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Abstract

Genome-wide association studies (GWASs) have revolutionized our understanding of the
genetics of complex diseases, such as osteoporosis; however, the challenge has been
converting associations to causal genes. Studies have demonstrated the utility of
transcriptomics data in linking disease-associated variants to genes; though for osteoporosis,
few population transcriptomics datasets have been generated on bone or bone cells, and an
even smaller number have profiled individual cell-types. To begin to evaluate approaches to
address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells
(BMSCs) cultured under osteogenic conditions, a popular model of osteoblast differentiation and
activity, from five Diversity Outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal
of the study was to determine if BMSCs could serve as a model for the generation of cell-type
specific transcriptomic profiles of mesenchymal lineage cells derived from large populations of
mice to inform genetic studies. We demonstrate that dissociation of BMSCs from a heavily
mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we
show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with
characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs),
osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were nearly identical
from a transcriptomic perspective to cells isolated directly from bone. We also demonstrated the
ability to multiplex single cells and subsequently assign cells to their “mouse-of-origin” using
demultiplexing approaches based on genotypes inferred from coding SNPs. We employed
scRNA-seq analytical tools to confirm the biological identity of profiled cell-types. SCENIC was
used to reconstruct gene regulatory networks (GRNs) and we showed that identified cell-types
show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT
analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant
component of BMD heritability. Together, these data suggest that BMSCs cultured under

osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically
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informative model to generate cell-type specific transcriptomic profiles of mesenchymal lineage

cells in large mouse, and potentially human, populations.
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86 Introduction

87 Osteoporosis is a disease characterized by low bone mineral density (BMD) and an

88 increased risk of fracture’. Osteoporosis-related quantitative traits, such as BMD, are highly
89 heritable? and genome-wide association studies (GWASs) for BMD have identified over 1,100
90 independent associations®. The goal of BMD GWAS is to identify the responsible causal

91 genes*®. However, this is often difficult due to challenges, such as linkage disequilibrium

92  between potentially causal variants® and the observation that most associations implicate non-
93  coding variation®. The generation of transcriptomics data and use of systems genetics

94  approaches to interpret GWAS can address these limitations by assisting in prioritizing

95  putatively-causal genes for further investigation’-®.

96 The utility of transcriptomic data to inform BMD GWAS has been demonstrated through
97 studies using approaches such as expression quantitative trait locus (eQTL) mapping and

)'213 "and reconstruction of

98  colocalization®"", transcriptome-wide association studies (TWASs

99 transcriptomic networks (e.g., gene-regulatory and co-expression networks)'*'®. These studies
100 have utilized bone, non-bone (e.g., the Gene Tissue Expression (GTEXx) project)'’, and mouse
101  bone transcriptomic data. However, all of the transcriptomic data used to inform BMD GWAS to
102  date has been generated using bulk RNA-seq. These samples are a mixture of data derived
103  from all cells associated with a particular microenvironment and downstream data analysis is
104  often constrained by the inability to definitively attribute transcriptomic signatures to a single
105  cell-type'®. Further, signals from potentially rare cell-types can be masked by the presence of
106  more abundant cell populations'®. As a result, there is currently a need to generate population-
107  scale (i.e., hundreds of samples) cell-type specific expression data on cells directly relevant to
108 bone to aid in the identification of causal BMD GWAS genes.

109 In recent years, single-cell RNA-seq (scRNA-seq) has enabled the efficient generation of

110  high-quality transcriptomes in individual cells?®. ScCRNA-seq can remedy the aforementioned
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111  challenges posed with bulk RNA-seq by enabling the generation of single-cell transcriptomic
112 profiles from heterogeneous tissues or primary cell cultures. SCRNA-seq has provided

113  significant insight into the landscape of bone cell-types®'~2°. However, we still lack cost-effective
114  approaches capable of generating scRNA-seq data at scale for key bone cell-types.

115 Here, we explored the use of bone-marrow derived stromal cells (BMSCs) cultured

116  under osteogenic conditions (BMSC-OBs), a popular in vitro model of osteoblast differentiation,
117  to address the above limitations by generating scRNA-seq data on cells of the mesenchymal
118 lineage. We sought to explore technical challenges, cellular heterogeneity, and compare

119  cultured cells to the same cells isolated directly from bone. We show that this approach not only
120 enriches for osteogenic cells, but is a scalable approach capable of generating biologically

121  informative cell-type specific transcriptomic profiles relevant to BMD GWAS. Our results suggest
122  that scRNA-seq of BMSC-OBs has the potential to enable the large-scale generation of cell-type
123 specific transcriptomic data on mesenchymal lineage cells that can be used to inform genetic
124  studies in mice and potentially humans.

125

126 Results

127  BMSC cultures grown under osteogenic differentiation conditions are heterogenous:

128 We isolated BMSCs from five Diversity Outbred (DO) mice (N=4 males and N=1 female). The
129 DO is a genetically diverse outbred population derived from eight inbred laboratory strains®. We
130  have previously used the DO to perform GWAS for bone strength traits'®. BMSCs were cultured
131  under osteogenic conditions for 10 days and demonstrated mineralized nodules as previously
132 shown in '8, After differentiation, cells were liberated from mineralized cultures and profiled

133 using scRNA-seq. After stringent pre-processing and quality control of the data (Methods),

134 17,457 genes were identified in 7357 cells across all five mice. Unsupervised clustering

135 identified eight distinct cell clusters ranging in size from 46 to 2367 cells (Figure 1A).
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136

137 We manually annotated the cell-type identity of each cluster using the “FindAllMarkers”
138  function in Seurat® to highlight differentially expressed genes (DEGs) for each cluster relative to
139  all other clusters (Supplemental Data 1). As a framework, we used the nomenclature of Zhong
140 etal. (2020) who labeled, isolated, and sequenced single cells from bone marrow using Col2-
141  Cre RosaZ26 <Isl-tdTomato> reporter mice. In these mice, tdTomato (Td) labels cells spanning
142  the mesenchymal lineage. From Td+ cells, three types of mesenchymal progenitors were

143 identified: early (EMPs), intermediate (IMPs), and late (LMPs). None of the BMSC-OB clusters
144  reported here had signatures of EMPs or IMPs (Figure 1A); however, cluster 0 (32.2% of the
145  cells) had high expression of marker genes associated with LMPs, such as Aspn, Timp3, Thbs2,
146  and ltmZ2a (Figure 1A, 1B). Clusters 1, 2, and 4, (49.7% of the cells) all had signatures of cells
147  in the osteoblast lineage. Mature osteoblasts (Cluster 1) exhibited expression of Bglap and

148  Mepe, while Cluster 4 had a transcriptomic signature of osteocyte-like cells with high expression
149  of Bambi and Sost (Figure 1A, 1B). Cells in Cluster 2 resembled an osteoblast progenitor

150 (OBP) population differentiating into mature osteoblasts and expressed genes such as Sgms2,
151  [fitm5, and P4hat (Figure 1A, 1B). Marrow adipogenic lineage precursors (MALPs), identified
152  as a novel component of bone marrow in Zhong et al. (2020) were represented in Cluster 3

153  (accounting for 9.7% of the cells) and expressed known MALP markers (Cxcl12, Adipoq, H19,
154  Hp, Lpl) (Figure 1A, 1B). Cluster 5, 6, and 7 (8.3% of the cells) were cells not associated with
155  the mesenchymal cell lineage and have transcriptomic signatures of immune cells derived from
156 the hematopoietic cell lineage (Figure 1A, 1B). Trajectory analysis (cell lineage and pseudotime

157  inference) using Slingshot®

on the mesenchymal lineages revealed the expected bifurcating
158 lineage relationship in which LMPs give rise to MALPs and osteoblast progenitors/osteoblasts,

159 independently, with osteocyte-like cells downstream of osteoblasts (Figure 1C). The expression
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160 of marker genes representative of all cell-types as a function of pseudotime were consistent with

161  cell-type annotations (Figure 1D).
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162 Figure 1: ScRNA-seq of BMSC-OBs identifies multiple cell-types. A) UMAP cell clusters of
163 7357 single BMSC-OBs isolated from five Diversity Outbred (DO) mice. Cell numbers and
164  corresponding percentages are listed in parenthesis to the right of the annotated cluster name.
165 LMP: late mesenchymal progenitor cells; MALP: marrow adipogenic lineage precursors; OBP:
166  osteoblast progenitor cells; OB: osteoblasts; Ocy: osteocytes; Hem: Hematopoietic lineage cells.
167 B) Dot plot of some of the most highly expressed genes for all annotated cell clusters. The size
168 of the dots are proportional to the percentage of cells of a given cluster that express a given gene
169  while the color of the dot corresponds to the normalized expression. C) Slingshot trajectory
170 inference plots portraying bifurcating branched lineages deriving from LMPs to their respective
171  osteogenic (Ocy) or adipogenic (MALPs) cell fates represented as smooth curves (left plot) or
172  dotted line (right plot). Starting cluster (LMP) is indicated by a green dot and terminal cell fates of
173  the lineages (Ocy, MALPs) are red (right plot). D) Feature plots portraying the normalized
174  expression of select genes associated with each cell cluster (top) and each gene plotted as a
175  function of pseudotime overlaid with cell lineages (osteogenic and adipogenic).
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Cell clustering is robust to the effects of cell isolation:

The isolation of cells from their heavily mineralized matrix (as outlined in Methods) took
approximately two hours, raising the possibility that the procedure itself could have an effect on
gene expression, transcriptomic signatures, and downstream clustering of cells. To directly
assess the effects of the single-cell isolation procedure, we performed a separate experiment in
which we generated two identical cultures of BMSC-OBs (10-days post differentiation as in the
scRNA-seq experiment) from C57BL/6J mice (N=7) (Figure 2A). From one culture (bulk), we
extracted RNA from the entire well and performed RNA-seq. From the other culture (pooled
single cell-bulk, psc-bulk), cells were harvested via the single-cell isolation procedure, pooled
into one sample, and profiled using RNA-seq. Overall gene expression between the bulk and
psc-bulk samples was highly correlated (r=0.98, P<2.2 x 10'°) (Figure 2B). However, a total of
776 genes were differentially expressed (Pag<0.05) with a fold-change less than 0.5 and greater
than 2.0 in the psc-bulk vs. bulk samples (Supplemental Data 2). A PANTHER?® Gene
Ontology (GO) enrichment analysis revealed that differentially expressed genes (DEGSs)
consisted of “acute inflammatory response” (GO:0002675, N =11, P=2.43 x 10°®) and “response
to stress” (GO:0080134, N = 111, P=4.96 x 107°) signatures (Supplemental Data 3). To
evaluate the impact of the single-cell isolation procedures on cell clustering of the scRNA-seq
dataset, we removed the psc-bulk DEGs from the scRNA-seq count matrix. Of the 776 DEGs,
703 (91%) were also captured in the scRNA-seq dataset. Upon removal, a negligible effect was
observed on the cell clustering in UMAP space and six distinct cell clusters (five mesenchymal
lineage cell clusters) were annotated, similar to the original UMAP (Figure 2C). Only 8.1% of
cells shifted cell cluster assignment upon removal of DEGs (Figure 2D). Most of the cells with
shifted assignments were located on the boundaries of cell clusters (Figure 2D). These data
indicate that gene expression is altered in a predictable manner by the cell isolation procedure,

but has little meaningful impact on cell clustering.
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204  Figure 2: Liberation of single cells from a heavily mineralized matrix in vitro has minimal
205 impact on transcriptomic signatures of BMSC-OBs. A) Flow chart diagram portraying the
206  design of the bulk vs. psc-bulk experiment in C57BL/6J mice (N=7). Cultured BMSC-OBs were
207 harvested and underwent either immediate RNA extraction (bulk) or the single-cell isolation
208  procedure, pooled, and then subsequent RNA extraction (psc-bulk). Extracted RNA from both
209 conditions was sequenced via traditional RNA-seq. Created with BioRender.com. B) Correlation
210 (r=0.98, P<2.2 x 107'®) between the counts per million (CPM) values derived from RNA-seq counts
211  for bulk and psc-bulk samples. C) scRNA-seq UMAP clusters of BMSC-OBs derived from the five
212 DO mice after removal of differentially expressed genes (identified from the psc-bulk vs. bulk
213  experiment, 703 total genes) from the scRNA-seq count matrix. D) Cells highlighted in red
214  represent those that changed from their original cell cluster annotation as a result of removal of
215 DEGs (8.1% of cells).
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Cell-types isolated from BMSC-OBs are similar to their in vivo counterparts:

We next wanted to determine if mesenchymal cells generated in vitro were similar, in terms of
global gene expression, to cell-types isolated directly from bone. Zhong et al. (2020) performed
scRNA-seq on Td+ bone marrow cells from mice at 1, 1.5, and 3 months of age®®. We jointly
processed the data from both experiments and integrated the datasets using Canonical
Correlation Analysis (CCA)*. Overall, the cells from both experiments displayed significant
overlap (Figure 3A). This was even more apparent when clusters were annotated and cell-
types (LMPs, MALPs, OBs, and Ocy-like cells) overlapped in UMAP space between the
datasets (Figures 3B). A notable difference between cell-types was the absence of EMPs and
IMPs in the cultured BMSC-OBs. However, an appreciable enrichment of osteoblast lineage
cells, particularly in the OBP population, was observed in the BMSC-OB data compared to the
cells isolated directly from bone (Figure 3B, 3C). Importantly, the overlap of cells from the two
studies suggests few transcriptional differences as a consequence of cell culture and in vitro

differentiation.

10
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Figure 3: ScCRNA-seq of BMSC-OB and scRNA-seq data derived from cells harvested in
vivo cluster similarity and are transcriptomically identical A) Single cells in UMAP space
after integration of both the BMSC-OBs and Zhong et al. (2020) scRNA-seq datasets via
Canonical Correlation Analysis (CCA). B) UMAPs with cell cluster annotation of the integrated
data split based on the dataset. C) Stacked bar chart representing the proportion of each cell
type for each dataset.

Transcriptomic profiles from scRNA-seq for individual cell-types are robust:

One of our goals for future experiments will be to generate expression profiles for multiple
mesenchymal cell-types in large populations of mice (or humans) for use in downstream
applications such as eQTL analysis or the generation of networks to inform human GWAS. To
evaluate how well cell-type specific expression profiles from scRNA-seq align with profiles
generated via traditional bulk RNA-seq, we performed a correlation between the expression
profiles derived from each of the six defined cell-types (five mesenchymal + one grouped

immune cell cluster) examined in this study to bulk RNA-seq data (derived from psc-bulk data

11
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described above). We generated a “pseudo-bulk” profile (PB) from the scRNA-seq data by
aggregating counts across all cells belonging to a specific cell-type to simulate a dataset
representative of one derived from bulk sequencing methods. A high correlation was observed
between both the bulk/psc-bulk profiles and the PB profile generated for the entire scRNA-seq
dataset (r = 0.84 and r = 0.85, respectively; P<2.2x107'®) (Figure 4A). Upon comparison of
individual PB profiles generated for each cluster in the scRNA-seq to the psc-bulk samples, PB
profiles were highly correlated; for example, correlations of PB profiles for the osteoblast (OB)
and osteocyte (Ocy) cell clusters were r = 0.83 (P<2.2x107"®) and r = 0.81 (P<2.2x107°),
respectively (Figure 4B). As expected, correlations were slightly higher when comparing PB vs.
psc-bulk (rather than PB vs. bulk), likely due to the single-cell isolation procedure performed in
the psc-bulk samples.

Additionally, we estimated the minimum number of cells per cluster required to generate
robust cell-type expression profiles by randomly selecting from 2 to 400 cells from each cluster,
generating a PB profile (as described above), and subsequently calculating the correlation
between each cell-type PB profile to the psc-bulk sample. Calculated correlations plateaued for
all cell-types at ~100 cells (Figure 4C). These data indicate that aggregated data across at least

100 cells from a given cell-type approximates data generated from bulk RNA-seq.

12
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270  Figure 4: Transcriptomic profiles of individual cell types from scRNA-seq of BMSC-OBs
271  are robust and representative of bulk RNA-seq data. A) Correlation between the counts per
272 million (CPM) values from RNA counts derived for bulk, pooled single cell-bulk (psc-bulk), and
273  pseudobulk (PB) samples. B) Correlation between the CPM values derived from the psc-bulk
274  and PB profiles for each annotated cell cluster of the BMSC-OB scRNA-seq data. C) Correlation
275  between overall PB and PBs for each cell-type generating using different numbers of cells (2 to
276  400).
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278  Frequency of osteogenic cell-types are highly variable across DO mice:
279  Because the BMSC-OB scRNA-seq dataset consists of multiple samples pooled into one, we

280 used Souporcell®’

genotype deconvolution to assign a mouse of origin to each cell with high
281 confidence (Supplemental Data 4). Five genotypically distinct clusters (genotypes) were

282  inferred by Souporcell from the scRNA-seq data based on SNPs captured in the sequenced
283  cDNA. Genotype clusters were assigned to their corresponding DO mouse ID by comparing
284  allele calls made by the variants captured between Souporcell and genotypes previously

285  generated on all five DO mice using the GigaMUGA genotyping'®32. Of the 67,056 total variants
286 identified by Souporcell, 0.87% (581) were also captured by the GigaMUGA arrays (143,259
287  total). DO mouse IDs were assigned based on the highest percentage of matching allele calls
288  made upon pairwise comparison between Souporcell cluster and GigaMUGA arrays. After

289  assigning a mouse of origin for all cells in the scRNA-seq data, we quantified differences in the
290 frequencies of various cell-types contributed by each mouse (Figure 5A). For example, mouse
291  #50 had a higher frequency of LMPs and MALPs and fewer osteoblasts and osteocytes

292  compared to the other four mice (Figure 5A, 5B). Pooling samples for scRNA-seq, coupled with
293  genotype deconvolution downstream, is an approach that is scalable for multi-sample input,

294  which is necessary to perform population-level investigations.
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Figure 5: Cell type frequencies captured by scRNA-seq are highly variable across
individual DO mice. A) UMAPs of the BMSC-OBs derived from the five DO mice, split based
on each mouse (12, 45, 48, 50, 84). B) Stacked bar chart representing the proportion of each
cell type derived from each mouse.

BMSC-0OBs show expected gene regulatory networks:

Cell-type identification is largely based on the association of canonical and highly expressed
genes with certain cell-types; however, underlying gene regulatory networks (GRNs) provide
insight into how expression is coordinated. Moreover, GRN inference can be used to establish
gene expression profiles for cell-types of interest by elucidating which specific combinations of
transcription factors (TFs) are responsible for the expression of downstream target genes. We
used SCENIC® to better understand the GRNs that characterize the cell states in BMSC-OBs.
The SCENIC analysis pipeline first generates regulatory modules inferred from co-expression
patterns, which are used to form “regulons” consisting of a core TF that governs the expression

of predicted target genes. Next, target genes are pruned based on enrichment of the TF cis-
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regulatory motifs located upstream or downstream of target genes in the regulon
(Supplemental Data 5). Lastly, the activity of regulons is quantified across individual cells
(Supplemental Data 6).

We applied the SCENIC analysis pipeline to the BMSC-OBs and resolved distinct
regulons associated with each cell cluster in the BMSC-OB dataset (Figure 6). Regulons were
robust in activity (Figure 6A, 6B, Supplemental Data 7) and specific for each cell-type (Figure
6C, 6D, Supplemental Data 8). For example, Sp7 (Osterix), a key TF known to be involved in
osteoblast differentiation, was found to be more specifically associated and highly active in the
OBP cell cluster (Figure 6C, 6D). Similarly, we show Pparg is a highly active regulon and
exclusively associated with MALPs (Figure 6C, 6D), consistent with its role as a master
regulator of adipogenesis. This analysis suggested that not only do BMSC-OB cell-types show
similar transcriptomic signatures to the same cells isolated directly from bone, but cell circuits

(i.e., GRNSs) are also similar.
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337  Figure 6: SCENIC gene regulatory network (GRN) analysis reveals expected transcriptomic
338 activity and validates the identities of cell-types in BMSC-OBs. A) Binarized heatmap
339 SCENIC regulon activity results, where “1” indicates active regulons; “0” indicates inactive
340 regulons. B) Heatmap of SCENIC results portraying the scaled average for regulon activity in
341 each annotated cell cluster, where the color key from blue to red indicates activity levels from low
342  to high, respectively. C) Plots of the top five regulons with the highest specificity score (RSS) for
343  each cell cluster. D) Density plots portraying the regulon-weighted 2D kernel density of select
344  regulons for each cell cluster.

345

346 MALPs and osteogenic cells capture BMD heritability identified by GWAS:

347 We next used CELLECT?** to evaluate the relevance of identified cell-types with regards to

348 mediating the effects of GWAS. CELLECT integrates disease heritability estimates with cell-type
349  expression specificity from scRNA-seq data to identify cell-types that capture a significant

350 component of the heritability for a disease or trait. We applied CELLECT to the cell-types

351 identified in BMSC-OBs and those identified by Zhong et al. (2020). We observed that genes
352  with selective expression in MALPs, OBs, and Ocys from both datasets were significantly (P <
353  0.05) enriched for BMD heritability. In addition, IMPs and LMPs in the Zhong et al. (2020)

354  dataset were also significant. Non-mesenchymal lineage cells, which are mostly immune cells in
355  both datasets were not significant (Table 1). Interestingly, osteoclasts captured in Zhong et al.

356 (2020) dataset were not identified as significant in the CELLECT analysis (Table 1).

357
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Table 1: CELLECT cell-type prioritization on all cell-types annotated in the BMSC-OBs and
Zhong et al. (2020) scRNA-seq datasets.
scRNA-seq dataset Cell type Beta Beta SE P-value

Zhong et al. MALP 5.88 x 108 1.84 x 108 6.92 x 10
Zhong et al. OB 4.80x 108 1.56 x 108 1.05x 103
Zhong et al. Ocy 5.91x 108 2.15x 108 3.03x10°%
BMSC-OBs Ocy 5.70 x 108 2.16 x 108 4.18x 103
BMSC-OBs MALP 4.86 x 108 1.86 x 108 4.57 x 103
Zhong et al. IMP 3.61x10% 1.68 x 108 1.57 x 1072
Zhong et al. LMP 3.09x 108 1.71x 108 3.55x 107?
BMSC-OBs OB 6.24 x 108 3.56 x 108 3.98 x 107?
Zhong et al. EMP 2.86 x 108 1.79x 108 5.52 x 102
Zhong et al. CH 1.96 x 10 1.38 x 108 7.81x 102
Zhong et al. Mural 9.12x10° 1.66 x 108 2.91x 102
BMSC-OBs LMP -4.57 x 10°° 2.04 x 108 5.89 x 102
BMSC-OBs OBP -5.85 x 10°° 1.77 x 108 6.30 x 10
Zhong et al. Erythrocyte -8.07 x 10°° 1.73x 108 6.79 x 107
Zhong et al. Mono -3.03x 108 1.60 x 108 9.71 x 10
Zhong et al. MF -2.98 x 108 1.52 x 108 9.75x 10
Zhong et al. EC -2.20x 108 1.10x 108 9.77 x 107
Zhong et al. B-cell -3.47 x 108 1.63 x 108 9.83 x 10"
Zhong et al. ocC -4.66 x 108 1.55x 108 1

Zhong et al. Granulo -3.56 x 108 9.95x 10° 1

BMSC-OBs Hem -5.90 x 108 1.36 x 108 1

Zhong et al. T-cell -6.45 x 108 1.35x 108 1

Zhong et al. HSC -6.28 x 108 1.28 x 108 1

Zhong et al. GP -5.44 x 108 1.11x 108 1

Beta is regression effect size estimate for given annotation. Beta SE is the standard error for the
regression coefficient. P-value is the one-sided test (beta > 0) association between BMD GWAS
signal heritability and each annotated cell-type. P-values < 0.05 are highlighted in red. Cell-type
abbreviations: OB: osteoblast; OBP: osteoblast progenitor; Ocy: osteocyte; EMP: early
mesenchymal progenitor; IMP: intermediate mesenchymal progenitor; LMP: late mesenchymal
progenitor; MALP: marrow adipogenic lineage precursors; CH: chondrocyte; HSC:
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hematopoietic stem cell; EC: endothelial cell; GP: granulocyte progenitor; Hem: Hematopoietic
lineage cells; OC: osteoclast; Granulo: granulocyte; MF: macrophage; Mono: monocyte; Mural:
mural cells; T-cell: T-lymphocyte; B-cell: B-lymphocyte.
Discussion

A considerable challenge faced upon analyzing GWAS is identifying the causal genes
impacted by significant associations. Integrating transcriptomics data has proven invaluable for
accomplishing this goal. Colocalizing genetic variation impacting gene expression with GWAS
associations can identify putative causal genes influencing disease. Moreover, integrating
single-cell transcriptomics data can provide the cellular context in which causal genes are most
likely to be impactful. In the context of osteoporosis research, the generation of population-scale
transcriptomics data at single-cell resolution would aid in gene discovery. Here, we demonstrate
the use of BMSCs cultured under osteogenic conditions (BMSC-OBs) from the Diversity
Outbred (DO) mouse population coupled with scRNA-seq can serve as a model to generate
single-cell transcriptomics data of mesenchymal cell-types relevant to bone. We show that after
subsequent culturing under osteoblast differentiation, there was an enrichment in the relative
frequencies of osteoblasts and osteocyte-like cells, compared to cells isolated in vivo using a
mesenchymal lineage reporter. Additionally, the model yields adipogenic progenitor cells and
their transcriptomic signature is nearly identical to the MALPs identified in Zhong et al. (2020).
These cells are classified as a stable intermediary cell-type along the adipogenic differentiation
route after mesenchymal progenitors and before more mature, lipid-laden adipocytes (LiLAs)?.
Thus, BMSC-OBs contain many of the key mesenchymal cell-types and leads to an enrichment
of osteoblasts and osteocyte-like cells that we demonstrated were to likely be the most relevant
for informing GWAS.

We addressed the technical challenges posed with our approach, such as the single-cell
isolation procedure used to liberate BMSC-OBs from a highly mineralized matrix in vitro. This

procedure consists of an approximately two-hour process involving incubations with proteases
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and EDTA, raising the concern of technical effects impacting the integrity and quality of the
isolated cells for scRNA-seq. In the bulk vs. psc-bulk experiment, we sought to characterize the
impact of the single-cell isolation procedure on gene expression. Despite the induction of
inflammation/stress-related genes in the psc-bulk sample, the overall gene expression profiles
between bulk and psc-bulk samples were highly correlated and any observed change in gene
expression had a negligible impact on global transcriptomic signatures or downstream
annotation of mesenchymal cell-types. However, care should be taken when interpreting the
expression of individual genes, especially those identified to be responsive to the isolation
procedure.

We also assessed the biological informativeness of BMSC-OBs by comparing them to
the same cells isolated directly from bone. Upon comparison of both scRNA-seq datasets, we
found that the transcriptomic signatures of BMSC-OB cell-types did not differ compared to the
cells isolated by Zhong et al. (2020). Nevertheless, differences between the two datasets were
observed, namely the absence of early/intermediate mesenchymal progenitor (EMP, IMP)
populations in the BMSC-OB dataset, which is likely due to the maturation of LMPs beyond
EMP/IMP cell stages during the in vitro osteoblast differentiation. Importantly, these results
indicate that individual cell-types in BMSC-OBs are nearly identical, in the context of
transcriptomic signatures, to their counterparts in bone.

A number of approaches have been used to profile individual bone cells. These include

scRNA-seq on whole bone marrow?>3°

, using fluorescence-activated cell sorting (FACS) on
marrow to enrich for mesenchymal lineage cells*®, the digestion of bone combined with FACS¥,
and FACS in lineage specific reporter mice®®. These studies have provided important insights
into the cellular landscape of bone and the identity of skeletal stem cells. However, none of
these approaches were developed with the goal of investigating bone cells at the population-

scale in mice or humans. These approaches isolate a wide range of cells, many of which

provide little insight in the context of informing BMD GWAS. Profiling non-relevant cells
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significantly increases cost and makes population screening less feasible. As an alternative,
BMSC-OBs have several attractive attributes. First, it is simple, marrow is relatively easy to
isolate from populations of mice, or even humans, and isolating BMSCs based on plastic
adherence is cost-effective and straightforward. Second, we show that osteoblasts and
osteocyte-like cells are some of the most relevant to BMD GWAS and we are able to enrich for
these cells by culturing under osteogenic conditions. Third, as we have shown, there are few
transcriptomic differences in cultured cells as compared to cells isolated directly from mice in
vivo. Fourth, we do not need to use FACS or specific reporter mice, making it possible to
perform this approach in any population of mice, and potentially humans. Fifth, because we
enriched for key cell-types, the number of cells to sequence is lower.

A valid concern of population-based scRNA-seq studies is cost associated with
increasing scalability and sample throughput. Using BMSC-OBs, we remedy this challenge by
pooling single cells derived from multiple mice into a single sample for scRNA-seq. Because
each DO mouse is genotypically distinct from one another, we performed a genotype
deconvolution on the scRNA-seq data downstream. We were able to associate a “mouse-of-
origin” to each single cell derived from our cohort of DO mice. Genotype deconvolution enables
other downstream analyses, such as quantifying differences in certain cell fractions between
samples. While the sample size of our mouse cohort in this study was small (N = 5), we
observed significant differences in cell-type frequencies between our mice. These differences
likely reflect variation in cell-type composition of the starting BMSCs and differences in the
rate/efficiency of osteoblast differentiation arising as a function of mouse-specific genotype and
environmental effects. With this study serving as a proof-of-concept, BMSC-OBs feasibly
permits scalability and increased sample throughput, which is necessary to inform GWAS.

One of the maijor limitations of our approach is that the BMSC-OB model does not
capture all cell-types relevant to bone. For example, it does not capture osteoclasts. However, it

is important to note that in our CELLECT analysis BMD heritability was not enriched in genes
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452  whose expression was more specific to osteoclasts from the Zhong et al. (2020) dataset. It is
453  unclear why osteoclasts were not significant and may be due to cross-sectional measures of
454  BMD being more so a product of peak bone mass and osteoblast-mediated bone accrual, than
455  bone loss, a process driven by osteoclasts, or the fact that these were likely immature

456  osteoclasts as mature cells would be too large to be captured for sequencing. Although, marrow
457  adiposity®® and MALPs? have been demonstrated to significantly influence bone mass, it was
458  somewhat surprising that the CELLECT analysis identified a significant association between
459  gene expression specificity in MALPs and BMD heritability. This potentially suggests that many
460 BMD GWAS associations impact genes regulating BMD via MALPs. Future studies should seek
461  to identify specific associations that may be working through marrow adipocytes.

462 Here, we described how the osteogenic differentiation of BMSCs can facilitate the

463  generation of large-scale scRNA-seq data for mesenchymal lineage cells derived from the DO
464  mouse population. Based on findings gathered here, the transcriptomic profiles generated

465 from BMSC-OBs will serve as a valuable biological input for future genetic analysis. For

466  example, cell-type specific, co-expression networks can be used as input to perform directed
467  Bayesian network reconstruction and Key Driver Analysis (KDA), as previously described in'®.
468 These subsequent analyses can aid in informing GWAS and highlighting putatively novel genes
469  driving disease. We have demonstrated that the BMSC-OB model has the potential to facilitate
470  more holistic genotype-to-phenotype investigations, which will aid in our understanding of the
471  genetics of bone mass and lead to the identification of novel therapeutic targets that could be
472  targeted to treat and prevent osteoporosis.

473

474  Methods

475  Sample preparation and in vitro cell culture of BMSCs

476  Bone marrow extraction and subsequent cell culture was performed as described in'®. In brief,

477  the left femur was isolated and cleaned thoroughly of all muscle tissue followed by removal of its
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distal epiphysis. Marrow was exuded by centrifugation at 2000xg for 30 s into a sterile tube
containing 35 L fetal bovine serum (FBS, Atlantic Biologicals). The marrow was then triturated
6 times on ice after addition of 150 pL of cold freezing media (90% FBS, 10% Dimethyl
Sulfoxide (DMSO, Fisher). Marrow was placed into a Mr. Frosty Freezing Container (Nalgene)
for the purpose of slow cooling, stored overnight at -80°C, and transferred to liquid nitrogen for
long-term storage. In preparation for cell culture, samples were thawed at 37°C, resuspended in
5 mL bone marrow growth media (MEM alpha, Gibco), 10% FBS, 1% Penicillin Streptomycin
(Pen/Strep, Gibco), 1% Glutamax (Gibco), and then subjected to red blood cell lysis by
resuspending with 5 mL 0.2% NaCl for 20 s then thorough mixing of 1.6% NaCl. Cells were
pelleted, resuspended into 1 mL bone marrow growth media, and cultured in 48 well tissue
culture plates. Samples were incubated in a 37°C, 5% CO2, 100% humidity incubator and left
undisturbed for 3 days. Thereafter, media was aspirated and replaced daily. After 6 days, cells
were washed and then underwent a standard in vitro osteoblast differentiation protocol for 10
days by replacing bone marrow growth media with 300 uL osteogenic differentiation media
(Alpha MEM, 10% FBS, 1% Pen/Strep, 1% Glutamax, 50 pg/mL Ascorbic Acid (Sigma), 10 mM

B-glycerophosphate (Sigma), 10 nM Dexamethasome (Sigma).

Single-cell isolation procedure

The isolation procedure outlined below was inspired by*°. Mineralized cultures were washed
twice with Dulbecco’s Phosphate Buffered Saline (DPBS, Gibco). 0.5 mL of 60 mM
Ethylenediaminetetraacetic acid, pH 7.4 made in DPBS (EDTA, Fisher) was added and cultures
were incubated at room temperature (RT) for 15 min. EDTA solution was aspirated, replaced,
and cultures were incubated again at RT for 15 min. Cultures were then washed with 0.5 mL
Hank’s Balanced Salt Solution (HBSS, Gibco) and incubated with 0.5 mL 8 mg/mL collagenase
(Gibco) in HBSS/4 mM CaCl. (Fisher) for 10 min at 37°C with shaking. Cultures were triturated

10 times and incubated for an additional 20 min at 37°C. Cultures were then transferred to a 1.5
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504  mL Eppendorf tube and centrifuged at 500xg for 5 min at RT. Cultures were resuspended in 0.5
505 mL 0.25% trypsin-EDTA (Gibco) and incubated for 15 min at 37°C. Cultures were then triturated
506 and incubated for an additional 15 min, after which 0.5 mL of media was added, triturated, and
507 spun at 500xg for 5 min at RT. Cultures were then resuspended in 0.5 mL osteogenic

508 differentiation media and cells were counted.

509

510 Bulk RNA-seq analysis

511 Total RNA was extracted using a RNeasy Micro Kit (QIAGEN) and poly-A selected RNA was
512  sequenced via GENEWIZ (South Plainfield, NJ, USA). RNA-seq analysis was performed using
513  a custom bioinformatics pipeline. Briefly, FastqQC*' and RSeQC*? were used to assess the

514  quality of raw reads. Adapter trimming was completed using Trimmomatic*’. Sequences were
515 aligned to the GRCm38 reference genome** using the SNP and splice aware aligner HISAT2*.
516 Genome assembly and abundances in counts per million (CPM) were quantified using

517  StringTie*. Differential expression analysis was performed using the DESeq2*’ package in R.
518

519 Single-cell analysis pipeline

520 After the single-cell isolation procedure, cells from all five mice were pooled and concentrated to
521 800 cells/uL in sterile PBS supplemented with 0.1% BSA. The single-cell suspension was

522 loaded into a 10X Chromium Controller (10X Genomics, Pleasanton, CA, USA), aiming to

523  capture 8000 cells, with the Single Cell 3’ v2 reagent kit, according to the manufacturer’s

524  protocol. Following GEM capturing and lysis, cDNA was amplified (13 cycles) and the

525  manufacturer’s protocol was followed to generate the sequencing library. The library was

526  sequenced on the lllumina NextSeq500 and the raw sequencing data was processed using 10X
527  Genomics Cell Ranger toolkit (version 5.0.0). The reads were mapped to the GRCm38

528 reference genome**. Overall, 8990 cells were sequenced, to a mean depth of 57,717 reads per

529 cell. Sequencing data is available on GEO at accession code GSE152806.
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Analysis of the scRNA-seq data was performed using Seurat?’ (version 4.1.1). Features
detected in at least three cells where at least 200 features were detected were used. We used
Souporcell*' (described below) to remove doublet cells. We then filtered out cells with less than
800 reads and more than 5800 reads, as well as cells with 10% or more mitochondrial reads.
This resulted in 7357 remaining cells. The resulting object underwent standard normalization,
scaling, and the top 3000 features were modeled from the mean-variance relationship using
Seurat’s “FindVariableFeatures” function. Cell-cycle markers identified by Tirosh et al. (2016)
were regressed out using the “CellCycleScoring” and scaling functions. For subsequent
dimensionality reduction, 14 principal components (PCs) were summarized, which was the
number of PCs where the percent change in variation between the consecutive PCs was less
than 0.1%. A kNN (k = 20) graph was created and cells were clustered using the Louvain
algorithm at a resolution of 0.22. Cluster cell-types were manually annotated after performing

differential gene expression analysis of each cell cluster relative to all other clusters using the

Seurat “FindAllMarkers” function (Supplementary Data 1).

Trajectory inference/pseudotime analysis was performed using Slingshot®® (version 1.6.1) on
osteogenic/adipogenic lineage cells with the starting cluster set as the LMPs. TradeSeq*®
(version 1.4.0) was used to analyze gene expression along the trajectories by fitting a negative
binomial generalized additive model (NB-GAM) to each gene using the “fitGAM” function with

nknots = 8, which was determined by using the “evaluateK” function.

Integration of datasets via Canonical Correlation Analysis (CCA)
CCA™ in Seurat was used to integrate in vivo scRNA-seq data derived from Zhong et al. (2020)

(1.5 month and 3 month timepoints) with the BMSC-OB in vitro data. The Zhong et al. (2020)
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data was first pre-processed in the same fashion as the BMSC-OBs scRNA-seq dataset. Cell-
types not present in the BMSC-OBs dataset were removed from the Zhong et al. (2020) data in
order to portray only osteogenic and adipogenic lineage cells. After integration, the combined

dataset was clustered and analyzed as described in the single-cell analysis pipeline (above).

Souporcell

Upon performing Souporcell®' (version 2.0.0), barcoded cells identified as doublets were
removed from the scRNA-seq count matrix during pre-processing of the data. Additionally,
Souporcell was used to perform genotype deconvolution using the GRCma38 reference
genome™**. Five genotypically distinct clusters (genotypes) were inferred based on variants in the
sequenced reads. Genotype clusters were assigned their corresponding DO mouse ID by
comparing allele calls made by the shared variants captured between Souporcell and GIGA-
MUGA arrays previously performed on all mice in the cohort. DO mouse IDs were assigned by
making a pairwise comparison between each Souporcell genotype cluster and GigaMUGA
array. The comparison yielding the highest percentage of matching allele calls indicated the

identity/genotype of each mouse (Supplemental Data 4).

SCENIC

pySCENIC (Single-Cell rEgulatory Network Inference and Clustering)®® (version 0.11.2) was
used to infer gene regulatory networks. A fully-processed Seurat object containing cell-type
annotations was transformed into a loom file by using SeuratDisk*® (version 0.0.0.9019). The
loom file was subsequently used as input to the SCENIC workflow®. In brief, gene regulatory
networks (GRNs) were built using GRNBoost®' to identify potential gene targets for each
transcription factor (TF) based on co-expression. CisTarget®? was then used to select potential

direct target genes of the governing TF of the co-expression modules. (Supplemental Data 5).
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580  The activity of the final regulons were calculated using AUCell** (Supplemental Data 6).

581  Regulon specificity score (RSS) is based on Jensen-Shannon divergence, as described in>?
582  (Supplemental Data 8). Stable cell states were identified by analyzing the most active and
583  specific regulons for each cluster as well as associated target genes.

584

585 CELLECT

586 CELLECT?* (Cell-type Expression-specific integration for Complex Traits) (version 1.1.0) was
587  used to identify likely etiologic cell-types underlying complex traits of both the BMSC-OBs and
588 Zhong et al. (2020) datasets. CELLECT quantifies the association between the GWAS signal

589  and cell-type expression specificity using the S-LDSC genetic prioritization model®*

. Summary
590 statistics from the UK Biobank eBMD and Fracture GWAS?® (Data Release 2018) and cell-type
591 annotations from each scRNA-seq dataset were used as input. Cell-type expression specificities
592  were estimated using CELLEX?* (CELL-type EXpression-specificity) (version 1.2.1). The

593  CELLECT output prioritizes likely etiologic cell-types for BMD (Table 1).

594
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