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181 enterotypes ability to characterize the overall fungal community structure independent of the
182  main driver genera (Fig. 2b, Extended Data Fig. 3). Moreover, the consistent enterotype-specific
183  funga genera profiles across cohorts provided further solid evidence for the robustness of fungal
184  enterotypes (Fig. 2¢).

185 We then examined the geographical and ecological characterizations of the fungal
186  enterotypes. Among the different populations, we found that the fun C_E enterotype was less
187  common in the European populations (Fisher’s exact test, ITS1: p = 4.67e-14; ITS2: p = 3.92e-09),
188  whilethefun S E enterotype was relatively rare in the populations from North America (Fisher’s
189  exacttest, ITS1: p < 2.2e-16; ITS2: p < 2.2e-16). This difference might be partialy attributed to
190 the significantly decreased abundance of Candida in European populations and that of
191 Saccharomyces in North American populations (Extended Data Fig. 1a). Furthermore, we
192  observed that both the fun_S E and fun_C_E had the lowest diversity (Extended Data Fig. 2f),
193  and astrong and inverse correlation between the fungal alpha diversity indices and abundances of
194  their respective driver genera (Pearson’sr < -0.3, p < 2.2e-16).

195 In addition, we explored the relationship between the fungal and bacterial enterotypes with
196  paired ITSL for fungal profiling and metagenomics data for bacterial profiling as both data types
197  were available for the CHGM cohort (see methods). Four bacterial enterotypes, which were
198 identified following the same procedure as that of the fungal enterotypes with genus-level
199  metagenomics data (Extended Data Fig. 4), were respectively dominated by Bacteroides (20.2%
200  and 37.4% abundances in two bacterial enterotypes, annotated as prok_bac_E1 and prok_bac E2,
201 respectively), Prevotella (42.5% abundance in the prok _bac E3 enterotype) and
202  Enterobacteriaceae (34.9% abundance in the prok_bac E4). Such observations were in line with
203  those previoudy reported in the Asian populations(15, 32). In addition, we observed significant
204  correlation between the fungal and bacterial enterotypes (Fig. 2d). For example, the fun_ C E
205  fungal enterotype was enriched in the prok_bac E1 enterotype (p = 3.6e-03, Fisher's exact test)
206  and depleted in the prok_bac E3 enterotype (p = 0.024). We also observed that the fun A_E
207  enterotype showed a trend to be enriched in the bacterial enterotypes prok_bac E2, while the
208 fun_AS E enterotype was enriched in the prok_bac E4 (both p = 0.05). Together with the
209 consigent results from other studies (Extended Data Fig. 5a), such evidence suggested a
210  dignificant correlation between fungal and bacterial communities.

9
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212  Agehasallargeeffect on fungal enter otypes
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214 Fig. 3. Age distribution and the gut aging indices of fungal enterotypes. a, Age distribution of
215  fungal enterotypes in two cohorts from China with p values from two-tailed Wilcoxon test p
216  values shown for the age difference between enterotypes (left two panels). The right panel shows
217  the proportion of fungal enterotypes in young (18-30 years), middle (31-60 years), and old (>60
218  years) age groups from these two cohorts, respectively, with asterisks showing the statistical
219  significance of Fisher's exact test (*p < 0.05, **p < 0.01, ***p < 0.001). b, The age-associated
220  funga genera with p values < 0.05, where the red bar represents a positive correlation while the
221 blue one represents a negative one. ¢, The correlation between the gut aging index (GAI) and age
222  after the LOESS smoothing for each fungal enterotype on four cohorts with available age data
223  (CHGM cohort, Gao et al(20), Limon et al(12), and Zuo et al(19)). fun_S E: Pearson’sr = 0.30, p
224  =2.1e03; fun_C E: Pearson’sr = 0.45, p = 8.4e-10; fun_A_E: Pearson’sr = 0.36, p < 3.0e-06;
225  fun_AS E: Pearson’'sr = 0.27, p = 1.3e-02. d, The distribution of GAIl across fungal enterotypes

226  indifferent cohorts. Two-tailed Wilcoxon test p values are displayed above the boxplots.
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227

228 We then explored the associations between the fungal enterotypes and the hosts basic
229  characteristics, including age, gender and BMI. We noticed that age could significantly explain the
230 inter-individua variation of the human gut mycobiome or strongly affected the fungal enterotypes
231 in four cohorts with available age metadata including the CHGM cohort, Gao et al(20), Limon et
232  al(12), and Zuo et al(19) (Fig. 3a, Supplementary Table 4). The insignificant explanatory power of
233  age on the fungal enterotypes in the study by Gao et al(20) was likely attributable to the small
234  sample size (n=31). As shown in Fig. 3a, fun_C E (38.8%) and fun AS E (34.0%) were
235  dignificantly enriched in the elderly participants (age > 60 years), while fun_S E (37.3%) and
236  fun_A_E (44.9%) were significantly enriched in the young participants (age < 30 years, p < 0.05,
237  Fisher's exact test). In addition, a significant inverse correlation between the fungal Shannon
238  diversity and chronological age was observed (Pearson’'s r = -0.19, p = 3.34e-08). Moreover, a
239  multi-variable linear regression analysis on 531 hedthy participants from these four cohorts
240  identified 21 fungal generathat significantly correlated with age (Fig. 3b; Methods). Notably, nine
241 age-associated fungal genera were observed to have a different abundance distribution among the
242  three fungal enterotypes (Supplementary Table 5). Among these genera, Candida, one driver
243 genera of the fun C E, had a podtive correlation with age, while two other genera,
244  Saccharomyces and Aspergillus, showed an inverse trend. This observation was consistent with
245  the age digtribution trends of their respective fungal enterotypes (Fig. 3a). Hence, we suspected
246  that the association of fungal enterotypes with age is at least partially driven by their respective
247  dominant fungal genera. No significant association of fungal enterotypes with BMI or gender was
248  found in any cohort (Supplementary Table 4).

249 To further quantify the association between the fungal enterotypes and age in other cohorts
250  without available age metadata, we calculated a gut aging index (GAI) for each sample based on
251  the 21 age-associated fungal genera, where higher GAI scores indicating a higher level of
252  intestinal aging (Methods). According to our results, the GAI showed a strong correlation with the
253  age of participants in each enterotypes (Fig. 3c). Of note, participants of the fun C E and
254  fun_AS E enterotypes had consistently higher GAI scores across their lifespan, while those of the

255  fun_S E and fun_A_E had relatively lower GAI scores (Fig. 3c). Similar results found in healthy

11
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256  subjects of other cohorts without available age metadata further validated the significant
257  associations of GAI scores with the fungal enterotypes (Fig. 3d). Consequently, participants of the
258  fun_C_E enterotypes that contained more age-positively related fungal taxa represented a higher
259  intestina aging degree, while the physiological condition of the fun_S E enterotype exhibited a
260  younger state (Fig. 3c,d). Additionally, the distribution of GAI scores in participants with different
261 bacterial enterotypes became another piece of evidence to support correlations between fungal and
262  bacterial enterotypes. For example, participants of the E3_bac enterotype (enriched in fun_S E)
263  had the lowest GAI scores smilar to those of the fun S E (Extended Data Fig. 6d). Furthermore,
264  higher GAI scores, as what we observed in patients with intestina dyshiosis compared to their
265  paired controls, might indicate an occurrence of aging-related pathological changesin the intestine

266  (Extended DataFig. 6e, Supplementary Note).

267  Functional variations across fungal enterotypes

PWY-7279 (aerobic respiration 1)

O e~ s = - = P r-oss p<azete Qe

Trechispora
Pseudopithomyces
Mrakia SRS
Paracramaonium
Colletatrichum I

Sramphylium

log (Abundance )

Agaricus
Alternaria
Candida
Monascus [N
Cystofilobasidium
Erythrobasidiales.|_

Fungal gener

PWY-2723 (rehalose degradaltion V)
=41 Pearsoris  » 020, 0 w 34008 |

Enberotype

8, s @

_',gr_\'_\ é’,@?ﬁ’»? *é’qe
EFESLESFEsesE §§§§§@@e§§§§ f

8l”

log{Abundance®s)

=10

Fungal pathways

268
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274  Stars mark the metabolic pathways involved in carbohydrate degradation. b, The relationship
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276  fungi-contributed pathway PWY-2723 and BMI.
277

278  To characterize the bioactive potential of the fungal enterotypes, we annotated fungi-contributed
279  pathways based on the paired shotgun metagenomics datain the CHGM cohort (Methods). In total,
280  we identified 388 biological pathways in the cohort, among which 48 were contributed by fungi
281 alone and 104 were contributed by both bacteria and fungi (fungi-contributed pathways hereafter).
282  Functional richness (the observed number of fungi-contributed pathways) did not vary among
283  fungal or bacterial enterotypes ( Extended Data Fig. 2g). However, we identified a total of 31
284  fungi-contributed pathways whose distribution varied across enterotypes (adjusted p < 0.05,
285  Supplementary Table 6). Furthermore, the relative abundances of these pathways were also
286  significantly correlated with those of 14 fungal genera (Fig. 4a, adjusted p < 0.05, Supplementary
287  Table 6). An overrepresentation of pathways related to carbohydrate degradation in the fun_AS E
288  enterotype was observed, suggesting a possible increase in saccharolytic and proteolytic potential
289  (Fig. 4a). Notably, most of the fun_S E enriched pathways were postively associated with the
290 relative abundance of Saccharomyces, which implied the essential roles of genus Saccharomyces
291 in these biological pathways. Two pathways involved in heme biosynthess (PWY-5920 and
292  HEME-BIOSYNTHESIS-II) were enriched in the fun_C_E enterotype and associated with the
293  fun_C_E dominate genera, i.e., Candida. It has been demonstrated that heme, the key iron source
294  for pathogenic bacteria, could have a negative impact on the intestinal mucosa and result in a
295  higher risk of colorectal cancer (CRC)(33, 34). Thusthe participants of fun_C_E enterotype might
296  have anincreased risk of developing CRC.

297 To further examine the impacts of funga enterotypes on human health, we explored these
298  enterotype-associated pathways' correlations with their host properties. We observed a significant
299  positive correlation between the relative abundance of the fun_C E-associated pathway
300 PWY-7279 (aerobic respiration) and subject age (Fig. 4b), consistent with the previous
301 observation that the elderly population contained a higher abundance of pathways involved in
302  microbial respiration(35, 36). One possible explanation is the higher oxygen level caused by
303 inflammation related to aging promotes aerobic respiration in the gut microbiome(37).

304  Additionally, one of the previoudy detected age-positively related genera, Paracremonium, was
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305  dso shown to be associated with aerobic respiration pathways (Fig. 3b, Fig. 4a). Moreover, we
306 found a significant positive correlation between the host BMI and the PWY-2723, a trehalose
307  degradation pathway (Fig. 4c). The fun_AS_E enterotype, where the PWY-2723 was enriched,
308 had a smilar enrichment of biological pathways related to energy metabolism (Fig. 4a). These
309  results are not only consistent with the higher BMI levels in the participants with fun_AS E
310  enterotype (Extended Data Fig. 6f), but also in line with the previous findings that the microbiota
311 of obese individuals has an increased capacity for energy harvest(38). Thus, the functional
312  differences observed across fungal enterotypes can partly explain the host phenotypes variations

313  among fungal enterotypes.

314 fun_c_E enterotypeis prevalent in disease populations
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316  Fig. 5. Associations between fungal enterotypes and human diseases. a, Enrichment of the
317  funga enterotypes in human diseases compared to the control group after age was controlled; the
318  odds ratios (OR) and p-values of the Fisher's exact test are shown. AUD: acohol use disorder;
319  T2D: type 2 diabetes, CDI: clogtridium difficile infection; ALHP: acoholic hepatitis, CD: Crohn's
320 diseasg; IBS: irritable bowel syndrome; COVID-19: coronavirus disease 2019; AD: Alzheimer’s

321 disease. b-c, Violin plots showing median and quartiles of gut microbiome health index (GMHI)
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322  (b) and human DNA contents (HDCs) (c) across fungal enterotypes in the CHGM cohort, where
323  two-tailed Wilcoxon test p values are displayed above the boxplots. d-e, Correlations between the
324  HDCs(Y-axis) and the relative abundance of two pathways related to aerobic respiration (X-axis),
325  namely PWY-7279 (d) and PWY-7279 (e). The shaded region denotes the 95% confidence
326 interva of the linear regression. f, Mediation linkages among the chronological age, pathway
327  PWY-7279, and HDCs. pmegiaion Was estimated through a bidirectional mediation analysis with

328 1,000 bootstraps.
329

330 We further examined the clinical relevance of the fungal enterotypes by assessing their
331 associations with human diseases. By comparing the fungal enterotype’s structure of healthy
332  participants with that of patients with adjustment of age, we found that the fun_C_E enterotype
333  was significantly more prevalent in patients of diseases such as type 2 diabetes, clostridium
334  difficile infection, alcoholic hepatitis, and Alzheimer’s disease (Fig. 5a, p < 0.05, odds ratio > 1,
335  Fisher's exact test). Though there was no significant correlation between fungal enterotypes and
336  other human diseases, we observed similar trends of a higher prevalence of the fun_ C E
337  enterotype in the patients of these diseases (Fig. 5a, odds ratio > 1). In contragt, the other two
338  enterotypes (i.e., thefun_S E and the fun_A_E) were mainly enriched in the healthy participants
339 (Fig. 5a; odds ratio < 1), except that the fun_S E was enriched in two vira infectious diseases
340 (HIN1 and COVID-19; Fig. 5a). To further quantify the disease associations across fungal
341 enterotypes, we calculated a Gut Microbiome Health Index (GMHI) as previoudy described(39),
342 and a higher GMHI value indicates a healthier status. Consistent with our expectation, the
343  participants of thefun_C_E enterotype were more likely to have the lowest GMHI value (Fig. 5h),
344  while those of the fun_A_E and fun_S E enterotypes were more likely to have higher GMHI
345  values. Thus, in addition to its association with higher intestinal aging, the fun_C_E enterotype
346  might also be related to higher disease risk.

347 To explore the potential molecular mechanism contributing to the association of thefun_C_E
348  enterotype with disease risk, we examined the intestinal barrier function as indicated by human
349  DNA contents (HDCs) in the CHGM cohort (Methods). The HDC acts as an indicator of the

350  compromised intestinal barrier. Previous studies show a significant elevation in HDCs among
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351 patients with several intestinal diseases(40). We found that the HDCs were significantly higher in
352  thefecesof participants of the fun_C_E and the fun_AS _E enterotypes than those of the fun_ S E
353  and the fun_A_E enterotypes (Fig. 5c; p < 0.05, Wilcoxon test). This finding was consistent with
354  the GAI scores of these enterotypes (Fig. 3c). Therefore, the compromised intestinal barrier might
355  help to explain the increased disease risk in participants of the fun_C_E. In addition, we also
356  observed sgnificant correlations between the HDCs and the two fungi-contributed pathways
357  involved in aerobic respiration (Fig. 5d,e; adjusted p < 0.05). These results strongly indicated
358  dgnificant relationships among the compromised intestinal barrier (hence the increased HDC), gut
359  aging, and the fungal enterotypes distribution and bioactive potential. Furthermore, through a
360 bidirectional mediation analysis, we found that the increased age might contribute to the HDC
361 elevation by affecting the abundance of aerobic respiration pathway (69%, Pmediaion < 1€-04; Fig.
362  5f), which means the increased level of aerobic respiration significantly mediated the relationship
363  between the age and compromised gut barrier.

364

365 Discussion

366  Inthis study, we characterized the human gut fungal community structures with a broad spectrum
367  of ITS sequencing samples from 16 cohorts across 11 countries worldwide, including 572 newly
368  ITSprofiled and metagenomically sequenced samples from China. We confirmed the existence of
369  funga enterotypes that varied in taxonomic and functional compositions and identified four fungal
370  enterotypes, of which the three most common were dominated by Candida, Saccharomyces, and
371 Aspergillus, respectively, while the fourth appeared more complex with different driver generain
372 ITSl and ITS2 analyss, likely due to amplification biases. We noticed that these enterotypes were
373 closly associated with both age and diseases. Particularly, it is noteworthy that the
374  Candida-dominated enterotype (fun_C_E) enriched in the elderly population was associated with
375  multiple human diseases accompanied by a compromised intestinal barrier. Additionaly, the
376  fun_C_E-associated fungi-contributed aerobic respiration pathway could mediate the association
377  between aging and the compromised intestinal barrier. Thus, our results reveded both the
378  biological and clinical significance of fungal enterotypes and offered a new perspective on
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379  host-microbe interactions.

380 We revealed significant inter-kingdom correlations between gut bacteriome and mycobiome
381 in terms of both community diversity and enterotypes. The Candida enterotype (fun_C_E) with
382  the highest disease association displayed areduced abundance of Prevotella copri (Extended Data
383  Fig. 5b), consstent with the previous finding that a lower abundance of P. copri in the gut
384  microbiome might indicate intestinal inflammation(16). Additionally, one of the Candida species,
385  C. albicans, was overrepresented in the fun_C_E, which might result in intestinal dysbios's and
386  trigger host inflammation(19). Previous study demonstrated that commensal anaerobic bacteria,
387  particularly Firmicutes and Bacteroides, are critical for maintaining C. albicans colonization
388  through the activation of two mucosal immune effectors (H1F-1a and LL-37)(41). Given the
389  bidirectional interaction between the fungi and bacteria as well astheir symbiotic relationship with
390 the human host, a more refined population stratification for both fungal and bacterial enterotypes
391 might be more effective for disease diagnosis. For instance, although no correlation was observed
392  between AD and bacteria enterotypes within the CHGM cohort (p = 0.16, Fisher's exact tedt,
393  Extended Data Fig. 6h), we observed a lower fungal diversity and a higher prevalence of the
394  fun_C_E enterotype in AD patients (Extended Data Fig. 6g).

395 We observed significant associations among age, fungal enterotypes, and disease risk. The
396  funga diversity decreased with increasing age, a similar trend observed for the gut prokaryotic
397  microbiome as reported in previous studies(36, 42). A lower diversity of the human gut
398  microbiome is generaly indicative of intestina dysbiosis(39), and a gut ecosystem with high
399  gpecies diversity might be more resistant to external environmental interference(43). Consistent
400  with these findings, the diversity of the human gut mycobiome was significantly higher in healthy
401 groups than in non-healthy participants (Extended Data Fig. 6g), and the fun_C_E enterotype with
402  lower diversity had a higher disease risk. Therefore, the fungal diversity decreasing with age
403  might suggest a progressive loss of homeostasis in the gut ecosystem. The GAI scores, defined
404  based on age-associated fungal genera, increased in non-healthy participants, implying these
405  fungal genera's possible involvement in pathogenesis (Extended Data Fig. 6€). We also noticed a
406  correlation between the Eastern Cooperative Oncology Group (ECOG) scores and GAIl scores
407  within the CHGM cohort (Extended Data Fig. 6¢; Pearson’s r = 0.17, p = 0.04). These findings
408  supported the previous conclusion on the overlap between aging-related and disease-related
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409  deterioration in the gut microbiome(44). Therefore, the shared mycobiome alterations might be
410  partly attributable to aging-associated disorders such as frailty and cognitive decline. In addition
411 to the aging-associated pathological changes, the dietary habits, lifestyle, and administration of
412  antibiotics, which can significantly affect our gut microbiome(45, 46), also vary during different
413  stages of human life(47). Thus, age is associated with a combination of multiple factors, which, in
414  turn, affect fungal enterotypes. Given the occurrence of age-related changes in both the human gut
415 mycobiome and bacteriome, we recommend combining both for future research into the
416  underlying mechanisms of the gut microbiomes during the aging process.

417 We also noticed several limitations of our study. Firstly, the presence of the fungi detected in
418  the stool samples does not necessarily indicate their long-term colonization in the gut as many of
419  the detected fungi are also commonly found in the food and oral cavities. One longitudinal study
420  of 42 individuals argued that fungi are transient in the human gut and do not colonize in the gut
421 for long periods of time(48), but another large-scale study had contrary conclusion and identified
422  severa core fungal taxa that were stable over time(49). To better unveil the colonization of fungi
423  in the gut, profiling of active fungal community by ITS cDNA analysis is needed in the future
424  work. Secondly, the interactions between the bacteria and fungi were not explored here. The
425  landscape of multi-kingdom interactions can provide insights into the mechanisms underlying the
426  gut mycobiome structure and its association with host physiological conditions. Finaly, we
427  explored the functions of gut fungi based on the metagenomics data. However, the metagenomics
428  dataisdominated by bacteria, which leads to the underrepresentation of functional profiling of gut
429  mycobiome. Fungi-enriched metagenomics sequencing can be helpful to infer the complete
430  functional profiling of the mycobiome in the future.

431

432 Materialsand Methods

433  Data collection

434  We downloaded ITS sequencing data of fecal samples from public databases including National

435  Center for Biotechnology Information (NCBI) sequence read archive (SRA) and China National
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436  GeneBank database (CNGBdb). Samples with read number fewer than 10,000 were discarded.
437  Due to the instability and large difference in the human gut mycobiome of infants, we excluded
438  samples from infants. Metadata including demographics (e.g., age, gender, BMI, country) and
439  human disease phenotypes were also retrieved from corresponding publications or databases. Asa
440  result, we collected a total of 2,791 public samples from 11 countries covering multiple human
441 disease phenotypes including clostridium difficile infection (CDI), acohol use disorder (AUD),
442  coronavirus disease 2019 (COVID-19), type 2 diabetes (T2D), irritable bowel syndrome (IBS),
443  acoholic hepatitis (ALHP), Crohn’s disease (CD) and melanoma. The details for each project
444  including the number of samples, country, associated disease phenotype and used amplicon targets
445  werelisted in Supplementary Table 1.

446 We additionally collected human fecal samples from newly recruited 572 Chinese volunteers
447  (CHGM cohort) with age ranging from 18 to 89 years old, where the fecal mycobiome were
448  profiled with ITS1 amplification. Of these samples, 74 were collected from subjects with
449  Alzheimer’'s disease (AD) enrolled in Shanghai Sixth People’'s Hospital, whereas others were
450  obtained from healthy volunteers recruited in Wuhan, Shanghai and Zhengzhou. Subjects who
451  take antibiotics, antifungals or probiotics up to 1 month prior to sample collection were excluded
452  from this study. The study protocol was approved by the Human Ethics Committee of the School
453  of Life Science of Fudan University (No, BE1940) and the Ethics Committee of the Tongji
454  Medical College of Huazhong University of Science. All subjects provided informed consent
455  before participation and were asked to complete questionnaires. In total, the combined dataset
456  consiged of 3,363 samples from 16 cohorts and covered 11 countries from three continents,
457  including Europe (615 samples), North America (344 samples) and Asia (2,404 samples); among
458  which, the fungal compositions of six and nine cohorts were determined by 1TS1- (960 samples)
459  and ITS2- (2,403 samples) sequencing.

460

461

462  DNA extraction from fecal samples

463  After sample collection, the fecal samplesfrom the CHGM cohort were immediately stored on dry
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464  ice and transported to a refrigerator at -80°C within 5 hours. Total DNA was extracted from fecal
465  samples using semi-automated DNeasy PowerSoil HTP 96 Kit (Qiagen, 12955-4) according to
466  manufacturer’'s ingructions. The purified DNAs were quality-checked by 1% agarose gel, and
467  DNA concentration and purity were determined with NanoDrop 2000 UV-vis spectrophotometer
468  (Thermo Scientific, Wilmingtom, USA).

469

470  ITSsequencing and procession

471 The mycobiome of CHGM cohort was profiled by the sequencing of Internal Transcribed Spacer
472  (ITS), and the ITS1 hypervariable region was amplified with primer pairs ITSIF (5'-
473  CTTGGTCATTTAGAGGAAGTAA-3') and ITS2R (5-GCTGCGTTCTTCATCGATGC-3')(50)
474 by an Bl GeneAmp® 9700 PCR thermocycler (ABI, CA, USA). The PCR amplification was
475  conducted as follows:. initial denaturation at 95°C for 3 mins, followed by 27 cycles of denaturing
476  at 95°C for 30 seconds, annealing at 55°C for 30 seconds, elongation at 72°C for 45 seconds and a
477  fina extension at 72°C for 10 mins. The PCR mixtures (20 uL total value) contained 4 pL of 5 x
478  FastPfu buffer, 2 uL of 2.5 mM dNTPs, 0.8 uL of each primer (5 uM concentration), 0.4 uL of
479  FastPfu DNA Polymerase and 10 ng of template DNA. The PCR products were extracted from 2%
480  agarose gel and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
481 City, CA, USA) according to manufacturer’s instructions, and further quantified using Quantus'™
482  Fluorometer (Promega, USA). Purified amplicons were pooled and paired-end sequenced on
483  Illumina MiSeq PE300 platform (Illumina, San Diego, USA) according to the standard protocols
484 by Magjorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

485 The raw ITS reads were first demultiplexed, quality-filtered by fastp version 0.20.0(51) and
486  merged by FLASH version 1.2.7(52) with the following criteria: (i) the 300bp reads were
487  truncated at any site with an average quality score < 20 over a 50bp diding window, and the
488  truncated reads shorter than 50bp were discarded; (ii) only overlapping sequences longer than
489  10bp were assembled according to their overlapped sequence, and the maximum mismatch ratio
490  of overlap region is0.2. QIIME2 (version 2019.7) was used for the downstream analysis(53). The

491 quality-filtered ITS reads were then denoised and clustered into amplicon sequence variants
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492  (ASVs) using DADA2(54), and chimeric sequences were identified and removed. Then the Naive
493  Bayes classifier trained on the UNITE reference database(55) was used for taxonomy assignment
494  of individual ASVs. a- and S-diversity analysis was conducted on samples at the sampling depth
495  of 10,000 by utilizing the R packages “vegan” (version 2.5-7)(56) and “phyloseq”’ (version
496  1.34.0)(57). a-diversity was estimated by the Shannon index (evenness and richness of
497  community within a sample), Simpson index (a qualitive measure of community diversity that
498  accounts for both the number and the abundance of features), Faith’s phylogenetic diversity (or
499  Faith's PD; a qualitative measure of community diversity that incorporates both the phylogenetic
500 relationship and abundance of the observed features) and richness (observed number of features).
501  Thefungal genera presented in less than 10 samples were excluded from downstream analysis.

502

503 Metagenomics sequencing and processing

504  The Feca bacterial microbiome of CHGM cohort was profiled by whole-genome shotgun
505  sequencing with lllumina HiSeg 2000 platform (Novogen, Beijing, China). DNA libraries were
506  prepared as described previously(58). The raw sequencing reads were quality-filtered using fastp
507  version 0.20.0, followed by the use of Bowtie2(59) to remove host-derived reads by mapping to
508  the human reference genome (hg38). Quantitative profiling of the taxonomic composition of the
509  microbial communities was performed via MetaPhlAn2(60). Profiling of microbial pathways was
510 performed with HUMANN2 v2.8.1(61) by mapping reads to Uniref90(62) and MetaCyc(63)
511 reference databases. Both the abundance output of MetaPhlAn2 and HUMANN2 were normalized
512  into the relative abundance. We extracted the metabolic pathways of gut fungi for downstream
513  anaysis. The metabolic pathways or bacterial species presented in less than 10 samples were
514  excluded from downstream analysis. To estimate the percentage of human DNA contents (HDCs)
515  within CHGM cohort, we aigned the clean reads to the human reference genome with bowtie2,
516  and the HDCs was calculated as the percentage of mapped reads to the total number of clean
517  reads.

518
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519  16SrRNA sequencing data processing

520  The 16S rRNA sequencing data available for four cohorts including Lemoinne et al(24), Vitali et
521 a(64), Prochazkova et a(27) and Zuo et a(19) were downloaded from NCBI SRA. Raw 16S
522  reads were quality filtered, clustered into ASV's and taxonomic annotated using QIIME2 (version
523  2019.7) as described above. The taxonomies of ASVs were annotated by using the SILVA
524  database(65). a- and S-diversity analysis was conducted on samples at the sampling depth of
525  25,000. Thebacteria generapresented in lessthan 10 samples were excluded from consideration.

526
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