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Abstract 39 

Genome-wide association studies (GWASs) have revolutionized our understanding of the 40 

genetics of complex diseases, such as osteoporosis; however, the challenge has been 41 

converting associations to causal genes. Studies have demonstrated the utility of 42 

transcriptomics data in linking disease-associated variants to genes; though for osteoporosis, 43 

few population transcriptomics datasets have been generated on bone or bone cells, and an 44 

even smaller number have profiled individual cell-types. To begin to evaluate approaches to 45 

address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells 46 

(BMSCs) cultured under osteogenic conditions, a popular model of osteoblast differentiation and 47 

activity, from five Diversity Outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal 48 

of the study was to determine if BMSCs could serve as a model for the generation of cell-type 49 

specific transcriptomic profiles of mesenchymal lineage cells derived from large populations of 50 

mice to inform genetic studies. We demonstrate that dissociation of BMSCs from a heavily 51 

mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we 52 

show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with 53 

characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), 54 

osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were nearly identical 55 

from a transcriptomic perspective to cells isolated directly from bone. We also demonstrated the 56 

ability to multiplex single cells and subsequently assign cells to their “mouse-of-origin” using 57 

demultiplexing approaches based on genotypes inferred from coding SNPs. We employed 58 

scRNA-seq analytical tools to confirm the biological identity of profiled cell-types. SCENIC was 59 

used to reconstruct gene regulatory networks (GRNs) and we showed that identified cell-types 60 

show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT 61 

analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant 62 

component of BMD heritability. Together, these data suggest that BMSCs cultured under 63 

osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically 64 
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informative model to generate cell-type specific transcriptomic profiles of mesenchymal lineage 65 

cells in large mouse, and potentially human, populations.  66 

 67 
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Introduction 86 

Osteoporosis is a disease characterized by low bone mineral density (BMD) and an 87 

increased risk of fracture1. Osteoporosis-related quantitative traits, such as BMD, are highly 88 

heritable2 and genome-wide association studies (GWASs) for BMD have identified over 1,100 89 

independent associations3. The goal of BMD GWAS is to identify the responsible causal 90 

genes4,5. However, this is often difficult due to challenges, such as linkage disequilibrium 91 

between potentially causal variants5 and the observation that most associations implicate non-92 

coding variation6. The generation of transcriptomics data and use of systems genetics 93 

approaches to interpret GWAS can address these limitations by assisting in prioritizing 94 

putatively-causal genes for further investigation7,8.  95 

The utility of transcriptomic data to inform BMD GWAS has been demonstrated through 96 

studies using approaches such as expression quantitative trait locus (eQTL) mapping and 97 

colocalization9–11, transcriptome-wide association studies (TWASs)12,13, and reconstruction of 98 

transcriptomic networks (e.g., gene-regulatory and co-expression networks)14–16. These studies 99 

have utilized bone, non-bone (e.g., the Gene Tissue Expression (GTEx) project)17, and mouse 100 

bone transcriptomic data. However, all of the transcriptomic data used to inform BMD GWAS to 101 

date has been generated using bulk RNA-seq. These samples are a mixture of data derived 102 

from all cells associated with a particular microenvironment and downstream data analysis is 103 

often constrained by the inability to definitively attribute transcriptomic signatures to a single 104 

cell-type18. Further, signals from potentially rare cell-types can be masked by the presence of 105 

more abundant cell populations19. As a result, there is currently a need to generate population-106 

scale (i.e., hundreds of samples) cell-type specific expression data on cells directly relevant to 107 

bone to aid in the identification of causal BMD GWAS genes.  108 

In recent years, single-cell RNA-seq (scRNA-seq) has enabled the efficient generation of 109 

high-quality transcriptomes in individual cells20. ScRNA-seq can remedy the aforementioned 110 
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challenges posed with bulk RNA-seq by enabling the generation of single-cell transcriptomic 111 

profiles from heterogeneous tissues or primary cell cultures. ScRNA-seq has provided 112 

significant insight into the landscape of bone cell-types21–25. However, we still lack cost-effective 113 

approaches capable of generating scRNA-seq data at scale for key bone cell-types. 114 

Here, we explored the use of bone-marrow derived stromal cells (BMSCs) cultured 115 

under osteogenic conditions (BMSC-OBs), a popular in vitro model of osteoblast differentiation, 116 

to address the above limitations by generating scRNA-seq data on cells of the mesenchymal 117 

lineage. We sought to explore technical challenges, cellular heterogeneity, and compare 118 

cultured cells to the same cells isolated directly from bone. We show that this approach not only 119 

enriches for osteogenic cells, but is a scalable approach capable of generating biologically 120 

informative cell-type specific transcriptomic profiles relevant to BMD GWAS. Our results suggest 121 

that scRNA-seq of BMSC-OBs has the potential to enable the large-scale generation of cell-type 122 

specific transcriptomic data on mesenchymal lineage cells that can be used to inform genetic 123 

studies in mice and potentially humans. 124 

 125 

Results 126 

BMSC cultures grown under osteogenic differentiation conditions are heterogenous: 127 

We isolated BMSCs from five Diversity Outbred (DO) mice (N=4 males and N=1 female). The 128 

DO is a genetically diverse outbred population derived from eight inbred laboratory strains26. We 129 

have previously used the DO to perform GWAS for bone strength traits16. BMSCs were cultured 130 

under osteogenic conditions for 10 days and demonstrated mineralized nodules as previously 131 

shown in 16. After differentiation, cells were liberated from mineralized cultures and profiled 132 

using scRNA-seq. After stringent pre-processing and quality control of the data (Methods), 133 

17,457 genes were identified in 7357 cells across all five mice. Unsupervised clustering 134 

identified eight distinct cell clusters ranging in size from 46 to 2367 cells (Figure 1A).  135 
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 136 

We manually annotated the cell-type identity of each cluster using the “FindAllMarkers” 137 

function in Seurat27 to highlight differentially expressed genes (DEGs) for each cluster relative to 138 

all other clusters (Supplemental Data 1). As a framework, we used the nomenclature of Zhong 139 

et al. (2020) who labeled, isolated, and sequenced single cells from bone marrow using Col2-140 

Cre Rosa26 <lsl-tdTomato> reporter mice23. In these mice, tdTomato (Td) labels cells spanning 141 

the mesenchymal lineage. From Td+ cells, three types of mesenchymal progenitors were 142 

identified: early (EMPs), intermediate (IMPs), and late (LMPs). None of the BMSC-OB clusters 143 

reported here had signatures of EMPs or IMPs (Figure 1A); however, cluster 0 (32.2% of the 144 

cells) had high expression of marker genes associated with LMPs, such as Aspn, Timp3, Thbs2, 145 

and Itm2a (Figure 1A, 1B). Clusters 1, 2, and 4, (49.7% of the cells) all had signatures of cells 146 

in the osteoblast lineage. Mature osteoblasts (Cluster 1) exhibited expression of Bglap and 147 

Mepe, while Cluster 4 had a transcriptomic signature of osteocyte-like cells with high expression 148 

of Bambi and Sost (Figure 1A, 1B). Cells in Cluster 2 resembled an osteoblast progenitor 149 

(OBP) population differentiating into mature osteoblasts and expressed genes such as Sgms2, 150 

Ifitm5, and P4ha1 (Figure 1A, 1B). Marrow adipogenic lineage precursors (MALPs), identified 151 

as a novel component of bone marrow in Zhong et al. (2020) were represented in Cluster 3 152 

(accounting for 9.7% of the cells) and expressed known MALP markers (Cxcl12, Adipoq, H19, 153 

Hp, Lpl) (Figure 1A, 1B). Cluster 5, 6, and 7 (8.3% of the cells) were cells not associated with 154 

the mesenchymal cell lineage and have transcriptomic signatures of immune cells derived from 155 

the hematopoietic cell lineage (Figure 1A, 1B). Trajectory analysis (cell lineage and pseudotime 156 

inference) using Slingshot28 on the mesenchymal lineages revealed the expected bifurcating 157 

lineage relationship in which LMPs give rise to MALPs and osteoblast progenitors/osteoblasts, 158 

independently, with osteocyte-like cells downstream of osteoblasts (Figure 1C). The expression 159 
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of marker genes representative of all cell-types as a function of pseudotime were consistent with 160 

cell-type annotations (Figure 1D).  161 

Figure 1: ScRNA-seq of BMSC-OBs identifies multiple cell-types. A) UMAP cell clusters of 162 
7357 single BMSC-OBs isolated from five Diversity Outbred (DO) mice. Cell numbers and 163 
corresponding percentages are listed in parenthesis to the right of the annotated cluster name. 164 
LMP: late mesenchymal progenitor cells; MALP: marrow adipogenic lineage precursors; OBP: 165 
osteoblast progenitor cells; OB: osteoblasts; Ocy: osteocytes; Hem: Hematopoietic lineage cells. 166 
B) Dot plot of some of the most highly expressed genes for all annotated cell clusters. The size 167 
of the dots are proportional to the percentage of cells of a given cluster that express a given gene 168 
while the color of the dot corresponds to the normalized expression. C) Slingshot trajectory 169 
inference plots portraying bifurcating branched lineages deriving from LMPs to their respective 170 
osteogenic (Ocy) or adipogenic (MALPs) cell fates represented as smooth curves (left plot) or 171 
dotted line (right plot). Starting cluster (LMP) is indicated by a green dot and terminal cell fates of 172 
the lineages (Ocy, MALPs) are red (right plot). D) Feature plots portraying the normalized 173 
expression of select genes associated with each cell cluster (top) and each gene plotted as a 174 
function of pseudotime overlaid with cell lineages (osteogenic and adipogenic). 175 
 176 
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Cell clustering is robust to the effects of cell isolation: 177 

The isolation of cells from their heavily mineralized matrix (as outlined in Methods) took 178 

approximately two hours, raising the possibility that the procedure itself could have an effect on 179 

gene expression, transcriptomic signatures, and downstream clustering of cells. To directly 180 

assess the effects of the single-cell isolation procedure, we performed a separate experiment in 181 

which we generated two identical cultures of BMSC-OBs (10-days post differentiation as in the 182 

scRNA-seq experiment) from C57BL/6J mice (N=7) (Figure 2A). From one culture (bulk), we 183 

extracted RNA from the entire well and performed RNA-seq. From the other culture (pooled 184 

single cell-bulk, psc-bulk), cells were harvested via the single-cell isolation procedure, pooled 185 

into one sample, and profiled using RNA-seq. Overall gene expression between the bulk and 186 

psc-bulk samples was highly correlated (r=0.98, P<2.2 x 10-16) (Figure 2B). However, a total of 187 

776 genes were differentially expressed (Padj<0.05) with a fold-change less than 0.5 and greater 188 

than 2.0 in the psc-bulk vs. bulk samples (Supplemental Data 2). A PANTHER29 Gene 189 

Ontology (GO) enrichment analysis revealed that differentially expressed genes (DEGs) 190 

consisted of “acute inflammatory response” (GO:0002675, N =11, P=2.43 x 10-8) and “response 191 

to stress” (GO:0080134, N = 111, P= 4.96 x 10-19) signatures (Supplemental Data 3). To 192 

evaluate the impact of the single-cell isolation procedures on cell clustering of the scRNA-seq 193 

dataset, we removed the psc-bulk DEGs from the scRNA-seq count matrix. Of the 776 DEGs, 194 

703 (91%) were also captured in the scRNA-seq dataset. Upon removal, a negligible effect was 195 

observed on the cell clustering in UMAP space and six distinct cell clusters (five mesenchymal 196 

lineage cell clusters) were annotated, similar to the original UMAP (Figure 2C). Only 8.1% of 197 

cells shifted cell cluster assignment upon removal of DEGs (Figure 2D). Most of the cells with 198 

shifted assignments were located on the boundaries of cell clusters (Figure 2D). These data 199 

indicate that gene expression is altered in a predictable manner by the cell isolation procedure, 200 

but has little meaningful impact on cell clustering. 201 

 202 
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 203 
Figure 2: Liberation of single cells from a heavily mineralized matrix in vitro has minimal 204 
impact on transcriptomic signatures of BMSC-OBs. A) Flow chart diagram portraying the 205 
design of the bulk vs. psc-bulk experiment in C57BL/6J mice (N=7). Cultured BMSC-OBs were 206 
harvested and underwent either immediate RNA extraction (bulk) or the single-cell isolation 207 
procedure, pooled, and then subsequent RNA extraction (psc-bulk). Extracted RNA from both 208 
conditions was sequenced via traditional RNA-seq. Created with BioRender.com. B) Correlation 209 
(r=0.98, P<2.2 x 10-16) between the counts per million (CPM) values derived from RNA-seq counts 210 
for bulk and psc-bulk samples. C) scRNA-seq UMAP clusters of BMSC-OBs derived from the five 211 
DO mice after removal of differentially expressed genes (identified from the psc-bulk vs. bulk 212 
experiment, 703 total genes) from the scRNA-seq count matrix. D) Cells highlighted in red 213 
represent those that changed from their original cell cluster annotation as a result of removal of 214 
DEGs (8.1% of cells). 215 
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Cell-types isolated from BMSC-OBs are similar to their in vivo counterparts: 216 

We next wanted to determine if mesenchymal cells generated in vitro were similar, in terms of 217 

global gene expression, to cell-types isolated directly from bone. Zhong et al. (2020) performed 218 

scRNA-seq on Td+ bone marrow cells from mice at 1, 1.5, and 3 months of age23. We jointly 219 

processed the data from both experiments and integrated the datasets using Canonical 220 

Correlation Analysis (CCA)30. Overall, the cells from both experiments displayed significant 221 

overlap (Figure 3A). This was even more apparent when clusters were annotated and cell-222 

types (LMPs, MALPs, OBs, and Ocy-like cells) overlapped in UMAP space between the 223 

datasets (Figures 3B). A notable difference between cell-types was the absence of EMPs and 224 

IMPs in the cultured BMSC-OBs. However, an appreciable enrichment of osteoblast lineage 225 

cells, particularly in the OBP population, was observed in the BMSC-OB data compared to the 226 

cells isolated directly from bone (Figure 3B, 3C). Importantly, the overlap of cells from the two 227 

studies suggests few transcriptional differences as a consequence of cell culture and in vitro 228 

differentiation. 229 

 230 

 231 
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Figure 3: ScRNA-seq of BMSC-OB and scRNA-seq data derived from cells harvested in 232 
vivo cluster similarity and are transcriptomically identical A) Single cells in UMAP space 233 
after integration of both the BMSC-OBs and Zhong et al. (2020) scRNA-seq datasets via 234 
Canonical Correlation Analysis (CCA). B) UMAPs with cell cluster annotation of the integrated 235 
data split based on the dataset. C) Stacked bar chart representing the proportion of each cell 236 
type for each dataset. 237 
 238 

Transcriptomic profiles from scRNA-seq for individual cell-types are robust: 239 

One of our goals for future experiments will be to generate expression profiles for multiple 240 

mesenchymal cell-types in large populations of mice (or humans) for use in downstream 241 

applications such as eQTL analysis or the generation of networks to inform human GWAS. To 242 

evaluate how well cell-type specific expression profiles from scRNA-seq align with profiles 243 

generated via traditional bulk RNA-seq, we performed a correlation between the expression 244 

profiles derived from each of the six defined cell-types (five mesenchymal + one grouped 245 

immune cell cluster) examined in this study to bulk RNA-seq data (derived from psc-bulk data 246 
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described above). We generated a “pseudo-bulk” profile (PB) from the scRNA-seq data by 247 

aggregating counts across all cells belonging to a specific cell-type to simulate a dataset 248 

representative of one derived from bulk sequencing methods. A high correlation was observed 249 

between both the bulk/psc-bulk profiles and the PB profile generated for the entire scRNA-seq 250 

dataset (r = 0.84 and r = 0.85, respectively; P<2.2x10-16) (Figure 4A). Upon comparison of 251 

individual PB profiles generated for each cluster in the scRNA-seq to the psc-bulk samples, PB 252 

profiles were highly correlated; for example, correlations of PB profiles for the osteoblast (OB) 253 

and osteocyte (Ocy) cell clusters were r = 0.83 (P<2.2x10-16) and r = 0.81 (P<2.2x10-16), 254 

respectively (Figure 4B). As expected, correlations were slightly higher when comparing PB vs. 255 

psc-bulk (rather than PB vs. bulk), likely due to the single-cell isolation procedure performed in 256 

the psc-bulk samples. 257 

Additionally, we estimated the minimum number of cells per cluster required to generate 258 

robust cell-type expression profiles by randomly selecting from 2 to 400 cells from each cluster, 259 

generating a PB profile (as described above), and subsequently calculating the correlation 260 

between each cell-type PB profile to the psc-bulk sample. Calculated correlations plateaued for 261 

all cell-types at ~100 cells (Figure 4C). These data indicate that aggregated data across at least 262 

100 cells from a given cell-type approximates data generated from bulk RNA-seq. 263 

 264 

 265 

 266 

 267 

 268 

 269 
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Figure 4: Transcriptomic profiles of individual cell types from scRNA-seq of BMSC-OBs 270 
are robust and representative of bulk RNA-seq data. A) Correlation between the counts per 271 
million (CPM) values from RNA counts derived for bulk, pooled single cell-bulk (psc-bulk), and 272 
pseudobulk (PB) samples. B) Correlation between the CPM values derived from the psc-bulk 273 
and PB profiles for each annotated cell cluster of the BMSC-OB scRNA-seq data. C) Correlation 274 
between overall PB and PBs for each cell-type generating using different numbers of cells (2 to 275 
400). 276 
 277 
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Frequency of osteogenic cell-types are highly variable across DO mice: 278 

Because the BMSC-OB scRNA-seq dataset consists of multiple samples pooled into one, we 279 

used Souporcell31 genotype deconvolution to assign a mouse of origin to each cell with high 280 

confidence (Supplemental Data 4). Five genotypically distinct clusters (genotypes) were 281 

inferred by Souporcell from the scRNA-seq data based on SNPs captured in the sequenced 282 

cDNA. Genotype clusters were assigned to their corresponding DO mouse ID by comparing 283 

allele calls made by the variants captured between Souporcell and genotypes previously 284 

generated on all five DO mice using the GigaMUGA genotyping16,32. Of the 67,056 total variants 285 

identified by Souporcell, 0.87% (581) were also captured by the GigaMUGA arrays (143,259 286 

total). DO mouse IDs were assigned based on the highest percentage of matching allele calls 287 

made upon pairwise comparison between Souporcell cluster and GigaMUGA arrays. After 288 

assigning a mouse of origin for all cells in the scRNA-seq data, we quantified differences in the 289 

frequencies of various cell-types contributed by each mouse (Figure 5A). For example, mouse 290 

#50 had a higher frequency of LMPs and MALPs and fewer osteoblasts and osteocytes 291 

compared to the other four mice (Figure 5A, 5B). Pooling samples for scRNA-seq, coupled with 292 

genotype deconvolution downstream, is an approach that is scalable for multi-sample input, 293 

which is necessary to perform population-level investigations.  294 

 295 

 296 

 297 

 298 

 299 
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Figure 5: Cell type frequencies captured by scRNA-seq are highly variable across 300 
individual DO mice. A) UMAPs of the BMSC-OBs derived from the five DO mice, split based 301 
on each mouse (12, 45, 48, 50, 84). B) Stacked bar chart representing the proportion of each 302 
cell type derived from each mouse. 303 
 304 

BMSC-OBs show expected gene regulatory networks: 305 

Cell-type identification is largely based on the association of canonical and highly expressed 306 

genes with certain cell-types; however, underlying gene regulatory networks (GRNs) provide 307 

insight into how expression is coordinated. Moreover, GRN inference can be used to establish 308 

gene expression profiles for cell-types of interest by elucidating which specific combinations of 309 

transcription factors (TFs) are responsible for the expression of downstream target genes. We 310 

used SCENIC33 to better understand the GRNs that characterize the cell states in BMSC-OBs. 311 

The SCENIC analysis pipeline first generates regulatory modules inferred from co-expression 312 

patterns, which are used to form “regulons” consisting of a core TF that governs the expression 313 

of predicted target genes. Next, target genes are pruned based on enrichment of the TF cis-314 
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regulatory motifs located upstream or downstream of target genes in the regulon 315 

(Supplemental Data 5). Lastly, the activity of regulons is quantified across individual cells 316 

(Supplemental Data 6).  317 

We applied the SCENIC analysis pipeline to the BMSC-OBs and resolved distinct 318 

regulons associated with each cell cluster in the BMSC-OB dataset (Figure 6). Regulons were 319 

robust in activity (Figure 6A, 6B, Supplemental Data 7) and specific for each cell-type (Figure 320 

6C, 6D, Supplemental Data 8). For example, Sp7 (Osterix), a key TF known to be involved in 321 

osteoblast differentiation, was found to be more specifically associated and highly active in the 322 

OBP cell cluster (Figure 6C, 6D). Similarly, we show Pparg is a highly active regulon and 323 

exclusively associated with MALPs (Figure 6C, 6D), consistent with its role as a master 324 

regulator of adipogenesis. This analysis suggested that not only do BMSC-OB cell-types show 325 

similar transcriptomic signatures to the same cells isolated directly from bone, but cell circuits 326 

(i.e., GRNs) are also similar. 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 
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Figure 6: SCENIC gene regulatory network (GRN) analysis reveals expected transcriptomic 337 
activity and validates the identities of cell-types in BMSC-OBs. A) Binarized heatmap 338 
SCENIC regulon activity results, where “1” indicates active regulons; “0” indicates inactive 339 
regulons. B) Heatmap of SCENIC results portraying the scaled average for regulon activity in 340 
each annotated cell cluster, where the color key from blue to red indicates activity levels from low 341 
to high, respectively. C) Plots of the top five regulons with the highest specificity score (RSS) for 342 
each cell cluster. D) Density plots portraying the regulon-weighted 2D kernel density of select 343 
regulons for each cell cluster.  344 

 345 

MALPs and osteogenic cells capture BMD heritability identified by GWAS: 346 

We next used CELLECT34 to evaluate the relevance of identified cell-types with regards to 347 

mediating the effects of GWAS. CELLECT integrates disease heritability estimates with cell-type 348 

expression specificity from scRNA-seq data to identify cell-types that capture a significant 349 

component of the heritability for a disease or trait. We applied CELLECT to the cell-types 350 

identified in BMSC-OBs and those identified by Zhong et al. (2020). We observed that genes 351 

with selective expression in MALPs, OBs, and Ocys from both datasets were significantly (P < 352 

0.05) enriched for BMD heritability. In addition, IMPs and LMPs in the Zhong et al. (2020) 353 

dataset were also significant. Non-mesenchymal lineage cells, which are mostly immune cells in 354 

both datasets were not significant (Table 1). Interestingly, osteoclasts captured in Zhong et al. 355 

(2020) dataset were not identified as significant in the CELLECT analysis (Table 1).  356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 
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Table 1: CELLECT cell-type prioritization on all cell-types annotated in the BMSC-OBs and 365 
Zhong et al. (2020) scRNA-seq datasets. 366 

scRNA-seq dataset Cell type Beta Beta SE P-value 

Zhong et al. MALP 5.88 x 10-8 1.84 x 10-8 6.92 x 10-4 

Zhong et al. OB 4.80 x 10-8 1.56 x 10-8 1.05 x 10-3 

Zhong et al. Ocy 5.91 x 10-8 2.15 x 10-8 3.03 x 10-3 

BMSC-OBs Ocy 5.70 x 10-8 2.16 x 10-8 4.18 x 10-3 

BMSC-OBs MALP 4.86 x 10-8 1.86 x 10-8 4.57 x 10-3 

Zhong et al. IMP 3.61 x 10-8 1.68 x 10-8 1.57 x 10-2 

Zhong et al. LMP 3.09 x 10-8 1.71 x 10-8 3.55 x 10-2 

BMSC-OBs OB 6.24 x 10-8 3.56 x 10-8 3.98 x 10-2 

Zhong et al. EMP 2.86 x 10-8 1.79 x 10-8 5.52 x 10-2 

Zhong et al. CH 1.96 x 10-8 1.38 x 10-8 7.81 x 10-2 

Zhong et al. Mural 9.12 x 10-9 1.66 x 10-8 2.91 x 10-2 

BMSC-OBs LMP -4.57 x 10-9 2.04 x 10-8 5.89 x 10-2 

BMSC-OBs OBP -5.85 x 10-9 1.77 x 10-8 6.30 x 10-1 

Zhong et al. Erythrocyte -8.07 x 10-9 1.73 x 10-8 6.79 x 10-1 

Zhong et al. Mono -3.03 x 10-8 1.60 x 10-8 9.71 x 10-1 

Zhong et al. MF -2.98 x 10-8 1.52 x 10-8 9.75 x 10-1 

Zhong et al. EC -2.20 x 10-8 1.10 x 10-8 9.77 x 10-1 

Zhong et al. B-cell -3.47 x 10-8 1.63 x 10-8 9.83 x 10-1 

Zhong et al. OC -4.66 x 10-8 1.55 x 10-8 1 

Zhong et al. Granulo -3.56 x 10-8 9.95 x 10-9 1 

BMSC-OBs Hem -5.90 x 10-8 1.36 x 10-8 1 

Zhong et al. T-cell -6.45 x 10-8 1.35 x 10-8 1 

Zhong et al. HSC -6.28 x 10-8 1.28 x 10-8 1 

Zhong et al. GP -5.44 x 10-8 1.11 x 10-8 1 

Beta is regression effect size estimate for given annotation. Beta SE is the standard error for the 367 
regression coefficient. P-value is the one-sided test (beta > 0) association between BMD GWAS 368 
signal heritability and each annotated cell-type. P-values < 0.05 are highlighted in red. Cell-type 369 
abbreviations: OB: osteoblast; OBP: osteoblast progenitor; Ocy: osteocyte; EMP: early 370 
mesenchymal progenitor; IMP: intermediate mesenchymal progenitor; LMP: late mesenchymal 371 
progenitor; MALP: marrow adipogenic lineage precursors; CH: chondrocyte; HSC: 372 
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hematopoietic stem cell; EC: endothelial cell; GP: granulocyte progenitor; Hem: Hematopoietic 373 
lineage cells; OC: osteoclast; Granulo: granulocyte; MF: macrophage; Mono: monocyte; Mural: 374 
mural cells; T-cell: T-lymphocyte; B-cell: B-lymphocyte.  375 
 376 

Discussion 377 

A considerable challenge faced upon analyzing GWAS is identifying the causal genes 378 

impacted by significant associations. Integrating transcriptomics data has proven invaluable for 379 

accomplishing this goal. Colocalizing genetic variation impacting gene expression with GWAS 380 

associations can identify putative causal genes influencing disease. Moreover, integrating 381 

single-cell transcriptomics data can provide the cellular context in which causal genes are most 382 

likely to be impactful. In the context of osteoporosis research, the generation of population-scale 383 

transcriptomics data at single-cell resolution would aid in gene discovery. Here, we demonstrate 384 

the use of BMSCs cultured under osteogenic conditions (BMSC-OBs) from the Diversity 385 

Outbred (DO) mouse population coupled with scRNA-seq can serve as a model to generate 386 

single-cell transcriptomics data of mesenchymal cell-types relevant to bone. We show that after 387 

subsequent culturing under osteoblast differentiation, there was an enrichment in the relative 388 

frequencies of osteoblasts and osteocyte-like cells, compared to cells isolated in vivo using a 389 

mesenchymal lineage reporter. Additionally, the model yields adipogenic progenitor cells and 390 

their transcriptomic signature is nearly identical to the MALPs identified in Zhong et al. (2020). 391 

These cells are classified as a stable intermediary cell-type along the adipogenic differentiation 392 

route after mesenchymal progenitors and before more mature, lipid-laden adipocytes (LiLAs)23. 393 

Thus, BMSC-OBs contain many of the key mesenchymal cell-types and leads to an enrichment 394 

of osteoblasts and osteocyte-like cells that we demonstrated were to likely be the most relevant 395 

for informing GWAS. 396 

We addressed the technical challenges posed with our approach, such as the single-cell 397 

isolation procedure used to liberate BMSC-OBs from a highly mineralized matrix in vitro. This 398 

procedure consists of an approximately two-hour process involving incubations with proteases 399 
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and EDTA, raising the concern of technical effects impacting the integrity and quality of the 400 

isolated cells for scRNA-seq. In the bulk vs. psc-bulk experiment, we sought to characterize the 401 

impact of the single-cell isolation procedure on gene expression. Despite the induction of 402 

inflammation/stress-related genes in the psc-bulk sample, the overall gene expression profiles 403 

between bulk and psc-bulk samples were highly correlated and any observed change in gene 404 

expression had a negligible impact on global transcriptomic signatures or downstream 405 

annotation of mesenchymal cell-types. However, care should be taken when interpreting the 406 

expression of individual genes, especially those identified to be responsive to the isolation 407 

procedure. 408 

We also assessed the biological informativeness of BMSC-OBs by comparing them to 409 

the same cells isolated directly from bone. Upon comparison of both scRNA-seq datasets, we 410 

found that the transcriptomic signatures of BMSC-OB cell-types did not differ compared to the 411 

cells isolated by Zhong et al. (2020). Nevertheless, differences between the two datasets were 412 

observed, namely the absence of early/intermediate mesenchymal progenitor (EMP, IMP) 413 

populations in the BMSC-OB dataset, which is likely due to the maturation of LMPs beyond 414 

EMP/IMP cell stages during the in vitro osteoblast differentiation. Importantly, these results 415 

indicate that individual cell-types in BMSC-OBs are nearly identical, in the context of 416 

transcriptomic signatures, to their counterparts in bone. 417 

A number of approaches have been used to profile individual bone cells. These include 418 

scRNA-seq on whole bone marrow22,35, using fluorescence-activated cell sorting (FACS) on 419 

marrow to enrich for mesenchymal lineage cells36, the digestion of bone combined with FACS37, 420 

and FACS in lineage specific reporter mice38. These studies have provided important insights 421 

into the cellular landscape of bone and the identity of skeletal stem cells. However, none of 422 

these approaches were developed with the goal of investigating bone cells at the population-423 

scale in mice or humans. These approaches isolate a wide range of cells, many of which 424 

provide little insight in the context of informing BMD GWAS. Profiling non-relevant cells 425 
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significantly increases cost and makes population screening less feasible. As an alternative, 426 

BMSC-OBs have several attractive attributes. First, it is simple, marrow is relatively easy to 427 

isolate from populations of mice, or even humans, and isolating BMSCs based on plastic 428 

adherence is cost-effective and straightforward. Second, we show that osteoblasts and 429 

osteocyte-like cells are some of the most relevant to BMD GWAS and we are able to enrich for 430 

these cells by culturing under osteogenic conditions. Third, as we have shown, there are few 431 

transcriptomic differences in cultured cells as compared to cells isolated directly from mice in 432 

vivo. Fourth, we do not need to use FACS or specific reporter mice, making it possible to 433 

perform this approach in any population of mice, and potentially humans. Fifth, because we 434 

enriched for key cell-types, the number of cells to sequence is lower.  435 

A valid concern of population-based scRNA-seq studies is cost associated with 436 

increasing scalability and sample throughput. Using BMSC-OBs, we remedy this challenge by 437 

pooling single cells derived from multiple mice into a single sample for scRNA-seq. Because 438 

each DO mouse is genotypically distinct from one another, we performed a genotype 439 

deconvolution on the scRNA-seq data downstream. We were able to associate a “mouse-of-440 

origin” to each single cell derived from our cohort of DO mice. Genotype deconvolution enables 441 

other downstream analyses, such as quantifying differences in certain cell fractions between 442 

samples. While the sample size of our mouse cohort in this study was small (N = 5), we 443 

observed significant differences in cell-type frequencies between our mice. These differences 444 

likely reflect variation in cell-type composition of the starting BMSCs and differences in the 445 

rate/efficiency of osteoblast differentiation arising as a function of mouse-specific genotype and 446 

environmental effects. With this study serving as a proof-of-concept, BMSC-OBs feasibly 447 

permits scalability and increased sample throughput, which is necessary to inform GWAS. 448 

One of the major limitations of our approach is that the BMSC-OB model does not 449 

capture all cell-types relevant to bone. For example, it does not capture osteoclasts. However, it 450 

is important to note that in our CELLECT analysis BMD heritability was not enriched in genes 451 
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whose expression was more specific to osteoclasts from the Zhong et al. (2020) dataset. It is 452 

unclear why osteoclasts were not significant and may be due to cross-sectional measures of 453 

BMD being more so a product of peak bone mass and osteoblast-mediated bone accrual, than 454 

bone loss, a process driven by osteoclasts, or the fact that these were likely immature 455 

osteoclasts as mature cells would be too large to be captured for sequencing. Although, marrow 456 

adiposity39 and MALPs23 have been demonstrated to significantly influence bone mass, it was 457 

somewhat surprising that the CELLECT analysis identified a significant association between 458 

gene expression specificity in MALPs and BMD heritability. This potentially suggests that many 459 

BMD GWAS associations impact genes regulating BMD via MALPs. Future studies should seek 460 

to identify specific associations that may be working through marrow adipocytes.   461 

Here, we described how the osteogenic differentiation of BMSCs can facilitate the 462 

generation of large-scale scRNA-seq data for mesenchymal lineage cells derived from the DO 463 

mouse population. Based on findings gathered here, the transcriptomic profiles generated 464 

from BMSC-OBs will serve as a valuable biological input for future genetic analysis. For 465 

example, cell-type specific, co-expression networks can be used as input to perform directed 466 

Bayesian network reconstruction and Key Driver Analysis (KDA), as previously described in16. 467 

These subsequent analyses can aid in informing GWAS and highlighting putatively novel genes 468 

driving disease. We have demonstrated that the BMSC-OB model has the potential to facilitate 469 

more holistic genotype-to-phenotype investigations, which will aid in our understanding of the 470 

genetics of bone mass and lead to the identification of novel therapeutic targets that could be 471 

targeted to treat and prevent osteoporosis. 472 

 473 

Methods 474 

Sample preparation and in vitro cell culture of BMSCs 475 

Bone marrow extraction and subsequent cell culture was performed as described in16. In brief, 476 

the left femur was isolated and cleaned thoroughly of all muscle tissue followed by removal of its 477 
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distal epiphysis. Marrow was exuded by centrifugation at 2000×g for 30 s into a sterile tube 478 

containing 35 μL fetal bovine serum (FBS, Atlantic Biologicals).  The marrow was then triturated 479 

6 times on ice after addition of 150 μL of cold freezing media (90% FBS, 10% Dimethyl 480 

Sulfoxide (DMSO, Fisher). Marrow was placed into a Mr. Frosty Freezing Container (Nalgene) 481 

for the purpose of slow cooling, stored overnight at -80°C, and transferred to liquid nitrogen for 482 

long-term storage. In preparation for cell culture, samples were thawed at 37°C, resuspended in 483 

5 mL bone marrow growth media (MEM alpha, Gibco), 10% FBS, 1% Penicillin Streptomycin 484 

(Pen/Strep, Gibco), 1% Glutamax (Gibco), and then subjected to red blood cell lysis by 485 

resuspending with 5 mL 0.2% NaCl for 20 s then thorough mixing of 1.6% NaCl. Cells were 486 

pelleted, resuspended into 1 mL bone marrow growth media, and cultured in 48 well tissue 487 

culture plates. Samples were incubated in a 37°C, 5% CO2, 100% humidity incubator and left 488 

undisturbed for 3 days. Thereafter, media was aspirated and replaced daily. After 6 days, cells 489 

were washed and then underwent a standard in vitro osteoblast differentiation protocol for 10 490 

days by replacing bone marrow growth media with 300 μL osteogenic differentiation media 491 

(Alpha MEM, 10% FBS, 1% Pen/Strep, 1% Glutamax, 50 μg/mL Ascorbic Acid (Sigma), 10 mM 492 

B-glycerophosphate (Sigma), 10 nM Dexamethasome (Sigma).  493 

 494 

Single-cell isolation procedure 495 

The isolation procedure outlined below was inspired by40. Mineralized cultures were washed 496 

twice with Dulbecco’s Phosphate Buffered Saline (DPBS, Gibco). 0.5 mL of 60 mM 497 

Ethylenediaminetetraacetic acid, pH 7.4 made in DPBS (EDTA, Fisher) was added and cultures 498 

were incubated at room temperature (RT) for 15 min. EDTA solution was aspirated, replaced, 499 

and cultures were incubated again at RT for 15 min. Cultures were then washed with 0.5 mL 500 

Hank’s Balanced Salt Solution (HBSS, Gibco) and incubated with 0.5 mL 8 mg/mL collagenase 501 

(Gibco) in HBSS/4 mM CaCl2 (Fisher) for 10 min at 37°C with shaking. Cultures were triturated 502 

10 times and incubated for an additional 20 min at 37°C. Cultures were then transferred to a 1.5 503 
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mL Eppendorf tube and centrifuged at 500×g for 5 min at RT. Cultures were resuspended in 0.5 504 

mL 0.25% trypsin-EDTA (Gibco) and incubated for 15 min at 37°C. Cultures were then triturated 505 

and incubated for an additional 15 min, after which 0.5 mL of media was added, triturated, and 506 

spun at 500×g for 5 min at RT. Cultures were then resuspended in 0.5 mL osteogenic 507 

differentiation media and cells were counted. 508 

 509 

Bulk RNA-seq analysis 510 

Total RNA was extracted using a RNeasy Micro Kit (QIAGEN) and poly-A selected RNA was 511 

sequenced via GENEWIZ (South Plainfield, NJ, USA). RNA-seq analysis was performed using 512 

a custom bioinformatics pipeline. Briefly, FastqQC41 and RSeQC42 were used to assess the 513 

quality of raw reads. Adapter trimming was completed using Trimmomatic43. Sequences were 514 

aligned to the GRCm38 reference genome44 using the SNP and splice aware aligner HISAT245. 515 

Genome assembly and abundances in counts per million (CPM) were quantified using 516 

StringTie46. Differential expression analysis was performed using the DESeq247 package in R. 517 

 518 

Single-cell analysis pipeline 519 

After the single-cell isolation procedure, cells from all five mice were pooled and concentrated to 520 

800 cells/μL in sterile PBS supplemented with 0.1% BSA. The single-cell suspension was 521 

loaded into a 10X Chromium Controller (10X Genomics, Pleasanton, CA, USA), aiming to 522 

capture 8000 cells, with the Single Cell 3’ v2 reagent kit, according to the manufacturer’s 523 

protocol. Following GEM capturing and lysis, cDNA was amplified (13 cycles) and the 524 

manufacturer’s protocol was followed to generate the sequencing library. The library was 525 

sequenced on the Illumina NextSeq500 and the raw sequencing data was processed using 10X 526 

Genomics Cell Ranger toolkit (version 5.0.0). The reads were mapped to the GRCm38 527 

reference genome44. Overall, 8990 cells were sequenced, to a mean depth of 57,717 reads per 528 

cell. Sequencing data is available on GEO at accession code GSE152806. 529 
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 530 

Analysis of the scRNA-seq data was performed using Seurat27 (version 4.1.1). Features 531 

detected in at least three cells where at least 200 features were detected were used. We used 532 

Souporcell31 (described below) to remove doublet cells. We then filtered out cells with less than 533 

800 reads and more than 5800 reads, as well as cells with 10% or more mitochondrial reads. 534 

This resulted in 7357 remaining cells. The resulting object underwent standard normalization, 535 

scaling, and the top 3000 features were modeled from the mean-variance relationship using 536 

Seurat’s “FindVariableFeatures” function. Cell-cycle markers identified by Tirosh et al. (2016) 537 

were regressed out using the “CellCycleScoring” and scaling functions. For subsequent 538 

dimensionality reduction, 14 principal components (PCs) were summarized, which was the 539 

number of PCs where the percent change in variation between the consecutive PCs was less 540 

than 0.1%. A kNN (k = 20) graph was created and cells were clustered using the Louvain 541 

algorithm at a resolution of 0.22. Cluster cell-types were manually annotated after performing 542 

differential gene expression analysis of each cell cluster relative to all other clusters using the 543 

Seurat “FindAllMarkers” function (Supplementary Data 1). 544 

 545 

Trajectory inference/pseudotime analysis was performed using Slingshot28 (version 1.6.1) on 546 

osteogenic/adipogenic lineage cells with the starting cluster set as the LMPs. TradeSeq48 547 

(version 1.4.0) was used to analyze gene expression along the trajectories by fitting a negative 548 

binomial generalized additive model (NB-GAM) to each gene using the “fitGAM” function with 549 

nknots = 8, which was determined by using the “evaluateK” function.  550 

 551 

Integration of datasets via Canonical Correlation Analysis (CCA) 552 

CCA30 in Seurat was used to integrate in vivo scRNA-seq data derived from Zhong et al. (2020) 553 

(1.5 month and 3 month timepoints) with the BMSC-OB in vitro data. The Zhong et al. (2020) 554 
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data was first pre-processed in the same fashion as the BMSC-OBs scRNA-seq dataset. Cell-555 

types not present in the BMSC-OBs dataset were removed from the Zhong et al. (2020) data in 556 

order to portray only osteogenic and adipogenic lineage cells. After integration, the combined 557 

dataset was clustered and analyzed as described in the single-cell analysis pipeline (above).  558 

 559 

Souporcell 560 

Upon performing Souporcell31 (version 2.0.0), barcoded cells identified as doublets were 561 

removed from the scRNA-seq count matrix during pre-processing of the data. Additionally, 562 

Souporcell was used to perform genotype deconvolution using the GRCm38 reference 563 

genome44. Five genotypically distinct clusters (genotypes) were inferred based on variants in the 564 

sequenced reads. Genotype clusters were assigned their corresponding DO mouse ID by 565 

comparing allele calls made by the shared variants captured between Souporcell and GIGA-566 

MUGA arrays previously performed on all mice in the cohort. DO mouse IDs were assigned by 567 

making a pairwise comparison between each Souporcell genotype cluster and GigaMUGA 568 

array. The comparison yielding the highest percentage of matching allele calls indicated the 569 

identity/genotype of each mouse (Supplemental Data 4). 570 

 571 

SCENIC 572 

pySCENIC (Single-Cell rEgulatory Network Inference and Clustering)33 (version 0.11.2) was 573 

used to infer gene regulatory networks. A fully-processed Seurat object containing cell-type 574 

annotations was transformed into a loom file by using SeuratDisk49 (version 0.0.0.9019). The 575 

loom file was subsequently used as input to the SCENIC workflow50. In brief, gene regulatory 576 

networks (GRNs) were built using GRNBoost51 to identify potential gene targets for each 577 

transcription factor (TF) based on co-expression. CisTarget52 was then used to select potential 578 

direct target genes of the governing TF of the co-expression modules. (Supplemental Data 5). 579 
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The activity of the final regulons were calculated using AUCell33 (Supplemental Data 6). 580 

Regulon specificity score (RSS) is based on Jensen-Shannon divergence, as described in53 581 

(Supplemental Data 8). Stable cell states were identified by analyzing the most active and 582 

specific regulons for each cluster as well as associated target genes.  583 

 584 

CELLECT 585 

CELLECT34 (Cell-type Expression-specific integration for Complex Traits) (version 1.1.0) was 586 

used to identify likely etiologic cell-types underlying complex traits of both the BMSC-OBs and 587 

Zhong et al. (2020) datasets. CELLECT quantifies the association between the GWAS signal 588 

and cell-type expression specificity using the S-LDSC genetic prioritization model54. Summary 589 

statistics  from the UK Biobank eBMD and Fracture GWAS3 (Data Release 2018) and cell-type 590 

annotations from each scRNA-seq dataset were used as input. Cell-type expression specificities 591 

were estimated using CELLEX34 (CELL-type EXpression-specificity) (version 1.2.1). The 592 

CELLECT output prioritizes likely etiologic cell-types for BMD (Table 1).  593 

  594 
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