

1 **Dual Impacts of a Glycan Shield on the Envelope Glycoprotein B of HSV-1:**
2 **Evasion from Human Antibodies In Vivo and Neurovirulence**
3

4 **Ayano Fukui^{1,2,6}, Yuhei Maruzuru^{1,2,3,6}, Shiho Ohno⁴, Moeka Nobe^{1,2}, Shuji
5 Iwata^{1,2}, Kosuke Takeshima^{1,2}, Naoto Koyanagi^{1,2,3}, Akihisa Kato^{1,2,3}, Shinobu
6 Kitazume⁵, Yoshiki Yamaguchi⁴, and Yasushi Kawaguchi^{1,2,3}**

7

8 ¹ Division of Molecular Virology, Department of Microbiology and Immunology, The
9 Institute of Medical Science, The University of Tokyo, Tokyo, Japan

10 ² Department of Infectious Disease Control, International Research Center for Infectious
11 Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan

12 ³ Research Center for Asian Infectious Diseases, The Institute of Medical Science,
13 The University of Tokyo, Tokyo, Japan

14 ⁴ Division of Structural Glycobiology, Institute of Molecular Biomembrane and
15 Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan

16 ⁵ Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima
17 Medical University, Fukushima, Japan

18

19 Running title: Dual roles of an HSV-1 glycan in viral pathogenesis

20

21 *Address correspondence to:

22 Dr. Yasushi Kawaguchi

23 Division of Molecular Virology

24 Department of Microbiology and Immunology

25 The Institute of Medical Science

26 The University of Tokyo

27 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

28 Phone: 81-3-6409-2070

29 Fax: 81-3-6409-2072

30 E-mail: ykawagu@ims.u-tokyo.ac.jp

31

32

33 ⁶ These authors contributed equally to this work.

34

35

ABSTRACT

36 Identification of the mechanisms of viral evasion from human antibodies is crucial both
37 for understanding viral pathogenesis and for designing effective vaccines. However, the
38 in vivo efficacy of the mechanisms of viral evasion from human antibodies has not been
39 well documented. Here we show in cell cultures that an N-glycan shield on the HSV-1
40 envelope glycoprotein B (gB) mediated evasion from neutralization and antibody-
41 dependent cellular cytotoxicity due to pooled γ -globulins derived from human blood. We
42 also demonstrated that the presence of human γ -globulins in mice and HSV-1 immunity
43 induced by viral infection in mice significantly reduced the replication of a mutant virus
44 lacking the glycosylation site in a peripheral organ but had little effect on the replication
45 of its repaired virus. These results suggest that the glycan shield on the HSV-1 envelope
46 gB mediated evasion from human antibodies in vivo and from HSV-1 immunity induced
47 by viral infection in vivo. Notably, we also found that the glycan shield on HSV-1 gB
48 was significant for HSV-1 neurovirulence and replication in the central nervous system
49 (CNS) of naïve mice. Thus, we have identified a critical glycan shield on HSV-1 gB that
50 has dual impacts, namely evasion from human antibodies in vivo and viral neurovirulence.

51

52

IMPORTANCE

53 HSV-1 establishes lifelong latent and recurrent infections in humans. To produce

54 recurrent infections that contribute to transmission of the virus to new human host(s), the

55 virus must be able to evade the antibodies persisting in latently infected individuals. Here

56 we show that an N-glycan shield on the envelope glycoprotein B of HSV-1 mediates

57 evasion from pooled γ -globulins derived from human blood both in cell cultures and mice.

58 Notably, the N-glycan shield was also significant for HSV-1 neurovirulence in naïve mice.

59 Considering the clinical features of HSV-1 infection, these results suggest that the glycan

60 shield not only facilitates recurrent HSV-1 infections in latently infected humans by

61 evading antibodies, but is also important for HSV-1 pathogenesis during the initial

62 infection.

63

64

INTRODUCTION

65 Herpes simplex viruses (HSV)-1 and HSV-2 cause a variety of human diseases, including
66 encephalitis; keratitis; neonatal disease; and mucocutaneous and skin diseases such as
67 herpes labialis, genital herpes, and herpetic whitlow (1-3). A striking feature of these
68 viruses is that they establish lifelong infections in humans, where, after the initial
69 infection, they become latent and frequently reactivate to cause lesions (1-3). To
70 accomplish these cycles, the viruses have evolved highly complex and sophisticated
71 strategies to evade host immune mechanisms. Notably, these viral strategies have
72 probably impeded the development of effective vaccines for HSV-1 and HSV-2
73 infections. Several decades of vaccine development have not produced a successful
74 vaccine (4, 5).

75 To clarify the significance of the mechanisms of immune evasion by viruses that
76 cause diseases in humans, the mechanisms should be investigated not only in vitro but
77 also in vivo; and research using available human samples should provide valuable
78 information on the effective viral mechanisms in humans. However, in previous studies,
79 human samples have generally been analyzed in vitro, and information from the in vivo
80 evaluations of human samples on viral evasion from the immune system has been limited.
81 To fill the gaps in our understanding of the effective mechanisms of viral immune evasion

82 in humans, in vivo investigations of the mechanisms of immune evasion that use human
83 samples are of crucial importance.

84 Although no effective vaccines for HSV-1 and HSV-2 have been developed thus
85 far, previous clinical trials for HSV vaccines have provided important clues indicating
86 that not only T-cell responses, but also antibody responses were important for controlling
87 HSV infections in humans (4, 5). Thus, a clinical trial of a subunit vaccine employing
88 HSV-2 envelope glycoprotein D (gD) showed 82% efficacy against the development of
89 HSV-1 genital disease but did not offer significant protection against HSV-2 genital
90 disease (6). Notably, antibody responses to HSV-2 gD correlated with protection against
91 HSV-1 but not HSV-2 infections, whereas CD4⁺ T-cell responses did not correlate with
92 protection against either HSV-1 or HSV-2 infection (7). In addition, a substudy of this
93 trial that used sera from a fraction of the vaccinated subjects showed that neutralizing
94 antibody titers against HSV-1 were significantly higher than the titers against HSV-2 (8).
95 These findings were in agreement with those from another clinical study in humans that
96 showed that the absence of HSV antibodies was associated with severe HSV infections
97 in humans (9).

98 The findings described in the previous paragraph suggesting that antibodies are
99 important for the control of HSV-1 infections led us to attempt to identify hitherto

100 unknown mechanisms of HSV-1 evasion from human antibodies. In this study, we
101 focused on the glycosylation of a major envelope glycoprotein of HSV-1, gB.
102 Glycosylation of a viral envelope glycoprotein sometimes acts as a glycan shield for
103 evading antibodies (10). The HSV-1 gB is a major target of antibody-mediated immunity
104 (11). HSV-1 gB, which is a class III fusion glycoprotein, plays an essential role in the
105 entry of the virus into a host cell, together with other HSV-1 envelope glycoproteins,
106 including gD and a complex of gH and gL (gH/gL) (12). Herein we investigated effects
107 of a series of N-linked glycans (N-glycans) on HSV-1 gB in the context of viral infection,
108 and identified an N-glycan that contributed to evasion from human antibodies not only in
109 vitro but also in vivo. Notably, the N-glycan on gB was also significant for HSV-1
110 replication in the central nervous system (CNS) of naïve mice as well as neurovirulence,
111 although it had no effect on viral replication in cell cultures.
112

113

RESULTS

114 **Generation of recombinant viruses harboring a mutation in each of the potential N-**

115 **glycosylation sites on HSV-1 gB by an improved genetic manipulation system for**

116 **HSV-1.** HSV-1 gB has 6 potential N-glycosylation sites at the following positions: Asn-

117 87, -141, -398, -430, -489, and -674 (Fig. 1). To investigate the significance of N-

118 glycosylation on HSV-1 gB in the context of viral infection, we used an improved HSV-

119 1 genetic manipulation system to construct a series of recombinant viruses and their

120 repaired viruses (S-Fig. 1). The recombinant viruses encoded mutant gBs (gB-N87Q, -

121 N141Q, -N398Q, -N430Q, -N489Q, and -N674Q), in which each of the potential N-

122 glycosylation sites was substituted with glutamine. In addition, we generated a pair of

123 control viruses, a recombinant virus, in which Asn-888 in the cytoplasmic domain of gB

124 was substituted with glutamine (gB-N888Q), and its repaired virus (gB-N888Q-repair)

125 (S-Fig. 1).

126 The two-step Red-mediated recombination system consists of the first

127 recombination for the insertion of a PCR-amplified selectable marker and the second

128 recombination for the excision of the inserted marker by a cleavage step that uses a rare-

129 cutting endonuclease I-SceI. This system is widely used for markerless modifications of

130 large DNA molecules such as herpesvirus genomes that are cloned into a bacterial
131 artificial chromosome (BAC) in *Escherichia coli* (13).

132 However, the second recombination step was not very efficient in our hands.

133 Therefore replica-plating, which is time-consuming and laborious, was needed to identify

134 any *E. coli* harboring a BAC clone with a desired mutation. We used an improved system

135 that was developed for this study that employed a negative selection marker, the *E. coli*

136 phenylalanyl-tRNA synthetase (ePheS*), which encodes a mutant of the α -subunit of *E.*

137 *coli* phenylalanyl-tRNA synthetase (ePheS) (14) in the presence of 4-chloro-

138 phenylalanine (4CP), in addition to cleavage by I-SceI for the second recombination step

139 (S-Fig. 2A). The improved system considerably increased the efficiency of the second

140 recombination step from 17.4% to 87%, and 17.4 to 94.7% and 8.7% to 87.0% in the

141 substitution of single amino acids, and in the deletion and insertion of a foreign gene,

142 respectively, compared with the original system (S-Table 1A). Recombinant viruses

143 carrying an alanine substitution of Thr-190 in the HSV-1 protein UL51 (S-Fig. 3A) that

144 were generated in the original and improved systems exhibited identical growth

145 properties (S-Fig. 3B) in Vero cells and produced identical neurovirulence in mice

146 following intracranial inoculation (S-Fig. 3C), suggesting that, compared with the

147 original system, the additional negative selection in the improved system did not affect
148 the genomic integrity of HSV-1 other than the desired mutations.

149 **Effects of mutations at each of the potential gB N-glycosylation sites on**
150 **electrophoretic mobility in the presence or absence of peptide-N-glycosidase F**
151 **(PNGase).** Vero cells infected with wild-type HSV-1(F), each of the gB mutant viruses,
152 or each of their repaired viruses were lysed, treated with or without PNGase, and analyzed
153 by immunoblotting. As shown in Fig. 2, all of the gB mutants, except the gB-N888Q
154 mutant, migrated faster than wild-type gB in denaturing gels. In contrast, the gB-N888Q
155 mutant and gB from cells infected with each of the repaired viruses migrated as slowly as
156 the wild-type gB in denaturing gels (Fig. 2). After treatment of the infected cell lysates
157 with PNGase, all of the gB mutants migrated in denaturing gels as slowly as the wild-
158 type gB (Fig. 2). All of the gB mutants were detected by immunoblotting at levels similar
159 to the level of wild-type gB (Fig. 2). These results indicate that gB was N-glycosylated at
160 each of the 6 potential N-linked glycosylation sites without affecting its accumulation in
161 HSV-1-infected cells.

162 **Effects of mutations at each of the gB N-glycosylation sites on the replication**
163 **of HSV-1 in cell cultures.** To investigate the effect of gB N-glycosylation on HSV-1
164 replication in cell cultures, Vero cells were infected with wild-type HSV-1(F), each of

165 the gB mutant viruses, or each of their repaired viruses at a multiplicity of infection (MOI)
166 of 5 or 0.01; and virus titers were assayed at 24 or 48 h postinfection. As shown in S-Fig.
167 4, progeny virus yields in cells infected with each of the gB mutant viruses were similar
168 to those in cells infected with wild-type HSV-1(F) or each of their repaired viruses. These
169 results suggest that N-glycosylation on gB did not affect HSV-1 replication in cell
170 cultures.

171 **Effects of mutations at each of the gB N-glycosylation sites on viral**
172 **susceptibility to neutralization by human antibodies.** An estimated 67% of the global
173 human population is infected with HSV-1 (15). Therefore, we decided to use pooled γ -
174 globulins from human blood that contain amounts of antibodies to HSV-1 sufficient for
175 our experiments (16). Indeed, we showed that gB antibodies in pooled human γ -globulins
176 at a concentration of 1.3 mg/mL could still be detected at a dilution of 1:1,024 (S-Fig. 5).
177 To investigate the effect of gB N-glycosylation on viral susceptibility to neutralization by
178 human antibodies, the sensitivity to neutralization of wild-type HSV-1(F) by pooled
179 human γ -globulins was compared to each of the recombinant gB mutant viruses. Among
180 the gB mutant viruses tested, gB-N141Q was only the gB mutant virus that was
181 significantly more susceptible to neutralization by pooled human γ -globulins at a
182 concentration of 0.041 mg/mL compared with wild-type HSV-1(F) (S-Fig. 6). Therefore,

183 we focused on N-glycosylation at gB Asn-141 and further characterized gB-N141Q in
184 detail.

185 At pooled human γ -globulin concentrations ranging from 0.010 to 0.041 mg/mL,
186 gB-N141Q was significantly more susceptible to neutralization by the human γ -globulins
187 than wild-type HSV-1(F) (Fig. 3A). Wild-type susceptibility was restored in the gB-
188 N141Q-repair virus (Fig. 3A). Antibodies to gB or gD in the human γ -globulins (0.082
189 mg/ml) were then depleted by treatment of the human γ -globulins with purified gB or gD
190 fused with Strep-tag at the C-terminus (gB-SE or gD-SE, respectively) (S-Fig. 7A and B).
191 The anti-gB antibody-depleted human γ -globulins could not detect gB ectopically
192 expressed by HEK293FT cells (S-Fig. 7C and D). As shown in Fig. 3B, the susceptibility
193 of gB-N141Q to neutralization by anti-gB antibody-depleted human γ -globulins (~0.4
194 mg/mL) was comparable to that of wild-type HSV-1(F) and gB-N141Q-repair. In contrast,
195 gB-N141Q was significantly more susceptible to neutralization by mock-depleted or anti-
196 gD antibody-depleted human γ -globulins than wild-type HSV-1(F) and gB-N141Q-repair
197 (Fig. 3B) as observed in Fig. 3A, showing its susceptibility to human γ -globulins without
198 depletion. These results suggest that the N-glycan on gB Asn-141 was required for
199 efficient HSV-1 evasion from neutralization by human antibodies that targeted gB in cell
200 cultures.

201 **Effects of the N-glycan on gB Asn-141 on human antibody-dependent**

202 **cellular cytotoxicity (ADCC).** It has been reported that gB on the surface of infected

203 cells mediates ADCC (17); therefore, we examined the effect of the N-glycan on gB Asn-

204 141 on ADCC induced by human γ -globulins. Vero cells infected with wild-type HSV-

205 1(F), gB-N141Q, or gB-N141Q-repair at an MOI of 1 for 24 h were subjected to an

206 activating Fc γ RIIIA receptor ADCC assay in the presence or absence of human γ -

207 globulins. As shown in Fig. 4A, human γ -globulins at concentrations 0.33 and 1.0

208 1mg/mL induced significantly higher Fc γ RIIIA activation in cells infected with gB-

209 N141Q than in cells infected with wild-type HSV-1(F) or gB-N141Q-repair. The gB and

210 gD antibodies present in samples of human γ -globulins at a concentration of 3.04 mg/mL

211 were then depleted by treatment with purified gB-SE or gD-SE, as described previously

212 (S-Fig. 7). In this case, the anti-gB antibody-depleted human γ -globulins slightly detected

213 the gB that was ectopically expressed by HEK293FT cells (S-Fig. 7E), because we used

214 the depleted human γ -globulins at a much higher concentration than the concentration of

215 the depleted human γ -globulins used in the neutralizing assay described in the previous

216 section. Consistent with the results shown in S-Fig. 7E, anti-gB antibody-depleted human

217 γ -globulins (~1.0 mg/mL) still induced slightly increased Fc γ RIIIA-mediated activation

218 in cells infected with gB-N141Q than in cells infected with wild-type HSV-1(F) or gB-

219 N141Q-repair (Fig. 4B). However, the degrees of differences between the levels of
220 Fc γ RIIIA-mediated activation in cells infected with gB-N141Q and the levels of
221 Fc γ RIIIA-mediated activation in cells infected with wild-type HSV-1(F) or gB-N141Q-
222 repair in cultures containing anti-gB antibody-depleted human γ -globulins were lower
223 than the degrees of differences between the levels of Fc γ RIIIA-mediated activation in
224 cells infected with those viruses in cultures containing mock-depleted or anti-gD
225 antibody-depleted human γ -globulins (Fig. 4B).

226 To eliminate the possibility that the higher level of Fc γ RIIIA-mediated activation
227 in gB-N141Q-infected cells was due to increased expression of mutated gB on the surface
228 of the infected cells, we investigated the effect of the N-glycan at gB Asn-141 on the
229 expression of gB in the infected cells. Vero cells were infected with wild-type HSV-1(F),
230 gB-N141Q, gB-N141Q-repair, Δ gB, or Δ gB-repair as described in the experiments
231 described in the previous paragraph and depicted by Fig. 4 and used flow cytometry to
232 show the level of gB expression on the surface of infected cells or the total accumulation
233 of gB in the infected cells. As shown in S-Figs. 8A and B, the levels of expression of gB
234 on the surface of cells infected with gB-N141Q were significantly lower than those levels
235 on cells infected with wild-type HSV-1(F) or gB-N141Q-repair. In contrast, the total level
236 of gB in cells infected with gB-N141Q was similar to the total levels in cells infected with

237 wild-type HSV-1(F) or gB-N141Q-repair (S-Fig. 8A). Furthermore, confocal microscopy
238 showed that the subcellular localization of gB in cells infected with either gB-N141Q,
239 wild-type HSV-1(F) or gB-N141Q-repair was also similar (S-Fig. 8C). These results
240 suggest that the N-glycan at gB Asn-141 was required for the efficient expression of gB
241 on the surface of HSV-1-infected cells. Thus, although cells infected with gB-N141Q
242 expressed lower levels of mutated gB on their surface membranes than the levels of gB
243 expressed by cells infected with wild-type HSV-1(F) or gB-N141Q-repair, human γ -
244 globulins resulted in increased Fc γ RIIIA-mediated activation of cells infected with gB-
245 N141Q than seen for cells infected with wild-type HSV-1(F) or gB-N141Q-repair. These
246 results eliminated the possibility that the higher level of Fc γ RIIIA-mediated activation in
247 gB-141Q-infected cells was due to the increased expression of mutated gB on the surface
248 of the infected cells. Altogether, the results suggest that the N-glycan at gB Asn-141 was
249 required for the efficient evasion of ADCC induced by human antibodies to gB in infected
250 cell cultures.

251 **Molecular modeling of N-glycosylated gB to estimate the glycan shield.** To
252 estimate the effects of the N-glycan on gB Asn-141 on the binding of antibodies to gB,
253 we first constructed a glycosylated model of the gB protein based on a previously
254 published construction of gB in a prefusion state (18). The Man₃GlcNAc₂ glycan structure

255 was chosen for modeling. It is the common core structure of complex, high-mannose- and
256 hybrid-type N-glycans.

257 The extent of antibody accessibility to gB was then estimated by determining the
258 accessible surface area (ASA) with the use of a probe with a radius of 10 Å, which should
259 be sufficient for determining the area of an antibody complementarity-determining region
260 (19). The effect of N-glycosylation on gB Asn-141 on the ASA of each amino acid residue
261 was evaluated by the difference between the ASAs (Δ ASA) of N-glycosylated and non-
262 glycosylated gB. Twenty-seven amino acid residues in the gB of HSV-1 showed Δ ASAs
263 of $> 5 \text{ \AA}^2$ (S-Fig. 9) and as depicted by the 3D structural model of N-glycosylated gB in
264 Fig. 5A. Among the 27 amino acid residues, 19 were mapped to the functional region
265 (FR)2 and FR3 of gB (S-Fig. 9), both of which were previously defined based on the
266 epitopes seen for a panel of neutralizing monoclonal antibodies (20, 21). Of note, the
267 Δ ASA of Asp-419, part of the epitope for the C226 antibody and critical for binding of
268 that antibody to gB (21), measured 14, 40, and 52 \AA^2 , depending on each protomer of the
269 gB triplex (Fig. 5B and S-Fig. 9). These results suggest that the N-glycan at gB Asn-141
270 prevented the binding of antibodies to gB epitopes and further supported our previous
271 conclusion that the N-glycan at gB Asn-141 was required for the efficient evasion of
272 HSV-1 from human antibodies.

273 **Effects of the N-glycan on gB Asn-141 on the replication of HSV-1 in the**

274 **eyes of mice in the presence of human antibodies.** To examine the effects of human

275 antibodies on HSV-1 replication in vivo in the presence or absence of the N-glycan at gB

276 Asn-141, mice were mock-injected or injected intraperitoneally with pooled human γ -

277 globulins, and were then ocularly infected with gB-N141Q or gB-N141Q-repair one day

278 after injection (Fig. 6A). Samples of tear films were collected at the indicated times (Fig.

279 6A) and viral titers in the tear films were measured. As shown in Fig. 6B, the presence of

280 human γ -globulins did not affect the viral titers of the tear films in mice infected with gB-

281 N141Q-repair at 1, 3, and 5 days postinfection. In contrast, the presence of human γ -

282 globulins significantly reduced viral titers of the tear films of mice infected with gB-

283 N141Q at 1 and 5 days postinfection (Fig. 6B). Thus, the ratios of gB-N141Q titers in the

284 absence of human γ -globulins to those in the presence of human γ -globulins were higher

285 than the ratios of gB-N141Q-repair titers in the absence of human γ -globulins to those in

286 the presence of the human γ -globulins (Fig. 6C). Furthermore, viral titers of the tear films

287 of mice infected with gB-N141Q in the presence of human γ -globulins at 1, 3, and 5 days

288 postinfection were significantly lower than the titers of the tear films of mice infected

289 with gB-N141Q-repair (Fig. 6B). In contrast, the viral titers of the tear films of mice

290 infected with gB-N141Q in the absence of human γ -globulins at 1, 3, and 5 days

291 postinfection were comparable to those of the tear films of mice infected with gB-N141Q-
292 repair; although, as the infection progressed, the viral titers of the tear films of mice
293 infected with gB-N141Q in the absence of human γ -globulins tended to be lower than
294 those titers in mice infected with gB-N141Q-repair. These results indicate that the
295 presence of human antibodies inhibited the replication of gB-N141Q in the peripheral
296 organs of mice more efficiently than it inhibited the replication of gB-N141Q-repair and
297 also suggest that the N-glycan at gB Asn-141 was required for the efficient evasion of
298 HSV-1 from human antibodies in vivo.

299 **Effects of the N-glycan on gB Asn-141 on the replication of HSV-1 in the**
300 **eyes of mice immunized against HSV-1.** To examine the effects of the N-glycan at gB
301 Asn-141 on HSV-1 replication in vivo in the presence of physiologically induced
302 immunity against HSV-1, mice were subcutaneously mock-immunized or immunized
303 with wild-type HSV-1(F). At 9 weeks after inoculation, the immunized mice were
304 ocularly infected with gB-N141Q or gB-N141Q-repair (Fig. 7A). Samples of tear films
305 were collected at the indicated times and viral titers of the tear films were determined
306 (Fig. 7B). As shown in Fig. 7B, whereas the viral titers of the tear films of immunized
307 mice infected with gB-N141Q at 1 and 2 days postinfection were comparable to those in
308 mock-immunized mice, the viral titers of the tear films of immunized mice infected with

309 gB-N141Q at 3 days postinfection were significantly lower than those in the mock-
310 immunized mice. In contrast, the viral titers of the tear films of immunized mice infected
311 with gB-N141Q-repair at 1, 2, and 3 days postinfection were comparable to those in
312 mock-immunized mice infected with gB-141Q-repair (Fig. 7B). Thus, the ratios of gB-
313 N141Q titers in mock-immunized mice to those in immunized mice at 3 days
314 postinfection were higher than the ratios of gB-N141Q-repair titers in mock-immunized
315 mice to those in immunized mice (Fig. 7C). Furthermore, the viral titers of the tear films
316 in mock-immunized or immunized mice infected with gB-N141Q at 1 and 2 days
317 postinfection were comparable to those in mock-immunized or immunized mice infected
318 with gB-N141Q-repair (Fig. 7B). In contrast, the viral titers of the tear films in immunized
319 mice infected with gB-N141Q at 3 days postinfection were significantly lower than those
320 in immunized mice infected with gB-N141Q-repair although viral titers of the tear films
321 in mock-immunized mice infected with gB-N141Q at 3 days postinfection were
322 comparable to those in mock-immunized mice infected with gB-N141Q-repair (Fig. 7B).
323 These results indicate that the presence of immunity against HSV-1 in mice inhibited
324 replication of gB-N141Q more efficiently than the replication of gB-N141Q-repair and
325 suggest that the N-glycan at gB Asn-141 was required for the efficient evasion of HSV-
326 1 from immunity induced in mice previously immunized against HSV-1.

327 **Effects of the N-glycan at gB Asn-141 on HSV-1 neurovirulence and**

328 **replication in the CNS of naïve mice.** To investigate the effects of the N-glycan at gB

329 Asn-141 on the neurovirulence and replication of HSV-1 in the CNS of naïve mice, mice

330 were infected intracranially with gB-N141Q or gB-N141Q-repair, and the mortality rates

331 of these injected mice was monitored for 14 days. As shown in Fig. 8A, the mortality rate

332 of mice infected with gB-N141Q was significantly lower than the rate of mice infected

333 with its repaired virus (gB-N141Q-repair). We also harvested the brains of mice infected

334 with gB-N141Q or gB-N141Q-repair at 1, 3, and 5 days postinfection and measured viral

335 titers in their brains. As shown in Fig. 8B, the viral titers in the brains of mice infected

336 with gB-N141Q at 1 day postinfection were comparable to those of mice infected with

337 gB-N141Q-repair. In contrast, at later time points (3 and 5 days postinfection), viral titers

338 in the brains of mice infected with gB-N141Q were significantly lower than the titers in

339 the brains of mice infected with gB-N141Q-repair. These results suggest that the N-

340 glycan at gB Asn-141 was required for efficient HSV-1 neurovirulence and replication in

341 the CNS of naïve mice. The results also led us to investigate whether the N-glycan at gB

342 Asn-141 acted specifically in neural cells. As shown in Fig. 8C, progeny virus yields in

343 human neuroblastoma SK-N-SH cells infected with gB-N141Q were similar to those in

344 the cells infected with wild-type HSV-1(F) or gB-N141Q-repair. These results further

345 supported our observation from the results of in vitro experiments described previously

346 that N-glycosylation on gB does not appear to play a role in the replication of HSV-1 in

347 cell cultures.

348

349

DISCUSSION

350 It is unquestionable that studies using human samples to analyze the mechanisms of
351 infection utilized by human pathogenic viruses are crucial for understanding the
352 mechanisms effective in humans. Considering that the gap between what can be observed
353 from in vitro and in vivo viral infections is significant, evaluations of human samples in
354 vivo should provide more valuable information on the mechanisms of infection than
355 evaluations of the samples in vitro. However, there has been a lack of in vivo information
356 because human samples that could be used for in vivo analyses as well as in vivo models
357 that could represent the pathogenesis of viral infections in humans are limited.

358 In this study, we clarified a novel immune evasion mechanism used by HSV-1,
359 namely, that a glycan shield at Asn 141 of the HSV-1 gB mediated evasion from the
360 deleterious effects of human antibodies such as in vitro neutralization and ADCC. Our
361 observations are supported by the molecular model of N-glycosylation at gB Asn-141,
362 which is based on the prefusion structure of HSV-1 gB (18). The model predicts that N-
363 glycosylation at gB Asn-141 masked 27 amino acids in the gB molecule. Of these amino
364 acids, 70% have been mapped to the functional regions of gB, FR2, and FR3, which were
365 previously identified according to the known epitopes of various neutralizing monoclonal
366 antibodies (20, 21). Notably, the N-glycosylation at gB Asn-141 was predicted to mask

367 Asp-419, a residue critical for the binding of gB to the C226 antibody, which shows high
368 neutralizing activity in preventing the association of gB with a complex of gH and gL and
369 fusion (21). Furthermore, the amino acids predicted to be masked by glycosylation at
370 Asn-141 included or were positioned near those (Pro-361, Asp-408, Asp-419, Asn-430,
371 Asn-458, Arg-470, Pro-481, Ile-495 and Thr-497) previously shown to be critical for gB
372 receptor- or gD receptor-mediated fusion (22-24), introducing the possibility that
373 antibodies target these amino acid residues.

374 Our observations that the glycan shield on HSV-1 gB seemed to significantly
375 increase viral replication in the eyes of mice not only in the presence of HSV-1 immunity
376 but also in the presence of human antibodies, supports our prediction from the clarified
377 in-vitro effects of the glycan shield on HSV-1 that the glycan shield would be effective
378 in the presence of human antibodies in vivo and probably in human beings. Notably, we
379 also presented evidence that the glycan on HSV-1 gB was required for efficient viral
380 neurovirulence and replication in the CNS of naïve mice. Thus, we have identified an
381 important glycan shield on the HSV-1 gB that appears to have 2 affects: evasion from
382 human antibodies in vivo and neurovirulence in naïve hosts. Considering the clinical
383 features of HSV-1 infection, these results suggest that the glycan shield not only

384 facilitates recurrent HSV-1 infections in latently infected humans by evading antibodies,
385 but also is important for HSV-1 pathogenesis during the initial infection.

386 In this study, we used pooled human γ -globulins from human blood as human
387 antibodies. HSV-1 is a ubiquitous human pathogen; approximately 70% of the global
388 human population is infected with HSV-1, and most HSV-1-infected humans have been
389 reported to be latently infected with the virus (1-3, 15). Therefore, it is conceivable that
390 the effects of pooled human γ -globulins represent the effects of antibodies in humans
391 latently infected with HSV-1. Thus, the mouse model with passive transfer of pooled
392 human γ -globulins used in this study potentially mimicked the *in vivo* effects of human
393 antibodies in humans latently infected with HSV-1. HSV-1 frequently reactivates from
394 latent infections and is transmitted to new human hosts. Therefore, the host's immune
395 responses to HSV-1 persist in latently infected humans because of the repeated
396 stimulation of the immune system, resulting in the progressive enhancement of long-term
397 immunity (1-3). The viral strategy of using the glycan shield on HSV-1 gB to evade
398 antibodies, which was clarified in this study, may protect reactivated viruses from existing
399 antibodies to HSV-1 in latently infected humans and thereby facilitate their transmission
400 to new human hosts. Notably, the N-glycosylation site on HSV-1 gB is widely conserved
401 in viruses subclassified in the alphaherpesvirus subfamily of herpesviruses (25),

402 suggesting that this is a general viral mechanism of evasion from the immune system.

403 Moreover, clarification of the HSV-1 mechanism of evasion from antibodies supports

404 earlier conclusions (5-9) that were based on previous clinical trials of HSV vaccines;

405 namely, that antibodies are essential to the control of HSV-1 infections in humans.

406 Additional studies to reveal other glycan shields against human antibodies on HSV

407 envelope glycoproteins are important and should be of interest. Those studies and this

408 present study may provide insights into the design of effective therapeutic HSV vaccines

409 against frequent recurrences of herpes virus infections such as genital herpes.

410 Previous studies have characterized N-glycosylation at Asn-133 of the HSV-2

411 gB and at Asn-154 of the pseudorabies virus (PRV) gB, which correspond to the N-

412 glycosylation at Asn-141 of HSV-1 gB (26, 27). None of those studies addressed the

413 effects of the N-glycosylation of those viruses' gB on evasion from antibodies and

414 pathogenesis in vivo. In agreement with our observation in this study that the N141Q

415 mutation in HSV-1 gB did not affect viral replication in Vero and SK-N-SH cells, the

416 ectopic expression of the PRV gB-N154Q mutant rescued the entry deficiency of a gB-

417 deficient PRV so that its entry would be at a level similar to that of PRVs with wild-type

418 gB (27). In contrast, the ectopic expression of the HSV-2 gB-N133Q mutant barely

419 rescued the entry deficiency of a gB-deficient HSV-2 (26). As observed with the N141Q

420 mutation in gB of HSV-1 in the context of viral infection, the ectopic expression of both
421 the HSV-2 gB-N133Q and PRV gB-N154Q mutant showed impaired cell surface
422 expression of the mutants. These observations point out both the similarities in and
423 differences between the roles of the glycosylation of gB in viruses.
424

425

ACKNOWLEDGEMENTS

426

We thank Risa Abe, Keiko Sato, Tohru Ikegami, and Yui Muto for their

427

excellent technical assistance. We are grateful to Seiya Yamayoshi for helpful discussions

428

with the ADCC assays. This study was supported by Grants for Scientific Research and

429

Grant-in-Aid for Scientific Research (S) (20H05692) from the Japan Society for the

430

Promotion of Science (JSPS), grants for Scientific Research on Innovative Areas

431

(21H00338, 21H00417, 22H04803) and a grant for Transformative Research Areas

432

(22H05584) from the Ministry of Education, Culture, Science, Sports and Technology of

433

Japan, a PRESTO grant (JPMJPR22R5) from Japan Science and Technology Agency

434

(JST), grants (JP20wm0125002, JP20wm0225009, JP20wm0225017, JP22fk0108640,

435

JP22gm1610008, JP223fa627001) from the Japan Agency for Medical Research and

436

Development (AMED), grants from the International Joint Research Project of the

437

Institute of Medical Science, the University of Tokyo, and grants from the Takeda Science

438

Foundation, the Uehara Memorial Foundation and the Mitsubishi Foundation.

439

440

MATERIALS AND METHODS

441 **Cells and Viruses.** Vero, HEK293FT, Plat-GP, and SK-N-SH cells were

442 described previously (28, 29). Wild-type HSV-1(F) was described previously (30).

443 **Plasmids.** The construction of pFLAG-CMV2-EGFP and pcDNA-MEF-gB was

444 described previously (28, 31). First, to construct pBS-KanR-ePheS*, oligonucleotides

445 making up a kanamycin resistant (KanR) cassette with the I-SceI recognition site and an

446 ePheS* cassette, which has T251A/A294G mutations in ePheS, were amplified from the

447 DNA templates of pEPkan-S (13) and pUC18K ePAG2 (14), respectively. The primers

448 that were used are listed in S-Table 1B. Then, the two linear DNA fragments were fused

449 by PCR and cloned into the pBluescript KS(+) (Stratagene), as described previously (32).

450 Second, pBS-TEV-2xStrep-KanS was constructed by cloning the kanamycin resistance

451 (KanR) cassette with the I-SceI recognition site, which was amplified by PCR from the

452 pEPkan-S template with the use of primers that additionally encoded the Tobacco Etch

453 Virus (TEV) protease cleavage-site and tandem-strep epitopes as listed in S-Table 1B,

454 into the pBluescript KS(+). Third, pcDNA3.1-tagRFP-P2A and pcDNA3.1-P2A-tagRFP

455 were constructed by cloning the tagRFP open reading frame (ORF), which was amplified

456 by PCR from ptagRFP-N1 (33) with the use of primers that additionally encoded the 2A

457 self-cleaving peptide fused to its carboxyl terminus (tagRFP-P2A) or amino-terminus

458 (P2A-tagRFP) as listed in S-Table 1B, respectively, into pcDNA3.1 (Invitrogen). Fourth,
459 pcDNA3.1-tagRFP-P2A-stop was constructed by cloning annealed DNA
460 oligonucleotides listed in S-Table 1B into pcDNA3.1-tagRFP-P2A. Fifth, pcDNA3.1-gB-
461 P2A-tagRFP was constructed by cloning gB ORF, which was amplified by PCR from the
462 HSV-1(F) genome isolated as described previously (34), using the primers listed in S-
463 Table 1B into pcDNA3.1-P2A-tagRFP by the In-Fusion HD Cloning Kit (Takara),
464 according to the manufacturer's instructions. Sixth, pcDNA3.1-gD-P2A-tagRFP was
465 constructed by cloning gD ORF, which was amplified by PCR from the HSV-1(F)
466 genome using primers listed in S-Table 1B into pcDNA3.1-P2A-tagRFP by the In-Fusion
467 HD Cloning Kit.

468 To construct pRetroX-TRE3G-gBo and pRetroX-TRE3G-ICP4o, the sequences
469 of codon-optimized UL27(gBo) and α 4 (ICP4o), which are shown in S-Table 1C, were
470 engineered according to the GenScript's OptimumGene algorithm, and then synthesized
471 and cloned into pRetroX-TRE3G (Takara) by GenScript.

472 **Establishment of stable Vero cells with tetracycline-inducible codon-
473 optimized gB and ICP4 (gBo and ICP4o) expression.** Vero cells were transduced with
474 supernatants of Plat-GP cells cotransfected with pMDG (35) and pRetroX-Tet3G
475 (TaKaRa), selected with 1 mg/mL G418 solution (Wako) to generate Tet3G-Vero cells.

476 The cells were further transduced with a mixture of supernatants of Plat-GP cells
477 cotransfected with pMDG and pRetroX-TRE3G-gBo, and supernatants of Plat-GP cells
478 co-transfected with pMDG and pRetroX-TRE3G-ICP4o to establish gBo/ICP4o-TetON-
479 Vero cells. After double selection with 1 mg/mL of G418 solution and 5 μ g/mL of
480 puromycin, a single clone in which expression of gBo and ICP4o was induced by
481 doxycycline was selected.

482 **Two-step Red-mediated recombination using the KanR/ePheS* cassette.**

483 The two-step Red-mediated mutagenesis procedure used in this study was performed as
484 described previously (13, 36). Briefly, linear DNA fragments containing an I-SceI
485 recognition sequence, KanR and ePheS*cassettes, and target homologous sequences were
486 amplified by PCR from pBS-KanR-ePheS* using the primers listed in S-Table 1D. The
487 linear fragments were electroporated into the electrocompetent *Escherichia coli* strain
488 GS1783 containing the pYEbac102Cre (30, 37). The transformed bacteria were then
489 incubated at 32°C for 40 to 60 min and plated on LB agar plates containing 20 μ g/mL of
490 chloramphenicol and 40 μ g/mL of kanamycin to select *E. coli* clones harboring
491 pYEbac102Cre containing the KanR and ePheS* cassettes (KanR/ePheS* cassettes).
492 Kanamycin-resistant colonies were screened by PCR with the appropriate primers. Next,
493 the KanR/ePheS* cassettes were excised by expressing the I-SceI homing enzyme in

494 GS1783 through induction with arabinose, followed by induction of the Red
495 recombination machinery by raising the temperature. Briefly, 100 μ L of an overnight
496 culture of kanamycin-resistant *E. coli* clones grown in LB medium containing
497 chloramphenicol and kanamycin was inoculated into 2 mL of LB medium containing
498 chloramphenicol only. Bacteria were incubated at 32°C for 2 to 4 h with shaking,
499 followed by addition of 10% (wt/vol) L-arabinose (Wako) to the culture at a 1:5 ratio,
500 and incubated for another 1 h at 32°C. Finally, the *E. coli* culture was incubated at 42°C
501 for 30 min. It was then shaken at 32°C for another 1 to 2 h, and 50 μ L of 10^{-3} to 10^{-4}
502 dilutions of the culture were plated onto LB agar plates containing 20 μ g/mL of
503 chloramphenicol and 1 mM of 4-chloro-phenylalanine (4CP) to select *E. coli* clones
504 harboring the pYEbac102Cre, from which the KanR/ePheS* cassette was excised.
505 Chloramphenicol- and 4CP-resistant colonies were screened by PCR with appropriate
506 primers, which was followed by nucleotide sequencing for confirmation of the desired
507 mutation.

508 **Generation of recombinant HSV-1.** Recombinant viruses YK650 (UL51-
509 T190A_KanR/ePheS*), YK681 (gB-N87Q), YK683 (gB-N141Q), YK685 (gB-N398Q),
510 YK687 (gB-N430Q), YK689 (gB-N489Q), YK691 (gB-N674Q), YK693 (gB-N888Q),
511 YK682 (gB-N87Q-repair), YK684 (gB-N141Q-repair), YK686 (gB-N398Q-repair),

512 YK688 (gB-N430Q-repair), YK690 (gB-N489Q-repair), YK692 (gB-N674Q-repair),
513 and YK694 (gB-N888Q-repair) (Fig. 1) were generated by the two-step Red-mediated
514 mutagenesis procedure using the KanR/ePheS* cassette as described in the previous
515 section with the primers listed in S-Table 1D. The recombinant virus YK649 (UL51-
516 T190A_KanR) was generated by the two-step Red-mediated mutagenesis procedure
517 using *E. coli* GS1783 containing pYEbac102Cre, as described previously (13, 36), with
518 the exception that the primers used instead of those described previously are listed in S-
519 Table 1D. The recombinant virus YK695 (ΔgB), in which the UL27 gene encoding gB
520 was disrupted by deleting gB codons 1-727 with a kanamycin resistance gene, was
521 generated by the two-step Red-mediated mutagenesis procedure using *E. coli* GS1783
522 containing pYEbac102Cre, as described previously (13, 36), with the exception that the
523 primers used instead of those described previously are listed in S-Table 1D.

524 The recombinant virus YK696 (ΔgB-repair), in which the deletion mutation in
525 gB was repaired, was generated by cotransfection with pYEbac102Cre carrying the gB-
526 deletion mutation and pCRxgB (38) into Vero cells. Plaques were isolated and purified
527 on Vero cells. Restoration was confirmed by nucleotide sequencing.

528 The recombinant virus YK717 (gB-SE), which expresses gB fused to a TEV
529 protease cleavage site and a Strep-tag; and recombinant virus YK718 (gD-SE), which

530 expresses gD fused to a TEV protease cleavage site and a Strep-tag, were generated by
531 the two-step Red-mediated mutagenesis procedure using *E. coli* GS1783 containing
532 pYEbac102Cre, as described previously (13, 36), with the exception that the primers used
533 instead of those described previously are listed in S-Table 1D.

534 In experiments in which YK695 (HSV-1 ΔgB) was used, viruses were
535 propagated and assayed in HSV-1 gBo/ICP4o-TetON-Vero cells in the presence of
536 doxycycline (DOX) (1 mg/mL). Other viruses used in this study were propagated and
537 titrated in Vero cells.

538 **Antibodies.** Commercial antibodies used in this study were mouse monoclonal
539 antibodies to gB (H1817; Virusys) and α-tubulin (DM1A; Sigma), and rabbit polyclonal
540 antibodies to VP23 (CAC-CT-HSV-UL18; Cosmo Bio).

541 **PNGase F Digestion and immunoblotting.** Vero cells were infected with each
542 of the indicated viruses at an MOI of 5 for 24 h and lysed with T-PER Tissue Protein
543 Extraction Reagent (Thermo Scientific). The lysates were sonicated and denatured with
544 Glycoprotein Denaturing Buffer (NEB) by heating them at 100°C for 10 minutes.
545 Aliquots of the lysates were incubated with 2500 units of PNGase F (NEB) at 37°C for 1
546 h. Aliquots of the lysates incubated under the same conditions without PNGase F were

547 used as controls. The incubated mixtures were subjected to immunoblotting as described
548 previously (39).

549 **Detection of gB- or gD-specific antibodies in pooled human γ -globulins by**
550 **flow cytometry.** PEI MAX (Polyscience, Inc.) was used to transfect HEK293FT cells
551 with selected plasmids. At 48 h post-transfection, the transfected cells were detached from
552 their culture plates and washed once with PBS supplemented with 2% FCS (washing
553 buffer). Cells were fixed and permeabilized with Cytofix/Cytoperm (Beckton Dickinson)
554 and incubated with diluted human γ -globulins (G4386; Sigma) on ice for 30 min. After
555 the cells were washed with washing buffer, they were further incubated with anti-human
556 IgG conjugated to Alexa Flour 647 (Invitrogen) on ice for 30 min. After the cells were
557 washed again, they were analyzed with a CytoFLEX S flow cytometer (Beckman Coulter).
558 The data were analyzed with FlowJo 10.8.1 software (Becton Dickinson).

559 **Depletion of gB- or gD-specific antibodies from pooled human γ -globulins.**
560 Vero cells (5×10^7) were infected with HSV-1(F), gB-SE, or gD-SE at an MOI of 0.5 for
561 24 h and lysed in 5 mL of radioimmunoprecipitation assay (RIPA) buffer (10 mM Tris-
562 HCl [pH 7.4], 150 mM NaCl, 1% Nonidet P-40 [NP40], 0.1% deoxycholate, 0.1% sodium
563 deodecyl sulfate, 1 mM EDTA) containing a protease inhibitor cocktail (Nacalai Tesque).
564 After centrifugation, the supernatants were precleared by incubating with protein G-

565 Sepharose beads (GE Healthcare), and reacted with 100 μ L of Strep-Tactin Sepharose
566 beads (IBA Lifesciences) for 4 h at 4°C. The beads were collected by brief centrifugation
567 and washed 4 times with RIPA buffer and 2 times with PBS. Samples of gB-SE or gD-
568 SE immobilized on Strep-Tactin Sepharose beads were incubated with 1 mL of diluted
569 human γ -globulins (G4386; Sigma) (0.082 and 3.04 mg/mL in medium 199 containing
570 1% FCS and ADCC assay buffer for neutralization assays and ADCC assays,
571 respectively) at 4°C overnight; and after centrifugation, the supernatants containing gB-
572 or gD-antibody depleted human γ -globulins were filtered.

573 Similarly, HSV-1(F)-infected Vero cell lysates prepared as described for the
574 depleted human γ -globulins was incubated with Strep-Tactin Sepharose beads, and after
575 centrifugation and washing, the beads were incubated with human γ -globulins diluted as
576 described, and then centrifuged, followed by filtration of the supernatants to produce
577 samples of mock-depleted human γ -globulins.

578 **Neutralization assay.** Pooled human γ -globulins (G4386; Sigma) serially
579 diluted in medium 199 containing 1% FCS were mixed 1:1 with 100 PFU of each selected
580 virus in medium 199 containing 1% FCS, incubated at 37°C for 1 h, and then inoculated
581 onto Vero cell monolayers to perform plaque assays. At 2 days postinfection, the plaques
582 were counted. The percentage of neutralization was determined as follows: the numbers

583 of plaques formed by the virus samples that had been incubated with or without human
584 γ -globulins as a value with the following formula: $100 \times [1 - (\text{numbers of plaques produced}$
585 $\text{after incubation of viral samples with human } \gamma\text{-globulins}) / (\text{numbers of plaques produced}$
586 $\text{after incubation of viral samples without human } \gamma\text{-globulins})]$.

587 **ADCC reporter assay.** The extent of ADCC activation induced by human γ -
588 globulins was evaluated with the use of an ADCC Reporter Bioassay (Core Kit; Promega,
589 G7010) and the EnSpireMultimode Plate Reader (PerkinElmer). The assay was used
590 according to the manufacturer's instructions. Briefly, Vero cells were infected at an MOI
591 of 1 with each selected virus in medium 199 containing 1% FCS. After adsorption for 1 h,
592 the inoculum was removed, and the cell monolayers were overlaid with medium 199
593 containing 10% FCS. At 24 h post-infection, the culture medium was replaced with
594 ADCC assay buffer containing effector cells and diluted human γ -globulins at a 2:1 ratio
595 and incubated at 37°C for 6 h. Bio-Glo luciferase reagent was then added, and the
596 luciferase signals were quantitated as relative light units (RLUs) on an EnSpire reader.
597 Extent of induction was calculated as follows: Fold induction = $(\text{RLUs}_{\text{with antibody}} -$
598 $\text{RLUs}_{\text{background}}) / (\text{RLUs}_{\text{no antibody}} - \text{RLUs}_{\text{background}})$.

599 **Determination of gB expression on the surfaces of HSV-1-infected cells.** The
600 expression of HSV-1 glycoproteins on the surfaces of infected cells was analyzed as

601 described previously (40). Briefly, Vero cells were infected at an MOI of 1 with each
602 selected virus in medium 199 containing 1% FCS. After adsorption for 1 h, the inoculum
603 was removed, and the cell monolayers were overlaid with medium 199 containing 10%
604 FCS. At 24 h post-infection, cell monolayers were detached with PBS containing 0.02%
605 EDTA and were washed 1 time with PBS supplemented with 2% FCS (washing buffer).
606 To analyze the total expression of gB, infected Vero cells were detached as described,
607 fixed, and permeabilized with Cytofix/Cytoperm Fixation/Permeabilization Solution
608 (Becton Dickinson). Treated and untreated cells were then incubated with mouse anti-gB
609 monoclonal antibody in washing buffer on ice for 30 min. After the cells were washed
610 with washing buffer, they were further incubated with anti-mouse IgG conjugated to
611 Alexa Flour 647 dye (Invitrogen) on ice for 30 min. After the cells were washed again,
612 they were analyzed with a CytoFLEX S flow cytometer (Beckman Coulter). The data
613 were analyzed by FlowJo 10.8.1 software (Becton Dickinson).

614 **Immunofluorescence assays.** Immunofluorescence assays were performed as
615 described previously (41).

616 **Animal studies.** Female ICR mice were purchased from Charles River
617 Laboratories. For ocular infections by each selected virus in mice in the presence of
618 pooled human γ -globulins, four-week-old mice were injected intraperitoneally with 1250

619 mg/kg of human γ -globulins or PBS. One day after administration, the mice were ocularly
620 infected with 3×10^6 PFU/eye of each selected virus, as described previously (29). For
621 mice immunized with HSV-1 before ocular infection, three-week-old mice were injected
622 subcutaneously in the neck with 5×10^5 PFU of HSV-1(F). The immunized mice were
623 then infected ocularly 9 weeks after immunization with 3×10^6 PFU/eye of each selected
624 virus as described previously (29). Virus titers in the tear films of mice were determined
625 as described previously (42).

626 For intracranial infections, three-week-old mice were inoculated intracranially
627 with each selected virus as described previously (29). Mice were monitored daily, and
628 mortality occurring from 1 to 14 days postinfection was attributed to the infecting virus.
629 To measure viral titers in the brains of infected mice, three-week-old female ICR mice
630 were each inoculated intracranially with 1×10^3 PFU of each selected virus. At 1, 3, and
631 5 days postinfection, the brains of the mice were harvested, and virus titers were
632 determined on Vero cells. All animal experiments were carried out in accordance with
633 the Guidelines for Proper Conduct of Animal Experiments, Science Council of Japan.
634 The protocol was approved by the Institutional Animal Care and Use Committee
635 (IACUC) of the Institute of Medical Science, The University of Tokyo (IACUC protocol
636 approval number: A21-55).

637 **Modeling of the N-glycosylated gB protein.** The N-glycan core
638 (Man₃GlcNAc₂) was modeled according to the prefusion structure of HSV-1 (18) gB
639 (PDB ID: 6Z9M) using the Glycan Reader and Modeler (43) and the CHARMM-GUI
640 program (44, 45). Discovery Studio 2021 software (Dassault Systèmes) was used to
641 change the χ_1 angle (N-C α -C β -C γ) of the Asn141 B chain (PDB ID: 6Z9M) from -178°
642 to -66° to avoid steric clash of the N-glycan with the neighboring polypeptide.
643 Visualization of the protein 3D structure was performed in the PyMol Molecular Graphics
644 System, version 2.5 (Schrödinger, LLC).

645 **Analysis of protein surface.** The AREAIMOL program (CCP4 package,
646 version 6.2) was used to determine the accessible surface area (ASA) (46). A spherical
647 probe with a radius of 10 Å, which is similar to the dimension of the antigen-binding
648 fragments (single-chain variable fragment [scFv]) of the antibodies, was used in the
649 estimation of the ASA (19, 47). The extent of glycan shielding (Δ ASA) was estimated for
650 each amino acid residue by calculating the difference between the ASAs of N-
651 glycosylated and nonglycosylated gB structures (Δ ASA = ASA [nonglycosylated gB] –
652 ASA [N-glycosylated gB]).

653 **Statistical analysis.** The unpaired t test was used to compare 2 groups. One-way
654 or two-way ANOVA followed by the Tukey or Dunnett multiple comparisons tests were

655 used for multiple comparisons. A P value < 0.05 was considered significant. For the

656 statistical analysis of viral titers, data were converted to common logarithms (\log_{10}). For

657 values below the detection limit, statistical processing was performed assuming that the

658 values are those of the detection limit. GraphPad Prism 8 (GraphPad Software) was used

659 to perform statistical analysis.

660

661

FIGURE LEGENDS

662 **Fig. 1. A 3D structural model of fully N-glycosylated gB in the prefusion state.** Image

663 A shows the ribbon diagram of the protomer, and image B shows the trimer of the crystal

664 structure of gB in the prefusion state (Protein Data Bank [PDB] accession no. 6Z9M) (18).

665 The Glycan Reader and Modeler were used to modify potential N-glycosylation sites

666 (Asn-87, Asn-141, Asn-398, Asn-430, Asn-489, and Asn-674) of prefusion gB with the

667 Man₃GlcNAc₂ glycan using Glycan Modeler. Missing coordinates of Asn-87 and Asn-

668 489 in the 3D structure were estimated. The ribbon diagrams of the gB models show the

669 functional domains in colors as follows: domain I (light blue), domain II (green), domain

670 III (yellow), domain IV (orange), and domain V (red). Residue background coloring is

671 used for the main polypeptide chains, and potential N-glycans are shown in magenta as

672 stick models. In Panel B, protomer A is the same as in Panel A. Protomer B and C are

673 shown in white. Image C shows the location of potential N-linked glycans on gB along

674 the genome of wild-type HSV-1(F). N, N-glycosylation sites (Asn-87, Asn-141, Asn-398,

675 Asn-430, Asn-489 and Asn-674); TM, transmembrane domain.

676

677 **Fig. 2. Effect of mutation at each of the potential gB N-glycosylation sites on**

678 **electrophoretic mobility in the presence or absence of PNGase.** Vero cells infected for

679 24 h with wild-type HSV-1(F), each of the gB mutant viruses, or each of their repaired
680 viruses at an MOI of 5 were lysed, treated with or without PNGase, and analyzed by
681 immunoblotting with antibodies to gB, VP23, or α -tubulin. Data are representative of 3
682 independent experiments. Dashed lines indicate the bottom of bands harboring gB with
683 each of the indicated NQ mutations. α , anti.

684

685 **Fig. 3. Effect of N-glycan at gB Asn-141 on viral susceptibility to neutralization by**
686 **pooled human γ -globulins.** (A) 100 PFU of wild-type HSV-1(F), gB-N141Q, or gB-
687 N141Q-repair were incubated with serially diluted human γ -globulins at 37°C for 1 h,
688 and then inoculated onto Vero cell monolayers for plaque assays. The percentage of
689 neutralization was calculated from the number of plaques formed by each of the viruses
690 that were incubated with or without human γ -globulins, as follows: $100 \times [1 - (\text{number of}$
691 $\text{plaques after incubation with human } \gamma\text{-globulins}) / (\text{number of plaques after incubation}$
692 $\text{without human } \gamma\text{-globulins})]$. (B) Human γ -globulins (0.082 mg/mL) were mock-depleted
693 (mock-depleted) or depleted with gB-SE (α -gB depleted) or gD-SE (α -gD depleted) as
694 shown in S-Fig. 7. Wild-type HSV-1(F), gB-N141Q, or gB-N141Q-repair were incubated
695 with each of the depleted human γ -globulins and then inoculated onto Vero cell
696 monolayers as described in A. Each value represents the mean \pm standard error of the

697 results of 3 independent experiments. Statistical analysis was performed by two-way
698 ANOVA followed by the Tukey test (A and B). *, $P < 0.05$ indicates statistically
699 significant differences between gB-N141Q and wild-type HSV-1(F) or gB N141Q-repair;
700 n.s., not significant; α , anti.

701

702 **Fig. 4. Effects of N-glycan at Asn-141 in gB on the extent of ADCC induced by**
703 **human γ -globulins.** (A) Vero cells were infected with wild-type HSV-1(F), gB-N141Q
704 or gB-N141Q-repair at an MOI of 1 for 24 h, and co-cultured with ADCC effector cells
705 in the presence or absence of serially diluted human γ -globulins for 6 h. A luciferase assay
706 was then performed. (B) Human γ -globulins (3.04 mg/mL) were mock-depleted (mock-
707 depleted) or depleted with gB-SE (α -gB depleted) or gD-SE (α -gD depleted) as depicted
708 in S-Fig. 7 and used as described in 4A. Values are fold induction relative to controls
709 without antibody. Each value is the mean \pm standard error of the results of 3 biologically
710 independent samples. The statistical analysis was performed by two-way ANOVA
711 followed by the Tukey test. *, $P < 0.05$ indicates statistically significant differences
712 between gB-N141Q and wild-type HSV-1(F) or gB-N141Q-repair; n.s., not significant;
713 α , anti.

714

715 **Fig. 5. Effects of N-glycan shield at Asn-141 in gB on the antigenicity of gB in the**
716 **prefusion state.** (A) Mapping of amino acid residues potentially shielded by the N-glycan
717 at Asn-141 in gB. The amino acid residues with Δ ASAs greater than 5 \AA^2 are colored in
718 green on the 3D structural model of the gB trimer in the prefusion state. Asn-141 is shown
719 in magenta. (B) Overlapping of the C226 epitope which is targeted by neutralizing
720 antibodies to gB and the glycan-shielded region. The amino acid residue with an Δ ASA
721 greater than 5 \AA^2 that also overlaps with the epitope of the neutralizing antibody C226 is
722 shown in blue. The amino acid residues showing Δ ASAs greater than 5 \AA^2 that do not
723 overlap with the amino acid residues in the epitopes of the antibody are shown in green.
724 Asn-141 is shown in magenta.

725
726 **Fig. 6. Effect of N-glycan shield at Asn-141 in gB on HSV-1 replication in the eyes of**
727 **mice in the presence of human γ -globulins.** (A) Schematic diagram of the experiment
728 over time. Eleven 4-week-old female mice were mock-injected or injected
729 intraperitoneally with human γ -globulins, and 1 day later were then ocularly infected with
730 $3 \times 10^6 \text{ PFU/eye}$ of gB-N141Q or gB-N141Q-repair. Samples of tear films were collected
731 at 1, 3, and 5 days postinfection, and viral titers of the tear films were determined. (B)
732 Viral titers of samples collected at each time point. Each data point represents the viral

733 titer of a tear film sample from a single mouse. Horizontal bars indicate the mean for each
734 group. Statistical analysis was performed by one-way ANOVA followed by the Tukey
735 multiple comparisons test. n.s., not significant; d.p.i., days post infection. Dashed lines
736 indicate limit of detection. n.d., not detected. (C) Fold reduction in mean values of viral
737 titers due to administered human γ -globulins, which are shown in B.

738

739 **Fig. 7. Effects of N-glycan shield at Asn-141 in gB on HSV-1 replication in the eyes**
740 **of mice immunized with HSV-1.** (A) Schematic diagram of the experiment over time.
741 Twelve 3-week-old female mice were subcutaneously mock-immunized or immunized
742 with 5×10^5 PFU of wild-type HSV-1(F). At 9 weeks after inoculation, the immunized
743 mice were ocularly infected with 3×10^6 PFU/eye of gB-N141Q or gB-N141Q-repair.
744 Samples of tear films were collected at 1, 2, and 3 days postinfection, and viral titers of
745 the tear films were determined. (B) Viral titers of samples collected at each time point.
746 Each data point represents the viral titer of a tear film sample from a single mouse.
747 Horizontal bars indicate the mean for each group. Statistical analysis was performed by
748 one-way ANOVA followed by the Tukey multiple comparisons test. n.s., not significant;
749 d.p.i., days post infection. Dashed lines indicate limit of detection. n.d., not detected. (C)

750 Fold reduction in mean values of viral titers due to immunization with HSV-1(F), which
751 are shown in B.

752

753 **Fig. 8. Effects of N-glycan shield at Asn-141 in gB on the neurovirulence of HSV-1**
754 **and its replication in the CNS of naïve mice.** (A) Ten 3-week-old female mice were
755 inoculated intracranially with 1×10^3 PFU of gB-N141Q or gB-N141Q-repair. Infected
756 mice were monitored for 14 days. (B) Three-week-old female mice were inoculated
757 intracranially with 1×10^3 PFU of gB-N141Q (n = 26) or gB-N141Q-repair (n = 27). At
758 days 1 (n=9), 3 (n=9), and 5 (gB-N141Q, n=8; gB-N141Q-repair, n=9), mice from each
759 inoculated group were sacrificed, and the viral titers in the brains were determined. Each
760 data point is the viral titer in the brain of a single mouse. Dashed line indicates the limit
761 of detection. n.d., not detected; d.p.i., days post infection. (C) SK-N-SH cells were
762 infected with wild-type HSV-1(F), gB-N141Q, or gB-N141Q-repair at an MOI of 5 or
763 0.01. Total viruses from cell culture supernatants and infected cells were harvested at 36
764 h or 60 h post-infection (p.i.) and assayed on Vero cells. Each value is the mean \pm standard
765 error of the results of 3 independent experiments. Statistical analysis was performed by
766 the log rank test (A), the two-tailed Student t test (B), or one-way ANOVA followed by
767 the Tukey test (C). n.s., not significant.

768

769 **Supplementary Fig. 1. Schematic diagrams of wild-type HSV-1(F) and the creation**
770 **of its recombinants that were used in this study.** Schematic diagrams of the genomic
771 structures of wild-type HSV-1(F) and the recombinant viruses used in this study. Line 1,
772 wild-type HSV-1(F) genome; line 2, domains of the UL26.5 to UL28 genes; lines 3 to 19,
773 recombinant HSV-1 with mutations in the UL27 gene encoding gB; line 20, domains of
774 the Us5 to Us7 genes; line 21, recombinant HSV-1 with mutation in the Us6 gene
775 encoding gD.

776

777 **Supplementary Fig. 2. Flow chart of two-step Red-mediated recombination using**
778 **the KanR or KanR/ePheS* cassette.** Line 1, plasmid with a selection marker and an I-
779 SceI site used as a template for PCR amplification; Line 2, PCR-amplified linear DNA
780 fragments containing target homologous sequences (hs) and KanR or KanR/ePheS*
781 cassette; Line 3, target BAC clones in which KanR or KanR/ePheS* cassette was inserted
782 by Red recombination (1st recombination); Line 4, KanR or KanR/ePheS* cassette was
783 excised by expression of the I-SceI restriction enzyme, followed by the second Red
784 recombination (2nd recombination). In this step, the *E. coli* clones harboring BAC in
785 which the KanR or KanR/ePheS* cassette were not removed remained; Line 5, selection

786 of *E. coli* clones harboring the BAC in which the KanR or KanR/ePheS* cassette was
787 removed. When the KanR cassette was used, the *E. coli* clones were selected by replica
788 plating using agar plates containing chloramphenicol (Cm) or agar plates containing Cm
789 and kanamycin (Kan). When the KanR/ePheS* cassette was used, the *E. coli* clones were
790 selected without replica plating and with agar plates containing Cm and 4-chloro-
791 phenylalanine (4CP).

792

793 **Supplementary Fig. 3. Characterization of recombinant HSV-1 generated with the**
794 **use of the improved HSV-1 genetic manipulation system.** (A) Schematic diagrams of
795 recombinants of HSV-1 used in these experiments. Recombinant viruses YK649 (UL51-
796 T190A_KanR) and YK650 (UL51-T190A_KanR/ePheS*) were generated by the original
797 and improved HSV-1 genetic manipulation systems, respectively. (B) Vero cells were
798 infected at an MOI of 5 or 0.01 with wild-type HSV-1(F), YK649 (HSV-1 UL51-
799 T190A_KanR), or YK650 (HSV-1 UL51-T190A_KanR/ePheS*). All the recombinant
800 viruses from each cell culture supernatant plus the infected cells were harvested at the
801 indicated times, and a sample of each harvested recombinant was assayed on Vero cells.
802 Each value is the mean \pm standard error of the results of 3 independent experiments.
803 Statistical analysis was performed by one-way ANOVA followed by the Tukey test. n.s.,

804 not statistically significant between HSV-1(F) and YK649 (UL51-T190A_KanR), HSV-
805 1(F) and YK650 (UL51-T190A_KanR/ePheS*), and YK649 (UL51-T190A_KanR) and
806 YK650 (UL51-T190A_KanR/ePheS*). (C) Nine 3-week-old female ICR mice were
807 infected intracranially with the indicated amounts of YK650 (UL51-
808 T190A_KanR/ePheS*) or YK649 (UL51-T190A_KanR), and monitored for 14 days.
809 Statistical analysis was performed by the log rank test. n.s., not significant.

810

811 **Supplementary Fig. 4. Effect of mutation in each of the gB N-glycosylation sites on**
812 **HSV-1 replication in cell cultures.** Vero cells were infected with wild-type HSV-1(F),
813 each of the gB mutant viruses, or each of their repaired viruses at an MOI of 5 or 0.01.
814 Total virus from cell culture supernatants and infected cells was harvested at 24 or 48 h
815 postinfection and assayed on Vero cells. Each value is the mean \pm standard error of the
816 results from 3 independent experiments. There were no statistically significant
817 differences between the amounts of any mutant virus compared to the amount of HSV-
818 1(F) by one-way ANOVA followed by the Dunnett test.

819

820 **Supplementary Fig. 5. Detection of gB antibodies in human γ -globulins.** HEK293FT
821 cells were transfected with pFLAG-CMV2-EGFP or pcDNA-MEF-gB. Transfected cells

822 were fixed, permeabilized, and incubated with serially diluted human γ -globulins (1.31
823 mg/mL) and analyzed by flow cytometry. The relative amounts of gB antibodies were
824 calculated as follows: (mean fluorescent intensity of cells transfected with pcDNA-MEF-
825 gB) – (mean fluorescent intensity of cells transfected with pFLAG-CMV2-EGFP). Data
826 are means \pm standard error of the results of 2 independent experiments.

827

828 **Supplementary Fig. 6. Effect of mutation in each of the gB N-glycosylation sites on**
829 **viral susceptibility to neutralization by human γ -globulins.** 100 PFU of wild-type
830 HSV-1(F) or each of the gB mutant viruses were incubated with 0.041 mg/mL human γ -
831 globulins at 37°C for 1 h, and then inoculated onto Vero cell monolayers for plaque assays.
832 The percentage of neutralization was calculated from the number of plaques formed by
833 each of the viruses that were incubated with or without human γ -globulins as follows:
834 $100 \times [1 - (\text{number of plaques after incubation with human } \gamma\text{-globulins}) / (\text{number of plaques}$
835 $\text{after incubation without human } \gamma\text{-globulins})]$. Each value is the mean \pm standard error of
836 the results of 6 independent experiments. The statistical analysis was performed by one-
837 way ANOVA followed by the Dunnett multiple comparisons test. n.s., not significant.

838

839 **Supplementary Fig. 7. Depletion of gB or gD antibodies from pooled human γ -**

840 **globulins.** (A) Schematic diagram of depletion of gB or gD antibodies from human γ -

841 globulins. Vero cells were infected with wild-type HSV-1(F), YK717 (gB-SE), or YK718

842 (gD-SE) at an MOI of 0.5 for 24 h. The cells were then lysed and incubated with Strep-

843 Tactin Sepharose beads. For mock-depletion, human γ -globulins (0.082 and 3.04 mg/mL

844 for neutralizing and ADCC assays, respectively) were incubated with Strep-Tactin

845 Sepharose beads previously incubated with the lysate of HSV-1(F)-infected cells. For

846 depletion of gB or gD antibodies from human γ -globulins, human γ -globulins were

847 incubated with gB-SE or gD-SE immobilized on Strep-Tactin Sepharose beads. (B) The

848 Strep-Tactin Sepharose beads reacted with lysates of infected cells as described in A were

849 divided into 2 aliquots. One aliquot was analyzed by electrophoresis in a denaturing gel

850 and stained with Coomassie brilliant blue (CBB) (left gel), and the other aliquot was

851 analyzed by immunoblotting with anti-strep antibody (right gel). (C to E) HEK293FT

852 cells were transfected with pcDNA3.1-tagRFP-P2A-stop, pcDNA3.1-gB-P2A-tagRFP,

853 or pcDNA3.1-gD-P2A-tagRFP, encoding tagRFP-P2A-stop, gB-P2A-tagRFP, or gD-

854 P2A-tagRFP, respectively (C). At 48 h post-transfection, cells were incubated with mock-

855 depleted human γ -globulins (mock-depleted) or human γ -globulins depleted with anti-

856 gB-SE (anti-gB depleted) or anti-gD-SE (anti-gD depleted), and tagRFP+ cells were

857 analyzed (D and E). The data are representative of 3 independent experiments (B and D).

858 anti, α .

859

860 **Supplementary Fig. 8. Effect of N-glycan at gB Asn-141 on cell surface expression**

861 **of gB in HSV-1-infected cells.** (A) Vero cells were infected with wild-type HSV-1(F),

862 gB-N141Q, gB-N141Q-repair, Δ gB, or Δ gB-repair at an MOI of 1. At 24 h post-infection,

863 cell surface expression (left panel) and total expression (right panel) of gB in infected

864 cells were analyzed by flow cytometry. (B) Quantitative bar graph of the cell surface

865 expression of gB shown in (A). The relative amount of expression of gB on the cell

866 surface was calculated as follows: [(mean fluorescent intensity for gB expression on the

867 surfaces of cells infected with the indicated virus) – (mean fluorescent intensity for gB

868 expression on the surfaces of cells infected with Δ gB)]/[(mean fluorescent intensity for

869 total gB expression in cells infected with the indicated virus) – (mean fluorescent

870 intensity for total gB expression in cells infected with Δ gB)]. (C) Vero cells infected with

871 wild-type HSV-1(F), gB-N141Q, or gB-N141Q-repair at an MOI of 5 for 18 h were fixed,

872 permeabilized, stained with antibody to gB, and examined by confocal microscopy. Scale

873 bars = 2 μ m. The data are representative of 3 independent experiments (A and C). Each

874 value is the mean \pm standard error of the results of 3 independent experiments (B).

875 Statistical analysis was performed by one-way ANOVA followed by the Tukey test. n.s.,

876 not significant (B).

877

878 **Supplementary Fig. 9. Bar graphs showing effects of N-glycan shield at gB Asn-141**

879 **on the antigenicity of gB in the prefusion state.** Bar graphs showing Δ ASA values (> 5

880 \AA^2) for each of the protomers of the gB trimer in the prefusion state. Abbreviations of the

881 amino acids residues mapped to FR2 and FR3 (20, 21) are colored in green and orange,

882 respectively.

883

884

REFERENCES

- 885 1. D. M. Knipe *et al.*, "Herpes Simplex Viruses: Mechanisms of Lytic and Latent
886 infection" in Fields virology, P. M. Howley *et al.*, Eds. (Lippincott-Williams & Wilkins,
887 Philadelphia, PA, 2022), vol. 2, chap. 9, pp. 235-296.
- 888 2. B. Roizman, D. M. Knipe, R. J. Whitley, "Herpes simplex viruses" in Fields virology,
889 D. M. Knipe *et al.*, Eds. (Lippincott-Williams & Wilkins, Philadelphia, PA, 2013), pp.
890 1823-1897.
- 891 3. D. M. Knipe *et al.*, "Herpes Simplex Viruses: Pathogenesis and Clinical Insights" in
892 Fields virology, P. M. Howley *et al.*, Eds. (Lippincott-Williams & Wilkins,
893 Philadelphia, PA, 2022), vol. 2, chap. 10, pp. 297-323.
- 894 4. R. Krishnan, P. M. Stuart, Developments in Vaccination for Herpes Simplex Virus.
895 *Frontiers in microbiology* **12**, 798927 (2021).
- 896 5. S. Awasthi, H. M. Friedman, An mRNA vaccine to prevent genital herpes.
897 *Translational research : the journal of laboratory and clinical medicine* **242**, 56-65
898 (2022).
- 899 6. R. B. Belshe *et al.*, Efficacy results of a trial of a herpes simplex vaccine. *The New
900 England journal of medicine* **366**, 34-43 (2012).
- 901 7. R. B. Belshe *et al.*, Correlate of immune protection against HSV-1 genital disease in
902 vaccinated women. *The Journal of infectious diseases* **209**, 828-836 (2014).
- 903 8. S. Awasthi, R. B. Belshe, H. M. Friedman, Better neutralization of herpes simplex
904 virus type 1 (HSV-1) than HSV-2 by antibody from recipients of GlaxoSmithKline
905 HSV-2 glycoprotein D2 subunit vaccine. *The Journal of infectious diseases* **210**, 571-
906 575 (2014).
- 907 9. S. Kohl *et al.*, Neonatal antibody-dependent cellular cytotoxic antibody levels are
908 associated with the clinical presentation of neonatal herpes simplex virus infection.
909 *The Journal of infectious diseases* **160**, 770-776 (1989).
- 910 10. D. J. Vigerust, V. L. Shepherd, Virus glycosylation: role in virulence and immune
911 interactions. *Trends in microbiology* **15**, 211-218 (2007).
- 912 11. N. R. Truong, J. B. Smith, K. J. Sandgren, A. L. Cunningham, Mechanisms of
913 Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design.
914 *Frontiers in immunology* **10**, 373 (2019).
- 915 12. S. A. Connolly, T. S. Jardetzky, R. Longnecker, The structural basis of herpesvirus
916 entry. *Nature reviews. Microbiology* **19**, 110-121 (2021).

917 13. B. K. Tischer, J. von Einem, B. Kaufer, N. Osterrieder, Two-step red-mediated
918 recombination for versatile high-efficiency markerless DNA manipulation in
919 *Escherichia coli*. *BioTechniques* **40**, 191-197 (2006).

920 14. K. Miyazaki, Molecular engineering of a PheS counterselection marker for improved
921 operating efficiency in *Escherichia coli*. *BioTechniques* **58**, 86-88 (2015).

922 15. C. James *et al.*, Herpes simplex virus: global infection prevalence and incidence
923 estimates, 2016. *Bulletin of the World Health Organization* **98**, 315-329 (2020).

924 16. K. S. Erlich, R. D. Dix, J. Mills, Prevention and treatment of experimental herpes
925 simplex virus encephalitis with human immune serum globulin. *Antimicrobial
926 agents and chemotherapy* **31**, 1006-1009 (1987).

927 17. S. Kohl, N. C. Strynadka, R. S. Hodges, L. Pereira, Analysis of the role of antibody-
928 dependent cellular cytotoxic antibody activity in murine neonatal herpes simplex
929 virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal
930 antibodies to glycoprotein B. *The Journal of clinical investigation* **86**, 273-278 (1990).

931 18. B. Vollmer *et al.*, The prefusion structure of herpes simplex virus glycoprotein B.
932 *Science advances* **6** (2020).

933 19. L. Kong *et al.*, Expression-system-dependent modulation of HIV-1 envelope
934 glycoprotein antigenicity and immunogenicity. *Journal of molecular biology* **403**, 131-
935 147 (2010).

936 20. F. C. Bender *et al.*, Antigenic and mutational analyses of herpes simplex virus
937 glycoprotein B reveal four functional regions. *Journal of virology* **81**, 3827-3841
938 (2007).

939 21. D. Atanasiu *et al.*, Bimolecular complementation defines functional regions of Herpes
940 simplex virus gB that are involved with gH/gL as a necessary step leading to cell
941 fusion. *Journal of virology* **84**, 3825-3834 (2010).

942 22. E. Lin, P. G. Spear, Random linker-insertion mutagenesis to identify functional
943 domains of herpes simplex virus type 1 glycoprotein B. *Proceedings of the National
944 Academy of Sciences of the United States of America* **104**, 13140-13145 (2007).

945 23. Q. Fan, E. Lin, T. Satoh, H. Arase, P. G. Spear, Differential effects on cell fusion
946 activity of mutations in herpes simplex virus 1 glycoprotein B (gB) dependent on
947 whether a gD receptor or a gB receptor is overexpressed. *Journal of virology* **83**, 7384-
948 7390 (2009).

949 24. J. R. Gallagher *et al.*, Functional fluorescent protein insertions in herpes simplex
950 virus gB report on gB conformation before and after execution of membrane fusion.
951 *PLoS pathogens* **10**, e1004373 (2014).

952 25. I. Bagdonaitė, S. Y. Vakhrushev, H. J. Joshi, H. H. Wandall, Viral glycoproteomes:
953 technologies for characterization and outlook for vaccine design. *FEBS letters* **592**,
954 3898-3920 (2018).

955 26. S. Luo *et al.*, Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and
956 viral entry. *Virology* **483**, 72-82 (2015).

957 27. M. Vallbracht, B. G. Klupp, T. C. Mettenleiter, Influence of N-glycosylation on
958 Expression and Function of Pseudorabies Virus Glycoprotein gB. *Pathogens (Basel, Switzerland)* **10** (2021).

960 28. Y. Maruzuru *et al.*, Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent
961 Inflammasome Activation to Enable Efficient Viral Replication. *Cell host & microbe*
962 **23**, 254-265 e257 (2018).

963 29. A. Kato *et al.*, Identification of a herpes simplex virus 1 gene encoding neurovirulence
964 factor by chemical proteomics. *Nature communications* **11**, 4894 (2020).

965 30. M. Tanaka, H. Kagawa, Y. Yamanashi, T. Sata, Y. Kawaguchi, Construction of an
966 excisable bacterial artificial chromosome containing a full-length infectious clone of
967 herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type
968 properties in vitro and in vivo. *Journal of virology* **77**, 1382-1391 (2003).

969 31. Y. Hirohata *et al.*, Interactome analysis of herpes simplex virus 1 envelope
970 glycoprotein H. *Microbiology and immunology* **59**, 331-337 (2015).

971 32. Y. Maruzuru, N. Koyanagi, A. Kato, Y. Kawaguchi, Role of the DNA Binding Activity
972 of Herpes Simplex Virus 1 VP22 in Evading AIM2-Dependent Inflammasome
973 Activation Induced by the Virus. *Journal of virology* **95** (2020).

974 33. J. Arii *et al.*, Role of the Arginine Cluster in the Disordered Domain of Herpes
975 Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary
976 Envelopment. *Journal of virology* **96**, e0170421 (2022).

977 34. K. Sugimoto *et al.*, Simultaneous tracking of capsid, tegument, and envelope protein
978 localization in living cells infected with triply fluorescent herpes simplex virus 1.
979 *Journal of virology* **82**, 5198-5211 (2008).

980 35. R. Zufferey, D. Nagy, R. J. Mandel, L. Naldini, D. Trono, Multiply attenuated
981 lentiviral vector achieves efficient gene delivery in vivo. *Nature biotechnology* **15**,
982 871-875 (1997).

983 36. A. Kato *et al.*, Identification of a physiological phosphorylation site of the herpes
984 simplex virus 1-encoded protein kinase Us3 which regulates its optimal catalytic
985 activity in vitro and influences its function in infected cells. *Journal of virology* **82**,
986 6172-6189 (2008).

987 37. A. Kato *et al.*, Roles of the Phosphorylation of Herpes Simplex Virus 1 UL51 at a
988 Specific Site in Viral Replication and Pathogenicity. *Journal of virology* **92** (2018).

989 38. T. Satoh *et al.*, PILRalpha is a herpes simplex virus-1 entry coreceptor that associates
990 with glycoprotein B. *Cell* **132**, 935-944 (2008).

991 39. Y. Kawaguchi, C. Van Sant, B. Roizman, Herpes simplex virus 1 alpha regulatory
992 protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. *Journal*
993 *of virology* **71**, 7328-7336 (1997).

994 40. T. Imai *et al.*, Role of the herpes simplex virus 1 Us3 kinase phosphorylation site and
995 endocytosis motifs in the intracellular transport and neurovirulence of envelope
996 glycoprotein B. *Journal of virology* **85**, 5003-5015 (2011).

997 41. J. Arii *et al.*, Roles of the Interhexamer Contact Site for Hexagonal Lattice Formation
998 of the Herpes Simplex Virus 1 Nuclear Egress Complex in Viral Primary
999 Envelopment and Replication. *Journal of virology* **93** (2019).

1000 42. K. Sagou, T. Imai, H. Sagara, M. Uema, Y. Kawaguchi, Regulation of the catalytic
1001 activity of herpes simplex virus 1 protein kinase Us3 by autophosphorylation and its
1002 role in pathogenesis. *Journal of virology* **83**, 5773-5783 (2009).

1003 43. S. J. Park *et al.*, CHARMM-GUI Glycan Modeler for modeling and simulation of
1004 carbohydrates and glycoconjugates. *Glycobiology* **29**, 320-331 (2019).

1005 44. S. Jo, T. Kim, V. G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface
1006 for CHARMM. *Journal of computational chemistry* **29**, 1859-1865 (2008).

1007 45. B. R. Brooks *et al.*, CHARMM: the biomolecular simulation program. *Journal of*
1008 *computational chemistry* **30**, 1545-1614 (2009).

1009 46. M. D. Winn, A. W. Ashton, P. J. Briggs, C. C. Ballard, P. Patel, Ongoing developments
1010 in CCP4 for high-throughput structure determination. *Acta crystallographica.*
1011 *Section D, Biological crystallography* **58**, 1929-1936 (2002).

1012 47. R. A. Urbanowicz *et al.*, Antigenicity and Immunogenicity of Differentially
1013 Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and
1014 Insect Cells. *Journal of virology* **93** (2019).

1015

1016

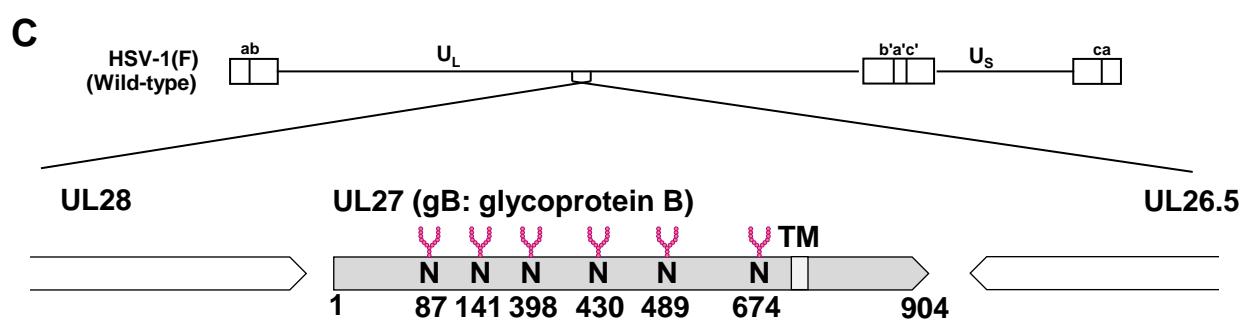
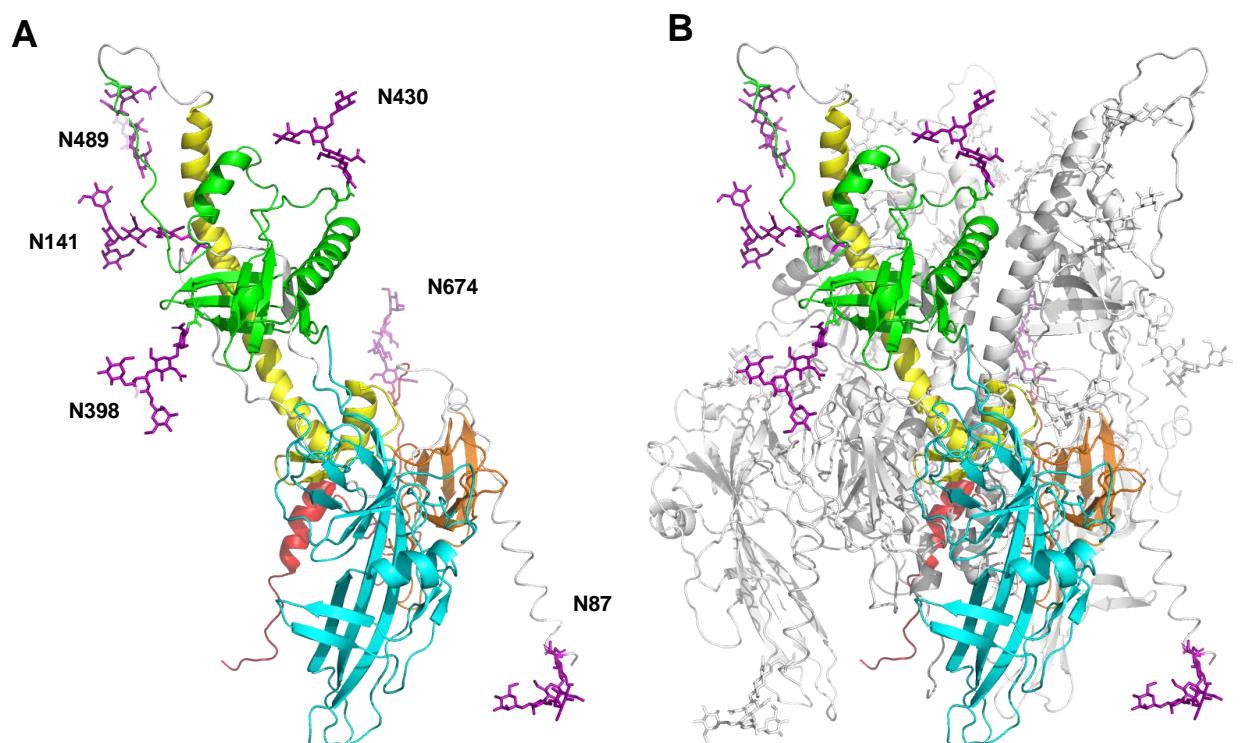



Fig.1 A. Fukui and Y. Maruzuru et al.

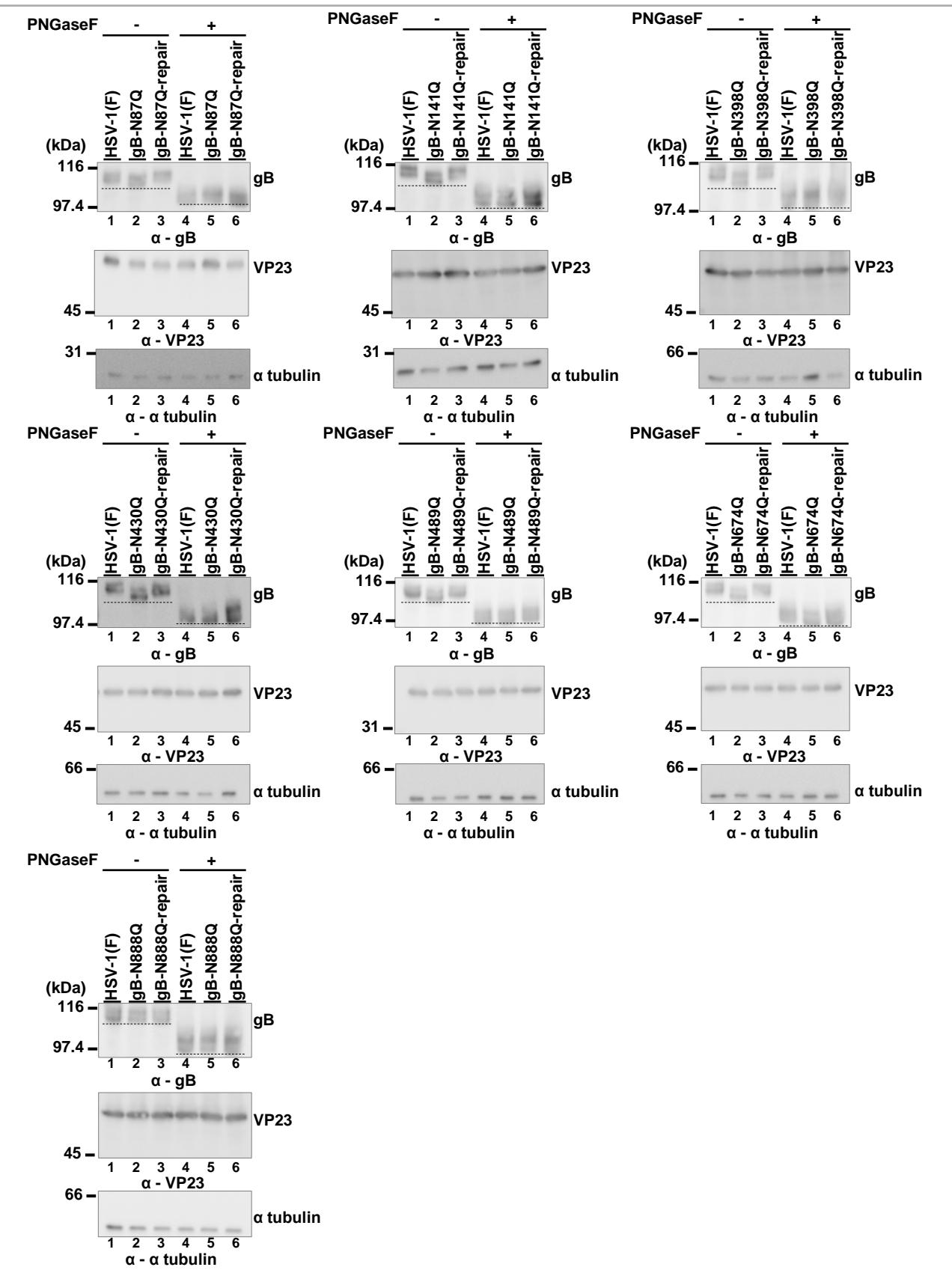


Fig.2 A. Fukui and Y. Maruzuru et al.

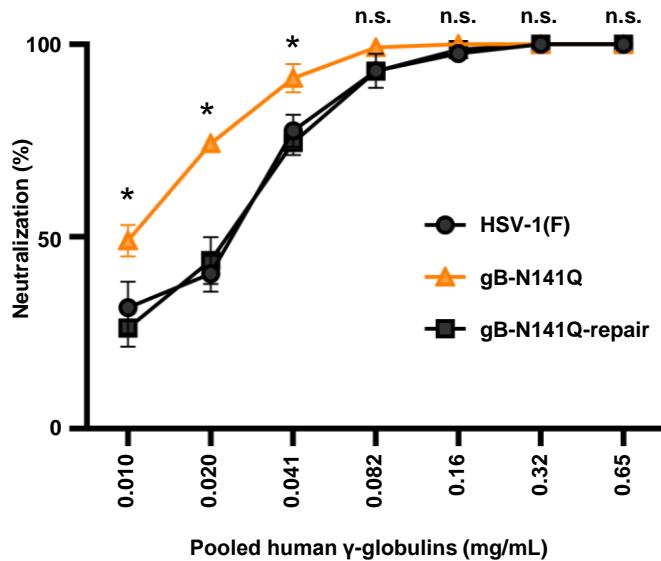
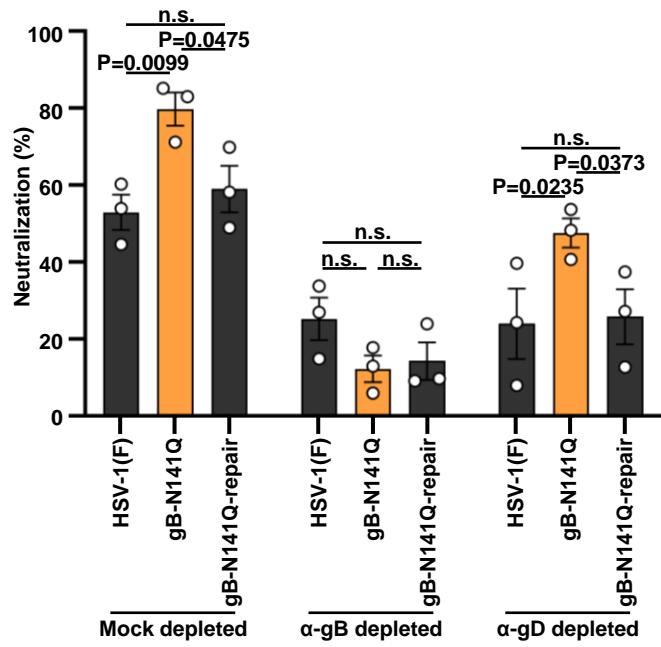
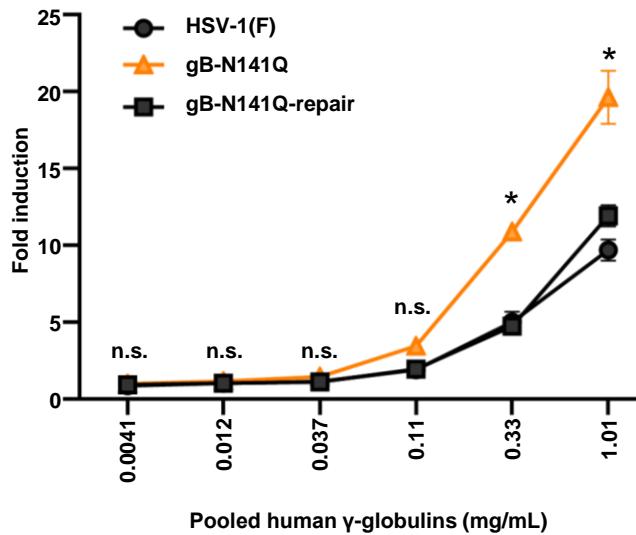
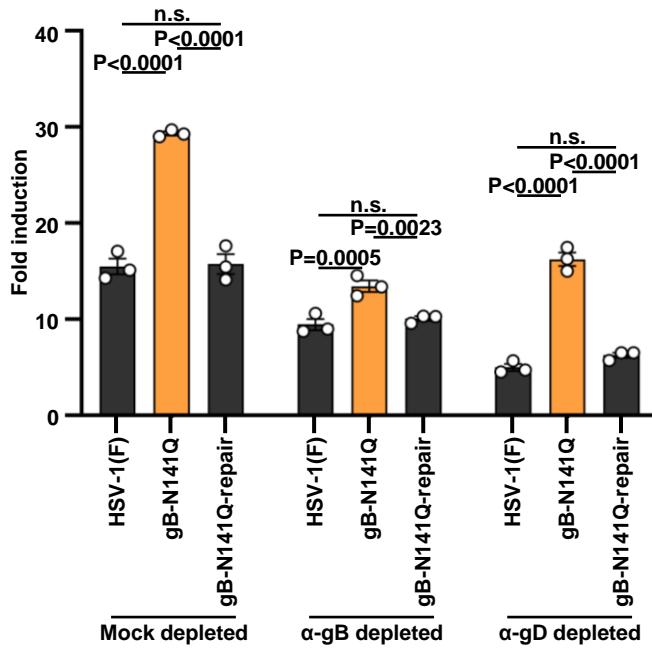




A**B**

Fig.3 A. Fukui and Y. Maruzuru et al.

A**B****Fig.4 A. Fukui and Y. Maruzuru et al.**

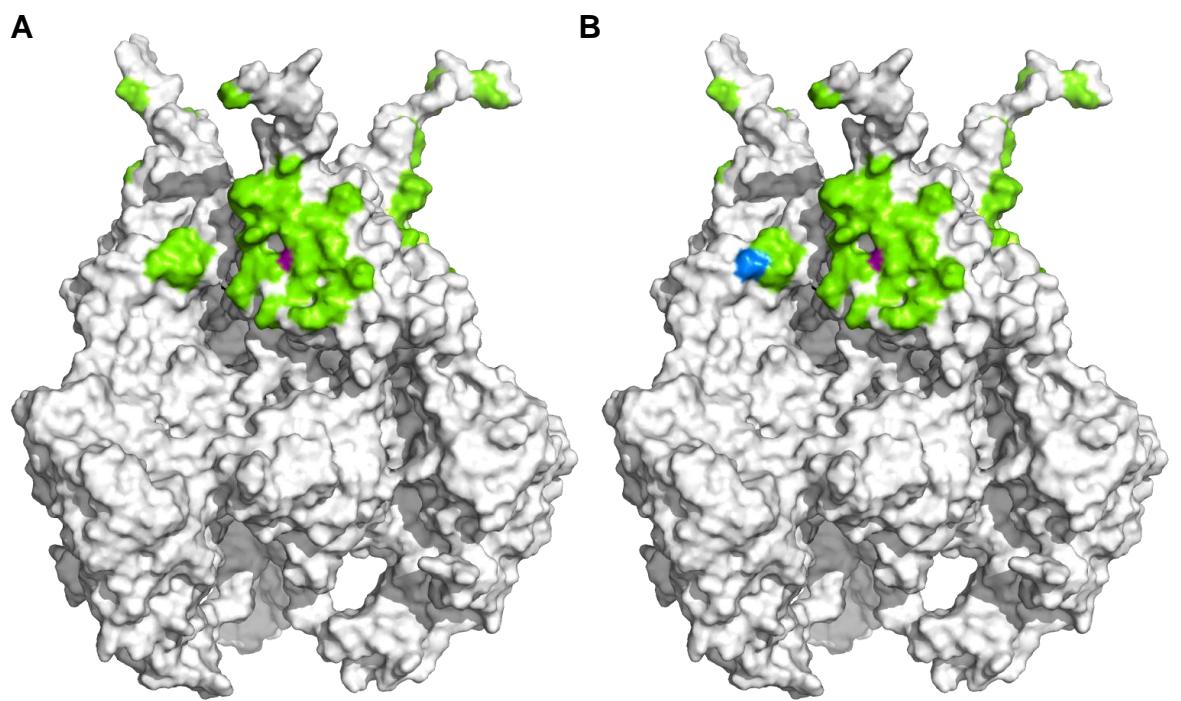


Fig.5 A. Fukui and Y. Maruzuru et al.

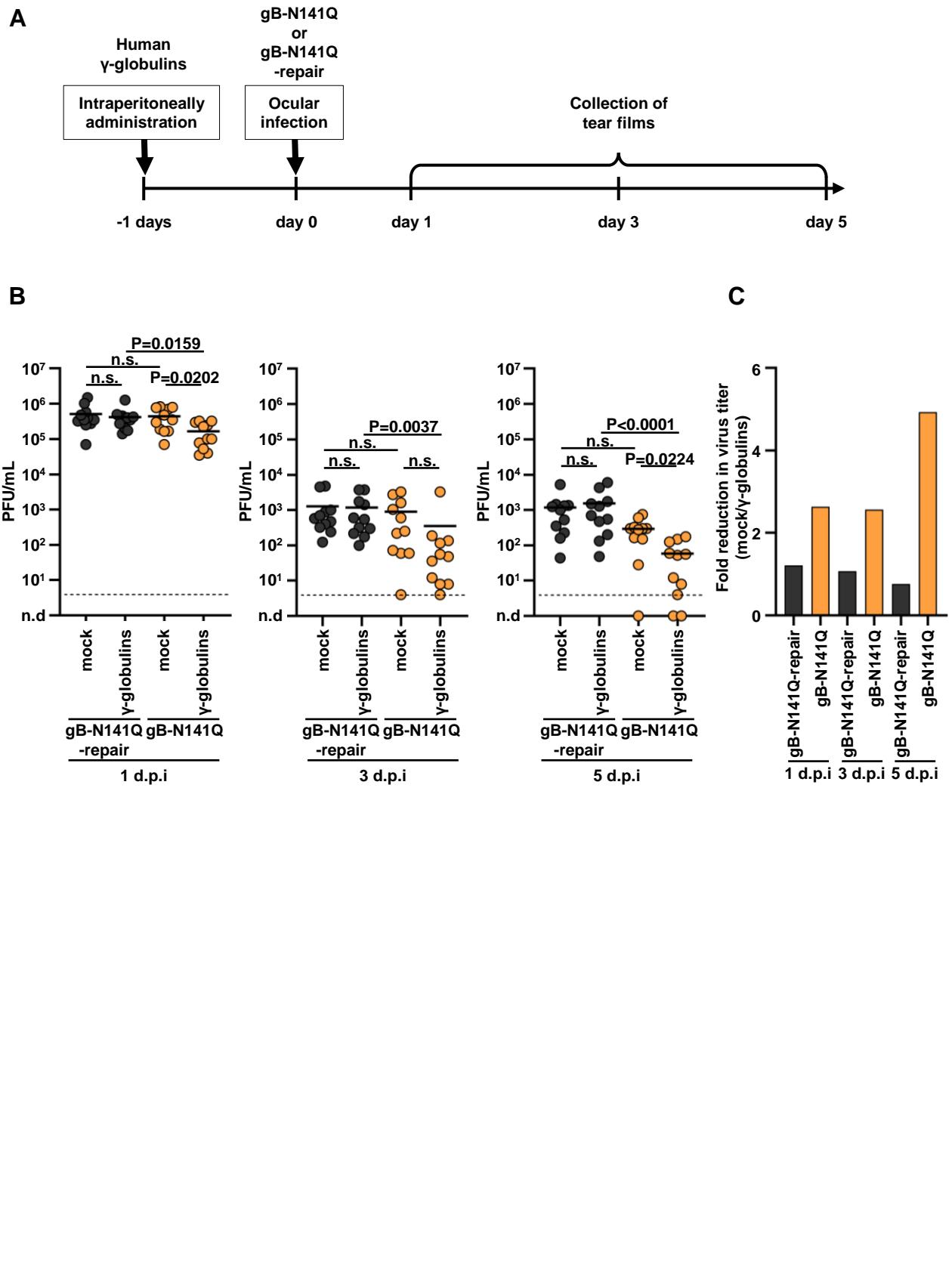
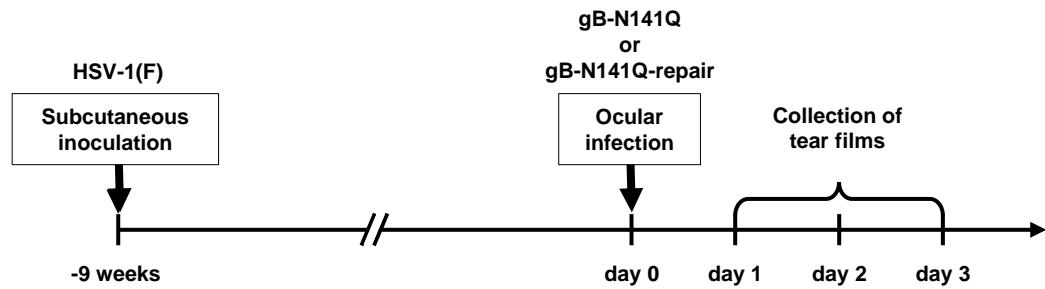
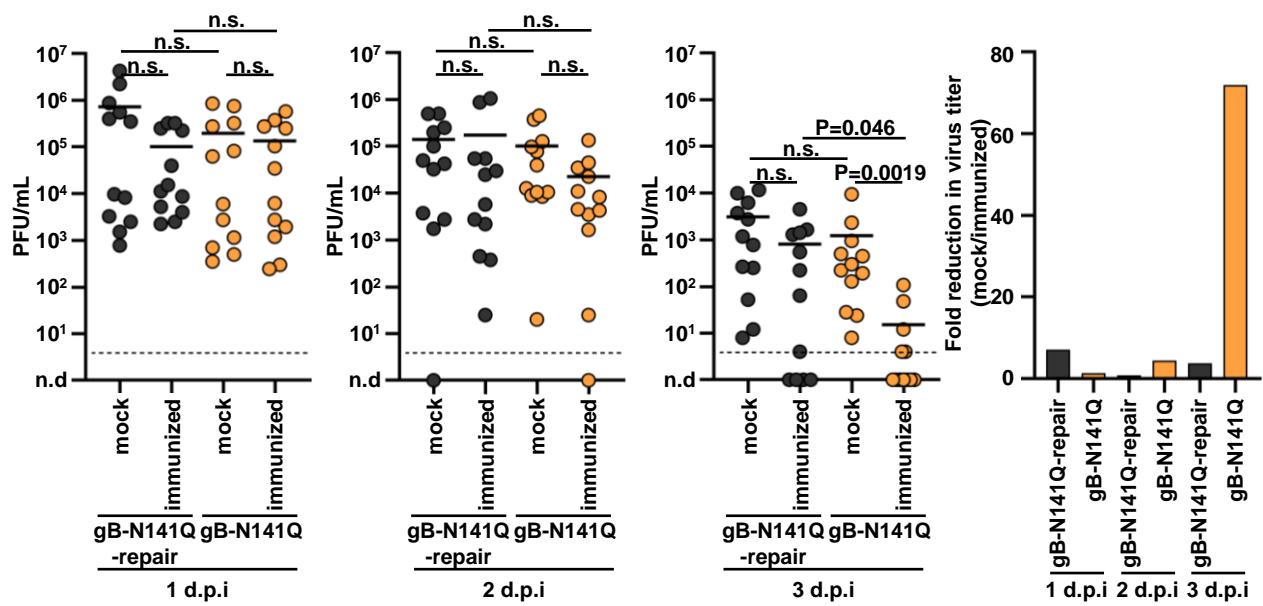
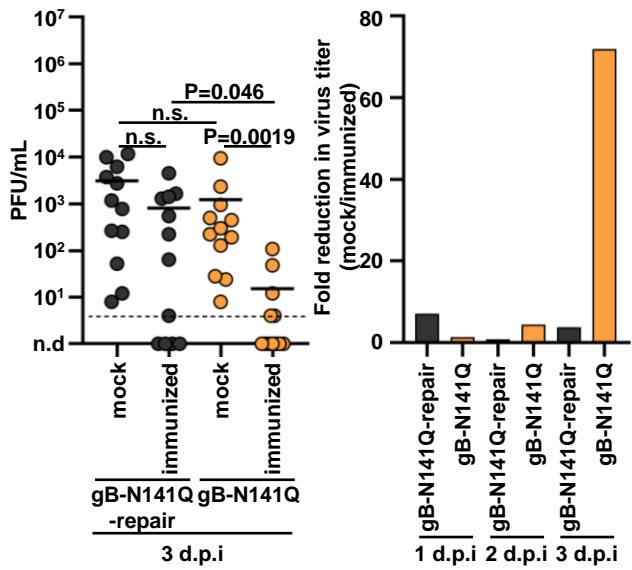
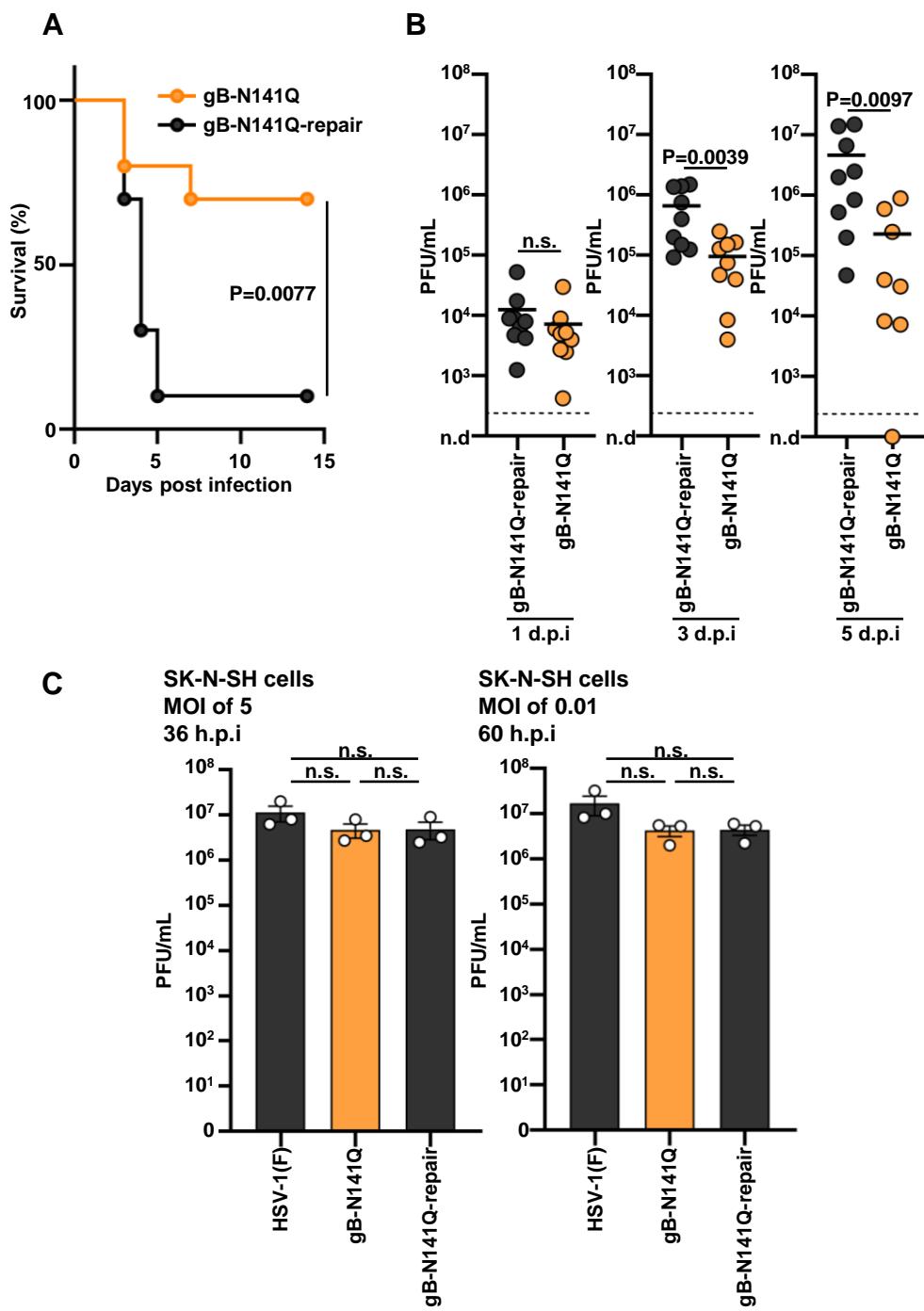
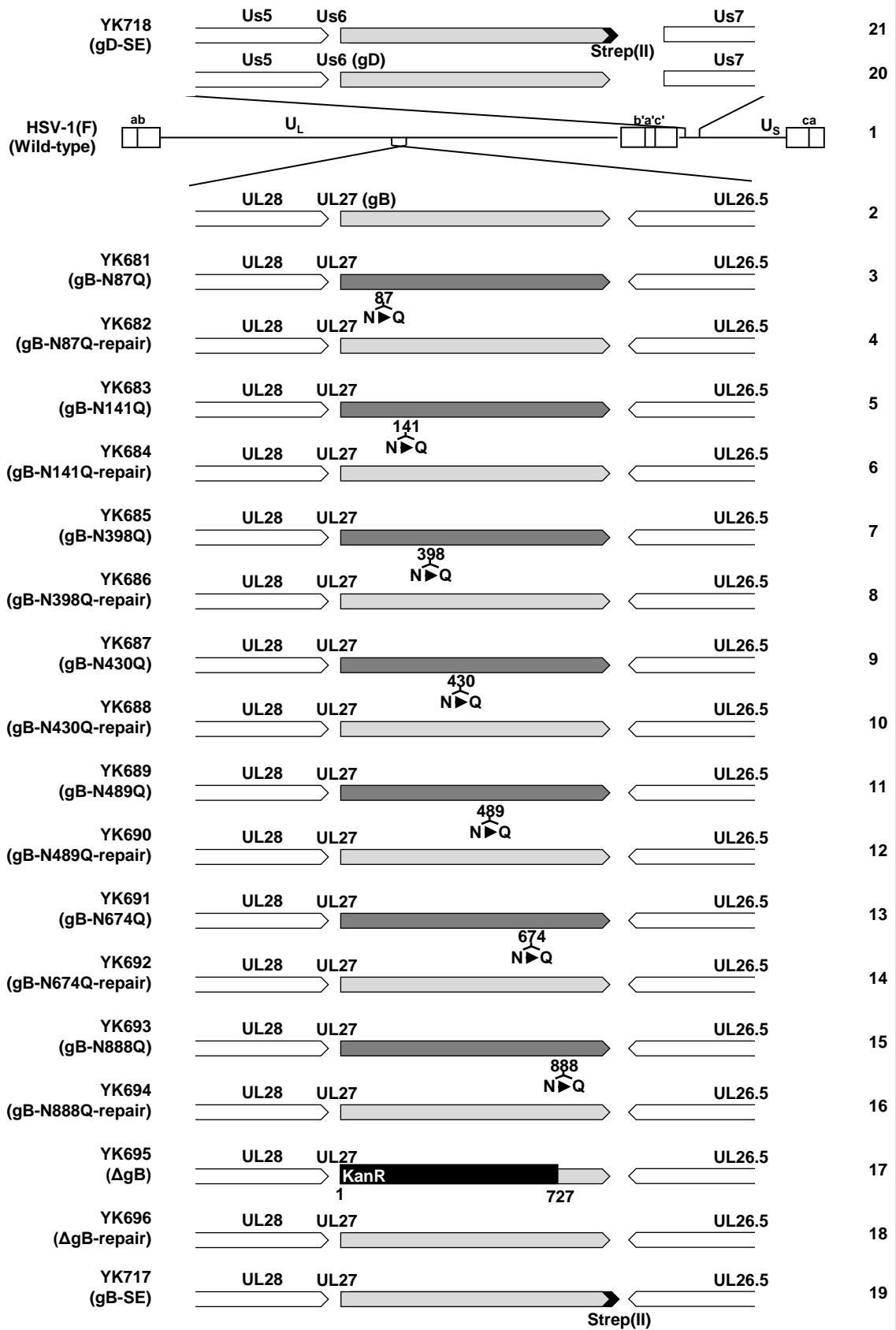
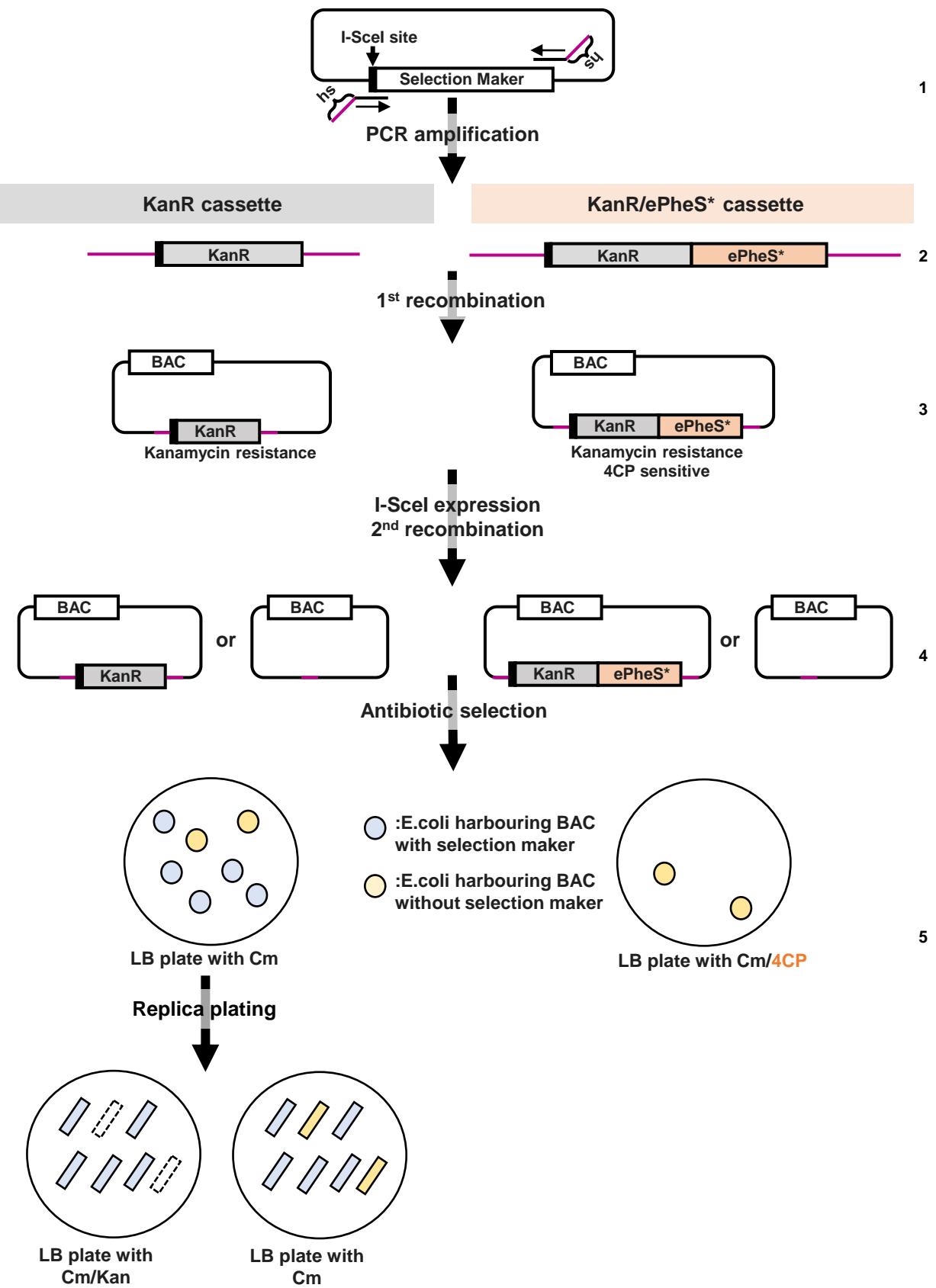
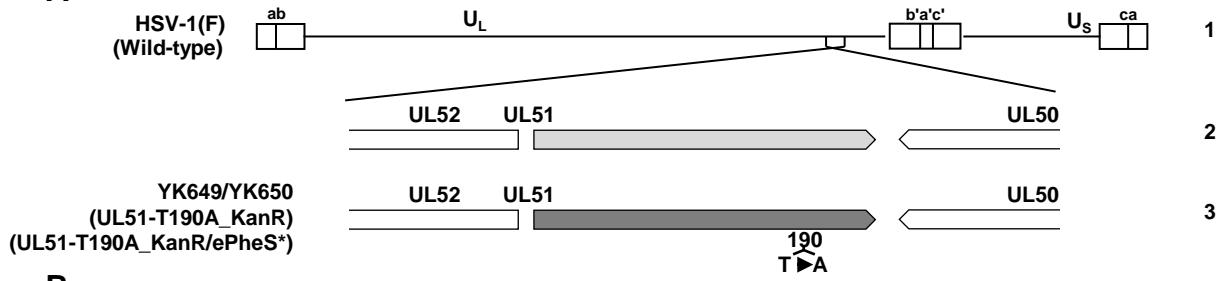
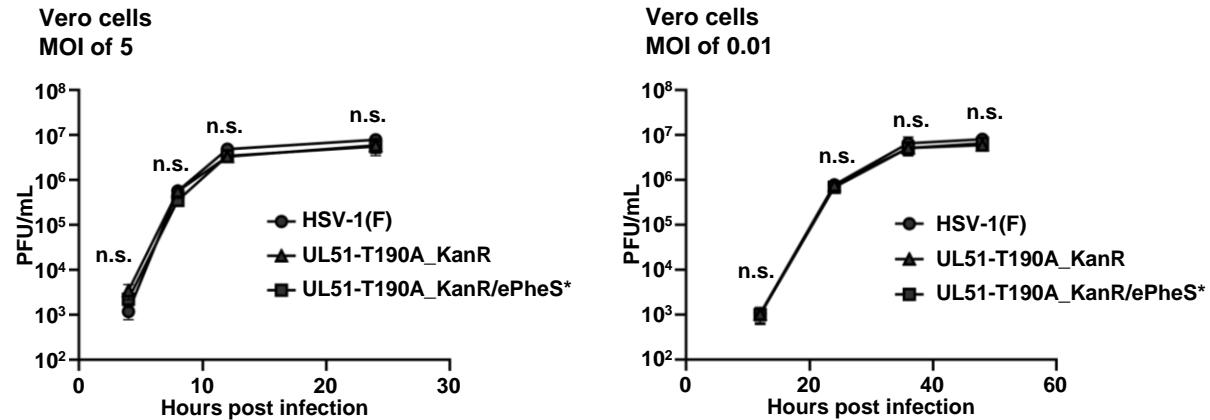
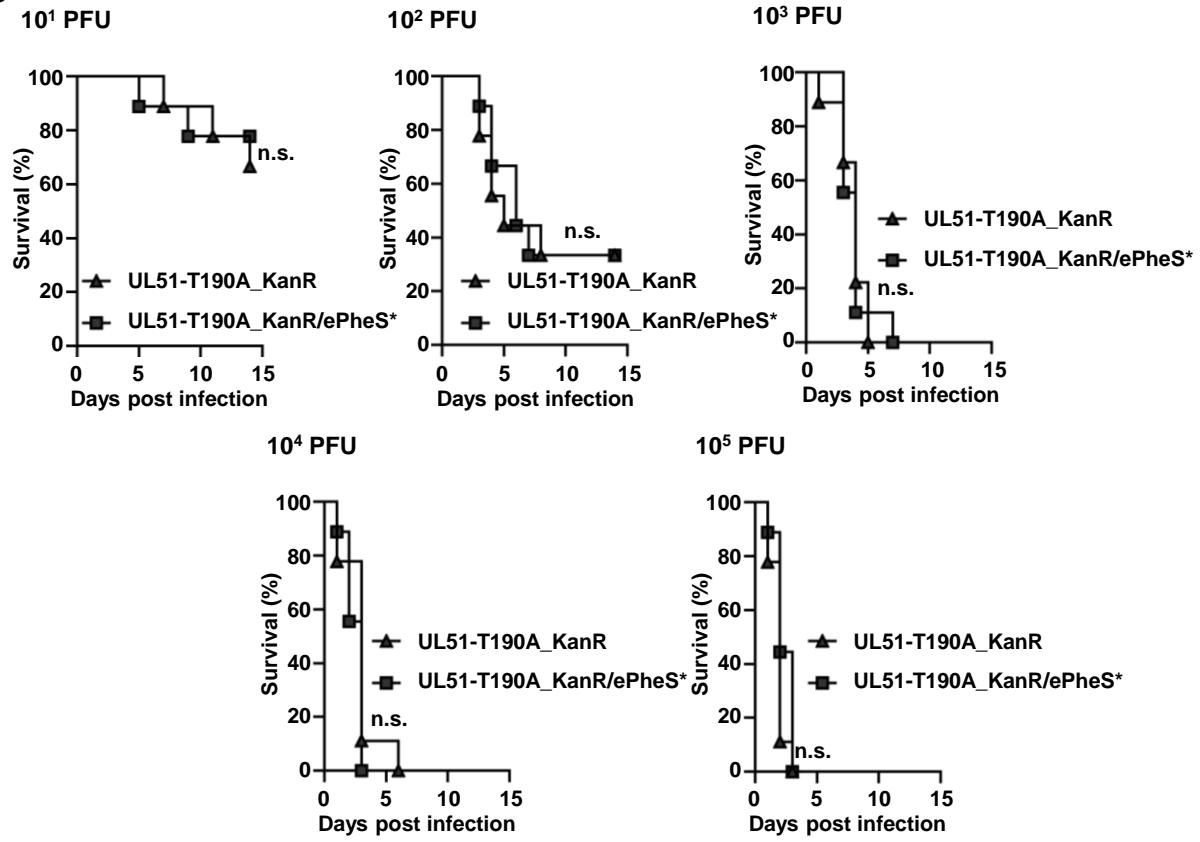
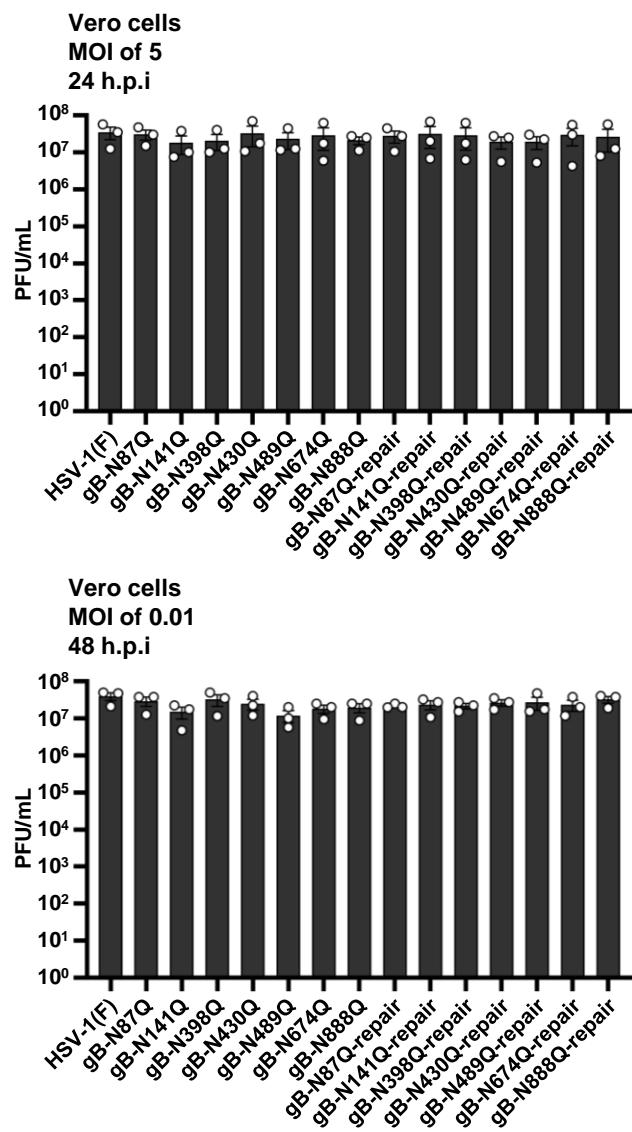





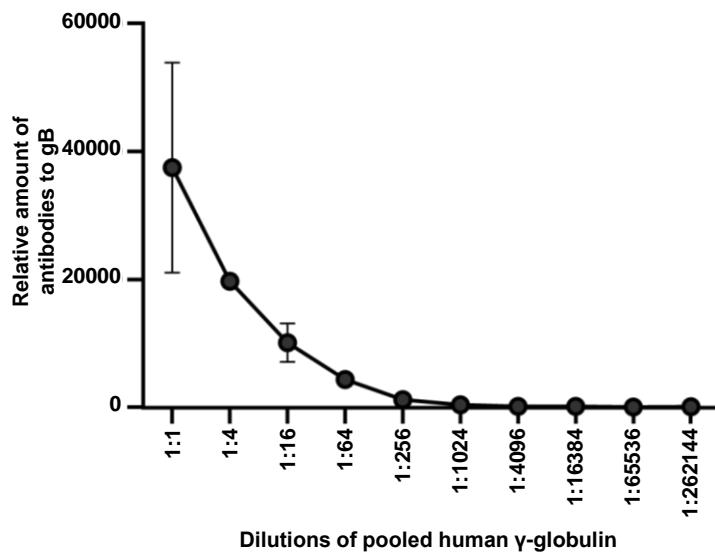
Fig.6 A. Fukui and Y. Maruzuru et al.

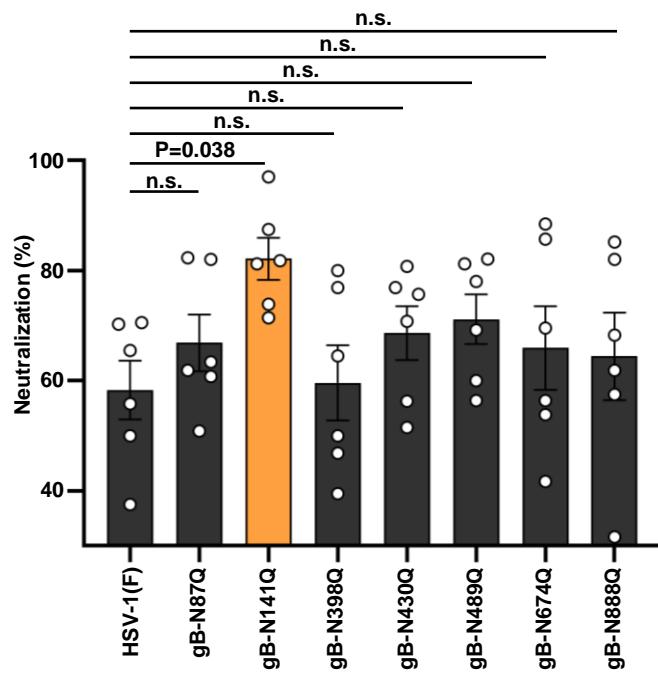
A**B****C****Fig.7 A. Fukui and Y. Maruzuru et al.**

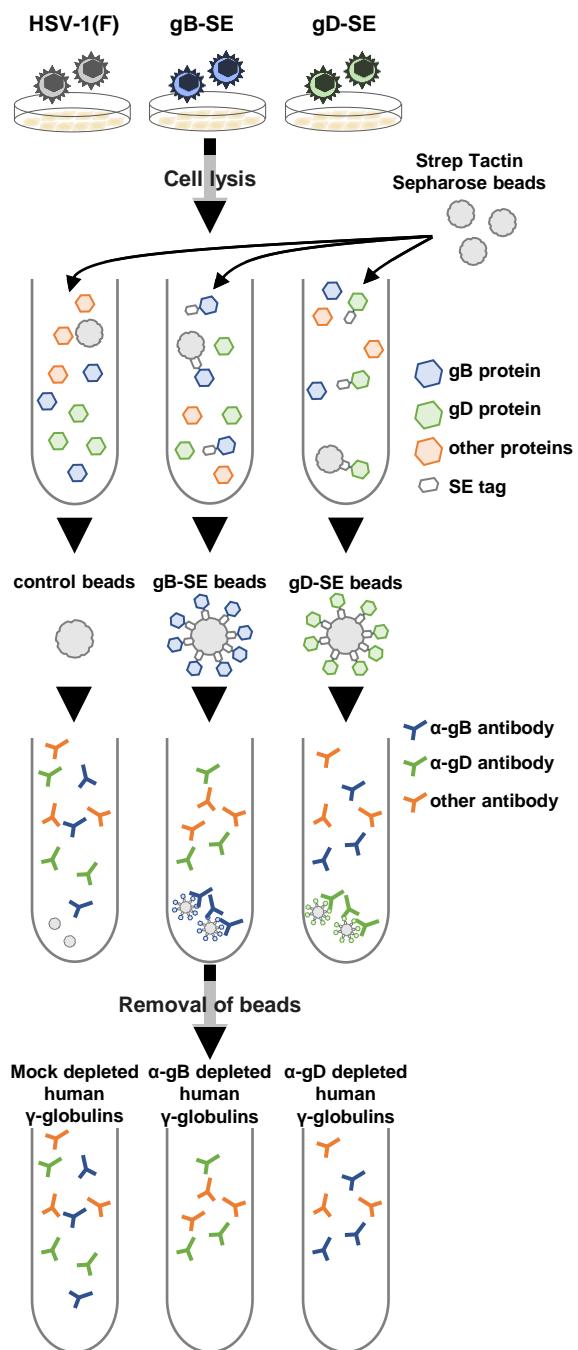
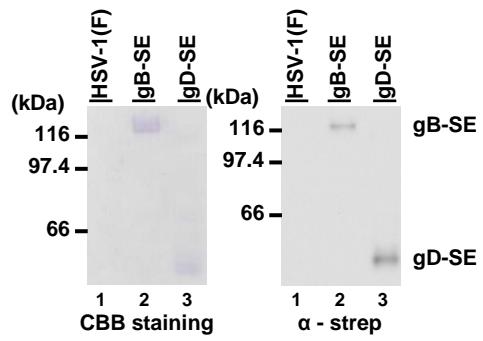
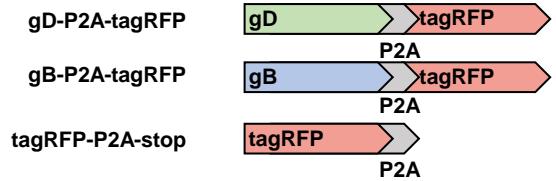
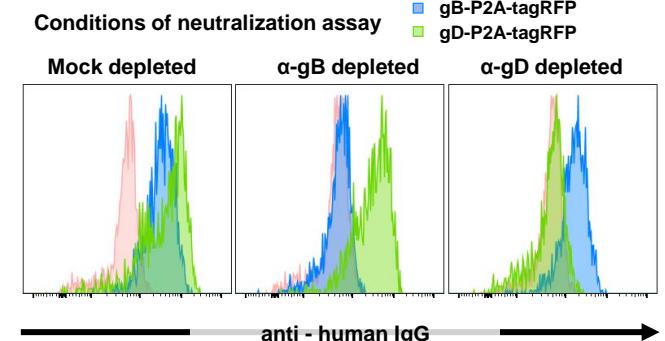
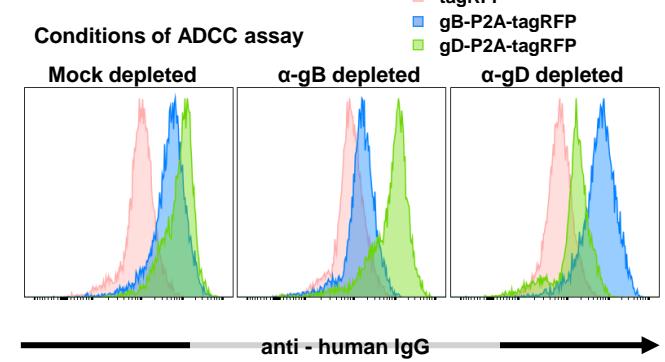



Fig.8 A. Fukui and Y. Maruzuru et al.

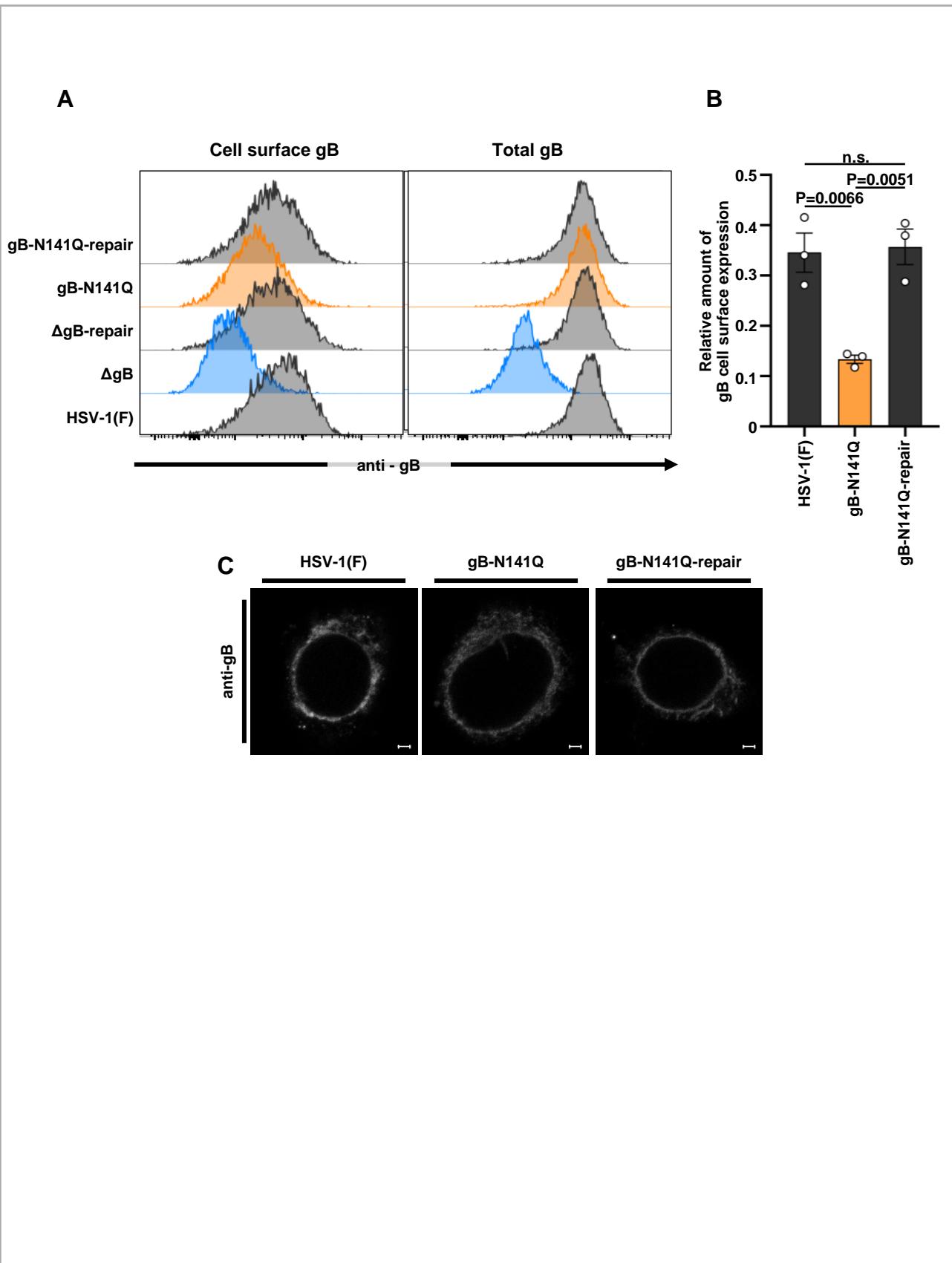


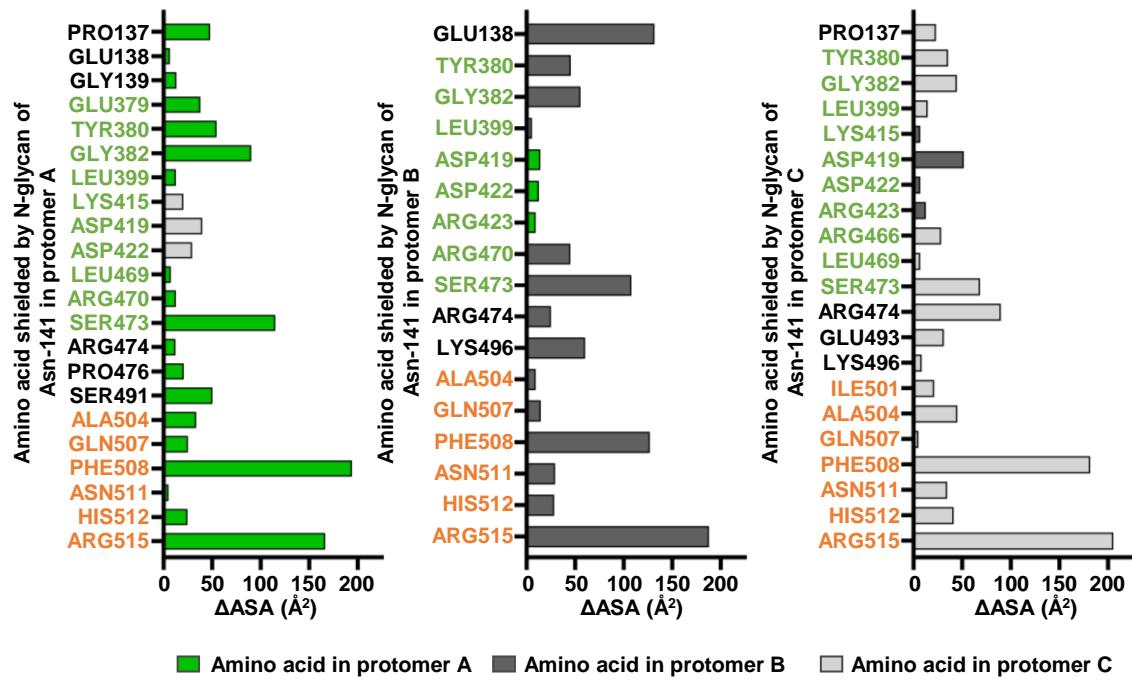

Supplementary Fig.1 A. Fukui and Y. Maruzuru et al.



Supplementary Fig.2 A. Fukui and Y. Maruzuru et al.






A**B****C**





Supplementary Fig.6 A. Fukui and Y. Maruzuru et al.

A**B****C****D****E**

Supplementary Fig.8 A. Fukui and Y. Maruzuru et al.

Supplementary Fig.9 A. Fukui and Y. Maruzuru et al.

Supplementary Table 1A. Efficiency of two-step Red-mediated recombination with ePheS* cassette

Mutation inserted into pYEbacC102Cre	Selection cassette	Selection cassette insertion ^a	Selection cassette excision ^b	
			Selection plate	
Alanine substitution of UL51 T190	KanR	18/20 (90%)	Cm	4/23 (17.4%)
	KanR/ePheS*	15/20 (75.0%)	Cm/4CP	20/23 (87.0%)
Deletion of UL54, codons 1-513	KanR	14/15 (93.3%)	Cm	4/23 (17.4%)
	KanR/ePheS*	12/15 (80.0%)	Cm/4CP	18/19 (94.7%)
Insertion of Flag-tag to N-terminus of ICP22	KanR	13/15 (86.7%)	Cm	2/23 (8.7%)
	KanR/ePheS*	13/15 (86.7%)	Cm/4CP	20/23 (87.0%)

^aAs determined by colony PCR. Selection cassette inserted colonies/total colonies

^bAs determined by colony PCR. Colonies without selection cassette as desired/total colonies

Supplementary Table 1B Oligonucleotide sequences and DNA templates for the construction of plasmids

Constructed plasmid	Oligonucleotide sequence (5'-3')	PCR DNA template	Recipient plasmid	
PBS-KanR-ePheS*	5'-GCGATATCAGGATGACGACGATAAGTAG-3'	pEP-KanS (13)	pBluescript II KS(+) (Stratagene)	
	5'-TCCCGTTGAATATGGCTCATAACACCCCTGTATTACTGTTTATG-3'			
	5'-CATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGA-3'	pUC18 K ePAG2 (14)		
	5'-GCGCGGGCCGCTGCAAGCAGCAGATTACGCG-3'			
pBS-TEV-2xStrep-KanS	5'-GCGAATTCGGAGGTTCAGAGAATTGTATTTCAAGGGTGTAGCTGGTGTATCCTCAATTGAGAAGGGTGGAGGTGCCGAGGTGGAGGATGACGACGATAAGTAGGG-3'	pEP-KanS (13)	pBluescript II KS(+) (Stratagene)	
	5'-GCGGATCCTTTTCAACTGCGGGTGGCTCCACGATCCACCTCCGATCCACCTCGGGCACCTCACCCCTCTCAAATTGAGGATGACCAACCAATTAAACCAATTCTGATTAG-3'			
pcDNA3.1 -tagRFP-P2A	5'-GCGGATCGCCACCATGGGTCTAAGGGCGAAGA-3'	pTagR FP-N1 (33)	pcDNA3.1 (Invitrogen)	
	5'-GCGAATTCAAGGCCGGGGTTTCTTCAACATCTCCTGCTTAAACAGAGAGAAGTTCGTGGCTCCGCTTCAATTAGTTGTGCCCGAGTTG-3'			
pcDNA3.1 -P2A-tagRFP	5'-GCGATATCGGAAGCGGAGGCCACGAACCTCTCTGTAAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGGCCTGTCTAAGGGCGAAGAGCT-3'	pTagR FP-N1 (33)	pcDNA3.1 (Invitrogen)	
	5'-GCGCGGCCGCTCAATTAAAGTTGTGCCCGAGTT-3'			
pcDNA3.1 -tagRFP-P2A-stop	5'-CCCCGGGCCTGAATTCTGAGATATCCAGCACAGTGGCGG-3'	N/A	pcDNA3.1-tagRFP-P2A (This study)	
	5'-CCGCCACTGTGCTGGATATCTCAGAATTCAAGGCCGGGG-3'			
pcDNA3.1	5'-CCAGTGTGGTGGATTGCCACCATCGGCCAGGGCGCCCCGC-3'	HSV-	pcDNA3.1-P2A-	

-gB-P2A-tagRFP	5'-GGCTCCGCTTCCGATCAGGTCGTCCCTCGTCGGCGT-3'	1(F) genom e	tagRFP (This study)
pcDNA3.1 -gD-P2A-tagRFP	5'-CCAGTGTGGTGGATTGCCACCATGGGGGGGGCTGCCGCCAG-3' 5'-GGCTCCGCTTCCGATGTAAAACAAGGGCTGGTGCG-3'	HSV- 1(F) genom e	pcDNA3.1-P2A- tagRFP (This study)

Supplementary Table 1C Summary of synthesized plasmids

Constructed plasmid	Synthesized DNA sequence
pRe troX - TRE 3G- gBo	GGATCCGCCACCATGAGACAGGGAGCACCAGCAAGGGGATGCAGATGGTCGTGGCACTGCTGGGACTGACACTGGCGT GCTGGTGGCCAGCGCCGCCCAAGCTCCCCGGCACCCCTGGCGTGGCGCCGCCACACAGGCCAAGGGCGCCAGGCCAC CCCAGCACCACCTGCACCAGGACCTGCACCAACCGGCACACAAAGCCTAAGAAGAACAGCCTAACAGGCCAAGGGCGCCAGGCCAC GCCAGCAGGCATAATGCAACCGTGGCAGCAGGACACGCCACACTGAGGGAGCACCTGCGCGATATCAAGGCCAGAACACCGGACG CCAATTCTACGTGTGCCAACCTCCAACCGGAGCAACAGTGGTCAGTTGAGCAGCCACGGAGATGTCCTACCGCCAGAGGGCC AGAACTACACAGAGGGCATGCCGTGGTCAAGGAGAACATCGCCCCCTATAAGTTAACGCCACCATGTAACATAAGGACGTGACA GTGTCTCAAGTGTGGTCCGGCACCGGTACAGCCAGTTCATGGGCATCTTGAGGACAGAGCCCCCTGCCCTTGAGGAAGTGATC GATAAGATCAACGCAAAGGGCGTGTGCCGCAGCACCGCCAAGTATGTGCGGAACAATCTGGAGGACACAGCCTCACCGGACGAT CACGAGACAGACATGGAGCTGAAGCCTGCAAATGCAGCAACCAGGACATCCAGGGATGGCACACCACAGATCTGAAGTACAACCCAT CTCGCGTGGAGGCCTCCACCGGTATGGCACCACAGTGAATTGTATCGTGGAGGAGGTGGATGCCAGAAGCGTGTACCCATATGACGA GTTTGTGCTGGCCACCGGCATTCGTGTACATGTCCTTACGGCTATCGGGAGGGCTCCACACCGGACACATCTACGCC GCCGACAGATTCAAGCAGGTGGATGGCTTTATGCCAGAGACCTGACCACAAAGGCAAGGGCAACCGCACCTACCACAAGGAACCTG CTGACCACACCAAAGTTCACAGTGGCATGGACTGGGTGCCAAAGAGGCTTCCGTGCAACCATGACAAAGTGGCAGGAGGTGGAC GAGATGCTGGAGGCGAGTACGGCGCTCCTCAGATTTCTAGCGATGCCATCAGCACCCCTACCACAAACCTGACCGAGTATC CCCTGTCAGAGTGGATCTGGCGACTGTATCGCAAGGATGCCAGAGACGCCATGGATAGGATCTCGCCAGGCGCTACAATGCCAC CCACATCAAGGTCGGCCAGCCCCAGTACTATCTGGCCAACGGCGGCTTCTGATGCCCTACCAGCCTGCTGCAATACCGGCC GAGCTGTATGTGCGGGAGCACCTGAGAGAGCAGTCTAGGAAGCCCCCTAACCCCTACACCACCCCTCAGGAGCAAGGCCAATGCA TCCGTGGAGAGGATCAAGACACATCCTCTATCGAGTCGCCCTGCAGTTACCTATAACCACATCCAGAGGCACGTGAATGACAT GCTGGGAAGGGTGGCAATCGCATGGTGCAGCTGCAGAACACACGAGCTGACCTGTGGAATGAGGCCAGGAAGCTGAACCTAATG CAATCGCAAGGCCACAGTGGCCGGAGAGTGTCCGCCAGGATGCTGGCGACGTGATGCCGTGCTACCTGCGTGCAGTGGCA GCCGATAACGTGATCGTCAGAACATGAGGATCAGCTCCAGGCCAGGAGCATGTTACTCTAGACCCCTGGTGAGCTCAGGTACG AGGACCAAGGGACCACTGGTGGAGGGACAGCTGGCGAGAACATGAGCTGCCCTGACCGAGAGATGCCATCGAGCCTTGACAGTG GGCCACAGGCCTACTTCACCTTGGCGGGCTACGTGTATTTGAGGAGTACGCCATTCTCACAGCTGAGCAGGGCCACATCA CCACAGTGTCCACCTTCATCGACCTGAACATCACATGCTGGAGGATCACGAGTTGTGCCCTGGAGGTGATACCCGGCACGAGAT CAAGGACTCTGGCTGTTGATTATACAGAGGTGCAGCGGAGAACCCAGCTGCACGACCTGAGATTGCCGACATGATACCGTAC CACGCCGATGCCAATGCAGCAATGTTGCAGGACTGGAGCCTTCTTGAGGGAATGGCGATCTGGGAAGGGCAGTGGCAAGGTG GTCATGGGAATCGTGGAGGAGTGGTGTCCGCCGTGCTGGCGTGTCTAGCTTACATGAGCAACCCCTTGGCGCCCTGGCCGTGGGA CTGCTGGTGTGGCAGGACTGGCAGCCCTTCTTGCCTCAGATACGTGATGAGGCTGCAGTCTAATCCCATGAAGGCCCTGTATC

	CTCTGACCACAAAGGAGCTGAAGAACCCAACCAATCCAGACGCAAGCGGAGAGGGAGAGGGAGGCGACTTGATGAGGCAAAG CTGGCAGAGGCAAGGGAGATGATCCGGTACATGGCCCTGGTGTCCGCCATGGAGAGGACAGAGCACAAGGCCAAGAAGAAGGGCAC CTCCGCCCTGCTGTCTGCCAAGGTGACAGATATGGTATGCGCAAGAGGCACACCAATTACACAGGTGCCAACAAAGGACGGC GATGCCGACGAGGACGATCTGTGAGAATT
pRe troX - TRE 3G- ICP 4o	GGATCCGCCACCATGGCCAGCGAGAACAAAGCAGAGGCCTGGCTCCCTGGACCAACCGATGGACCACCTCCAACACCATCCCTGAC AGGGATGAGAGAGAGGCGCCCTGGGATGGGGAGCAGAGACCCGAGGGAGGCGACATCCAGACCCGATCCAGACCCGACCCCG ATCTGGACGATGCAAGGAGAGACCGAAGGGCACCAGCAGCAGGACAGACGCCCCGAGGGATGCCGGCGACGCCGTGCCCCCG GCAGCTGCCCTGCTGGCCTCTATGGTGGAGGAGGCCGTGAGAACCATCCAAACACCCGATCCTGCAAGCATCCCCACCTAGGACACC AGCCTCCGGGAGACGATGACGATGGCGACGAGTACGACGATGCCCGATGCAAGCAGGGCAGAGGGCACCAGCAAGGGGACGG GCCAGAGAGGCCCCCTGAGAGGCCCTATCCAGATCCCACCGACAGACTGAGCCCAAGGCCACAGCACAGCCTCCAAGGCCCG GAGACACGGCAGGCCGGCCTCTGCCAGCTCCACATCTAGCGATAGCGCTCTAGCTCTAGCGCCAGCTCCAGCTCC TAGCTCCGATGAAGACGAGGACGATGACGGCAATGATGCCCGACAGGGCAAGGGAGGCAAGGGCAGTGGGAAGGGGCCCTCTA GCGCCGCCCTGAGGCCAGGCCGGACCCCCCTCCACCCGGCCCTCACCCCTGAGCGAGGCACCTAACGCAAGAGCAGC AGCCAGGACACCAGCTGCCCTCCGGCCGCATCGAGAGAAGGCGCGAAGGGCAGCAGTGGCAGGAAGAGACGCAACCGGCAGG TTCACAGCAGGACAGCCAAGGAGAGTGGAGCTGGATGCAGACGCACTCCGGAGCCTTACGCACGGTATAGAGATGGCTACGT TCTGGCAGGCCATGGCCTGGAGCAGGACCTCCACCACTGGCGGGTGCTGTATGGCGGCCCTGGCGACTCCAGACCTGGCCTGT GGCGCCCCAGAGGCCAGGGAGGCCAGGCCGGCTGAGGCATCTGGAGCACCAGCAGCCGTGGGCCCTGAGCTGGCGA TGCAGCACAGCAGTACGCACTGATCACCAGGCTGTATACACCAGACGCAGAGGCAATGGGATGGCTGCAGAACCCAGAGTGGT GCCTGGCGATGTGGCCCTGGACCAGGCATGCTCAGAAATCAGCGGAGCAGCACGGAACAGCTCTAGCTTATCACCGGCTCCGTGG CAGGGCCGTGCCCACTGGCTACGCCATGGCGCCGGCTCGATGGGACTGGCACACGCAGCAGCAGTGGCAATG TCTAGAAGGTACGACAGAGCCCAGAAGGGCTTCTGCTGACCAAGCCTGAGGAGGGCATATGCACCTCTGCTGGCAAGAGAGAACGCC GCCCTGACAGGAGCAGCAGGCCAGGAGCAGGAGCAGATGACGAGGGCTGGCGCCGGCTGGCTGGCGCCGCC CCAGGGCAGAGGGCGTGGCCGGCTATGGCGCCGGCATCCTGGCCGGCTGGCCGAGGGCTCGATGGCAGCAGTGGCAGGACT CCTGCCGGCGCGATGACCCCGATGCCGCCGGCACGCCAGCGCGATGACGATGCAGGCAGAAGGGCACAGGCAGGAAGGGTGG CCGTGGAGTGCCTGGCCGGCTGTGGCGCATCCTGGAGGGCCCTGGCCGAGGGCTCGATGGCAGCAGTGGCAGGACT GGCAGGAGCACGCCCGCCTCTCACCCGGCCAGAGGGCCCGCCCTGCCAGCCCTCACGCCAGCCCC AGGCTGCCGCCCTGGCTGAGGGAGCTGCCCTGGCTGAGGCGACTGAGAGGCGACCTGCCAGGGCAG GAGGCTCTGAGGCAGCAGTGGCAGCCGTGAGAGCCGTGAGCCTGGTGGCCGGCCCTGGGCCAGCCCTGCCAGAGATCCTAG GCTGCCATCCTCTGCCGCAGCAGCAGCAGCACCTGCTGTTGAGAACCCAGAGCCTGCGCCCTCTGCTGGCCGCCGCC CCCCAGATGCAGCAGACGCACTGGCAGCAGCAGCAGCATCCGCCGCCCCAGAGAGGGAGGAAGGAAGGAAAGTCTCCAGGACCAGC AAGACCACCAGGGGAGGAGGACCTAGGCCCTCAAAGACCAAGAACGAGCTGGCCGGCGATGCCAGGGCC CTGCCAGCCCCCTTCCACACCACCCGGCCGAGCCTGCCAGCACGCCAGCAGCACCTAGGGCAGCAGCAGGCCAGGGCC GGCCCAGACCTGTGGCCCTGAGGCCGCCCTGCCAGACCCCTGGCGGGCTGGAGAAGGCAGCCTCCAGGCC CCACACCGCAGCACCAGCAGCAGCCCTGGAGGCCTACTGCTCTCCAAGAGCCGTGGCCAGCTGACAGATACCCACTGTT

Supplementary Table 1D Oligonucleotide sequences, plasmid, and *E. coli* GS1873 containing HSV-BAC for the construction of recombinant viruses or mutagenesis.

Recombinant virus	Mutation inserted into pYEbac102Cre	Oligonucleotide sequence (5'-3')	Plasmid DNA template	<i>E. coli</i> GS1873 containing HSV-BAC
YK681	HSV-1 gB-N87Q	5'-AAAACGAAAAACCCACCGCCGCCGCCGCCGGCGACCAGGCGACC GTCGCCGCCGGAGGATGACGACGATAAGTAG-3'	pBS-KanR-ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'-GCTCGCGCAGGGTGGCGTGGCCCGCGCGACGGTCGCCTGGTCGCCGG CGGGGCCGCGCGTGCAAGCAGCAGATTACGCG-3'		
YK683	HSV-1 gB-N141Q	5'-CGAGCAGCCCGCCGCTGCCGACCCGGCCGAGGGTCAGCAGTACACG GAGGGCATCGCAGGATGACGACGATAAGTAG-3'	pBS-KanR-ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'-TGTCTCCTGAAGACCACCGCGATGCCCTCCGTGTACTGCTGACCCCTGG GCCGGGTCGTGCAAGCAGCAGATTACGCG-3'		
YK685	HSV-1 gB-N398Q	5'-CCGATTCTCCTCCGACGCCATATCCACCACTTCACCAACCGCTGACCGA GTACCCGCTAGGATGACGACGATAAGTAG-3'	pBS-KanR-ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'-CCCCCAGGTCCACCGCGAGAGCGGGTACTCGGTAGCTGGTGAA GGTGGTGGATATGCAAGCAGCAGATTACGCG-3'		
YK687	HSV-1 gB-N430Q	5'-CGCCCGCGACGCCATGGACCGCATCTCGCCCGAGGTACCAAGGCGACG CACATCAAGGTAGGATGACGACGATAAGTAG-3'	pBS-KanR-ePheS*	<i>E. coli</i> GS1783/pYEbac 102Cre (37)

		5'- GGTAGTACTGCGGCTGGCCCACCTTGATGTGCGTCGCCTGGTACCTGCGG GCGAAGATGCTGCAAGCAGCAGATTACGCG-3'	(This study)	
YK689	HSV-1 gB-N489Q	5'- GCCCCCAAACCCCACGCCCGCCGCCGGGCCAGCGCCCAGGCGTC CGTGGAGCGCATAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- CGATGGAGGGAGGTGGTCTTGATGCGCTCCACGGACGCCTGGCGCTGGC CCCGGGCGCGTGCAAGCAGCAGATTACGCG-3'		
YK691	HSV-1 gB-N674Q	5'- CCGCGCCGACATCACCAACCGTCAGCACCTTCATGACCTCCAGATCACCAT GCTGGAGGAAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- CCAGGGGGACAAACTCGTATCCTCCAGCATGGTATCTGGAGGTCGATG AAGGTGCTGATGCAAGCAGCAGATTACGCG-3'		
YK693	HSV-1 gB-N888Q	5'- CAAGGTACCGACATGGTCATGCGCAAGCGCCGCAACACCCAGTACACCC AAGTTCCCAAAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- CGTCGGCGTCACCGTCTTGGGAACCTGGGTGACTGGGTGTTGCGG CGCTTGCATGCAAGCAGCAGATTACGCG-3'		
YK682	HSV-1 gB-N87Q- repair	5'- AAAACGAAAAACCCACCGCCGCCGCCGGCGACAAACCGCGACC GTCGCCGCCGGAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK681 genome (This study)
		5'- GCTCGCGCAGGGTGGCGTGGCCCGCGCGACGGTCGCGTTGCGCCGG CGGGGCGCGCGTGCAGCAGCAGATTACGCG-3'		

YK684	HSV-1 gB-N141Q- repair	5'- CGAGCAGCCGCGCCGCTGCCGACCCGGCCCGAGGGTCAGAACTACACG GAGGGCATCGCAGGATGACGACGATAAGTAG-3' 5'- TGTTCCTCTGAAGACCACCGCGATGCCCTCCGTGTAGTTCTGACCCCTCGG GCCGGGTCGTGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK683 genome (This study)
YK686	HSV-1 gB-N398Q- repair	5'- CCGATTCTCCTCCGACGCCATATCCACCAACCTTCACCAACCTGACCGA GTACCCGCTAGGATGACGACGATAAGTAG-3' 5'- CCCCCAGGTCCACCGCGAGAGCGGGTACTCGGTAGGTTGGTGGTGA GGTGGTGGATATGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK685 genome (This study)
YK688	HSV-1 gB-N430Q- repair	5'- CGCCCGCGACGCCATGGACCGCATCTCGCCCCCAGGTACAACCGCGACG CACATCAAGGTAGGATGACGACGATAAGTAG-3' 5'- GGTAGTACTGCGGCTGGCCCACCTTGATGTGCGTCGCGTTGTACCTGCGG GCGAAGATGCTGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK687 genome (This study)
YK690	HSV-1 gB-N489Q- repair	5'- GCCCCCAAACCCCACGCCCGCCGCCGGGCCAGCGCCAACCGCGTCC GTGGAGCGCATAGGATGACGACGATAAGTAG-3' 5'- CGATGGAGGGAGGTGGTCTTGATGCGCTCCACGGACGCGGTGGCGCTGGC CCCGGGCGCGTGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK689 genome (This study)
YK692	HSV-1 gB-N674Q- repair	5'- CCGCGCCGACATCACCACCGTCAGCACCTCATCGACCTAACATCACCAT GCTGGAGGAAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS*	<i>E. coli</i> GS1783/ containing the YK691 genome

		5'- CCAGGGGGACAAACTCGTATCCTCCAGCATGGTATGGTGGTCGATG AAGGTGCTGATGCAAGCAGCAGATTACGCG-3'	(This study)	(This study)
YK694	HSV-1 gB-N888Q- repair	5'- CAAGGTACCGACATGGTCATGCGCAAGCGCCGCAACACCAACTACACCC AAGTTCCCAAAGGATGACGACGATAAGTAG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/ containing the YK693 genome (This study)
		5'- CGTCGGCGTCACCGTCTTGGGAACTTGGGTGTAGGTGGTGGTGC CGCTTGCATGCAAGCAGCAGATTACGCG-3'		
YK695	HSV-1 ΔgB	5'- GCCGCCAGGCTACCTGACGGGGGGCACGACGGGCCCGTAGTCCC AAGGATGACGACGATAAGTAGGG-3'	pEP- Kan-S (13)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- TCGCCCATCCCCTCGAAGAACGCGCCAGGCCCGGAACATGGCG CAACCAATTAAACCAATTCTGATTAG-3'		
YK650	HSV-1 UL51- T190A_KanR/ePh eS*	5'- GCTTGGGGTGACCGAGGCGCCCTCCTGGGGCACCCCCACGCACCG CCGGAGGTTACAGGATGACGACGATAAGTAGGG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- CGTTTCGGCGGCAGGCAGCGTAACCTCCGGGGCGGTGCGTGG GGTCCCCAAGGTGCAAGCAGCAGATTACGCG-3'		
YK649	HSV-1 UL51- T190A_KanR	5'- GCTTGGGGTGACCGAGGCGCCCTCCTGGGGCACCCCCACGCACCG CCGGAGGTTACAGGATGACGACGATAAGTAGGG-3'	pEP- Kan-S (13)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
		5'- CGTTTCGGCGGCAGGCAGCGTAACCTCCGGGGCGGTGCGTGG GGTCCCCAAGGTGCAACCAATTAAACCAATTCTGATTAG-3'		

YK717	HSV-1 gB-SE	5'- AGTTCCCAACAAAGACGGTGACGCCGACGAGGACGACCTGGAGGTTCA GAGAATTGTA-3' 5'- TTAACACCCGTGGTTTTATTACAACAAACCCCCCGTCATTTTCGAACTGC GGTGCG-3'	pBS- TEV- 2xStrep- KanS (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
YK718	HSV-1 gD-SE	5'- GGAAGACGACCAGCCGTCTCGCACCAAGCCCTTACGGAGGTTTAGA AGAATTGTA-3' 5'- CAGACCTGACCCCCCGCACCCATTAAAGGGGGGTATCTATTTTCGAACT GCGGGTGGC-3'	pBS- TEV- 2xStrep- KanS (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
N/A	HSV-1 ΔUL54_KanR/ePh eS*	5'- ATCCGACACCCAGCCCCGACGGCAGCCGACAGCCCCTCGTACAATAAA AACAAAACATAGGATGACGACGATAAGTAGGG-3' 5'- CGTGGGGCGATTGTTGAAATGTTTGTGTTTATTGTACGACCGGGCTGTC GGCTGCCGTGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
N/A	HSV-1 ΔUL54_KanR	5'- ATCCGACACCCAGCCCCGACGGCAGCCGACAGCCCCTCGTACAATAAA AACAAAACATAGGATGACGACGATAAGTAGGG-3' 5'- CGTGGGGCGATTGTTGAAATGTTTGTGTTTATTGTACGACCGGGCTGTC GGCTGCCGTGCAACCAATTACCAATTCTGATTAG-3'	pEP- Kan-S (13)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
N/A	HSV-1 ICP22- flag_KanR/ePheS*	5'- GCGGGGGGAAGCCACTGTGGTCCTCCGGGACGTTTCTGGATGGACTACA AAGACGATGACGACAAGATGCCGAGGATGACGACGATAAGTAGGG-3' 5'- TTACACAAGGCGCAAAAGCGCCTGGGAAATGTCGGCCATCTTGTGTCAT CGTCTTGTAGTCCATCCAGAATGCAAGCAGCAGATTACGCG-3'	pBS- KanR- ePheS* (This study)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)

N/A	HSV-1 ICP22- flag_KanR	5'- GCGGGGGGAAGCCACTGTGGTCCTCCGGGACGTTTCTGGATGGACTACA AAGACGATGACGACAAGATGCCGAGGATGACGACGATAAGTAGGG-3' 5'- TTACACAAGGCGAAAAGCGCCTGGGAAATGTCGCCATCTTGTGTCAT CGTCTTGTAGTCCATCCAGAACAAACCAATTAAACCAATTCTGATTAG-3'	pEP- Kan-S (13)	<i>E. coli</i> GS1783/pYEbac 102Cre (37)
-----	------------------------------	---	-----------------------	--