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Abstract
Classical  analyses  of  induced,  frequency-specific  neural  activity  typically  average  band-
limited power over trials. More recently, it has become widely appreciated that in individual
trials,  beta  band  activity  occurs  as  transient  bursts  rather  than  amplitude-modulated
oscillations.  Most studies of beta bursts treat them as unitary, and having a stereotyped
waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical
model  of  burst  generation,  we  demonstrate  that  waveform  variability  is  predicted  by
variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive
burst detection algorithm to identify bursts from human MEG sensor data recorded during a
joystick-based reaching task, and apply principal component analysis to burst waveforms to
define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show
that bursts with a particular range of waveform motifs, ones not fully accounted for by the
biophysical  model,  differentially  contribute  to  movement-related  beta  dynamics.
Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct
computational processes.

Introduction

The spectral content and frequency band-specific modulations of neural signals have long
served as fundamental  building blocks  for  theories of  how information is  processed and
propagated in the nervous system. Since early descriptions of such signals, activity in the
beta frequency range (13 - 30 Hz) has been associated with movement preparation and
performance  (e.g. Jasper & Penfield, 1949; Murthy & Fetz, 1992; Pfurtscheller,  1981). In
trial-averaged  data,  beta  power  gradually  decreases  before  a  movement,  reaches  a
minimum during performance of the movement, and rapidly increases beyond baseline level
following  its  completion  (Alayrangues  et  al.,  2019;  Cassim  et  al.,  2001;  Cheyne,  2013;
Donner et al., 2009; Erbil & Ungan, 2007; Haegens et al., 2011; Keinrath et al., 2006; Kilavik
et al., 2013; Kilner et al., 2003; Leocani & Comi, 2006; McFarland et al., 2000; Meirovitch et
al., 2015; K. J. Miller et al., 2010; Pfurtscheller et al., 1996; Pfurtscheller & Lopes da Silva,
1999; Pogosyan et al.,  2009; Salenius & Hari,  2003; Tan et al.,  2016; Tzagarakis et al.,
2010,  2015).  This  signal  has  been implicated  in  a variety  of  motor  processes including
movement planning and preparation  (Alayrangues et al., 2019; Bartolo & Merchant, 2015;
Donner et al., 2009; Haegens et al., 2011; Heinrichs-Graham et al., 2016; Rhodes et al.,
2018; Tzagarakis et al., 2015), inhibition (e.g. Cheyne, 2013; Jensen et al., 2005; Khanna &
Carmena, 2017; Picazio et al., 2014; Pogosyan et al., 2009; van Wijk et al., 2009; Wessel &
Aron, 2017; Y. Zhang et al., 2008), and learning (e.g. Boonstra et al., 2007; Fine et al., 2017;
Houweling et al., 2008; Nakagawa et al., 2011; Pollok et al., 2014; Reuter et al., 2022; Tan
et al., 2014), however the mechanism by which beta activity underlies this diverse range of
suggested functions is not known.

Based on the temporal pattern of changes in trial-averaged beta power, this signal has been
assumed  to  reflect  sustained  oscillatory  activity  in  each  trial,  with  movement-related
amplitude  modulations.  However,  it  is  becoming increasingly  apparent  that  sensorimotor
beta activity does not occur as sustained oscillations in single trials, but as transient burst
events that occur with varying probability in time (Cagnan et al., 2019; Diesburg et al., 2021;
Feingold et al., 2015; Haufler et al., 2022; Howe et al., 2011; Karvat et al., 2020; Kosciessa
et al., 2020; Little et al., 2019; Lofredi et al., 2019; Sherman et al., 2016; Shin et al., 2017;
Sporn  et  al.,  2020;  Torrecillos  et  al.,  2018;  Wessel,  2020).  These  variations  in  burst
probability  are reflected in the slow changes in  average spectral  power  (Feingold  et  al.,
2015; Howe et al., 2011; Little et al., 2019; Rayson et al., 2022; Sherman et al., 2016), but
suggest that single trial beta activity is more dynamic than classically thought. The rate and
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timing  of  single-trial  beta  events  are  tightly  linked  to  behavior  (Diesburg  et  al.,  2021;
Echeverria-Altuna et al., 2021; Enz et al., 2021; Feingold et al., 2015; Haufler et al., 2022;
Heideman et  al.,  2020;  Howe et  al.,  2011;  Karvat  et  al.,  2020;  Khawaldeh et  al.,  2020;
Kosciessa et al., 2020; Law et al., 2022; Little et al., 2019; Sherman et al., 2016; Shin et al.,
2017; Sporn et al., 2020; Torrecillos et al., 2018; Walsh et al., 2022; Wessel, 2020; West et
al.,  2022),  and  are  more  predictive  of  response  time  and  accuracy  than  average  beta
amplitude (Enz et al., 2021; Little et al., 2019). This shift in perspective from trial-averaged
beta power to transient burst events has thus allowed for more fine-grained analyses of their
relationship to behavior, but the functional role of beta bursts themselves is still unclear. 

Neural  field  potentials  are  commonly  analyzed  using  Fourier  or  Hilbert  transform-based
approaches which assume that the activity is stationary, at least within a small time window,
and  sinusoidal  (Cole  &  Voytek,  2017,  2019).  Although  such  approaches  are  useful  for
isolating  activity  in  different  frequency channels,  both of  these assumptions are typically
unmet  by  neural  data.  Therefore  time-frequency  (TF)  based  features  of  band-specific
activity,  whether  based  on  trial-averaged  power  or  bursts,  cannot  adequately  capture
nonsinusoidal  dynamics  in  the  temporal  domain.  However,  recent  work  has  shown that
nonsinusoidal waveforms in the theta, alpha, and gamma bands are behaviorally  (Marshall
et  al.,  2022) and  physiologically  (Higgins  et  al.,  2022;  Quinn  et  al.,  2021) informative,
underscoring the importance of analyzing frequency-specific activity in the temporal domain
without band pass filtering. 

In sensorimotor cortex, beta bursts have a stereotypical wavelet-like shape in the temporal
domain (Baker et al., 1997; Bonaiuto et al., 2021; Brady & Bardouille, 2022; Cagnan et al.,
2019; Cole et al., 2017; Karvat et al., 2020; Kosciessa et al., 2020; Sherman et al., 2016)
caused  by  temporally  aligned  synaptic  drives  to  deep  and  superficial  cortical  layers
(Bonaiuto et al., 2021; Sherman et al., 2016). The shape of this waveform determines the
duration, peak amplitude, peak frequency, and frequency span of the burst in TF space. A
large range of waveform shapes can potentially result in a burst with a peak frequency within
the beta range when Fourier or Hilbert transform analyses are applied (Karvat et al., 2020;
Sherman  et  al.,  2016).  Indeed,  while  the  mean  burst  waveform  shape  appears  highly
conserved across studies, subjects, and species (Bonaiuto et al., 2021; Brady & Bardouille,
2022;  Cagnan  et  al.,  2019;  Cole  et  al.,  2017;  Howe  et  al.,  2011;  Karvat  et  al.,  2020;
Kosciessa  et  al.,  2020;  Sherman et  al.,  2016),  there  is  a  large amount  of  variability  in
individual burst waveforms  (Bonaiuto et al.,  2021; Howe et al., 2011; Karvat et al., 2020;
Kosciessa et al., 2020; Sherman et al., 2016). This waveform shape variability may translate
to variability in function, potentially reconciling the various views of beta’s functional role by
decomposing the signal into multiple distinct sources. However, the vast majority of previous
work has treated beta bursts as being entirely homogeneous, and focused on burst rate,
timing,  or  mean waveform shape  regardless  of  their  varying features  in  the  spectral  or
temporal domain (though see: Duchet et al., 2021; Enz et al., 2021; Zich et al., 2020). 

Here, we present a novel adaptive method for single-trial burst detection that captures the
entire range of burst amplitudes, and apply it  to high precision magnetoencephalography
(MEG) sensor data. In line with previous findings, the overall rate of bursts detected with this
method closely tracks changes in average beta amplitude, but bursts are widely diverse in
time-frequency  space.  Using  a  biophysical  model  of  burst  generation,  we  show  that
variations in the timing, strength, and duration of the deep and superficial layer drives all
change burst duration, peak amplitude, peak frequency, and frequency span via modulations
of the cumulative dipole waveform shape generated by the model. Burst shape, and thus the
underlying generating mechanism, is therefore not uniquely identified by features in the TF
domain. We then show that beta bursts in human MEG data indeed occur in a wide range of
waveform motifs,  only  some of  which  are  predicted from the model,  and which  deviate
greatly from the mean burst waveform. Finally, we show that bursts with different waveforms,
unpredicted by the model, are differentially rate-modulated during a visuomotor task, and

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


therefore likely have different functions. These results thus serve as a novel demonstration
that beta bursts in human sensorimotor cortex are not unitary, and that treating them as a
homogeneous signal risks overlooking a potentially rich source of information about their
mechanisms and functional roles.

Method
Behavioral task
Thirty-eight healthy, right-handed, volunteers with normal or corrected-to-normal vision and
no history of neurological or psychiatric disorders participated in the experiment (25 female,
aged 20 - 35 years, M = 26.69, SD = 4.11 years). The study protocol was in accordance with
the Declaration of Helsinki,  and all  participants gave written informed consent which was
approved by the regional ethics committee for human research (CPP Est IV - 2019-A01604-
53).

Participants  completed  a  cued  visuomotor  adaptation  task  in  which  they  made  rapid,
joystick-based reaching movements to a visually presented target. At the start of each trial,
subjects were required to visually fixate on a small (0.6°  0.6°) central target which was a⨉
combination of a bullseye and crosshairs  (Thaler et al., 2013). The joystick controlled the
position of a small (0.5  0.5°) square white cursor. Following a variable delay (1 - 2 s), a⨉
circular random dot kinematogram (RDK) was presented, with coherent motion in either the
clockwise  or  counter-clockwise  direction.  On  the  outer  edge  of  the  RDK,  five  circular
potential reach targets appeared in 30° increments from -120° to 0°, relative to the fixation
point. On each trial, one of these targets (either at -90°, -60°, or -30°) was larger (3.25°) and
green, indicating that the participant would have to reach for that target after the go cue, and
the others were smaller (1.625°) and gray colored. The RDK disappeared after 2 s, after
which only the gray potential reach targets and the green instructed target were visible. After
a variable delay period (0.5 - 1 s),  the gray targets disappeared,  leaving only the green
instructed target. This served as the go cue, instructing the participant to use the joystick to
rapidly reach for this target.  Trials ended once the distance between the cursor and the
fixation target  exceeded that of the center of  the instructed target (7°),  if  the reach was
started too early (the distance to the fixation point exceeded 1° before the disappearance of
the gray potential targets), or if the reach was not completed quickly enough (1 s after the go
cue including reaction time and reach duration, with a reach duration of less than 500 ms).
Each trial was separated by an inter-trial interval of random duration (1.5 - 2 s), during which
participants were required to bring the cursor back to the fixation target. Once the inter-trial
interval duration had passed and the cursor was within 1° of the fixation target, the next trial
began.

Participants were split into 2 groups. On each trial, the RDK consisted of various levels of
clockwise or counter-clockwise coherent motion, or no coherent motion at all, and the visual
location of the cursor was rotated by -30°, 0°, or 30°, depending on the participant group and
trial condition. For the explicit group (N = 20), the visuomotor rotation followed the direction
of  coherent  motion  of  the  RDK  (-30°  for  counterclockwise  coherent  motion,  30°  for
clockwise, and no rotation for no coherent motion). Participants therefore could not adapt to
the variable rotation, but could predict it from the RDK with varying levels of difficulty, and
thus adjust their motor preparation during the delay period. The reaches of the implicit group
were rotated by -30° in each trial, meaning there was no relationship between the direction
of motion coherence in the RDK and that of the visuomotor rotation, but that participants
could implicitly adapt to the constant rotation. 

The RDK was presented within a 7° circular window centered on the fixation point with 200,
0.3° diameter white dots, each moving at 10°/s. On each trial, a certain percentage of the
dots (specified by the motion coherence level) moved coherently around the center of the
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aperture in one direction, clockwise or counter-clockwise at a distance between 2° and 7°
from the fixation target. The remaining dots moved in random directions, with a consistent
path per dot. Dot lifetime was normally distributed (M = 416.67, SD = 83.33 ms). The levels
were individually set for each participant by using an adaptive staircase procedure (QUEST;
Watson & Pelli,  1983) to  determine the motion  coherence at  which  they achieved 82%
accuracy  in  a  block  of  40  trials  at  the  beginning  of  each  session.  During  this  block,
participants  had  to  simply  respond  with  the  left  or  right  button  to  counterclockwise  or
clockwise motion coherence. The resulting level of coherence was then used as low, and
150% and 200% of it as medium and high, respectively.

Participants first completed 1-3 short training blocks of 12 trials, during which the RDK had
no coherent motion in any direction, and there was no visuomotor rotation. During these
blocks, the location of the joystick-controlled cursor was visible for the entire duration of the
trial (online feedback), the cursor turned red once the reach distance exceeded the extent of
the center of instructed target (7°), and a short message was shown for 2 s telling subjects if
they began the reach too early, did not complete the reach fast enough, or were too far (>
1.625°) from the center of the target. Once participants correctly completed at least 75% of
the trials within a training block, they performed one block of 56 trials which also contained
no coherent RDK motion and no visuomotor rotation, but the cursor disappeared once its
distance  from  the  fixation  target  exceeded  1°  and  reappeared  and  turned  red  once  it
reached the extent of the center of the instructed target (endpoint feedback). At the end of
each trial in this block, a short message was also shown for 2 s giving feedback on the
timing and accuracy of the reach. Each group of participants then completed 7 blocks of 56
trials each with visuomotor rotation. In each of these trials, the RDK had zero, low, medium,
or high levels of coherent motion in the clockwise or counterclockwise direction. For the
explicit  group,  the visuomotor rotation was 0,  -30,  or  30°,  depending on the direction of
coherent motion in the RDK. For the implicit group, the visuomotor rotation was always 30°,
regardless of the direction of coherent motion in the RDK. Finally, both groups completed
one washout block of 56 trials in which there was no coherent motion and no visuomotor
rotation. For the purposes of this study, data were aggregated across participant groups,
blocks (except for the training blocks), and trial conditions. The task was implemented in
Psychtoolbox (v3.0.16; Brainard, 1997; Pelli, 1997) and run using Matlab R2017b.

MRI acquisition and head-cast construction

Prior  to  MEG data  acquisition,  each  participant  underwent  an  MRI  session  using  a  3T
Siemens Sonata system (Erlangen, Germany). A T1-weighted scan was acquired using a
magnetization-prepared rapid gradient-echo (MPRAGE) pulse sequence with 1 mm isotropic
voxel size (256  256  256 voxels), a repetition time (TR) of 2100 ms, an echo time (TE) of⨉ ⨉
3.33 ms, inversion time (TI) of 900 ms, and a grappa factor of 3. For the co-registration of
the MRI and the MEG data, vitamin E tablets were placed at the nasion and the left and right
ear canals. 

We used the 1 mm T1 MRI volumes of the subjects in order to construct an individualized
foam head-cast for each participant in order to reduce between-session co-registration error
and within-session head movement  (Bonaiuto et al., 2018; Meyer et al., 2017). The scalp
surface was extracted from the T1 volume using Freesurfer (v6.0.0; Fischl et al., 2002) and
used as a mold for the inner surface of the head-cast, with the outer surface defined by a 3D
model of the MEG dewar. The surface models were then positioned relative to a 3D model of
the MEG dewar using Rhinoceros 3D (https://www.rhino3d.com) in order to minimize the
distance between the scalp and the sensors without obstructing the participant’s view. The
resulting  model  was  then  printed  using  a  Raise  3D  N2  Plus  3D  printer
(https://www.raise3d.com). The 3D printed model was placed inside a replica of the MEG
dewar,  and  the  space  between  the  head  model  and  the  dewar  replica  was  filled  with
polyurethane foam (Flex Foam-it! 25; https://www.smooth-on.com) to create the participant-
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specific head-cast into which the fiducial coils were placed during scanning. 

MEG acquisition and preprocessing

MEG data were acquired using a 275-channel Canadian Thin Films (CTF) MEG system with
superconducting quantum interference device (SQUID)-based axial gradiometers (CTF MEG
Neuro Innovations, Inc. Coquitlam, Canada) in a magnetically shielded room. Participants
were in the supine position during the recording. A video projector (Propixx VPixx, VPixx
Technologies Inc., Canada) was used to display visual stimuli on a screen with a refresh rate
of 120Hz ( 80 cm from the participant), and a joystick (NATA Technologies, Canada) was∼
used for participant responses. The  data collected were digitized continuously at a sampling
rate of 1200 Hz. Eye movement data was collected using Eyelink 2000 eye tracker (SR
Research, Ontario, Canada) which tracked monocular eye movements at 1000 Hz and was
calibrated before the start of recording.

Data preprocessing was performed using the MNE-Python toolbox  (Gramfort et al., 2014)
unless stated otherwise. MEG data was downsampled to 600 Hz and filtered (low pass 120
Hz zero-phase FIR filter with a Hamming window). Line noise (50 Hz) was removed using an
iterative version of the Zapline algorithm (de Cheveigné, 2020) implemented in the MEEGKit
package  (https://nbara.github.io/python-meegkit/),  using  a  window  size  of  20  Hz  for
polynomial fitting and 5 Hz for noise peak removal and interpolation. Ocular movement and
cardiac related artifacts were isolated by running Independent Component Analysis (ICA,
InfoMax, 25 components were extracted) on a copy of the MEG data (band pass filtered
from 1 to 60 Hz), implemented in the scikit-learn library (Pedregosa et al., 2011). The eye
tracking  data  was  first  cropped  and  resampled  to  match  the  MEG  signal,  and  then
components  containing  ocular  artifacts  were  identified  by  correlating  each  of  the  25
components with the horizontal and vertical eye movement signals. Blink detection was done
by thresholding the vertical eye movement beyond the vertical resolution of the screen. Each
component time course was then correlated (Pearson’s  r) with the horizontal and vertical
gaze  position  signals  before  and  after  removing  blinks.  Each  component  thus  had  4
correlation coefficients, and was classified as an ocular movement artifact if all correlation
coefficients were above r = 0.15, and the average correlation was above r = 0.25. Cardiac
artifacts  were  identified  by  applying  the  ECG  R  peak  detector
(https://github.com/berndporr/py-ecg-detectors;  Porr  & Howell,  2019) to each component,
and choosing the one with the lowest inter-peak temporal variance. The component choice
was manually verified prior to removal from the original (prior to band pass filtering) dataset. 

The data were then epoched around two events within each trial, between -1 and 2 s relative
to the onset of the visual stimulus (visual epochs), and between -1 and 1.5 s relative to the
end of the reaching movement (motor epochs). We analyzed data from 11 sensors above
the left sensorimotor area, contralateral to the hand used to make the movement (Figure 2A:
inlay).

Burst detection

We developed  a  novel,  adaptive  burst  detection  algorithm to  ensure  that  all  potentially
relevant burst events were detected across a wide range of beta amplitudes (Figure 1). The
algorithm operates iteratively on single trial TF decompositions, and continues until no more
bursts  are  detected  in  the  trial.  The  estimated  aperiodic  spectrum  (Figure  1A)  is  first
subtracted from each single trial TF decomposition (Figure 1B) and iterative burst detection
then operates on the residual amplitude (Brady & Bardouille, 2022). On each iteration, the
algorithm detects the global maximum amplitude in TF space, and fits a two-dimensional
Gaussian to this peak by computing the symmetric full-width at half maximum (FWHM) in the
time and frequency dimensions (Figure 1C). This 2D Gaussian parametrization thus defines
burst  features  in  TF  space:  peak  time,  duration,  peak  amplitude,  peak  frequency,  and
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frequency span. The Gaussian is then subtracted from the TF decomposition, and the next
iteration operates on the resulting residual TF matrix. This process continues until there are
no global maxima above the noise floor remaining (2 standard deviations above the mean
amplitude over all time and frequency bins, recomputed on each iteration). To avoid edge
effects near the limits of the beta band, we applied the algorithm to TF data between 10 and
33 Hz, but only bursts with a peak frequency within the beta band (13 - 30 Hz) were retained
for further analysis.

We  used  the  superlet  transform  (Moca  et  al.,  2021) to  compute  single-trial  TF
decompositions. The superlet transform is a relatively new method of TF decomposition that
more optimally balances time and frequency resolution than other commonly used methods
like the short-time Fourier transform or continuous wavelet transform, making it especially
well suited to detect transient bursts in restricted frequency bands.  We used an adaptive
superlet transform based on Morlet wavelets with varying central frequency (1 - 120 Hz) and
number of cycles (4 cycles) under a Gaussian envelope. The order, which is a multiplier of
the amount of cycles in the wavelet, was linearly varied from 1 to 40 over the frequency
range. The TF decomposition was then used to calculate the power spectral density (PSD)
for each sensor by averaging single-trial TF power over time to obtain single trial PSDs, and
then averaging PSDs over trials within each experimental block (56 trials; Figure 1A). We
then used specparam (Donoghue et al., 2020) to parameterize the PSD of each sensor for
each block and thus estimate the aperiodic spectrum using a linear function (log-log space
equivalent of an exponential function, without a ‘knee’).
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Figure 1. Iterative burst detection and waveform analysis
(A) The MEG single-trial signal time course was decomposed into the time-frequency (TF)
domain using superlet transformation. The power spectral density (PSD) was calculated per
trial by averaging the TF power over the time dimension, and then averaged over trials. A 1/f
function was fitted to the averaged PSD to account for aperiodic neural activity.  (B) The
aperiodic fit  was then subtracted from each single trial TF in order to isolate bursts with
amplitude  above  that  of  background  neural  activity  and  noise.  (C)  After  removing  the
aperiodic  influence,  bursts  from  each  single  trial  TF  were  detected  using  an  iterative
algorithm. During each iteration, the global maximum was identified, defining the peak time
and frequency, and a two-dimensional Gaussian was fitted to the peak to compute burst
duration and frequency span. The Gaussian was then subtracted from the single trial TF,
and the following iteration operated on the residual.  The process terminated when there
were no peaks above the noise floor (here set to 2 standard deviations of the single trial TF
on each iteration). (D) For each burst identified from the single trial TFs, a segment of 260
ms was extracted from the corresponding trial time series, centered on the peak time. The
peak time was then adjusted to the closest  time point  with zero phase after  band pass
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filtering within the burst’s frequency span. (E) PCA was then applied to the phase-aligned
(but not band pass filtered) burst waveforms, resulting in a score for each burst along each
of 20 principal components.

Based on their peak time, we then extracted the waveform for each detected burst from the
“raw”  time  series  (unfiltered,  except  for  the  120  Hz  low  pass  filter  applied  during
preprocessing). To remove the effect of slower event-related field (ERF) dynamics on burst
waveforms, the epochs were first averaged in the temporal domain to compute the ERF, and
this was then regressed out of the signal for each trial. To determine the width of the time
window for waveform extraction, we computed lagged coherence over all trials and sensors
from 5 to 40 Hz and 2.5 to 5 cycles  (Fransen et  al.,  2015).  We used overlapping time
windows with lag- and frequency-dependent widths, and Fourier coefficients were obtained
for  each  time-window  using  a  Hann  windowed  Fourier  transform.  The  time  window  for
waveform extraction was then defined as the FWHM of lagged coherence averaged within
the beta band, yielding 5.25 cycles, or 255.81 ms at the mean beta frequency of 21.5 Hz
(Figure  S1),  which  we rounded  up  to  260 ms.  The  time series  in  this  260  ms window
centered on the peak time was therefore extracted from the trial time series. In order to find
the signal deflection corresponding to the peak in amplitude, we aligned burst waveforms by
band  pass  filtering  them  within  their  detected  frequency  span  (zero-phase  FIR  with  a
Hamming window), computing their instantaneous phase using the Hilbert transform, and re-
centering  the  “raw”  (prior  to  band  pass  filtering)  waveform around  the  phase  minimum
closest to the peak time detected in TF space (Boto et al., 2022; Figure 1D). If this time point
was greater than 30 ms away from the TF-detected peak time, the burst was discarded. The
DC offset was then subtracted from the resulting waveform. Finally, due to uncertainty in the
orientation  and  source  location  of  the  dipoles  generating  measured  sensor  signals,  we
reversed the sign of burst waveforms in which the central deflection was positive  (S. R.
Jones  et  al.,  2009).  Open source code  for  the  burst  detection  algorithm is  available  at
https://github.com/danclab/  burst_detection  .

All measures of burst rate and mean beta amplitude over time were baseline corrected as
the percent change from the mean value from 500 to 250 ms before the onset of the visual
stimulus. The number of bursts detected per trial was compared between the visual and
motor  epochs using  R (v4.2.0,  R REF)  with  a generalized  linear  model  with  a  Poisson
distribution and log link function, with epoch type as a fixed effect and subject-specific offsets
as random effects (lme4 v1.1.29; REF). The effect of epoch type was then assessed using a
type II Wald Χ2 test (car v3.1.0; REF). Burst features in TF space (duration, peak amplitude,
peak frequency, and frequency span) were compared between the visual and motor epochs
using two-sample Kolmogorov - Smirnov tests (Pratt & Gibbons, 1981).

Burst analysis

To classify the diversity of burst waveform shapes, principal component analysis (PCA, 20
components, implemented in the scikit-learn library (Pedregosa et al., 2011)) was applied to
the phase aligned waveforms, with each waveform time point as a feature (Figure 1E). The
principal components (PCs) were computed from a subset of the data, consisting of 20% of
the  waveforms,  evenly  sampled  from  each  subject,  block,  and  epoch,  after  removing
waveforms  outside  of  10th  -  90th  percentile  of  median  amplitude  (N =  2,339,211).  All
detected bursts (N = 14,328,947), across subjects, blocks, and epochs, were then projected
onto each PC, thus each burst received a score for each component representing the shape
of its waveform along that dimension. 

To  determine  which  components  were  meaningful  and  not  simply  driven  by  noisy
fluctuations of the neural field potential, a permutation approach was used (Vieira, 2012). To
remove the correlation between the features (waveform time points), the matrix containing
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the data subset was shuffled within each time point (column) independently. PCA  was then
applied to the shuffled matrix using the same parameters as with an unshuffled subset. The
p value for each PC was then given by the probability of the proportion of variance explained
being lower after shuffling than for the unshuffled data. The higher this probability, the higher
the proportion of explained variance contributed by the noise introduced by shuffling, thus
indicating that the original component was mostly driven by noise. For each component, 100
permutations were run, using an alpha threshold of p = 0.05.

We then selected PCs that define dimensions along which the mean burst waveform shape
varies across the visual and motor epochs. For each PC, the mean burst waveform score
was calculated at each time point of the visual and motor epoch, and the variance of the
mean score over the time course of each epoch was used for PC selection. Components
with  difference  in  the  temporal  variance  of  the  mean  score  between  epochs  above  a
threshold of 0.002 were chosen for further analysis.

The  mean  baseline-corrected  rate  of  bursts  across  the  distribution  of  scores  for  each
selected PC was calculated per subject. We used a one-sample cluster permutation test to
determine significant deviation from the baseline. The family-wise error rate (FWER) was
controlled by using a non-parametric resampling test with a maximum statistic (taken across
all  data points).  As a statistic,  the t-test  with  a variance regularization  (“hat”  adjustment
(Ridgway  et  al.,  2012),  threshold  p  =  0.001)  was  chosen to  minimize  the effect  of  low
variance data points,  thus limiting spurious results.  Threshold Free Cluster Enhancement
(TFCE, starting threshold = 0, step = 0.2) was used to improve the statistical power of cluster
detection, by employing an adaptive threshold on the level of a single data point  (Smith &
Nichols, 2009).

The distributions of burst duration, peak amplitude, peak frequency, and frequency span,
were compared between bursts with scores from each quartile of the selected PCs using
Bonferroni-corrected two-sample Kolmogorov - Smirnov tests (Pratt & Gibbons, 1981).

Biophysical model

We used the open-source Human Neocortical  Neurosolver (HNN) software to simulate a
biophysical model of a cortical microcircuit  driven by layer-specific synaptic inputs  (HNN-
core  v0.2;  https://hnn.brown.edu;  Neymotin  et  al.,  2020).  This  model  has  been  fully
described in prior publications  (Law et al., 2022; Sherman et al., 2016; Shin et al., 2017).
Here we used a slightly modified version of it, which was previously used to simulate beta
bursts in the motor cortex (Bonaiuto et al., 2021). HNN's underlying canonical neural circuit
model simulates the generation of electrical currents in layered cortical columns that give
rise to measurable EEG/MEG signals. These electrical currents (i.e., current dipoles), are
assumed to be generated by post-synaptic, intracellular current flow in the spatially aligned
dendrites of a large population of neocortical pyramidal neurons, and are simulated by HNN
via the net intracellular electrical current flow in the pyramidal neuron dendrites, multiplied by
their length (in nano-Ampere-meters). The net current dipole output is then scaled to fit the
amplitude of recorded MEG data. The model contains  multicompartment pyramidal neurons
(PN) and single compartment interneurons (IN), located in infra- and supra-granular layers.
Neurons  receive  excitatory  synaptic  input  from  simulated  trains  of  action  potentials  in
predefined temporal profiles that target the proximal apical/basal and distal apical dendrites
of the PNs. 

In  the  simulations  described  in  this  paper,  we  used  a  modified  version  of  the  default
parameter  set  distributed  with  HNN  that  simulates  beta  bursts.  In  brief,  this  simulation
contained 100 PNs and 35 INs per layer and received a proximal excitatory synaptic drive,
simultaneous with a distal excitatory synaptic drive. The histogram of spikes from the inputs
that generated these drives had a Gaussian profile. It has previously been shown that this
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pattern of  inputs can generate bursts with the commonly observed beta burst  waveform
shape as part of the more continuous somatosensory mu-rhythm (S. R. Jones et al., 2009;
Sherman  et  al.,  2016),  but  here,  we  use  the  model  to  generate  individual  bursts  only.
Individual  beta  bursts  occur  when  broad  upward  current  flow  from  proximal  inputs  is
synchronously disrupted by downward stronger and faster current flow from distal inputs.
Results varied across simulations with identical parameters due to the stochastic nature of
the exogenous proximal and distal drives: the timing of the synaptic drives were chosen from
a Gaussian distribution. In the base simulations, the distribution of proximal drive inputs had
a standard deviation of 20 ms, whilst that of the distal drive inputs had a standard deviation
of 7 ms. For the proximal drive, the synaptic weight to supra- and infra-granular PNs was
3.5e-5  μS,  lower  than  that  of  the  distal  drive  (6e-5  μS).  The  mean delay  between  the
proximal and distal drive was 0 ms. We ran five sets of simulations in order to ascertain how
varying the timing, strength, and duration of the proximal and distal drives determine the
beta waveform shape: 1) relative timing of the two drives (from -25 ms to 25 ms), 2) distal
drive synaptic weight (from 4.5e-5 μS to 8.5e-5 μS), 3) proximal drive synaptic weight (from
0.5e-5 μS to 5.5e-5 μS), 4) distal drive duration (from 1 ms to 15 ms), and 5) proximal drive
duration  (from 10 ms to 40 ms). These parameter ranges were chosen in order to ensure
that the resulting burst peak frequency was within the beta range, and that the bursts were
driven by subthreshold dynamics  (S. R. Jones et al.,  2009; Sherman et al.,  2016). Each
simulation type was run with 10 different parameter values, equally spaced within the range
tested, and for 500 trials per value, with each trial (200 ms) resulting in a single burst. The
superlet transform (adaptive, 4 cycles, 100 equally spaced central frequencies between 2
and  40  Hz)  was  applied  to  the  burst  waveform from each  trial,  and the duration,  peak
amplitude, peak frequency, and frequency span were computed in TF space as per the burst
detection algorithm described above. Relationships between model parameters and burst
duration, peak amplitude, peak frequency, and frequency span were evaluated using growth
curve models implemented in R (v4.2.0; R Core Team, 2022) using the lme4 library (v1.1.29;
Bates et al.,  2014). The parameter values were modeled with a second-order (quadratic)
orthogonal polynomial, and polynomial significance was estimated using type II Wald F tests
(car v3.1.0; Fox et al., 2019). Burst waveforms generated by the model were then scaled to
match the bursts detected from the human MEG data (scaling factor = 9e -16) and projected
onto each dimension defined by the PCA fit to the human subject data.

All  preprocessing,  analysis,  and  simulation  code  is  available  at
https://github.com/maciekszul/DANC_beta_burst_PC_analysis.

Results

Beta bursts are diverse
We analyzed  data  recorded  from  a  cluster  of  left  central  MEG  sensors  while  subjects
performed a cued visuomotor task involving presentation of a visual stimulus indicating the
target location, a variable delay, followed by a right-handed reaching movement made with a
joystick to the target. We detected beta bursts in the 13 - 30 Hz range using a novel burst
detection algorithm (see Methods),  and extracted burst waveforms from two trial  epochs:
one aligned to the onset of the visual stimulus (visual epochs), and one aligned to the offset
of the reaching movement (motor epochs). In line with previous work (Little et al., 2019), the
overall burst rate decreased following the onset of the visual cue, further decreased during
the  reaching  movement,  and  increased  again  following  the  end  of  the  reach,  closely
matching changes in mean beta power (Figure 2A). More bursts were therefore detected
during the visual compared to the motor epoch (visual:  M = 477.45, SD = 83.07 bursts per
subject per trial; motor M = 392.83, SD = 68.92 bursts per subject per trial; Χ2(1) = 135,479,
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p <  0.001).  Across  both  epoch  types,  bursts  were  variable  in  terms  of  time-frequency
features, but there were no differences between epochs in distributions of burst duration (D
= 0.008, p < 0.001), peak amplitude (D = 0.01, p < 0.001), peak frequency (D = 0.004, p <
0.001), or frequency span (D = 0.006, p < 0.001). In general, bursts were short (overall M =
185 ms, SD = 97 ms; Figure 2B), burst peak amplitude distributions had a long tail (overall M
= 18.91,  SD =  13.14 fT;  Figure 2C),  burst  peak frequency was centered around 21 Hz
(overall M = 21.35, SD = 4.76 Hz; Figure 2D), and bursts spanned 1 to 4 Hz in the frequency
domain (overall  M = 2.01,  SD = 0.81 Hz; Figure 2E). As described previously  (Bonaiuto et
al., 2021; Kosciessa et al., 2020; Little et al., 2019; Sherman et al., 2016), the median burst
waveform shape was wavelet-like (Figure 2F), with a prominent central negative deflection,
symmetrically surrounded by positive deflections on either side. Individual burst waveforms,
however, deviated greatly from the median with a relatively low signal-to-noise ratio (SNR)
outside of this central negative deflection and surrounding peaks (overall M = -27.16, SD =
14.60 dB; Figure 2F).

Figure 2. Burst dynamics and summary of burst features
(A) The median burst rate (solid line; shaded area shows the SEM) decreased following the
onset of the visual stimulus, further dropped during the movement, and rebounded following
the  end  of  the  movement.  Burst  rate  dynamics  closely  matched  those  of  median  beta
amplitude (dashed line; shaded area shows the SEM). The inset shows the 11 sensors used
in this analysis, located above sensorimotor areas contralateral to the hand used. (B-E) The
distributions  of  burst  peak  duration  (B),  peak  amplitude  (C),  peak  frequency  (D),  and
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frequency span (E) were similar  in  the two phases of  the task.  (F)  The median aligned
waveform (thick black line, top) over all detected bursts had a wavelet-like shape, but there
was great variability in the waveforms of individual bursts (thin colored lines, top). The SNR
of  burst  waveforms was highest  around the central  negative  deflection  and surrounding
peaks, but less than -20 dB for the first and last 100 ms. 

Burst variability can be explained by biophysical model parameters.
One of the most prominent biophysical models of beta burst generation simulates bursts as
being driven by temporally aligned proximal and distal  drives to the deep and superficial
cortical layers  (Figure 3A; Sherman et al.,  2016). The model predicts that the beta burst
waveform shape is caused by the aggregate of these two, oppositely oriented, current flows.
The proximal drive targets the deep layers and consists of a temporally dispersed, weak
excitatory synaptic input, whilst the distal drive targets the superficial layers and is stronger,
but briefer. The temporal alignment of these drives results in cumulative dipole moments
with wavelet-like waveform shapes which match the median burst waveform shape observed
in the MEG data, but not the variance around the median (Figure 3B). TF decomposition of
the cumulative dipole moment generated by the model reveals a transient increase in beta
amplitude, from which the duration, peak amplitude, peak frequency, and frequency span
can be computed (Figure 3C). However, the individual burst waveforms generated by the
base model have a wide range of durations (M = 130.11, SD = 4.10 ms), peak amplitudes (M
= 61.68,  SD = 17.69 nAm), peak frequencies (M = 15.52,  SD = 2.34 Hz), and frequency
spans  (M =  8.46,  SD =  1.30  Hz;  Figure  3D)  in  the  TF  domain.  The  model  therefore
generates  variable  burst  waveforms  which  result  in  variability  in  TF-based  features  of
individual  bursts,  even with a single set  of  distal  and proximal  synaptic  drive parameter
values. 
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Figure 3. The biophysical model can generate bursts with different waveform shapes
(A) The biophysical model of beta burst generation consists of a proximal (infragranular)
drive, and a distal (supragranular) drive. The Gaussians represent the duration of each drive
and their polarity represents the direction of intracellular current flow. The model consists of
multiple-compartment pyramidal neurons (black), and local inhibitory interneurons (orange).
(B) The combination of proximal and distal drives generates a cumulative dipole moment
that closely matches the median burst waveform observed in human MEG data (gray lines
are individual burst waveforms generated from the base model, black line is the average
waveform). (C) The mean TF spectrum over all generated bursts from the base model. The
time and frequency at which the peak amplitude (black dot) is detected are used to compute
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the burst frequency span and duration (dashed lines). (D) The model generates bursts with a
range of durations, peak amplitudes, peak frequencies, and frequency spans. (E) When the
peak of the proximal drive is offset between -25 and 25 ms, the model generates burst
waveform  shapes  with  varying  degrees  of  asymmetry.  (F-H)  Waveform  asymmetry  has
nonlinear effects on mean burst duration (F), peak amplitude (G), peak frequency (H), and
frequency span (H). The vertical dashed lines indicate the proximal drive offset in the base
model (0 ms). (I) The magnitude of the central negative deflection in the burst waveform is
modulated by the strength of the distal drive. (J-L) As in F-H, for the strength of the distal
drive.  (M)  The  strength  of  the  proximal  drive  jointly  shifts  the  amplitudes  of  the  central
negative  and surrounding  positive  deflections  of  the waveform.  (N-P)  As in  F-H,  for  the
strength of the proximal drive. (Q) The duration of the distal drive modulates the amplitude
and sharpness of the central negative and surrounding positive deflections in the waveform
shape. (R-T) As in F-H, for the standard deviation of the distribution of the distal drive timing.
(U) The duration of the proximal drive modulates the duration of the surrounding positive
deflections and the magnitude of the central negative deflection in the burst waveform. (V-X)
As in F-H, for the standard deviation of the distribution of the proximal drive timing. 

In order to determine if TF-based burst features could, in principle, distinguish between burst
waveform shapes, we simulated bursts across a range of model parameter values. The most
influential model parameters in generating the stereotypical waveform shape are the relative
timing, strength, and duration of the two synaptic drives. We therefore ran the model using a
range of proximal input timing (changing the relative timing of the two drives), distal and
proximal input strength (AMPA synapse weights), and durations (standard deviations of the
drive timing distribution). Varying the timing of the proximal input peak, from 25 ms before to
25 ms after the distal input peak, generated a spectrum of waveform shapes that varied in
their asymmetry (Figure 3E). Waveform asymmetry had nonlinear effects on burst duration
(linear  F(1) = 609.84,  p < 0.001, quadratic  F(1) = 2194.27,  p < 0.001; Figure 3F), peak
amplitude (linear F(1) = 150.01, p < 0.001, quadratic F(1) = 2624.43, p < 0.001; Figure 3G),
peak frequency (linear F(1) = 336.66, p < 0.001, quadratic F(1) = 2242.49, p < 0.001; Figure
3H), and frequency span (linear  F(1) = 68.07,  p < 0.001,  quadratic  F(1) = 1043.28,  p <
0.001;  Figure 3H).  Running the model  with a range of  distal  input  strengths altered the
magnitude of the central  negative deflection (Figure 3I),  which had a nonlinear  effect on
burst duration (quadratic F(1) = 16.15, p < 0.001; Figure 3J), peak amplitude (linear F(1) =
4216.58,  p < 0.001,  quadratic  F(1)  = 42.01,  p < 0.001;  Figure 3K),  and peak frequency
(linear F(1) = 105.04, p < 0.001, quadratic F(1) = 41.23, p < 0.001; Figure 3L),  and a linear
effect on frequency span (F(1) = 389.86, p < 0.001; Figure 3L). Varying the strength of the
proximal synaptic drive jointly shifted the magnitude of the central negative and surrounding
positive burst waveform deflections (Figure 3M). This had a nonlinear effect on the burst
duration (linear F(1) = 36.40, p < 0.001, quadratic F(1) = 617.82, p < 0.001; Figure 3N), peak
amplitude (linear F(1) = 458.50, p < 0.001, quadratic F(1) = 408.73, p < 0.001; Figure 3O),
peak frequency (linear F(1) = 867.32, p < 0.001, quadratic F(1) = 1299.89, p < 0.001; Figure
3P), and frequency span (linear  F(1) = 4746.92,  p < 0.001, quadratic  F(1) = 865.55,  p <
0.001;  Figure 3P). Differences in the temporal dispersion of  the two synaptic drives had
more complex effects on burst waveform shape. The duration of the distal drive changed the
amplitude  and  sharpness  of  the  central  negative  and  surrounding  positive  waveform
deflections (Figure 3Q), which had a linear effect on burst duration (F(1) = 149.79, p < 0.001;
Figure 3R), and nonlinear effects on burst peak amplitude (linear F(1) = 3747.90, p < 0.001,
quadratic  F(1) = 53.94,  p < 0.001; Figure 3S), peak frequency (linear  F(1) = 310.70,  p <
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0.001,  quadratic  F(1)  =  7.11,  p =  0.008;  Figure  3T),  and frequency span (linear  F(1)  =
876.60, p < 0.001, quadratic F(1) = 4.38, p = 0.037; Figure 3T). The duration of the proximal
drive changed the duration of the surrounding positive deflections and the magnitude of the
central negative waveform deflections (Figure 3U). This had nonlinear effects on duration
(linear  F(1)  =  817.31,  p <  0.001,  quadratic  F(1)  =  13.12,  p <  0.001;  Figure  3V),  peak
amplitude (linear F(1) = 4112.50, p < 0.001, quadratic F(1) = 166.49, p < 0.001; Figure 3W),
and frequency span (linear  F(1) = 3026.30,  p < 0.001, quadratic  F(1) = 40.20,  p < 0.001;
Figure 3X), and a linear effect on peak frequency (F(1) = 2025.90,  p < 0.001; Figure 3X).
Each  model  parameter  tested resulted in  nonlinear  changes  in  nearly  all  burst  features
defined in  TF space,  thus preventing  inference of  underlying neural  circuit  dynamics  by
inspection of TF burst features alone. In order to explore beta burst variability with respect to
underlying mechanistic models of burst generation, it is therefore necessary to analyze burst
variability in the temporal, rather than TF, domain.

PCA-derived waveform motif spectrums reveal shape specific task modulation.
Having shown that varying the parameters of the drives to the model can result in a range of
generated waveform shapes and that these waveforms have complex relationships with TF-
based burst features, we then focused our analysis on the waveforms of bursts extracted
from the human MEG sensor data. We applied PCA to these waveforms in order to identify
motifs that explain variance in burst waveform shape, finding that 20 components explained
82% of the variance. We then ran a permutation test, shuffling the waveforms, in order to
determine  which  components  significantly  contribute  to  variability  in  the  observed
waveforms. This revealed 18 significant components (p < 0.001; Figure 4A). We then further
analyzed four components based on the temporal variance in mean burst score in the motor
compared to the visual epoch, thus selecting dimensions along which the mean burst shape
varied systematically over the course of the trial, and differently during the two epoch types.
Each of  these components defined dimensions  along which the waveform shape varied
markedly  from the median  waveform (Figure  4B-E;  see  Figure  S2  for  all  18  significant
components). In each of these dimensions, the amplitude of peaks surrounding the central
negative  deflection,  and that  of  the  central  deflection  itself  varied,  but  the  most  striking
feature of  each of the four components is that  they represent waveforms with additional
peripheral peaks. The mean burst waveform score for each of these components decreased
following  the  onset  of  the  visual  stimulus,  further  decreased  during  the  movement  for
components 8, 9, and 10, and then increased following the movement. Therefore, not only
does the overall burst rate decrease pre-movement and increase post-movement, but the
mean burst waveform shape also systematically changes over the course of the task.
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Figure 4. PCA reveals a variety of burst waveform motifs
(A) The histogram shows the proportion of the variance explained by each component. The
vertical line shows the meaningful components used in further analyses as a result of the
permutation analysis.  The blue line overlaid on top of the histogram shows the variance
score, which is the difference in the variance of a mean score time course between visual
and motor epochs. The shaded rectangle highlights the components with a variance above
threshold,  which  were  then  subsequently  analyzed  further.  (B-E)  For  each  chosen
component, mean burst waveform shapes of bursts with a score within the 0 - 10th (cyan) to
90 - 100th (magenta) percentile of all  burst scores for that component (left  panels).  The
panels on the right show the time course of the mean burst score (solid line; shaded region
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shows SEM) for each component during the visual and motor epochs.

The movement-related changes in  mean burst  score for  each of  these components are
confounded by burst rate. A reduction in mean burst score along any dimension could be
due to a change in waveform shape with no change in burst rate, or some combination of a
reduction in the rate of bursts with high scores, and an increase in the rate of those with low
scores.  For  each  selected  component,  we  therefore  examined  how burst  rate  changed
throughout the task, according to burst waveform shape along that dimension. With this aim,
we binned bursts according to their component score, indicating their waveform shape, and
the time during the trial in which they occurred. For each component score bin, we then
baseline-corrected the burst rate using a time period prior to the onset of the visual cue, and
then used a permutation test to determine significant deviations from the baseline (Figure 5;
see Figure S3 for all significant components). Bursts with waveform shapes closest to the
median waveform (i.e. those with scores close to 0 along each dimension) were the least
modulated  pre-  and  post-movement.  Rather,  for  each  selected  component,  bursts  with
higher scores (those in the fourth quartile) exhibited the greatest decrease in rate after the
onset of the visual stimulus, followed by a transient increase, and then the greatest decrease
in rate during the movement. The rate of bursts with scores in the second quartile along PCs
7, 9, and 10 did not change following the onset of the visual stimulus. Surprisingly, bursts
with  scores  in  the  second percentile  of  PC 8 actually  increased  in  rate  after  the visual
stimulus onset and during the movement (Figure 5C-D), and those in the second percentile
of PC 10 increased during movement (Figure 5G-H). The rate of bursts with scores in the
first and third quartiles of each component only slightly decreased pre-movement and during
movement. The post-movement period was marked primarily by an above-baseline increase
in the rate of bursts with scores in the third and fourth quartile of PC 7 (Figure 5A-B), and the
first and second quartiles of PCs 8, 9, and 10, and a return to baseline rate levels for bursts
with scores in the fourth quartiles of PCs 8, 9, and 10. Bursts with different waveform shapes
therefore  exhibited  diverse  temporal  dynamics,  and  differentially  contributed  to  the
classically  observed  pre-movement  beta  decrease  and  post-movement  beta  rebound
signals.
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Figure 5. Burst motifs are differentially task-modulated
(A) The mean waveforms of bursts with scores in each quartile of the range of scores for PC
7 (left panel, colored lines) and the mean overall burst waveform (black), and the mean burst
rate over time and across the range of PC 7 scores during the visual and motor epochs (right
panel). The gray overlay obscures the time points and score ranges where the rate did not
differ from the baseline rate. The horizontal dashed lines indicate the quartile limits. (B) The
mean baseline-corrected rate of bursts with scores in each quartile of the range of scores
along PC 7 (colored lines, the shaded area indicates the SEM) over the course of the visual
and motor epochs. The black line represents the mean rate of all bursts (the shaded area
indicates the SEM). (C-G) As in A-B, for PC 8 (C-D), PC 9 (E-F), and PC 10 (G-H).

Having demonstrated that specific waveform motifs differentially contribute to classic pre-
and post-movement sensorimotor beta modulations, we then examined the distribution of
TF-based  features  for  each  task-modulated  motif.  Burst  scores  for  each  PC were  only
weakly to moderately correlated with burst duration (PC 7: ρ = 0.12; PC 8: ρ = 0.10; PC 9: ρ
= 0.04; PC 10: ρ = 0.10; all p < 0.001), peak amplitude (PC 7: ρ = 0.22; PC 8: ρ = 0.32; PC
9: ρ = 0.14; PC 10: ρ = 0.25; all p < 0.001), peak frequency (PC 7: ρ = -0.37; PC 8: ρ = 0.08;
PC 9: ρ = 0.07; PC 10: ρ = 0.17; all p < 0.001), and frequency span (PC 7: ρ = 0.04; PC 8: ρ
= 0.16; PC 9:  ρ = 0.07; PC 10:  ρ = 0.17; all  p < 0.001; Figure S4). For each of the four
selected  PCs,  the  distributions  of  the  TF-based  features  for  each  score  quartile  greatly
overlapped (Figure S5). While bursts with scores in the 4th quartile each PC had higher
mean amplitude than those in the first three quartiles (Table S1), the distributions of TF-
based  features  were not  different  between  quartiles  for  any  of  the  task-modulated  PCs
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(Table S2-5). Bursts with waveform shapes defined by these components could therefore
not  be  distinguished  by  TF-based  features  alone.  This  underscores  the  utility  of  our
approach, which adaptively detects all candidate burst events and then sorts them according
to their underlying waveforms.

Finally, we sought to determine how well the biophysical model could capture the waveform
variance  described by  each task-modulated  waveform motif.  We therefore  projected the
waveforms generated by the biophysical model onto the dimensions defined by the PCA
fitted to the bursts detected in the human MEG data. For each set of simulations varying the
temporal  offset,  distal  and proximal  drive strength,  and distal  and proximal  duration,  the
parameter  values  were  weakly  to  moderately  correlated  with  nearly  every  principal
component (Fig S6). No single parameter therefore modulated the burst waveform along one
unique dimension. Of the four task-modulated burst waveform motifs, distal drive strength
and duration were most correlated with PC 7 (strength: ρ = 0.43, p < 0.001; duration: ρ = -
0.65, p < 0.001), PC 8 (strength: ρ = 0.54, p < 0.001; duration: ρ = -0.73, p < 0.001), and PC
10 (strength: ρ = 0.50, p < 0.001; duration : ρ = -0.76, p < 0.001), and temporal offset, distal
strength, and distal drive duration were most correlated with PC 9 (temporal offset: ρ = -0.59,
p < 0.001; distal strength: ρ = 0.44, p < 0.001; duration : ρ = -0.59, p < 0.001). The temporal
offset between drives, and the strength and duration of the distal drive could, thus, explain
some variance along these dimensions, but the range of mean model waveform component
scores was very restricted compared to the human MEG data (temporal offset: 47.70 - 71.21
percentile of PC 9 scores; distal strength: 47.24 - 58.46 percentile of PC 7, 34.35 - 63.34
percentile of PC 8, 48.42 - 68.64 percentile of PC 9; 37.57 - 66.26 percentile of PC 10; distal
drive duration : 35.79 - 56.72 percentile of PC 7, 20.22 - 62.27 percentile of PC 8, 40.94 -
67.06 percentile of PC 9, 21.03 - 68.07 of percentile PC 10; Figure S6). Whilst the model
was able to explain some of the waveform variability described by the task-modulated burst
motifs,  it  could  not  generate  waveforms  with  shapes  like  those  whose  rate  was  most
modulated pre- and post-movement.

Discussion
We  combined  a  novel  burst  detection  algorithm,  waveform  analysis,  and  biophysical
modeling to show that sensorimotor beta bursts occur with a wide range of waveform motifs
which  differentially  drive  movement-related  changes  in  beta  activity.  In  accordance  with
predictions from a biophysical model of somatosensory beta burst generation (S. R. Jones et
al., 2009; Law et al., 2022; Neymotin et al., 2020; Sherman et al., 2016), we show that bursts
have a wavelet-like mean shape, but individual bursts vary greatly from the mean. Variations
in  the  timing,  strength,  and  duration  of  the  superficial  and  deep  layer  synaptic  drives,
according to the model, predict variability in bust waveforms that cannot be distinguished by
TF-based features alone. We then applied dimensionality reduction to the waveform shapes
of beta bursts detected over human sensorimotor cortex, and showed that bursts occur with
a variety of waveform motifs. Finally, we have shown that the mean burst waveform changes
systematically pre- and post-movement, and that this is caused by changes in the rate of
bursts  from  specific  motifs.  Sensorimotor  beta  bursts  are  therefore  not  homogeneous
events, and as a consequence, burst variability may provide the key to understanding how
neural signals with TF-based signatures within the same frequency range can underlie the
plethora of functional roles ascribed to "beta activity"  (Engel & Fries, 2010; Kilavik et al.,
2013; Little & Brown, 2014; Pfurtscheller et al., 1997; Reuter et al., 2022; Salenius & Hari,
2003).
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The strategy employed by our burst detection method deviates from those commonly used in
the field. A global threshold on beta amplitude or power is most commonly used, often based
on a centrality measure (mean or median beta amplitude), calculated from the whole dataset
(Bonaiuto et al., 2021; Brady & Bardouille, 2022; Diesburg et al., 2021; Enz et al., 2021;
Feingold et al., 2015; Kehnemouyi et al., 2021; Little et al., 2019; Shin et al., 2017; Wessel,
2020; Zich et al., 2022), or a percentile of the beta power distribution  (Anidi et al., 2018;
Cagnan et al., 2019; Pauls et al., 2022; Sherman et al., 2016; Tinkhauser, Pogosyan, Tan, et
al., 2017; Torrecillos et al., 2018; Yeh et al., 2020). The consequence of these approaches is
that only high amplitude burst events are detected, neglecting low amplitude, but potentially
informative bursts. For the TF data the most common methods are to use linear thresholds
that are multiples of the mean or median beta amplitude, followed by various methods for
local maxima detection  (Brady & Bardouille, 2022; Diesburg et al., 2021; Enz et al., 2021;
Shin et al., 2017; Wessel, 2020). More recently, based on efforts to parameterize aperiodic
and periodic  neural activity  (Donoghue et al.,  2020), a burst detection algorithm using a
multiple of the aperiodic activity as a threshold has been introduced  (Brady & Bardouille,
2022). Rather than using a fixed absolute threshold, our approach detects every peak above
the aperiodic spectrum as a candidate burst event using an iterative algorithm to detect all
bursts with amplitudes above the noise floor. It can therefore be seen as an extension of
power spectra parameterization (Donoghue et al., 2020) from one dimensional PSDs to two
dimensional TF decompositions. The result is that many more bursts across a wider range of
amplitudes  are  detected,  allowing  subsequent  analyses  to  determine  which  ones  are
functionally relevant.

Because  of  its  general  applicability  and  interpretability  of  results,  we  used  PCA  to
characterize  burst  shapes.  However,  PCA creates  a  specific  categorization  of  bursts  by
defining orthogonal components, thus yielding a Fourier-like decomposition of time series
with components that appear as phase-shifted rhythmic deviations from the mean waveform
at different frequencies. Moreover,  because bursts can have negative scores along each
dimension,  the relationship  between components and the underlying synaptic  drives that
generate burst waveforms is not easily discernible. One alternative to PCA is non-negative
matrix  factorization,  but  classically  this  requires  the  data  to  also  be  non-negative,  an
assumption  obviously  unmet  by  neural  field  time  series.  However,  formulations  of  non-
negative matrix factorization have been proposed which relax this constraint  (Wu & Wang,
2014), and are a promising approach for future studies. 

We  analyzed  human  MEG  data  at  the  sensor,  rather  than  source  level.  We  therefore
inverted  the  polarity  of  bursts  with  positive  negative  deflections,  since  they  could  have
originated from unknown source locations  and dipole  orientations.  However  source level
analyses also suffer  from sign ambiguity,  requiring laminar LFP data to resolve the true
directionality of intracellular currents. Efforts have been made to resolve this inherent source
level polarity ambiguity (Rossi & Van Schependom, 2022; Vidaurre et al., 2016), and cortical
column  estimation  in  MEG  source  reconstruction  (Bonaiuto  et  al.,  2020) coupled  with
biophysical  modeling can distinguish between competing models  (Bonaiuto et  al.,  2021).
However, this is also a strength of this study, as we have shown that beta burst waveform
motifs  can be identified  and classified  without  source reconstruction,  which is  especially
promising for EEG studies. 

Finally, we were unable to account for the most task-modulated waveform motifs by varying
the input parameters of the biophysical model. This model was developed to account for
beta bursts in somatosensory cortex (S. R. Jones et al., 2009; Law et al., 2022; Sherman et
al., 2016), and may require modifications to account for bursts generated in motor cortex.
The somatosensory cortex receives its primary inputs from the thalamus (E. G. Jones, 1998,
2001; Mo & Sherman, 2019; W. Zhang & Bruno, 2019), whereas the primary motor cortex
has been recently shown to receive strong projections to deep and superficial layers from
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overlapping  neural  populations  within  a  wide  network  of  other  cortical  and  subcortical
regions  including  sensory  and  premotor  cortices  and  the  thalamus  (Geng et  al.,  2022).
These  projections  likely  contribute  to  different  pre-  and  post-  movement  computational
processes such as movement planning and evaluation, and the nonlinear combination of
these  overlapping  synaptic  drives  may  thus  account  for  the  variable  rate-varying  burst
shapes that we observe.

In the field of neurodegenerative diseases, especially Parkinson’s disease (PD), much effort
has  been devoted to finding individualized  biomarkers  that  can inform appropriate  early
interventions  (D. B. Miller & O’Callaghan, 2015; Titova & Chaudhuri, 2017). Activity in the
beta band, bursts in particular, is instrumentally linked to PD symptomatology (e.g. Little &
Brown, 2014; McCarthy et al., 2011). Various burst metrics are related to motor impairments
(e.g.  Anidi  et  al.,  2018;  Kehnemouyi  et  al.,  2021;  Lofredi  et  al.,  2019),  response  to
medication (e.g. Duchet et al., 2021; Jackson et al., 2019; Tinkhauser, Pogosyan, Tan, et al.,
2017;  Yeh  et  al.,  2020),  and  effects  of  deep  brain  stimulation  (e.g.  Pauls  et  al.,  2022;
Schmidt et al., 2020; Tinkhauser, Pogosyan, Little, et al., 2017). All of these metrics were
either derived from TF decompositions or band-pass filtered signal amplitude envelopes, and
we have shown that TF-based burst features do not differentiate the underlying waveform in
the temporal domain. However, the underlying waveform motifs and motif-specific burst rate
modulations we observe could offer much needed precision in determining PD biomarkers.
Moreover, the sensitivity of such measures for early diagnosis is likely to be far greater than
coarser TF-based burst features. Specific waveform motifs could be rapidly detected and
targeted with deep brain stimulation devices to deliver more temporally precise interventions.
Template matching of waveform motifs in the time domain could potentially reduce the lag
between burst detection and stimulation, thus increasing treatment efficacy. 

Studies of sensorimotor activity in developing populations typically focus on the alpha or mu
frequency bands, and little is known about the development of beta band activity in infancy
(Cuevas et al., 2014; Perone & Gartstein, 2019). It has recently been shown that, similar to
alpha, there are age-related changes in beta frequency and power (He et al., 2019; Johnson
et  al.,  2019;  Rayson et  al.,  2022;  Trevarrow et  al.,  2019) from infancy to adulthood.  In
infancy,  the peak beta  frequency is  15 Hz  (Rayson et  al.,  2022),  but  movement-related
artifacts from facial and arm movements also occur around this frequency (Georgieva et al.,
2020). This makes it extremely difficult to separate movement-related neural activity from
artifactual  activity  using  TF-based  analyses.  However,  the  approach  we  present  could
disentangle the two signals. Our adaptive single trial burst detection algorithm detects all
potential  bursts across a wide range of  amplitudes,  thus not  neglecting  bursts of  neural
activity that are potentially lower in amplitude than movement-related artifacts. Analysis of
burst  waveform  motifs  could  then  separate  the  cortically  generated  beta  bursts  from
waveforms corresponding to muscle artifacts even though they overlap in frequency range.
Changes in beta power, peak frequency, burst rate and mean waveform have also been
found during healthy aging in adulthood (Brady & Bardouille, 2022; Heinrichs-Graham et al.,
2018; Heinrichs-Graham & Wilson, 2016; Rempe et al., 2022; Rossiter et al., 2014). Future
studies applying our approach to such data could help provide mechanistic explanations for
these age-related changes at the individual level.

The  vast  majority  of  non-invasive  brain-computer  interfaces  (BCIs)  try  to  identify  and
characterize single imagined movements using temporally averaged power in the mu and
beta bands  (Brodu et al., 2011; Herman et al., 2008; Pfurtscheller & Neuper, 2001). Most
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recent advances in the field rely on sophisticated machine learning techniques (Barachant et
al.,  2012; Llera et al.,  2014; Lotte et al.,  2018; Song et al.,  2013), but we have recently
argued that what is needed for further predictive power is a more fine-grained approach to
feature  extraction  aimed  at  the  temporal  signatures  of  bursts  of  mu  and  beta  activity
(Papadopoulos et al., 2022). We have here demonstrated that averaged beta power includes
many burst motifs that do not change in rate pre-movement. By filtering out these events and
focusing on task-modulated burst motifs, the SNR of the features fed into machine learning
algorithms for BCI could be greatly increased, improving classification accuracy. Rather than
PCA, supervised or semi-supervised dimensionality reduction techniques such as demixed
PCA (Kobak et al., 2016) or a common spatial pattern approach in the time domain (CSP;
Congedo  et  al.,  2016) could  be  used  to  determine  burst  waveform  motifs  whose  rate
modulations  maximally  distinguish  between  movement  types.  Finally,  given  a  training
dataset to define burst motifs and their modulations by the task, an online algorithm could be
developed using template matching to detect bursts with particular waveforms.

Whilst  TF  decomposition  has  proven  useful  for  segregating  and  identifying  classes  of
frequency-specific neural activity, TF-based features that do not include phase information
are  ambiguous  with  respect  to  the  underlying  temporal  waveform  shape.  Our  results
demonstrate that this information is crucial for determining which bursts drive movement-
related changes in beta activity. Sensorimotor beta activity can therefore be decomposed
into distinct burst types which differ in their rate-based dynamics, and likely index different
computational processes. This is unlikely to be unique to the beta frequency band, and thus
underscores the importance and power of analyzing frequency-specific neural activity in the
temporal domain.

Acknowledgements
This research was supported by grants from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (ERC consolidator
grant  864550;  ERC  starting  grant  716862),  and  the  French  National  Research  Agency
(ANR)  within  the program “Investissements  d’Avenir”  (2019-ANR-LABX-02).  The  funders
had no role in the preparation of the manuscript. We thank F Lamberton for assistance with
MRI sequence development.

References
Alayrangues, J., Torrecillos, F., Jahani, A., & Malfait, N. (2019). Error-related modulations of 

the sensorimotor post-movement and foreperiod beta-band activities arise from 

distinct neural substrates and do not reflect efferent signal processing. NeuroImage, 

184, 10–24. https://doi.org/10.1016/j.neuroimage.2018.09.013

Anidi, C., O’Day, J. J., Anderson, R. W., Afzal, M. F., Syrkin-Nikolau, J., Velisar, A., & 

Bronte-Stewart, H. M. (2018). Neuromodulation targets pathological not physiological

beta bursts during gait in Parkinson’s disease. Neurobiology of Disease, 120, 107–

117. https://doi.org/10.1016/j.nbd.2018.09.004

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Baker, S. N., Olivier, E., & Lemon, R. N. (1997). Coherent oscillations in monkey motor 

cortex and hand muscle EMG show task-dependent modulation. The Journal of 

Physiology, 501(1), 225–241. https://doi.org/10.1111/j.1469-7793.1997.225bo.x

Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2012). Multiclass brain-computer 

interface classification by Riemannian geometry. IEEE Transactions on Bio-Medical 

Engineering, 59(4), 920–928. https://doi.org/10.1109/TBME.2011.2172210

Bartolo, R., & Merchant, H. (2015). β Oscillations Are Linked to the Initiation of Sensory-

Cued Movement Sequences and the Internal Guidance of Regular Tapping in the 

Monkey. Journal of Neuroscience, 35(11), 4635–4640. 

https://doi.org/10.1523/JNEUROSCI.4570-14.2015

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models 

using lme4. ArXiv Preprint ArXiv:1406.5823.

Bonaiuto, J. J., Afdideh, F., Ferez, M., Wagstyl, K., Mattout, J., Bonnefond, M., Barnes, G. 

R., & Bestmann, S. (2020). Estimates of cortical column orientation improve MEG 

source inversion. NeuroImage, 216, 116862. 

https://doi.org/10.1016/j.neuroimage.2020.116862

Bonaiuto, J. J., Little, S., Neymotin, S. A., Jones, S. R., Barnes, G. R., & Bestmann, S. 

(2021). Laminar dynamics of high amplitude beta bursts in human motor cortex. 

NeuroImage, 242, 118479. https://doi.org/10.1016/j.neuroimage.2021.118479

Bonaiuto, J. J., Rossiter, H. E., Meyer, S. S., Adams, N., Little, S., Callaghan, M. F., Dick, F.,

Bestmann, S., & Barnes, G. R. (2018). Non-invasive laminar inference with MEG: 

Comparison of methods and source inversion algorithms. NeuroImage, 167, 372–

383. https://doi.org/10.1016/j.neuroimage.2017.11.068

Boonstra, T. W., Daffertshofer, A., Breakspear, M., & Beek, P. J. (2007). Multivariate time–

frequency analysis of electromagnetic brain activity during bimanual motor learning. 

NeuroImage, 36(2), 370–377. https://doi.org/10.1016/j.neuroimage.2007.03.012

Boto, E., Shah, V., Hill, R. M., Rhodes, N., Osborne, J., Doyle, C., Holmes, N., Rea, M., 

Leggett, J., Bowtell, R., & Brookes, M. J. (2022). Triaxial detection of the 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


neuromagnetic field using optically-pumped magnetometry: Feasibility and 

application in children. NeuroImage, 252, 119027. 

https://doi.org/10.1016/j.neuroimage.2022.119027

Brady, B., & Bardouille, T. (2022). Periodic/Aperiodic parameterization of transient 

oscillations (PAPTO)–Implications for healthy ageing. NeuroImage, 251, 118974. 

https://doi.org/10.1016/j.neuroimage.2022.118974

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.

Brodu, N., Lotte, F., & Lécuyer, A. (2011). Comparative Study of Band-Power Extraction 

Techniques for Motor Imagery Classification. 1. 

https://doi.org/10.1109/CCMB.2011.5952105

Cagnan, H., Mallet, N., Moll, C. K. E., Gulberti, A., Holt, A. B., Westphal, M., Gerloff, C., 

Engel, A. K., Hamel, W., Magill, P. J., Brown, P., & Sharott, A. (2019). Temporal 

evolution of beta bursts in the parkinsonian cortical and basal ganglia network. 

Proceedings of the National Academy of Sciences, 116(32), 16095–16104. 

https://doi.org/10.1073/pnas.1819975116

Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.-L., Defebvre, L., Derambure, P., & Guieu, 

J.-D. (2001). Does post-movement beta synchronization reflect an idling motor 

cortex? Neuroreport, 12(17), 3859–3863.

Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: A review. Experimental 

Neurology, 245, 27–39. https://doi.org/10.1016/j.expneurol.2012.08.030

Cole, S., Meij, R. van der, Peterson, E. J., Hemptinne, C. de, Starr, P. A., & Voytek, B. 

(2017). Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in 

Parkinson’s Disease. Journal of Neuroscience, 37(18), 4830–4840. 

https://doi.org/10.1523/JNEUROSCI.2208-16.2017

Cole, S., & Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. 

Trends in Cognitive Sciences, 21(2), 137–149. 

https://doi.org/10.1016/j.tics.2016.12.008

Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Neurophysiology, 122(2), 849–861. https://doi.org/10.1152/jn.00273.2019

Congedo, M., Korczowski, L., Delorme, A., & Lopes da silva, F. (2016). Spatio-temporal 

common pattern: A companion method for ERP analysis in the time domain. Journal 

of Neuroscience Methods, 267, 74–88. 

https://doi.org/10.1016/j.jneumeth.2016.04.008

Cuevas, K., Cannon, E. N., Yoo, K., & Fox, N. A. (2014). The infant EEG mu rhythm: 

Methodological considerations and best practices. Developmental Review, 34(1), 26–

43. https://doi.org/10.1016/j.dr.2013.12.001

de Cheveigné, A. (2020). ZapLine: A simple and effective method to remove power line 

artifacts. NeuroImage, 207, 116356. 

https://doi.org/10.1016/j.neuroimage.2019.116356

Diesburg, D. A., Greenlee, J. D., & Wessel, J. R. (2021). Cortico-subcortical β burst 

dynamics underlying movement cancellation in humans. ELife, 10, e70270. 

https://doi.org/10.7554/eLife.70270

Donner, T. H., Siegel, M., Fries, P., & Engel, A. K. (2009). Buildup of Choice-Predictive 

Activity in Human Motor Cortex during Perceptual Decision Making. Current Biology, 

19(18), 1581–1585. https://doi.org/10.1016/j.cub.2009.07.066

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, 

A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing 

neural power spectra into periodic and aperiodic components. Nature Neuroscience, 

23(12), Article 12. https://doi.org/10.1038/s41593-020-00744-x

Duchet, B., Ghezzi, F., Weerasinghe, G., Tinkhauser, G., Kühn, A. A., Brown, P., Bick, C., & 

Bogacz, R. (2021). Average beta burst duration profiles provide a signature of 

dynamical changes between the ON and OFF medication states in Parkinson’s 

disease. PLoS Computational Biology, 17(7), e1009116. 

https://doi.org/10.1371/journal.pcbi.1009116

Echeverria-Altuna, I., Quinn, A. J., Zokaei, N., Woolrich, M. W., Nobre, A. C., & van Ede, F. 

(2021). Transient beta activity and connectivity during sustained motor behaviour 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


[Preprint]. Neuroscience. https://doi.org/10.1101/2021.03.02.433514

Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the status quo? Current 

Opinion in Neurobiology, 20(2), 156–165. https://doi.org/10.1016/j.conb.2010.02.015

Enz, N., Ruddy, K. L., Rueda-Delgado, L. M., & Whelan, R. (2021). Volume of β-Bursts, But 

Not Their Rate, Predicts Successful Response Inhibition. Journal of Neuroscience, 

41(23), 5069–5079. https://doi.org/10.1523/JNEUROSCI.2231-20.2021

Erbil, N., & Ungan, P. (2007). Changes in the alpha and beta amplitudes of the central EEG 

during the onset, continuation, and offset of long-duration repetitive hand 

movements. Brain Research, 1169, 44–56. 

https://doi.org/10.1016/j.brainres.2007.07.014

Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta 

oscillation differentiate postperformance activity in the striatum and motor cortex of 

monkeys performing movement tasks. Proceedings of the National Academy of 

Sciences, 112(44), 13687–13692. https://doi.org/10.1073/pnas.1517629112

Fine, J. M., Moore, D., & Santello, M. (2017). Neural oscillations reflect latent learning states 

underlying dual-context sensorimotor adaptation. NeuroImage, 163, 93–105. 

https://doi.org/10.1016/j.neuroimage.2017.09.026

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, 

A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & 

Dale, A. M. (2002). Whole Brain Segmentation: Automated Labeling of 

Neuroanatomical Structures in the Human Brain. Neuron, 33(3), 341–355. 

https://doi.org/10.1016/S0896-6273(02)00569-X

Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., & Bolker, B. (2019). car:

Companion to Applied Regression. R package version 3.0-2. Website Https://CRAN. 

R-Project. Org/Package= Car [Accessed 17 March 2020].

Fransen, A. M. M., van Ede, F., & Maris, E. (2015). Identifying neuronal oscillations using 

rhythmicity. NeuroImage, 118, 256–267. 

https://doi.org/10.1016/j.neuroimage.2015.06.003

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Geng, H.-Y., Arbuthnott, G., Yung, W.-H., & Ke, Y. (2022). Long-range monosynaptic inputs 

targeting apical and basal dendrites of primary motor cortex deep output neurons. 

Cerebral Cortex, 32(18), 3975–3989. https://doi.org/10.1093/cercor/bhab460

Georgieva, S., Lester, S., Noreika, V., Yilmaz, M. N., Wass, S., & Leong, V. (2020). Toward 

the Understanding of Topographical and Spectral Signatures of Infant Movement 

Artifacts in Naturalistic EEG. Frontiers in Neuroscience, 14. 

https://www.frontiersin.org/articles/10.3389/fnins.2020.00352

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 

Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software for processing MEG and 

EEG data. NeuroImage, 86, 446–460. 

https://doi.org/10.1016/j.neuroimage.2013.10.027

Haegens, S., Nácher, V., Hernández, A., Luna, R., Jensen, O., & Romo, R. (2011). Beta 

oscillations in the monkey sensorimotor network reflect somatosensory decision 

making. Proceedings of the National Academy of Sciences, 108(26), 10708–10713. 

https://doi.org/10.1073/pnas.1107297108

Haufler, D., Liran, O., Buchanan, R. J., & Pare, D. (2022). Human anterior insula signals 

salience and deviations from expectations via bursts of beta oscillations. Journal of 

Neurophysiology. https://doi.org/10.1152/jn.00106.2022

He, W., Donoghue, T., Sowman, P. F., Seymour, R. A., Brock, J., Crain, S., Voytek, B., & 

Hillebrand, A. (2019). Co-Increasing Neuronal Noise and Beta Power in the 

Developing Brain [Preprint]. Neuroscience. https://doi.org/10.1101/839258

Heideman, S. G., Quinn, A. J., Woolrich, M. W., van Ede, F., & Nobre, A. C. (2020). 

Dissecting beta-state changes during timed movement preparation in Parkinson’s 

disease. Progress in Neurobiology, 184, 101731. 

https://doi.org/10.1016/j.pneurobio.2019.101731

Heinrichs-Graham, E., Arpin, D. J., & Wilson, T. W. (2016). Cue-related Temporal Factors 

Modulate Movement-related Beta Oscillatory Activity in the Human Motor Circuit. 

Journal of Cognitive Neuroscience, 28(7), 1039–1051. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


https://doi.org/10.1162/jocn_a_00948

Heinrichs-Graham, E., McDermott, T. J., Mills, M. S., Wiesman, A. I., Wang, Y.-P., Stephen, 

J. M., Calhoun, V. D., & Wilson, T. W. (2018). The lifespan trajectory of neural 

oscillatory activity in the motor system. Developmental Cognitive Neuroscience, 30, 

159–168. https://doi.org/10.1016/j.dcn.2018.02.013

Heinrichs-Graham, E., & Wilson, T. W. (2016). Is an absolute level of cortical beta 

suppression required for proper movement? Magnetoencephalographic evidence 

from healthy aging. NeuroImage, 134, 514–521. 

https://doi.org/10.1016/j.neuroimage.2016.04.032

Herman, P., Prasad, G., McGinnity, T. M., & Coyle, D. (2008). Comparative analysis of 

spectral approaches to feature extraction for EEG-based motor imagery 

classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering: 

A Publication of the IEEE Engineering in Medicine and Biology Society, 16(4), 317–

326. https://doi.org/10.1109/TNSRE.2008.926694

Higgins, C., van Es, M. W. J., Quinn, A. J., Vidaurre, D., & Woolrich, M. W. (2022). The 

relationship between frequency content and representational dynamics in the 

decoding of neurophysiological data. NeuroImage, 260, 119462. 

https://doi.org/10.1016/j.neuroimage.2022.119462

Houweling, S., Daffertshofer, A., van Dijk, B. W., & Beek, P. J. (2008). Neural changes 

induced by learning a challenging perceptual-motor task. NeuroImage, 41(4), 1395–

1407. https://doi.org/10.1016/j.neuroimage.2008.03.023

Howe, M. W., Atallah, H. E., McCool, A., Gibson, D. J., & Graybiel, A. M. (2011). Habit 

learning is associated with major shifts in frequencies of oscillatory activity and 

synchronized spike firing in striatum. Proceedings of the National Academy of 

Sciences, 108(40), 16801–16806. https://doi.org/10.1073/pnas.1113158108

Jackson, N., Cole, S. R., Voytek, B., & Swann, N. C. (2019). Characteristics of Waveform 

Shape in Parkinson’s Disease Detected with Scalp Electroencephalography. ENeuro,

6(3). https://doi.org/10.1523/ENEURO.0151-19.2019

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Jasper, H., & Penfield, W. (1949). Electrocorticograms in man: Effect of voluntary movement

upon the electrical activity of the precentral gyrus. Archiv Fur Psychiatrie Und 

Nervenkrankheiten, 183(1–2), 163–174. https://doi.org/10.1007/BF01062488

Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human 

sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–

355. https://doi.org/10.1016/j.neuroimage.2005.02.008

Johnson, B., Jobst, C., Al-Loos, R., He, W., & Cheyne, D. (2019). Developmental Changes 

in Movement Related Brain Activity in Early Childhood (p. 531905). bioRxiv. 

https://doi.org/10.1101/531905

Jones, E. G. (1998). Viewpoint: The core and matrix of thalamic organization. Neuroscience,

85(2), 331–345. https://doi.org/10.1016/S0306-4522(97)00581-2

Jones, E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends in 

Neurosciences, 24(10), 595–601. https://doi.org/10.1016/S0166-2236(00)01922-6

Jones, S. R., Pritchett, D. L., Sikora, M. A., Stufflebeam, S. M., Hämäläinen, M., & Moore, C.

I. (2009). Quantitative Analysis and Biophysically Realistic Neural Modeling of the 

MEG Mu Rhythm: Rhythmogenesis and Modulation of Sensory-Evoked Responses. 

Journal of Neurophysiology, 102(6), 3554–3572. 

https://doi.org/10.1152/jn.00535.2009

Karvat, G., Schneider, A., Alyahyay, M., Steenbergen, F., Tangermann, M., & Diester, I. 

(2020). Real-time detection of neural oscillation bursts allows behaviourally relevant 

neurofeedback. Communications Biology, 3(1), Article 1. 

https://doi.org/10.1038/s42003-020-0801-z

Kehnemouyi, Y. M., Wilkins, K. B., Anidi, C. M., Anderson, R. W., Afzal, M. F., & Bronte-

Stewart, H. M. (2021). Modulation of beta bursts in subthalamic sensorimotor circuits 

predicts improvement in bradykinesia. Brain, 144(2), 473–486. 

https://doi.org/10.1093/brain/awaa394

Keinrath, C., Wriessnegger, S., Müller-Putz, G. R., & Pfurtscheller, G. (2006). Post-

movement beta synchronization after kinesthetic illusion, active and passive 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


movements. International Journal of Psychophysiology, 62(2), 321–327. 

https://doi.org/10.1016/j.ijpsycho.2006.06.001

Khanna, P., & Carmena, J. M. (2017). Beta band oscillations in motor cortex reflect neural 

population signals that delay movement onset. ELife, 6, e24573. 

https://doi.org/10.7554/eLife.24573

Khawaldeh, S., Tinkhauser, G., Shah, S. A., Peterman, K., Debove, I., Nguyen, T. A. K., 

Nowacki, A., Lachenmayer, M. L., Schuepbach, M., Pollo, C., Krack, P., Woolrich, 

M., & Brown, P. (2020). Subthalamic nucleus activity dynamics and limb movement 

prediction in Parkinson’s disease. Brain, 143(2), 582–596. 

https://doi.org/10.1093/brain/awz417

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., & Riehle, A. (2013). The ups and 

downs of beta oscillations in sensorimotor cortex. Experimental Neurology, 245, 15–

26. https://doi.org/10.1016/j.expneurol.2012.09.014

Kilner, J. M., Salenius, S., Baker, S. N., Jackson, A., Hari, R., & Lemon, R. N. (2003). Task-

dependent modulations of cortical oscillatory activity in human subjects during a 

bimanual precision grip task. Neuroimage, 18(1), 67–73.

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen, Z. F., Qi, 

X.-L., Romo, R., Uchida, N., & Machens, C. K. (2016). Demixed principal component 

analysis of neural population data. ELife, 5, e10989. 

https://doi.org/10.7554/eLife.10989

Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., & Werkle-Bergner, M. (2020). Single-trial 

characterization of neural rhythms: Potential and challenges. NeuroImage, 206, 

116331. https://doi.org/10.1016/j.neuroimage.2019.116331

Law, R. G., Pugliese, S., Shin, H., Sliva, D. D., Lee, S., Neymotin, S., Moore, C., & Jones, S.

R. (2022). Thalamocortical Mechanisms Regulating the Relationship between 

Transient Beta Events and Human Tactile Perception. Cerebral Cortex, 32(4), 668–

688. https://doi.org/10.1093/cercor/bhab221

Leocani, L., & Comi, G. (2006). Movement-related event-related desynchronization in 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


neuropsychiatric disorders. In C. Neuper & W. Klimesch (Eds.), Progress in Brain 

Research (Vol. 159, pp. 351–366). Elsevier. https://doi.org/10.1016/S0079-

6123(06)59023-5

Little, S., Bonaiuto, J., Barnes, G., & Bestmann, S. (2019). Human motor cortical beta bursts 

relate to movement planning and response errors. PLOS Biology, 17(10), e3000479. 

https://doi.org/10.1371/journal.pbio.3000479

Little, S., & Brown, P. (2014). The functional role of beta oscillations in Parkinson’s disease. 

Parkinsonism & Related Disorders, 20, S44–S48. https://doi.org/10.1016/S1353-

8020(13)70013-0

Llera, A., Gómez, V., & Kappen, H. J. (2014). Adaptive multiclass classification for brain 

computer interfaces. Neural Computation, 26(6), 1108–1127. 

https://doi.org/10.1162/NECO_a_00592

Lofredi, R., Tan, H., Neumann, W.-J., Yeh, C.-H., Schneider, G.-H., Kühn, A. A., & Brown, P.

(2019). Beta bursts during continuous movements accompany the velocity 

decrement in Parkinson’s disease patients. Neurobiology of Disease, 127, 462–471. 

https://doi.org/10.1016/j.nbd.2019.03.013

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. 

(2018). A review of classification algorithms for EEG-based brain-computer 

interfaces: A 10 year update. Journal of Neural Engineering, 15(3), 031005. 

https://doi.org/10.1088/1741-2552/aab2f2

Marshall, T. R., Quinn, A. J., Jensen, O., & Bergmann, T. O. (2022). Transcranial Direct 

Current Stimulation Alters the Waveform Shape of Cortical Gamma Oscillations 

[Preprint]. Neuroscience. https://doi.org/10.1101/2022.04.25.489371

McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., & Kopell, N. (2011). 

Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings 

of the National Academy of Sciences, 108(28), 11620–11625. 

https://doi.org/10.1073/pnas.1107748108

McFarland, D. J., Miner, L. A., Vaughan, T. M., & Wolpaw, J. R. (2000). Mu and Beta 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Rhythm Topographies During Motor Imagery and Actual Movements. Brain 

Topography, 12(3), 177–186. https://doi.org/10.1023/A:1023437823106

Meirovitch, Y., Harris, H., Dayan, E., Arieli, A., & Flash, T. (2015). Alpha and Beta Band 

Event-Related Desynchronization Reflects Kinematic Regularities. Journal of 

Neuroscience, 35(4), 1627–1637. https://doi.org/10.1523/JNEUROSCI.5371-13.2015

Meyer, S. S., Bonaiuto, J., Lim, M., Rossiter, H., Waters, S., Bradbury, D., Bestmann, S., 

Brookes, M., Callaghan, M. F., Weiskopf, N., & Barnes, G. R. (2017). Flexible head-

casts for high spatial precision MEG. Journal of Neuroscience Methods, 276, 38–45. 

https://doi.org/10.1016/j.jneumeth.2016.11.009

Miller, D. B., & O’Callaghan, J. P. (2015). Biomarkers of Parkinson’s disease: Present and 

future. Metabolism, 64(3, Supplement 1), S40–S46. 

https://doi.org/10.1016/j.metabol.2014.10.030

Miller, K. J., Schalk, G., Fetz, E. E., den Nijs, M., Ojemann, J. G., & Rao, R. P. N. (2010). 

Cortical activity during motor execution, motor imagery, and imagery-based online 

feedback. Proceedings of the National Academy of Sciences of the United States of 

America, 107(9), 4430–4435. https://doi.org/10.1073/pnas.0913697107

Mo, C., & Sherman, S. M. (2019). A Sensorimotor Pathway via Higher-Order Thalamus. 

Journal of Neuroscience, 39(4), 692–704. https://doi.org/10.1523/JNEUROSCI.1467-

18.2018

Moca, V. V., Bârzan, H., Nagy-Dăbâcan, A., & Mureșan, R. C. (2021). Time-frequency 

super-resolution with superlets. Nature Communications, 12(1), 337. 

https://doi.org/10.1038/s41467-020-20539-9

Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor 

cortex of awake behaving monkeys. Proceedings of the National Academy of 

Sciences, 89(12), 5670–5674. https://doi.org/10.1073/pnas.89.12.5670

Nakagawa, K., Aokage, Y., Fukuri, T., Kawahara, Y., Hashizume, A., Kurisu, K., & Yuge, L. 

(2011). Neuromagnetic beta oscillation changes during motor imagery and motor 

execution of skilled movements: NeuroReport, 22(5), 217–222. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


https://doi.org/10.1097/WNR.0b013e328344b480

Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas, M., 

Moore, C. I., Hines, M. L., Hämäläinen, M., & Jones, S. R. (2020). Human 

Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and 

network origin of human MEG/EEG data. ELife, 9, e51214. 

https://doi.org/10.7554/eLife.51214

Papadopoulos, S., Bonaiuto, J., & Mattout, J. (2022). An Impending Paradigm Shift in Motor 

Imagery Based Brain-Computer Interfaces. Frontiers in Neuroscience, 15, 824759. 

https://doi.org/10.3389/fnins.2021.824759

Pauls, K. A. M., Korsun, O., Nenonen, J., Nurminen, J., Liljeström, M., Kujala, J., Pekkonen, 

E., & Renvall, H. (2022). Cortical beta burst dynamics are altered in Parkinson’s 

disease but normalized by deep brain stimulation. NeuroImage, 257, 119308. 

https://doi.org/10.1016/j.neuroimage.2022.119308

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in 

Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming 

numbers into movies. Spatial Vision.

Perone, S., & Gartstein, M. A. (2019). Mapping cortical rhythms to infant behavioral 

tendencies via baseline EEG and parent-report. Developmental Psychobiology, 

61(6), 815–823. https://doi.org/10.1002/dev.21867

Pfurtscheller, G. (1981). Central beta rhythm during sensorimotor activities in man. 

Electroencephalography and Clinical Neurophysiology, 51(3), 253–264. 

https://doi.org/10.1016/0013-4694(81)90139-5

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization 

and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–

1857. https://doi.org/10.1016/S1388-2457(99)00141-8

Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


communication. Proceedings of the IEEE, 89(7), 1123–1134. 

https://doi.org/10.1109/5.939829

Pfurtscheller, G., Stancák, A., & Edlinger, G. (1997). On the existence of different types of 

central beta rhythms below 30 Hz. Electroencephalography and Clinical 

Neurophysiology, 102(4), 316–325. https://doi.org/10.1016/S0013-4694(96)96612-2

Pfurtscheller, G., Stancák, A., & Neuper, Ch. (1996). Event-related synchronization (ERS) in 

the alpha band — an electrophysiological correlate of cortical idling: A review. 

International Journal of Psychophysiology, 24(1), 39–46. 

https://doi.org/10.1016/S0167-8760(96)00066-9

Picazio, S., Veniero, D., Ponzo, V., Caltagirone, C., Gross, J., Thut, G., & Koch, G. (2014). 

Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement 

Inhibition. Current Biology, 24(24), 2940–2945. 

https://doi.org/10.1016/j.cub.2014.10.043

Pogosyan, A., Gaynor, L. D., Eusebio, A., & Brown, P. (2009). Boosting Cortical Activity at 

Beta-Band Frequencies Slows Movement in Humans. Current Biology, 19(19), 1637–

1641. https://doi.org/10.1016/j.cub.2009.07.074

Pollok, B., Latz, D., Krause, V., Butz, M., & Schnitzler, A. (2014). Changes of motor-cortical 

oscillations associated with motor learning. Neuroscience, 275, 47–53. 

https://doi.org/10.1016/j.neuroscience.2014.06.008

Porr, B., & Howell, L. (2019). R-peak detector stress test with a new noisy ECG database 

reveals significant performance differences amongst popular detectors [Preprint]. 

Bioengineering. https://doi.org/10.1101/722397

Pratt, J. W., & Gibbons, J. D. (1981). Kolmogorov-Smirnov Two-Sample Tests. In J. W. Pratt

& J. D. Gibbons, Concepts of Nonparametric Theory (pp. 318–344). Springer New 

York.

Quinn, A. J., Lopes-dos-Santos, V., Huang, N., Liang, W.-K., Juan, C.-H., Yeh, J.-R., Nobre, 

A. C., Dupret, D., & Woolrich, M. W. (2021). Within-cycle instantaneous frequency 

profiles report oscillatory waveform dynamics. BioRxiv, 2021.04.12.439547. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


https://doi.org/10.1101/2021.04.12.439547

R Core Team. (2022). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing.

Rayson, H., Debnath, R., Alavizadeh, S., Fox, N., Ferrari, P. F., & Bonaiuto, J. J. (2022). 

Detection and analysis of cortical beta bursts in developmental EEG data. 

Developmental Cognitive Neuroscience, 54, 101069. 

https://doi.org/10.1016/j.dcn.2022.101069

Rempe, M. P., Lew, B. J., Embury, C. M., Christopher-Hayes, N. J., Schantell, M., & Wilson, 

T. W. (2022). Spontaneous sensorimotor beta power and cortical thickness uniquely 

predict motor function in healthy aging. NeuroImage, 263, 119651. 

https://doi.org/10.1016/j.neuroimage.2022.119651

Reuter, E.-M., Booms, A., & Leow, L.-A. (2022). Using EEG to study sensorimotor 

adaptation. Neuroscience & Biobehavioral Reviews, 134, 104520. 

https://doi.org/10.1016/j.neubiorev.2021.104520

Rhodes, E., Gaetz, W. C., Marsden, J., & Hall, S. D. (2018). Transient Alpha and Beta 

Synchrony Underlies Preparatory Recruitment of Directional Motor Networks. Journal

of Cognitive Neuroscience, 30(6), 867–875. https://doi.org/10.1162/jocn_a_01250

Ridgway, G. R., Litvak, V., Flandin, G., Friston, K. J., & Penny, W. D. (2012). The problem of

low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’. 

NeuroImage, 59(3), 2131–2141. https://doi.org/10.1016/j.neuroimage.2011.10.027

Rossi, C., & Van Schependom, J. (2022). Two approaches to tackle the sign ambiguity of 

beamformed MEG source-reconstructed data. International Conference on 

Biomagnetism.

Rossiter, H. E., Davis, E. M., Clark, E. V., Boudrias, M.-H., & Ward, N. S. (2014). Beta 

oscillations reflect changes in motor cortex inhibition in healthy ageing. NeuroImage, 

91, 360–365. https://doi.org/10.1016/j.neuroimage.2014.01.012

Salenius, S., & Hari, R. (2003). Synchronous cortical oscillatory activity during motor action. 

Current Opinion in Neurobiology, 13(6), 678–684. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


https://doi.org/10.1016/j.conb.2003.10.008

Schmidt, S. L., Peters, J. J., Turner, D. A., & Grill, W. M. (2020). Continuous deep brain 

stimulation of the subthalamic nucleus may not modulate beta bursts in patients with 

Parkinson’s disease. Brain Stimulation, 13(2), 433–443. 

https://doi.org/10.1016/j.brs.2019.12.008

Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., Moore, C. 

I., & Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: 

Converging evidence from humans, computational modeling, monkeys, and mice. 

Proceedings of the National Academy of Sciences, 113(33), E4885–E4894. 

https://doi.org/10.1073/pnas.1604135113

Shin, H., Law, R., Tsutsui, S., Moore, C. I., & Jones, S. R. (2017). The rate of transient beta 

frequency events predicts behavior across tasks and species. ELife, 6, e29086. 

https://doi.org/10.7554/eLife.29086

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing 

problems of smoothing, threshold dependence and localisation in cluster inference. 

NeuroImage, 44(1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061

Song, X., Yoon, S.-C., & Perera, V. (2013). Adaptive Common Spatial Pattern for single-trial 

EEG classification in multisubject BCI. 2013 6th International IEEE/EMBS 

Conference on Neural Engineering (NER), 411–414. 

https://doi.org/10.1109/NER.2013.6695959

Sporn, S., Hein, T., & Herrojo Ruiz, M. (2020). Alterations in the amplitude and burst rate of 

beta oscillations impair reward-dependent motor learning in anxiety. ELife, 9, 

e50654. https://doi.org/10.7554/eLife.50654

Tan, H., Jenkinson, N., & Brown, P. (2014). Dynamic neural correlates of motor error 

monitoring and adaptation during trial-to-trial learning. The Journal of Neuroscience: 

The Official Journal of the Society for Neuroscience, 34(16), 5678–5688. 

https://doi.org/10.1523/JNEUROSCI.4739-13.2014

Tan, H., Wade, C., & Brown, P. (2016). Post-Movement Beta Activity in Sensorimotor Cortex

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Indexes Confidence in the Estimations from Internal Models. Journal of 

Neuroscience, 36(5), 1516–1528. https://doi.org/10.1523/JNEUROSCI.3204-15.2016

Thaler, L., Schütz, A. C., Goodale, M. A., & Gegenfurtner, K. R. (2013). What is the best 

fixation target? The effect of target shape on stability of fixational eye movements. 

Vision Research, 76, 31–42. https://doi.org/10.1016/j.visres.2012.10.012

Tinkhauser, G., Pogosyan, A., Little, S., Beudel, M., Herz, D. M., Tan, H., & Brown, P. 

(2017). The modulatory effect of adaptive deep brain stimulation on beta bursts in 

Parkinson’s disease. Brain: A Journal of Neurology, 140(4), 1053–1067. 

https://doi.org/10.1093/brain/awx010

Tinkhauser, G., Pogosyan, A., Tan, H., Herz, D. M., Kühn, A. A., & Brown, P. (2017). Beta 

burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain,

140(11), 2968–2981. https://doi.org/10.1093/brain/awx252

Titova, N., & Chaudhuri, K. R. (2017). Personalized medicine in Parkinson’s disease: Time 

to be precise. Movement Disorders, 32(8), 1147–1154. 

https://doi.org/10.1002/mds.27027

Torrecillos, F., Tinkhauser, G., Fischer, P., Green, A. L., Aziz, T. Z., Foltynie, T., Limousin, 

P., Zrinzo, L., Ashkan, K., Brown, P., & Tan, H. (2018). Modulation of Beta Bursts in 

the Subthalamic Nucleus Predicts Motor Performance. Journal of Neuroscience, 

38(41), 8905–8917. https://doi.org/10.1523/JNEUROSCI.1314-18.2018

Trevarrow, M. P., Kurz, M. J., McDermott, T. J., Wiesman, A. I., Mills, M. S., Wang, Y.-P., 

Calhoun, V. D., Stephen, J. M., & Wilson, T. W. (2019). The developmental trajectory

of sensorimotor cortical oscillations. NeuroImage, 184, 455–461. 

https://doi.org/10.1016/j.neuroimage.2018.09.018

Tzagarakis, C., Ince, N. F., Leuthold, A. C., & Pellizzer, G. (2010). Beta-Band Activity during 

Motor Planning Reflects Response Uncertainty. Journal of Neuroscience, 30(34), 

11270–11277. https://doi.org/10.1523/JNEUROSCI.6026-09.2010

Tzagarakis, C., West, S., & Pellizzer, G. (2015). Brain oscillatory activity during motor 

preparation: Effect of directional uncertainty on beta, but not alpha, frequency band. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00246

van Wijk, B. C. M., Daffertshofer, A., Roach, N., & Praamstra, P. (2009). A Role of Beta 

Oscillatory Synchrony in Biasing Response Competition? Cerebral Cortex, 19(6), 

1294–1302. https://doi.org/10.1093/cercor/bhn174

Vidaurre, D., Quinn, A. J., Baker, A. P., Dupret, D., Tejero-Cantero, A., & Woolrich, M. W. 

(2016). Spectrally resolved fast transient brain states in electrophysiological data. 

NeuroImage, 126, 81–95. https://doi.org/10.1016/j.neuroimage.2015.11.047

Vieira, V. M. N. C. S. (2012). Permutation tests to estimate significances on Principal 

Components Analysis. Computational Ecology and Software, 2(2), 103–124.

Walsh, C., Ridler, T., Margetts-Smith, G., Garrido, M. G., Witton, J., Randall, A. D., & Brown,

J. T. (2022). Beta bursting in the retrosplenial cortex is a neurophysiological correlate

of environmental novelty which is disrupted in a mouse model of Alzheimer’s 

disease. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.0890-

21.2022

Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian adaptive psychometric method. 

Perception & Psychophysics, 33(2), 113–120. https://doi.org/10.3758/BF03202828

Wessel, J. R. (2020). β-Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation and

Cancellation. Journal of Neuroscience, 40(2), 411–423. 

https://doi.org/10.1523/JNEUROSCI.1887-19.2019

Wessel, J. R., & Aron, A. R. (2017). On the Globality of Motor Suppression: Unexpected 

Events and Their Influence on Behavior and Cognition. Neuron, 93(2), 259–280. 

https://doi.org/10.1016/j.neuron.2016.12.013

West, T. O., Duchet, B., Farmer, S. F., Friston, K. J., & Cagnan, H. (2022). When do bursts 

matter in the motor cortex? Investigating changes in the intermittencies of beta 

rhythms associated with movement states [Preprint]. Neuroscience. 

https://doi.org/10.1101/2022.06.22.497199

Wu, S., & Wang, J. (2014). Nonnegative matrix factorization: When data is not nonnegative. 

2014 7th International Conference on Biomedical Engineering and Informatics, 227–

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


231. https://doi.org/10.1109/BMEI.2014.7002775

Yeh, C.-H., Al-Fatly, B., Kühn, A. A., Meidahl, A. C., Tinkhauser, G., Tan, H., & Brown, P. 

(2020). Waveform changes with the evolution of beta bursts in the human 

subthalamic nucleus. Clinical Neurophysiology, 131(9), 2086–2099. 

https://doi.org/10.1016/j.clinph.2020.05.035

Zhang, W., & Bruno, R. M. (2019). High-order thalamic inputs to primary somatosensory 

cortex are stronger and longer lasting than cortical inputs. ELife, 8, e44158. 

https://doi.org/10.7554/eLife.44158

Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition:

The role of the cortical sensorimotor beta rhythm. Neuroscience, 156(1), 238–246. 

https://doi.org/10.1016/j.neuroscience.2008.06.061

Zich, C., Quinn, A. J., Bonaiuto, J. J., O’Neill, G., Mardell, L. C., Ward, N. S., & Bestmann, S.

(2022). Spatiotemporal organization of human sensorimotor beta burst activity. 

BioRxiv.

Zich, C., Quinn, A. J., Mardell, L. C., Ward, N. S., & Bestmann, S. (2020). Dissecting 

Transient Burst Events. Trends in Cognitive Sciences, 24(10), 784–788. 

https://doi.org/10.1016/j.tics.2020.07.004

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520225
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figures

Figure S1. (A) Mean lagged coherence over subjects during the visual epochs from 5 to 40
Hz and 1.5 to 5 cycles. Lagged coherence is high in the alpha and beta bands from 1.5 to 2
cycles, but then drops off more quickly in the beta band with increasing cycles. (B) As in A
during the motor epochs. (C) Lagged coherence during the visual (black lines) and motor
(red lines) averaged over the alpha (dashed lines) and beta (solid lines) frequency bands.
Half of the FWHM (dotted lines) was used to define the width of the time window for burst
waveform extraction.
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Figure S2.  (A-R) For each significant component, mean burst waveform shapes of bursts
with a score within the 0 - 10th (cyan) to 90 - 100th (magenta) percentile of all burst scores
for that component (left panels). The panels on the right show the time course of the mean
burst score (solid line; shaded region shows SEM) for each component during the visual and
motor epochs.
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Figure S3. (A-R) The mean waveforms of bursts with scores in each quartile of the range of
scores for PCs 1-18 (left panels, colored lines) and the mean overall burst waveform (black),
and the mean burst rate over time and across the range of component scores during the
visual and motor epochs (middle panels). The gray overlays obscure the time points and
score ranges where the rate did not differ from the baseline rate. The horizontal dashed lines
indicate the quartile limits. The mean baseline-corrected rate of bursts with scores in each
quartile  of  the  range  of  scores  along  each  component  (right  panels,  colored  lines,  the
shaded area indicates the SEM) over the course of the visual and motor epochs. The black
line represents the mean rate of all bursts (the shaded area indicates the SEM).
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Figure S4.  (A-D)  The relationship  between burst  duration (A),  peak amplitude (B),  peak
frequency (C), and frequency span (D) with PC 7 score. (E-P) As in A-D for PC 8 (E-H), PC
9 (I-L), and PC 10 (M-P).
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Figure  S5.  The  distributions  of  burst  duration,  peak  amplitude,  peak  frequency,  and
frequency span for all bursts, and separately for bursts with scores in the 1st - 4th percentile
of  components  7  (A-D),  8  (E-H),  9  (I-L),  and  10 (M-P).  The  gray  histograms show the
distribution  of  each  feature  for  all  bursts,  and  the  colored  histograms  represent  the
distributions of bursts with scores from the 1st (cyan) to 4th (magenta) quartile for each
component.
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Figure S6. (A) The correlation (Spearman’s ) between temporal offset of the proximal and⍴
distal drives and the score of the simulated burst waveforms for each PC. The gray rectangle
highlights  the  selected  task-modulated  components  (7-10).  (B)  The  mean  score  of  the
simulated bursts at each level of temporal offset tested (shaded area shows SD), for each
PC.  The  vertical  dashed  line  indicates  the  value  used  in  the  base  simulations.  The
histograms show the distribution of scores for each PC for bursts from the human MEG data.
(C-J) As in (A-B) for distal drive strength (C-D), proximal drive strength (E-F), distal drive
width (G-H), and proximal drive width (I-J).

Table  S1.  The  mean  and  standard  deviation  of  burst  duration,  peak  amplitude,  peak
frequency,  and  frequency  span  for  bursts  with  scores  in  the  1st  -  4th  percentile  of
components 7, 8, 9, and 10.

Quartile Duration (ms) Peak 
amplitude (fT)

Peak 
frequency (Hz)

Frequency 
span (Hz)

PC 7 1 M = 179.48, SD 
= 92.93

M = 17.98, SD 
= 11.89

M = 23.95, SD 
= 4.37

M = 2.06, M = 
0.84

2 M = 172.72, SD 
= 90.71

M = 15.30, SD 
= 9.75

M = 21.71, SD 
= 4.73

M = 1.91, SD = 
0.75

3 M = 180.65, SD 
= 93.93

M = 16.46, SD 
= 10.07

M = 20.31, SD 
= 4.52

M = 1.93, SD = 
0.75

4 M = 207.32, SD 
= 106.73

M = 25.89, SD 
= 16.87

M = 19.45, SD 
= 4.13

M = 2.14, SD = 
0.90

PC 8 1 M = 180.64, SD 
= 93.72

M = 16.61, SD 
= 11.77

M = 20.68, SD 
= 5.72

M = 1.90, SD = 
0.74

2 M = 173.51, SD 
= 90.41

M = 14.90, SD 
= 9.51

M = 21.49, SD 
= 4.81

M = 1.91, SD = 
0.73
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3 M = 181.36, SD 
= 94.23

M = 17.22, SD 
= 10.15

M = 21.61, SD 
= 4.31

M = 2.00, SD = 
0.78

4 M = 204.66, SD 
= 106.72

M = 26.90, SD 
= 16.47

M = 21.64, SD 
= 3.94

M = 2.24, SD = 
0.96

PC 9 1 M = 180.87, SD 
= 94.92

M = 18.59, SD 
= 12.94

M = 21.41, SD 
= 5.08

M = 1.97, SD = 
0.78

2 M = 183.39, SD 
= 95.76

M = 16.43, SD 
= 10.91

M = 20.96, SD 
= 4.91

M = 1.96, SD = 
0.78

3 M = 183.94, SD 
= 96.01

M = 17.4, SD = 
11.42

M = 21.22, SD 
= 4.67

M = 1.99, SD = 
0.80

4 M = 191.97, SD 
= 101.52

M = 23.21, SD 
= 15.72

M = 21.82, SD 
= 4.29

M = 2.12, SD = 
0.89

PC 
10

1 M = 177.81, SD 
= 94.09

M = 18.59, SD 
= 12.94

M = 20.00, SD 
= 4.86

M = 1.87, SD = 
0.72

2 M = 177.95, SD 
= 92.71

M = 16.43, SD 
= 10.91

M = 21.25, SD 
= 4.75

M = 1.93, SD = 
0.74

3 M = 183.03, SD 
= 95.17

M = 17.4, SD = 
11.42

M = 21.85, SD 
= 4.61

M = 2.02, SD = 
0.80

4 M = 201.37, SD 
= 104.39

M = 23.21, SD 
= 15.72

M = 22.32, SD 
= 4.48

M = 2.22, M = 
0.95

Table S2. Pairwise, Bonferonni-corrected comparisons between the quartiles of PCs 7, 8, 9,
and 10 in terms of the distribution of burst duration.

1st - 2nd 1st - 3rd 1st - 4th 2nd - 3rd 2nd - 4th 3rd - 4th

PC 7 D = 0.050, 
p < 0.001

D = 0.030, 
p < 0.001

D = 0.127, 
p < 0.001

D = 0.056, 
p < 0.001

D = 0.177, 
p < 0.001

D = 0.134, 
p < 0.001

PC 8 D = 0.048, 
p < 0.001

D = 0.036, 
p < 0.001

D = 0.086, 
p < 0.001

D = 0.044, 
p < 0.001

D = 0.143, 
p < 0.001

D = 0.108, 
p < 0.001

PC 9 D = 0.022, 
p < 0.001

D = 0.026, 
p < 0.001

D = 0.042, 
p < 0.001

D = 0.005, 
p < 0.001

D = 0.037, 
p < 0.001

D = 0.037, 
p < 0.001

PC 10 D = 0.023, 
p < 0.001

D = 0.038, 
p < 0.001

D = 0.107, 
p < 0.001

D = 0.025, 
p < 0.001

D = 0.115, 
p < 0.001

D = 0.092, 
p < 0.001

Table S3. Pairwise, Bonferonni-corrected comparisons between the quartiles of PCs 7, 8, 9,
and 10 in terms of the distribution of burst peak amplitude.

1st - 2nd 1st - 3rd 1st - 4th 2nd - 3rd 2nd - 4th 3rd - 4th
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PC 7 D = 0.108, 
p < 0.001

D = 0.054, 
p < 0.001

D = 0.242, 
p < 0.001

D = 0.064, 
p < 0.001

D = 0.344, 
p < 0.001

D = 0.296, 
p < 0.001

PC 8 D = 0.059, 
p < 0.001

D = 0.080, 
p < 0.001

D = 0.351, 
p < 0.001

D = 0.126, 
p < 0.001

D = 0.411, 
p < 0.001

D = 0.313, 
p < 0.001

PC 9 D = 0.075, 
p < 0.001

D = 0.036, 
p < 0.001

D = 0.148, 
p < 0.001

D = 0.040, 
p < 0.001

D = 0.222, 
p < 0.001

D = 0.184, 
p < 0.001

PC 10 D = 0.053, 
p < 0.001

D = 0.045, 
p < 0.001

D = 0.274, 
p < 0.001

D = 0.085, 
p < 0.001

D = 0.326, 
p < 0.001

D = 0.255, 
p < 0.001

Table S4. Pairwise, Bonferonni-corrected comparisons between the quartiles of PCs 7, 8, 9,
and 10 in terms of the distribution of burst peak frequency.

1st - 2nd 1st - 3rd 1st - 4th 2nd - 3rd 2nd - 4th 3rd - 4th

PC 7 D = 0.227, 
p < 0.001

D = 0.374, 
p < 0.001

D = 0.472, 
p < 0.001

D = 0.156, 
p < 0.001

D = 0.261, 
p < 0.001

D = 0.107, 
p < 0.001

PC 8 D = 0.173, 
p < 0.001

D = 0.238, 
p < 0.001

D = 0.278, 
p < 0.001

D = 0.070, 
p < 0.001

D = 0.117, 
p < 0.001

D = 0.048, 
p < 0.001

PC 9 D = 0.050, 
p < 0.001

D = 0.049, 
p < 0.001

D = 0.113, 
p < 0.001

D = 0.047, 
p < 0.001

D = 0.135, 
p < 0.001

D = 0.092, 
p < 0.001

PC 10 D = 0.153, 
p < 0.001

D = 0.232, 
p < 0.001

D = 0.294, 
p < 0.001

D = 0.085, 
p < 0.001

D = 0.153, 
p < 0.001

D = 0.070, 
p < 0.001

Table S5. Pairwise, Bonferonni-corrected comparisons between the quartiles of PCs 7, 8, 9,
and 10 in terms of the distribution of frequency span.

1st - 2nd 1st - 3rd 1st - 4th 2nd - 3rd 2nd - 4th 3rd - 4th

PC 7 D = 0.078, 
p < 0.001

D = 0.069, 
p < 0.001

D = 0.042, 
p < 0.001

D = 0.016, 
p < 0.001

D = 0.120, 
p < 0.001

D = 0.111, 
p < 0.001

PC 8 D = 0.017, 
p < 0.001

D = 0.063, 
p < 0.001

D = 0.174, 
p < 0.001

D = 0.055, 
p < 0.001

D = 0.171, 
p < 0.001

D = 0.115, 
p < 0.001

PC 9 D = 0.004, 
p < 0.001

D = 0.013, 
p < 0.001

D = 0.076, 
p < 0.001

D = 0.017, 
p < 0.001

D = 0.081, 
p < 0.001

D = 0.064, 
p < 0.001

PC 10 D = 0.044, 
p < 0.001

D = 0.084, 
p < 0.001

D = 0.184, 
p < 0.001

D = 0.050, 
p < 0.001

D = 0.150, 
p < 0.001

D = 0.100, 
p < 0.001
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