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Abstract

Mammalian cells are critical hosts for the production of most therapeutic proteins and many proteins for
biomedical research. While cell line engineering and bioprocess optimization have yielded high protein titers of
some recombinant proteins, many proteins remain difficult to express. Here, we decipher the factors
influencing yields in Chinese hamster ovary (CHO) cells as they produce 2165 different proteins from the
human secretome. We demonstrate that variation within our panel of proteins cannot be explained by
transgene mMRNA abundance. Analyzing the expression of the 2165 human proteins with machine learning, we
find that protein features account for only 15% of the variability in recombinant protein yield. Meanwhile,
transcriptomic signatures account for 75% of the variability across 95 representative samples. In particular, we
observe divergent signatures regarding ER stress and metabolism among the panel of cultures expressing
different recombinant proteins. Thus, our study unravels the factors underlying the variation on recombinant
protein production in CHO and highlights transcriptomics signatures that could guide the rational design of

CHO cell systems tailored to specific proteins.

Introduction

Roughly a third of the human protein coding genome encodes secreted and membrane proteins that
mediate virtually all interactions of a cell with its environment !, and whose enzymatic activity regulates a
diverse range of vital organismal functions. The human secretome project (HSP) 22 has comprehensively
characterized this important subset of the human proteome as a resource for drug discovery and development.
The fundamental roles in signaling and organismal homeostasis make these secreted proteins ap pealing
candidates for the biopharmaceutical industry.

To recombinantly produce many biopharmaceuticals, Chinese hamster ovary (CHO) cells are the
preferred mammalian expression system because of their scalability and compliance with human post-
translational modifications (PTMs) #°. To systematically measure the potential of CHO cells to produce these
pharmaceutical targets, an effort to express the entire human secretome recombinantly in CHO was initiated

as a companion project to the HSP. Efforts were made to express 2189 secreted human proteins using the
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Icosagen QMCF CHO cell line (Icosagen Cell Factory OU), which allows for episomal extended transient
protein expression. Almost 1,300 proteins have been successfully produced and purified in the cell line using
the HSP standardized high throughput pipeline ©. We observe that the amounts of protein produced are highly
variable; only 59% of the human secretome could be successfully expressed in CHO above the quality
threshold. Furthermore, among the proteins that passed quality checks, titers differed by several orders of
magnitude depending on the protein (Fig. 1a). This prompted us to ask the key question: what factors account
for the vast variation observed in recombinant protein production in CHO? Answers to this question are of
great interest in the biopharmaceutical industry and researchers across fields who study mammalian proteins,
providing guidance to the rational design of recombinant protein-producing CHO cell lines.

To understand the determinants of protein titers, we analyzed the expression of 2165 CHO-produced
secreted human proteins (filtered set from the 2189 HSP proteins, see Methods), and conducted RNA-Seq on
a representative subset of 95 CHO cell cultures, each expressing a different recombinant protein, along with
the non-producing lcosagen QMCF host cell line. Here we aim to quantify the relative contribution of three
major factors that influence the production and secretion of recombinant proteins. First, we modeled the
relationship between transgene mRNA levels and protein yield to quantify the variability explained by
transgene transcript abundance. Second, we curated hundreds of protein features and applied machine
learning to identify the most important protein attributes contributing to variation in productivity. Lastly, we used
transcriptomic profiles to quantify the variability explained by host cell expression signatures. We further
identify specific processes associated with ER stress and metabolism that are strongly associated with the

ability of cells to produce recombinant protein.

Results

Recombinant protein expression in CHO varies extensively

We analyzed the productivity of 2165 proteins from the HSP study and investigated the distribution of
target products (Fig. 1a). Only 59% of the secretome could be successfully expressed by CHO cells above the

quality threshold, determined by a combination of WB analysis, SDS-PAGE, and MS/MS at various time


https://paperpile.com/c/UDdYkR/xRLt2
https://doi.org/10.1101/2022.12.12.520152
http://creativecommons.org/licenses/by-nc-nd/4.0/

75

76

77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.12.520152; this version posted December 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

points®. Furthermore, among the proteins that passed quality checks, titers differed by several orders of
magnitude depending on the protein (Fig. 1a). To enable deeper characterization of the library of CHO cells
producing the human secretome, we selected a subset of 95 cell cultures each expressing a unique
recombinant protein. This included high (n=15), low (n=15), and failed producers (n=4), along with 61
additional cultures wherein the produced protein varied in size and composition. We also included the wild-type
(WT) Icosagen QMCF CHO-S host for comparison. This panel of 96 cell cultures were subjected to RNA-Seq,
which quantified the mRNA abundance for the transgenes encoding the human secreted proteins
(Supplementary Data 1), along with the endogenous CHO genes. The transgenes, as defined by their
recombinant sequences, consistently take up ~3% of the entire transcriptome, making it one of the most highly

expressed genes in most samples.
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Figure 1. Production of the human secretome in CHO. a) Cumulative distribution of target protein produced
for the 2165 recombinant proteins expressed using the human secretome high-throughput production pipeline.
Approximately 41% (red line) of the proteins failed to produce, while the amount of recovered protein for
remaining cells varied between 0.44-5.38mg. b) Relationship between transgene abundance (TPM) and
amount of secreted protein (ug). The CHO cell line was unable to produce any recoverable product for 4 of the
selected recombinant proteins (blue), while cells with the top 15 highest and lowest yields are colored in red

and green respectively. Cells expressing the remaining proteins are shown in gray.
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Variation in recombinant protein yield cannot be explained by transgene mRNA abundance

Some studies report that transgene mRNA levels can be limiting for secreted protein titers 72, To
evaluate if the variation in protein production in our panel of cells can be explained by transgene mRNA levels,
we modeled the relationship between transgene levels and protein yield using linear regression. Across the 95
RNA-sequenced recombinant protein expressing cell cultures, we found that transgene mRNA levels explained
less than 1% of the variance in protein titer (Fig. 1b). This correlation pales in comparison to other studies
which report numbers closer to 40% for endogenous genes in mammalian cells across various conditions %12,
likely due to the high mRNA expression achieved in the QMCF system. We conclude that adequate transgene
MRNA is produced in these cells, and mMRNA abundance is likely not the limiting factor. These results suggest

an alternative bottleneck in the production of difficult to express proteins within the HSP panel of proteins.

A comprehensive set of 218 features describing the HSP proteins

Since transgene mMRNA levels do not appear to limit recombinant protein production in our system, we
wondered how protein-specific features contribute to the variability in protein yield. To test this we curated a
comprehensive set of 218 protein features as potential predictors of abundance of the 2165 HSP proteins.
These features were classified into three main categories: i) experimental abundance, ii) sequence features,
and iii) biophysical features (Table 1). Experimental abundance features measure the expression of the protein
in other systems including various human tissues, other species, and the expression of the endogenous
protein in CHO. Sequence features encompass protein attributes linked to the nucleotide and amino acid
sequence of the protein such as molecular weight (MW), amino acid composition (AAC), and PTMs. Lastly,
biophysical features cover metrics related to protein stability, solubility, secondary structure, etc. A detailed
description of all features can be found in Supplementary Data 2. The influence of these protein features on

protein yield was investigated using correlation and machine learning methods.

Table 1. Protein features and their sources

Source/Software

Feature Type Feature Group # Features Description Packages
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MW, AAC, and N-linked glycosylation have the greatest effect on protein titers

The importance of individual protein features was quantified using Spearman correlation (Table 2).
Using the subset of proteins that passed quality control and produced at detectable levels, we found that MW
had the strongest correlation (R=0.26) with protein yield (ug). This unexpectedly suggests that higher
molecular weight proteins were easier to produce. To understand this further, we binned the proteins by MW
and observed that the significant correlation only holds true for low MW proteins (Supplementary Fig. 1-2). A
significant drop in correlation was observed once the protein surpassed 2500-3500 Da, suggesting a sort of
size threshold below which protein size becomes difficult to produce efficiently. We also observed a significant
correlation between AAC of cysteine and protein yield (R=-0.23). Cysteines are involved in the formation of
molecular architecture-mediating disulfide bonds, which also showed a similar relationship with protein yield
(R=-0.14). This negative relationship suggests that recombinant proteins containing a high proportion of

cysteines and disulfide bridges tend to produce less efficiently.

Table 2 Correlation between protein features and protein yield (ug)
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Feature Group Feature Correlation with protein yield (ug)
Molecular weight MW (Da) 0.256***
AA composition AA.comp C -0.225%**
AA composition correlation with | AA. comp correlation with native CHO 0.198***
CHO
AA. comp correlation with essential CHO 0.166***
AA class composition AA. comp med volume 0.139%**
Post-translational modifications N-linked glycosylation 0.159%**
Disulfide bonds -0.140***
Secondary structure Coil -0.189**
Relative solvent accessibility Mean accessibility score -0.199***
Percent hydrophobic solvent-inaccessible 0.188**
residues
Percent hydrophobic solvent-accessible -0.144**
residues
Stability & Solubility Net charge -0.169***
Grand average of hydropathicity 0.166***
Isoelectric point -0.138***
Instability index -0.130***

List of selected protein features amongst predictors with the strongest Spearman correlation coefficient with

protein yield. Significance values were adjusted using false discovery rate (FDR) method to correct for multiple

testing: *P < 0.01, **P < 0.001, ***P < 0.0001.

To further understand the complex relationship between protein features and yield, we generated

descriptive regression and classification models of recombinant protein production in CHO using machine
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learning (ML). Regression algorithms using the subset of quantifiable proteins that passed quality control
provides insight into features hindering lowly expressed proteins. On the other hand, classification models
using the pass/fail status of proteins can elucidate features preventing the production of proteins. Protein
features were filtered and preprocessed before serving as predictors in both regression and classification
pipelines, each of which produced 8 unique models (see Materials and Methods). Predictor variable (i.e.
protein feature) importance for each model was ranked, and the consensus among the top 10 predictors for
each model was evaluated (Fig. 2a-b). All 8 regression models ranked MW and AAC of cysteine amongst the
top 10 most important features affecting protein yield. This supports the correlation analysis which identified
these same two features as having the strongest correlation with protein abundance. Furthermore, the best
performing regression model ranked these predictors as the most important features affecting protein yield
(Fig. 2c). Our classification models using the pass/fail status of proteins showed increased consensus among
important protein features. Among the universally consented features were N-linked glycans, which are critical
for folding and quality control of glycoproteins, specifically through the calnexin/calreticulin cycle 314, When we
set the failed samples to zero titer and performed a correlation analysis, we found a significant positive
correlation between N-linked glycosylation and yield (R=0.26) (Supplementary Table 1), indicating that proteins

with increased N-linked glycosylation tend to express better.

Protein features account for ~15% of the variability in recombinant protein yield

Protein features, in particular sequence features, clearly affect CHO’s ability to successfully produce
recombinant protein and may help inform recombinant protein candidate selection or design for future
production runs. To quantify the variability in protein yield that can be explained by protein features, we
sequentially added the ranked features of the best performing regression model to a linear model fit and
calculated the fraction of variance explained by the model (Fig. 2d). The explained variance peaks at
approximately 15% when 32 protein features are included. While significantly greater than the variability
explained by transgene mRNA abundance, protein features only account for a fraction of the variability in
protein titers. Together these results suggest that protein features are not the most important factor limiting

recombinant protein production in CHO.
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168  Figure 2. Protein-specific features affect recombinant protein yield. a-b) Compilation of the top 10 most
169 important features identified in the 8 regression (a) and 8 classification (b) models. A consensus of 8 indicates
170 that the feature was identified as an important feature in all 8 models. Regression models showed lower
171  consensus highlighting a total of 32 features, only 2 of which showed up in the top 10 features of all 8 models
172  (consensus=8). However, the classification models showed higher consensus highlighting a total of 15
173  features, wherein a third (5) of them have been deemed highly important in all 8 models (consensus=8). c) Bar
174  graph showing the most influential protein features identified in our best performing regression model. Variable
175 importance measures have been scaled to have a maximum value of 100, and their directional effect on yield
176  has been inferred and colored based on the feature correlation with protein titer. d) Variability in protein titers
177  explained by protein features was determined by sequentially adding protein features to a linear regression
178 model and calculating the percent variability explained by the set of features. AA comp: amino acid
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179  composition; MW: molecular weight. A detailed description of each protein feature can be found in

180  Supplementary Data 2.

181  Transcriptomic signatures can account for the majority of variation in protein titers

182 Targeting protein features to enhance titers is typically undesirable as the features can be integral to
183  protein function. We therefore investigated how transcriptomic determinants in the host cell impact protein
184  yield. Principal component analysis of the 96 RNA-Seq samples (Supplementary Data 3) clearly shows that the
185 non-producing cells, including WT, are transcriptional outliers compared to the cells producing recombinant
186  protein (Fig. 3a). The first principal component (PC1) accounts for approximately 19% of transcriptome

187  variability, and separates successfully producing cells from those that failed to produce any recombinant
188  protein. LOC100754005, one of the top 5 influential genes with a negative loading on PC1, encodes an

189  ortholog of the PRPF8 gene (Pre-mRNA-Processing-Splicing Factor 8) which serves as a component of the
190 spliceosome critical for pre-mRNA processing. We find that higher expression of this gene differentiates the
191  productive cell lines from the non-producing outliers. Interestingly, previous work comparing the proteome of
192  various CHO host cells revealed an up-regulation of PRPF8 in the high producing cell lines and alluded to its

193  contribution to the high production of biopharmaceuticals in CHO *°,
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195  Figure 3. Non-producing cell lines are transcriptional outliers. a) Principal component analysis (PCA) of
196  transcriptomics data. Top 5 positive and negative contributing genes to the first principal component (PC1)

197  shown in light gray. Dashed red line shows a clear division between the cells capable of producing

11
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recombinant proteins (red, green, and gray) and cells that failed to produce any detectable protein (blue). b)
Results from a gene set enrichment analysis (GSEA) performed between the failed producers and the cells
that successfully produced protein. Terms with a positive normalized enrichment score (NES) are enriched by
genes overexpressed in the non-producers, while terms with a negative NES are enriched by genes
overexpressed in the producers.

To gain additional insights into biological pathways and processes characteristic of the non-producers,
we conducted Gene Set Enrichment Analysis (GSEA) 7 between the failed producers and the cells that
successfully produced protein (Fig. 3b). Unsurprisingly, we saw signs of cell stress (pink terms) in both groups,
likely due to the burden of overexpressing foreign protein. Additionally, we found that the failed producers
upregulated genes involved in translation (green terms) and oxidative phosphorylation, and showed signs of
amino acid deficiency (teal terms). We also observed increased activity in the early stages of protein secretion
(i.e targeting to the ER) in the failed producers, and depletion in later portions of the secretory pathway (i.e.
Golgi subcompartments, vesicle membranes, and secretory granules) compared to the producers (orange
terms). Furthermore, the successful producers show increased transmembrane transport (yellow terms),
potentially alleviating the burden of amino acid deficiency.

To quantify the variability in protein yield explained by transcriptomic cell signatures, we conducted
multiple linear regression on the principal component loadings. Using the first three principal components,
which account for 44% total variation of the transcriptome, we found that host cell gene expression signatures
could account for 75% of the variability seen in protein yield. Even though our panel of cells come from a single

clonal cell line, the expression of different transgenes is clearly impacting the cells in a protein-specific manner.

Cells respond differently to ER Stress

Our GSEA analysis alluded to significant differences in secretory pathway activity. To better understand
the protein-specific secretory pathway signatures within our panel of cells, we calculated activity scores (see
Materials and Methods) for 13 secretory pathway functions (Supplementary Data 6). Activity scores for the 95
recombinant protein expressing CHO cells were normalized to express the change in pathway activity with

respect to the WT host cell (Fig. 5a).
12
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ER calcium homeostasis was the most highly increased function across recombinant protein
expressing cells regardless of productivity, suggesting that overexpression of heterologous proteins in CHO
triggers a general imbalance in ER calcium homeostasis. Maintaining proper Ca?* levels within the ER is vital
for virtually all ER-supported functions, and disruption of these levels activates ER stress and UPR?8, In fact,
an in-depth analysis of cellular response to stress (Supplementary Results) showed activation of many ER
stress response genes among the panel of cells. In particular, results show a depletion in all three branches of
UPR signaling and signs of increased ubiquitin-mediated proteasomal degradation (ER-associated
degradation; ERAD) in the failed producers.

Protein folding in particular is a common bottleneck in recombinant protein production, and the
accumulation of improperly folded proteins can also trigger ER stress. However, the upregulation of protein
folding genes is associated with greater protein production °%2, In line with these findings, we observe a mild
yet significant positive correlation between protein folding activity and protein yield (r=0.21, pval=0.05,
Supplementary Data 12). Furthermore, the stress analysis (Supplementary Results) identified several genes
involved in disulfide bond formation and protein folding including HYOU1 (hypoxia up-regulated 1), ERO1A
(endoplasmic reticulum oxidoreductase 1 alpha), and PDIA3 (protein disulfide isomerase family A member 3)
upregulated alongside the stress response in the successfully producing cells. Altogether, these results

suggest that the productive cells respond to ER stress better than the failed producers.
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Figure 4. Secretory pathway cell signatures. a) Clustered heatmap of the normalized change in secretory
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N-linked glycosylation and ERAD are strong determinants of protein yield

Clustering the 95 recombinant protein expressing cells based on secretory pathway activity on

transcriptional level revealed 4 distinct groups (Fig. 4a). One cluster consists of a single failed producer

(CCL20) that shows dramatic decreases in activity across all secretory pathway functions, while the other 3
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clusters show unique secretory pathway footprints. Cluster 1 shows little to no change in the majority of
secretory functions, cluster 2 is characterized by a general increase in activity across subsystems, and cluster
3 is characterized by a general decrease in subsystem activity. Similar to the single non-producing outlier
which showed a dramatic decrease in secretory pathway activity, the remaining 3 non-producing cell lines also
show decreased secretory pathway activity and belong to cluster 3. The cells in each cluster show a range of
productivity, suggesting these secretory pathway footprints do not define a cell’s ability to successfully produce
and secrete recombinant protein. Of particular interest was cluster 3, which showed low activity across all
secretory functions. Given that some of the highest producers fall within this cluster, overall high secretory
pathway activity is not required for high protein yield. However, when calculating pathway activity scores we
lose gene-specific granularity. Therefore we wondered if there are sets of genes that drive the high protein
production seen in certain cells of cluster 3.

To understand which genes drive high production of recombinant protein in cluster 3, we calculated
correlations between individual secretory pathway genes and protein abundance for the cells of the cluster
(Supplementary Data 7). We identified 43 secretory machinery genes that showed significant correlation
(Ir]>=0.6; false discovery rate (FDR)<= 0.1) with protein abundance (Fig. 4b). One set of positively correlated
genes was particularly interesting: Algl2 (Alpha 1,6 Mannosyltransferse), Rpnl (Ribophorin 1), Rpn2
(Ribophorin 2), and Ddost (dolichyl-diphosphooligosaccharide-protein). While these genes belong to different
subsystems, dolichol pathway and ER glycosylation, they are involved in the same integral process of N-linked
glycosylation. Alg12 encodes a glycotransferase involved in the assembly of the dolichol-PP-oligosaccharide
precursor required for N-linked glycosylation. Rpn and Ddost encode proteins of the oligosaccharide
transferase complex (OST complex), which catalyzes the first step of N-linked glycosylation — the transfer of
the pre-assembled N-glycan from the dolichol lipid carrier to the client protein. Given the importance of N-
linked glycosylation in protein folding and quality control within the ER, it is reasonable to believe that genes
involved in this step are critical for efficient protein secretion.

Only a single gene, Derl2 (Derlin 2), was negatively correlated with protein yield. The derlin genes
encode components of ERAD machinery, where they participate in the retro-translocation of unfolded and

misfolded proteins from the ER to the cytosol for proteasomal degradation 2324, Interestingly, derlins also
15
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function in ER-stress induced pre-emptive quality control (ERpQC)?>?°. During ER stress, Derlin is recruited to
the translocon and signal recognition particle receptors and participates in the selective attenuation of
translocation of newly synthesized proteins into the ER, rerouting them to the cytosol for proteasomal
degradation. The downregulation of this ERpQC mechanism allows proteins to enter the ER and interact with
protein folding chaperones, increasing the chances of protein production and secretion. We used linear
regression to quantify how much of cluster 3’s variability in protein abundance could be attributed to the 5
aforementioned genes: Algl2, Rpnl, Rpn2, Ddost, and Derl2. Due to overlapping biological functions, the
expression of Rpnl, Rpn2, Ddost, and Alg12 are highly correlated, therefore to avoid multicollinearity we only
included the expression of Derl2 and Alg12. The resulting model could explain an astonishing 87% of cluster
3’s variability in protein yield. These results suggest that Alg12 and Derl2 may be good engineering targets,

especially for cell lines with overall low secretory pathway activity.

Failed producers are metabolically less active

Recombinant protein production is energy intensive with increased raw material demands, thus
inducing significant alterations in host cell metabolism. Consequently, many cell line engineering efforts have
targeted metabolism to enhance recombinant protein production 2. To identify metabolic variation within our
panel of cells, we implemented the CellFie tool 28, which quantifies metabolic task activity from omics data
(Supplementary Data 8). We identified 79 core metabolic tasks active in all cells, 27 tasks inactive across all
cells, and 79 tasks with differential activation (Fig. 5a). Many differentially active tasks are involved in amino
acid and carbohydrate metabolism. When looking at the 79 tasks showing differential activation across our
panel of CHO cells, the non-producers showed on average 33% active metabolic tasks, while the highest and
lowest producers showed 66% and 58%, respectively (Fig. 5b), suggesting the non-producers are

metabolically less active compared to the producing cells.
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Figure 5. Metabolic cell signatures. a) Proportion of tasks that are active, inactive, and differentially active
among the 95 recombinant protein expressing cells. Also displayed are the proportions of tasks falling within
each subsystem. b) Boxplot showing the percentage of active metabolic tasks among the different productivity
groups. ¢) Treemap of CellFie metabolic tasks organized into systems and subsystems. Each square
represents a single metabolic task which is colored according to significant correlation with protein yield among

the high and low producing cell lines.

Increased fatty acid metabolism in the high producers

To further understand the metabolic differences, we used the quantitative form of metabolic scores to
characterize the relationship between individual tasks and protein yield. Several metabolic tasks showed
significant correlations (FDR<=0.1) with protein abundance among the subset of high and low producers (Fig.
5b; Supplementary Data 9). The majority of tasks show positive correlation with protein abundance, further
suggesting that higher metabolic activity facilitates recombinant protein production. We found that the
metabolic tasks with the largest and most significant correlation with protein yield among the subset of high
and low producers are involved in fatty acid (FA) metabolism. In particular, we observe a strong positive
correlation with synthesis of several FAs: palmitoleate synthesis (R=0.62), palmitate synthesis (R=0.61),
synthesis of palmitoyl-CoA (R=0.59), arachidonate synthesis(R=0.59), and synthesis of malonyl-coa (R=0.51).
FAs have a diverse range of important cellular functions including critical structural components of cell
membranes. Cells modulate the FA composition of the cell membrane under challenging conditions to regulate
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membrane fluidity?. Increased activity in FA metabolism may be a signature characteristic of high recombinant
protein production, given its importance in the size and function of the endomembrane system and the
secretory pathway in general. Additionally, FAs can store and supply energy to cells. Our results revealed a
positive correlation between the stress response energy-producing FA oxidation gene ACAA2 (acetyl-CoA
acyltransferase 2) and protein yield (Supplementary Results, Supplementary Fig. 3b). In combination with the
observed overall increase in FA metabolism, these results could suggest that the high producing cells are
using FA metabolism to provide a beneficial pool of energy to meet the demands of high recombinant protein

production.

Cysteine depletion and oxidative stress in the poor producers

We found only two tasks, conversion of aspartate to beta-alanine and synthesis of taurine from
cysteine, showed a negative relationship with protein yield (Fig. 5¢). Our protein features analysis showed that
our host system has difficulty producing proteins with high cysteine composition. The depletion of available
cysteine from the synthesis of taurine could be further burdening the production of proteins. Furthermore, not
only does this task deplete the availability of free cysteine, but there is evidence that taurine acts as an
antioxidant defense by counteracting lipid peroxidation %3t which could be an indicator of increased oxidative
damage.

The prevalence of oxidative stress within our panel of cells was further confirmed by our in depth
analysis of cellular response to stress (Supplementary Results). Firstly, we noticed that the successfully
producing cells show a more profound response to oxidative stress, upregulating almost twice as many
oxidative stress response genes compared to the non-producing cells. Second, we observed that three of the
genes depleted in the failed producers encode proteins belonging to the solute carrier (SLC) superfamily,
supporting the negative enrichment in SLC transmembrane transport observed in the preliminary GSEA
analysis. SLC7A11 (solute carrier family 7 member 11) shows the greatest depletion among oxidative stress
genes in the failed cells (LFC=-1.85, FDR=5.19E-07) and is involved in the specific transport of cysteine and
glutamate. The ability to mount an adequate response against oxidative stress, including enhancing the

transport of cysteine, may facilitate recombinant protein production.
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Discussion

The continual discovery of new biologics is accompanied by pressure to establish novel methods and
technologies for enhancing quality and productivity. CHO cells dominate biotherapeutic protein production and
are extensively used in mammalian cell line engineering research due to their human-compatible PTMs and
adaptability to suspension-growth culture in chemically-defined media. However, many proteins struggle to
express well or at all in this non-native environment. The Human Secretome Project demonstrated that even
standard human proteins can be difficult to produce. This large data set of heterologous protein expression in
the most popular biopharmaceutical expression host represents an attractive resource that can be leveraged to
understand why CHO cells produce some proteins better than others. In particular, this study was designed to
illuminate and quantify the factors contributing to this variation in productivity to help guide the rational design
of protein-specific CHO cell systems. Here we found that transgene mRNA levels were expressed at
consistently high levels and cannot explain the variability in protein yield (<1%; Fig. 1b), allowing us to identify
other factors as the main drivers in protein yield.

Using statistical and ML methods, we systematically quantified how 218 protein features affect the
efficacy of protein production in CHO. Both correlation and ML analyses implicate MW and cysteine AAC as
important protein features influencing efficient production in CHO (Table 2; Fig. 2). We observed a MW
threshold ~2500-3500 Da below which proteins become difficult to produce efficiently (Supplementary Fig. 2).
Studies have shown that protein size is the primary factor in determining folding rates and protein stability32.
Furthermore, small proteins are more sensitive to changes in stability than larger proteins®. Perhaps the small
proteins lack the molecular material to form sufficient stabilizing bonds resulting in poor yield. Alternatively, this
observation could be due to protein detection methods where low MW proteins are vulnerable to poor retention
and resolution. We also observed a negative relationship between cysteine composition and protein yield.
Cysteine residues are important to the conformational stability of a protein through the formation of disulfide
bridges which occur upon oxidation of the thiol groups between two spatially proximal cysteines. However the
same property that allows this stabilizing bond formation to occur also imparts intrinsic vulnerability to oxidative

stress. The highly reactive nucleophilic thiol group can be reversibly or irreversibly modified and lead to
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dysfunctional protein 4. Given we found strong transcriptional signatures of oxidative stress among the panel
of cells (Supplementary Fig. 3a), high cysteine composition could be introducing destabilizing non-native
disulfide bonds. In fact, studies attempting to stabilize proteins by introducing artificial disulfide bridges have
found that it can lead to overall protein destabilization®>-3°. Another possible explanation is that the cysteines
are forming intermolecular bonds leading to protein aggregation, since aberrant protein aggregation can occur
from oxidation-induced intermolecular disulfide bond formation 4°41, Alternatively, the production of proteins
with high cysteine composition could be depleting cysteine from the system. Indeed, cysteine depletion can
induce oxidative stress, ER stress, reduced viability, and lower titers in CHO bioproduction*?43. Lastly, we
observed N-linked glycosylation as an important protein feature enhancing recombinant protein production
(Table 2; Fig. 2). Heterologous protein production can be enhanced with added N-linked glycosylation sites 4+
46 py stabilizing the protein and enhancing quality control checkpoints. While protein features seem like a
promising feature that could improve protein production, overall we found the protein features tested only
account for a fraction of the observed variability in protein yield (~15%).

Ultimately, the majority of variability (75%) in protein production was explained by cell signatures in the
host transcriptome. Further transcriptomic analyses of cell stress, protein secretion, and metabolism suggest
that recombinant proteins impose unique burdens on the cell. It is unsurprising that overexpression of foreign
proteins induces cell stress, and in particular ER Stress. Many studies have implicated the secretory pathway,
specifically the ER, as a major bottleneck in recombinant protein production 4=%°. Our results suggest that the
cells that can successfully produce recombinant proteins may also better mitigate ER stress by triggering UPR
signaling and increasing protein folding machinery; meanwhile, failed producers upregulate protein clearance
strategies, e.g., ERAD and ERpQC. We also observed a decrease in metabolic activity in poor producers (Fig.
5), suggesting these cells cannot keep up with the increased energy and raw material demands of recombinant
protein production and secretion. Other studies have reported similar metabolic restructuring when comparing
cells producing secreted vs. intracellular proteins, implicating increased energy demand of the secretory
pathway during recombinant protein production®. The strongest metabolic differences we observed involve the
metabolism of FAs, which serve as integral constituents of the secretory pathway endomembrane system and

as a cell energy source. Thus, lipid metabolism might enhance recombinant protein production by allowing
20
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cells to maintain lipid homeostasis in a state of dynamic lipid turnover, or provide a beneficial pool of energy to
meet the demands of high recombinant protein production. Lastly, results implicate the metabolic depletion of
cysteine as negatively affecting the efficient production of protein in CHO. This corresponds nicely with our
observation of high cysteine compaosition in the poor producers. Cysteine deprivation can trigger amino acid
deprivation pathways®! and induce mitochondrial dysfunction leading to reduced oxidative phosphorylation*:,
both of which we observed here. Furthermore the production of the antioxidant molecule taurine from cysteine
could be a result of increased oxidative stress in the poor producers.

In conclusion, results here have important implications for mammalian bioproduction. The factors
underlying the variability in protein production in the most popular expression host identified here can be
leveraged to improve recombinant protein production in CHO®%2 and have considerable impact on the vast
biologics industry. Furthermore, this study has important implications across a range of other fields as it
identifies essential processes regulating protein secretion, thus impacting cell-cell interactions associated with

normal and pathological processes in the human body such as development, immunology, and tissue function.

Methods

Human secretome production data

Protein titers for the human secretome transiently expressed in the Icosagen QMCF cell line were taken
from Tegel et al®. We removed samples whose status is “Ongoing”, as well as samples that passed QC (Status
= “Pass”) yet were missing titer information. This left us with data for 2165 different proteins of the human
secretome expressed in CHO. This cleaned up version of the data can be found in Supplementary Data 10.
We note that as previously reported®, the titers were estimated upon purification, which could influence the
results if different proteins purified differently. However, all purifications relied upon the same peptide tag, thus
minimizing potential biases. Here we measured single replicates for each protein. Future studies
incorporating alternative purification methods and increased replicates will further strengthen analyses into the

factors affecting recombinant protein secretion in CHO.
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Sequence processing and RNA-Seq quantification

Sequence data for RNA-Seq were quality controlled using FastQC and summarized with multiQC 3.
Trimmomatic * was used to trim low-quality bases and sequencing adapters from the reads with the following
parameters: LIDINGWINDOW:5:10 LEADING:15 TRAILING:10 MINLEN:36 TOPHRED33. The CHO-K1
reference genome >° was extended to incorporate the transgene sequences so that the transcripts of the
heterologous secretome can be quantified. Reads were then quasi-mapped to the extended CHO-K1 genome

and quantified with Salmon ¢ with default parameters.

Quantifying effect of mMRNA abundance on protein yield

Transgene mMRNA abundance was plotted against total protein yield (ug) on a log scale using ggplot2 *7
in R %8, A pseudo count of 1 was added to protein abundance to account for samples which failed to produce
any detectable recombinant protein. Note the sample producing IL22 was removed due to issues quantifying
the transgene mRNA abundance. A linear model was fit to the data, and model estimates displayed using the

ggpmisc package °°.

Protein features importance

To fully characterize the properties of the human secretome dataset, we built upon the features from
our pilot study ° which reviewed the expression determinants of the human protein fragments used in the
creation of the antibodies for the HPA project. The final compendium of curated features included 218 metrics
generated from numerous resources (Supplementary Data 2). Individual predictor importance was evaluated
using non-parametric Spearman rank correlation. Significance values were adjusted using FDR to correct for
multiple testing. The machine learning pipelines were built using the caret package ® in R. Note that the
transgene mMRNA level was excluded from this analysis to isolate the effect of the recombinant protein features.
All features were pre-processed (normalization, removal of highly correlated variables and incomplete
features). The regression pipeline generated 8 regression models: i) gimnet, ii) partial least squares, iii)
averaged neural network, iv) support vector machines with radial basis function kernel, v) stochastic gradient

boosting, vi) boosted generalized linear model, vii) random forest, and viii) cubist. Similarly, our classification
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pipeline implemented the same first 7 algorithms (i-vii), however the cubist algorithm is unigue to regression,
S0 a naive Bayes model was used for the 8th and final classification model.

As these were generated as descriptive and not predictive models of protein features, the models
tended to overfit the data. To avoid reporting an inflated metric of explained variance, we used a standard
linear regression fit to calculate the variability explained by protein features. We took the rank-ordered features

of the best performing regression model, and sequentially added the features to the linear model fit.

Transcriptomic determinants of protein secretion

Low count genes were filtered based on GTEx’s scheme: expression thresholds of >0.1 TPM in at least

20% of samples and 26 reads in at least 20% of samples. Expression values were then log transformed to

reduce heteroscedasticity concerns in downstream analyses. To facilitate functional annotation, an ortholog
conversion table %2 was used to convert CHO genes to their human ortholog. Principal component analysis was
conducted using the stats package included in R and visualized in a biplot using the factoextra package ©.
GSEA was conducted using the clusterProfiler package ®* to determine the significantly up- and down-
regulated cellular processes associated with the first principal component. Annotations for the enrichment were
obtained from GO, Reactome, and KEGG databases. A normalized enrichment score (NES) representing the
GSEA statistic (Subramanian et al., 2005) was calculated to quantify the overall direction of regulation for each
gene set along with an accompanying permutation p-value which has been adjusted to correct for multiple
testing.

We used multiple linear regression to quantify the overall variability in protein yield explained by
transcriptomic cell signatures. To avoid the curse of dimensionality (more genes in the transcriptome than
samples in our data set), we used loadings from the first 3 principal components, which account for 44% of

transcriptome variation, as input to the model.

23


https://paperpile.com/c/UDdYkR/UQOH
https://paperpile.com/c/UDdYkR/DSxh
https://paperpile.com/c/UDdYkR/Rtw6
https://doi.org/10.1101/2022.12.12.520152
http://creativecommons.org/licenses/by-nc-nd/4.0/

471

472

473

474

475

476

477

478

A79

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.12.520152; this version posted December 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Secretory pathway signatures

Boundaries of the secretory pathway were defined using Feizi’'s 2017 reconstruction of the mammalian
secretory pathway, which consists of 575 core secretory machinery genes divided into 13 subsystems®. To
extract these secretory machinery genes from our CHO panel, the previously mentioned conversion table 2
was used to map CHO genes to their human orthologs. Pathway activity scores were calculated for each of the

13 subsystems using 2 simple equations:

1+ gene expression
threshold

1. Gene Score =5 * log

X gene score

2. Subsystem Activity Score = .
# genes in subsystem

Equation 1 was adapted from thresholding methods implemented in genome-scale model analyses 28, and
involves the preprocessing of the gene expression data using gene-specific thresholds. The threshold is
defined by the gene’s mean expression across all samples in the dataset. The activity score is essentially the
mean gene score for the subsystem. Activity scores for the 95 recombinant protein expressing CHO cells were
normalized to express the change in pathway activity with respect to WT. The relationship between subsystem
activity and protein yield were evaluated using non-parametric Spearman correlation. Hierarchical clustering
and visualization of the activity scores was achieved using the pheatmap package ®’ in R. The samples were
clustered based on euclidean distance and complete linkage clustering. The relationship between stress
response genes and protein yield within cluster 3 were evaluated using non-parametric Spearman correlation.
Significance values were adjusted using FDR to correct for multiple testing. Significant correlations were
visualized in a lollipop plot using ggplot2 °’ in R. The stats package included in R was used to fit a linear model

and describe the variance in protein yield explained by genes Derl2 and Alg12.

Metabolic host response

Expression data from the panel of 96 CHO cultures were subjected to metabolic analysis using CellFie
28 CellFie was run using the MT_iCHOvV1_final model with the following parameters: local minmaxmean
threshold with upper and lower percentile values of 25 and 75 respectively. CellFie provides metabolic task
activity in two forms: binary (active or inactive) and quantitative. The binary form of metabolic tasks was used
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to determine the percent of active vs inactive tasks among the panel of CHO cells. The percent of differentially
active tasks was visualized in a boxplot using ggplot2 7 in R. The quantitative form of metabolic task activity
was used to calculate differential metabolic activity and correlations with protein yield. Significant differences in
metabolic activity between the non producing cell lines and the successfully producing cell lines was performed
using a Welch'’s t-test on the log2 transformed quantitative activity scores. The relationship between task
activity and total protein yield was evaluated using non-parametric Spearman correlation. Task activity that
involved specific amino acids were uniquely normalized with respect to the amino acid composition of the
protein being expressed in the given sample. Significance values were adjusted using FDRto correct for

multiple testing. Significant correlations were visualized in a treemap using the ggtree package® in R.
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