

1 **Transcriptomic landscape and potential therapeutic targets for human**
2 **testicular aging revealed by single-cell RNA sequencing**

3 Kai Xia^{1,2,9}, Siyuan He^{2,9}, Peng Luo^{3,7,9}, Lin Dong², Feng Gao^{1,3}, Xuren Chen³, Yunlin Ye⁴,
4 Yong Gao^{3,7}, Yuanchen Ma², Yadong Zhang¹, Qiyun Yang¹, Dayu Han¹, Xin Feng¹, Zi Wan¹,
5 Hongcai Cai¹, Qiong Ke^{2,7}, Tao Wang^{2,8}, Weiqiang Li^{2,7,8}, Xiang'an Tu¹, Xiangzhou Sun¹,
6 Chunhua Deng^{1,6,*}, Andy Peng Xiang^{2,8,*}

7

8 ¹Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University,
9 Guangzhou, China

10 ²Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and
11 Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China

12 ³Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University,
13 Guangzhou, China

14 ⁴Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China

15 ⁵Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen
16 University, Guangzhou, China

17 ⁶Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated
18 Hospital, Sun Yat-sen University, Guangzhou, China

19 ⁷Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China

20 ⁸National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine,
21 Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

22 ⁹These authors contributed equally

23 *Correspondence: dengchh@mail.sysu.edu.cn (C.D.), xiangp@mail.sysu.edu.cn (A.P.X.)

24 **Abstract**

25 **Background:**

26 Testicular aging is known to cause male age-related fertility decline and hypogonadism, but the
27 underlying molecular mechanisms remain unclear.

28 **Methods:**

29 We survey the single-cell transcriptomic landscape of testes from young and old men and
30 examine age-related changes in germline and somatic niche cells.

31 **Results:**

32 In-depth evaluation of the gene expression dynamics of germline cells reveals that disturbance
33 of base-excision repair pathway is a major feature of aging spermatogonial stem cells (SSCs),
34 suggesting that defective DNA repair of SSCs may serve as a potential driver for increased de
35 novo germline mutations with age. Further analysis of aging-associated transcriptional changes
36 shows that stress-related changes and apoptotic signaling pathway accumulate in aged somatic
37 cells. We identify age-related impairment of redox homeostasis in aged Leydig cells and find
38 that pharmacological treatment with antioxidants alleviate this cellular dysfunction of Leydig
39 cells and promote testosterone production. Lastly, our results reveal that decreased pleiotrophin
40 (PTN) signaling is a contributing factor for testicular aging.

41 **Conclusions:**

42 These findings provide a comprehensive understanding of the cell-type-specific mechanisms
43 underlying human testicular aging at a single-cell resolution, and suggest potential therapeutic
44 targets that may be leveraged to address age-related male fertility decline and hypogonadism.

45 **Funding:**

46 This work was supported by the National Key Research and Development Program of China
47 (2018YFA0107200, 2018YFA0801404), the National Natural Science Foundation of China
48 (32130046, 82171564, 82101669, 81871110, 81971759), the Key Research and Development
49 Program of Guangdong Province (2019B020234001), the Natural Science Foundation of

50 Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and
51 Technology Development Research Center of National Health Planning Commission, China
52 (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and
53 Genetics (Family Planning Research Institute of Guangdong Province) (KF202001), the
54 Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921), the China
55 Postdoctoral Science Foundation (2021M703736).

56 **Keywords:** single-cell; spermatogonial stem cells; Leydig cells; potential targets; human
57 testicular aging

58

59 **Introduction**

60 The testis is a critical male reproductive organ that serves as the source of sperm and a major
61 supplier of the sex hormone, testosterone(Makela, Koskenniemi, Virtanen, & Toppari, 2019).
62 Thus, the testis is indispensable for both male fertility maintenance and endocrine homeostasis.
63 However, testicular function declines gradually as men age. Previous studies have shown that
64 aging negatively affects sperm parameters, sperm DNA integrity, genomic DNA mutations,
65 chromosomal structures, and epigenetic factors(S. L. Johnson, Dunleavy, Gemmell, &
66 Nakagawa, 2015; Matzkin, Calandra, Rossi, Bartke, & Frungieri, 2021). Despite this, it is
67 becoming more common for men in developed countries to first become a parent at an older
68 age, raising concerns about declines in fertilizing capacity and the consequences for the
69 offspring's health(Laurentino et al., 2020). Aging also impairs testosterone production and
70 causes male hypogonadism, which is characterized by low libido, erectile dysfunction,
71 infertility, obesity, muscle weakness, osteoporosis, depressed mood, impaired cognition, and
72 other symptoms(Kaufman, Lapauw, Mahmoud, T'Sjoen, & Huhtaniemi, 2019; Mularoni et al.,
73 2020). Testicular aging therefore affects not only men's reproductive functions, but also their
74 overall health status and quality of life(Matzkin et al., 2021). Consequently, it is important to

75 elucidate the mechanisms underlying testicular aging and identify interventions that might slow
76 or postpone this process.

77 The testis is a complex structure consisting of numerous heterogeneous cell types, including
78 germline cells at different developmental stages and several somatic cell types(Guo et al., 2018).
79 The propagation of the male germline depends on a specialized cell population called
80 spermatogonial stem cells (SSCs)(Sharma, Wistuba, Pock, Schlatt, & Neuhaus, 2019). SSCs
81 have unlimited self-renewal capacity and, when induced to differentiate, give rise to a series of
82 germ cell stages that ultimately generate sperm in a highly orchestrated manner within the
83 seminiferous tubules(Sharma et al., 2019). The testis niche plays an important role in regulating
84 the survival and differentiation of the male germline(Oatley & Brinster, 2012). In the adult
85 testis, somatic niche cells, including Sertoli cells (SCs)(S. R. Chen & Liu, 2015), Leydig cells
86 (LCs)(Oatley, Oatley, Avarbock, Tobias, & Brinster, 2009), peritubular myoid cells (PTMs)(L.
87 Y. Chen, Brown, Willis, & Eddy, 2014), etc., provide physical and hormonal support for
88 successful spermatogenesis from SSCs. In particular, LCs are responsible for the biosynthesis
89 of testosterone, which acts on target cells in the testes and elsewhere to promote
90 spermatogenesis and male-associated characteristics(Zirkin & Papadopoulos, 2018). Previous
91 studies have shown that aging testes undergo profound morphological alterations of germ cells
92 and somatic cells, leading to reduced functionality(Jiang et al., 2014; Santiago, Silva, Alves,
93 Oliveira, & Fardilha, 2019). However, the cellular and molecular alterations that underlie these
94 changes have not been systematically explored and remain largely unknown.

95 For a heterogeneous organ such as the testis, it is difficult to accurately reveal cell-type-
96 specific changes in gene expression using conventional bulk RNA-sequencing (RNA-seq)
97 approaches. With advances in the single-cell RNA sequencing (scRNA-seq) technique, it is
98 now possible to analyze alterations of gene transcription within highly heterogeneous tissues at
99 the single-cell level(Di Persio et al., 2021; Guo et al., 2018). Recently, several scRNA-seq
100 studies have begun to lift the veil on the full compendium of gene expression phenotypes and

101 changes in spermatogenic and somatic cells, demonstrating the power of scRNA-seq profiling
102 as a means to study human testis at the single-cell resolution(Guo et al., 2018; Guo et al., 2020;
103 Mahyari et al., 2021). These datasets have revealed the previously obscured molecular
104 heterogeneity among and between varied testicular cell types and are reinvigorating the
105 investigation of testicular biology and pathology(Alfano et al., 2021; Di Persio et al., 2021;
106 Mahyari et al., 2021; Matzkin et al., 2021; Nie et al., 2022; L. Zhao et al., 2020). However, the
107 effect of aging on various testicular cell types in humans has not been analyzed in depth and
108 the critical molecular drivers underlying testicular cell functional decline during aging remain
109 unclear.

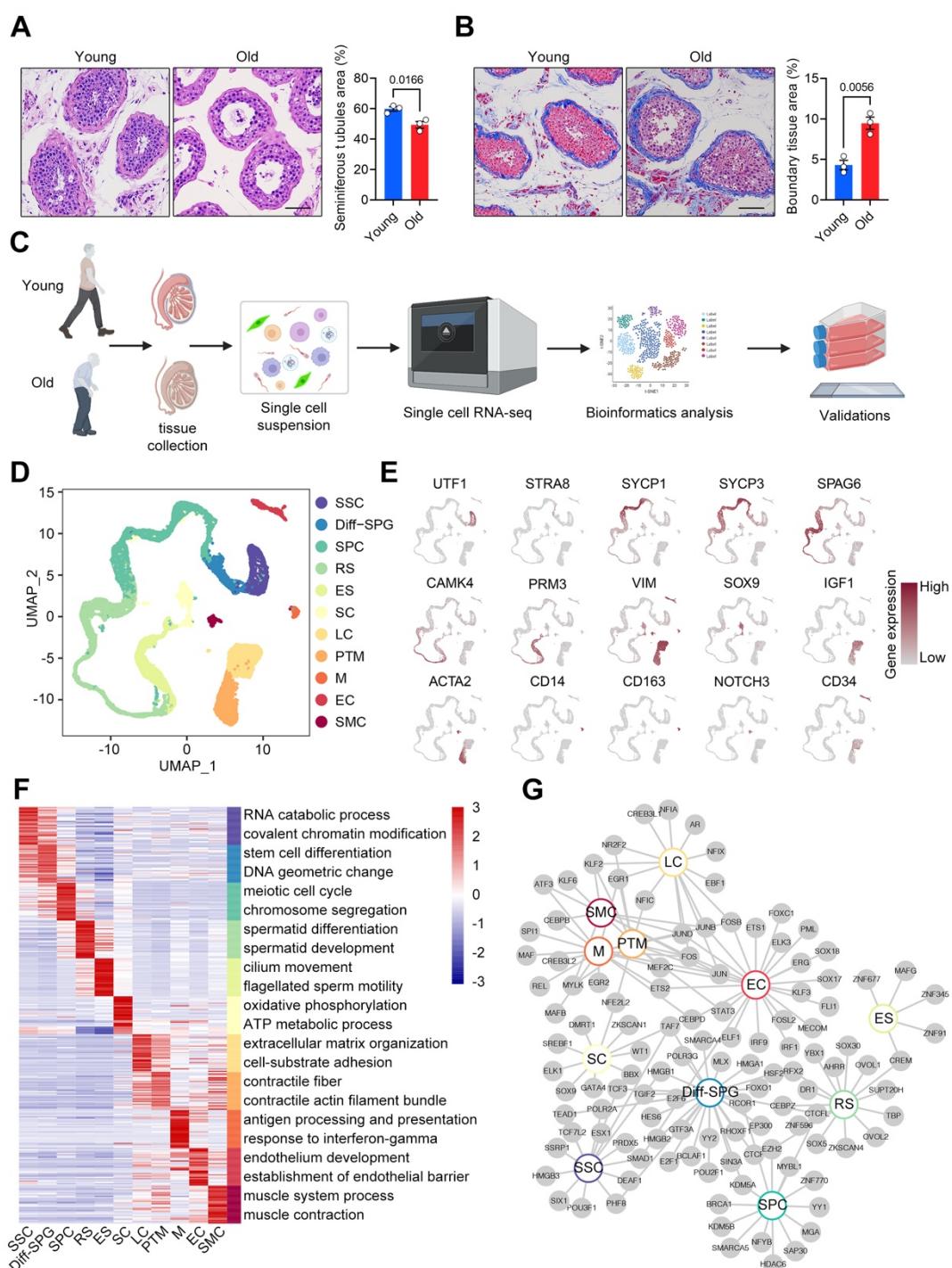
110 In this study, we used human samples to comprehensively survey the single-cell
111 transcriptomic landscape of human testicular aging. We used scRNA-seq to identify gene
112 expression signatures for five germline cell types and six somatic cell types. We examined the
113 transcriptional changes within each major testicular cell type during aging, and report a set of
114 molecular mechanisms underlying human testis aging. Our analysis of aging-associated gene
115 expression changes revealed that DNA repair is disturbed in aged SSCs, and this represents an
116 essential factor underlying the age-related increase in de novo germline mutations. Analysis of
117 human LCs uncovered aging-associated upregulation of oxidative stress response genes, and
118 further experiments revealed that antioxidant treatment alleviated the cellular dysfunction of
119 LCs and promoted testosterone production. An analysis of cell interactions revealed that the
120 pleiotrophin (PTN) signaling pathway is markedly interrupted in aging testis. These data may
121 be used at both bench and bedside in future efforts to address age-related male fertility decline
122 and hypogonadism.

123 **Results**

124 **Construction of a single-cell transcriptomic atlas of the human testis**

125 To investigate the cellular and molecular alterations of testicular cells during aging, we obtained
126 human testis biopsies from three young individuals (24, 28, and 31 years old) and three aged
127 individuals (61, 70, and 87 years old) (Figure S1A). Histologically, the area occupied by
128 seminiferous tubules was significantly decreased in aged men, compared with young men
129 (Figure 1A). In addition, age-related thickening of boundary tissue was typically found in old
130 men (Figure 1B). These data are in agreement with previous observations(L. Johnson, Abdo,
131 Petty, & Neaves, 1988; Mularoni et al., 2020) and confirmed that this cohort of tissue donors
132 could be used to examine age-related changes in testicular function.

133 To resolve cell-type-specific alterations in gene expression during testicular aging at the
134 single-cell level, we isolated single cells from these tissues and performed scRNA-seq using
135 the 10x Genomics platform (Figure 1C). We removed cells likely to be of low quality due to
136 debris and doublets, and applied other constraints. Data from 11,444 and 11,076 cells passed
137 quality control and were included in the subsequent analysis for young and old samples,
138 respectively (Figure S1A, S1B). We visualized global human testicular cell populations using
139 uniform manifold approximation and projection (UMAP) and used 27 published marker
140 genes(Alfano et al., 2021; Guo et al., 2018; Guo et al., 2021) to identify the following 11 cell
141 types based on the expression of specific marker genes: SSCs (UTF1+, ID4+), differentiating
142 spermatogonia (Diff-SPGs; STRA8+, DMRT1+), spermatocytes (SPCs; SYCP1+, SYCP3+,
143 and DAZL+), round spermatids (RSs; SPAG6+, CAMK4+), elongating spermatids (ESs;
144 PRM3+, HOOK1+, and TNP1+), SCs (SOX9+, AMH+, and WT1+), LCs (IGF1+, CFD+, and
145 FUM+), PTMs (ACTA2+, MYH11+, NOTCH3-), macrophages (Ms; CD14+, CD163+, and
146 C1QA+), endothelial cells (ECs; CD34+, NOSTRIN+), and smooth muscle cells (SMCs;
147 ACTA2+, MYH11+, NOTCH3+) (Figure 1D,E; Figure S1C-E; Supplementary file 1). Analysis
148 of the top 30 marker genes revealed that each cell type had unique transcriptional features and
149 enriched pathways relevant to their distinct biological functions (Figure 1F; Supplementary file

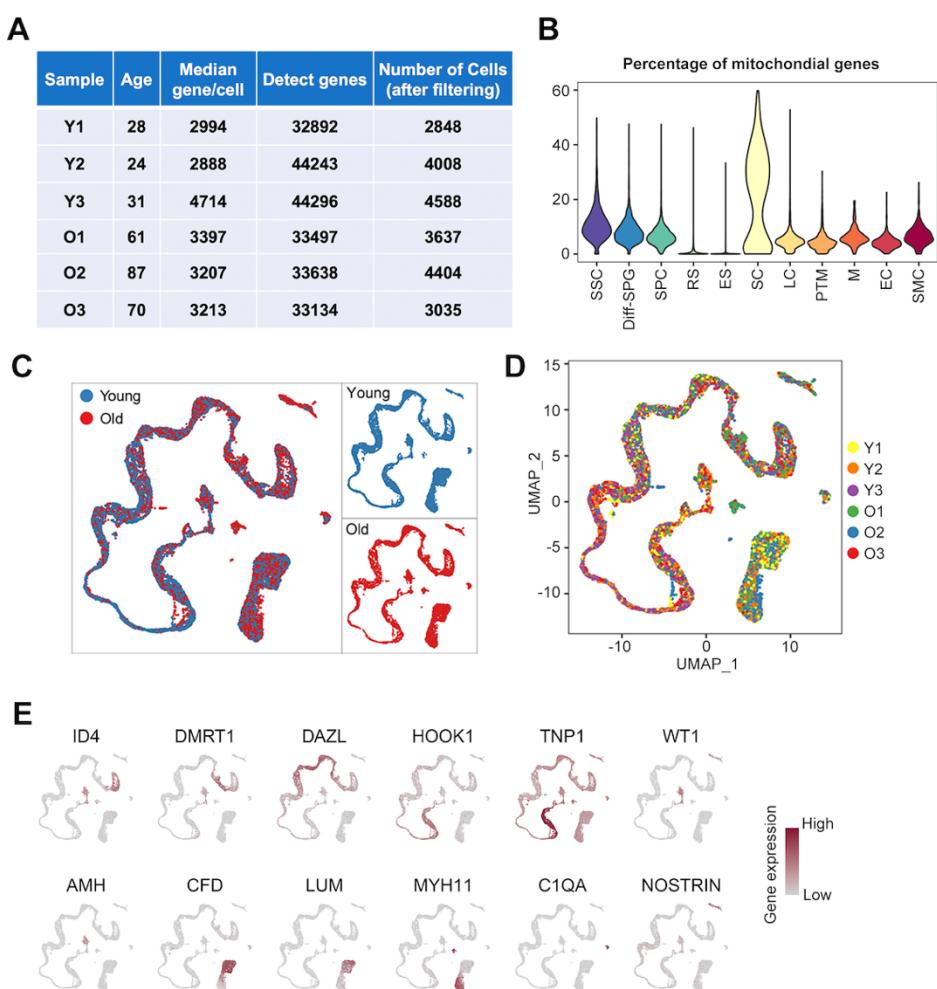

150 1). For example, the Gene Ontology (GO) terms “meiosis” and “myofiber” were enriched for
151 SPCs and PTMs, respectively (Figure 1F).

152 We further constructed a regulatory network of transcription factors (TFs) that defined core
153 TFs unique to each cell type, and hub TFs shared by at least two cell types (Figure 1G;
154 Supplementary file 1). Within the cell type-specific TF networks, the prominent genes included
155 TCF7L2 for SSCs, SOX9 for SCs, and CREB3L1 for LCs. TCF3 was identified in the networks
156 of both SSCs and Diff-SPGs, suggesting that TCF3 plays essential roles in spermatogonia
157 maintenance and specification. FOS was identified in LCs, PTMs, Ms, ECs, and SMCs,
158 indicating that it functions as a broad-acting transcriptional regulator (Figure 1G). This network
159 analysis provided a depiction of the unique and coordinated transcriptional regulatory processes
160 involved in establishing human testicular cell identities.

161 We next sought to explore cell type-specific gene expression alterations associated with
162 aging. We found similar transcriptional signatures of marker genes for each cell type between
163 young and old humans (Figure S2A), demonstrating that aging had minimal effect on cell
164 identity. In addition to these classic markers, we identified a set of novel markers of testicular
165 cells: SIX1 and LIN7B for SSCs, BEND for SPCs, ABHD4 and TCEAL5 for SCs, KRT17 for
166 PTMs, ADAP2 for Ms, PCAT19 and LCN6 for ECs, and RRAD and RERGL for SMCs (Figure
167 S2B).

168 Our analyses indicated that the developed atlas could be used to comprehensively delineate
169 the cellular and molecular alterations induced by aging in the human testis.

Figure 1


170

171

172

173 **Figure 1. Construction of a Single-Cell Transcriptomic Atlas of Human Testis**

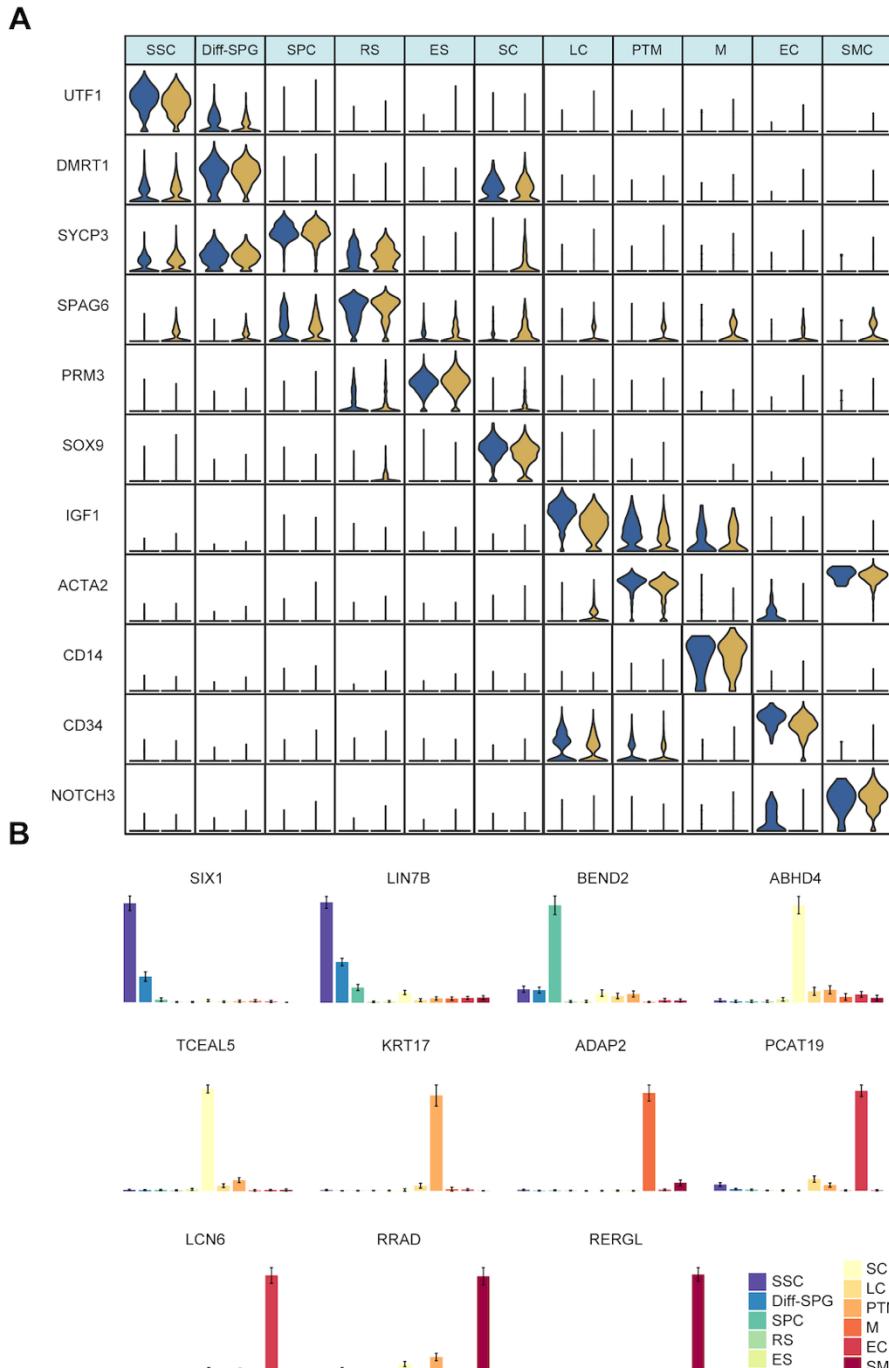
174 (A) Left: representative light micrographs of young and old human testis sections stained with H&E. Right:
175 quantification of the average area of seminiferous tubules. Scale bar, 75 μ m. Young, n=3; Old, n=3. Data are
176 expressed as mean \pm sem. Significance was determined by Student's t-test.
177 (B) Left: representative light micrographs of Masson's trichrome staining of young and old human testis.
178 Right: quantification of the average area of boundary tissue. Scale bar, 75 μ m. Young, n=3; Old, n=3. Data
179 are expressed as mean \pm sem. Significance was determined by Student's t-test.
180 (C) Flow chart of scRNA-seq and bioinformatics analysis of the human testis.
181 (D) UMAP plot showing distribution of 11 different cell types in the human testis, with annotation.
182 (E) UMAP plot showing the expression profiles of the indicated cell-type-specific marker genes for the
183 assessed cell types in the human testis. The color key, ranging from gray to brown, indicates low to high gene
184 expression levels, respectively.
185 (F) Heatmap showing the expression profiles of the top 30 cell-type-specific marker genes of different cell
186 types, with their enriched functional annotations on the right. The value for each gene represents scaled data.
187 (G) Network plot showing transcriptional regulators of cell-type-specific marker genes (p -value < 0.05 ,
188 $|\log_{2}FC| > 0.4$, min.pct = 0.5) for different cell types in the human testis.

189

190 **Figure supplement 1. Information on Human Samples and Quality Control of Single-Cell**

191 **RNA-Seq**

192 (A) Summary information for the testicular samples analyzed in this study.


193 (B) Violin plot showing the percentages of mitochondrial genes detected in each cell type.

194 (C) UMAP plot showing the cell distributions for the young (red) and old (blue) groups.

195 (D) UMAP plot showing the cell distributions for each sample. Cells are colored and annotated to the right.

196 (E) UMAP plot showing the expression profiles of cell-type-specific marker genes for the indicated cell types

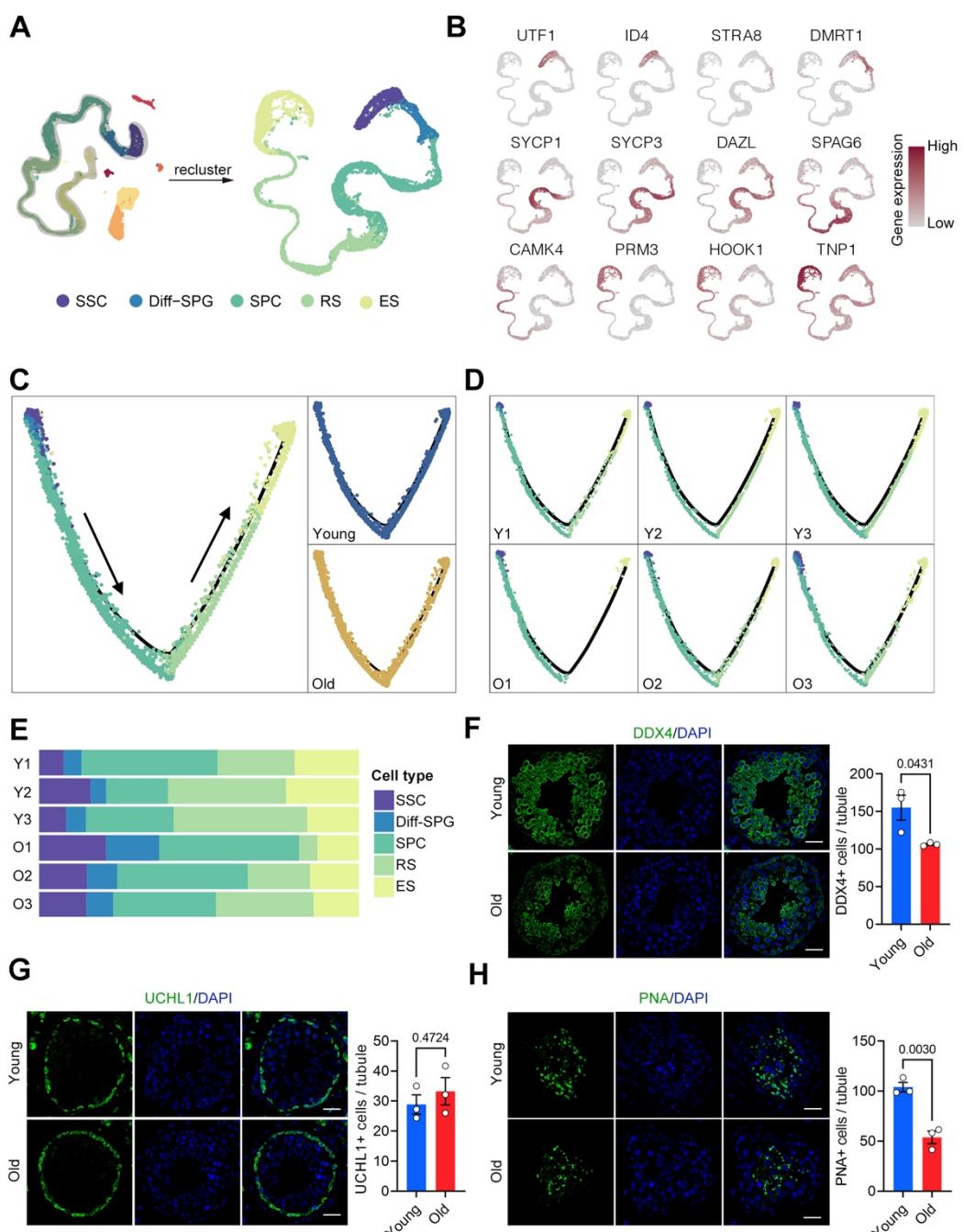
197 in human testis. The color key, ranging from gray to brown, indicates low to high gene expression levels.

198

199 **Figure supplement 2. The Expression Level of Marker Genes for Each Cell Type**

200 (A) Violin plot showing expression levels of marker genes for each cell type in young and old human testis.

201 (B) Bar plot showing the expression levels of representative new marker genes for various cell types.


202 **Aging-related cellular alterations along the trajectories of spermatogenesis**

203 To identify germline changes during aging, we performed a focused analysis of germ cell
204 clusters. We first investigated the proportions of germ cells at each stage. We identified the
205 following five broad developmental stages of germ cells based on their marker genes: SSCs
206 (UTF1+, ID4+), Diff-SPGs (STRA8+, DMRT1+), SPCs (SYCP1+, SYCP3+, and DAZL+),
207 RSs (SPAG6+, CAMK4+), and ESs (PRM3+, HOOK1+, and TNP1+) (Figures 2A, 2B). We
208 further inferred the trajectories of spermatogenesis by performing an orthogonal pseudotime
209 analysis using the Monocle package(Qiu et al., 2017). This analysis revealed that complete
210 spermatogenesis was present in all samples (Figure 2C, 2D). We then parsed out the germ cells
211 by developmental stage to examine their relative compositions at different ages. Interestingly,
212 these percentages were not significantly different from SSCs to ESs. In contrast, the proportions
213 of germ cells at RS stage and beyond tended to decline with age (Figure 2E).

214 Immunofluorescence analysis of the germ cell marker, DEAD-box helicase 4 (DDX4),
215 supported the notion that germ cells were reduced in the testes of the old group (Figure 2F).
216 Further analysis revealed that the numbers of UCHL1+ SSCs were equivalent between the
217 young and old groups (Figure 2G), indicating that a change in the quantity of SSCs might not
218 be largely involved in the aging-associated deficiency of spermatogenesis. The number of
219 peanut agglutinin (PNA)+ RSs and ESs was significantly lower in testes of young versus elderly
220 individuals (Figure 2H). This indicated that germ cell differentiation was severely impacted by
221 aging, which is consistent with our histological examinations (Figure 1A).

222 Taken together, our transcriptomic data combined with the results of our immunofluorescent
223 studies indicate that there are cellular differences in spermatogenesis-related cells of the young
224 and old groups, and that RSs and ESs decreased considerably with age.

Figure 2

226 **Figure 2. Aging-related Cellular Alterations Along the Trajectories of Spermatogenesis**

227 (A) UMAP projection of germ cells reveals the developmental progression of spermatogenesis in young and
228 old human testis.

229 (B) Expression patterns of known spermatogenic markers projected onto the UMAP plot. The color key,
230 ranging from gray to brown, indicates low to high gene expression levels, respectively.

231 (C) Pseudotime trajectory (Monocle analysis) of germ cells. Cells are colored according to the cell type and
232 group. Arrows indicate the developmental stages from SSCs to ESs.

233 (D) Deconvolution of the Monocle pseudotime plot according to the donors of origin.

234 (E) Relative proportions of cells at different spermatogenic stages in the samples analyzed.

235 (F) Immunostaining and quantification of DDX4 in young and old human testis sections. Left, representative
236 image of DDX4 in human testis sections. Right, quantification of the number of DDX4-positive cells per
237 seminiferous tubule. Scale bars, 35 μ m. Young, n=3; Old, n=3. Data are expressed as mean \pm sem.
238 Significance was determined by Student's t-test.

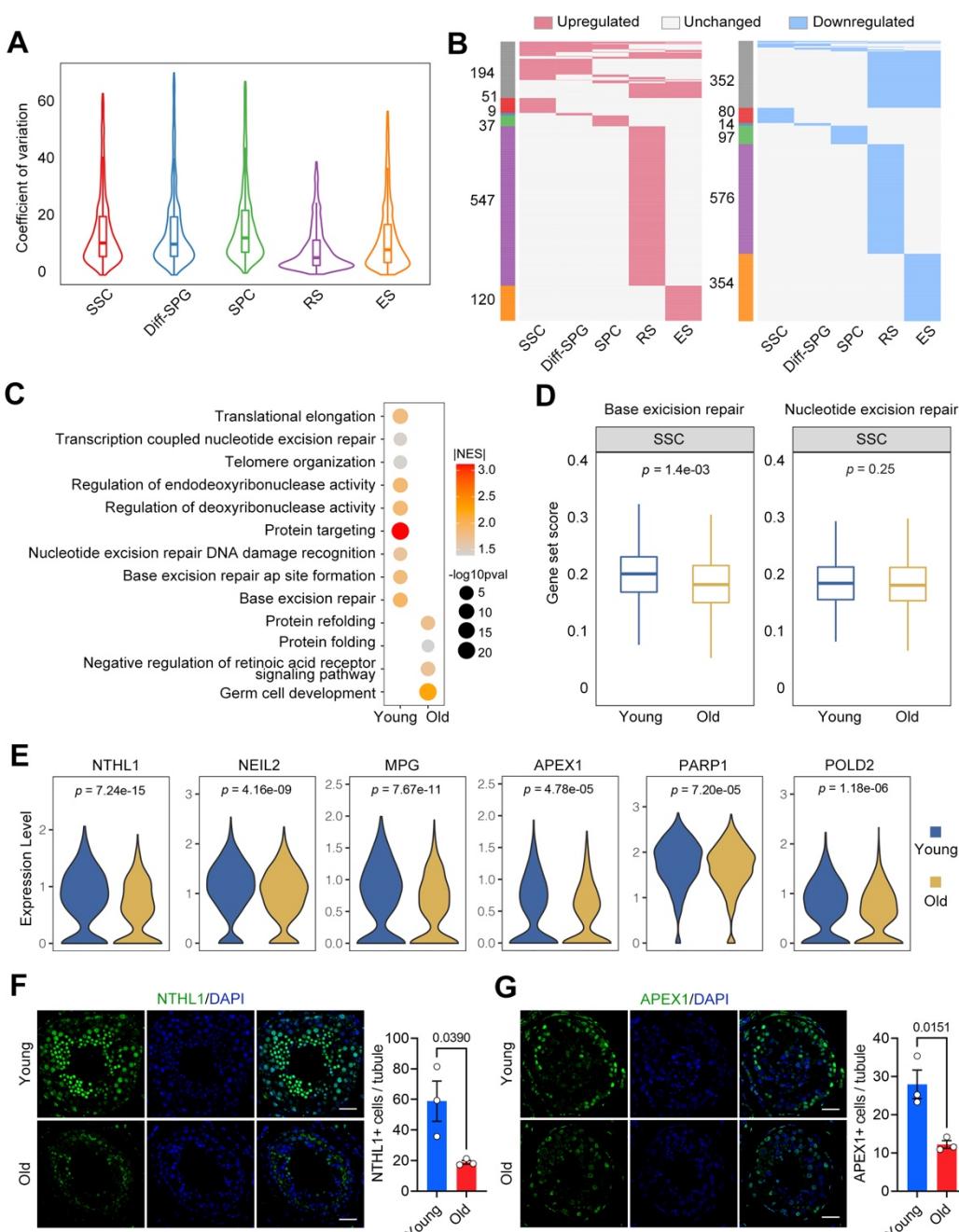
239 (G) Immunostaining and quantification of UCHL1 in young and old human testis sections. Left, representative
240 image of UCHL1 in human testis sections. Right, quantification of UCHL1+ cells per
241 seminiferous tubule. Scale bars, 35 μ m. Young, n=3; Old, n=3. Data are expressed as mean \pm sem.
242 Significance was determined by Student's t-test.

243 (H) Immunostaining and quantification of PNA in young and old human testis sections. Left, representative
244 image of PNA in human testis sections. Right, quantification of PNA+ cells per seminiferous tubule. Scale
245 bars, 35 μ m. Young, n=3; Old, n=3. Data are expressed as mean \pm sem. Significance was determined by
246 Student's t-test.

247

248 **Aging-related molecular alterations along the trajectories of spermatogenesis**

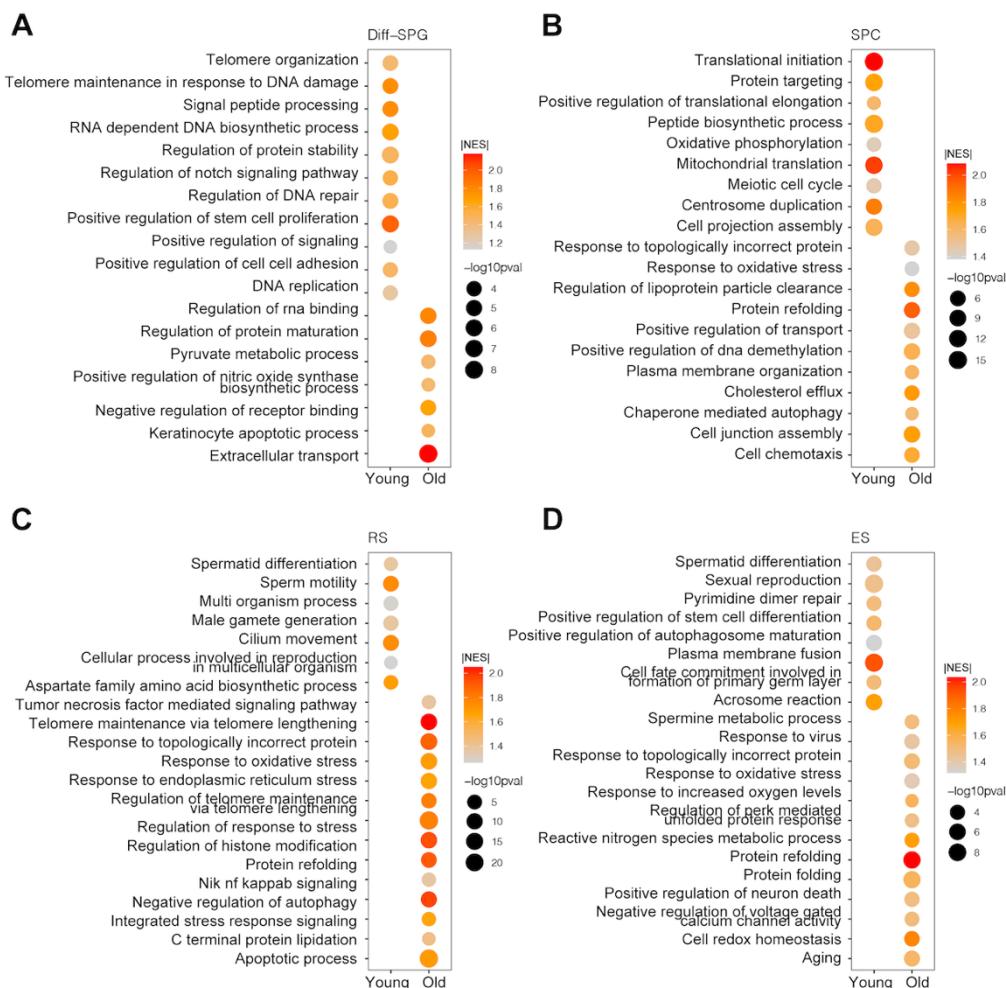
249 We next focused on age-related transcriptional changes in the identified germline cell types.
250 Aging has been associated with increased transcriptional noise(Nikopoulou, Parekh, & Tessarz,
251 2019). Here, calculation of the age-relevant coefficient of variation (CV) revealed that SPCs,
252 Diff-SPGs, and SSCs exhibited higher transcriptional noise than later-stage germline cells
253 (Figure 3A), indicating that aging caused higher variability in early-stage germline cells


254 compared to late-stage germline cells. We further identified 174, 102, 90, 644, and 214
255 upregulated genes and 112, 46, 127, 891, and 665 downregulated genes ($|\text{avg_logFC}| > 0.25$
256 and $p\text{-value} < 0.05$) in the SSC, Diff-SPG, SPCs, RS, and ES germline subtypes, respectively,
257 in the old versus young groups (Figure 4B; Supplementary file 2). Notably, only $\sim 22\%$ of the
258 differentially expressed genes (DEGs) were shared by at least two cell populations; the majority
259 of DEGs were cell-type-specific, indicating that aging has stage-specific effects in this setting.

260 We therefore performed GO analysis based on gene set enrichment analysis (GSEA), with
261 the goal of exploring the aging-associated alterations in the cellular functions of each germ cell
262 type (Figure 3C, S3A-S3D; Supplementary file 3). Given that SSCs represent the only germline
263 stem cells and play essential roles in long-term spermatogenesis(Di Persio et al., 2021), we
264 focused on the aging-associated changes of gene expression in SSCs. We observed that the
265 genes downregulated in SSCs of the old group were associated with base-excision repair (BER)
266 and nucleotide-excision repair (NER), two important excision repair mechanisms for DNA
267 damage(Ray Chaudhuri & Nussenzweig, 2017) (Figure 3C). Therefore, we performed gene set-
268 score analysis for the BER and NER signaling pathway of SSCs in the young and old groups
269 (Supplementary file 4). We observed a prominent decrease of the gene-set score of the BER
270 pathway in aged SSCs, compared to young SSCs, whereas that of the NER pathway did not
271 significantly differ between the two groups (Figure 3D). Moreover, we found that a number of
272 BER-promoting genes, including NTHL1, NEIL2, MPG, APEX1, PARP1, and POLD2, were
273 transcriptionally downregulated in SSCs from old testes (Figure 3E). Consistent with these
274 detected changes in mRNA levels, immunostaining analyses confirmed that the protein levels
275 of NTHL1 and APEX1 were decreased in SSCs of the old group compared to the young group
276 (Figures 3F, 3G), further supporting the idea that the DNA repair function of SSCs is
277 compromised during human testicular aging.

278 As BER is a major pathway for repairing oxidative base damage, alkylation damage, and
 279 abasic sites on DNA(Ray Chaudhuri & Nussenzweig, 2017), its dysregulation in SSCs is likely
 280 to contribute to the age-related increase of de novo germline mutations in males.

281


Figure 3

282

283 **Figure 3. Aging-related Molecular Alterations Along the Trajectories of the**
284 **Spermatogenesis**

285 (A) CV analysis showing the aging-associated transcriptional noise in germ cells.
286 (B) Heatmaps showing the distribution of upregulated (red) and downregulated (blue) DEGs ($\log_{2}FC > 0.25$,
287 $\min.\text{diff}.\text{pct} = 0.1$, $p\text{-value} < 0.05$) between old and young human germ cells. Genes that are not differentially
288 expressed are indicated in gray, and the numbers of DEGs are indicated. The gray bars on the left of the
289 heatmaps denote DEGs shared by at least two cell types, and the others are cell-specific DEGs.
290 (C) Representative GO terms of DEGs in old and young human SSCs. Dot size indicates the range of $p\text{-value}$.
291 Color keys, ranging from gray to orange to red, indicate the absolute value of the normalized enrichment
292 score (NES).
293 (D) Gene set score analysis for the BER and NER signaling pathways of SSCs from the young and old groups.
294 Wilcoxon rank sum test was used; $p\text{-value}$ is indicated.
295 (E) Violin plot showing expression levels of BER-associated genes for SSCs in young and old samples.
296 (F) Immunostaining and quantification of NTHL1 in young and old human testis sections. Left, representative
297 image of NTHL1 in human testis sections. Right, quantification of NTHL1-positive cells in seminiferous
298 tubules of young and old human testis sections. Scale bars, 35 μm . Young, $n=3$; Old, $n=3$. Data are expressed
299 as mean \pm sem. Significance was determined by Student's t-test.
300 (G) Immunostaining and quantification of APEX1 in young and old human testis sections. Left, representative
301 image of APEX1 in human testis sections. Right, quantification of APEX1+ cells in
302 seminiferous tubules of young and old human testis sections. Scale bars, 35 μm . Young, $n=3$; Old, $n=3$. Data
303 are expressed as mean \pm sem. Significance was determined by Student's t-test.

304

305 **Figure supplement 1. GO Analysis Between the Different Germ Cell Clusters of the Young**
 306 **and Old Datasets**

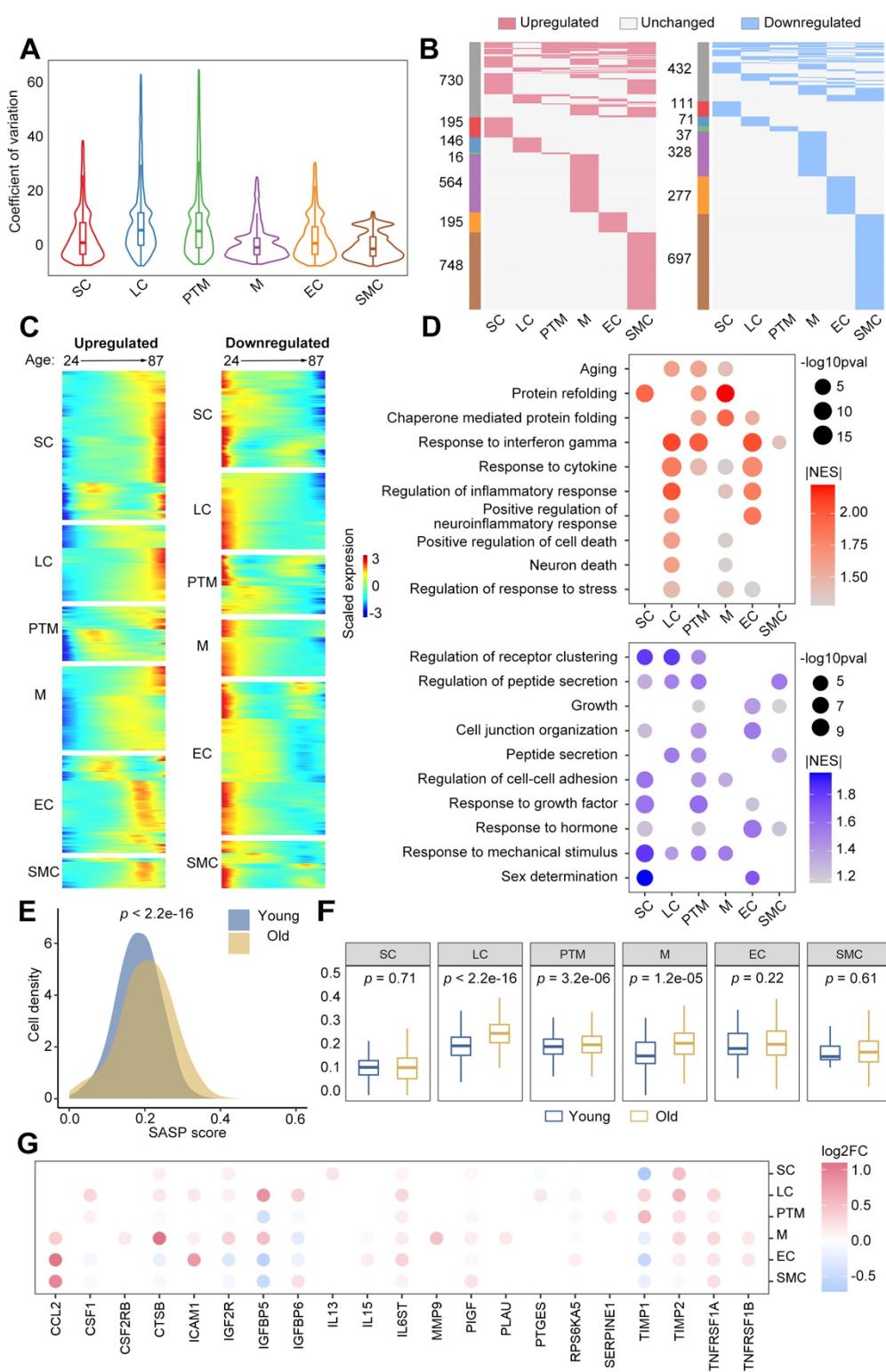
307 (A-D) Representative Aging-Associated GO terms of DEGs in Diff-SPGs (A), SPCs (B), RSs (C), and ESs
 308 (D). Dot size indicates the range of *p*-value. The color keys, ranging from gray to red (top) or gray to blue
 309 (bottom), indicate the absolute value of the normalized enrichment score (NES).

310

311

312 **Changes in the transcriptional profiles of somatic cells during human testicular aging**

313 We next quantified the populations of the main somatic cell types, including LCs, SCs, and
314 PTMs, in young and old testes by immunofluorescence analysis (Figure S4A-C). To further
315 explore the mechanisms of testicular aging at the cellular level, we compared the gene
316 expression patterns in somatic cells between the groups. By calculating the age-relevant CV(S.
317 Wang et al., 2020), we found that the aging-accumulated transcriptional noise was higher in
318 LCs, PTMs, and SCs compared to the other somatic cell types (Figure 4A). This suggested that
319 LCs, PTMs, and SCs may be more vulnerable to age-related stress than the other somatic cell
320 types. We next explored aging-associated DEGs in somatic cells between the groups. We
321 identified thousands of genes that represented DEGs ($|\text{avg_logFC}| > 0.25$ and $p\text{-value} < 0.05$)
322 in at least one somatic cell type of human testis during aging (Figures 4B). Further analysis
323 enabled us to identify 621, 316, 228, 944, 447, and 1274 upregulated genes and 280, 225, 171,
324 567, 447, and 913 downregulated genes in SCs, LCs, PTMs, Ms, ECs, and SMCs, respectively,
325 in the old versus young comparison (Figure 4B; Supplementary file 2. Notably, only ~26% of
326 the DEGs were shared by at least two cell populations, indicating that the effects of aging are
327 largely somatic cell type-specific in this setting.


328 To identify DEGs that constantly increased or decreased in somatic cells during aging, we
329 aligned datasets of individual samples by their chronological age and explored the expression
330 patterns of 2594 DEGs that were upregulated with age and 1953 DEGs that were downregulated
331 with age in six somatic cell types (Figure 4C). GO enrichment analysis revealed that the genes
332 upregulated with age were mainly associated with cytokine and stress responses, unfolded
333 proteins, and apoptotic signaling. In comparison, the genes downregulated with age were
334 mainly related to peptide secretion, hormone responses, and growth (Figure 4D; Supplementary
335 file 3). As the senescence-associated secretory phenotype (SASP) is a common feature of
336 senescent cells and usually contributes to a low-grade inflammatory state(Baker & Petersen,
337 2018), we questioned whether the somatic niche in the aged testis might present an elevated

338 SASP environment. Indeed, our analysis revealed that somatic cells exhibited much higher
339 gene-set scores for SASP (Figure 4E). Notably, LCs, PTMs and Ms showed elevated SASP
340 scores with age (Figure 4F, 4G; Supplementary file 4), indicating that these three cell types had
341 strong contributions to the age-related inflammatory state in human testis.

342 Next, we performed an integrative comparative analysis of aging-associated DEGs with
343 aging/longevity-associated genes from the GenAge database(Tacutu et al., 2018) and further
344 found that many aging/longevity-associated genes were differentially expressed in one or more
345 somatic cell type (Figure S4D). For instance, the molecular marker of senescent cells, CDKN1A,
346 was upregulated in LCs, PTMs, and ECs, whereas several cell survival-related genes (PLCG2,
347 IGFBP2, and GSTP1) were downregulated in three or more somatic cell populations during
348 testicular aging (Figures S4D).

349 Collectively, these results indicate that a series of aging-related molecular changes occur in
350 aged human testicular somatic cells and likely contribute to testicular homeostasis and aging.

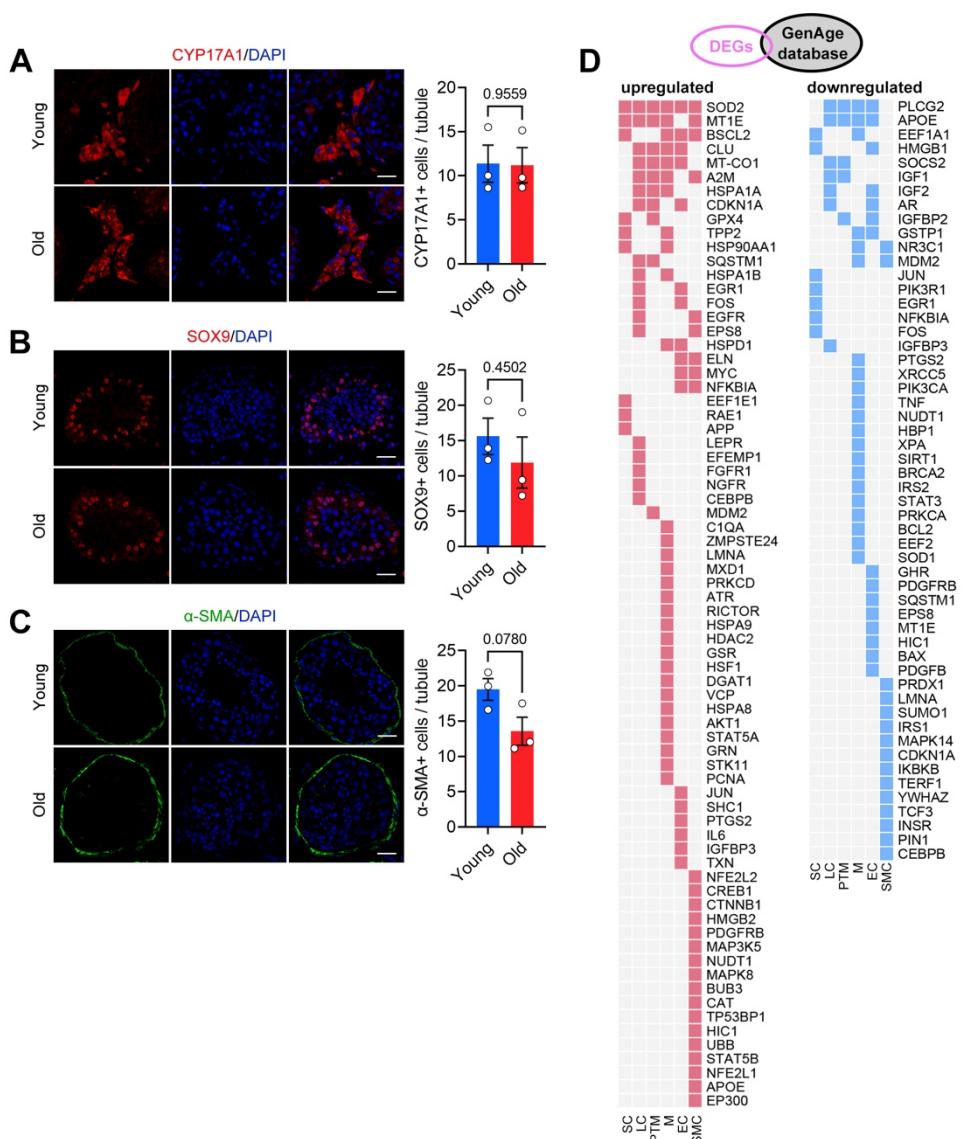
Figure 4

352 **Figure 4. Changes in the Transcriptional Profiles of Somatic Cells during Human**

353 **Testicular Aging**

354 (A) CV analysis showing the aging-associated transcriptional noise in somatic cells.

355 (B) Heatmaps showing the distribution of upregulated (red) and downregulated (blue) DEGs ($|\log_{2}\text{FC}| > 0.25$,
356 $\text{min.diff.pct} = 0.1$, $p\text{-value} < 0.05$) between old and young human germ cells. Genes not differentially
357 expressed are in gray, and the numbers of DEGs are indicated.


358 (C) Heatmaps showing the age-related upregulated (left) and downregulated (right) DEGs of somatic cell
359 types. The color key, ranging from blue to red, indicates low to high gene expression levels.

360 (D) Representative shared GO terms of age-related upregulated (top) and downregulated (bottom) DEGs in
361 different somatic cell types. Dot size indicates the range of $p\text{-value}$. The color keys, ranging from gray to red
362 (top) or from gray to blue (bottom), indicate the absolute values of the normalized enrichment score (NES).

363 (E) Density plot showing the distribution of cells with different SASP scores in the young and old groups.
364 Wilcoxon rank sum test was used; $p\text{-value}$ is indicated.

365 (F) Box plot showing SASP scores in different types of somatic cells. Wilcoxon rank sum test was used; $p\text{-}$
366 values are indicated.

367 (G) Dot plot showing the \log_{2} -transformed fold change of SASP-related genes in somatic cells from young
368 versus old groups. Only genes showing a statistically significant difference between the young and old groups
369 are shown. Dot color indicates the \log_{2} -transformed fold change.

370

371 **Figure supplement 1. Changes in the Cellular and Transcriptional Regulatory Networks**
372 **of Somatic Cell Types during Human Testicular Aging**

373 (A-C) Immunostaining and quantification of CYP17A1 (A), SOX9 (B), and α -SMA (C) in young and old
374 human testis sections. Left, representative image of CYP17A1 (A), SOX9 (B), and α -SMA (C) in human
375 testis sections. Right, quantification of CYP17A1+ (A), SOX9 (B)+, and α -SMA+ (C) cells per seminiferous
376 tubule. Scale bars, 35 μ m. Young, n=3; Old, n=3. Data are expressed as mean \pm sem. Significance was
377 determined by Student's t-test.

378 (D) Heatmap showing expression patterns of upregulated (red) and downregulated (blue) genes found in the
379 GenAge database.

380

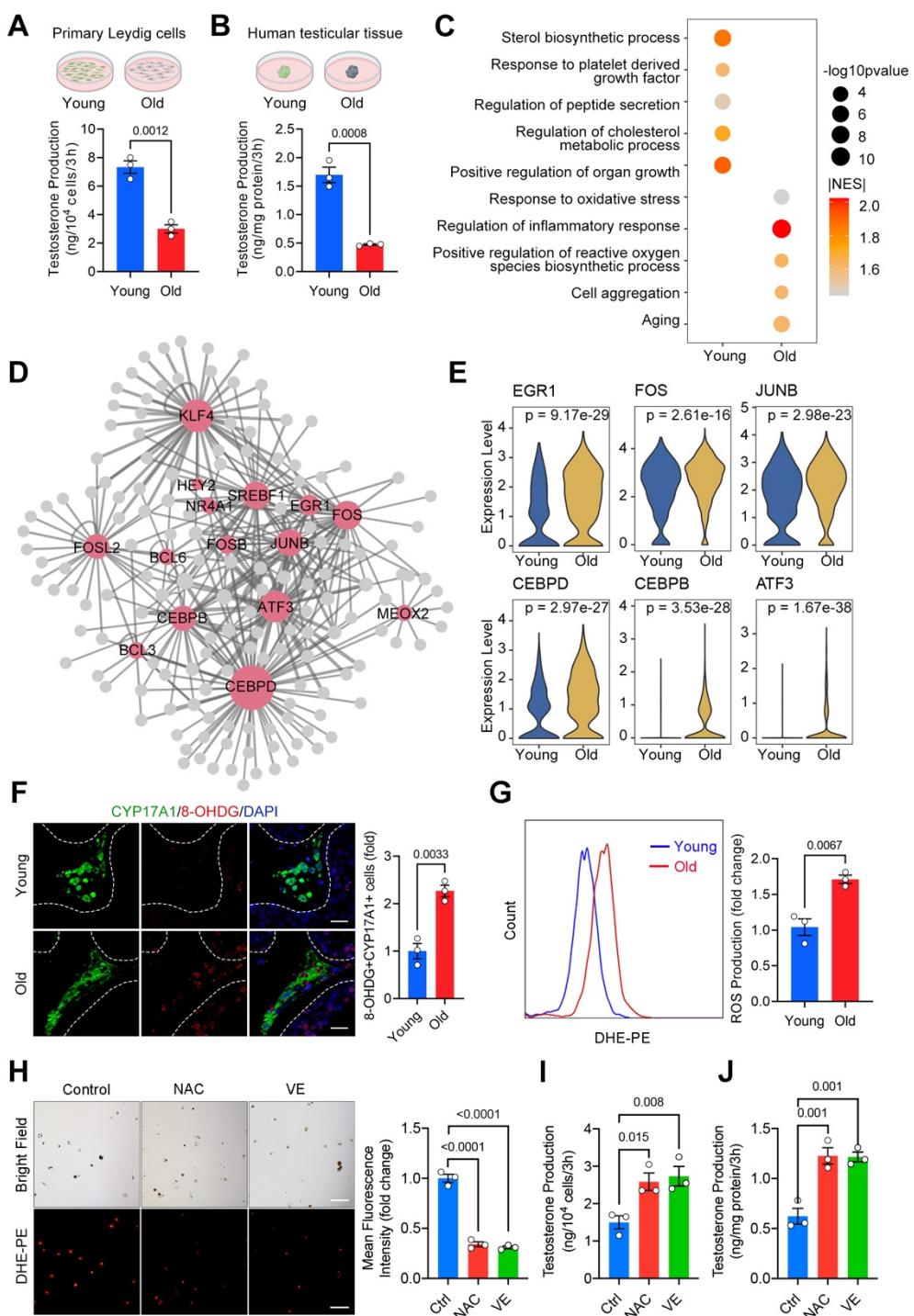
381 **Dysfunction of LCs during human testicular aging**

382 LCs produce testosterone and are thus critical for reproductive function and general
383 health(Zirkin & Papadopoulos, 2018). LC dysfunction causes testosterone deficiency, arrested
384 spermatogenesis, and infertility. Here, we observed the highest level of aging-accumulated
385 transcriptional noise in LCs (Figure 4A). Thus, we next focused on the aging-associated
386 changes of gene expression in LCs. For functional validation, we assessed the ability of aged
387 LCs to produce testosterone. We isolated primary LCs from human testicular tissues of both
388 groups (Figure S5A, B). Assessment of testosterone levels in the media revealed that LCs from
389 the young group produced significantly more testosterone than those from the old group (Figure
390 5A). Consistently, when we cultured small pieces of testicular tissue in vitro, testosterone
391 production was significantly lower in the old group compared with the young group (Figure
392 5B). These results demonstrate that the basic function of LCs appears to become compromised
393 during aging.

394 To further characterize the changes in LCs during human testicular aging, we performed GO
395 enrichment analysis based on GSEA analysis. Our results revealed that the genes upregulated
396 with age were mainly associated with regulating the response to reactive oxygen species (ROS)
397 and cell aggregation (Figure 5C). Notably, genes related to inflammatory responses and aging
398 were also upregulated in aged human LCs (Figure 5C), which is consistent with their elevated
399 SASP score and expression of the senescence marker, CDKN1A (Figure 4F, S4D). By
400 comparison, the downregulated DEGs were mainly enriched in GO terms such as cholesterol
401 metabolic processes and the response to platelet-derived growth factor; these findings are
402 consistent with the tendencies of aged LCs to exhibit decreases in testosterone production and
403 cell number, respectively (Figure 5A-C; S4A). Genes related to positive regulation of organ
404 growth (IGF1, IGF2, ARX, DDX39B, AKAP6, TBX2, and ZFPM2) were also downregulated
405 in aged human LCs, likely contributing to testicular aging.

406 To identify critical regulators linked to LC aging, we constructed gene-regulatory networks
407 based on aging-associated DEGs. We noticed that several TFs, such as CEBPD, FOSL2, JUNB,
408 KLF4, ATF3, and EGR1, were among the top upregulated genes in aged human LCs (Figure
409 5D; Supplementary file 5). This finding was in agreement with the prominent upregulation of
410 the response to oxidative stress found in our GO analysis, as EGR1 is a well-known central
411 regulator of the oxidative stress response(Dai et al., 2021). Additional oxidative stress
412 regulators, such as CEBPD(S. M. Wang et al., 2018), ATF3(Feng, Li, Jin, Gong, & Xia, 2021)
413 (Figure 5E), and JUNB(M. Chen, Li, Shi, Zhang, & Xu, 2019), were also upregulated (Figure
414 5E), further supporting the notion that redox homeostasis is impaired in aged human LCs.

415 Consistent with the transcriptomic changes, we observed an increase in cells positive for 8-
416 OHDG, which is a recognized biomarker of oxidative stress(S. Wang et al., 2020; Zou et al.,
417 2021), in aged LCs compared with young LCs (Figures 5F). Moreover, primary human LCs
418 from the old group generated more intracellular ROS than those from the young group (Figures
419 5G). Of note, 8-OHDG-positive cells also detected in several other testicular cell types (Figures
420 5F), suggesting that oxidative stress is involved in the aging process of human testis.


421 Collectively, our data suggest that age-related impairment in redox homeostasis may function
422 as a molecular basis for LC dysfunction, and thereby likely contributes to late-onset
423 hypogonadism during male aging.

424 **Antioxidants restore the testosterone production of LCs from aging human testis**

425 Next, we asked whether the suppression of oxidative stress could counteract the cellular
426 dysfunction of LCs. As small-molecule agents, such as N-acetylcysteine (NAC) and vitamin E
427 (VE), have been reported to reduce oxidants(H. Chen et al., 2005; W. Zhao et al., 2017), we
428 tested the effect of these antioxidants on the function of primary LCs and testicular samples
429 from the old group. Not surprisingly, primary LCs treated with NAC or VE exhibited decreases
430 in the ROS level (Figures 5H, S5C). Interestingly, however, the antioxidant treatments
431 recovered testosterone production in isolated primary LCs, whereas the vehicle control did not

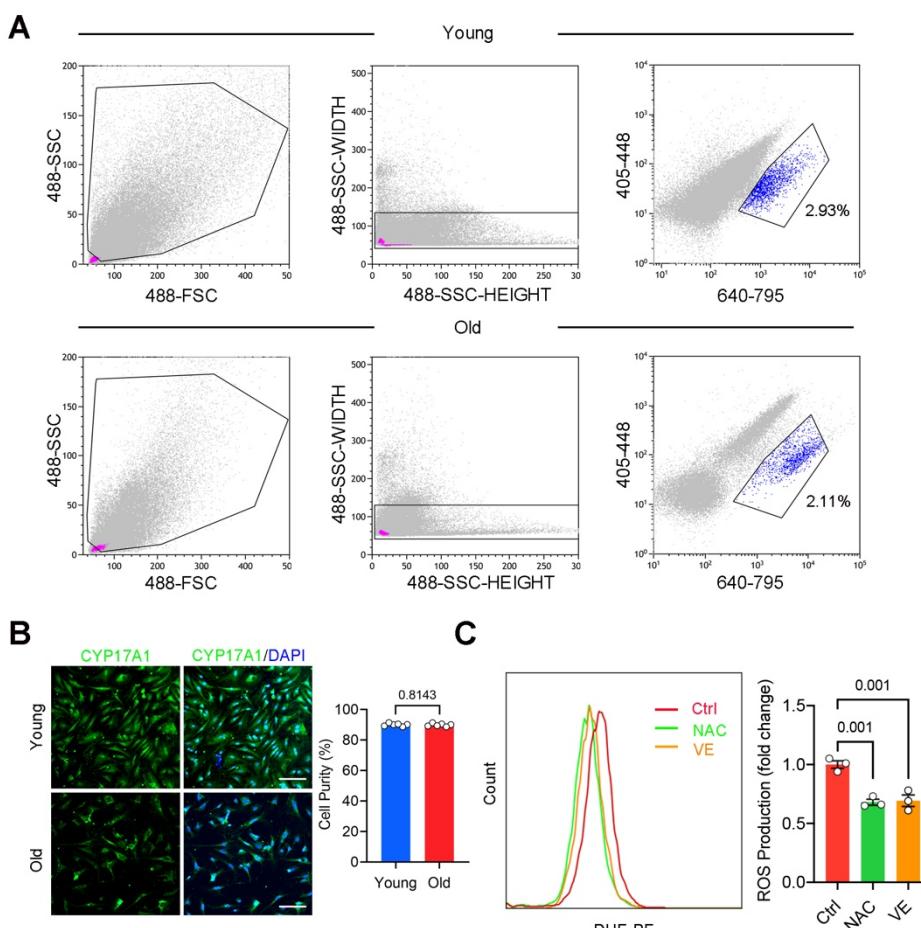

432 (Figure 5I). The antioxidant treatments also restored testosterone production in aged human
433 testicular samples (Figure 5J), suggesting that antioxidative strategies may rejuvenate LCs and
434 recover testosterone production in elderly humans. Collectively, these findings suggest a new
435 platform for uncovering potential intervention targets and compounds for alleviating late-onset
436 hypogonadism and testicular aging.

Figure 5

438 **Figure 5. Dysfunction of Leydig Cells During Human Testicular Aging**

439 (A,B) Quantification of testosterone production in primary LCs (A) and human testicular tissue (B). Young,
440 n=3; Old, n=3. Data are expressed as mean \pm sem. Significance was determined by Student's t-test.
441 (C) Representative GO terms of DEGs in old and young human LCs. Dot size indicates the range of *p*-value.
442 Color keys, ranging from gray to orange to red, indicate the absolute values of the normalized enrichment
443 score (NES).
444 (D) Network visualization of potential key transcriptional regulators of upregulated DEGs in LCs. Node size
445 is positively correlated with the number of directed edges. Edge width is positively correlated with the NES
446 score. Transcription factors are highlighted in red; others are in gray.
447 (E) Violin plot showing the expression levels of age-associated upregulated transcriptional factors. Wilcoxon
448 rank sum test was used; *p*-value is indicated.
449 (F) Immunostaining and quantification of 8-OHDG and CYP17A1 in young and old human testis sections.
450 Left, representative image of 8-OHDG and CYP17A1 in human testis sections. Right, quantification of the
451 proportion of 8-OHDG+ LCs (CYP17A1+). Scale bars, 25 μ m. Young, n=3; Old, n=3. Data are expressed as
452 mean \pm sem. Significance was determined by Student's t-test.
453 (G) Quantification of ROS production in young and old primary LCs, as measured by flow cytometry. Young,
454 n=3; Old, n=3. Data are expressed as mean \pm sem. Significance was determined by Student's t-test. ***p*<0.01.
455 (H) Representative images and quantification ROS production by primary human LCs isolated from old testes,
456 comparing control with antioxidant-treated (NAC or VE) groups. Left, representative bright field and
457 immunofluorescent (DHE-PE) images of primary LCs. Right, quantification of ROS production by primary
458 LCs. Scale bars, 100 μ m. Control, n=3; NAC (10 mM), n=3; VE (5 μ M), n=3. Data are expressed as mean \pm
459 sem. Significance was determined by one-way ANOVA.
460 (I) Quantification of testosterone production by primary human LCs isolated from old testes in control and
461 antioxidants treatment (NAC and VE) groups. Control, n=3; NAC (10 mM), n=3; VE (5 μ M), n=3. Data are
462 expressed as mean \pm sem. Significance was determined by one-way ANOVA. **p*<0.05, ***p*<0.01.
463 (J) Quantification of testosterone production by old human testicular tissues in control and antioxidant-treated
464 (NAC and VE) groups. Control, n=3; NAC (10 mM), n=3; VE (5 μ M), n=3. Data are expressed as mean \pm
465 sem. Significance was determined by one-way ANOVA.

466

467 **Figure supplement 1. Isolation and ROS quantification of primary human LCs.**

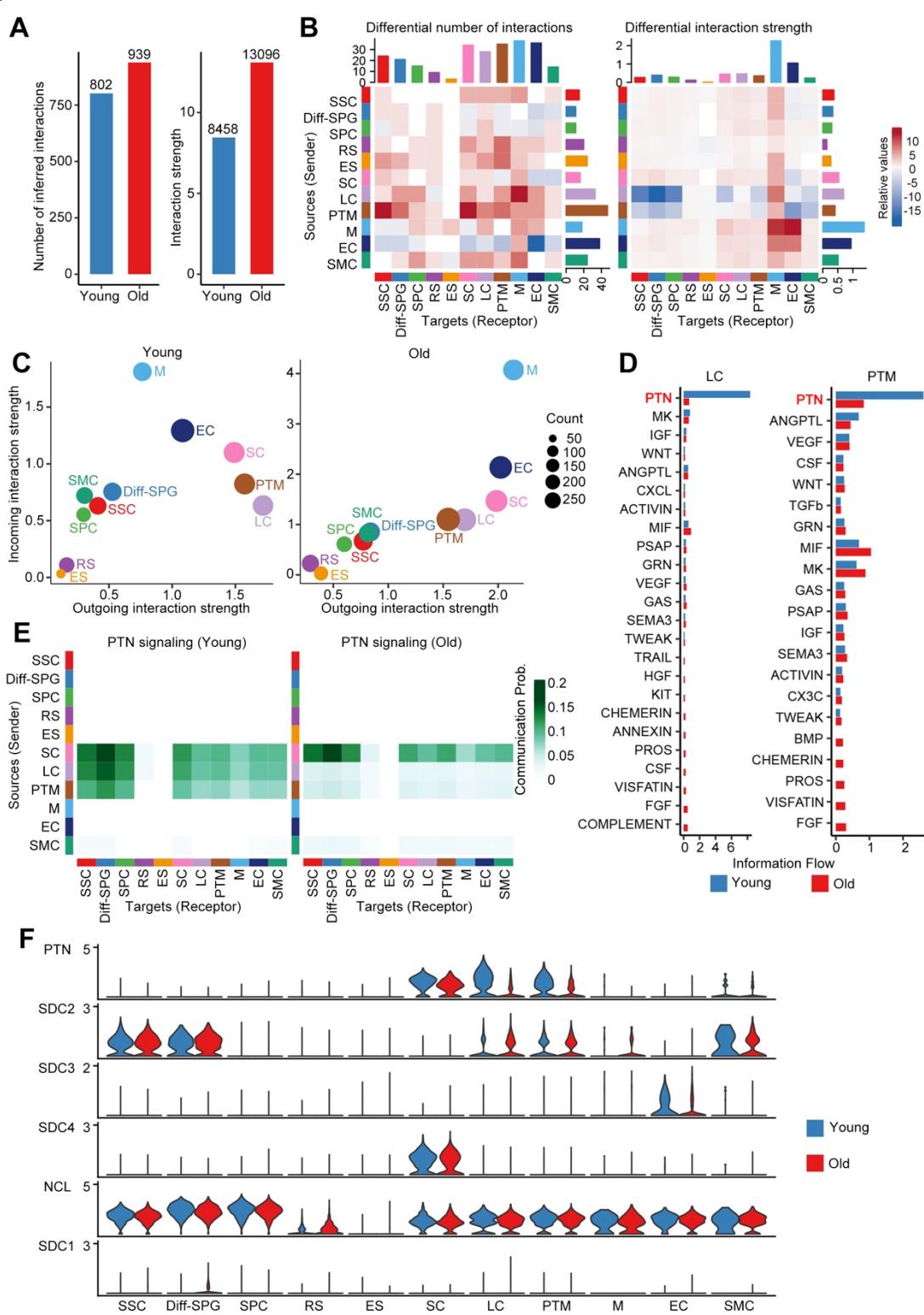
468 (A) Representative gating strategy of FACS for isolating young and old human LCs. Autofluorescent cells
469 were excited in all fluorescence channels and isolated with the 405/448 merged 640/795 channel. FSC:
470 forward scatter; SSC: side scatter.

471 Cell purity of young and old human LCs was measured by immunostaining of CYP17A1. Right,
472 quantification of the proportion of CYP17A1+ cells. Scale bars, 100 μ m. Young, n=6; Old, n=6. Data are
473 expressed as mean \pm sem. Significance was determined by Student's t-test.

474 (C) Quantification of ROS production in primary LCs of control and antioxidant-treated (NAC or VE) groups,
475 as measured by flow cytometry. Control, n=3; NAC (10 mM), n=3; VE (5 μ M), n=3. Data are expressed as
476 mean \pm sem. Significance was determined by one-way ANOVA.

477

478 **Cell-cell communication changes during human testicular aging**


479 The maintenance of multicellular organism morphology and function largely relies on cell-cell
480 communication. Therefore, using the ligand–receptor interaction tool CellChat(Jin et al., 2021),
481 we next systematically inferred changes in communication networks between testicular cells at
482 the single-cell level during aging. To our surprise, the interaction number and interaction
483 strength were enhanced in the old group compared to the young group (Figure 6A;
484 Supplementary file 6). We then assessed differential interactions of testicular cells as either
485 signal sources or signal targets during aging. LCs and PTMs showed similar and relative
486 decreases in their communicating roles during aging; meanwhile, there was a global trend for
487 increasing interactions in old testis compared to young testis (Figure 6B). Consistently,
488 investigation of the outgoing and incoming signaling patterns revealed that there were relative
489 declines of the outgoing interaction strengths for aged LCs and PTMs compared to their young
490 counterparts (Figure 6C). These results encouraged us to further study the potential role of
491 LCs and PTMs in testicular aging.

492 When we compared the information flow for each signaling pathway sent by LCs or PTMs
493 between the young and old groups, we found that the pleiotrophin (PTN) signaling pathway
494 ranked highest in flow for young testis and declined prominently during aging (Figure 6D).
495 Based on this finding, we investigated the PTN signaling pathway network of testicular cells.
496 In the young group, PTN signaling was mainly sent by SCs, LCs, and PTMs and received by
497 SSCs, Diff-SPGs, SPCs, and somatic cells. In the old group, in comparison, PTN signaling was
498 dramatically lower between LCs, PTMs and other cells, but relatively similar between SCs and
499 other cells (Figure 6E).

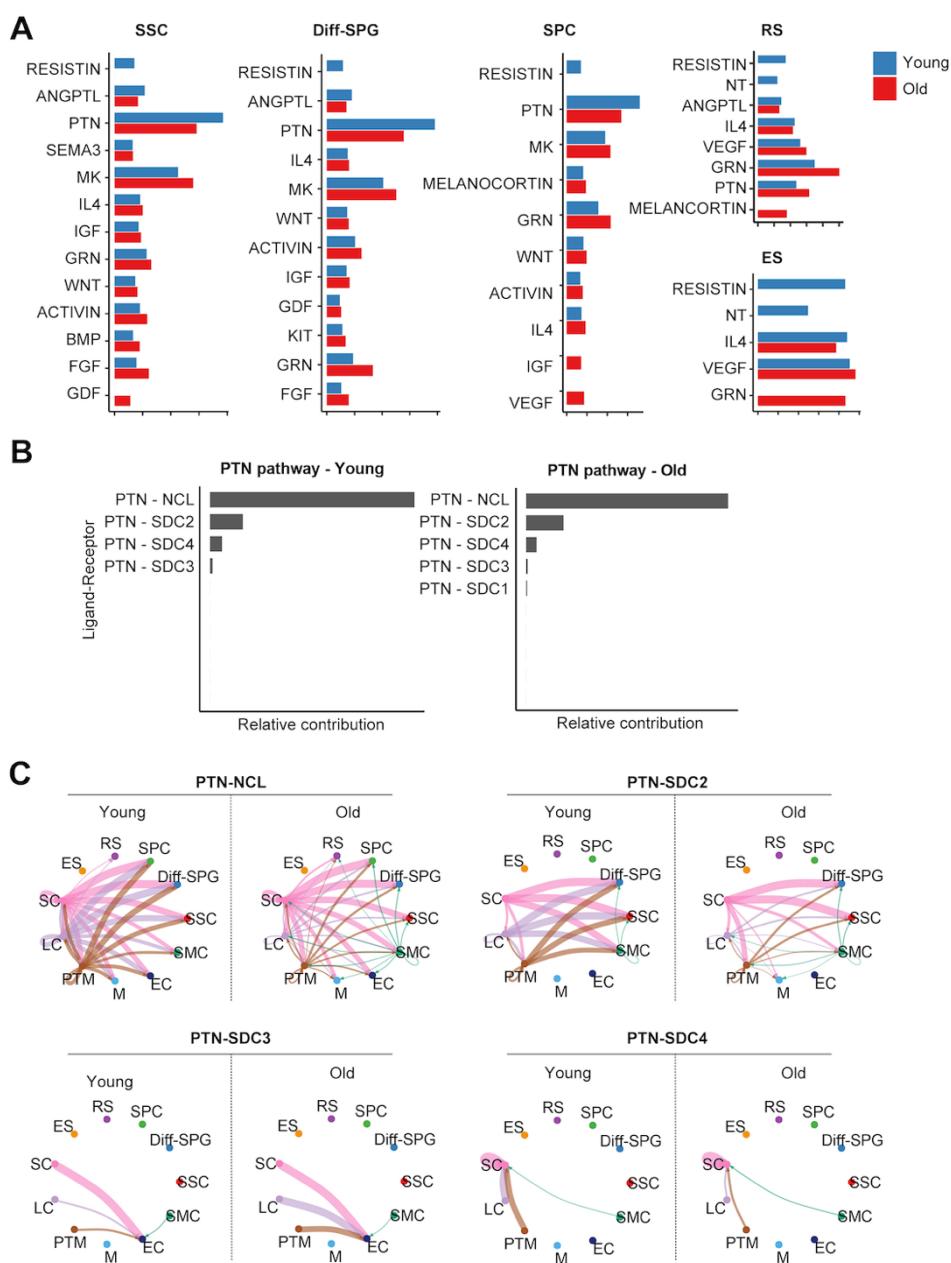
500 In the testis, growth factors and morphogen signals play important roles in spermatogenesis.
501 We next inferred the age-related changes in the communication networks of target germ cells.
502 Similar to the above-described findings, PTN was prominent among the incoming signal
503 pathways of SSCs, Diff-SPGs, and SPCs (Figure S6A). This supports the idea that PTN

504 signaling forms a potential regulatory axis between somatic cells and spermatogenesis. Our
505 analysis identified five significant ligand-receptor pairs for PTN signaling: PTN-NCL, PTN-
506 SDC1, PTN-SDC2, PTN-SDC3, and PTN-SDC4. Among them, PTN-NCL contributed most
507 highly to PTN signaling in both young and old groups (Figure S6B, S6C). The expression level
508 of PTN was downregulated in LCs and PTMs of the old group compared to the young group,
509 whereas the expression levels of NCL, SDC1, SDC2, SDC3, and SDC4 did not differ with age
510 in most of the other tested cell populations (Figure 6F). This further supports the importance of
511 LCs and PTMs in human testicular aging. Notably, PTN was previously reported to maintain
512 stemness and activate cell proliferation, and to play important roles in neural development,
513 angiogenesis, and bone development(Deuel, Zhang, Yeh, Silos-Santiago, & Wang, 2002). The
514 downregulation of PTN and PTN pathway signaling during aging may help explain age-related
515 male fertility declines and hypogonadism.

Figure 6

517 **Figure 6. Cell-cell communication changes during human testicular aging.**

518 (A) Bar plot showing the number (left) or strength (right) of interactions in the cell-cell communication
519 network, as analyzed by CellChat.


520 (B) Heatmap showing the different number (left) or strength (right) of interactions in the cell-cell
521 communication network between young and old groups. Red or blue colors represent increased or decreased
522 signaling, respectively, in old groups compared to young.

523 (C) The outgoing (sending signals) and incoming (receiving signals) interaction strength of the cell
524 populations in young (left) and old (right) groups. "Count" indicates the number of inferred links (both
525 outgoing and incoming) associated with each cell group.

526 (D) Information flow of significant signaling pathways sent by LCs (left) or PTMs (right) and received by
527 all cell populations in young (blue columns) and old (red columns) groups. The top signaling pathway, PTN,
528 is labeled in red.

529 (E) Heatmap showing the inferred intercellular communication networks of the PTN signaling pathways in
530 young (left) and old (right) cell populations. Color key, ranging from white to green, indicates the between-
531 cell communication probability for the PTN signaling pathway.

532 (F) Violin plot showing expression levels of ligand-receptor pairs for the PTN signaling network in young
533 and old cell populations.

534

535 **Figure supplement 1. PTN signaling pathways changes during human testicular aging.**

536 (A) Information flow of significant signaling pathways received by germ cell populations in the young (red
537 columns) and old (blue columns) groups. PTN signaling pathway is labeled in red.

538 (B) Relative contribution of each ligand-receptor pair to the overall PTN signaling network in young (left)
539 and old (right) groups. In the PTN signaling pathway, PTN acts as a ligand for the receptors, NCL, SDC2,
540 SDC3, and SDC4.

541 (C) Circle plot showing the interaction probability between all cell populations of each ligand-receptor pair
542 in the PTN signaling pathway. Edge width represents the communication probability. In the PTN signaling
543 pathway, PTN acts as a ligand for the receptors, NCL, SDC2, SDC3, and SDC4.

544 **Discussion**

545 In this report, we present the single-cell survey of human testicular aging, providing insights
546 into the mechanisms by which human testes age. Our analyses provide four noteworthy
547 contributions. First, we elucidated the gene expression signatures of 11 types of human
548 testicular cells (including germline and somatic cells) and identified several previously
549 unreported cell type-specific markers. Second, analysis of age-associated gene expression
550 changes revealed that DNA repair genes are downregulated in aged human SSCs, which may
551 represent a driver for the age-related increase of de novo germline mutations in males. Third,
552 human LCs exhibited aging-associated upregulation of oxidative stress genes, and antioxidant
553 treatment recovered the functions of aged human LCs. Fourth, our results suggested that
554 decreases in PTN signaling contribute to testicular aging. Together, these observations provide
555 novel insights into human testicular aging and identify new potential targets for treating human
556 disorders associated with testicular aging.

557 Although the fertility decline and testosterone deficiency caused by testicular aging
558 undermine reproductive and general health in aging males, the impact of age on the human
559 testis is still poorly understood(Kaufman et al., 2019; Santiago et al., 2019). The previous
560 studies have mainly detailed the morphological changes that occur in the human testis during
561 aging, while the molecular mechanisms underlying testicular aging have remained largely
562 unknown(Jiang et al., 2014; Mularoni et al., 2020; Perheentupa & Huhtaniemi, 2009). Moreover,
563 the few previous mechanistic reports have used analytical methods with inherent biases that
564 limit their ability to provide information for all cell populations(Han, Hong, Lee, Hong, & Cho,
565 2021; Stockl et al., 2021). To address these gaps, we herein used scRNA-seq analysis, which
566 enables the study of heterogeneous cells and the identification of cell states and cell type-
567 specific gene changes during aging or disease emergence(Di Persio et al., 2021; Guo et al.,
568 2021; S. Wang et al., 2020; Yang et al., 2022). Recent scRNA-seq-based studies have reported

569 transcriptomic and functional changes in immune cells during aging(Zheng et al., 2020) and in
570 tissues such as the central nervous system(Ximerakis et al., 2019), mammary gland(C. M. Li et
571 al., 2020), and ovary(S. Wang et al., 2020). scRNA-seq was also previously used to analyze
572 human testes, and the results improved our understanding of testicular biology and related
573 pathology(Alfano et al., 2021; Di Persio et al., 2021; Guo et al., 2018; Guo et al., 2020; Guo et
574 al., 2021). For instance, scRNA-seq analyses of testes revealed profiles for human testis
575 development(Guo et al., 2020; Guo et al., 2021), Klinefelter syndrome(Mahyari et al., 2021),
576 idiopathic germ cell aplasia(Alfano et al., 2021), and azoospermia(L. Zhao et al., 2020). Using
577 the approach, a recent study of human testicular aging has been reported, providing candidate
578 molecular mechanisms of the testicular changes during aging(Nie et al., 2022). However, the
579 critical molecular drivers underlying germ cell and Leydig cell functional decline during aging
580 remain unclear. Here, we used scRNA-seq to comprehensively delineate cell type-specific, age-
581 associated gene expression changes in human testes. To our knowledge, this is the first scRNA-
582 seq study to reveal the cell type particularly vulnerable to aging and uncover the potential
583 molecular drivers of testicular aging by in-depth sequencing and reproducible bioinformatics
584 tools.

585 Since human male germ cells have a unique germline-specific aging process(Laurentino et
586 al., 2020; Pohl et al., 2019), we first analyzed germline cells and identified five cell categories
587 based on their specific scRNA-seq signatures. We show that human germline aging is linked to
588 decreased RSs and ESs in aged testes, consistent with previous reports that aging males showed
589 a decline in sperm parameters(Pohl, Gromoll, Wistuba, & Laurentino, 2021; Pohl et al., 2019).
590 SSCs are known to be the foundational unit of fertility in all male mammals(Sharma et al.,
591 2019; Tan & Wilkinson, 2020), but the research has been slow to advance our knowledge of
592 human SSC biology, especially in the aging process. Here, we characterized the molecular
593 changes in human SSCs during testicular aging. Surprisingly, we found that BER, which is a

594 major pathway for DNA repair(Ray Chaudhuri & Nussenzweig, 2017), was downregulated in
595 aged human SSCs. Consistently, immunostaining revealed age-related decreases in NTLH1 and
596 APEX1, which are important BER(Galick et al., 2013; M. Li et al., 2018), in human SSC
597 populations. Cells are exposed to various endogenous and exogenous insults that induce DNA
598 damage that, if left unrepaired, can impair genomic integrity and lead to the development of
599 various diseases(Ray Chaudhuri & Nussenzweig, 2017). Among the germline cells,
600 differentiating germ cells exist for only the duration of one spermatogenic cycle, but SSCs are
601 long-living stem cells that exist throughout the male's life. Thus, SSCs are susceptible to age-
602 accumulated DNA damage(Laurentino et al., 2020). Indeed, whole-genome sequencing studies
603 have shown that de novo point mutations in children arise predominantly from the male SSCs,
604 and the mutational frequency increases with paternal age(Maher et al., 2016). These mutations
605 are linked to increased risks of breast cancer, developmental disorders, behavioral disorders,
606 and neurological disease in the children of older men(Maher et al., 2016; Yatsenko & Turek,
607 2018). These findings support the hypothesis that disturbance of BER in SSCs drives the age-
608 related increase of de novo germline mutations and may have further negative consequences
609 for the offspring's health. These possibilities remain to be thoroughly assessed in future studies.

610 Based on the derived dataset, we identified thousands of cell type-specific DEGs that
611 highlighted the molecular changes underlying the aging of human testicular somatic cells.
612 Specifically, the upregulation of stress responses and apoptotic signaling and the
613 downregulation of growth-related pathways were prominent features of somatic cells in aged
614 testes. Moreover, somatic cells exhibited much higher SASP-related gene expression levels,
615 suggesting that the SSC niche may be destroyed with age. LCs produce a large amount of ROS
616 when testosterone is synthesized, making them vulnerable to ROS-induced damage(Cao, Leers-
617 Sucheta, & Azhar, 2004; Zirkin & Papadopoulos, 2018). Accordingly, we found that the aging-
618 associated DEGs were enriched for the ROS response and apoptosis pathways in LCs.
619 Intriguingly, we also observed an elevated inflammatory response in aged LCs, which may

620 reflect an accumulation of ROS-induced macromolecule damage (Forman & Zhang, 2021).
621 Given that inflammation is an adaptive response to noxious stress or malfunction, the elevated
622 inflammation we observed in aged LCs implies that intracellular homeostasis becomes skewed
623 toward a chronic stress state with age. Recent evidence suggests that oxidative stress may be
624 linked to LC dysfunction and hypogonadism in rodents (Cao et al., 2004; H. Chen et al., 2005).
625 Consistently, we found that DNA oxidation markers were increased in aged LCs compared to
626 young LCs. Moreover, isolated primary human LCs from the old group generated more
627 intracellular ROS than LCs from young group, supporting the notion that oxidative stress
628 induces LC dysfunction in aging human testes.

629 Based on our present findings, we speculated that oxidative stress could be targeted as a
630 therapeutic avenue to prevent LC dysfunction in aging males. A number of reports have
631 examined the beneficial effects of antioxidants on the function of murine LCs, but mostly under
632 pathological conditions (e.g., testicular torsion or diabetes) or following exposure to various
633 toxic agents (H. Chen et al., 2005). To our knowledge, no previous study has reported an
634 antioxidant intervention that successfully improved human LC function. Here, we show that
635 antioxidants restored testosterone production not only in primary human LCs but also in human
636 testicular samples from the old group, suggesting that scRNA-seq could represent a new
637 platform for uncovering intervention targets and compounds for alleviating late-onset
638 hypogonadism and testicular aging in humans.

639 Testicular physiology broadly relies on cell-cell signaling, and imbalances in this signaling
640 most likely contribute to various forms of spermatogenic impairment (Di Persio et al., 2021;
641 Mahyari et al., 2021). Here, we found that LCs and PTMs showed decreases in their
642 communication roles during aging, which contrasted with the global tendency toward increased
643 interaction in old testis relative to young testis. This suggested that LCs and PTMs play
644 important roles in human testicular aging. Moreover, we found that the PTN signaling pathway
645 was top-ranked in young testis and declined dramatically in importance among LCs, PTMs, and

646 other cells of the old group. PTN is an 18-kDa heparin-binding secretory growth/differentiation
647 factor for different cell types that was reported to be expressed at only low levels in some cells
648 of the brain, bones, gut, uterus, and ovary(Deuel et al., 2002). However, PTN was found to be
649 expressed at a significantly higher level in cells of the testis, especially LCs(Vanderwinden,
650 Mailleux, Schiffmann, & Vanderhaeghen, 1992). A previous study showed that a dominant-
651 negative PTN mutant caused testicular atrophy and apoptosis among spermatocytes at all stages
652 of development; this suggested that PTN plays a central role in normal spermatogenesis, and
653 that interruption of PTN signaling may lead to sterility in males(Zhang, Yeh, Zhong, Li, &
654 Deuel, 1999). It is possible that the continuous self-renewal and differentiation of developing
655 spermatogonia make them uniquely susceptible to the loss of PTN signaling. However, the
656 effects of PTN on human testicular aging are not yet fully understood and need to be further
657 elucidated in future studies.

658 In summary, the present study provides the comprehensive single-cell transcriptomic atlas of
659 young and aged human testis and broadens our understanding of cell type-specific gene
660 signatures in the human testis. Importantly, our work offers insights into the molecular
661 mechanisms underlying testicular aging in humans, which could help the field work toward
662 developing targeted interventions to protect against testicular aging and/or suggest new tools to
663 rejuvenate aged germline and Leydig cells.

664

665

666 **Materials and methods**

667 **Human testicular tissues**

668 Human testis samples were obtained from 6 male donors who underwent testicular excision or
669 biopsy for the following indications: testicular teratoma (Y1; 28 years old), testicular Leydig
670 cell tumor (Y2; 24 years old), obstructive azoospermia (Y3; 31 years old), testicular cyst (O1;
671 61 years old), and prostate cancer without androgen deprivation therapy (O2; 87 years old; O3;
672 70 years old). For patients Y1, Y2, and O1, we collected normal tissues distant from lesions.
673 The old donors were confirmed to have offspring, which was taken as indicating that they had
674 normal reproductive function when young. Informed consent was obtained from all of the
675 above-listed patients.

676 **Tissue processing**

677 After being collected from the operating room, the samples were transported to the laboratory
678 on ice in storage solution (Miltenyi Biotec, Shanghai, China) within 1 h. The tunica was
679 removed and testicular tissues were minced and washed three times with phosphate-buffered
680 saline (PBS) to eliminate the storage solution and blood. To ensure accuracy and stability, ~200
681 mg of tissue was immediately applied for scRNA-seq. Thereafter, tissue samples (~500 mg)
682 were fixed with 4% paraformaldehyde (PFA; Thermo Fisher Scientific, Wilmington, DE, USA)
683 for histochemistry or immunostaining analyses. The remaining testis tissues were
684 cryopreserved for functional assessments, as previously described(Guo et al., 2018).

685 **Sample preparation for scRNA-seq**

686 For single-cell sequencing, testicular samples were minced and subjected to a standard two-
687 step digestion procedure(Guo et al., 2018). Firstly, the tissues were digested with dissociation
688 buffer including 1 mg/mL type IV collagenase (Gibco, Grand Island, NY, USA) and 200 µg/mL
689 DNase I (Roche, Indianapolis, IN, USA) dissolved in DMEM/F-12 (Gibco) at 37°C in a water
690 bath for 15 min. The tissues were gently pipetted against the bottom of tube with a Pasteur pipet,
691 passed through a 40-µm filter, washed twice with PBS, and stored temporarily at 4°C. Given

692 that this strategy might not have isolated all cells present in the spermatogenic tubule, we
693 redigested the samples left on the filter with 0.25% Trypsin-EDTA at 37°C in a water bath for
694 10 min. The digestion was terminated with termination buffer containing 10% fetal bovine
695 serum (FBS; Thermo Fisher Scientific, Wilmington, DE, USA) and the samples were filtered
696 through a 40-µm filter and centrifuged. Finally, the obtained cells were combined, passed
697 through a 40-µm filter, and resuspended in PBS. Cell numbers were counted with a Cellometer
698 Auto T4 automated cell counter (Nexcelom Bioscience, Lawrence, MA, USA) and resuspended
699 at 1000 cells/µL in PBS containing 0.1% BSA for single-cell sequencing.

700 **H&E staining**

701 Fixed tissues were embedded in paraffin and sectioned at 4 µm. The sections were
702 deparaffinized with xylene, rehydrated with an ethanol series (100%, 95%, 85%, 75%), and
703 stained with hematoxylin and eosin. Images were collected with a DMi8 microscope (Leica,
704 Wetzlar, Germany).

705 **Masson staining**

706 Fixed tissues were embedded in paraffin and sectioned at 4 µm. After being deparaffinized with
707 xylene and rehydrated with an ethanol series (100%, 95%, 85%, 75%), the sections were stained
708 overnight with potassium bichromate solution and rinsed with running tap water for 5 min. The
709 sections were then incubated sequentially in Weigert's iron hematoxylin working solution for
710 10 min, Biebrich scarlet-acid fuchsin solution for 10 min, and phosphomolybdc-
711 phosphotungstic acid solution for 15 min. Between each step, the slides were washed in distilled
712 water. The sections were then transferred directly (without being rinsed) to aniline blue solution
713 and stained for 10 min. After being briefly washed with distilled water, the sections were
714 differentiated in 1% acetic acid solution for 5 min, and then rinsed with distilled water. Finally,
715 the sections were dehydrated and mounted using resinous mounting medium. Images were
716 collected with a DMi8 microscope (Leica).

717 **Single-cell RNA-seq library construction, sequencing, and alignment**

718 Single-cell suspensions were loaded to a 10x Chromium Controller instrument (10 \times Genomics,
719 Pleasanton, CA, USA) and ~5000 single cells were captured using a Chromium Single Cell 3'
720 Library & Gel Bead Kit (V3; 10 \times Genomics) according to the manufacturer's instructions. The
721 cDNA amplification and library construction procedures were performed according to standard
722 protocols. The resulting libraries were sequenced on the Illumina sequencing platform by LC-
723 BIO Co., Ltd (HangZhou, China).

724 Cell Ranger (Version 6.1.2) was used to process the single-cell data, align the reads, and
725 generate feature-barcode matrices. *Homo_sapiens_GRCh38_96* was used as the reference
726 genome. Then the matrices from different samples were aggregated using the 'aggr' function.

727 **Quality control, dimension reduction, clustering, and cell-type identification**

728 Basic data processing and visualization was performed with the Seurat package (Version
729 4.0.2)(Hao et al., 2021). Briefly, data were loaded using the "Read10x" function and a Seurat
730 object was built. The data were log normalized and scaled. Variable genes were identified by
731 the "FindVariableGenes" function. Next, principal component analysis (PCA) was performed,
732 and the top 20 principal components (PCs) were used for UMAP dimension reduction and
733 clustering (resolutions=0.5). We then performed quality control with the following criteria: (1)
734 Clusters with a high percentage of mitochondrial genes were removed; (2) cells with a total
735 number of expressed genes >800, 4000< total UMI count<120,000, and mitochondria genes <
736 60% were retained. We pre-processed the data again and removed doublet cells with
737 DoubletFinder (Version 2.0.3). The 22,520 cells that remained were taken as having passed
738 quality control and were used for subsequent analyses.

739 After quality control, data matrices from different donors were integrated by canonical
740 correlation analysis (CCA)(Stuart et al., 2019). Briefly, the data were integrated using the top
741 4000 variable genes as integration anchors. Then the first 30 PCs were used for UMAP
742 dimension reduction, to construct a k-nearest neighbor (kNN) graph, and to refine the edge
743 weights between any two cells. The cells were then clustered using the Louvain algorithm for

744 modularity optimization with the resolution parameter set to 0.6. Cell types was identified using
745 the indicated marker genes (see Results section). Marker genes for each cluster were determined
746 with ROC analysis using the “FindAllMarkers” function. Only those with $|\text{avg_logFC}| > 0.4$,
747 $\text{min.pct} = 0.5$, and $p\text{-value} < 0.05$ were considered as marker genes. GO analysis of cell type-
748 specific markers were performed with clusterProfiler (Version 4.0.5)(Wu et al., 2021).

749 **Analysis of coefficient of variation**

750 To observe the effects of aging on germline and somatic cells, we performed age-relevant
751 coefficient of variation analysis, as described in previous studies(S. Wang et al., 2020). We
752 identified highly variable genes (HVGs) using the “FindVariableFeatures” function and
753 selected the top-ranked 10% genes as HVGs (3438 HVGs out of 34,378 genes) for downstream
754 aging-associated transcriptional variation analysis.

755 For a given cell type, c , we defined the cell-paired-distance d for HVG x between the cells in
756 young (denoted as i) and old groups (denoted as j) as:

757
$$d_{c,x} = |x_{c,i} - x_{c,j}|, i = 1, 2, \dots, y; j = 1, 2, \dots, o$$

758 where y and o are the cell numbers in young and old groups, respectively, of cell type c .

759 Then we calculated the arithmetic mean of $d_{c,x}$ as $\mu_{c,x}$ and the standard deviation as $\sigma_{c,x}$.
760 Therefore, the coefficient of variation of cell-paired-distance, or transcriptional noise, is defined
761 as:

762
$$CV_{c,x} = |\sigma_{c,x}/\mu_{c,x}| \times 100$$

763 **Identification of differentially expressed genes (DEGs)**

764 The function “FindMarkers” in the R package, Seurat, which is based on the Wilcoxon rank-
765 sum test, was used to identify DEGs. Genes with an average log2-transformed difference
766 greater than 0.25 and $p\text{-value} < 0.05$ were considered to be aging-associated DEGs.

767 **GSEA analysis**

768 Enrichment analysis between young and old groups was performed based on gene set
769 enrichment analysis (GSEA), which was performed using fgsea (Version 1.16.0). The random

770 seed used in the permutations process was set as 123. Genes were ranked according to fold
771 change, and the gene fold-change data frame was used as the input. The GO-BP database was
772 used as the reference database, and was loaded by msigdbr (Version 7.4.1). All other parameters
773 used to perform GSEA were set at the default values. We filtered the obtained GSEA items with
774 p -value < 0.05 and $|\text{normalized enrichment score (NES)}| > 1$. The results were visualized using
775 ggplot2 (Version 3.3.5).

776 **Analysis of gene regulation networks**

777 Gene regulation network analysis was performed based on the single-cell regulatory network
778 inference (SCENIC) workflow using default parameters. Firstly, the quality controlled, log-
779 transformed UMI count matrix and TFs were loaded as input. For the UMI count matrix, the
780 DEGs between age groups were depicted as row names, and the cell barcodes of each cell type
781 were represented as column names. Secondly, the correlation matrix of genes was constructed
782 for network inference using the random forest-based algorithm applied by GENIE3 (Version
783 1.12.0)(Huynh-Thu, Irrthum, Wehenkel, & Geurts, 2010). Reference TFs were downloaded
784 from RcisTarget (<https://resources.aertslab.org/cistarget>). Thirdly, based on the RcisTarget
785 database, coexpression modules enriched for target genes of each candidate TF were detected
786 by SCENIC (Version 1.2.4)(Aibar et al., 2017). The activity of each TF module in each cell
787 was computed by AUCell (Version 1.12.0), and the regulation networks of TF modules with
788 high normalized enrichment scores were visualized by Cytoscape (Version 3.8.2).

789 **AUCell**

790 To score individual cells for pathway activities, we used the R package, AUCell (Version
791 1.12.0). First, a log-normalized expression matrix was used as input to compute gene-
792 expression rankings in each cell by applying the “AUCell_buildRankings” function with default
793 parameters. The genes in each gene set are listed in Supplementary file 4. The activity of
794 canonical pathway gene sets for each cell was then computed by scoring the area under the

795 curve (AUC) values based on gene expression rankings, using the “AUCell_calcAUC” function.

796 The score of each cell was visualized with the R package application, ggplot2 (Version 3.3.5).

797 **Cell trajectory analysis**

798 Pseudotime trajectory analysis was performed using monocle (Version 2.18.0)(Qiu et al., 2017).

799 The UMI count matrix and meta data were extracted from the quality-controlled Seurat object

800 and loaded to the monocle using the function, “newCellDataSet”. Then the ordering genes

801 detected by function “differentialGeneTest” were used to define the process. “DDRTree” was

802 used to reduce the dimensions to one with two dimensions. Each cell trajectory was then

803 constructed using the “orderCells” function.

804 **Cell-cell communication analysis**

805 The analysis of cell-cell communication by ligand-receptor pairs was performed using CellChat

806 (Version 1.1.3)(Jin et al., 2021). First, the normalized data matrix and meta data were extracted

807 from the quality-controlled Seurat object and loaded. The “secreting signal” of CellChatDB

808 was used as the ligand-receptor interaction database. Once the overexpressed genes were

809 identified, the between-cell interaction pairs and interaction probabilities for each L-R pair were

810 calculated. Then the communication probability on a signaling pathway level was calculated by

811 summarizing all related ligands/receptors using the function, “computeCommunProbPathway”.

812 Finally, the young and old CellChat objects were merged for comparison.

813 **Immunofluorescence staining**

814 Human testis tissues were embedded in paraffin and sectioned at 4 μ m. After being

815 deparaffinized by xylene and rehydrated with an ethanol series (100%, 95%, 85%, 75%) at

816 room temperature, the sections were incubated in citrate antigen-retrieval solution (Beyotime,

817 Shanghai, China) in a hot water bath (96°C) for 20 min. For intracellular protein detection, the

818 sections were permeabilized with 0.5% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) for

819 20 min. The tissue sections were then incubated with 3% BSA for 30 min at room temperature

820 and incubated with primary antibodies overnight at 4°C. Following incubation, the tissue

821 sections were rinsed five times with PBS and incubated with secondary antibodies for 60 min
822 at room temperature. After being rinsed five times with PBS, the tissue sections were stained
823 with 4,6-diamidino-2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA) for 5 min, after
824 which the DAPI was removed and replaced with mounting medium (DAKO; Glostrup,
825 Denmark). The specific fluorescence was visualized and photographed using an LSM800
826 confocal microscope (Zeiss, Jena, Germany). The utilized primary and secondary antibodies
827 are listed in Supplementary file 7.

828 **Isolation and culture of LCs**

829 Primary human LCs were isolated from human testicular tissues as previously described(Luo
830 et al., 2021). In brief, cryopreserved testicular tissues were thawed quickly and washed three
831 times with PBS. Then, the testes were mechanically cut and enzymatically dissociated using 1
832 mg/mL type IV collagenase and 200 µg/mL DNase I dissolved in DMEM/F-12 for 20 min with
833 slow shaking (100 cycles/min) at 37°C. The samples were filtered through a 40-µm filter and
834 centrifuged at 300g for 4 min. The cell pellets were rinsed twice with PBS and resuspended in
835 PBS containing 0.1% BSA for fluorescence-activated cell sorting (FACS) (MoFlo Astrios EQs,
836 Beckman Coulter, CA, USA). Before LC isolation, we used a two-step gating strategy to
837 eliminate debris and cell doublets based on the side scatter (SSC) and forward scatter (FSC)
838 parameters. Then, the cell samples were analyzed in the combined fluorescence channels (405-
839 448 and 640-671 nm) of flow cytometry, and the LC population distinguished from the main
840 group was isolated.

841 The obtained primary LCs were cultured in medium containing DMEM/F12, 10% FBS and
842 1% insulin-transferrin-sodium selenite (ITS; Thermo Fisher Scientific) at 35°C with 5% CO2.
843 The ability of the cells to produce testosterone was assessed after 3 h of incubation with
844 DMEM/F12 containing 0.1% BSA, 1 IU/mL hCG (R&D, Systems, Minneapolis, USA), 10 µM
845 22-HC (Sigma-Aldrich), and 1× ITS. The cell supernatants were collected and stored at -80°C
846 until analysis.

847 **Ex vivo culture of testicular tissues**

848 For short-term tissue culture, we modified a previously described method(X. Li et al., 2016).
849 Briefly, cryopreserved testicular tissues were thawed quickly and washed three times with PBS.
850 Then, the testes were mechanically cut into small pieces (2~4 mm² in size). Three pieces of
851 tissues were plated per well of a 12-well plate and cultured in medium containing DMEM/F12,
852 0.1% BSA, and 1× ITS (Gibco) at 35°C with 5% CO₂.

853 The ability of the tissues to produce testosterone was assessed after 3 h of incubation with
854 DMEM/F12 (Gibco) containing 0.1% BSA, 1 IU/mL hCG (R&D), 10 μM 22-HC (Sigma-
855 Aldrich), and 1× ITS (Gibco). The supernatants to be used for the testosterone assay were
856 collected and stored at -80°C until analysis. Tissues were collected and lysed in cold RIPA
857 buffer, followed by protein quantification for statistical analysis.

858 **Antioxidant treatments**

859 To elucidate the protective effect of antioxidants on cellular oxidative stress and testosterone
860 production, primary LCs or testicular tissues from the old group were cultured with DMSO, 10
861 mM N-acetyl-L-cysteine (NAC; MedChemExpress, Shanghai, China), and 50 μM vitamin E
862 (MedChemExpress). After a 24 h culture period, LCs or tissues were used for subsequent
863 analysis.

864 **Testosterone measurements**

865 Testosterone concentrations were assayed as previously reported by our group(Luo et al., 2021).
866 The cell or tissue supernatants were collected at the indicated timepoints and stored at -80°C
867 until analysis. Testosterone levels were measured using a chemiluminescent immunoassay
868 (CLIA) system (Architect system; Abbott GmbH & Co. KG, Germany). The coefficient of
869 variation of this CLIA system is 1.9–5.1% for intra-assay precision and 2.5–5.2% for inter-
870 assay precision. The lowest detectable dose of testosterone was 0.01 ng/mL.

871 **ROS detection**

872 Intracellular ROS was detected using a Reactive Oxygen Species Assay Kit (Thermo Fisher
873 Scientific) according to the manufacturer's instructions. Briefly, primary LCs were collected
874 and incubated with DMEM/F12 medium containing 1 μ M DHE for 60 min at 37°C in the dark,
875 and fluorescent intensity (Ex = 495 nm, Em = 520 nm) was measured by flow cytometry
876 (CytoFLEX; Beckman Coulter, CA, USA) or photographed under a DMi8 microscope (Leica).

877 **Statistical analysis**

878 All data were analyzed using GraphPad Prism v8 (GraphPad Software, La Jolla, CA, USA).
879 Statistical differences between samples were assessed with Student's t-tests, one-way analysis
880 of variance (ANOVA). Differences were considered significant when $p < 0.05$ ($*p < 0.05$, $**p$
881 < 0.01 and $***p < 0.001$).

882

883 **Acknowledgements**

884 We thank the patients and their families for their dedication. We thank Dr. Fangjian Zhou and
885 Dr. Yonghong Li for coordinating the human testicular tissue collection; We are grateful to Yan
886 Guo, Hong Chen, Xiangqian Guo and Xikun Han for their constructive suggestions.

887

888 **Additional information**

889 **Funding**

Funder	Grant reference number	Author
the National Key Research and Development Program of China	2018YFA0107200	Andy Peng Xiang
	2018YFA0801404	Qiong Ke
the National Natural Science Foundation of China	32130046	Andy Peng Xiang

	82171564	Chunhua Deng
	82101669	Kai Xia
	81871110	Yong Gao
	81971759	Guihua Liu
the Key Research and Development Program of Guangdong Province	2019B020234001	Weiqiang Li
the Natural Science Foundation of Guangdong Province, China	2022A1515010371	Kai Xia
the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China	HDSL202001000	Chunhua Deng
the Open Project of NHC Key Laboratory of Male Reproduction and Genetics	KF202001	Xiang'an Tu
the Guangdong Province Regional Joint Fund-Youth Fund Project	2021A1515110921	Xin Feng
the China Postdoctoral Science Foundation	2021M703736	Kai Xia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

890

891 **Author contributions**

892 Kai Xia, Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing
893 – original draft preparation, Funding acquisition; Siyuan He, Methodology, Formal analysis,
894 Investigation, Visualization; Peng Luo, Validation, Investigation, Resources; Lin Dong,
895 Validation, Investigation, Visualization; Feng Gao, Validation, Investigation; Xuren Chen,
896 Validation, Investigation; Yunlin Ye, Investigation, Resources; Yong Gao, Investigation,

897 Resources, Funding acquisition; Yuanchen Ma, Data curation; Yadong Zhang, Data curation,
898 Visualization, Funding acquisition; Qiyun Yang, Investigation, Resources; Dayu Han,
899 Investigation, Resources; Xin Feng, Investigation, Resources, Funding acquisition; Zi Wan,
900 Investigation, Resources; Hongcai Cai, Investigation, Resources; Qiong Ke, Investigation,
901 Resources, Funding acquisition; Tao Wang, Investigation, Resources; Weiqiang Li, Resources,
902 Funding acquisition; Xiang'an Tu, Resources, Funding acquisition; Xiangzhou Sun, Resources;
903 Chunhua Deng, Conceptualization, Resources, Writing – review & editing, Supervision, Project
904 administration, Funding acquisition; Andy Peng Xiang, Conceptualization, Resources, Writing
905 – review & editing, Supervision, Project administration, Funding acquisition.

906 **Author ORCIDs**

907 Andy Peng Xiang, <https://orcid.org/0000-0003-3409-5012>

908 **Competing interests**

909 The authors declare no competing interests.

910 **Ethics**

911 The protocols were approved by the Ethics Committee of the First Affiliated Hospital of Sun
912 Yat-sen University (Assurance # 2019-148).

913 **Additional files**

914 **Supplementary files**

915 Supplementary file 1. Cell cluster information, markers, GO terms, and transcriptional
916 regulators for each cell type in human testis; related to Figure 1 and Figure 1-Figure supplement
917 1.

918 Supplementary file 2. Differential gene expression analysis results; related to Figures 3, 4,
919 Figure 4-Figure supplement 1, and 5.

920 Supplementary file 3. GSEA analysis of testicular cells; related to Figures 3, Figure 3-Figure
921 supplement 1, 4, and 5.

922 Supplementary file 4. Gene lists for base excision repair (BER), nucleotide excision repair
923 (NER), and senescence-associated secretory phenotype (SASP); related to Figures 3 and 4.
924 Supplementary file 5. List of LCs regulons obtained from the SCENIC analysis; related to
925 Figure 5.
926 Supplementary file 6. Ligand-receptor pairs of testicular cells obtained from CellChat analysis;
927 related to Figures 6 and Figures 6-Figure supplement 1.
928 Supplementary file 7. The antibodies used in this study; related to the Methods.

929 **Source data files**

930 Figure 1–source data 1, Related to Figure 1A–B
931 Figure 2–source data 1, Related to Figure 2F–H
932 Figure 3–source data 1, Related to Figure 3F–G
933 Figure 4–Figure supplement 1–source data 1, Related to Figure 4–Figure supplement 1A–C
934 Figure 5–source data 1, Related to Figure 5F–J
935 Figure 5–Figure supplement 1–source data 1, Related to Figure 5–Figure supplement 1B–C
936

937 **Data availability**

938 The RNA-seq sequencing and processed data reported in this paper have been deposited in the
939 Genome Sequence Archive (GSA for Human) with project number HRA002349.
940 The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Kai Xia	2022	Single-Cell	https://ngdc.cncb.ac.cn/	
		Transcriptomic	b.ac.cn/search/?dbId=hra&q=H	GSA for Human,
		Landscape of Human		HRA002349
		Testicular Aging	RA002349	

941

942

943 **References**

944 Aibar, S., Gonzalez-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H., Hulselmans, G., . . . Aerts, S.
945 (2017). SCENIC: single-cell regulatory network inference and clustering. *Nat Methods*, 14(11), 1083-
946 1086. doi:10.1038/nmeth.4463

947 Alfano, M., Tascini, A. S., Pederzoli, F., Locatelli, I., Nebuloni, M., Giannese, F., . . . Salonia, A. (2021). Aging,
948 inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. *Nat
949 Commun*, 12(1), 5205. doi:10.1038/s41467-021-25544-0

950 Baker, D. J., & Petersen, R. C. (2018). Cellular senescence in brain aging and neurodegenerative diseases: evidence
951 and perspectives. *J Clin Invest*, 128(4), 1208-1216. doi:10.1172/JCI95145

952 Cao, L., Leers-Sucheta, S., & Azhar, S. (2004). Aging alters the functional expression of enzymatic and non-
953 enzymatic anti-oxidant defense systems in testicular rat Leydig cells. *J Steroid Biochem Mol Biol*, 88(1),
954 61-67. doi:10.1016/j.jsbmb.2003.10.007

955 Chen, H., Liu, J., Luo, L., Baig, M. U., Kim, J. M., & Zirkin, B. R. (2005). Vitamin E, aging and Leydig cell
956 steroidogenesis. *Exp Gerontol*, 40(8-9), 728-736. doi:10.1016/j.exger.2005.06.004

957 Chen, L. Y., Brown, P. R., Willis, W. B., & Eddy, E. M. (2014). Peritubular myoid cells participate in male mouse
958 spermatogonial stem cell maintenance. *Endocrinology*, 155(12), 4964-4974. doi:10.1210/en.2014-1406

959 Chen, M., Li, X., Shi, Q., Zhang, Z., & Xu, S. (2019). Hydrogen sulfide exposure triggers chicken trachea
960 inflammatory injury through oxidative stress-mediated FOS/IL8 signaling. *J Hazard Mater*, 368, 243-254.
961 doi:10.1016/j.jhazmat.2019.01.054

962 Chen, S. R., & Liu, Y. X. (2015). Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis
963 by Sertoli cell signaling. *Reproduction*, 149(4), R159-167. doi:10.1530/REP-14-0481

964 Dai, X., Liao, R., Liu, C., Liu, S., Huang, H., Liu, J., . . . Xiao, Y. (2021). Epigenetic regulation of TXNIP-mediated
965 oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated
966 diabetic nephropathy. *Redox Biol*, 45, 102033. doi:10.1016/j.redox.2021.102033

967 Deuel, T. F., Zhang, N., Yeh, H. J., Silos-Santiago, I., & Wang, Z. Y. (2002). Pleiotrophin: a cytokine with diverse
968 functions and a novel signaling pathway. *Arch Biochem Biophys*, 397(2), 162-171.
969 doi:10.1006/abbi.2001.2705

970 Di Persio, S., Tekath, T., Siebert-Kuss, L. M., Cremers, J. F., Wistuba, J., Li, X., . . . Neuhaus, N. (2021). Single-
971 cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with
972 impaired spermatogenesis. *Cell Rep Med*, 2(9), 100395. doi:10.1016/j.xcrm.2021.100395

973 Feng, J., Li, Y., Jin, X., Gong, R., & Xia, Z. (2021). ATF3 regulates oxidative stress and extracellular matrix

974 degradation via p38/Nrf2 signaling pathway in pelvic organ prolapse. *Tissue Cell*, 73, 101660.
975 doi:10.1016/j.tice.2021.101660

976 Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant
977 therapy. *Nat Rev Drug Discov*, 20(9), 689-709. doi:10.1038/s41573-021-00233-1

978 Galick, H. A., Kathe, S., Liu, M., Robey-Bond, S., Kidane, D., Wallace, S. S., & Sweasy, J. B. (2013). Germ-line
979 variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. *Proc
980 Natl Acad Sci U S A*, 110(35), 14314-14319. doi:10.1073/pnas.1306752110

981 Guo, J., Grow, E. J., Mlcochova, H., Maher, G. J., Lindskog, C., Nie, X., . . . Cairns, B. R. (2018). The adult human
982 testis transcriptional cell atlas. *Cell Res*, 28(12), 1141-1157. doi:10.1038/s41422-018-0099-2

983 Guo, J., Nie, X., Giebler, M., Mlcochova, H., Wang, Y., Grow, E. J., . . . Cairns, B. R. (2020). The Dynamic
984 Transcriptional Cell Atlas of Testis Development during Human Puberty. *Cell Stem Cell*, 26(2), 262-276
985 e264. doi:10.1016/j.stem.2019.12.005

986 Guo, J., Sosa, E., Chitiashvili, T., Nie, X., Rojas, E. J., Oliver, E., . . . Cairns, B. R. (2021). Single-cell analysis of
987 the developing human testis reveals somatic niche cell specification and fetal germline stem cell
988 establishment. *Cell Stem Cell*, 28(4), 764-778 e764. doi:10.1016/j.stem.2020.12.004

989 Han, G., Hong, S. H., Lee, S. J., Hong, S. P., & Cho, C. (2021). Transcriptome Analysis of Testicular Aging in
990 Mice. *Cells*, 10(11). doi:10.3390/cells10112895

991 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., 3rd, Zheng, S., Butler, A., . . . Satija, R. (2021). Integrated
992 analysis of multimodal single-cell data. *Cell*, 184(13), 3573-3587 e3529. doi:10.1016/j.cell.2021.04.048

993 Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring regulatory networks from expression
994 data using tree-based methods. *PLoS One*, 5(9). doi:10.1371/journal.pone.0012776

995 Jiang, H., Zhu, W. J., Li, J., Chen, Q. J., Liang, W. B., & Gu, Y. Q. (2014). Quantitative histological analysis and
996 ultrastructure of the aging human testis. *Int Urol Nephrol*, 46(5), 879-885. doi:10.1007/s11255-013-0610-
997 0

998 Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C. H., . . . Nie, Q. (2021). Inference and
999 analysis of cell-cell communication using CellChat. *Nat Commun*, 12(1), 1088. doi:10.1038/s41467-021-
1000 21246-9

1001 Johnson, L., Abdo, J. G., Petty, C. S., & Neaves, W. B. (1988). Effect of age on the composition of seminiferous
1002 tubular boundary tissue and on the volume of each component in humans. *Fertility and Sterility*, 49(6),
1003 1045-1051. doi:10.1016/s0015-0282(16)59959-2

1004 Johnson, S. L., Dunleavy, J., Gemmell, N. J., & Nakagawa, S. (2015). Consistent age-dependent declines in human

1005 semen quality: a systematic review and meta-analysis. *Ageing Res Rev*, 19, 22-33.

1006 doi:10.1016/j.arr.2014.10.007

1007 Kaufman, J. M., Lapauw, B., Mahmoud, A., T'Sjoen, G., & Huhtaniemi, I. T. (2019). Aging and the Male

1008 Reproductive System. *Endocr Rev*, 40(4), 906-972. doi:10.1210/er.2018-00178

1009 Laurentino, S., Cremers, J. F., Horsthemke, B., Tuttelmann, F., Czeloth, K., Zitzmann, M., . . . Gromoll, J. (2020).

1010 A germ cell-specific ageing pattern in otherwise healthy men. *Aging Cell*, 19(10), e13242.

1011 doi:10.1111/acel.13242

1012 Li, C. M., Shapiro, H., Tsibikas, C., Selfors, L. M., Chen, H., Rosenbluth, J., . . . Brugge, J. S. (2020). Aging-

1013 Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing.

1014 *Cell Rep*, 33(13), 108566. doi:10.1016/j.celrep.2020.108566

1015 Li, M., Yang, X., Lu, X., Dai, N., Zhang, S., Cheng, Y., . . . Wilson, D. M., 3rd. (2018). APE1 deficiency promotes

1016 cellular senescence and premature aging features. *Nucleic Acids Res*, 46(11), 5664-5677.

1017 doi:10.1093/nar/gky326

1018 Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., . . . Chen, H. (2016). Regulation of seminiferous tubule-

1019 associated stem Leydig cells in adult rat testes. *Proceedings of the National Academy of Sciences of the*

1020 *United States of America*, 113(10), 2666-2671. doi:10.1073/pnas.1519395113

1021 Luo, P., Feng, X., Deng, R., Wang, F., Zhang, Y., Li, X., . . . Deng, C. (2021). An autofluorescence-based isolation

1022 of Leydig cells for testosterone deficiency treatment. *Mol Cell Endocrinol*, 535, 111389.

1023 doi:10.1016/j.mce.2021.111389

1024 Maher, G. J., McGowan, S. J., Giannoulatou, E., Verrill, C., Goriely, A., & Wilkie, A. O. (2016). Visualizing the

1025 origins of selfish de novo mutations in individual seminiferous tubules of human testes. *Proc Natl Acad*

1026 *Sci U S A*, 113(9), 2454-2459. doi:10.1073/pnas.1521325113

1027 Mahyari, E., Guo, J., Lima, A. C., Lewinsohn, D. P., Stendahl, A. M., Vigh-Conrad, K. A., . . . Conrad, D. F. (2021).

1028 Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome.

1029 *Am J Hum Genet*, 108(10), 1924-1945. doi:10.1016/j.ajhg.2021.09.001

1030 Makela, J. A., Koskenniemi, J. J., Virtanen, H. E., & Toppari, J. (2019). Testis Development. *Endocr Rev*, 40(4),

1031 857-905. doi:10.1210/er.2018-00140

1032 Matzkin, M. E., Calandra, R. S., Rossi, S. P., Bartke, A., & Frungieri, M. B. (2021). Hallmarks of Testicular Aging:

1033 The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological

1034 Compounds to Improve the Physiopathological Status of the Aged Male Gonad. *Cells*, 10(11).

1035 doi:10.3390/cells10113114

1036 Mularoni, V., Esposito, V., Di Persio, S., Vicini, E., Spadetta, G., Berloco, P., . . . Boitani, C. (2020). Age-related
1037 changes in human Leydig cell status. *Hum Reprod*, 35(12), 2663-2676. doi:10.1093/humrep/deaa271

1038 Nie, X., Munyoki, S. K., Sukhwani, M., Schmid, N., Missel, A., Emery, B. R., . . . Guo, J. (2022). Single-cell
1039 analysis of human testis aging and correlation with elevated body mass index. *Dev Cell*, 57(9), 1160-1176
1040 e1165. doi:10.1016/j.devcel.2022.04.004

1041 Nikopoulou, C., Parekh, S., & Tessarz, P. (2019). Ageing and sources of transcriptional heterogeneity. *Biological
1042 Chemistry*, 400(7), 867-878. doi:10.1515/hsz-2018-0449

1043 Oatley, J. M., & Brinster, R. L. (2012). The germline stem cell niche unit in mammalian testes. *Physiological
1044 Reviews*, 92(2), 577-595. doi:10.1152/physrev.00025.2011

1045 Oatley, J. M., Oatley, M. J., Avarbock, M. R., Tobias, J. W., & Brinster, R. L. (2009). Colony stimulating factor 1
1046 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. *Development (Cambridge,
1047 England)*, 136(7), 1191-1199. doi:10.1242/dev.032243

1048 Perheentupa, A., & Huhtaniemi, I. (2009). Aging of the human ovary and testis. *Mol Cell Endocrinol*, 299(1), 2-
1049 13. doi:10.1016/j.mce.2008.11.004

1050 Pohl, E., Gromoll, J., Wistuba, J., & Laurentino, S. (2021). Healthy ageing and spermatogenesis. *Reproduction*,
1051 161(4), R89-R101. doi:10.1530/REP-20-0633

1052 Pohl, E., Hoffken, V., Schlatt, S., Kliesch, S., Gromoll, J., & Wistuba, J. (2019). Ageing in men with normal
1053 spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells. *Andrology*, 7(6),
1054 827-839. doi:10.1111/andr.12665

1055 Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., & Trapnell, C. (2017). Reversed graph embedding
1056 resolves complex single-cell trajectories. *Nat Methods*, 14(10), 979-982. doi:10.1038/nmeth.4402

1057 Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA repair and chromatin
1058 remodelling. *Nat Rev Mol Cell Biol*, 18(10), 610-621. doi:10.1038/nrm.2017.53

1059 Santiago, J., Silva, J. V., Alves, M. G., Oliveira, P. F., & Fardilha, M. (2019). Testicular Aging: An Overview of
1060 Ultrastructural, Cellular, and Molecular Alterations. *J Gerontol A Biol Sci Med Sci*, 74(6), 860-871.
1061 doi:10.1093/gerona/gly082

1062 Sharma, S., Wistuba, J., Pock, T., Schlatt, S., & Neuhaus, N. (2019). Spermatogonial stem cells: updates from
1063 specification to clinical relevance. *Hum Reprod Update*, 25(3), 275-297. doi:10.1093/humupd/dmz006

1064 Stockl, J. B., Schmid, N., Flenkenthaler, F., Drummer, C., Behr, R., Mayerhofer, A., . . . Frohlich, T. (2021). Age-
1065 Related Alterations in the Testicular Proteome of a Non-Human Primate. *Cells*, 10(6).
1066 doi:10.3390/cells10061306

1067 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, . . . Satija, R. (2019).
1068 Comprehensive Integration of Single-Cell Data. *Cell*, 177(7), 1888-1902 e1821.
1069 doi:10.1016/j.cell.2019.05.031

1070 Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., . . . de Magalhaes, J. P. (2018). Human
1071 Ageing Genomic Resources: new and updated databases. *Nucleic Acids Res*, 46(D1), D1083-D1090.
1072 doi:10.1093/nar/gkx1042

1073 Tan, K., & Wilkinson, M. F. (2020). A single-cell view of spermatogonial stem cells. *Curr Opin Cell Biol*, 67, 71-
1074 78. doi:10.1016/j.ceb.2020.07.005

1075 Vanderwinden, J. M., Mailleux, P., Schiffmann, S. N., & Vanderhaeghen, J. J. (1992). Cellular distribution of the
1076 new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues. *Anat Embryol*
1077 (Berl), 186(4), 387-406. doi:10.1007/BF00185989

1078 Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., . . . Liu, G. H. (2020). Single-Cell Transcriptomic Atlas
1079 of Primate Ovarian Aging. *Cell*, 180(3), 585-600 e519. doi:10.1016/j.cell.2020.01.009

1080 Wang, S. M., Lim, S. W., Wang, Y. H., Lin, H. Y., Lai, M. D., Ko, C. Y., & Wang, J. M. (2018). Astrocytic
1081 CCAAT/Enhancer-binding protein delta contributes to reactive oxygen species formation in
1082 neuroinflammation. *Redox Biol*, 16, 104-112. doi:10.1016/j.redox.2018.02.011

1083 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., . . . Yu, G. (2021). clusterProfiler 4.0: A universal enrichment
1084 tool for interpreting omics data. *Innovation (N Y)*, 2(3), 100141. doi:10.1016/j.xinn.2021.100141

1085 Ximerakis, M., Lipnick, S. L., Innes, B. T., Simmons, S. K., Adiconis, X., Dionne, D., . . . Rubin, L. L. (2019).
1086 Single-cell transcriptomic profiling of the aging mouse brain. *Nat Neurosci*, 22(10), 1696-1708.
1087 doi:10.1038/s41593-019-0491-3

1088 Yang, A. C., Vest, R. T., Kern, F., Lee, D. P., Agam, M., Maat, C. A., . . . Wyss-Coray, T. (2022). A human brain
1089 vascular atlas reveals diverse mediators of Alzheimer's risk. *Nature*, 603(7903), 885-892.
1090 doi:10.1038/s41586-021-04369-3

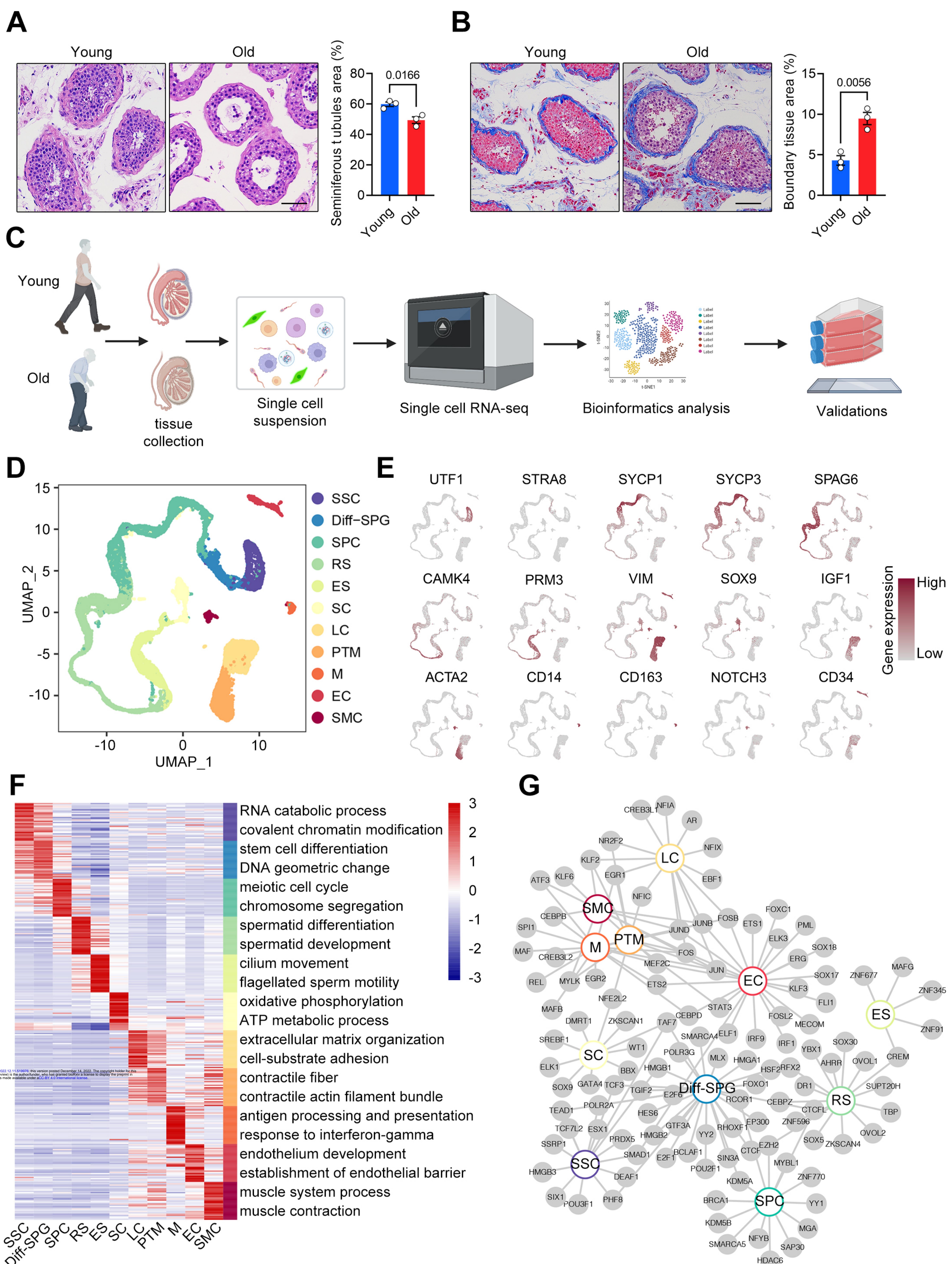
1091 Yatsenko, A. N., & Turek, P. J. (2018). Reproductive genetics and the aging male. *J Assist Reprod Genet*, 35(6),
1092 933-941. doi:10.1007/s10815-018-1148-y

1093 Zhang, N., Yeh, H. J., Zhong, R., Li, Y. S., & Deuel, T. F. (1999). A dominant-negative pleiotrophin mutant
1094 introduced by homologous recombination leads to germ-cell apoptosis in male mice. *Proc Natl Acad Sci*
1095 U S A, 96(12), 6734-6738. doi:10.1073/pnas.96.12.6734

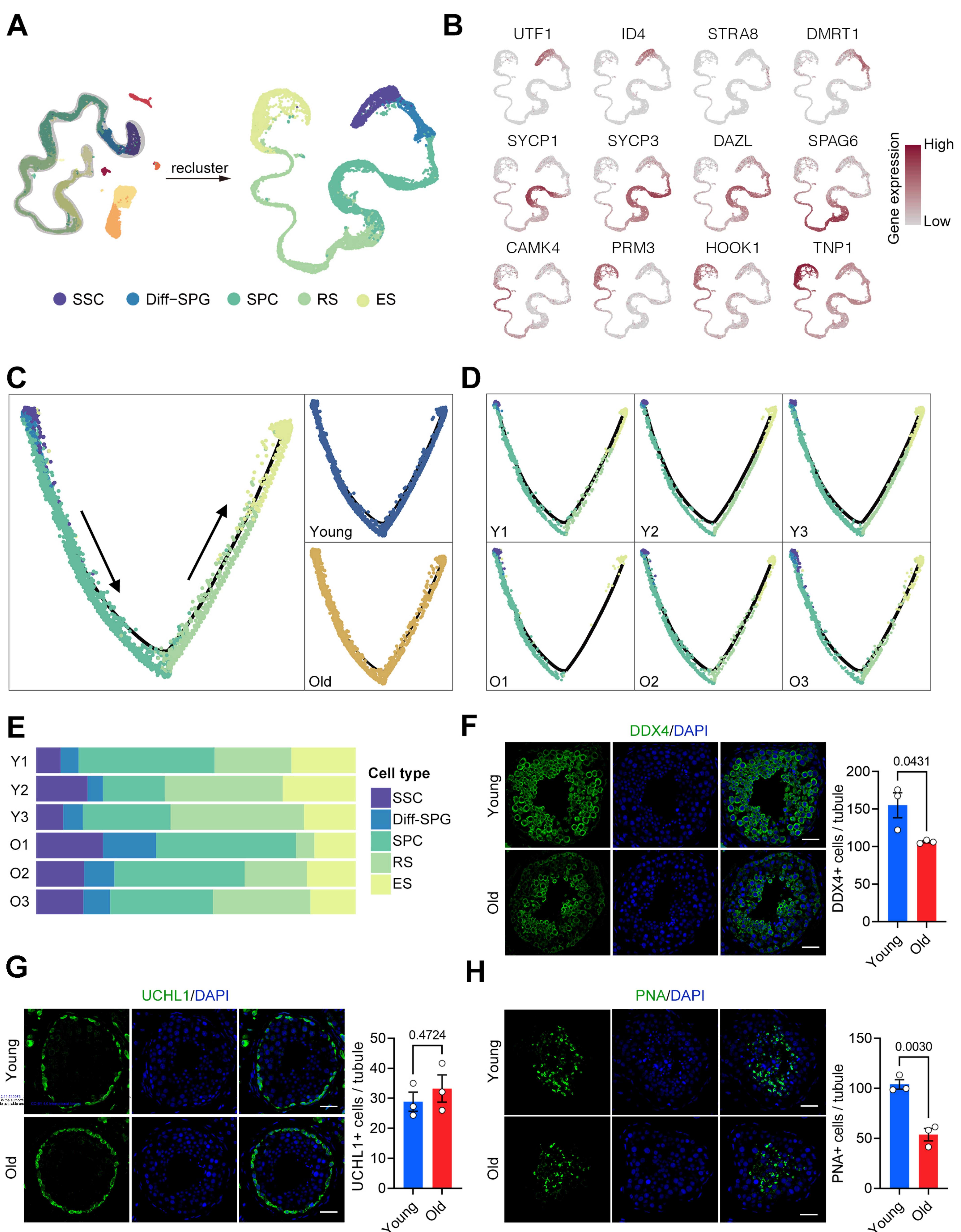
1096 Zhao, L., Yao, C., Xing, X., Jing, T., Li, P., Zhu, Z., . . . Li, Z. (2020). Single-cell analysis of developing and
1097 azoospermia human testicles reveals central role of Sertoli cells. *Nat Commun*, 11(1), 5683.

1098 doi:10.1038/s41467-020-19414-4

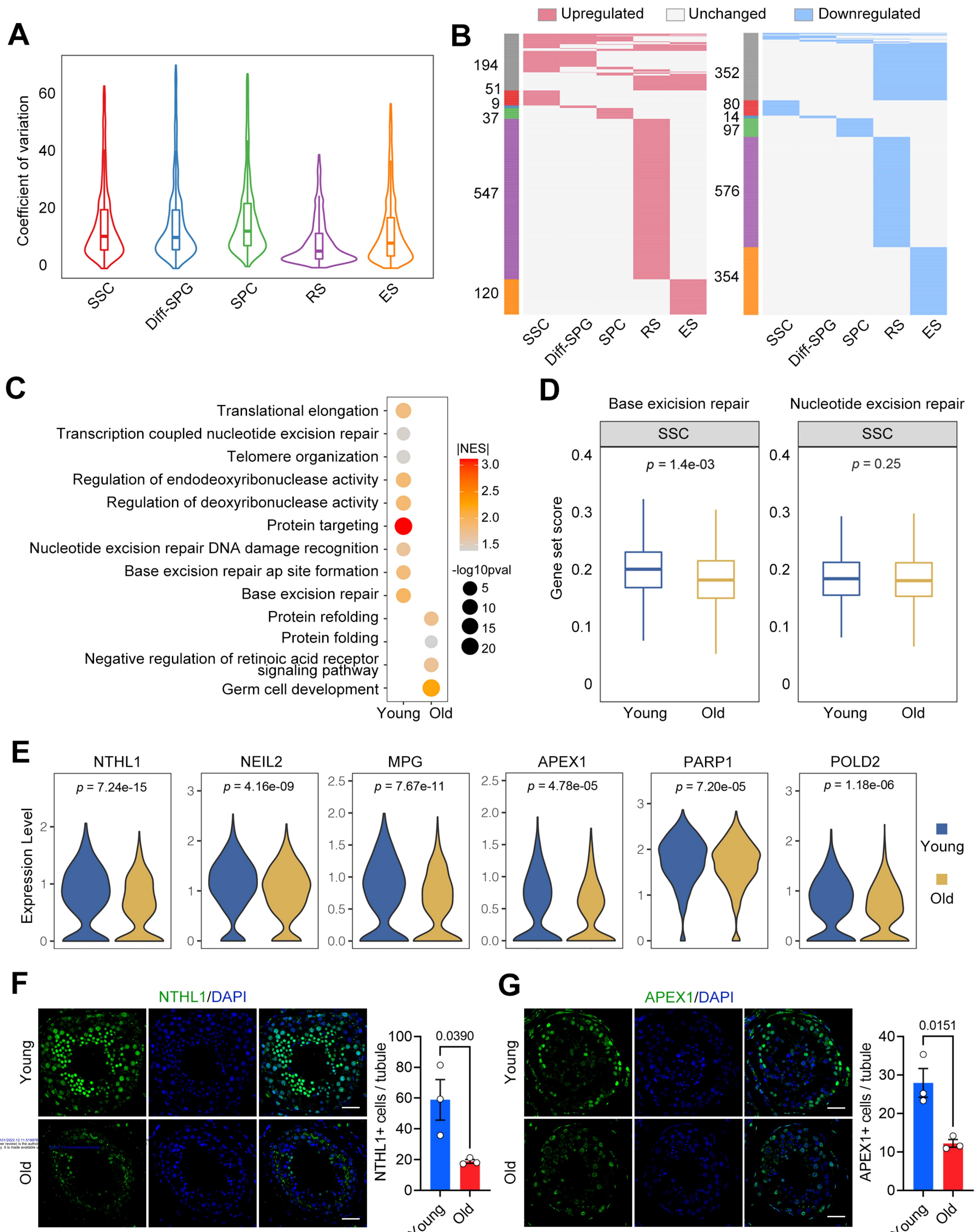
1099 Zhao, W., Feng, H., Sun, W., Liu, K., Lu, J. J., & Chen, X. (2017). Tert-butyl hydroperoxide (t-BHP) induced
1100 apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion. *Redox Biol.*, 11, 524-
1101 534. doi:10.1016/j.redox.2016.12.036

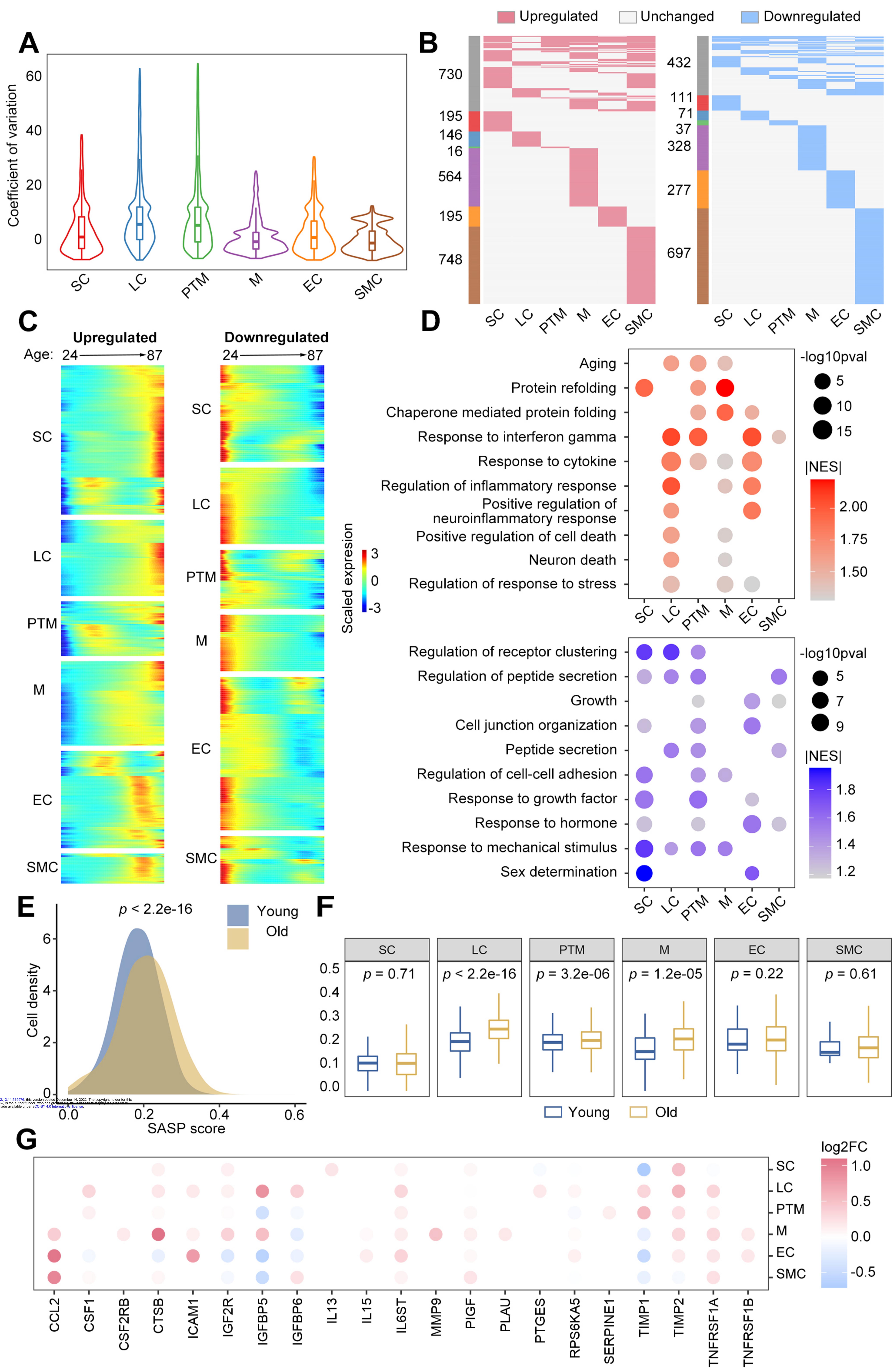

1102 Zheng, Y., Liu, X., Le, W., Xie, L., Li, H., Wen, W., . . . Su, W. (2020). A human circulating immune cell landscape
1103 in aging and COVID-19. *Protein Cell*, 11(10), 740-770. doi:10.1007/s13238-020-00762-2

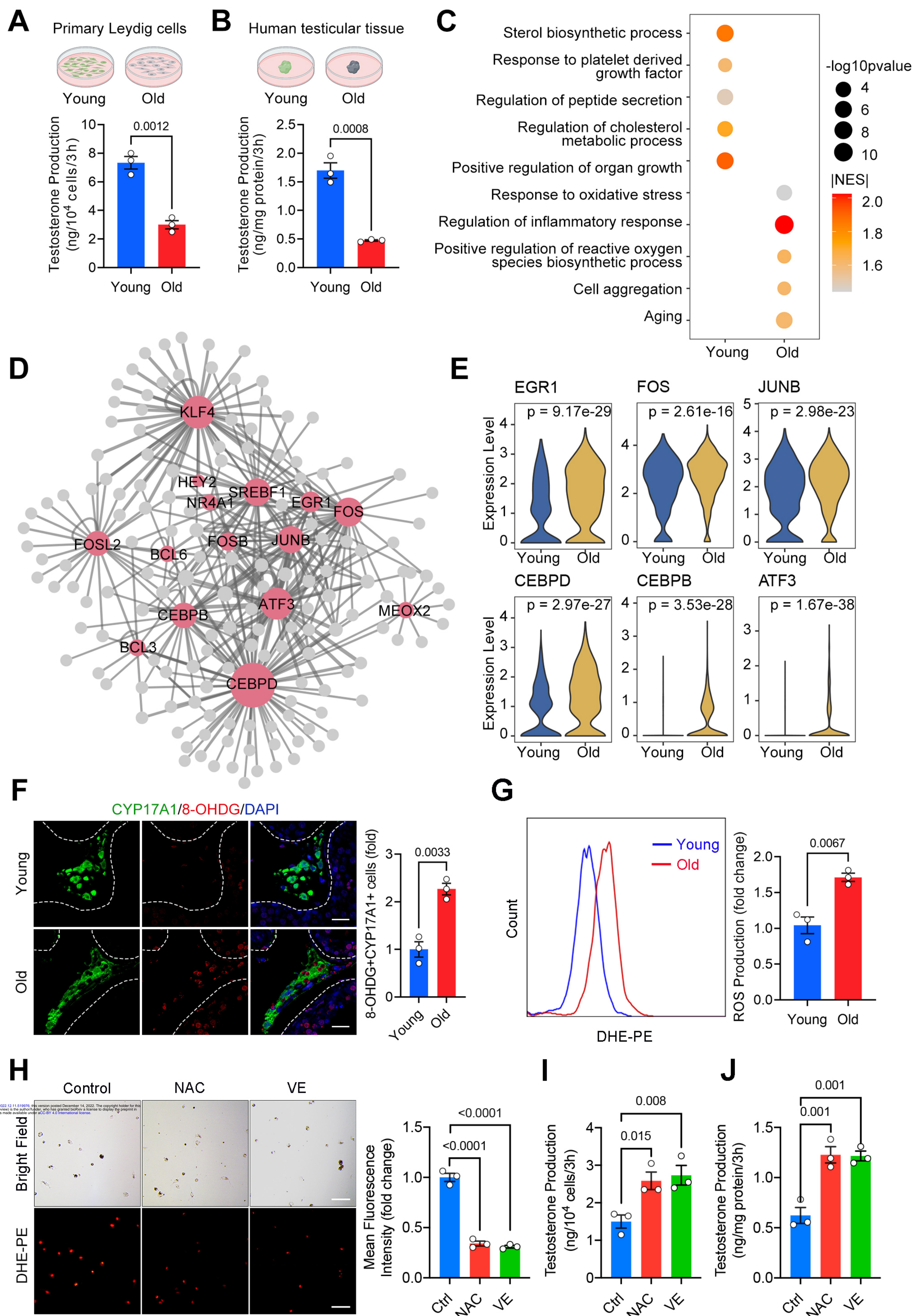
1104 Zirkin, B. R., & Papadopoulos, V. (2018). Leydig cells: formation, function, and regulation. *Biol Reprod*, 99(1),
1105 101-111. doi:10.1093/biolre/foy059


1106 Zou, Z., Long, X., Zhao, Q., Zheng, Y., Song, M., Ma, S., . . . Liu, G. H. (2021). A Single-Cell Transcriptomic
1107 Atlas of Human Skin Aging. *Dev Cell*, 56(3), 383-397 e388. doi:10.1016/j.devcel.2020.11.002

1100


Figure 1


Figure 2


Figure 3

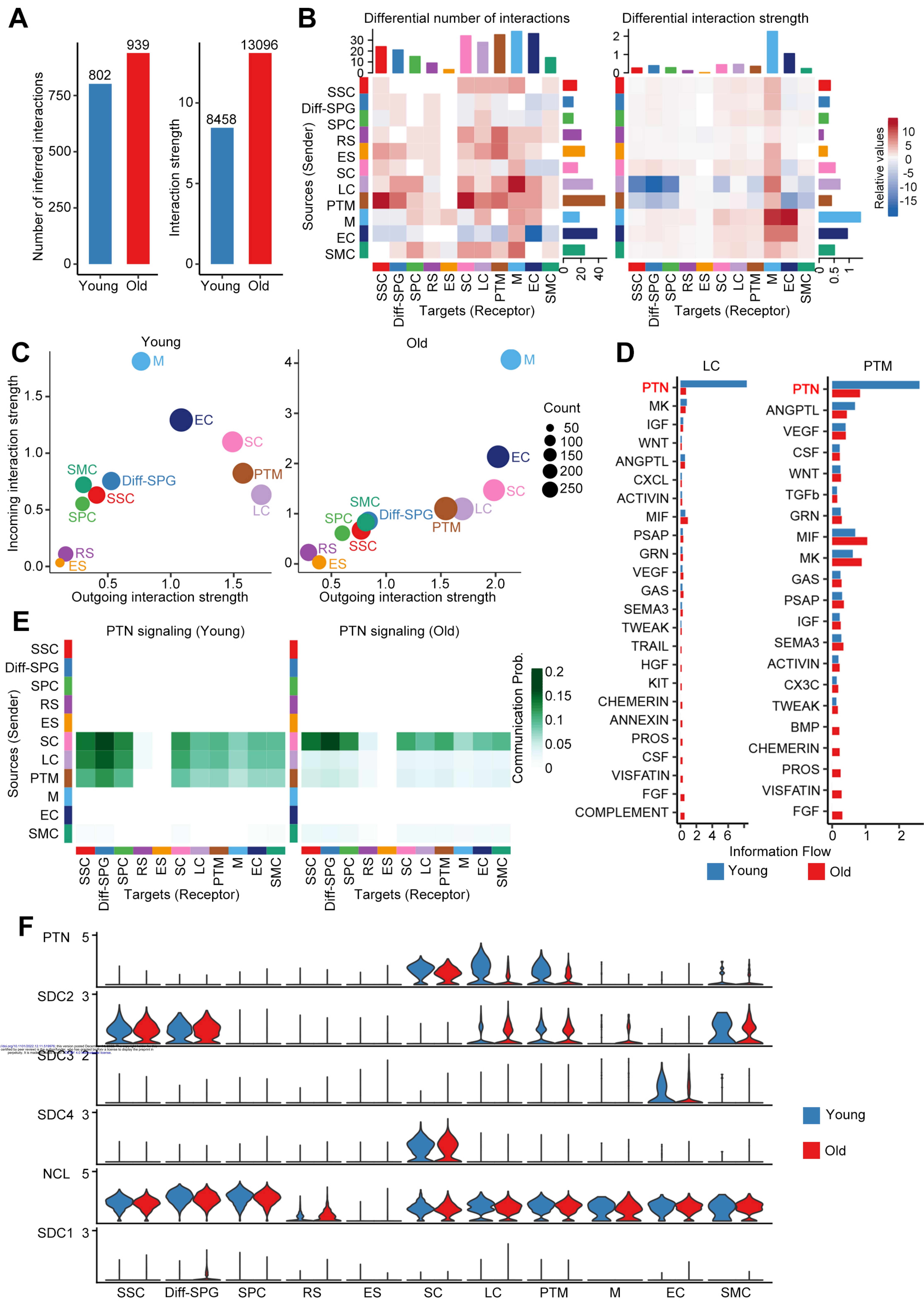

Figure 4

Figure 5

Figure 6

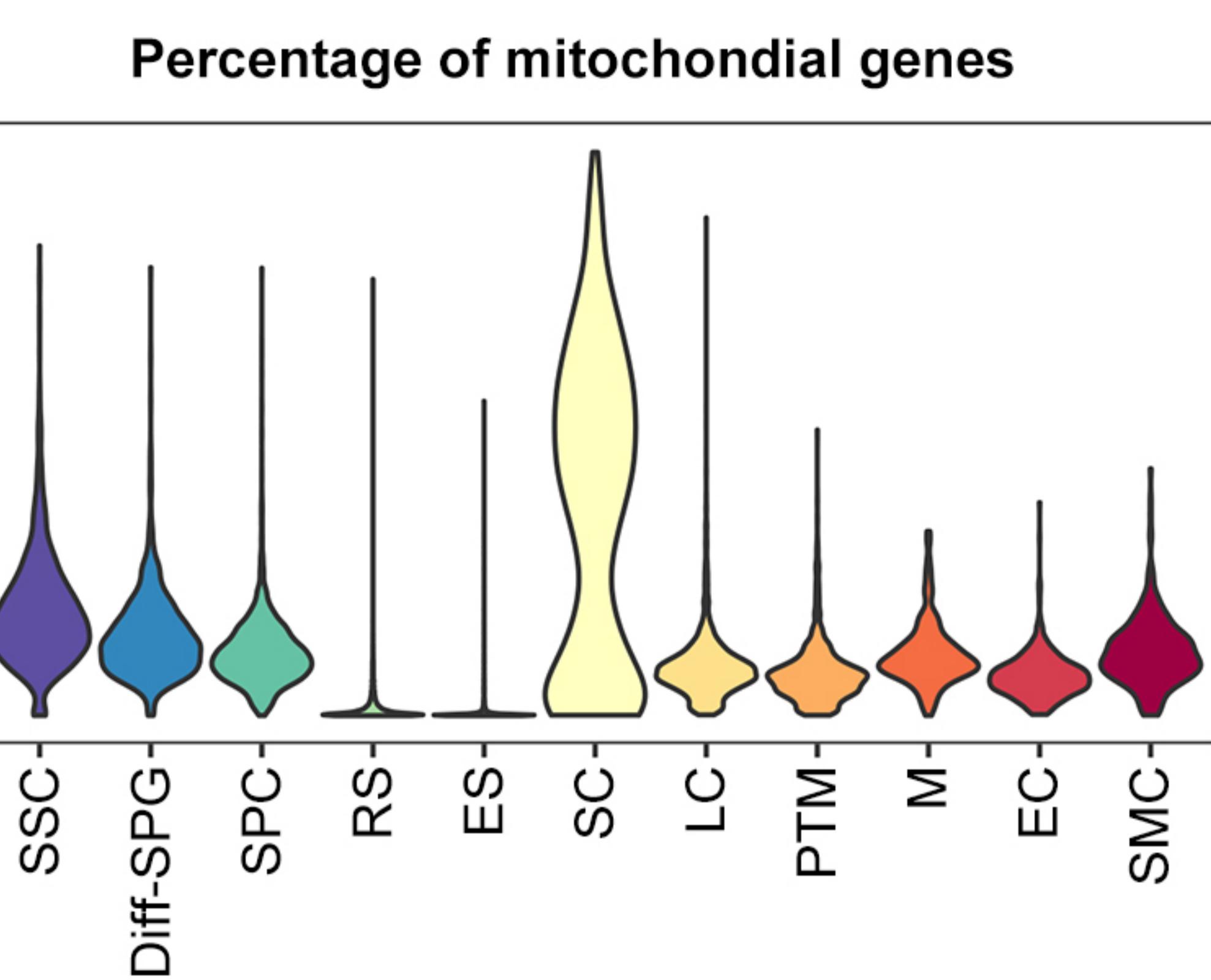
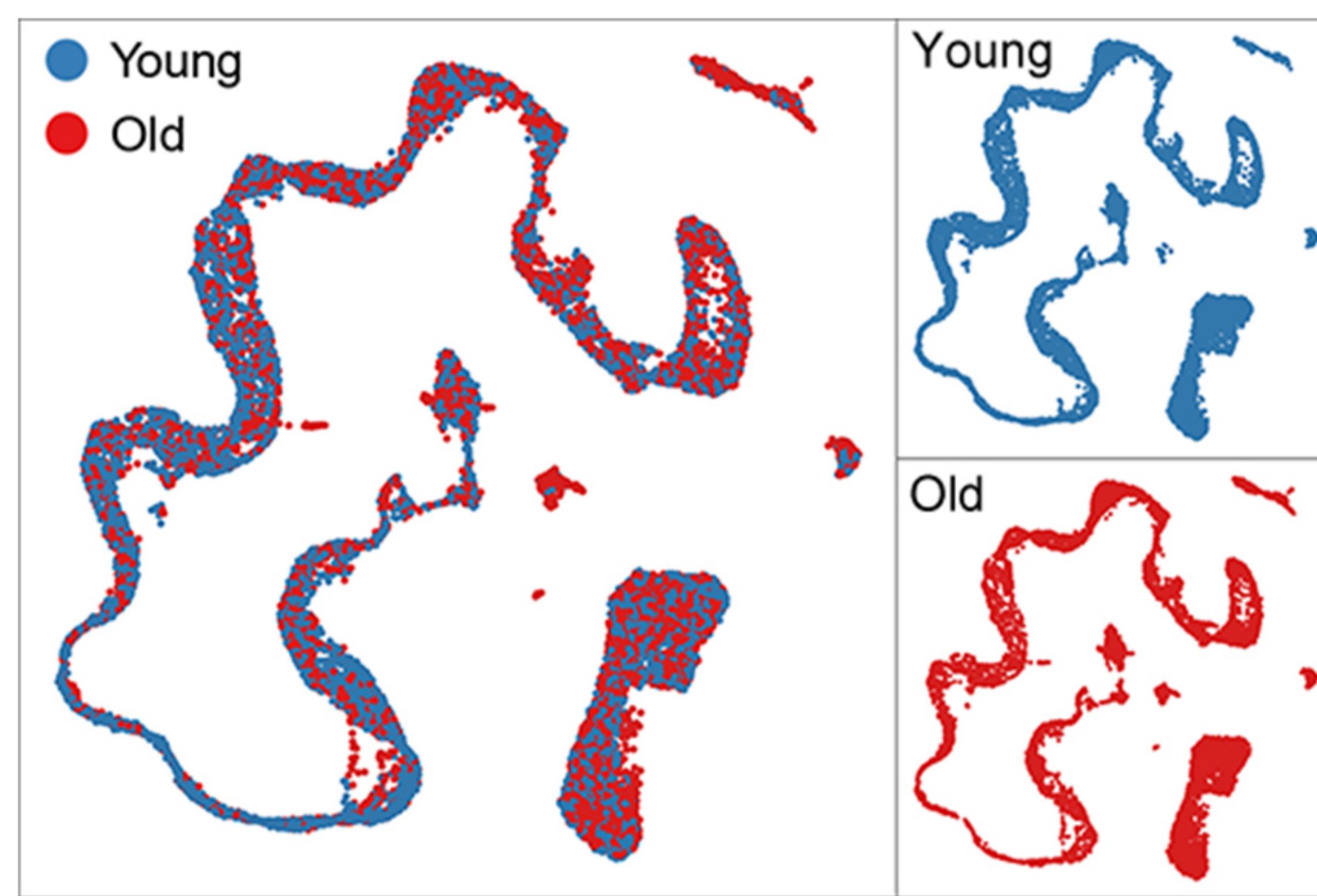
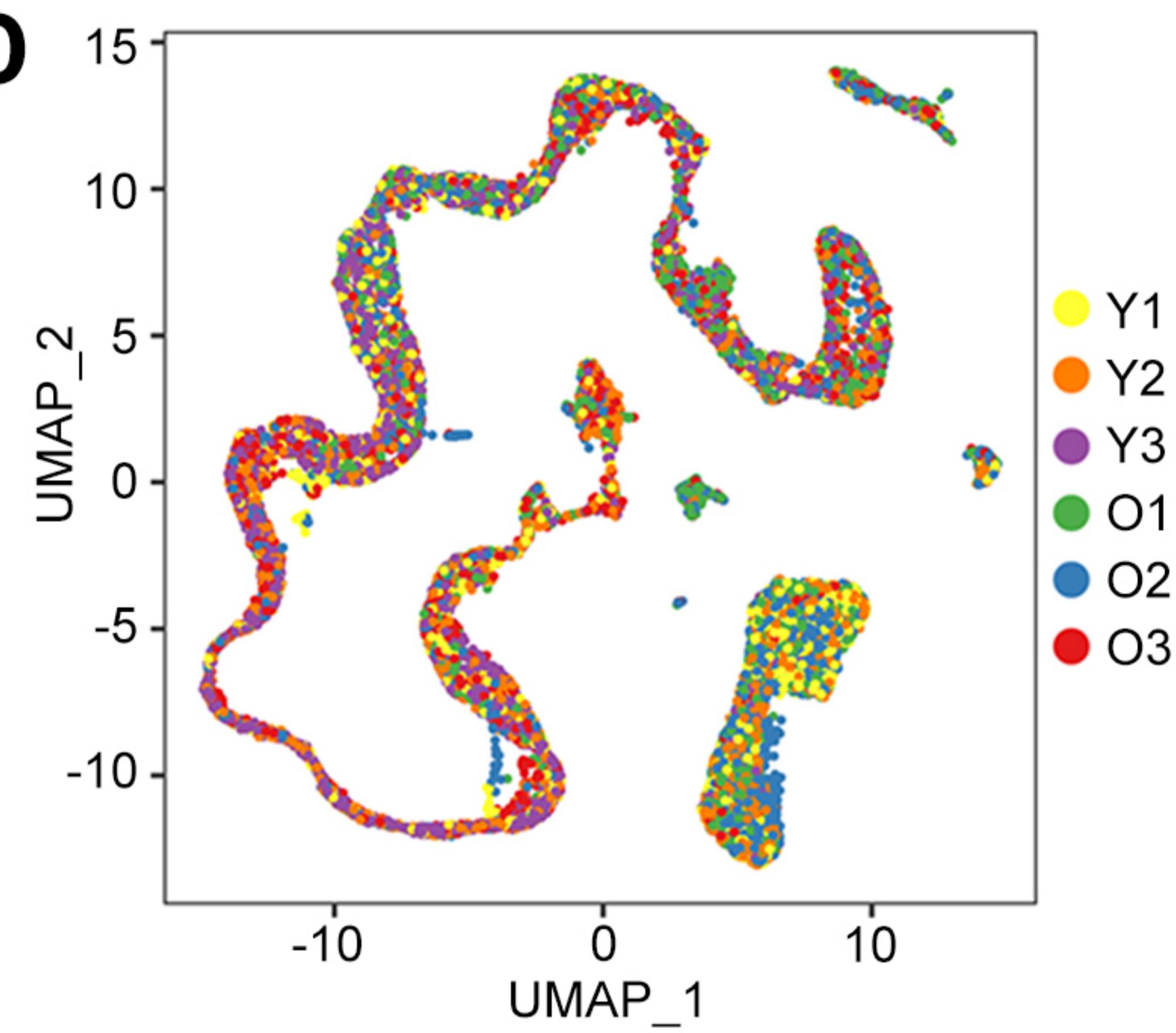
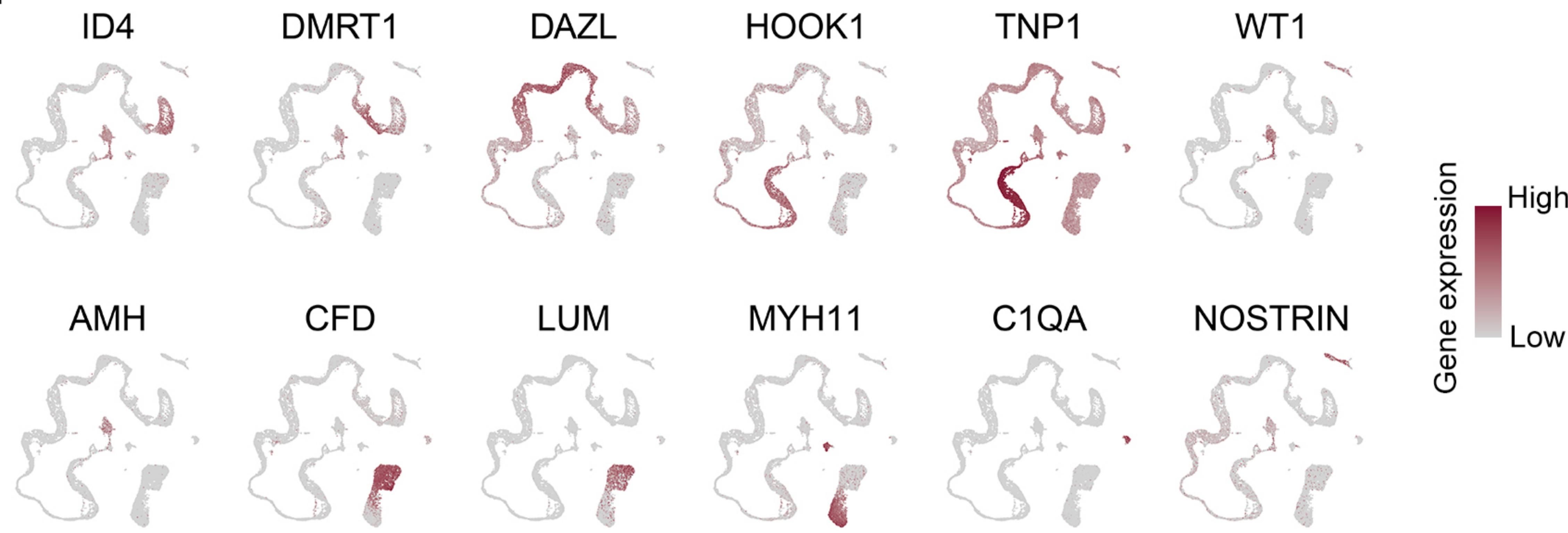


Figure 1-Figure supplement 1

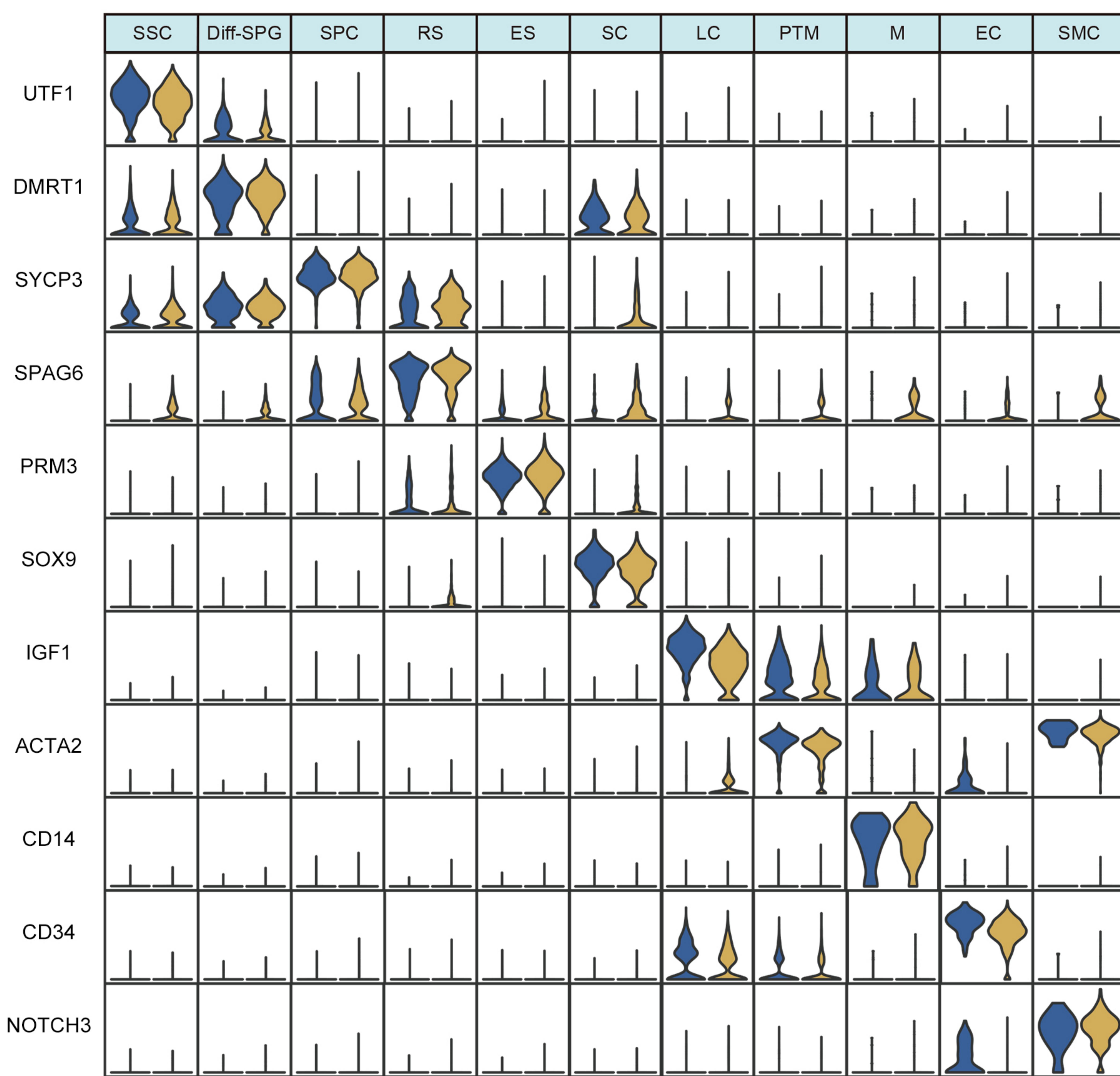

A

Sample	Age	Median gene/cell	Detected genes	Number of Cells (after filtering)
Y1	28	2994	32892	2848
Y2	24	2888	44243	4008
Y3	31	4714	44296	4588
O1	61	3397	33497	3637
O2	87	3207	33638	4404
O3	70	3213	33134	3035


B


C

D



E

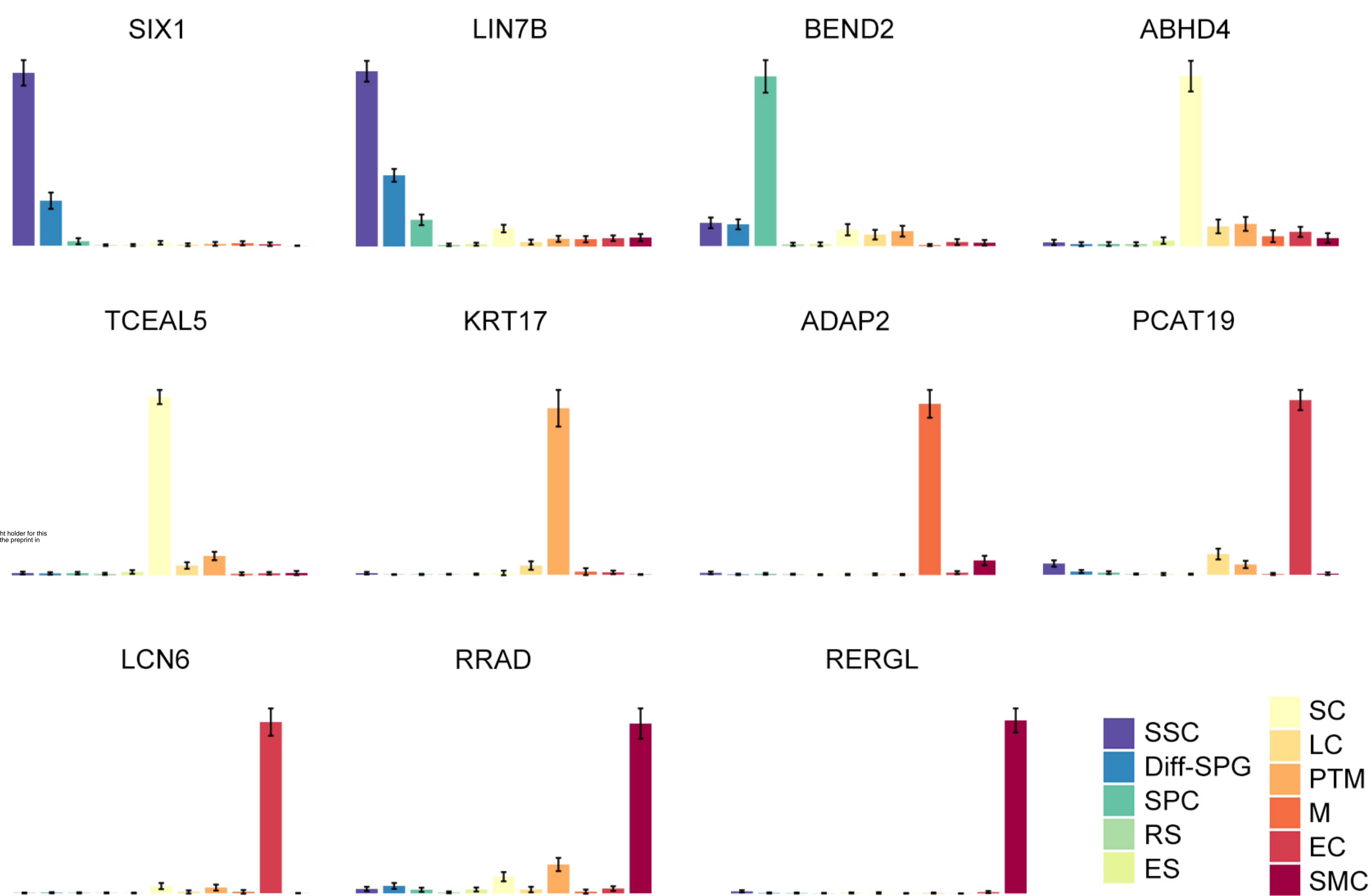
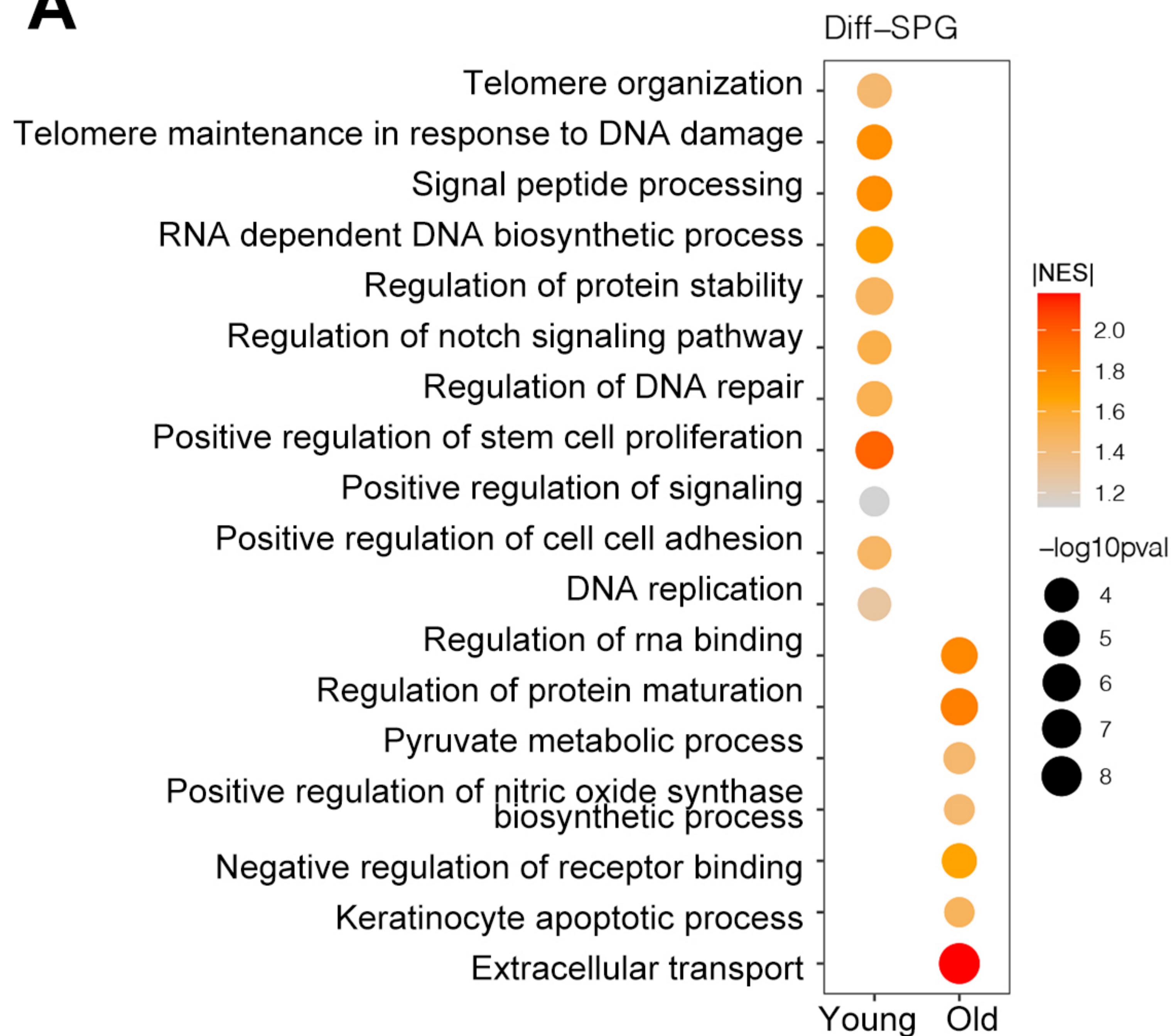


Figure 1-Figure supplement 2

A



B

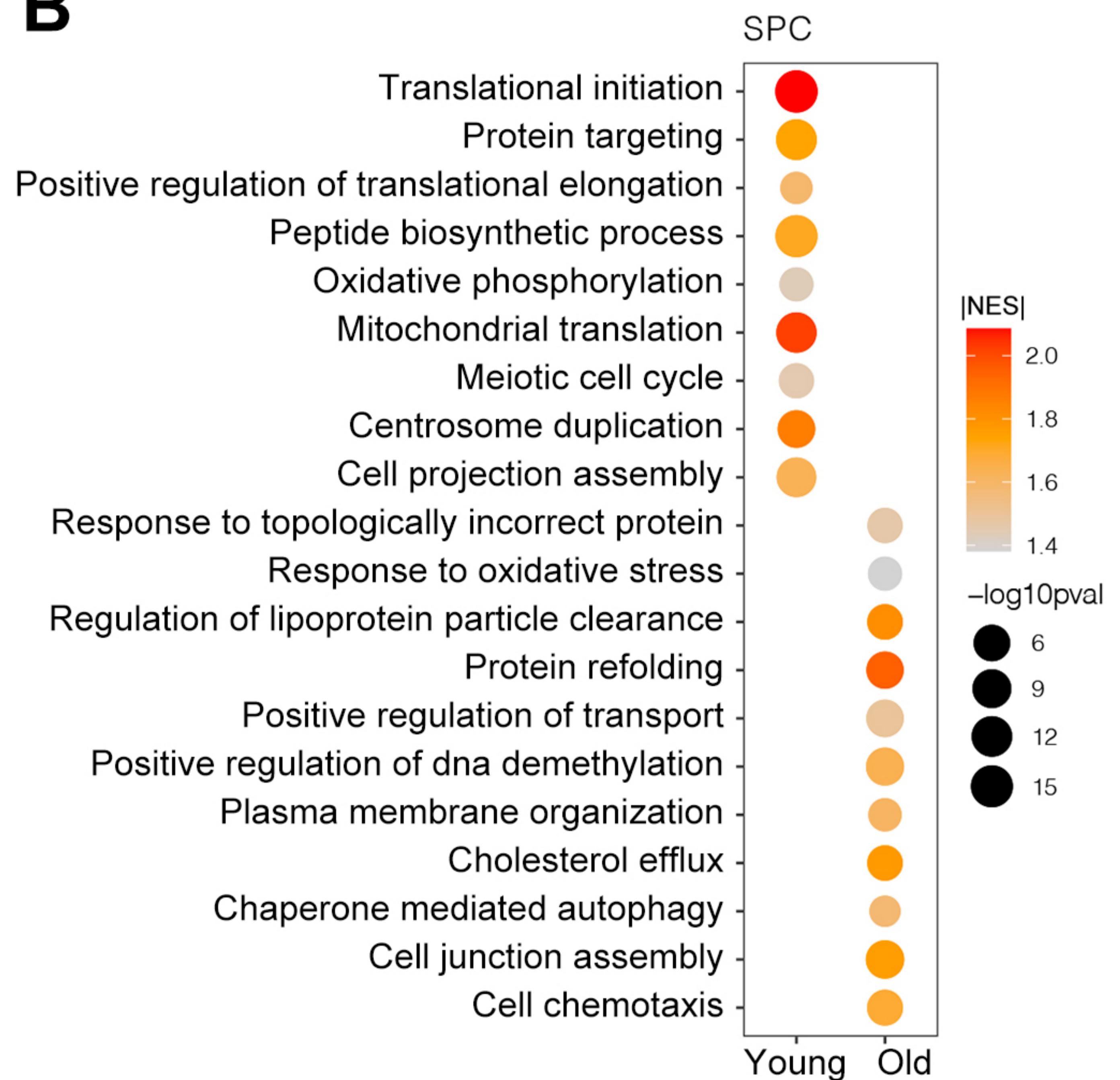
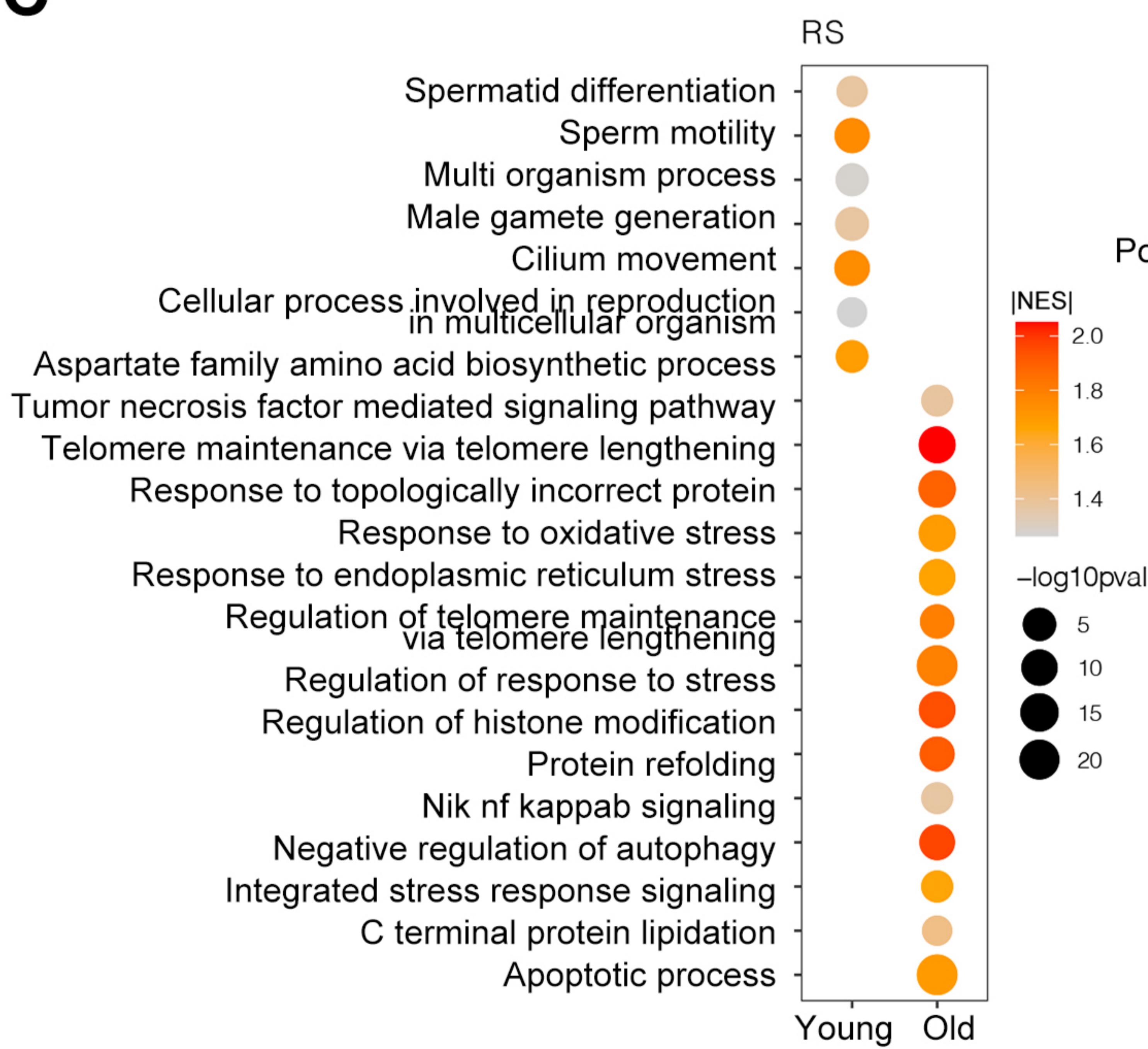
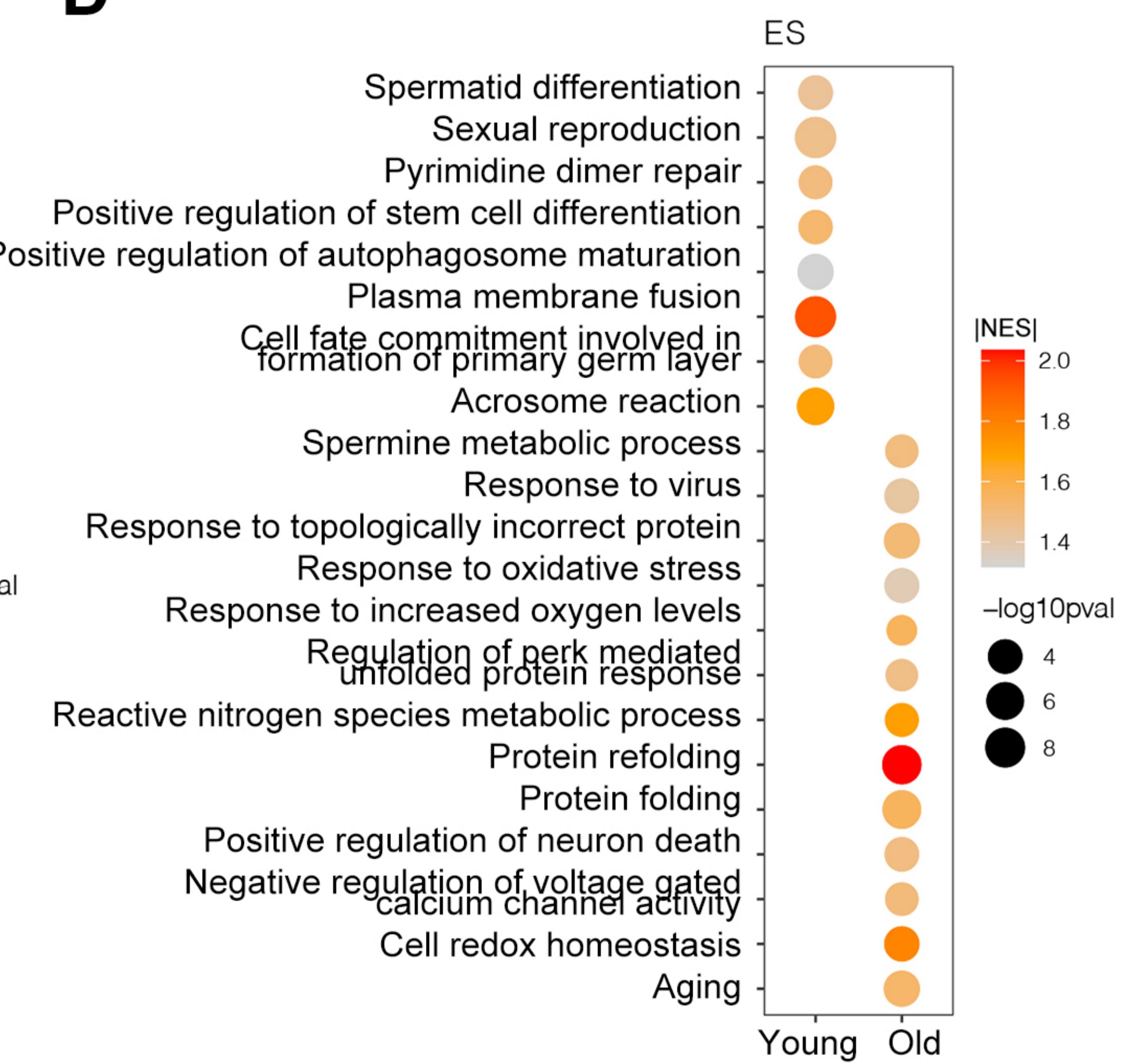
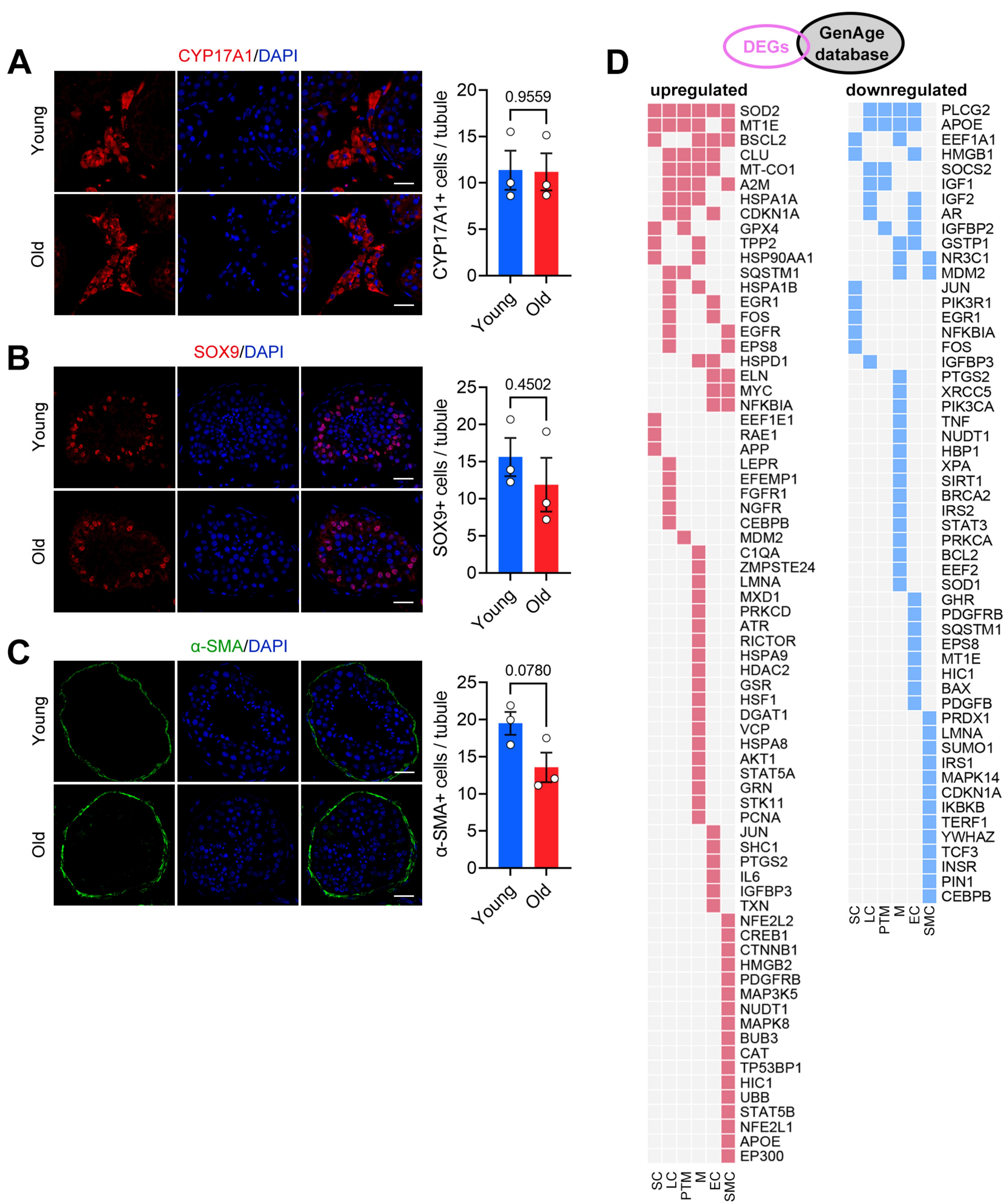
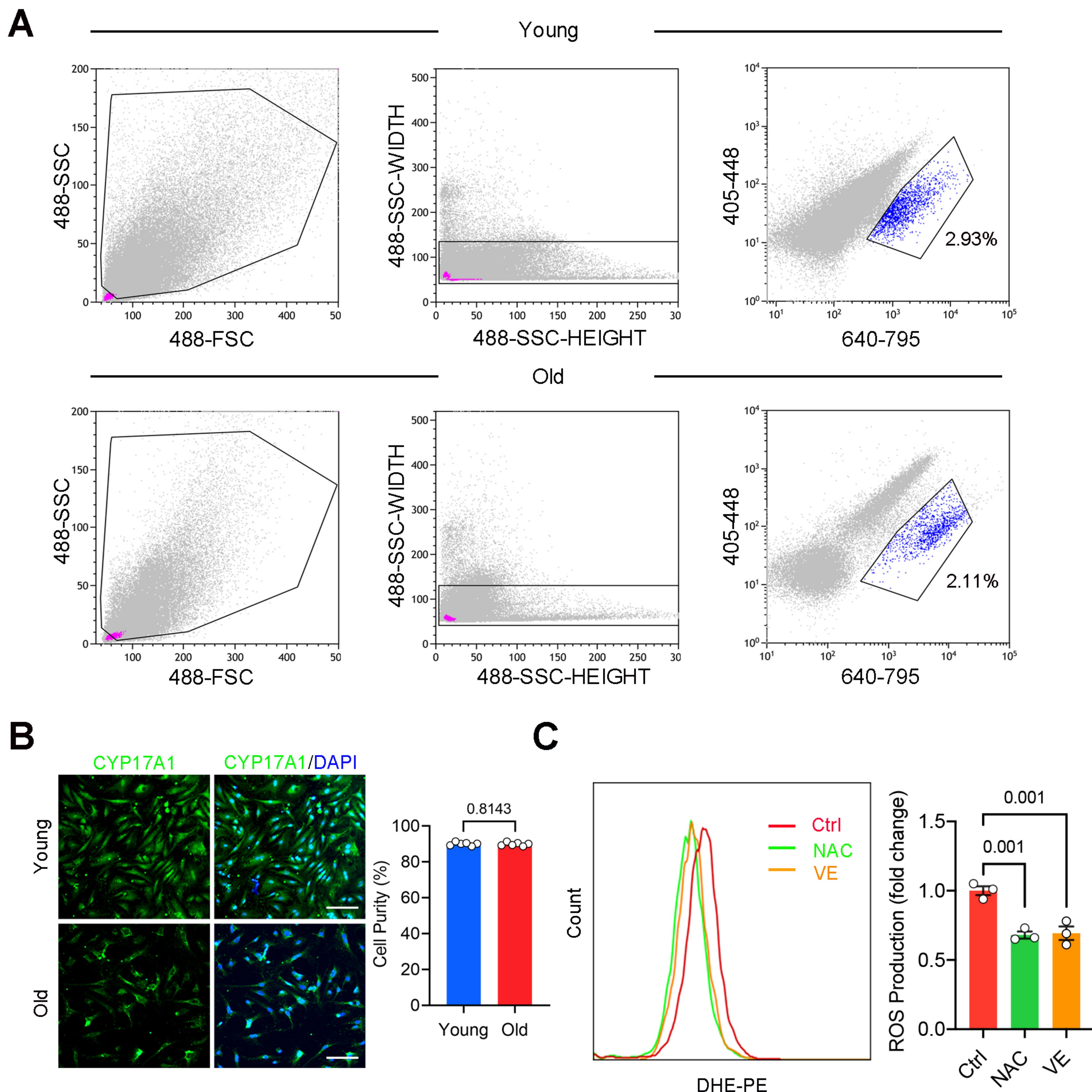


Figure 3-Figure supplement 1


A


B


C


D

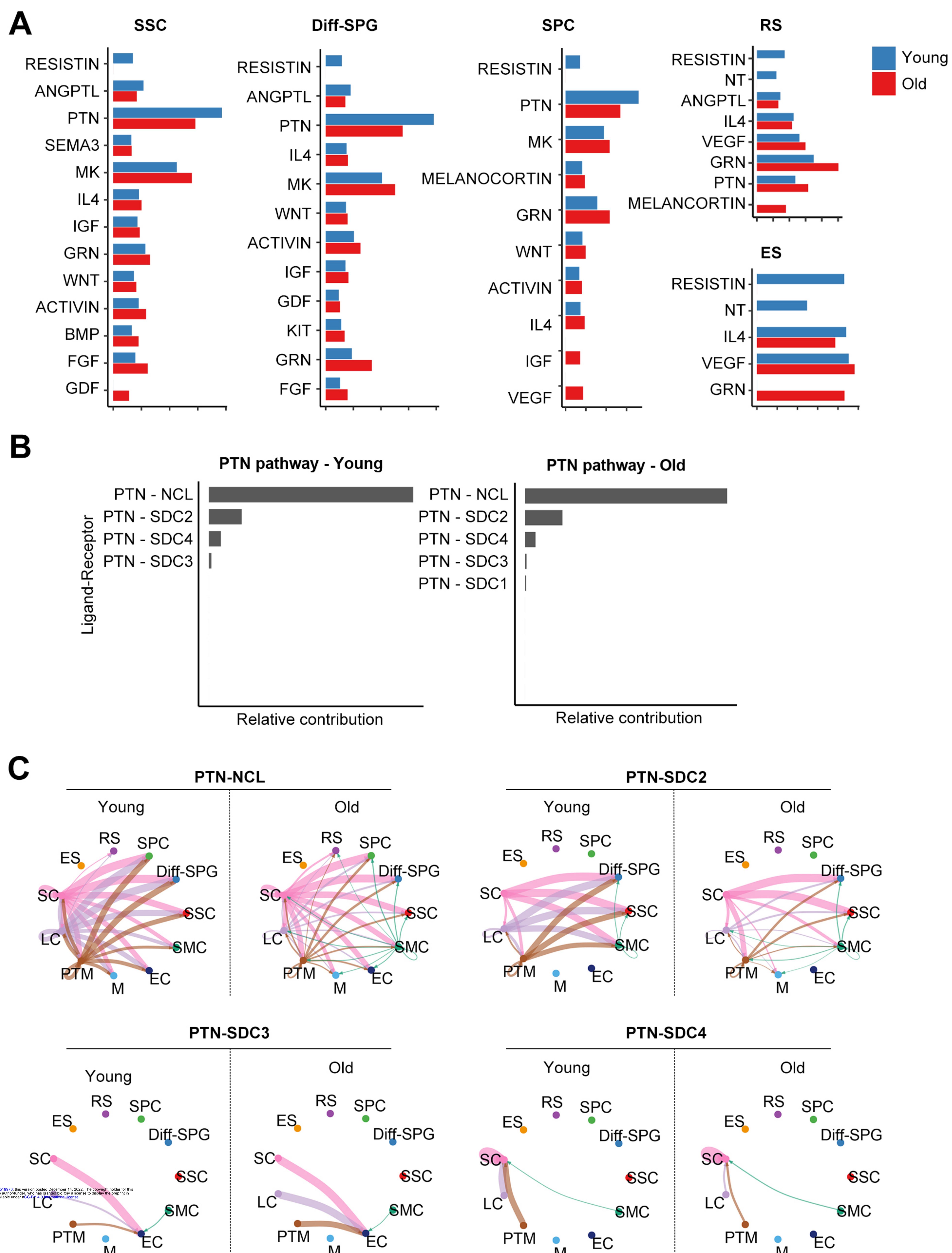

Figure 4-Figure supplement 1

Figure 5-Figure supplement 1

Figure 6-Figure supplement 1

