

1 **Fortuitous Somatic Mutations during Antibody Evolution Endow Broad**
2 **Neutralization against SARS-CoV-2 Omicron Variants**

3

4 Jianbo Wu^{1,6}, Zhenguo Chen^{1,6}, Yidan Gao^{1,6}, Zegen Wang^{2,6}, Jiarong Wang^{2,6}, Bing-
5 Yu Chiang^{2,6}, Yunjiao Zhou^{3,6}, Yuru Han^{1,6}, Wuqiang Zhan^{1,6}, Minxiang Xie^{1,6},
6 Weiyu Jiang¹, Xiang Zhang¹, Aihua Hao¹, Anqi Xia¹, Jiaying He¹, Song Xue¹,
7 Christian T. Mayer⁴, Fan Wu^{1,5}, Bin Wang^{1,3,5}, Lunan Zhang^{1,2,*}, Lei Sun^{1,*}, Qiao
8 Wang^{1,*}

9

10 ¹Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai
11 Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of
12 Pathogenic Microbes and Infection, Shanghai Fifth People's Hospital, Shanghai Key
13 Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of
14 Public Health, School of Basic Medical Sciences, Fudan University, Shanghai
15 200032, China

16 ²Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China.

17 ³Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai
18 Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai
19 201619, China

20 ⁴Experimental Immunology Branch, Center for Cancer Research, National Cancer
21 Institute, National Institutes of Health, Bethesda, MD 20892, USA

22 ⁵Co-senior author

23 ⁶These authors contributed equally

24 *Correspondence: lunan@advaccine.com (L.Z.), llsun@fudan.edu.cn (L.S.),
25 wangqiao@fudan.edu.cn (Q.W.)

26

27 **RUNNING TITLE: A bNAb family for COVID-19**

28 **ABSTRACT**

29 Striking antibody evasion by emerging circulating SARS-CoV-2 variants drives the
30 identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb
31 acquires increased neutralization breadth during antibody evolution is still elusive.
32 Here, we identified a clonally-related antibody family from a convalescent individual.
33 One of the members, XG005, exhibited potent and broad neutralizing activities
34 against SARS-CoV-2 variants, while the other members showed significant
35 reductions in neutralization breadth and potency, especially against the Omicron
36 sublineages. Structural analysis visualizing the XG005-Omicron spike binding
37 interface revealed how crucial somatic mutations endowed XG005 with greater
38 neutralization potency and breadth. A single administration of XG005 with extended
39 half-life, reduced antibody-dependent enhancement (ADE) effect, and increased
40 antibody product quality, exhibited a high therapeutic efficacy in BA.2- and BA.5-
41 challenged mice. Our results provided a natural example to show the importance of
42 somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization
43 breadth and potency.

44

45 **KEYWORDS:** broadly neutralizing antibody (bNAb), SARS-CoV-2, variant of
46 concern, clonally-related antibody family, somatic hypermutation

47 INTRODUCTION

48 Variant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
49 2) continue to emerge and spread globally. So far, five variants of concern (VOCs)
50 have been defined, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
51 (B.1.617.2), and the newly identified Omicron (B.1.1.529) variants ([Karim and](#)
52 [Karim, 2021; Mannar et al., 2022; Viana et al., 2022](#)). These VOCs bear mutations in
53 the viral spike protein (S protein), not only increasing the viral transmissibility or
54 virulence, but also facilitating the immune escape ([Altmann et al., 2021; Mlcochova](#)
55 [et al., 2021; Planas et al., 2021; Wang et al., 2021a; Wang et al., 2021b](#)). Many
56 monoclonal antibodies (mAbs) identified from convalescent or vaccinated individuals
57 showed diminished or abrogated neutralizing activity against distinct VOCs ([Schmidt](#)
58 [et al., 2021; Wang et al., 2022b](#)). Especially, the newly emerged Omicron variant
59 encodes 37 amino acid substitutions in the viral S protein, 15 of which are located in
60 the receptor-binding domain (RBD), and causes significant humoral immune evasion,
61 posing a remarkable challenge for the effectiveness of vaccines and mAb therapies
62 ([Cameroni et al., 2022; Cao et al., 2022a; Carreno et al., 2022; Cele et al., 2022;](#)
63 [Iketani et al., 2022; Liu et al., 2022; Planas et al., 2022; Zhou et al., 2022](#)).

64 These newly emerging SARS-CoV-2 variants with strong immune escape
65 capacity motivate researchers to identify broadly neutralizing antibodies (bNAbs) that
66 could be of potential clinical benefit. Combining two mAbs recognizing two distinct
67 epitopes is a popular strategy to increase the neutralizing breadth and avoid viral
68 evasion ([Baum et al., 2020; Dong et al., 2021; Li et al., 2022](#)). For example, Eli

69 Lilly's combination of two RBD-binding mAbs, bamlanivimab (LY-CoV555) and
70 etesevimab, has been authorized for emergency use after exposure to the SARS-CoV-
71 2 virus (Dougan et al., 2021). Tixagevimab (AZD8895) and cilgavimab (AZD1061)
72 combination showed both prophylactic and therapeutic efficacy in a nonhuman
73 primate model of SARS-CoV-2 infection (Loo et al., 2022). A bispecific antibody
74 through connecting two single-domain antibodies, n3113v and n3130v, also displayed
75 exceptional neutralizing breadth and potency via inhalation administration (Li et al.,
76 2022).

77 Meanwhile, using just a single monoclonal bNAb with high neutralization
78 potency and breadth could also be effective for clinical prevention or therapy. For
79 example, LY-CoV1404 (also known as bebtelovimab) exhibits exceptional
80 neutralizing activity against various SARS-CoV-2 variants, unaffected by most of
81 these variant mutations (Iketani et al., 2022; Westendorf et al., 2022; Zhou et al.,
82 2022). However, the number of super-antibodies with extreme broad-spectrum
83 activity and ultra-potency is still very limited, and more importantly, its evolution
84 process in vivo is still largely unknown.

85 Here, we screen mAbs isolated from a convalescent donor with elite serum
86 neutralizing activity (Zhou et al., 2021), and identified XG005, a fully human IgG1
87 mAb targeting SARS-CoV-2 RBD, as an extremely potent neutralizing antibody, both
88 in vitro and in vivo, against all currently known VOCs and the most recently emerged
89 Omicron variants, BA.1, BA.2, BA.2.12.1, BA.3, and BA.4/5, which have severe
90 immune escape capacity (Cao et al., 2022a; Cao et al., 2022b; Iketani et al., 2022; Liu

91 et al., 2022). Structural analysis revealed that XG005 bound to an epitope that
92 overlapped with VOC escape mutations, but delicately avoided immune escape and
93 retained its binding affinity. Moreover, three clonally-related family members of
94 XG005 isolated from the expanded B cell clone of the same donor showed reduced
95 levels of neutralizing potency and breadth, suggesting that the resistance of XG005
96 evolved stochastically. Comparison of their sequences identified the somatic
97 mutations at the amino acid residues crucial for antibody neutralizing potency and
98 breadth. Considering that this convalescent individual donated the blood at a time
99 when there were no emerging variants of SARS-CoV-2, we conclude that a highly
100 potent and broad neutralizing antibody could evolve stochastically even in
101 convalescent individuals whose sera barely neutralize SARS-CoV-2 Omicron
102 variants.

103

104 **RESULTS**

105 **Screening of antibodies isolated from a convalescent donor**

106 We isolated monoclonal antibodies (mAbs), XG001-XG048, from a
107 convalescent individual who donated blood in April 2020 when no SARS-CoV-2
108 variant had been reported (Zhou et al., 2021). Half of these antibodies (23/45, red
109 name in Figure 1A) recognized the receptor-binding domain of SARS-CoV-2 spike
110 protein (S protein); one fourth (11/45, blue name in Figure 1A) were N-terminal
111 domain (NTD)-binding antibodies; and several (5/45, green name in Figure 1A)
112 bound S2 stalk region (Zhou et al., 2021). To explore the cross-reactivity of these

113 antibodies against different VOCs, we first performed an ELISA analysis against the
114 S-protein of SARS-CoV-2 and its related VOCs (Figure 1A). Among 45 antibodies, 2,
115 8, 5, 7 and 23 antibodies exhibited at least 25% reduction of binding activity against S
116 protein of B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and
117 B.1.1.529 (Omicron) variants, respectively (Figure 1B). Some antibodies, such as
118 XG027 and XG043, showed a substantial loss in antigen binding against most VOCs;
119 for some others, such as RBD-binding antibody XG005 and NTD-binding antibody
120 XG035, no loss of binding capacity was observed. Together, these results suggest that
121 Omicron exhibited a higher level of resistance to the tested mAbs isolated from a
122 convalescent individual, and that many mAbs maintain their binding capacity against
123 VOCs.

124

125 **Neutralizing activity *in vitro* against VOCs**

126 Antibody binding cannot predict viral neutralization. To assess the neutralization
127 profile of these mAbs, we constructed various luciferase-expressing SARS-CoV-2
128 pseudoviruses, including SARS-CoV-2 Wuhan-Hu-1 (wild-type), B.1.1.7 (Alpha),
129 B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants,
130 and performed *in vitro* neutralization assays and calculated the IC₅₀ values (Liu et al.,
131 2021; Zhou et al., 2021) (Figure 2A and 2B). Twenty-three antibodies were
132 neutralizers against wild-type SARS-CoV-2, and all of them, except XG005, partially
133 or entirely, lost their neutralizing activity to at least one VOC (Figure 2A and 2B).
134 Some monoclonal antibodies, such as XG001 and XG002, were not neutralizing at all,

135 while potent neutralizers XG014 and XG016 showed significant antibody evasion by
136 only the Omicron variant (Figure 2C). XG005 exhibited ultra-potent neutralizing
137 activities against all VOCs (Figure 2C).

138 Consistent with other reports that the Omicron variant escapes antibody
139 neutralization strikingly (Iketani et al., 2022; Liu et al., 2022), nearly 90% of the our
140 neutralizing antibodies (20/23) had impaired Omicron neutralization with a more than
141 3-fold increase in the antibody IC₅₀ values (Figure 2B). Among the 10 Omicron-
142 neutralizing antibodies, 9 had IC₅₀ values ranging from 1-10 µg/ml, and only one,
143 XG005, exhibited an impressive neutralizing potency, with an IC₅₀ value of 0.005
144 µg/ml (Figure 2A). Taken together, these results suggest that all tested mAbs isolated
145 from this donor, except XG005, significantly lost their neutralizing activities against
146 VOCs, especially against Omicron variants.

147

148 **Broad neutralizing activity of XG005**

149 The outstanding neutralizing activity of XG005 led us to further assess the
150 neutralization profile of XG005. We constructed several more types of pseudoviruses,
151 including SARS-CoV-1, SARS-CoV-2 variants [B.1.351-L242H, B.1.617.1 (Kappa),
152 C.37 (Lambda), B.1.621 (Mu)], and SARS-CoV-2 Omicron variants [BA.1, BA.2,
153 BA.2.12.1, BA.3, BA.4/5], and performed pseudovirus neutralization assays. XG005
154 remained potent in neutralizing all these variants, including Omicron sublineages,
155 with IC₅₀ values of 0.008 µg/ml or lower, but had no neutralization activity against
156 SARS-CoV-1 (Figure 2D and 2E). Together, the potent and broad neutralizing

157 activity of XG005 indicates that there is still a highly conserved RBD epitope for
158 antibody binding which is not affected by any escape mutations in SARS-CoV-2
159 variants.

160

161 **Structural and functional basis of XG005 neutralization and retained potency**

162 To understand the structural basis for the neutralizing activity of XG005, we
163 determined the cryo-EM structure of the SARS-CoV-2 wild-type S trimer complexed
164 with XG005 Fab, revealing a conformation of two “up” and one “down” RBD with
165 three Fabs (UDU with three Fabs, PDB ID 7V26, 3.8 Å resolution)([Liu et al., 2021](#)).

166 To further understand its broad neutralizing activity, we determined the cryo-EM
167 structure of the SARS-CoV-2 Omicron S trimer complexed with XG005 (OS-XG005)
168 ([Table S1](#)). Other than the UDU conformation with three Fabs (PDB ID 7YCZ, 3.24
169 Å), the OS-XG005 exhibited another two states, one “up” and two “down” RBDs
170 with two Fabs (UDD with two Fabs, 3.62 Å), and one “up” and two “down” RBDs
171 with three Fabs (UDD with three Fabs, PDB ID 7YCZ, 3.74 Å) ([Figure 3A](#)). Among
172 these conformations, the “up” RBDs opened almost in the same orientation, while the
173 orientations of “down” RBDs were different, which might result from the
174 conformations of the other two RBDs ([Figure 3B](#)).

175 Comparison of the interface regions of wild-type RBD-XG005 ([Liu et al., 2021](#))
176 and Omicron RBD-XG005 showed that the XG005 interacted with wild-type and
177 Omicron RBD in a very similar way. The tight contacts between XG005 and Omicron
178 RBD mainly resulted from extensive hydrophilic interactions. Three mutation

179 residues (N440K, G446S and N501Y) of the Omicron S were located in the XG005-
180 recognizing epitope (Figure 4A and 4B). Specifically, although N501Y mutation led
181 to the loss of two hydrogen bonds between N501 of wild-type RBD and N33 of
182 XG005 CDRL1 (Figure 4C and 4D), G446S mutation introduced two hydrogen bonds
183 between Omicron-S S446 and T96 of XG005 CDRL3 (Figure 4C and 4D). Moreover,
184 N440K mutation destroyed the hydrogen bonds between residues N440/L441 of wild-
185 type RBD and Y34/G33 of XG005 CDRL1/CDRH2, but rescued one hydrogen bond
186 between K440 of Omicron RBD and A103 of XG005 CDRH3 (Figure 4C and 4D). In
187 addition, one hydrogen bond formed between N450 of Omicron RBD and D58 of
188 XG005 CDRH2 as a compensation (Figure 4C and 4D). Therefore, the three Omicron
189 mutations (N440K, G446S and N501Y) did not disrupt the RBD-XG005 interaction
190 (Figure 4E).

191 Based on the cryo-EM structure, the residues N450, V445, G447, N439 and
192 Q506 of SARS-CoV-2 S protein were crucial for XG005 recognition, while SARS-
193 CoV-2 VOCs bear no amino acid change on these residues. This is consistent with the
194 overall high neutralizing potency of XG005 against all tested variants.

195

196 **Clonally-related neutralizing antibodies of XG005**

197 It has been shown recently that a higher level of somatic hypermutation acquired
198 in the months post-infection or by a vaccine booster shot provides some antibodies
199 with greater neutralizing potency and breadth, suggesting that increased antibody
200 diversity may improve antibody resistance to viral escape mutations (Gaebler et al.,

201 2021; Muecksch et al., 2021; Sokal et al., 2021). However, XG005 was cloned from a
202 donor early in convalescence and its somatic mutation level is low, with only 6 amino
203 acid substitutions in both heavy and light chain V regions compared with germline
204 sequences (Figure 5A). To understand the evolution process of XG005 for Omicron
205 neutralization, we isolated three clonally-related antibodies of XG005 from the same
206 donor (Zhou et al., 2021), and named them XG005a, XG005b and XG005c.

207 XG005 and its three family members were all encoded by IGHV2-5/IGLV2-14
208 (Figure S5A). Sequence alignment between their heavy and light chains suggested a
209 high similarity, including their CDR3 sequences of both heavy and light chains
210 (Figure 5A). The levels of somatic hypermutation for all XG005 family members
211 were low, and XG005a-c had even lower levels of somatic hypermutations compared
212 with XG005 (Figure 5A).

213 We further evaluated their neutralization potency against a panel of pseudotyped
214 viruses of SARS-CoV-2 variants. XG005 and its three family antibodies exhibited
215 striking disparity in neutralizing activity and breadth (Figure 5B and S5B).
216 Specifically, XG005b displayed minimal activity against most SARS-CoV-2 variant
217 pseudoviruses, with IC₅₀ values ranging from 1.517 to >10 µg/ml (Figure 5B and 5C).
218 XG005a neutralized most variants, with IC₅₀ values ranging from 0.023-0.267 µg/ml
219 for all variants except Omicron, for which the IC₅₀ was >10 µg/ml (Figure 5B and
220 5C). XG005c potently neutralized the majority of SARS-CoV-2 variant pseudoviruses
221 (IC₅₀ values of 0.001-0.058 µg/ml), but exhibited a partial loss of potency against
222 Omicron (IC₅₀ value of 1.995 µg/ml) (Figure 5B and 5C).

223

224 **Structural comparison for the key amino acid residues during antibody
225 evolution**

226 XG005 exhibited ultra-potent neutralizing activity against the B.1.1.529
227 (Omicron) pseudovirus, while none of the XG005 family members showed
228 comparable activity. We further measured their ELISA binding activity against the S
229 protein of B.1.1.529 (Omicron). As expected, similar binding activities were observed
230 between XG005 and XG005c (ELISA AUC ~30). XG005a had slightly reduced
231 binding activity (ELISA AUC ~26), while XG005b binding capacity was abolished
232 by Omicron mutations (ELISA AUC ~9) (**Figure S5C**).

233 To reveal the underlying molecular mechanism, we performed structural analysis
234 and modeled the interactions between Omicron RBD and three XG005 family
235 members (**Figure 6A**). The structural models of XG005a, XG005b, and XG005c were
236 generated based on XG005 structure by SWISS-model ([Waterhouse et al., 2018](#)). The
237 structures of all four XG005 family members were similar, with 15 amino acid
238 residues in IGHV and 14 amino acid residues in IGLV involved in the recognition of
239 the Omicron RBD (**Figure 5A**). Superimposed structural models showed that 8 of 11
240 key residues involved in the interaction were conserved among XG005 family
241 members, including Y54, L52, R60, D56, and D58 in IGHV, and Y34, N33, and V98
242 in IGLV. However, although the residue D58 in IGHV was conserved among XG005
243 family members, this residue in XG005a, XG005b, and XG005c shifted away and
244 damaged the hydrogen bond between N450 of Omicron RBD and D58 of antibody

245 heavy chain, thus causing the reduced binding affinity against Omicron RBD (Figure
246 6B).

247 The other three key residues for Omicron RBD recognition were A103 in the

248 heavy chain and T96/A31 in the lambda light chain of XG005 (Figure 6A and 6B).

249 Both A103 in XG005 and T103 in other family members bound SARS-CoV-2 RBD

250 with no difference. For the residue 96 of IGLV, the S96T mutation in XG005,

251 XG005a and XG005c established a hydrogen bond between S446 of Omicron RBD

252 and T96 of IGLV, while the lack of this somatic mutation in XG005b failed to do so

253 (Figure 6B). In addition, the G31A mutation in XG005/XG005c IGLV was a key

254 mutation for recognizing Omicron RBD. However, for XG005a, G31D mutation at

255 this residue introduced a clash between Omicron RBD and D31 of XG005a, reducing

256 XG005a's binding affinity with Omicron RBD (Figure 6B). Together, these results

257 provided a structural explanation that XG005 neutralized more potently than XG005c,

258 and that XG005c neutralized better than XG005a and XG005b (Figure 5B and 5C).

259

260 **Engineered XG005 with reduced enhancement and extended half-life**

261 XG005 was encoded by IGHV2-5/IGLV2-14. Similarly, as XG005, a well-

262 known broad and potent neutralizing mAb, LY-CoV1404 (bebtelovimab), was also

263 encoded by IGHV2-5/IGLV2-14 (Westendorf et al., 2022; Yuan et al., 2022). The

264 cryo-EM structure of XG005 is extraordinarily comparable with that of LY-CoV1404

265 (Figure S6).

266 Our previous data showed that XG005 induced antibody-mediated viral entry
267 and S protein-mediated membrane fusion through its interaction with Fc receptor
268 (FcR), implying the potential side effect for antibody prophylaxis and therapy. (Liu
269 et al., 2021; Zhou et al., 2021). As expected, LY-CoV1404 also induced in vitro
270 antibody-dependent enhancement (ADE) of viral entry (Figure 7A). To eliminate its
271 ADE of viral entry, we thus engineered XG005 Fc amino acids to reduce its FcR
272 interactions (GRLR, G239R/L331R, or LALA, L237A/L238A modifications). In vitro
273 SARS-CoV-2 pseudovirus (ADE) assays (Zhou et al., 2021) showed that the
274 engineered Fc variants of XG005 with GRLR or LALA substitutions induced no ADE
275 effect in cultured Raji cells, while strong in vitro ADE effect was observed in Raji
276 cells treated with wild-type XG005 (Figure 7B).

277 XG005 had a non-canonical cysteine (C109, red arrowhead in Figure 5A) in the
278 CDR3 region of XG005 heavy chain. To avoid the potential aggregation and antibody
279 instability triggered by this non-canonical cysteine through intramolecular scrambling
280 or intermolecular disulfide formation (Buchanan et al., 2013), we substituted the
281 cysteine at position 109 with tyrosine (Y) or serine (S) residues, the corresponding
282 amino acid residues in XG005b and XG005c, respectively (Figure 5A). Both
283 substitutions (XG005-C109Y and XG005-C109S) showed no reduction in
284 neutralizing activity against SARS-CoV-2 variants (Figure S7).

285 We further engineered XG005 Fc domain to extend the antibody half-life (YTE,
286 M255Y/S257T/T259E, or LS, M431L/N437S) and to reduce antibody heterogeneity
287 (Kdel, deletion of the C-terminal lysine in Ig heavy chain). Pharmacokinetic analyses

288 in humanized FcRn transgenic mouse showed that XG005 had a longer half-life than
289 LY-CoV1404, and that the YTE substitution in XG005 significantly extended its
290 serum half-life (Figure 7C). Moreover, we performed in vitro neutralization assays to
291 ensure that none of these Fc substitutions affect the in vitro neutralizing activity of
292 XG005 (Figure S8).

293 Together, to facilitate and improve therapeutic use, we engineered XG005,
294 reduced its ADE effect, increased its half-life, optimized the antibody production and
295 quality, and finally developed XG005-C109S-YTE-LALA-Kdel (XG005-CYLK) for
296 the following therapeutic evaluation in vivo.

297

298 **Therapeutic activity of XG005-CYLK**

299 We first confirmed the neutralizing activity of XG005-CYLK using authentic
300 SARS-CoV-2 viruses BA.2 and BA.5 (Figure 7D). As shown, significant inhibitory
301 activities against BA.2 and BA.5 infection were observed for XG005-CYLK, with
302 IC₅₀ values of 0.033 µg/ml and 0.023 µg/ml, respectively.

303 We next sought to evaluate the therapeutic activity of XG005-CYLK in an
304 established human ACE2 transgenic mouse model. Mice were intranasally challenged
305 with BA.2 or BA.5 virus using 1×10⁵ focus forming units (FFU), and, four hours post
306 infection, intraperitoneally treated with a single dose of antibody XG005-CYLK or
307 the same volume of PBS as control (Figure 7E). Two days post inoculation, the viral
308 loads in the lungs reached 3.7~6.1×10⁵ FFU for BA.2 and 1.03~1.37×10⁶ FFU for
309 BA.5 in the control groups of mice treated with PBS (Figure 7F and 7G). Compared

310 with the control groups, a single dose of XG005-CYLK (2.5 mg/kg, 7 mg/kg or 21
311 mg/kg for BA.2; 1 mg/kg, 5 mg/kg or 10 mg/kg for BA.5) efficiently reduced the viral
312 loads by more than 1,000-fold in the lungs (Figure 7F and 7G). However, decreased
313 levels of XG005-CYLK (0.2 mg/kg and 0.04 mg/kg for BA.5) were not sufficient to
314 suppress the lung viral loads (Figure 7G).

315 Collectively, these results suggest that rare B cells elicited by just wild-type
316 SARS-CoV-2 infection retained broad neutralization against the currently circulating
317 SARS-CoV-2 variants, and the corresponding mAbs could be engineered as potent
318 therapeutics.

319

320 **DISCUSSION**

321 In this article, we examined the binding capacity and neutralizing activity of 45
322 monoclonal antibodies (mAbs) isolated from a convalescent individual who donated
323 blood in April 2020. Among them, the XG005 monoclonal antibody showed potent
324 and broad neutralizing activity against all variants, including the BA.2, BA.2.12.1,
325 and BA.4/5 subvariants. Treatment experiments in mice with engineered XG005
326 alone showed efficient viral-controlling effect *in vivo*. Therefore, the high threshold
327 against virus escape provided by an antibody cocktail would also be achieved by a
328 single mAb alone.

329 Cryo-EM structure explained how XG005 avoided immune escape and
330 maintained neutralization potency. Although many bNAbs against Omicron bound to
331 an outer surface of RBD (Fang et al., 2022; Nutalai et al., 2022; Pinto et al., 2020),

332 XG005 recognized the receptor-binding motif (RBM), which bound to ACE2 receptor
333 and is highly mutated in the Omicron subvariants ([VanBlargan et al., 2022](#)). However,
334 distinct from the immune escape of most RBM-targeting antibodies, XG005
335 delicately avoided significant loss of neutralization despite the three Omicron amino
336 acid mutations (N440K, G446S and N501Y) located in the XG005-recognizing
337 epitope. Newly formed hydrogen bonds and salt bridges simultaneously rescued the
338 loss of hydrogen bonds between XG005 and Omicron S protein (Figure 4). This
339 effective compensation mechanism plays an important role for recognizing various
340 SARS-CoV-2 variants.

341 XG005 was an IGHV2-5/IGLV2-14-encoded RBD antibody, while antibodies
342 LY-CoV1404 (bebtelovimab) ([Westendorf et al., 2022](#)), 2-7 ([Kramer et al., 2021](#)) and
343 XGv265 ([Wang et al., 2022a](#)) were also IGHV2-5/IGLV2-14-encoded ([Yuan et al.,
344 2022](#)). All of these mAbs retained their neutralizing activity against SARS-CoV-2
345 variants, especially against Omicron and its sub-lineages. Comparison of the cryo-EM
346 structures of both XG005 and LY-CoV1404 revealed very high level of similarity,
347 including the RBD interfaces and the key amino acid residues for RBD interaction
348 ([Figure S6](#)). Compared with IGHV1-58/IGKV3-20-encoded RBD-binding public
349 antibody clonotype, the IGHV2-5/IGLV2-14-encoded RBD antibodies with increased
350 breadth of neutralization, are perhaps the most cross-neutralizing public antibody
351 clonotype ([Yuan et al., 2022](#)).

352 In our study, three other family members of XG005 (XG005a, XG005b, and
353 XG005c) we cloned from the same expanded B cell clone of the same donor, showed

354 significant reduction of neutralization potency and breadth. Nevertheless, sequence
355 comparison showed only very little difference of these mAbs compared with XG005.
356 Structural remodeling suggested the key amino acid residues on XG005 during
357 antibody evolution for its neutralizing activity against Omicron subvariants.
358 Considering that there was still no Omicron variant during blood donation in April
359 2020, these results suggest that XG005 was the rare product of random somatic
360 hypermutation in germinal centers. Similarly, LY-CoV1404 was also cloned from a
361 convalescent individual in early 2020 ([Westendorf et al., 2022](#)). Interestingly, the
362 third dose of vaccine booster shot with wild-type SARS-CoV-2 facilitated the
363 generation of potent bNAbs against VOCs and Omicron subvariants ([Wang et al.,](#)
364 [2022a](#)). Together, we conclude that the exposure to wild-type SARS-CoV-2 or its
365 surface protein is sufficient to elicit bNAbs against recently emerged or even future
366 SARS-CoV-2 variants.

367

368

369 **MATERIALS AND METHODS**

370 **ELISA**

371 To perform ELISA, 96-well microplates were coated with antigen proteins (10
372 µg/ml) in phosphate-buffered saline (PBS) (50 µl per well) overnight at 4°C. Antigen
373 proteins were S-ECD protein of SARS-CoV-2 Wuhan-Hu-1 (wild-type) and its
374 related variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
375 (B.1.617.2) and Omicron (B.1.1.529). These coated plates were then blocked with

376 PBS containing 2% bovine serum albumin (BSA) (200 μ l per well). After blocking,
377 the plate was incubated with the first antibody (eight dilutions with a maximum
378 concentration of 10 μ g/ml, 3-fold serially diluted) in PBS (50 μ l per well) for one
379 hour at room temperature. After wash, the second antibody (goat anti-human IgG
380 conjugated with HRP, Thermo Fisher Scientific) in PBS (50 μ l per well) was added to
381 each well for another one-hour incubation, and then detection was performed. To
382 evaluate the antigen-binding capacity, we calculated the area under the curve (AUC)
383 for each purified recombinant IgG1 monoclonal antibody using PRISM software as
384 previously reported ([Wang et al., 2020](#)).

385

386 **Generation of SARS-CoV-1/2 pseudoviruses**

387 Pseudotyped viruses of SARS-CoV-1, SARS-CoV-2 and SARS-CoV-2-related
388 variants were generated as described previously ([Xia et al., 2020; Zhou et al., 2021](#)).
389 We first constructed the S-protein expression plasmids pcDNA3.1-SARS-CoV-2-S or
390 pcDNA3.1-SARS-CoV-1-S. The S protein amino acid sequences for SARS-CoV-2
391 wild-type and variants were provided ([Table S2](#)). We then co-transfected the
392 constructed pcDNA3.1 plasmids with the backbone plasmid of pNL4-3.Luc.R-E into
393 HEK293T cells. Two days later, we collected the cell supernatants containing
394 pseudoviruses and stored them at -80°C for in vitro neutralization assays.

395

396 **In vitro pseudotyped virus-based neutralization assay for SARS-CoV-2**

397 We performed the in vitro pseudovirus neutralization assays as previously described
398 (Xia et al., 2020; Zhou et al., 2021). We first examined the generated pseudotyped
399 viruses by infecting Huh-7 cells and measuring luciferase activity to determine the
400 virus concentration. We then aliquoted the concentrated virus stock and stored it at -
401 80°C. To perform the in vitro neutralization experiments, we seeded Huh-7 cells in
402 96-well plates (10^4 cells per well) and serially diluted (1:3) the overexpressed
403 monoclonal antibodies (maximum concentration 10 μ g/ml) for nine dilutions in total.
404 We mixed and incubated the antibody soup and concentrated pseudovirus soup for 30
405 minutes at 37°C, and then added them into the Huh-7 cells for twenty-four hours of
406 incubation. We then replated the cell supernatant with fresh DMEM containing 10%
407 FBS and collected cells after 36 hours of cell culture. Finally, we lysed the cultured
408 cells and measured luciferase activity using a Firefly Luciferase Assay Kit (Promega,
409 USA) and a microplate reader (Infinite M200PRO, Switzerland) following the
410 manufacturer's instructions. Due to the dramatic variation of the absolute luciferase
411 values, we calculated the relative luminescence values by normalizing them to
412 pseudovirus-only control wells. The IC₅₀ values by neutralization assays were
413 calculated by nonlinear regression analysis in PRISM software.

414

415 **In vitro neutralization assay using authentic BA.2 and BA.5 viruses**

416 Experiments including viral amplification and viral infection were conducted in a
417 Biosafety Level 3 (BSL-3) laboratory. The authentic BA.2 and BA.5 viruses were
418 amplified and titered in Vero-E6 cells using the plaque assay. The in vitro

419 neutralization assay was performed as described previously (Liu et al., 2021; Zhou et
420 al., 2021). Different concentrations of mAbs were mixed with the authentic BA.2 or
421 BA.5 viruses for 1 hour before adding onto cultured cells. Twenty-four hours later,
422 the cells were fixed and subjected to immunostaining assay to determine the cell
423 infection rate.

424

425 **Antibody cloning and production**

426 Single B cell-based antibody amplification and sequence analysis were
427 performed as previously reported (Wang et al., 2020; Zhou et al., 2020). Briefly, we
428 performed the reverse transcription and nested PCR amplification for the sorted single
429 B cells (Zhou et al., 2021). We analyzed all the Sanger sequencing results of heavy
430 and light chains and identified the V(D)J gene and CDR3 sequences using IMGT/V-
431 QUEST (Brochet et al., 2008) and/or IgBLAST (Ye et al., 2013). For antibody
432 expression, we transiently transfected HEK293F cells with heavy/light chain plasmids
433 and harvested supernatants seven days later for antibody purification.

434

435 **Expression and purification of SARS-CoV-2 Omicron S trimer**

436 The vector of Omicron S ectodomain with HexaPro mutations, “GSAS”
437 substitution at furin cleavage site (residues 682-285) and a C-terminal T4 fibritin
438 trimerization was constructed as previously reported (Li et al., 2022) and transfected
439 into HEK293F cells for expression.

440 After 72 hours, the supernatants were harvested and filtered for affinity
441 purification by Histrap HP (GE Healthcare). The protein was then loaded onto a
442 Superose 6 increase 10/300 column (GE Healthcare) in 20 mM Tris pH 8.0, 200 mM
443 NaCl.

444

445 **Cryo-EM sample preparation**

446 Purified SARS-CoV-2 Omicron S at 0.60 mg/mL was mixed with XG005
447 antibody by a molar ratio of 1:1.7 and incubated for 10 minutes on ice. A 3 μ l aliquot
448 of the sample was loaded onto a freshly glow-discharged holey amorphous nickel-
449 titanium alloy film supported by 400 mesh gold grids. The sample was frozen
450 immediately in liquid ethane using Vitrobot IV (FEI/Thermo Fisher), with 2 s blot
451 time and -3 blot force and 10 s wait time.

452

453 **Cryo-EM data collection and image processing**

454 Cryo-EM data were collected on a Titan Krios microscope (Thermo Fisher)
455 operated at 300 kV. Movies were captured with a K3 summit direct detector (Gatan)
456 after a GIF quantum energy filter (Gatan) setting to a slit width of 20 eV. Automated
457 data acquisition was carried out with SerialEM software ([Mastronarde, 2005](#)) through
458 beam-image shift method ([Wu et al., 2019](#)).

459 Movies were taken in the super-resolution mode at a nominal magnification
460 81,000 \times , corresponding to a physical pixel size of 1.064 Å, and a defocus range from

461 –1.2 μm to –2.5 μm . Each movie stack was dose-fractionated to 40 frames with a total
462 exposure dose of about 58 $\text{e}^-/\text{\AA}^2$ and exposure time of 3s.

463 A total of 6,503 movie stacks was motion corrected using MotionCor2 (Zheng et
464 al., 2017) within RELION (Zivanov et al., 2018). Parameters of contrast transfer
465 function (CTF) were estimated by using Gctf (Zhang, 2016). All micrographs then
466 were manually selected for further particle picking upon astigmatism, defocus range
467 and estimated resolution.

468 Remaining 6,098 good images were imported into cryoSPARC (Punjani et al.,
469 2017) for further patched CTF-estimating, blob-picking and 2D classification. Several
470 good 2D classes were used as templates for template-picking. After 2D classification
471 of particles from template-picking was finished, all good particles from blob-picking
472 and template-picking were merged and deduplicated, subsequently being exported
473 back to RELION through pyem package (Asarnow, 2019).

474 Total 2,028,032 particles were extracted at a box-size of 320 and rescaled to 160,
475 then carried on one round of 3D classification in RELION. Only good classes were
476 selected, yielding 1,594,120 particles. These particles were performed other rounds of
477 3D classification to get different states of trimer. Finally, three main states with clear
478 Fabs were selected out, and their corresponding particles were separately re-extracted
479 (unbinned, 1.064 $\text{\AA}/\text{pixel}$) and auto-refined, then CTF-refined and polished. 153,541
480 of state 1 (1-RBD-up with 2 Fabs) was yielding a map at 3.62 \AA , 124,608 of state 2
481 (1-RBD-up with 3 Fabs) was yielding a map at 3.74 \AA , and 616,627 of state 3 (2-
482 RBD-up with 3 Fabs) was yielding a map at 3.24 \AA .

483 To get more clear structural information of interface between RBD with Fab, we
484 carried on local 3D-classification focused on the best pair of RBD and Fab from state
485 3. In final, 313,560 particles were subtracted and exported to cryoSPARC to do local
486 refinement, yielding a 2.99 Å local map.

487 The reported resolutions above are based on the gold-standard Fourier shell
488 correlation (FSC) 0.143 criterion. The above procedures of data processing are
489 summarized (Figure S3 and S4). These sharpened maps were generated by
490 DeepEMhancer (Sanchez-Garcia et al., 2021) and then “vop zflip” to get the correct
491 handedness in UCSF Chimera (Pettersen et al., 2004) for subsequent model building
492 and analysis.

493

494 **Model building and refinement**

495 For model building of SARS-CoV-2 Omicron S XG005 complex, the SARS-
496 CoV-2 Omicron S trimer model and the antibody model generated by swiss-model
497 (Waterhouse et al., 2018) were fitted into the map using UCSF Chimera and then
498 manually adjusted with COOT (Emsley et al., 2010). The interface between RBD and
499 Fab region was refined against the local refinement map and then docked back into
500 the into global refinement trimer maps. Several iterative rounds of real-space
501 refinement were further carried out in PHENIX (Afonine et al., 2018). Model
502 validation was performed using MolProbity. Figures were prepared using UCSF
503 Chimera and UCSF ChimeraX (Pettersen EF, 2021).

504 The cryo-EM maps and the coordinates of SARS-CoV-2 Omicron S complexed
505 with XG005 have been deposited to the Electron Microscopy Data Bank (EMDB) and
506 Protein Data Bank (PDB) with accession numbers EMD-**33744** and PDB **7YD0** (state
507 1, UDD with two Fabs), EMD-**33742** and PDB **7YCY** (state 2, UDD with three Fabs),
508 EMD-**33743** and PDB **7YCZ** (state 3, UDU with three Fabs), and EMD-**33745** and
509 PDB **7YD1** (Local refinement).

510

511 **Human ACE2 transgenic mice and in vivo studies**

512 Mouse experiments were conducted in a Biosafety Level 3 (BSL-3) laboratory in
513 Guangzhou Custom technology center. Transgenic mice with human ACE2
514 overexpression (hACE2-Tg) were randomly assigned to distinct groups. A single
515 administration of mAbs (or an equal volume of PBS as a negative control) was
516 administered intraperitoneally 4 hours after all mice were intranasally challenged with
517 10^5 PFU BA.2 or BA.5 authentic viruses. Mouse body weight was monitored, and
518 lungs were collected two days post-infection to determine the live viral loads in lungs
519 by the focus forming assay (FFA).

520

521 **Pharmacokinetic analysis**

522 Transgenic mice (C57BL/6JSmoc) with human neonatal Fc receptor (hFcRn)
523 overexpression (Vendor: Shanghai Model Organisms Center, China) were used to
524 evaluate the pharmacokinetic profiles of mAbs XG005, XG005-CYLK, and LY-
525 CoV1404 (bebtelovimab). Twenty-seven mice were randomly assigned into three

526 groups and a single dose of mAbs (10 mg/kg) were administrated based on their body
527 weights. The serums samples were collected on different time points, including -1-day
528 pre-infusion and 2, 4, 8, 24, 48, 96, 168, 240, 336, 504, 672, 840 hours post-infusion.
529 Sample analysis was conducted utilizing validated ELISA methods. Sample
530 concentration data was collected on the INFINITE 200 PRO plate reader and
531 processed using INFINITE 200 PRO Software (2013) Tecan. Pharmacokinetic
532 parameters were evaluated using a non-compartmental approach with Phoenix
533 WinNonlin software (Version 8.0.0.3176, Pharsight, CA).
534

535 **ACKNOWLEDGMENTS**

536 We thank Center of Cryo-Electron Microscopy at Fudan University for the support on
537 cryo-EM data collection, and Guangzhou Custom Technology Center for the support
538 of in vivo challenge study in a Biosafety Level 3 (BSL-3) laboratory. We thank Bo
539 Chen, Xulong Feng, Xinyi An, Miaomiao Wang, Yongpeng Xu, Qingyu Yang at
540 Advaccine Biopharmaceuticals Suzhou Co. Ltd. for the help of cell-based and
541 pharmacokinetics assays. We also thank Dr. Xiangxi Wang at Institute of Biophysics,
542 Chinese Academy of Sciences for providing the S proteins of several SARS-CoV-2
543 variants for ELISA assays. This work was supported by National Key Research and
544 Development Program (2021YFA1301400), National Natural Science Foundation of
545 China (31872730 and 32070947), Ministry of Science and Technology of China
546 (2021YFC2302500). Project was also supported by Shanghai Municipal Science and
547 Technology Major Project (ZD2021CY001) and by Guangzhou Laboratory (SRPG22-
548 003). This work was supported by funding from the Intramural Research Program,
549 National Institutes of Health, National Cancer Institute, Center for Cancer Research.
550 The content of this publication does not necessarily reflect the views or policies of the
551 Department of Health and Human Services, nor does mention of trade names,
552 commercial products, or organizations imply endorsement by the U.S. Government.
553 The content is solely the responsibility of the authors and does not necessarily
554 represent the views of any of the funding agencies or individuals.

555

556 **AUTHOR CONTRIBUTIONS**

557 Conceptualization, Q.W.; Investigation, J.W., Z.C., Y.G., Z.W., J.W., B.Y.C., Y.Z.,
558 Y.H., W.Z., M.X., W.J., X.Z., A.H., A.X., J.H., and S.X.; Software, J.W., W.Z., and
559 Z.C.; Formal Analysis, J.W., W.Z., Y.Z., B.W., Z.W., J.W., B.Y.C., L.Z., L.S., and
560 Q.W.; Writing - Original Draft, Q.W.; Writing - Review & Editing, J.W., W.Z.,
561 C.T.M, B.Y.C., B.W., L.S., and Q.W.; Visualization, J.W., W.Z., L.S., and Q.W.;
562 Supervision, B.W., F.W., L.Z., L.S. and Q.W.; Funding Acquisition, B.W., F.W.,
563 L.Z., L.S., and Q.W.

564

565 **COMPETING INTERESTS**

566 A patent application encompassing aspects of this work has been filed with Q.W. and
567 L.Z. listed as an inventor. Other authors have no conflicts of interest to declare.

568

569 **REFERENCES**

570 Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams,
571 P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta Crystallogr*
572 *D Struct Biol* *74*, 531-544.

573 Altmann, D.M., Boyton, R.J., and Beale, R. (2021). Immunity to SARS-CoV-2 variants of concern.
574 *Science* *371*, 1103-1104.

575 Asarnow, D., Palovcak, E., Cheng, Y. UCSF pyem v0.5. Zenodo
576 <https://doi.org/10.5281/zenodo.3576630> (2019) (2019).

577 Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V., Giordano, S., Lanza, K., Negron,
578 N., Ni, M., *et al.* (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid
579 mutational escape seen with individual antibodies. *Science* *369*, 1014-1018.

580 Brochet, X., Lefranc, M.P., and Giudicelli, V. (2008). IMGT/V-QUEST: the highly customized and
581 integrated system for IG and TR standardized V-J and V-D-J sequence analysis. *Nucleic Acids*
582 *Res* *36*, W503-508.

583 Buchanan, A., Clementel, V., Woods, R., Harn, N., Bowen, M.A., Mo, W., Popovic, B., Bishop, S.M.,
584 Dall'Acqua, W., Minter, R., *et al.* (2013). Engineering a therapeutic IgG molecule to address
585 cysteinylation, aggregation and enhance thermal stability and expression. *MAbs* *5*, 255-262.

586 Cameroni, E., Bowen, J.E., Rosen, L.E., Saliba, C., Zepeda, S.K., Culap, K., Pinto, D., VanBlargan,
587 L.A., De Marco, A., di Iulio, J., *et al.* (2022). Broadly neutralizing antibodies overcome SARS-CoV-
588 2 Omicron antigenic shift. *Nature* *602*, 664-670.

589 Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., *et al.*
590 (2022a). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. *Nature*
591 *602*, 657-663.

592 Cao, Y., Yisimayi, A., Jian, F., Song, W., Xiao, T., Wang, L., Du, S., Wang, J., Li, Q., Chen, X., *et al.*
593 (2022b). BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. *Nature*.

594 Carreno, J.M., Alshammary, H., Tcheou, J., Singh, G., Raskin, A.J., Kawabata, H., Sominsky, L.A.,
595 Clark, J.J., Adelsberg, D.C., Bielak, D.A., *et al.* (2022). Activity of convalescent and vaccine serum
596 against SARS-CoV-2 Omicron. *Nature* *602*, 682-688.

597 Cele, S., Jackson, L., Khouri, D.S., Khan, K., Moyo-Gwete, T., Tegally, H., San, J.E., Cromer, D.,
598 Scheepers, C., Amoako, D.G., *et al.* (2022). Omicron extensively but incompletely escapes Pfizer
599 BNT162b2 neutralization. *Nature* *602*, 654-656.

600 Dong, J., Zost, S., Greaney, A., Starr, T.N., Dingens, A.S., Chen, E.C., Chen, R., Case, B., Sutton, R.,
601 Gilchuk, P., *et al.* (2021). Genetic and structural basis for recognition of SARS-CoV-2 spike
602 protein by a two-antibody cocktail. *bioRxiv*.

603 Dougan, M., Nirula, A., Azizad, M., Mocherla, B., Gottlieb, R.L., Chen, P., Hebert, C., Perry, R.,
604 Boscia, J., Heller, B., *et al.* (2021). Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19.
605 *N Engl J Med* *385*, 1382-1392.

606 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot.
607 *Acta Crystallogr D Biol Crystallogr* *66*, 486-501.

608 Fang, Y., Sun, P., Xie, X., Du, M., Du, F., Ye, J., Kalveram, B.K., Plante, J.A., Plante, K.S., Li, B., *et al.*
609 (2022). An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved
610 spike epitope outside the receptor binding motif. *Sci Immunol*, eabp9962.

611 Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama, M., Cho, A., Jankovic, M.,
612 Schaefer-Babajew, D., Oliveira, T.Y., *et al.* (2021). Evolution of antibody immunity to SARS-CoV-
613 2. *Nature* *591*, 639-644.

614 Iketani, S., Liu, L., Guo, Y., Liu, L., Chan, J.F., Huang, Y., Wang, M., Luo, Y., Yu, J., Chu, H., *et al.*
615 (2022). Antibody evasion properties of SARS-CoV-2 Omicron sublineages. *Nature* *604*, 553-556.

616 Karim, S.S.A., and Karim, Q.A. (2021). Omicron SARS-CoV-2 variant: a new chapter in the
617 COVID-19 pandemic. *Lancet* *398*, 2126-2128.

618 Kramer, K.J., Johnson, N.V., Shiakolas, A.R., Suryadevara, N., Periasamy, S., Raju, N., Williams, J.K.,
619 Wrapp, D., Zost, S.J., Walker, L.M., *et al.* (2021). Potent neutralization of SARS-CoV-2 variants of
620 concern by an antibody with an uncommon genetic signature and structural mode of spike
621 recognition. *Cell Rep* *37*, 109784.

622 Li, C., Zhan, W., Yang, Z., Tu, C., Hu, G., Zhang, X., Song, W., Du, S., Zhu, Y., Huang, K., *et al.*
623 (2022). Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain
624 antibody. *Cell* *185*, 1389-1401.e1318.

625 Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S., *et al.*
626 (2022). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. *Nature*
627 *602*, 676-681.

628 Liu, Z., Xu, W., Chen, Z., Fu, W., Zhan, W., Gao, Y., Zhou, J., Zhou, Y., Wu, J., Wang, Q., *et al.*
629 (2021). An ultrapotent pan-beta-coronavirus lineage B (beta-CoV-B) neutralizing antibody locks

630 the receptor-binding domain in closed conformation by targeting its conserved epitope. *Protein*
631 *Cell*.

632 Loo, Y.M., McTamney, P.M., Arends, R.H., Abram, M.E., Aksyuk, A.A., Diallo, S., Flores, D.J., Kelly,
633 E.J., Ren, K., Roque, R., *et al.* (2022). The SARS-CoV-2 monoclonal antibody combination,
634 AZD7442, is protective in nonhuman primates and has an extended half-life in humans. *Sci*
635 *Transl Med* *14*, eab18124.

636 Mannar, D., Saville, J.W., Zhu, X., Srivastava, S.S., Berezuk, A.M., Tuttle, K.S., Marquez, A.C.,
637 Sekirov, I., and Subramaniam, S. (2022). SARS-CoV-2 Omicron variant: Antibody evasion and
638 cryo-EM structure of spike protein-ACE2 complex. *Science* *375*, 760-764.

639 Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction
640 of specimen movements. *J Struct Biol* *152*, 36-51.

641 Mlcochova, P., Kemp, S.A., Dhar, M.S., Papa, G., Meng, B., Ferreira, I., Datir, R., Collier, D.A.,
642 Albecka, A., Singh, S., *et al.* (2021). SARS-CoV-2 B.1.617.2 Delta variant replication and immune
643 evasion. *Nature* *599*, 114-119.

644 Muecksch, F., Weisblum, Y., Barnes, C.O., Schmidt, F., Schaefer-Babajew, D., Lorenzi, J.C.C., Flyak,
645 A.I., DeLaitch, A.T., Huey-Tubman, K.E., Hou, S., *et al.* (2021). Development of potency, breadth
646 and resilience to viral escape mutations in SARS-CoV-2 neutralizing antibodies. *bioRxiv*.

647 Nutalai, R., Zhou, D., Tuekprakhon, A., Ginn, H.M., Supasa, P., Liu, C., Huo, J., Mentzer, A.J.,
648 Duyvesteyn, H.M.E., Dijokait-Guraliuc, A., *et al.* (2022). Potent cross-reactive antibodies
649 following Omicron breakthrough in vaccinees. *Cell* *185*, 2116-2131 e2118.

650 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin,
651 T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J*
652 *Comput Chem* *25*, 1605-1612.

653 Pettersen EF, G.T., Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021). UCSF
654 ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci* *1*, 70-
655 82.

656 Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S., Culap, K.,
657 Zatta, F., De Marco, A., *et al.* (2020). Cross-neutralization of SARS-CoV-2 by a human
658 monoclonal SARS-CoV antibody. *Nature* *583*, 290-295.

659 Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., Bolland,
660 W.H., Porrot, F., Staropoli, I., Lemoine, F., *et al.* (2022). Considerable escape of SARS-CoV-2
661 Omicron to antibody neutralization. *Nature* *602*, 671-675.

662 Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M.M., Planchais, C.,
663 Porrot, F., Robillard, N., Puech, J., *et al.* (2021). Reduced sensitivity of SARS-CoV-2 variant Delta
664 to antibody neutralization. *Nature* *596*, 276-280.

665 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for
666 rapid unsupervised cryo-EM structure determination. *Nat Methods* *14*, 290-296.

667 Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J.M., Sorzano, C.O.S., and Vargas, J.
668 (2021). DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. *Commun*
669 *Biol* *4*, 874.

670 Schmidt, F., Weisblum, Y., Rutkowska, M., Poston, D., DaSilva, J., Zhang, F., Bednarski, E., Cho, A.,
671 Schaefer-Babajew, D.J., Gaebler, C., *et al.* (2021). High genetic barrier to SARS-CoV-2 polyclonal
672 neutralizing antibody escape. *Nature* *600*, 512-516.

673 Sokal, A., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A.,
674 Fernandez, I., Meola, A., Bouvier-Alias, M., *et al.* (2021). Maturation and persistence of the anti-
675 SARS-CoV-2 memory B cell response. *Cell* *184*, 1201-1213 e1214.

676 VanBlargan, L.A., Errico, J.M., Halfmann, P.J., Zost, S.J., Crowe, J.E., Jr., Purcell, L.A., Kawaoka, Y.,
677 Corti, D., Fremont, D.H., and Diamond, M.S. (2022). An infectious SARS-CoV-2 B.1.1.529
678 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. *Nat Med* *28*, 490-
679 495.

680 Viana, R., Moyo, S., Amoako, D.G., Tegally, H., Scheepers, C., Althaus, C.L., Anyaneji, U.J., Bester,
681 P.A., Boni, M.F., Chand, M., *et al.* (2022). Rapid epidemic expansion of the SARS-CoV-2 Omicron
682 variant in southern Africa. *Nature* *603*, 679-686.

683 Wang, G.L., Wang, Z.Y., Duan, L.J., Meng, Q.C., Jiang, M.D., Cao, J., Yao, L., Zhu, K.L., Cao, W.C.,
684 and Ma, M.J. (2021a). Susceptibility of Circulating SARS-CoV-2 Variants to Neutralization. *N Engl
685 J Med* *384*, 2354-2356.

686 Wang, K., Jia, Z., Bao, L., Wang, L., Cao, L., Chi, H., Hu, Y., Li, Q., Zhou, Y., Jiang, Y., *et al.* (2022a).
687 Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. *Nature* *603*,
688 919-925.

689 Wang, K., Jia, Z., Bao, L., Wang, L., Cao, L., Chi, H., Hu, Y., Li, Q., Zhou, Y., Jiang, Y., *et al.* (2022b).
690 Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. *Nature*.
691 Wang, P., Nair, M.S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P.D., *et
692 al.* (2021b). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature* *593*, 130-
693 135.

694 Wang, Q., Michailidis, E., Yu, Y., Wang, Z., Hurley, A.M., Oren, D.A., Mayer, C.T., Gazumyan, A.,
695 Liu, Z., Zhou, Y., *et al.* (2020). A Combination of Human Broadly Neutralizing Antibodies against
696 Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. *Cell Host Microbe*.
697 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer,
698 T.A.P., Rempfer, C., Bordoli, L., *et al.* (2018). SWISS-MODEL: homology modelling of protein
699 structures and complexes. *Nucleic Acids Res* *46*, W296-W303.

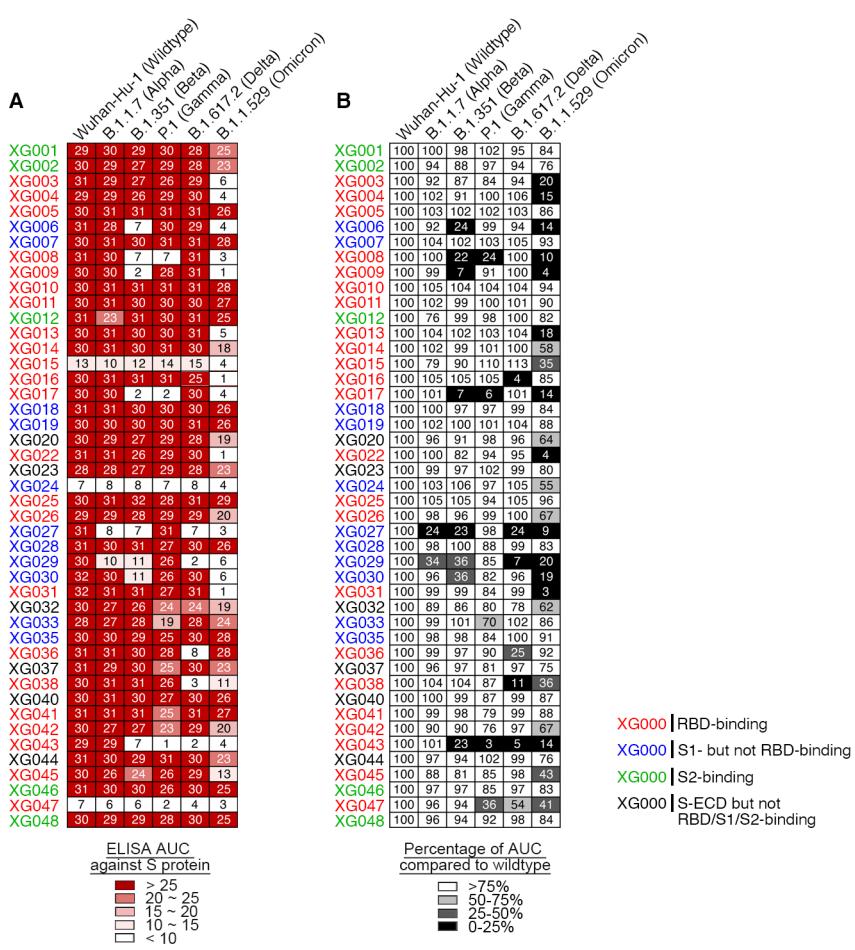
700 Westendorf, K., Zentelis, S., Wang, L., Foster, D., Vaillancourt, P., Wiggin, M., Lovett, E., van der
701 Lee, R., Hendle, J., Pustilnik, A., *et al.* (2022). LY-CoV1404 (bebtelovimab) potently neutralizes
702 SARS-CoV-2 variants. *Cell Rep* *39*, 110812.

703 Wu, C., Huang, X., Cheng, J., Zhu, D., and Zhang, X. (2019). High-quality, high-throughput cryo-
704 electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. *J
705 Struct Biol* *208*, 107396.

706 Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., *et al.* (2020).
707 Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus
708 fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane
709 fusion. *Cell Res* *30*, 343-355.

710 Ye, J., Ma, N., Madden, T.L., and Ostell, J.M. (2013). IgBLAST: an immunoglobulin variable domain
711 sequence analysis tool. *Nucleic Acids Res* *41*, W34-40.

712 Yuan, M., Wang, Y., Lv, H., Tan, T.J.C., Wilson, I.A., and Wu, N.C. (2022). Molecular analysis of a
713 public cross-neutralizing antibody response to SARS-CoV-2. *Cell Rep* *41*, 111650.


714 Zhang, K. (2016). Gctf: Real-time CTF determination and correction. *J Struct Biol* *193*, 1-12.

715 Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
716 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
717 microscopy. *Nat Methods* *14*, 331-332.
718 Zhou, T., Wang, L., Misasi, J., Pegu, A., Zhang, Y., Harris, D.R., Olia, A.S., Talana, C.A., Yang, E.S.,
719 Chen, M., *et al.* (2022). Structural basis for potent antibody neutralization of SARS-CoV-2
720 variants including B.1.1.529. *Science*, eabn8897.
721 Zhou, Y., Liu, Z., Li, S., Xu, W., Zhang, Q., Silva, I.T., Li, C., Wu, Y., Jiang, Q., Liu, Z., *et al.* (2021).
722 Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor
723 associates with distinct epitopes on the RBD. *Cell Rep* *34*, 108699.
724 Zhou, Y., Liu, Z., Wang, Z., Zhang, Q., Mayer, C.T., Schoofs, T., Nussenzweig, M.C., de Jong, Y.P.,
725 and Wang, Q. (2020). Single-Cell Sorting of HBsAg-Binding Memory B Cells from Human
726 Peripheral Blood Mononuclear Cells and Antibody Cloning. *STAR Protoc* *1*, 100129.
727 Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and Scheres, S.H.
728 (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3.
729 *Elife* *7*.

730

731

732 **FIGURE LEGENDS**

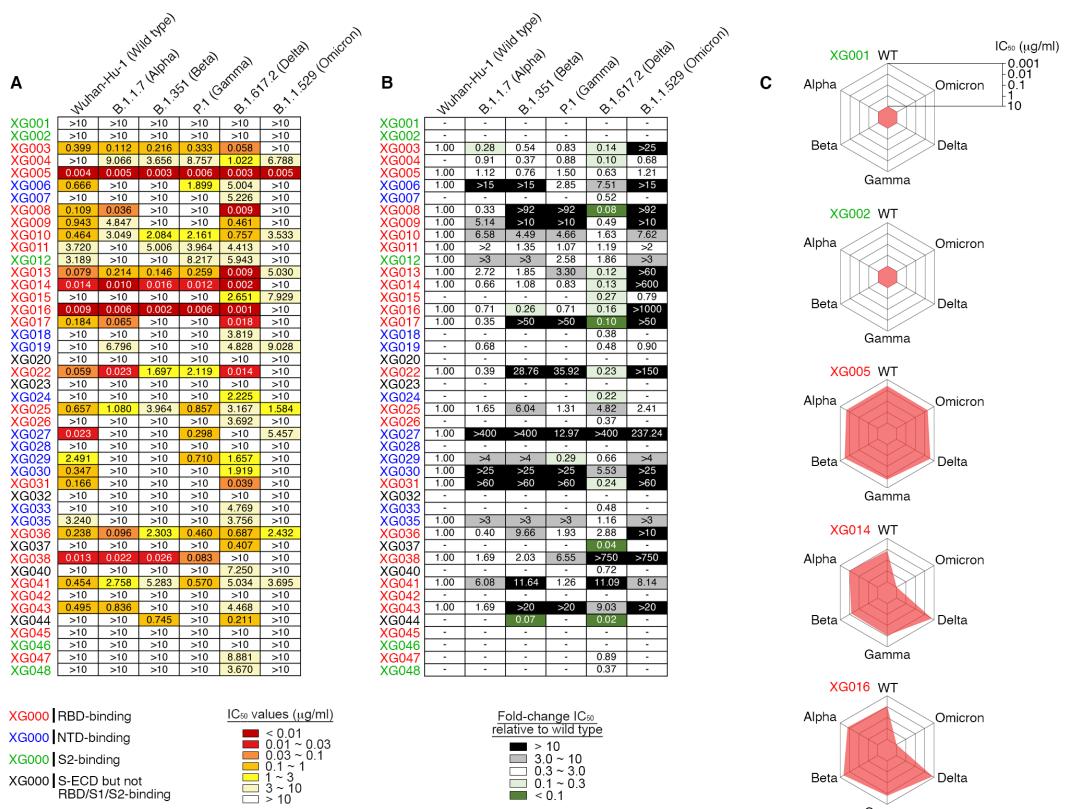
733

734 **Figure 1. ELISA cross-reactivity of anti-S monoclonal antibodies.**

735 (A) Graphs show antibody ELISA reactivity against S proteins of wild-type SARS-
736 CoV-2 and its five related VOCs. The six tested ELISA antigens include S proteins of
737 Wuhan-Hu-1 (wild-type), B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2
738 (Delta) and B.1.1.529 (Omicron). ELISA area under the curve (AUC) values were
739 calculated for all 45 monoclonal antibodies (mAbs) isolated from a convalescent
740 donor with a potent serum neutralizing activity (Zhou et al., 2021). Representative of
741 two experiments. The names of monoclonals are color-coded: red, RBD-binding

742 mAb; blue, NTD-binding mAb; green, S2-binding mAb; and black, S-ECD- but not

743 RBD/S1/S2-binding mAb.


744 (B) Percentage change in ELISA AUC relative to wild-type S protein. ELISA AUC

745 results are presented as percentage of AUC normalized to the reactivity against

746 Wuhan-Hu-1 (wild-type) S protein, and are illustrated by colors: black, 0%–25%;

747 dark gray, 25%–50%; light gray, 50%–75%; and white, >75%.

748

749

750 Figure 2. Cross-neutralization by monoclonal antibodies.

751 (A) Pseudovirus neutralization assays by monoclonal antibodies. IC₅₀ values for all 45
 752 antibodies measured against Wuhan-Hu-1 (wild-type), B.1.1.7 (Alpha), B.1.351
 753 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron) pseudoviruses.
 754 Antibodies with IC₅₀ values above 10 μg/ml were shown as >10 μg/ml. Mean of two
 755 independent experiments. The names of monoclonals are color-coded: red, RBD-
 756 binding mAb; blue, NTD-binding mAb; green, S2-binding mAb; and black, S-ECD-
 757 but not RBD/S1/S2-binding mAb.

758 (B) Fold change in IC₅₀ values relative to Wuhan-Hu-1 (wild-type) SARS-CoV-2.

759 Reduced neutralizing activities (increased IC₅₀ values) are presented in black (>10-

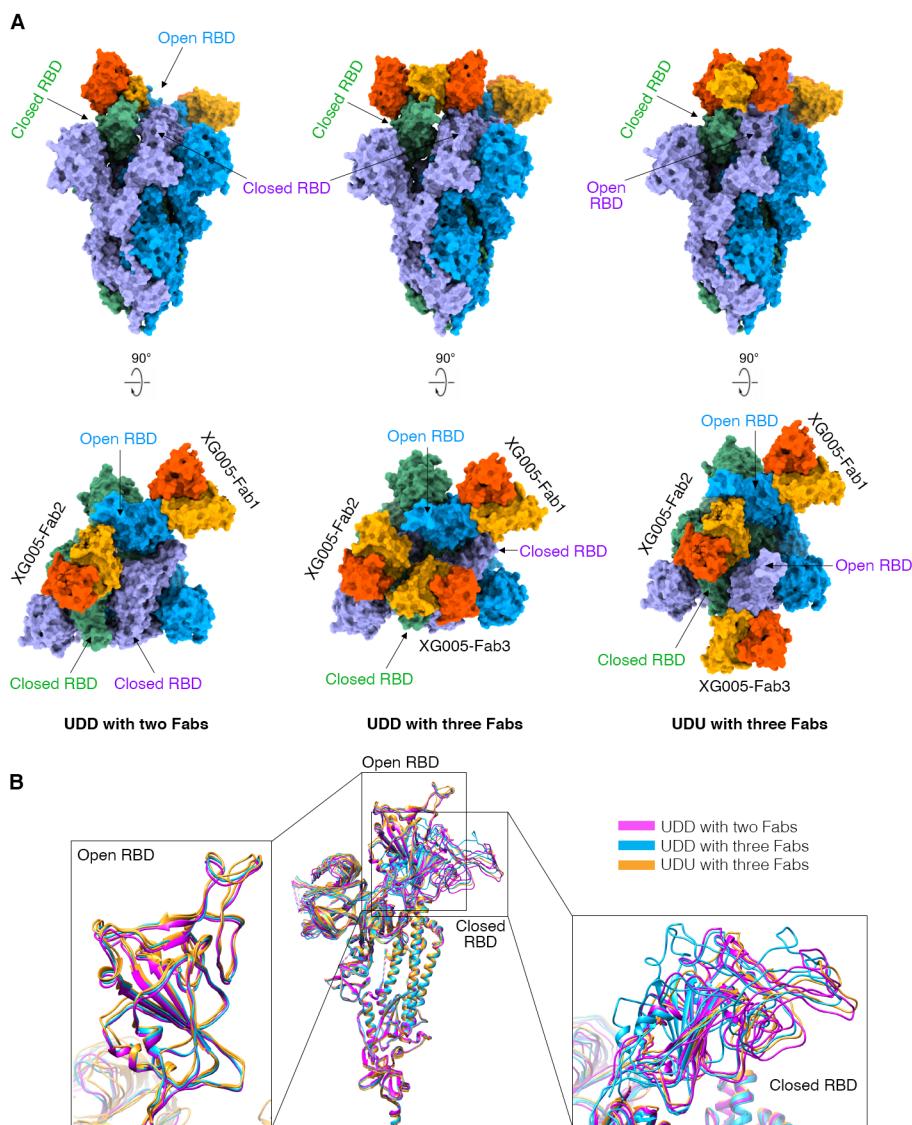
760 fold) or gray (3-10-fold), while enhanced neutralization (decreased IC₅₀ values) in

761 dark green (<10%) and light green (10-30%).

762 (C) Spider charts for IC₅₀ values of representative monoclonal antibodies.

763 (D and E) Neutralization potency of XG005. Luciferase-based pseudoviruses of

764 SARS-CoV-1, four SARS-CoV-2 variants (D) and six Omicron variants (E) were


765 used for cell infection, and the luciferase signal after infection was determined as a

766 surrogate of infection and normalized to the no antibody control (dashed line). In vitro

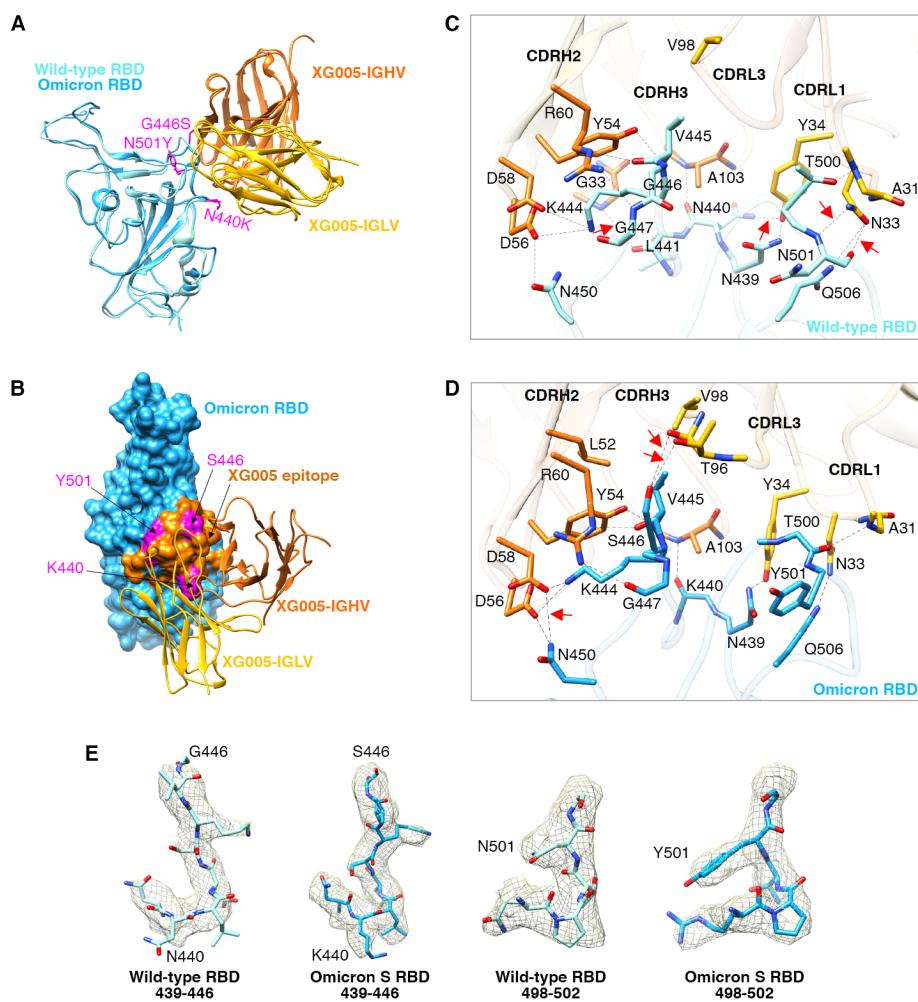
767 neutralization assays for each antibody were performed at least two times, presented

768 as mean ± SEM. IC₅₀ values, mean of two independent experiments.

769

770

771 **Figure 3. Cryo-EM structure of XG005 complexed with Omicron S trimer**

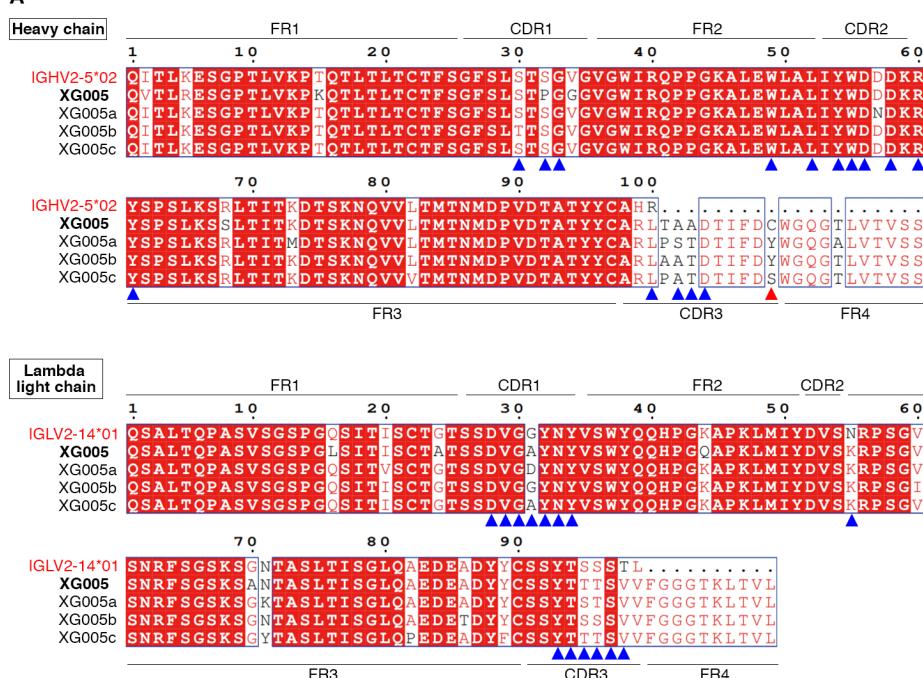

772 (A) XG005 binds to Omicron S trimer in three states: one “up” RBD and two “down”
773 with two Fabs (UDD with two Fabs), one “up” RBD and two “down” with three Fabs
774 (UDD with three Fabs), and two “up” RBDs and one “down” RBD with three Fabs
775 (UDU with three Fabs). Two perpendicular views of Omicron S-XG005 depict the
776 surface. The XG005 VH/CH and VL/CL domains are colored in orange and yellow,
777 respectively. Three S protomers of Omicron S trimer are colored in blue, green and
778 purple, respectively.

779 (B) Comparison of all S monomers of the three states in Ribbon, showing that all “up”

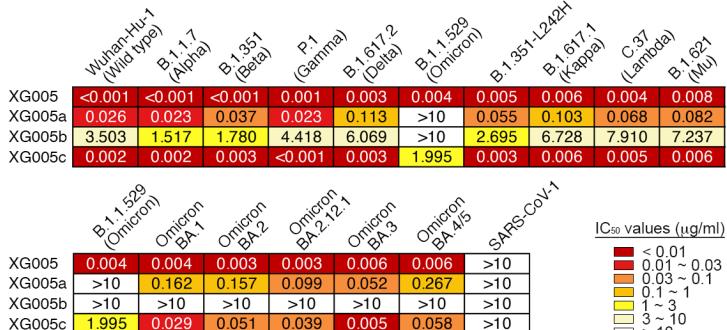
780 RBDs are at the similar orientation while the down RBDs adopt different orientations.

781 The monomers of three states are colored in magenta, blue and yellow, respectively.

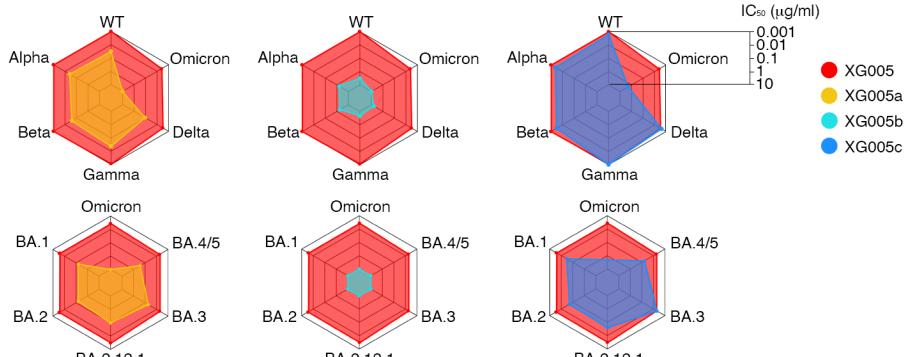
782


783

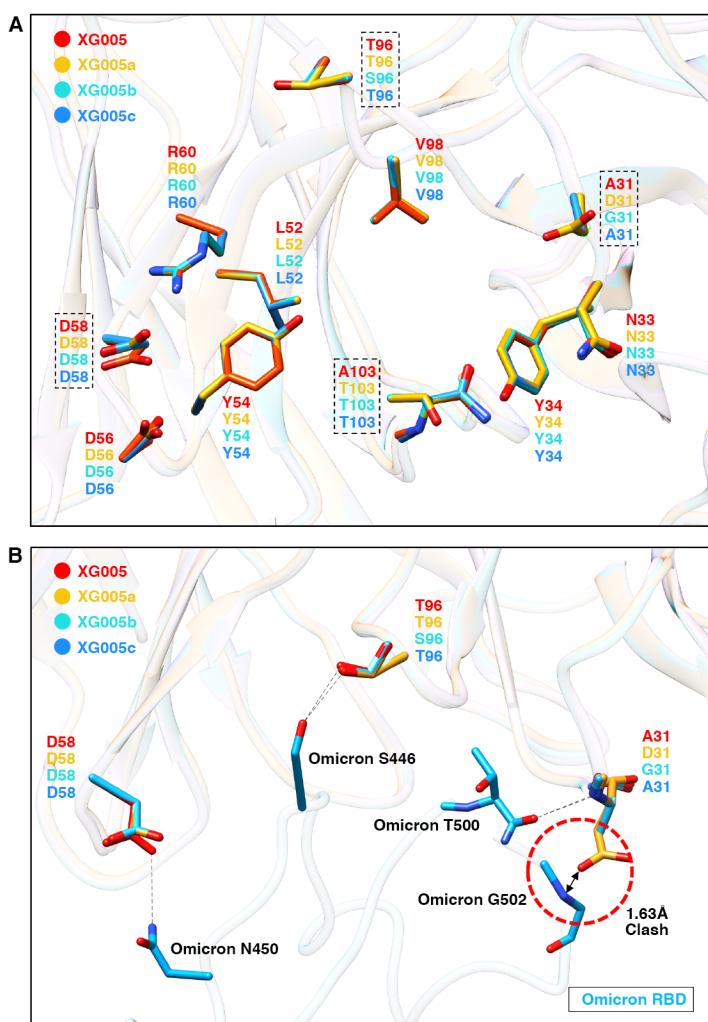
784 **Figure 4. Comparison the interface between SARS-CoV-2 wild-type RBD-XG005**
785 **and Omicron RBD-XG005.**


786 (A) Comparison the models of SARS-CoV-2 wild-type RBD-XG005 and Omicron
787 RBD-XG005. Wild-type RBD and Omicron RBD were shown as ribbons and colored
788 in light sky-blue and deep sky-blue, respectively. The XG005 IGHV and IGLV are
789 colored in orange and yellow, respectively. Omicron mutation residues located in the
790 XG005 epitope are shown as atom and colored in magenta.

791 (B) The model of Omicron RBD-XG005. Omicron RBD is displayed in deep sky-
792 blue. The XG005 epitope is colored in orange, and Omicron mutation residues within
793 the interface located in XG005 epitope are shown as atoms and colored in magenta.
794 (C and D) The detailed interfaces between SARS-CoV-2 wild-type RBD and XG005
795 (C) and between Omicron RBD and XG005 (D). The red arrows emphasize the
796 specific interactions between RBD and XG005.
797 (E) Density maps of residues around the wild-type RBD-XG005 interface or Omicron
798 RBD-XG005 interface. The Omicron mutations located in the XG005 epitope are
799 labeled.
800


A

B

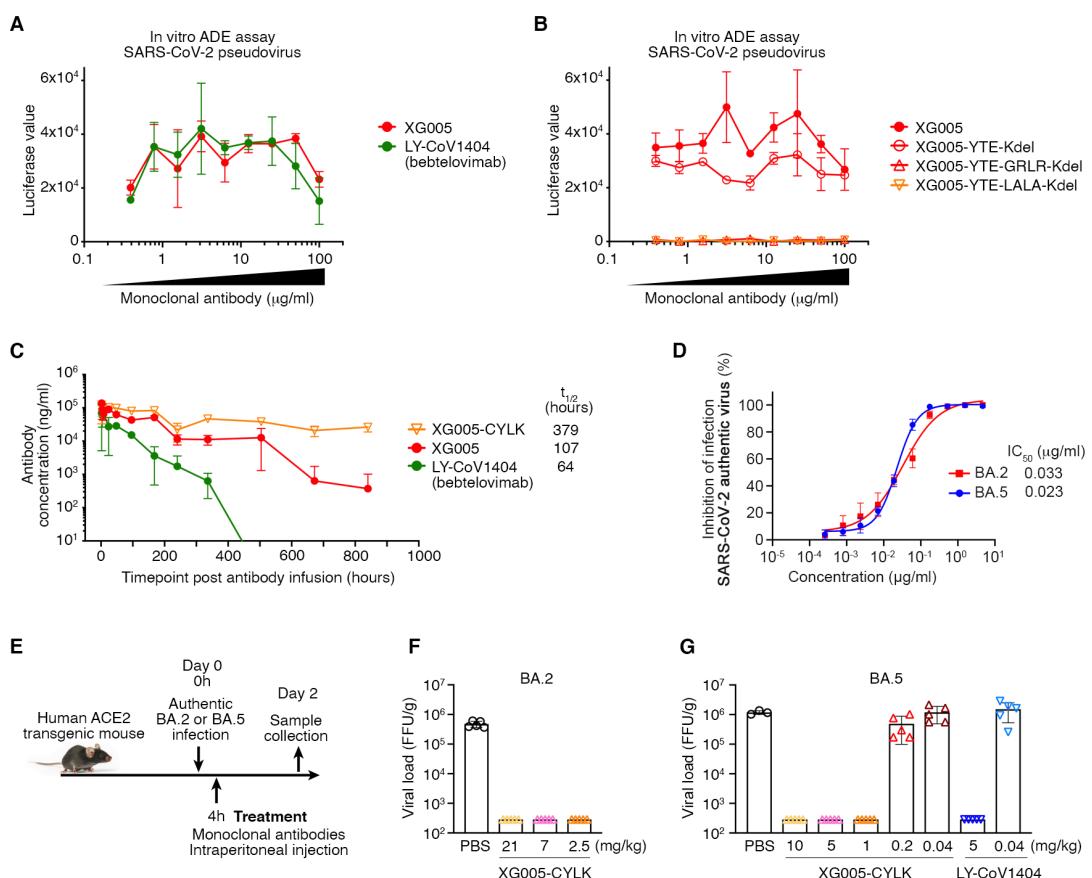

C

801

802 **Figure 5. Clonally-related family members of XG005 exhibited striking disparity**
803 **in neutralizing activity and breadth.**

804 (A) Amino acid sequence alignment for XG005 and its clonally-related family
805 members, XG005a, XG005b and XG005c. IGHV2-5*02 and IGLV2-14*01 are the
806 germline reference sequences assigned by IMGT/V-QUEST for IGHV and IGLV,
807 respectively. Boxed red areas are shared among antibodies. The 15 amino acid
808 residues in IGHV and 14 amino acid residues in IGLV involved in the recognition of
809 the Omicron RBD are marked by blue arrowheads. The red arrowhead indicates the
810 non-canonical cysteine C109 located in the CDR3 region of XG005 heavy chain.
811 (B) Pseudovirus neutralization assays. IC₅₀ values for four members measured against
812 pseudoviruses of SARS-CoV-1, SARS-CoV-2 and its variants. Antibodies with IC₅₀
813 values above 10 µg/ml were shown as >10 µg/ml. Mean of two independent
814 experiments.
815 (C) Spider charts for IC₅₀ values of XG005 and its three family members.
816

817


818 **Figure 6. Structural comparison of XG005 family members revealed the key**
819 **somatic mutations for broad and potent neutralization.**

820 (A) Structural comparison of XG005 (red ribbon), XG005a (yellow ribbon), XG005b
821 (cyan ribbon) and XG005c (blue ribbon). The structural models of XG005a, XG005b
822 and XG005c were generated by SWISS-MODEL. The residues involved in RBD
823 binding are shown in sticks. The residues that might disturb the interactions between
824 RBD and Fabs are emphasized by dashed squares.

825 (B) The interfaces between Omicron RBD (deep sky-blue ribbon) and
826 XG005/XG005a/XG005b/XG005c. The distinct key residues among XG005, XG005a,

827 XG005b and XG005c were labeled. Hydrogen bonds are shown as black dashed lines.

828 Red dashed circle highlights the clash between Omicron RBD and D31 of XG005a.

829

830 **Figure 7. XG005-CYLK is therapeutic against BA.2 and BA.5 in vivo.**

831 (A) In vitro ADE effects induced by both XG005 and its counterpart LY-CoV1404
 832 (betebelovimab). In vitro ADE assays were performed in the Raji cells by using
 833 luciferase-expressing SARS-CoV-2 pseudovirus. The presence of various dilutions of
 834 antibodies induced distinct levels of luciferase signal, while the luciferase signal
 835 without adding any antibody was almost zero.

836 (B) No ADE effect induced by the GRLR and LALA version, but not YTE version, of
 837 the Fc-engineered XG005 antibodies.

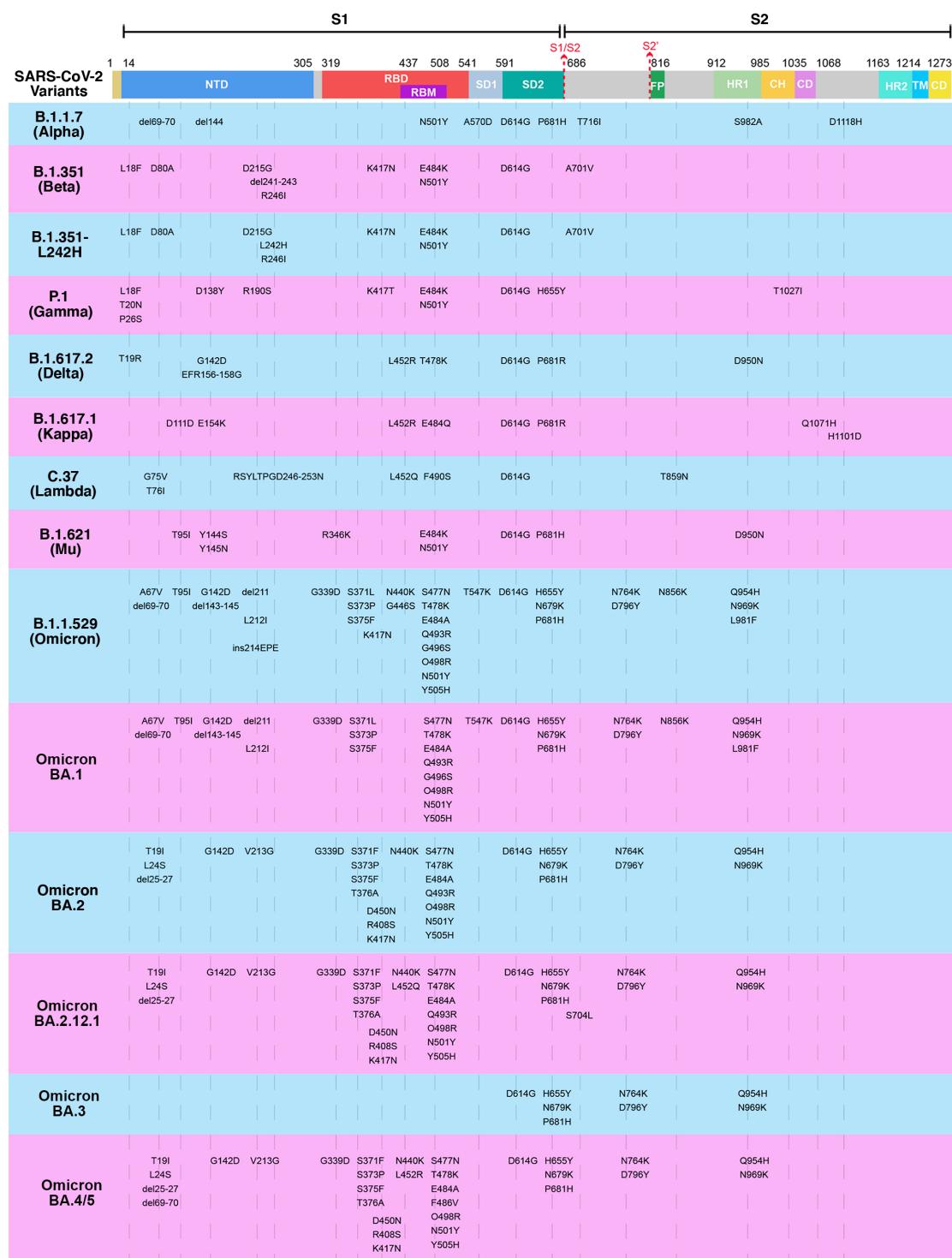
838 (C) Pharmacokinetics of single-dose mAbs, XG005, XG005-C109S-YTE-LALA-
 839 Kdel (XG005-CYLK), and LY-CoV1404, in transgenic mice, C57BL/6JSmoc, which
 840 expressed human neonatal Fc receptor (hFcRn).

841 (D) XG005 potently neutralizes authentic SARS-CoV-2 BA.2 and BA.5 viruses. The

842 in vitro neutralization assays were repeated at least twice.

843 (E) Diagram of antibody treatment protocols for human ACE2 transgenic mice

844 intranasally challenged with BA.2 or BA.5 viruses.


845 (F-G) Virus titers in lung tissues of mice collected at two days after BA.2 (F) or BA.5

846 (G) viral infection. Data are presented as mean \pm SD. Each group contains three to

847 five individual mice.

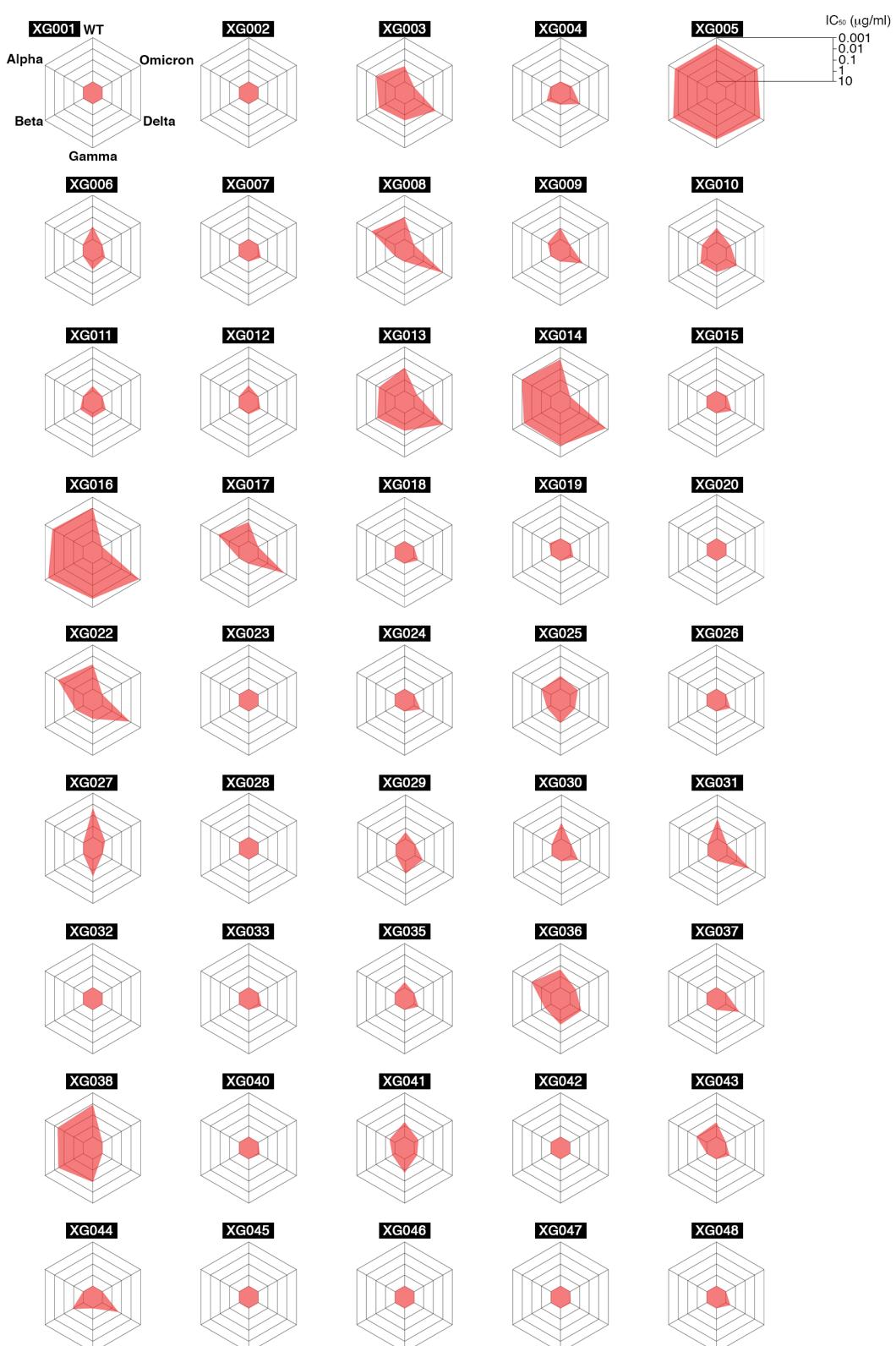
848

849 SUPPLEMENTARY FIGURES AND LEGENDS

850

851 Figure S1. S protein mutations within SARS-CoV-2 variants.

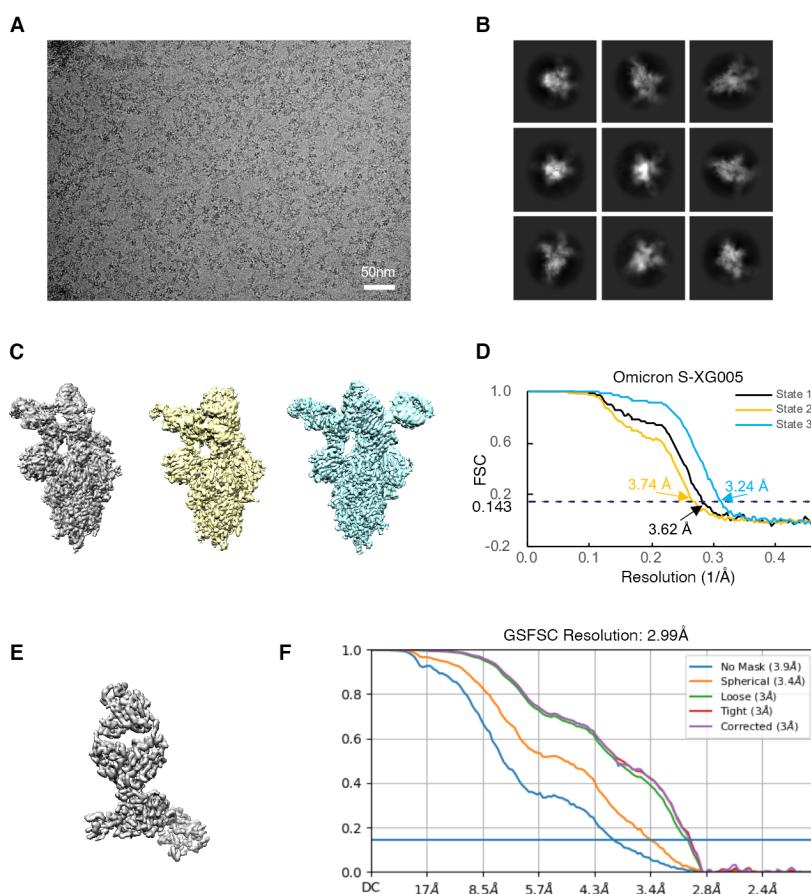
852 Key spike mutations found in the SARS-CoV-2 variants, compared with Wuhan-Hu-1


853 (wild-type), are denoted. These variants include five SARS-CoV-2 VOCs: B.1.1.7

854 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron);

855 five Omicron variants: BA.1, BA.2, BA.2.12.1, BA.3 and BA.4/5; and four other

856 variants: B.1.351-L242H, B.1.617.1 (Kappa), C.37 (Lambda) and B.1.621 (Mu).


857

858

859 **Figure S2. Spider charts for IC_{50} values of 45 monoclonal antibodies.**

860 IC₅₀ values against Wuhan-Hu-1 (wild-type), B.1.1.7 (Alpha), B.1.351 (Beta), P.1
861 (Gamma), B.1.617.2 (Delta) and B.1.1.529 (Omicron) pseudoviruses were measured
862 for all 45 tested antibodies isolated from a convalescent donor ([Zhou et al., 2021](#)).
863 Antibodies with IC₅₀ values (mean of two independent experiments.) above 10 µg/ml
864 were shown as 10 µg/ml.

865

866 **Figure S3. Cryo-EM data collection and processing of Omicron S-XG005**

867 **complex (OS-XG005).**

868 (A) Representative electron micrograph.

869 (B) 2D classification results of OS-XG005.

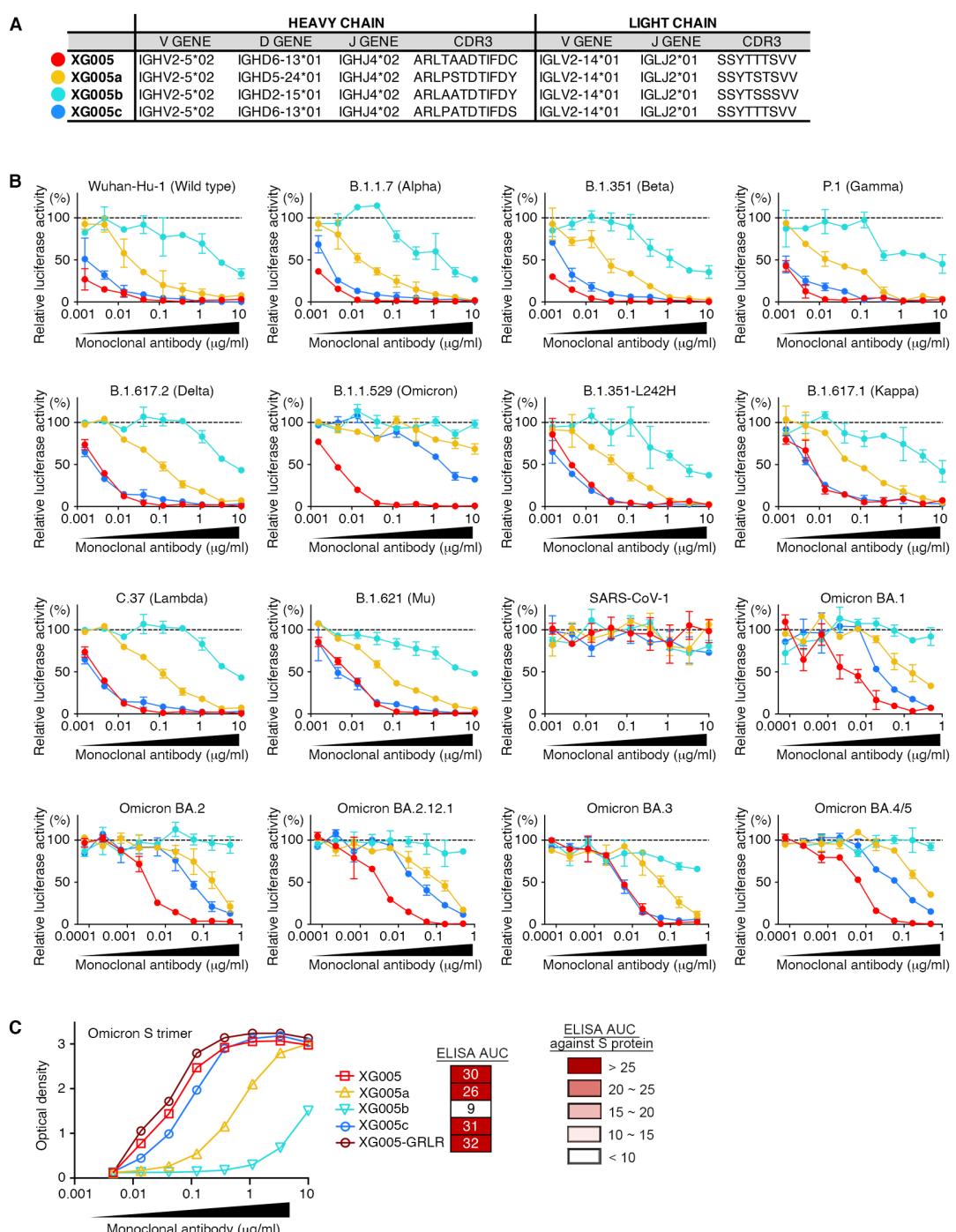
870 (C) The reconstruction maps of the complex structures at three states.


871 (D) Gold-standard Fourier shell correlation curves (FSC) for each structure. The

872 0.143 cut-off is indicated by a horizontal dashed line.

873 (E) The local refined map of the interface between RBD and Fab region.

874 (F) FSC of local refinement of RBD-XG005 Fab region obtained from cryoSPARC.

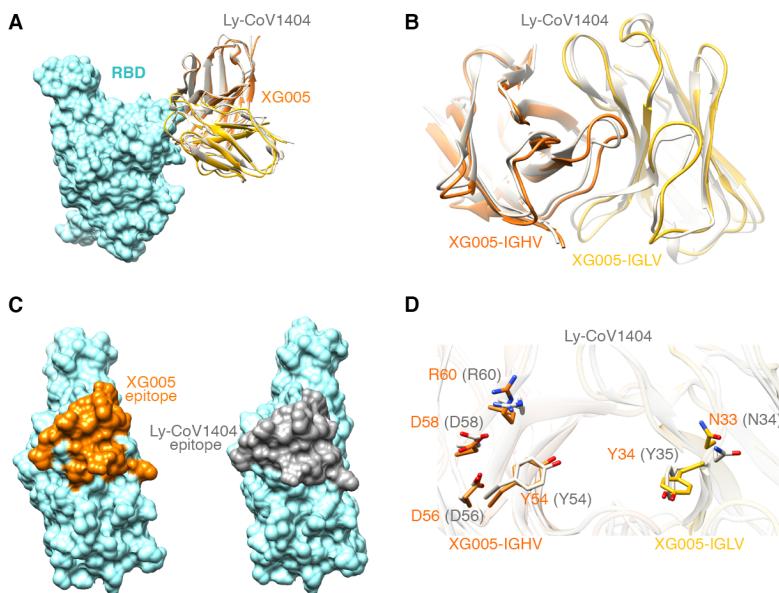

875

876

877 **Figure S4. Data processing flowchart of OS-XG005 complex.**

878

879


880 **Figure S5. In vitro pseudovirus neutralization assays for XG005 family**

881 **members.**

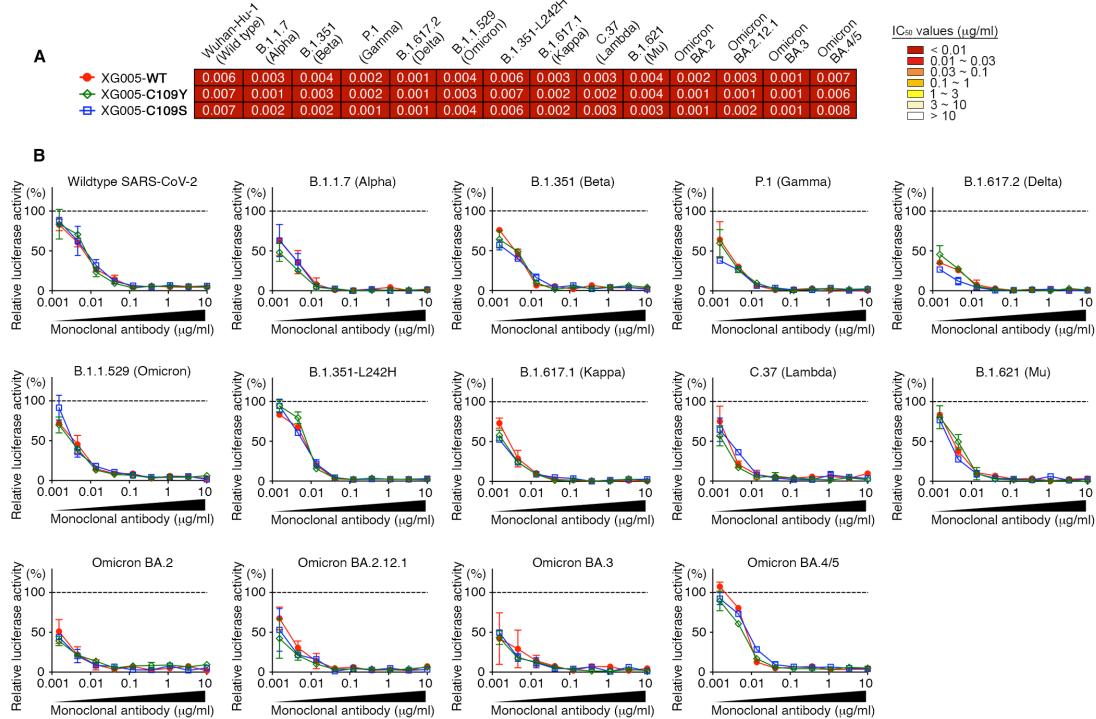
882 (A) V(D)J assignments for the XG005 clone. IMGT/V-QUEST was used to assign the

883 V, D, J genes and CDR3 sequences for their Ig heavy and light chains.

884 (B) Neutralization potency of XG005 family members. Luciferase-based
885 pseudoviruses were used for in vitro infection. Dashed line represents no antibody
886 control. All experiments were repeated at least twice, presented as mean \pm SEM.
887 (C) Dramatically distinct binding capacity against Omicron S protein by XG005
888 family members. ELISA assays to determine the antibody binding capacity against
889 Omicron S proteins. ELISA area under the curve (AUC) values were calculated.
890 XG005c showed similar level of binding activity of XG005, while those of XG005b
891 and XG005c dramatically reduced.
892

893

894 **Figure S6. Structural comparison between XG005 and LY-CoV1404.**


895 (A) Comparison the models of wild-type RBD complexed with XG005 and LY-
896 CoV1404. RBD is displayed in sky-blue surface; XG005 heavy and light chains are
897 shown in orange and yellow ribbons, respectively, while LY-CoV1404 is shown in
898 gray.

899 (B) A close view of XG005 and LY-CoV1404.

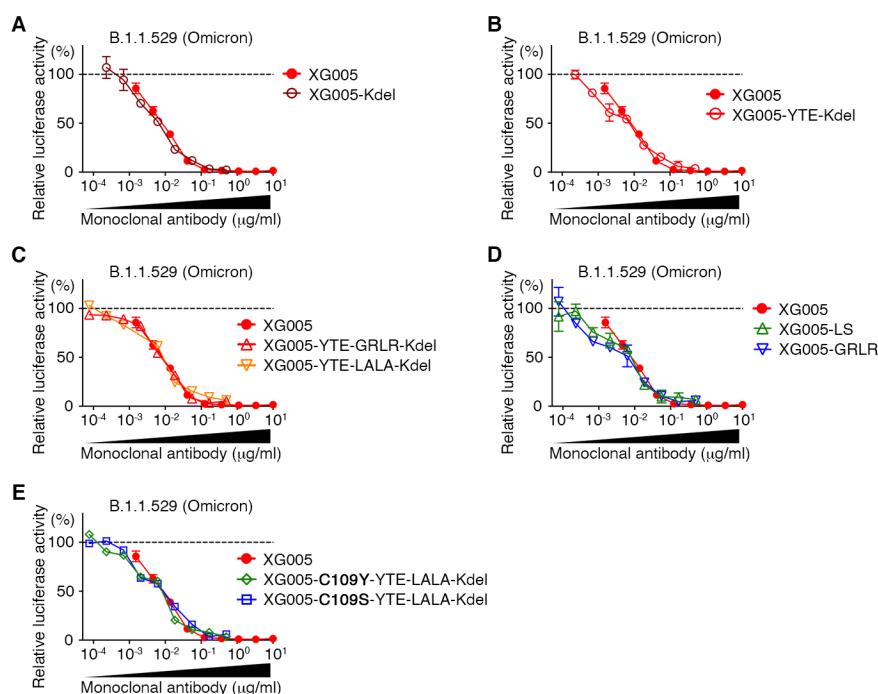
900 (C) Surface representation of RBD showing the interfaces of XG005 (orange) and
901 LY-CoV1404 (dark gray), respectively.

902 (D) Comparison of the key residues of XG005 and LY-CoV1404 involved in the
903 RBD interaction. Residues of XG005 and LY-CoV1404 are labeled in orange and
904 gray, respectively.

905

906

907 **Figure S7. Engineered C109 variants of XG005 maintain neutralization potency.**


908 (A) IC₅₀ values for XG005-WT, XG005-C109Y, and XG005-C109S measured

909 against pseudoviruses of SARS-CoV-1, SARS-CoV-2 and its variants.

910 (B) Pseudovirus neutralization assays using different concentrations of XG005-WT,

911 XG005-C109Y, and XG005-C109S. Mean of two independent experiments.

912

913

914 **Figure S8. Engineered Fc variants of XG005 maintain neutralization potency.**

915 (A-D) Various engineered Fc variants of XG005 maintain the in vitro neutralizing
916 activities against B.1.1.529 (Omicron) pseudoviruses. Kdel: mAb mutant with the
917 deletion of heavy chain C-terminal lysine (A). YTE: mAb mutant with triple
918 mutations M255Y, S257T and T259E in the Fc domain (B and C). LS: mAb mutant
919 with M431L and N437S mutations in the Fc domain (D). Both YTE and LS
920 substitutions result in an increase in its binding to human FcRn and a prolonged serum
921 half-life of the antibody. GRLR: mAb mutant with G239R and L331R mutations in
922 the Fc domain (C and D). LALA: mAb mutant with L237A and L238A mutations in
923 the Fc domain (C). Both GRLR and LALA substitutions abrogate the antibody
924 binding to FcγRs and eliminate the ADE effect.

925

926 **Table S1. Cryo-EM data collection and refinement statistics of the Omicron S-**

927 **XG005 complex.**

	State 1 (UDD with two Fabs)	State 2 (UDD with three Fabs)	State 3 (UDU with three Fabs)	RBD+Fab XG005
Data collection and processing				
Magnification		81,000		
Voltage (kV)		300		
Total dose (e ⁻ /Å ²)		58		
Defocus range (μm)		-1.2 to -2.5		
Pixel size (Å)		1.064		
Symmetry imposed		C1		
Final particles (no.)	153,541	124,608	616,627	313,560
Map resolution (Å)	3.62	3.74	3.24	2.99
Refinement				
R.m.s. deviations				
Bond lengths (Å)	0.002	0.002	0.002	0.002
Bond angles (°)	0.558	0.509	0.517	0.479
Validation				
MolProbity score	2.40	2.24	2.23	2.46
Clashscore	7.16	5.99	6.11	6.30
Rotamer outlier (%)	5.83	4.53	4.85	5.46
Ramachandran plot				
Favored (%)	93.64	93.72	94.54	90.05
Allowed (%)	6.36	6.28	5.44	9.95
Disallowed (%)	0.00	0.00	0.00	0.00
EMDB	EMD-33744	EMD-33742	EMD-33743	EMD-33745
PDB	7YD0	7YCY	7YCZ	7YD1

928

929 **Table S2. Amino acid sequences of the S protein of various pseudotyped viruses**

930 **used for in vitro neutralization assays.**

	Amino acid sequences of S protein	Mutation sites
SARS-CoV-1	<pre> MPMGSLQPLATLYLLGMLVASVLASGNSDLDRCTTFFDVOQPNYTTQHNTSMRGGVYYPDEIFRSRDTLYTQLDFLPFYSNTVFGHTIINHTFGNPVIFPKDGYFAATEKSNSVVRGWFGSTMMNK SQSVIINNSTNIVIRACNFCLECDNPFFAVSKPMGQTCQHTMTMFDNAFNTCEYISDASLDFSEKSGNFKHLREFVFKNKDGFLVYVYKGYQPIDVVRDLPQSGFTNLKPIFKLPLGJINNTRAILTAF SPAQDIWGTSAAYFVGKPTTFLKYDENGTTDAVDCSQNPLAEKCSVSKSEIDKGIYQTSNFRVPPSGDVRFPNITNLCPGEVFNATKFPSSVYAWERKKISNCVADYSVLYNSTFST FKCYGVSAATKLNDLCSFNVYADNSVVFCKDDDFRQJAPGOTVIAIDYNNYKLPPDFMCVLAWNTRNIDATSTGNYNKKYRFLRGRPFERDISNVPFSQDGKPCPTPALNICYWPLNDYGYFT TTGIGYQPYRVVNRVLSFELLAPATVCGPKLSTDLKQDGFQFGRDVSDFDTSVSDPDKTSEIDLIPSCSGFGVSVITPGTNTASSEVA/LYQDVNCTDVSTAI HADQLTPRWTYSGNNVFTQDGLCIGAEHVDTSYEDCIPAGICASYHTVSLSSQKSVIAYTMSLGADNSIAYNTAIPTNFSISITTEVMPVMSAKTSVDCNMYICGDSTECANLLQ YGSFCQTLNRLRSLGIAEODRNTREFAVQKOMYKPTPLKTFYQGGFNFQSLPDPKPTKRSFIEDLFLNKVTLADAGFMKQYCEGLCDINARDLCAQKFNGLTVPLPPLTDDMIAAYTAALVSG TATAGWTFGAGAALQIPFAMQMYRNGIGVYQTNVLYENQKQIANQFNKAISQQEQLSTTSLAKGLQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEVQIDRLITGRQLSQSQ TVYDQLQRLAERASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPSQERNFITPAICHEGKAYFPREGV/FVFNGTSWFTITORNFFSPQIITDNTVSGNCDV IGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS DEDDEPVLKGVLHYTGTETSQVAPA* </pre>	
SARS-CoV-2 WT	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	del69-70, delY144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H
B.1.1.7(Alpha)	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	
B.1.351-L24H	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	L18F, D80A, D215G, L24H, R246I, K417N, E484K, N501Y, D614G and A701V
B.1.351(Beta)	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	L18F, D80A, D215G, L24H, R246I, K417N, E484K, N501Y, D614G and A701V
P.1(Gamma)	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	L18F, T20N, P26S, D138Y, R190S, K417N, E484K, N501Y, D614G, H655Y, T1027I
B.1.617.1(Kappa)	<pre> MPMGSLQPLATLYLLGMLVASVLACQCNLTTTQLPAPYTNSTFRGVYYPDKVFRSSVLHSTQDLPFNSVNTWFHAIHVGSGNTKFRDNPVLPFNDGVYFASTEKSNSIIRGWIFGTTLDSK TQSLLIVNNATNVVIKVEFQCNDFPLGVYVYHNNKSWMESEFRVYSSANNCTFEVYQSPQFLMDLEGKQGNFKNLREFVFKNIDGYFKYKHTPVLNVLRGLPQGFSALEPVLDLPGINNTRFQ TLLAHRSYLPGDSSGWWTAGAAAYVYGYLQPTFLKLYNENGTTDAVDCALPLSETKCTLSFTVKEGYQTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVYAWNRKRISNCVADYS VSVLYNSASFSTPKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTCGKLYNKLREFDFTGCVIAWNSNLLDSKVGNNYNYLRLFRKSNLKFPERDISTEYQAGSTPCNGVKGFCN YFPLQSGYFQPTNGVYQPYRVVLSFELLAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKKLPFQFQGRDIAADTTDAVRDPQTLLEIDLITPCSGFGVSVITPGTNTSNQAVLYQG ODVNTCEVPAVIAHDLQPTPTWVYVSTGSNVFQTRAGCLIGAEHVNNSYECIPAGICASYQTQTSNHRARSVASQSIAYTMSLGAEANSVYNSNSIAIPNTFTISVTEILPVSMTKTSVDC TMYICGDSTECNSLLQYGSFCQTLNRLTQVFAQVKQYIKTPPIKDFGGFNFSQILPDPSPSKPSKRSFIEDLFLNKVTLADAGFKQYGDCLGDAARDLCAQKFNGLTVLPPLL TDEMIAGYTSALLAGITTSGWTGAGAALQIPFAMQMYRNGIGVYQTNVLYENOKLIAQFNSAIGKQDLSSTASALGLKQDWNQNAQNLTVLQKLSNFSFGAISVNLNLSLDRDKVEAEV QIDRLITGRQLSQLQTYVTOQLIRAAEIRASANLAATKMSCEVLSGSKRVDFCGKGYHMSMSFQAPAHGV/VFLHVTYVPAQEKNFTTAPICHDGKAHFPREGV/FVSGNTWFTQRNFYEPQII TTDNTFSGNCDVIVIGVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVLDLGSIDISINASVNIQKEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWVYIWLGFIAGLIAVIMVTLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVVLKGVLHYTGTETSQVAPA* </pre>	D111D, G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H, H1101D

B.1.617.2 (Delta)	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLINNATNNVVKCCEFQFCNDFLVDYHHKNNKSWMSEFREVYSSANCTFEVYSPQFLMDLEGKQGNFKNLREFVFKNDGYFKIYSHKTPNVLRDLQPGFSALEPLVLDLPIGINTRFQLTLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNSASFTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	T19R, G142D, EFR156-158G, L452R, T478K, D614G, P681R, D950N
C.37 (Lambda)	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNSASFTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	G75V, T76I, RS1Y, LPTPD246-253N, L452Q, F490S, D614G, T859N
B.1.621 (Mu)	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNSASFTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, D950N
B.1.1.529 (Omicron)	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNAPLAFSTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	A67V, del69-70, T95I, G142D, del143-145, del211/L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N40K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F
Omicron BA.1	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNAPLAFSTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	A67V, del69-70, T95I, G142D, del143-145, del211/L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N40K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F
Omicron BA.2	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNAPLAFSTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	T19I, L24S, del25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N40K, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K
Omicron BA.2.12.1	<p>MPMGSLOPLATLYLLGMLVAVSLAQCWNLTTRQLPPTAITSFRGYYPPDKVFRSSVLHSTDQLLPFFSNVTWFHAIHVSNTGNGTKRFDNPVLPFDNGVYFASTEKSNIIRGWIFGTTLDSKTQSLALHRSYLTGPDSSGGWTAGAAAAYYGYLQPRFTFLKLYNENGTIDAVDCALDPLSETKCTLSFTVEKGYIOTSNFRVQPTESIVRFPNITNLCPGEVFNATRFAVSAYWNRKRISNCADYSVLYNAPLAFSTCKYGVSPTKLNDLCFTNVYADSFVIRGDEVRIQAPGQTGKIAIDNYKLKDPLPSKPSKRFIEDLLNFKVTLADAGFIKQYGDCLGDAIRDLICAQKFGNLTVLPPPLTDEMIAQTSALLAGITSGWTFGAGAALQIPFAMQMYRNFNGIVTQNVLYENOKLIANQFNNSAIGKIQDSSLSTASALGKQDQVNVNQAOALNTLVKQLSNSFGAISVSNLDSRLDKVEAEVQIDRITGRLSLSLQTYTQQLIRAAEIRASANLAATMSECVLQGSKRVDFCGKGYHLMSPSOPASHGVFLHVTYVPAQEKNFTTAPACHDKGAHFPREGVFVSNGTHWFVTORNFYEPQIITDNTFVGNCDDVIGIVINNTVYDPLQPELDSFKEELDKYFKNHHTSPDVLDGDISGINASVNVNIQEIDRNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMTIMLCMTSCCSCLKGCGCCSKCFDEDDSEPVLKGVKLHYTTGTTESQVAPA*</p>	T19I, L24S, del25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N40K, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, S704L, N764K, D796Y, N856K, Q954H, N969K

Omicron BA.3	MPMGSLOPLATLYLLGMLVASLVAQCVNLTRTQLPPIAYTSFRSGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVGNTGKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSK TQSLLIVNNATNVVIKCEFOCNDPFLGVYHKNKNSWMESEFRVYSSANCTFEYVSQPFMLDLEGKQCNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDPGIGINITRFO TLLALHRSYLTGDSSSGWTAGAAAYGVYLOPRTFLKVNENGTTDAVDCALDPLSETKCTLKSFTVKGIVYQTSNFRVOPTESIVRPNITNLCPFGEVFNATRFASVYAWNRKRISNCVAD YSVLYNSASFSTFKCYGVSPTKLNDLCFTNIVYDASVIRGDEVNRQIAPGQTGKIDNYKLKPDDFTGCVIAWNSNNLDSKVGGNNYLYLRLFRKSNLKPFERDISTEYQAGSTPCNGVEGFNC YFPLQSGYQOPTNGVYOPYRVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKFLPQGFRDIAADTTDAVRDPOTLEIDITPCSFQGVSVITPGNTNSQAVAVLY QGVNCTEVPAIADQLTPTWVRYSTGSNVQTRAGCLIGAEVNNSYECDIPIGACISACYQTQTKSHRRARSVASQSIAYTMSLGAENSVAYSNNSSIAPTNFTSITVTEILPVSMTKTSVDC TMYICGDSTECSNLLQYGSFCPTOLKRALTIVAEQDKNTQEVFAQVKQYKTPQKHFQGPNFQDLSRSPSKRSFIEDLFLNKVTLADAGFKIYQGDCLGDIARDLICAKQFKNGLTVLPPLL TDEMIQYTSALLAGTITSGWTFGAGAALQIPFAMQMYRFNGIVGTVQNVLYENQKLNQFNSAIGKIQDLSLSTASALGKQDQVNVHNAQALNTLVQQLSSKFGAISSVNLNLSRDKV QIDRLITGRQSLQSLQYVTTQQLIRAAEIRASANLAATKMSCEVLQGSKRVDGKGKYHLMSPQSPASHGVVFLHVTYVPAQEKNFTTAPAIHDGKAHFPREGVFVSGNTHWVFTQRNFYEPQII TTDNTFVSGNCDVVIGIVVNTPYDLOPELDSKEELDKYFKNHTSPDVLDLQDISGINASVNNIQKEIDRNEVAKNLNESLIDLOELGKYEQYIKWPWYIWLGFIAGLIAIVMTLCCMTSCSCLC CLKGCCSCGSCCKFDEDDSEPVLKGVKLHYTGGTETSQVAPA*	D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K
Omicron BA.4/5	MPMGSLOPLATLYLLGMLVASLVAQCVNLTRTQLPPIAYTSFRSGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVGNTGKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSK TQSLLIVNNATNVVIKCEFOCNDPFLGVYHKNKNSWMESEFRVYSSANCTFEYVSQPFMLDLEGKQCNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDPGIGINITRFO TLLALHRSYLTGDSSSGWTAGAAAYGVYLOPRTFLKVNENGTTDAVDCALDPLSETKCTLKSFTVKGIVYQTSNFRVOPTESIVRPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVL YNFAPFFAKFCYGVSPKTLNDLCFTNIVYDASVIRGNEVSQIAPGQTGNIADNYKLKPDDFTGCVIAWNSNKLDSKVGGNNYNYRFLFRKSNLKPFERDISTEYQAGNPKPCNGVAGVNCFYPL OSYGRPTYGVHOPYRVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNGLTGTGVLTESNKFLPQGFRDIAADTTDAVRDPOTLEIDITPCSFQGVSVITPGNTNSQAVAVLYGV NCTEVPVAIADQLTPTWVRYSTGSNVQTRAGCLIGAEVNNSYECDIPIGACISACYQTQTKSHRRARSVASQSIAYTMSLGAENSVAYSNNSSIAPTNFTSITVTEILPVSMTKTSVDC TMYICGDSTECSNLLQYGSFCPTOLKRALTIVAEQDKNTQEVFAQVKQYKTPQKHFQGPNFQDLSRSPSKRSFIEDLFLNKVTLADAGFKIYQGDCLGDIARDLICAKQFKNGLTVLPPLL CGDSTECNSNLLQYGSFCPTOLKRALTIVAEQDKNTQEVFAQVKQYKTPQKHFQGPNFQDLSRSPSKRSFIEDLFLNKVTLADAGFKIYQGDCLGDIARDLICAKQFKNGLTVLPPLL TDEMIQYTSALLAGTITSGWTFGAGAALQIPFAMQMYRFNGIVGTVQNVLYENQKLNQFNSAIGKIQDLSLSTASALGKQDQVNVHNAQALNTLVQQLSSKFGAISSVNLNLSRDKV QIDRLITGRQSLQSLQYVTTQQLIRAAEIRASANLAATKMSCEVLQGSKRVDGKGKYHLMSPQSPASHGVVFLHVTYVPAQEKNFTTAPAIHDGKAHFPREGVFVSGNTHWVFTQRNFYEPQII TTDNTFVSGNCDVVIGIVVNTPYDLOPELDSKEELDKYFKNHTSPDVLDLQDISGINASVNNIQKEIDRNEVAKNLNESLIDLOELGKYEQYIKWPWYIWLGFIAGLIAIVMTLCCMTSCSCLC GCCSCGSCCKFDEDDSEPVLKGVKLHYTGGTETSQVAPA*	T19I, L24S, del25-27, del69- 70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K