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Abstract 25 

Mammalian cells are critical hosts for the production of most therapeutic proteins and many proteins for 26 

biomedical research. While cell line engineering and bioprocess optimization have yielded high protein titers of 27 

some recombinant proteins, many proteins remain difficult to express. Here, we decipher the factors 28 

influencing yields in Chinese hamster ovary (CHO) cells as they produce 2165 different proteins from the 29 

human secretome. We demonstrate that variation within our panel of proteins cannot be explained by 30 

transgene mRNA abundance. Analyzing the expression of the 2165 human proteins with machine learning, we 31 

find that protein features account for only 15% of the variability in recombinant protein yield. Meanwhile, 32 

transcriptomic signatures account for 75% of the variability across 95 representative samples. In particular, we 33 

observe divergent signatures regarding ER stress and metabolism among the panel of cultures expressing 34 

different recombinant proteins. Thus, our study unravels the factors underlying the variation on recombinant 35 

protein production in CHO and highlights transcriptomics signatures that could guide the rational design of 36 

CHO cell systems tailored to specific proteins. 37 

Introduction 38 

Roughly a third of the human protein coding genome encodes secreted and membrane proteins that 39 

mediate virtually all interactions of a cell with its environment 1, and whose enzymatic activity regulates a 40 

diverse range of vital organismal functions. The human secretome project (HSP) 2,3 has comprehensively 41 

characterized this important subset of the human proteome as a resource for drug discovery and development. 42 

The fundamental roles in signaling and organismal homeostasis make these secreted proteins appealing 43 

candidates for the biopharmaceutical industry.  44 

To recombinantly produce many biopharmaceuticals, Chinese hamster ovary (CHO) cells are the 45 

preferred mammalian expression system because of their scalability and compliance with human post-46 

translational modifications (PTMs) 4,5. To systematically measure the potential of CHO cells to produce these 47 

pharmaceutical targets, an effort to express the entire human secretome recombinantly in CHO was initiated 48 

as a companion project to the HSP. Efforts were made to express 2189 secreted human proteins using the 49 
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Icosagen QMCF CHO cell line (Icosagen Cell Factory OÜ), which allows for episomal extended transient 50 

protein expression. Almost 1,300 proteins have been successfully produced and purified in the cell line using 51 

the HSP standardized high throughput pipeline 6. We observe that the amounts of protein produced are highly 52 

variable; only 59% of the human secretome could be successfully expressed in CHO above the quality 53 

threshold. Furthermore, among the proteins that passed quality checks, titers differed by several orders of 54 

magnitude depending on the protein (Fig. 1a). This prompted us to ask the key question: what factors account 55 

for the vast variation observed in recombinant protein production in CHO? Answers to this question are of 56 

great interest in the biopharmaceutical industry and researchers across fields who study mammalian proteins, 57 

providing guidance to the rational design of recombinant protein-producing CHO cell lines. 58 

To understand the determinants of protein titers, we analyzed the expression of 2165 CHO-produced 59 

secreted human proteins (filtered set from the 2189 HSP proteins, see Methods), and conducted RNA-Seq on 60 

a representative subset of 95 CHO cell cultures, each expressing a different recombinant protein, along with 61 

the non-producing Icosagen QMCF host cell line. Here we aim to quantify the relative contribution of three 62 

major factors that influence the production and secretion of recombinant proteins. First, we modeled the 63 

relationship between transgene mRNA levels and protein yield to quantify the variability explained by 64 

transgene transcript abundance. Second, we curated hundreds of protein features and applied machine 65 

learning to identify the most important protein attributes contributing to variation in productivity. Lastly, we used 66 

transcriptomic profiles to quantify the variability explained by host cell expression signatures. We further 67 

identify specific processes associated with ER stress and metabolism that are strongly associated with the 68 

ability of cells to produce recombinant protein. 69 

Results 70 

Recombinant protein expression in CHO varies extensively 71 

We analyzed the productivity of 2165 proteins from the HSP study and investigated the distribution of 72 

target products (Fig. 1a). Only 59% of the secretome could be successfully expressed by CHO cells above the 73 

quality threshold, determined by a combination of WB analysis, SDS-PAGE, and MS/MS at various time 74 
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points6. Furthermore, among the proteins that passed quality checks, titers differed by several orders of 75 

magnitude depending on the protein (Fig. 1a). To enable deeper characterization of the library of CHO cells 76 

producing the human secretome, we selected a subset of 95 cell cultures each expressing a unique 77 

recombinant protein. This included high (n=15), low (n=15), and failed producers (n=4), along with 61 78 

additional cultures wherein the produced protein varied in size and composition. We also included the wild-type 79 

(WT) Icosagen QMCF CHO-S host for comparison. This panel of 96 cell cultures were subjected to RNA-Seq, 80 

which quantified the mRNA abundance for the transgenes encoding the human secreted proteins 81 

(Supplementary Data 1), along with the endogenous CHO genes. The transgenes, as defined by their 82 

recombinant sequences, consistently take up ~3% of the entire transcriptome, making it one of the most highly 83 

expressed genes in most samples. 84 

 85 

 86 

Figure 1. Production of the human secretome in CHO. a) Cumulative distribution of target protein produced 87 

for the 2165 recombinant proteins expressed using the human secretome high-throughput production pipeline. 88 

Approximately 41% (red line) of the proteins failed to produce, while the amount of recovered protein for 89 

remaining cells varied between 0.44-5.38mg. b) Relationship between transgene abundance (TPM) and 90 

amount of secreted protein (µg). The CHO cell line was unable to produce any recoverable product for 4 of the 91 

selected recombinant proteins (blue), while cells with the top 15 highest and lowest yields are colored in red 92 

and green respectively. Cells expressing the remaining proteins are shown in gray. 93 
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Variation in recombinant protein yield cannot be explained by transgene mRNA abundance 94 

Some studies report that transgene mRNA levels can be limiting for secreted protein titers 7,8. To 95 

evaluate if the variation in protein production in our panel of cells can be explained by transgene mRNA levels, 96 

we modeled the relationship between transgene levels and protein yield using linear regression. Across the 95 97 

RNA-sequenced recombinant protein expressing cell cultures, we found that transgene mRNA levels explained 98 

less than 1% of the variance in protein titer (Fig. 1b). This correlation pales in comparison to other studies 99 

which report numbers closer to 40% for endogenous genes in mammalian cells across various conditions 9–12, 100 

likely due to the high mRNA expression achieved in the QMCF system. We conclude that adequate transgene 101 

mRNA is produced in these cells, and mRNA abundance is likely not the limiting factor. These results suggest 102 

an alternative bottleneck in the production of difficult to express proteins within the HSP panel of proteins. 103 

A comprehensive set of 218 features describing the HSP proteins 104 

Since transgene mRNA levels do not appear to limit recombinant protein production in our system, we 105 

wondered how protein-specific features contribute to the variability in protein yield. To test this we curated a 106 

comprehensive set of 218 protein features as potential predictors of abundance of the 2165 HSP proteins. 107 

These features were classified into three main categories: i) experimental abundance, ii) sequence features, 108 

and iii) biophysical features (Table 1). Experimental abundance features measure the expression of the protein 109 

in other systems including various human tissues, other species, and the expression of the endogenous 110 

protein in CHO. Sequence features encompass protein attributes linked to the nucleotide and amino acid 111 

sequence of the protein such as molecular weight (MW), amino acid composition (AAC), and PTMs. Lastly, 112 

biophysical features cover metrics related to protein stability, solubility, secondary structure, etc. A detailed 113 

description of all features can be found in Supplementary Data 2. The influence of these protein features on 114 

protein yield was investigated using correlation and machine learning methods.  115 

 116 

Table 1. Protein features and their sources 117 

Feature Type Feature Group # Features Description 
Source/Software 

Packages 
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Experimental 
abundance 

Production in mouse 18 

Protein and mRNA 
copy numbers, half-

lives, transcription rates 
and translation rate 
constants in mouse 

fibroblasts 

10.1038/nature10098 

Production in yeast 1 

Production yield of 
fusion proteins with 
fractions of human 
secretome in yeast. 

10.1093/bioinformatics/
btx207 

Human tissue 
expression 

17 
Secretome expression 

in various human 
tissues 

GTEx 

Human tissue protein 
level 

19 
Protein level across 

different human tissues 
HPA 

Endogenous 
expression of CHO 

ortholog 
6 

Endogenous 
expression of CHO 

ortholog under various 
conditions 

this study 

10.1038/srep40388 

Sequence features 

Molecular weight 1 
Molecular weight of 

protein 
this study 

Post-translational 
modifications 

29 

Number of post-
translational 
modifications 

normalized with respect 
to sequence length 

10.1371/journal.pone.0
063284 
iPTMnet 

ScanPRosite 

AA composition 20 
Amino acid composition 

(AAC) 

this study 
AA composition 

correlation with CHO 
22 

Correlation of AAC with 
AAC in native CHO 

cells 

AA class composition 30 
Global percentage of 
various AA classes 

Peptides 
protr 

AA class transition 21 
Percent frequency of 
transitions between 
pairs of AA classes 

protr 

RNA secondary 
structure 

3 

RNA minimum free 
energy (MFE), 

normalized ensemble 
free energy (EFE), and 
MFE normalized with 
respect to sequence 

length 

RNAfold 

Biophysical features Stability 4 
Stability, instability, and 

aliphatic indices 

Peptides 
ProtParam 
ProTstab  
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Solubility 7 

Isoelectric point, net 
charge, percent 

solubility, and grand 
average of 

hydrophobicity 
(GRAVY) 

Peptides 
ProtParam 
Protein-Sol 

PPI potential 1 
Potential protein protein 

interaction index. 
Peptides 

Secondary structure 11 
3- and 8-category 

predictions of protein 
secondary structure 

Scratch 

Relative solvent 
accessibility 

8 

Solvent-accessible 
fraction, percent 
hydrophobic and 

hydrophilic solvent-
accessible residues, 
mean accessibility 

score, and GRAVY of 
inner and outer 

residues 

Scratch 

 118 

MW, AAC, and N-linked glycosylation have the greatest effect on protein titers 119 

The importance of individual protein features was quantified using Spearman correlation (Table 2). 120 

Using the subset of proteins that passed quality control and produced at detectable levels, we found that MW 121 

had the strongest correlation (R=0.26) with protein yield (µg). This unexpectedly suggests that higher 122 

molecular weight proteins were easier to produce. To understand this further, we binned the proteins by MW 123 

and observed that the significant correlation only holds true for low MW proteins (Supplementary Fig. 1-2). A 124 

significant drop in correlation was observed once the protein surpassed 2500-3500 Da, suggesting a sort of 125 

size threshold below which protein size becomes difficult to produce efficiently. We also observed a significant 126 

correlation between AAC of cysteine and protein yield (R=-0.23). Cysteines are involved in the formation of 127 

molecular architecture-mediating disulfide bonds, which also showed a similar relationship with protein yield 128 

(R=-0.14). This negative relationship suggests that recombinant proteins containing a high proportion of 129 

cysteines and disulfide bridges tend to produce less efficiently. 130 

 131 

Table 2 Correlation between protein features and protein yield (µg) 132 
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Feature Group Feature Correlation with protein yield (µg) 

Molecular weight MW (Da) 0.256*** 

AA composition AA. comp C -0.225*** 

AA composition correlation with 
CHO 

AA. comp correlation with native CHO 0.198*** 

AA. comp correlation with essential CHO 0.166*** 

AA class composition AA. comp med volume 0.139*** 

Post-translational modifications N-linked glycosylation 0.159*** 

Disulfide bonds -0.140*** 

Secondary structure Coil -0.189** 

Relative solvent accessibility Mean accessibility score -0.199*** 

Percent hydrophobic solvent-inaccessible 
residues 

0.188** 

Percent hydrophobic solvent-accessible 
residues 

-0.144** 

Stability & Solubility Net charge -0.169*** 

Grand average of hydropathicity 0.166*** 

Isoelectric point -0.138*** 

Instability index -0.130*** 

List of selected protein features amongst predictors with the strongest Spearman correlation coefficient with 133 

protein yield.  Significance values were adjusted using false discovery rate (FDR) method to correct for multiple 134 

testing: *P ≤ 0.01, **P ≤ 0.001, ***P ≤ 0.0001. 135 

 136 

 To further understand the complex relationship between protein features and yield, we generated 137 

descriptive regression and classification models of recombinant protein production in CHO using machine 138 
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learning (ML). Regression algorithms using the subset of quantifiable proteins that passed quality control 139 

provides insight into features hindering lowly expressed proteins. On the other hand, classification models 140 

using the pass/fail status of proteins can elucidate features preventing the production of proteins. Protein 141 

features were filtered and preprocessed before serving as predictors in both regression and classification 142 

pipelines, each of which produced 8 unique models (see Materials and Methods). Predictor variable (i.e. 143 

protein feature) importance for each model was ranked, and the consensus among the top 10 predictors for 144 

each model was evaluated (Fig. 2a-b). All 8 regression models ranked MW and AAC of cysteine amongst the 145 

top 10 most important features affecting protein yield. This supports the correlation analysis which identified 146 

these same two features as having the strongest correlation with protein abundance. Furthermore, the best 147 

performing regression model ranked these predictors as the most important features affecting protein yield 148 

(Fig. 2c). Our classification models using the pass/fail status of proteins showed increased consensus among 149 

important protein features. Among the universally consented features were N-linked glycans, which are critical 150 

for folding and quality control of glycoproteins, specifically through the calnexin/calreticulin cycle 13,14. When we 151 

set the failed samples to zero titer and performed a correlation analysis, we found a significant positive 152 

correlation between N-linked glycosylation and yield (R=0.26) (Supplementary Table 1), indicating that proteins 153 

with increased N-linked glycosylation tend to express better. 154 

Protein features account for ~15% of the variability in recombinant protein yield 155 

Protein features, in particular sequence features, clearly affect CHO’s ability to successfully produce 156 

recombinant protein and may help inform recombinant protein candidate selection or design for future 157 

production runs. To quantify the variability in protein yield that can be explained by protein features, we 158 

sequentially added the ranked features of the best performing regression model to a linear model fit and 159 

calculated the fraction of variance explained by the model (Fig. 2d). The explained variance peaks at 160 

approximately 15% when 32 protein features are included. While significantly greater than the variability 161 

explained by transgene mRNA abundance, protein features only account for a fraction of the variability in 162 

protein titers. Together these results suggest that protein features are not the most important factor limiting 163 

recombinant protein production in CHO. 164 
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 165 

 166 

 167 

Figure 2. Protein-specific features affect recombinant protein yield. a-b) Compilation of the top 10 most 168 

important features identified in the 8 regression (a) and 8 classification (b) models. A consensus of 8 indicates 169 

that the feature was identified as an important feature in all 8 models. Regression models showed lower 170 

consensus highlighting a total of 32 features, only 2 of which showed up in the top 10 features of all 8 models 171 

(consensus=8). However, the classification models showed higher consensus highlighting a total of 15 172 

features, wherein a third (5) of them have been deemed highly important in all 8 models (consensus=8). c) Bar 173 

graph showing the most influential protein features identified in our best performing regression model. Variable 174 

importance measures have been scaled to have a maximum value of 100, and their directional effect on yield 175 

has been inferred and colored based on the feature correlation with protein titer. d) Variability in protein titers 176 

explained by protein features was determined by sequentially adding protein features to a linear regression 177 

model and calculating the percent variability explained by the set of features. AA comp: amino acid 178 
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composition; MW: molecular weight. A detailed description of each protein feature can be found in 179 

Supplementary Data 2. 180 

Transcriptomic signatures can account for the majority of variation in protein titers 181 

Targeting protein features to enhance titers is typically undesirable as the features can be integral to 182 

protein function. We therefore investigated how transcriptomic determinants in the host cell impact protein 183 

yield. Principal component analysis of the 96 RNA-Seq samples (Supplementary Data 3) clearly shows that the 184 

non-producing cells, including WT, are transcriptional outliers compared to the cells producing recombinant 185 

protein (Fig. 3a). The first principal component (PC1) accounts for approximately 19% of transcriptome 186 

variability, and separates successfully producing cells from those that failed to produce any recombinant 187 

protein. LOC100754005, one of the top 5 influential genes with a negative loading on PC1, encodes an 188 

ortholog of the PRPF8 gene (Pre-mRNA-Processing-Splicing Factor 8) which serves as a  component of the 189 

spliceosome critical for pre-mRNA processing. We find that higher expression of this gene differentiates the 190 

productive cell lines from the non-producing outliers. Interestingly, previous work comparing the proteome of 191 

various CHO host cells revealed an up-regulation of PRPF8 in the high producing cell lines and alluded to its 192 

contribution to the high production of biopharmaceuticals in CHO 15. 193 

 194 

Figure 3. Non-producing cell lines are transcriptional outliers. a) Principal component analysis (PCA) of 195 

transcriptomics data. Top 5 positive and negative contributing genes to the first principal component (PC1) 196 

shown in light gray. Dashed red line shows a clear division between the cells capable of producing 197 
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recombinant proteins (red, green, and gray) and cells that failed to produce any detectable protein (blue). b) 198 

Results from a gene set enrichment analysis (GSEA) performed between the failed producers and the cells 199 

that successfully produced protein. Terms with a positive normalized enrichment score (NES) are enriched by 200 

genes overexpressed in the non-producers, while terms with a negative NES are enriched by genes 201 

overexpressed in the producers.  202 

To gain additional insights into biological pathways and processes characteristic of the non-producers, 203 

we conducted Gene Set Enrichment Analysis (GSEA) 16,17 between the failed producers and the cells that 204 

successfully produced protein (Fig. 3b). Unsurprisingly, we saw signs of cell stress (pink terms) in both groups, 205 

likely due to the burden of overexpressing foreign protein. Additionally, we found that the failed producers 206 

upregulated genes involved in translation (green terms) and oxidative phosphorylation, and showed signs of 207 

amino acid deficiency (teal terms). We also observed increased activity in the early stages of protein secretion 208 

(i.e targeting to the ER) in the failed producers, and depletion in later portions of the secretory pathway (i.e. 209 

Golgi subcompartments, vesicle membranes, and secretory granules) compared to the producers (orange 210 

terms). Furthermore, the successful producers show increased transmembrane transport (yellow terms), 211 

potentially alleviating the burden of amino acid deficiency. 212 

To quantify the variability in protein yield explained by transcriptomic cell signatures, we conducted 213 

multiple linear regression on the principal component loadings. Using the first three principal components, 214 

which account for 44% total variation of the transcriptome, we found that host cell gene expression signatures 215 

could account for 75% of the variability seen in protein yield. Even though our panel of cells come from a single 216 

clonal cell line, the expression of different transgenes is clearly impacting the cells in a protein-specific manner. 217 

Cells respond differently to ER Stress 218 

Our GSEA analysis alluded to significant differences in secretory pathway activity. To better understand 219 

the protein-specific secretory pathway signatures within our panel of cells, we calculated activity scores (see 220 

Materials and Methods) for 13 secretory pathway functions (Supplementary Data 6). Activity scores for the 95 221 

recombinant protein expressing CHO cells were normalized to express the change in pathway activity with 222 

respect to the WT host cell (Fig. 5a). 223 
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 ER calcium homeostasis was the most highly increased function across recombinant protein 224 

expressing cells regardless of productivity, suggesting that overexpression of heterologous proteins in CHO 225 

triggers a general imbalance in ER calcium homeostasis. Maintaining proper Ca2+ levels within the ER is vital 226 

for virtually all ER-supported functions, and disruption of these levels activates ER stress and UPR18. In fact, 227 

an in-depth analysis of cellular response to stress (Supplementary Results) showed activation of many ER 228 

stress response genes among the panel of cells. In particular, results show a depletion in all three branches of 229 

UPR signaling and signs of increased ubiquitin-mediated proteasomal degradation (ER-associated 230 

degradation; ERAD) in the failed producers. 231 

Protein folding in particular is a common bottleneck in recombinant protein production, and the 232 

accumulation of improperly folded proteins can also trigger ER stress. However, the upregulation of protein 233 

folding genes is associated with greater protein production 19–22. In line with these findings, we observe a mild 234 

yet significant positive correlation between protein folding activity and protein yield (r=0.21, pval=0.05, 235 

Supplementary Data 12). Furthermore, the stress analysis (Supplementary Results) identified several genes 236 

involved in disulfide bond formation and protein folding including HYOU1 (hypoxia up-regulated 1), ERO1A 237 

(endoplasmic reticulum oxidoreductase 1 alpha), and PDIA3 (protein disulfide isomerase family A member 3) 238 

upregulated alongside the stress response in the successfully producing cells. Altogether, these results 239 

suggest that the productive cells respond to ER stress better than the failed producers. 240 

 241 
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 242 

Figure 4. Secretory pathway cell signatures. a) Clustered heatmap of the normalized change in secretory 243 

pathway activity compared to WT for each of the 95 recombinant protein expressing cells.  Highlighted here 244 

are 3 clusters that show distinct secretory pathway footprints. Cells are annotated according to the amount of 245 

protein they produce: no protein (blue), highest yield (red), and lowest yield (green). Raw scores for WT are 246 

shown to the right. b) Lollipop plot showing the significant correlations between secretory pathway genes and 247 

protein abundance amongst the cells in cluster 3. 248 

N-linked glycosylation and ERAD are strong determinants of protein yield 249 

Clustering the 95 recombinant protein expressing cells based on secretory pathway activity on 250 

transcriptional level revealed 4 distinct groups (Fig. 4a). One cluster consists of a single failed producer 251 

(CCL20) that shows dramatic decreases in activity across all secretory pathway functions, while the other 3 252 
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clusters show unique secretory pathway footprints. Cluster 1 shows little to no change in the majority of 253 

secretory functions, cluster 2 is characterized by a general increase in activity across subsystems, and cluster 254 

3 is characterized by a general decrease in subsystem activity. Similar to the single non-producing outlier 255 

which showed a dramatic decrease in secretory pathway activity, the remaining 3 non-producing cell lines also 256 

show decreased secretory pathway activity and belong to cluster 3. The cells in each cluster show a range of 257 

productivity, suggesting these secretory pathway footprints do not define a cell’s ability to successfully produce 258 

and secrete recombinant protein. Of particular interest was cluster 3, which showed low activity across all 259 

secretory functions. Given that some of the highest producers fall within this cluster, overall high secretory 260 

pathway activity is not required for high protein yield. However, when calculating pathway activity scores we 261 

lose gene-specific granularity. Therefore we wondered if there are sets of genes that drive the high protein 262 

production seen in certain cells of cluster 3. 263 

To understand which genes drive high production of recombinant protein in cluster 3, we calculated 264 

correlations between individual secretory pathway genes and protein abundance for the cells of the cluster 265 

(Supplementary Data 7). We identified 43 secretory machinery genes that showed significant correlation 266 

(|r|>=0.6; false discovery rate (FDR)<= 0.1) with protein abundance (Fig. 4b). One set of positively correlated 267 

genes was particularly interesting: Alg12 (Alpha 1,6 Mannosyltransferse), Rpn1 (Ribophorin 1), Rpn2 268 

(Ribophorin 2), and Ddost (dolichyl-diphosphooligosaccharide-protein). While these genes belong to different 269 

subsystems, dolichol pathway and ER glycosylation, they are involved in the same integral process of N-linked 270 

glycosylation. Alg12 encodes a glycotransferase involved in the assembly of the dolichol-PP-oligosaccharide 271 

precursor required for N-linked glycosylation. Rpn and Ddost encode proteins of the oligosaccharide 272 

transferase complex (OST complex), which catalyzes the first step of N-linked glycosylation – the transfer of 273 

the pre-assembled N-glycan from the dolichol lipid carrier to the client protein. Given the importance of N-274 

linked glycosylation in protein folding and quality control within the ER, it is reasonable to believe that genes 275 

involved in this step are critical for efficient protein secretion.  276 

Only a single gene, Derl2 (Derlin 2), was negatively correlated with protein yield. The derlin genes 277 

encode components of ERAD machinery, where they participate in the retro-translocation of unfolded and 278 

misfolded proteins from the ER to the cytosol for proteasomal degradation 23,24. Interestingly, derlins also 279 
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function in ER-stress induced pre-emptive quality control (ERpQC)25,26. During ER stress, Derlin is recruited to 280 

the translocon and signal recognition particle receptors and participates in the selective attenuation of 281 

translocation of newly synthesized proteins into the ER, rerouting them to the cytosol for proteasomal 282 

degradation. The downregulation of this ERpQC mechanism allows proteins to enter the ER and interact with 283 

protein folding chaperones, increasing the chances of protein production and secretion. We used linear 284 

regression to quantify how much of cluster 3’s variability in protein abundance could be attributed to the 5 285 

aforementioned genes: Alg12, Rpn1, Rpn2, Ddost, and Derl2. Due to overlapping biological functions, the 286 

expression of Rpn1, Rpn2, Ddost, and Alg12 are highly correlated, therefore to avoid multicollinearity we only 287 

included the expression of Derl2 and Alg12. The resulting model could explain an astonishing 87% of cluster 288 

3’s variability in protein yield. These results suggest that Alg12 and Derl2 may be good engineering targets, 289 

especially for cell lines with overall low secretory pathway activity. 290 

Failed producers are metabolically less active 291 

 Recombinant protein production is energy intensive with increased raw material demands, thus 292 

inducing significant alterations in host cell metabolism. Consequently, many cell line engineering efforts have 293 

targeted metabolism to enhance recombinant protein production 27. To identify metabolic variation within our 294 

panel of cells, we implemented the CellFie tool 28, which quantifies metabolic task activity from omics data 295 

(Supplementary Data 8). We identified 79 core metabolic tasks active in all cells, 27 tasks inactive across all 296 

cells, and 79 tasks with differential activation (Fig. 5a). Many differentially active tasks are involved in amino 297 

acid and carbohydrate metabolism. When looking at the 79 tasks showing differential activation across our 298 

panel of CHO cells, the non-producers showed on average 33% active metabolic tasks, while the highest and 299 

lowest producers showed 66% and 58%, respectively (Fig. 5b), suggesting the non-producers are 300 

metabolically less active compared to the producing cells. 301 
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 302 

Figure 5. Metabolic cell signatures. a) Proportion of tasks that are active, inactive, and differentially active 303 

among the 95 recombinant protein expressing cells. Also displayed are the proportions of tasks falling within 304 

each subsystem. b) Boxplot showing the percentage of active metabolic tasks among the different productivity 305 

groups. c) Treemap of CellFie metabolic tasks organized into systems and subsystems. Each square 306 

represents a single metabolic task which is colored according to significant correlation with protein yield among 307 

the high and low producing cell lines. 308 

Increased fatty acid metabolism in the high producers 309 

To further understand the metabolic differences, we used the quantitative form of metabolic scores to 310 

characterize the relationship between individual tasks and protein yield. Several metabolic tasks showed 311 

significant correlations (FDR<=0.1) with protein abundance among the subset of high and low producers (Fig. 312 

5b; Supplementary Data 9). The majority of tasks show positive correlation with protein abundance, further 313 

suggesting that higher metabolic activity facilitates recombinant protein production. We found that the 314 

metabolic tasks with the largest and most significant correlation with protein yield among the subset of high 315 

and low producers are involved in fatty acid (FA) metabolism. In particular, we observe a strong positive 316 

correlation with synthesis of several FAs: palmitoleate synthesis (R=0.62), palmitate synthesis (R=0.61), 317 

synthesis of palmitoyl-CoA (R=0.59), arachidonate synthesis(R=0.59), and synthesis of malonyl-coa (R=0.51). 318 

FAs have a diverse range of important cellular functions including critical structural components of cell 319 

membranes. Cells modulate the FA composition of the cell membrane under challenging conditions to regulate 320 
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membrane fluidity29. Increased activity in FA metabolism may be a signature characteristic of high recombinant 321 

protein production, given its importance in the size and function of the endomembrane system and the 322 

secretory pathway in general. Additionally, FAs can store and supply energy to cells. Our results revealed a 323 

positive correlation between the stress response energy-producing FA oxidation gene ACAA2 (acetyl-CoA 324 

acyltransferase 2) and protein yield (Supplementary Results, Supplementary Fig. 3b). In combination with the 325 

observed overall increase in FA metabolism, these results could suggest that the high producing cells are 326 

using FA metabolism to provide a beneficial pool of energy to meet the demands of high recombinant protein 327 

production.  328 

Cysteine depletion and oxidative stress in the poor producers 329 

 We found only two tasks, conversion of aspartate to beta-alanine and synthesis of taurine from 330 

cysteine, showed a negative relationship with protein yield (Fig. 5c). Our protein features analysis showed that 331 

our host system has difficulty producing proteins with high cysteine composition. The depletion of available 332 

cysteine from the synthesis of taurine could be further burdening the production of proteins. Furthermore, not 333 

only does this task deplete the availability of free cysteine, but there is evidence that taurine acts as an 334 

antioxidant defense by counteracting lipid peroxidation 30,31 which could be an indicator of increased oxidative 335 

damage. 336 

The prevalence of oxidative stress within our panel of cells was further confirmed by our in depth 337 

analysis of cellular response to stress (Supplementary Results). Firstly, we noticed that the successfully 338 

producing cells show a more profound response to oxidative stress, upregulating almost twice as many 339 

oxidative stress response genes compared to the non-producing cells. Second, we observed that three of the 340 

genes depleted in the failed producers encode proteins belonging to the solute carrier (SLC) superfamily, 341 

supporting the negative enrichment in SLC transmembrane transport observed in the preliminary GSEA 342 

analysis. SLC7A11 (solute carrier family 7 member 11) shows the greatest depletion among oxidative stress 343 

genes in the failed cells (LFC=-1.85, FDR=5.19E-07) and is involved in the specific transport of cysteine and 344 

glutamate. The ability to mount an adequate response against oxidative stress, including enhancing the 345 

transport of cysteine, may facilitate recombinant protein production. 346 
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Discussion 347 

The continual discovery of new biologics is accompanied by pressure to establish novel methods and 348 

technologies for enhancing quality and productivity. CHO cells dominate biotherapeutic protein production and 349 

are extensively used in mammalian cell line engineering research due to their human-compatible PTMs and 350 

adaptability to suspension-growth culture in chemically-defined media. However, many proteins struggle to 351 

express well or at all in this non-native environment. The Human Secretome Project demonstrated that even 352 

standard human proteins can be difficult to produce. This large data set of heterologous protein expression in 353 

the most popular biopharmaceutical expression host represents an attractive resource that can be leveraged to 354 

understand why CHO cells produce some proteins better than others. In particular, this study was designed to 355 

illuminate and quantify the factors contributing to this variation in productivity to help guide the rational design 356 

of protein-specific CHO cell systems. Here we found that transgene mRNA levels were expressed at 357 

consistently high levels and cannot explain the variability in protein yield (<1%; Fig. 1b), allowing us to identify 358 

other factors as the main drivers in protein yield. 359 

Using statistical and ML methods, we systematically quantified how 218 protein features affect the 360 

efficacy of protein production in CHO. Both correlation and ML analyses implicate MW and cysteine AAC as 361 

important protein features influencing efficient production in CHO (Table 2; Fig. 2). We observed a MW 362 

threshold ~2500-3500 Da below which proteins become difficult to produce efficiently (Supplementary Fig. 2). 363 

Studies have shown that protein size is the primary factor in determining folding rates and protein stability32. 364 

Furthermore, small proteins are more sensitive to changes in stability than larger proteins33. Perhaps the small 365 

proteins lack the molecular material to form sufficient stabilizing bonds resulting in poor yield. Alternatively, this 366 

observation could be due to protein detection methods where low MW proteins are vulnerable to poor retention 367 

and resolution. We also observed a negative relationship between cysteine composition and protein yield. 368 

Cysteine residues are important to the conformational stability of a protein through the formation of disulfide 369 

bridges which occur upon oxidation of the thiol groups between two spatially proximal cysteines. However the 370 

same property that allows this stabilizing bond formation to occur also imparts intrinsic vulnerability to oxidative 371 

stress. The highly reactive nucleophilic thiol group can be reversibly or irreversibly modified and lead to 372 
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dysfunctional protein 34. Given we found strong transcriptional signatures of oxidative stress among the panel 373 

of cells (Supplementary Fig. 3a), high cysteine composition could be introducing destabilizing non-native 374 

disulfide bonds. In fact, studies attempting to stabilize proteins by introducing artificial disulfide bridges have 375 

found that it can lead to overall protein destabilization35–39. Another possible explanation is that the cysteines 376 

are forming intermolecular bonds leading to protein aggregation, since aberrant protein aggregation can occur 377 

from oxidation-induced intermolecular disulfide bond formation 40,41. Alternatively, the production of proteins 378 

with high cysteine composition could be depleting cysteine from the system. Indeed, cysteine depletion can 379 

induce oxidative stress, ER stress, reduced viability, and lower titers in CHO bioproduction42,43. Lastly, we 380 

observed N-linked glycosylation as an important protein feature enhancing recombinant protein production  381 

(Table 2; Fig. 2). Heterologous protein production can be enhanced with added N-linked glycosylation sites 44–382 

46 by stabilizing the protein and enhancing quality control checkpoints. While protein features seem like a 383 

promising feature that could improve protein production, overall we found the protein features tested only 384 

account for a fraction of the observed variability in protein yield (~15%).  385 

Ultimately, the majority of variability (75%) in protein production was explained by cell signatures in the 386 

host transcriptome. Further transcriptomic analyses of cell stress, protein secretion, and metabolism suggest 387 

that recombinant proteins impose unique burdens on the cell. It is unsurprising that overexpression of foreign 388 

proteins induces cell stress, and in particular ER Stress. Many studies have implicated the secretory pathway, 389 

specifically the ER, as a major bottleneck in recombinant protein production 47–49. Our results suggest that the 390 

cells that can successfully produce recombinant proteins may also better mitigate ER stress by triggering UPR 391 

signaling and increasing protein folding machinery; meanwhile, failed producers upregulate protein clearance 392 

strategies, e.g., ERAD and ERpQC. We also observed a decrease in metabolic activity in poor producers (Fig. 393 

5), suggesting these cells cannot keep up with the increased energy and raw material demands of recombinant 394 

protein production and secretion. Other studies have reported similar metabolic restructuring when comparing 395 

cells producing secreted vs. intracellular proteins, implicating increased energy demand of the secretory 396 

pathway during recombinant protein production50. The strongest metabolic differences we observed involve the 397 

metabolism of FAs, which serve as integral constituents of the secretory pathway endomembrane system and 398 

as a cell energy source. Thus, lipid metabolism might enhance recombinant protein production by allowing 399 
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cells to maintain lipid homeostasis in a state of dynamic lipid turnover, or provide a beneficial pool of energy to 400 

meet the demands of high recombinant protein production. Lastly, results implicate the metabolic depletion of 401 

cysteine as negatively affecting the efficient production of protein in CHO. This corresponds nicely with our 402 

observation of high cysteine composition in the poor producers. Cysteine deprivation can trigger amino acid 403 

deprivation pathways51 and induce mitochondrial dysfunction leading to reduced oxidative phosphorylation43, 404 

both of which we observed here. Furthermore the production of the antioxidant molecule taurine from cysteine 405 

could be a result of increased oxidative stress in the poor producers. 406 

In conclusion, results here have important implications for mammalian bioproduction. The factors 407 

underlying the variability in protein production in the most popular expression host identified here can be 408 

leveraged to improve recombinant protein production in CHO52 and have considerable impact on the vast 409 

biologics industry.  Furthermore, this study has important implications across a range of other fields as it 410 

identifies essential processes regulating protein secretion, thus impacting cell-cell interactions associated with 411 

normal and pathological processes in the human body such as development, immunology, and tissue function.  412 

Methods 413 

Human secretome production data 414 

Protein titers for the human secretome transiently expressed in the Icosagen QMCF cell line were taken 415 

from Tegel et al6. We removed samples whose status is “Ongoing”, as well as samples that passed QC (Status 416 

= “Pass”) yet were missing titer information. This left us with data for 2165 different proteins of the human 417 

secretome expressed in CHO. This cleaned up version of the data can be found in Supplementary Data 10. 418 

We note that as previously reported6, the titers were estimated upon purification, which could influence the 419 

results if different proteins purified differently. However, all purifications relied upon the same peptide tag, thus 420 

minimizing potential biases.  Here we measured single replicates for each protein.  Future studies 421 

incorporating alternative purification methods and increased replicates will further strengthen analyses into the 422 

factors affecting recombinant protein secretion in CHO. 423 
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Sequence processing and RNA-Seq quantification 424 

Sequence data for RNA-Seq were quality controlled using FastQC and summarized with multiQC 53. 425 

Trimmomatic 54 was used to trim low-quality bases and sequencing adapters from the reads with the following 426 

parameters: LIDINGWINDOW:5:10 LEADING:15 TRAILING:10 MINLEN:36 TOPHRED33. The CHO-K1 427 

reference genome 55 was extended to incorporate the transgene sequences so that the transcripts of the 428 

heterologous secretome can be quantified. Reads were then quasi-mapped to the extended CHO-K1 genome 429 

and quantified with Salmon 56 with default parameters. 430 

Quantifying effect of mRNA abundance on protein yield 431 

Transgene mRNA abundance was plotted against total protein yield (µg) on a log scale using ggplot2 57 432 

in R 58. A pseudo count of 1 was added to protein abundance to account for samples which failed to produce 433 

any detectable recombinant protein. Note the sample producing IL22 was removed due to issues quantifying 434 

the transgene mRNA abundance. A linear model was fit to the data, and model estimates displayed using the 435 

ggpmisc package 59. 436 

Protein features importance 437 

To fully characterize the properties of the human secretome dataset, we built upon the features from 438 

our pilot study 60 which reviewed the expression determinants of the human protein fragments used in the 439 

creation of the antibodies for the HPA project. The final compendium of curated features included 218 metrics 440 

generated from numerous resources (Supplementary Data 2). Individual predictor importance was evaluated 441 

using non-parametric Spearman rank correlation. Significance values were adjusted using FDR to correct for 442 

multiple testing. The machine learning pipelines were built using the caret package 61 in R. Note that the 443 

transgene mRNA level was excluded from this analysis to isolate the effect of the recombinant protein features. 444 

All features were pre-processed (normalization, removal of highly correlated variables and incomplete 445 

features). The regression pipeline generated 8 regression models: i) glmnet, ii) partial least squares, iii) 446 

averaged neural network, iv) support vector machines with radial basis function kernel, v) stochastic gradient 447 

boosting, vi) boosted generalized linear model, vii) random forest, and viii) cubist. Similarly, our classification 448 
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pipeline implemented the same first 7 algorithms (i-vii), however the cubist algorithm is unique to regression, 449 

so a naive Bayes model was used for the 8th and final classification model.  450 

As these were generated as descriptive and not predictive models of protein features, the models 451 

tended to overfit the data. To avoid reporting an inflated metric of explained variance, we used a standard 452 

linear regression fit to calculate the variability explained by protein features. We took the rank-ordered features 453 

of the best performing regression model, and sequentially added the features to the linear model fit. 454 

Transcriptomic determinants of protein secretion 455 

Low count genes were filtered based on GTEx’s scheme: expression thresholds of >0.1 TPM in at least 456 

20% of samples and ≥6 reads in at least 20% of samples. Expression values were then log transformed to 457 

reduce heteroscedasticity concerns in downstream analyses. To facilitate functional annotation, an ortholog 458 

conversion table 62 was used to convert CHO genes to their human ortholog. Principal component analysis was 459 

conducted using the stats package included in R and visualized in a biplot using the factoextra package 63. 460 

GSEA was conducted using the clusterProfiler package 64 to determine the significantly up- and down-461 

regulated cellular processes associated with the first principal component. Annotations for the enrichment were 462 

obtained from GO, Reactome, and KEGG databases. A normalized enrichment score (NES) representing the 463 

GSEA statistic (Subramanian et al., 2005) was calculated to quantify the overall direction of regulation for each 464 

gene set along with an accompanying permutation p-value which has been adjusted to correct for multiple 465 

testing. 466 

We used multiple linear regression to quantify the overall variability in protein yield explained by 467 

transcriptomic cell signatures. To avoid the curse of dimensionality (more genes in the transcriptome than 468 

samples in our data set), we used loadings from the first 3 principal components, which account for 44% of 469 

transcriptome variation, as input to the model. 470 
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Secretory pathway signatures 471 

Boundaries of the secretory pathway were defined using Feizi’s 2017 reconstruction of the mammalian 472 

secretory pathway, which consists of 575 core secretory machinery genes divided into 13 subsystems65. To 473 

extract these secretory machinery genes from our CHO panel, the previously mentioned conversion table 62 474 

was used to map CHO genes to their human orthologs. Pathway activity scores were calculated for each of the 475 

13 subsystems using 2 simple equations: 476 

1. 𝐺𝑒𝑛𝑒 𝑆𝑐𝑜𝑟𝑒 = 5 ∗ 𝑙𝑜𝑔
1 + 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 477 

2. 𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
𝛴 𝑔𝑒𝑛𝑒 𝑠𝑐𝑜𝑟𝑒

# 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚
 478 

Equation 1 was adapted from thresholding methods implemented in genome-scale model analyses 28,66, and 479 

involves the preprocessing of the gene expression data using gene-specific thresholds. The threshold is 480 

defined by the gene’s mean expression across all samples in the dataset. The activity score is essentially the 481 

mean gene score for the subsystem. Activity scores for the 95 recombinant protein expressing CHO cells were 482 

normalized to express the change in pathway activity with respect to WT. The relationship between subsystem 483 

activity and protein yield were evaluated using non-parametric Spearman correlation. Hierarchical clustering 484 

and visualization of the activity scores was achieved using the pheatmap package 67 in R. The samples were 485 

clustered based on euclidean distance and complete linkage clustering. The relationship between stress 486 

response genes and protein yield within cluster 3 were evaluated using non-parametric Spearman correlation. 487 

Significance values were adjusted using FDR to correct for multiple testing. Significant correlations were 488 

visualized in a lollipop plot using ggplot2 57 in R. The stats package included in R was used to fit a linear model 489 

and describe the variance in protein yield explained by genes Derl2 and Alg12. 490 

Metabolic host response 491 

Expression data from the panel of 96 CHO cultures were subjected to metabolic analysis using CellFie 492 

28. CellFie was run using the MT_iCHOv1_final model with the following parameters: local minmaxmean 493 

threshold with upper and lower percentile values of 25 and 75 respectively. CellFie provides metabolic task 494 

activity in two forms: binary (active or inactive) and quantitative. The binary form of metabolic tasks was used 495 
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to determine the percent of active vs inactive tasks among the panel of CHO cells. The percent of differentially 496 

active tasks was visualized in a boxplot using ggplot2 57 in R. The quantitative form of metabolic task activity 497 

was used to calculate differential metabolic activity and correlations with protein yield. Significant differences in 498 

metabolic activity between the non producing cell lines and the successfully producing cell lines was performed 499 

using a Welch’s t-test on the log2 transformed quantitative activity scores. The relationship between task 500 

activity and total protein yield was evaluated using non-parametric Spearman correlation. Task activity that 501 

involved specific amino acids were uniquely normalized with respect to the amino acid composition of the 502 

protein being expressed in the given sample. Significance values were adjusted using FDRto correct for 503 

multiple testing. Significant correlations were visualized in a treemap using the ggtree package68 in R. 504 
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