

1 **A high-throughput cytotoxicity screening platform reveals *agr*-independent mutations in
2 bacteraemia-associated *Staphylococcus aureus* that promote intracellular persistence**

3

4

5 Abderrahman Hachani^{1, #,*}, Stefano G. Giulieri^{1,#}, Romain Guérillot^{1,#}, Calum J. Walsh¹, Marion
6 Herisse¹, Ye Mon Soe¹, Sarah L. Baines¹, David R. Thomas¹, Shane Cheung², Ashleigh S. Hayes¹,
7 Hyun-Jung Cho², Hayley J. Newton^{1,3}, Sacha Pidot¹, Ruth C. Massey^{4,5,6,7}, Benjamin P. Howden^{1,8,§},
8 and Timothy P. Stinear^{1,§}.

9

10

11 1. Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria,
12 3000, Australia

13 2. Biological Optical Microscopy Platform, University of Melbourne, Melbourne, Victoria, 3000, Australia

14 3. Infection and Immunity Program, Department of Microbiology and Biomedicine Discovery Institute, Monash
15 University, Clayton, VIC, Australia.

16 4. School of Microbiology, University College Cork, Cork, Ireland.

17 5. School of Medicine, University College Cork, Cork, Ireland.

18 6. APC Microbiome Ireland, University College Cork, Cork, Ireland.

19 7. School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK

20 8. Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty
21 Institute, University of Melbourne, Melbourne, Victoria, 3000, Australia

22

23

24

25

26 # Joint first author

27 § Joint senior author

28 *Corresponding author: Abdou Hachani abderrahman.hachani@unimelb.edu.au

29

30 Keywords: *Staphylococcus aureus*, cytotoxicity, bacterial population genomics, evolutionary
31 convergence analysis, GWAS, quorum sensing, pathogenesis, intracellular

32

33

34 **Abstract**

35 *Staphylococcus aureus* infections are associated with high mortality rates. Often considered an
36 extracellular pathogen, *S. aureus* can persist and replicate within host cells, evading immune
37 responses and causing host cell death. Classical methods for assessing *S. aureus* cytotoxicity are
38 limited by testing culture supernatants and endpoint measurements that do not capture the
39 phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we
40 have developed a platform called *InToxSa* (Intracellular Toxicity of *S. aureus*) to quantify intracellular
41 cytotoxic *S. aureus* phenotypes. Studying a panel of 387 *S. aureus* bacteraemia isolates, and
42 combined with comparative, statistical and functional genomics, our platform identified mutations
43 in *S. aureus* clinical isolates that reduced bacterial cytotoxicity and promoted intracellular
44 persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our
45 approach detected mutations in other loci that also impacted cytotoxicity and intracellular
46 persistence. We discovered that clinical mutations in *ausA*, encoding the aureusimine non-
47 ribosomal peptide synthetase, reduced *S. aureus* cytotoxicity and increased intracellular
48 persistence. *InToxSa* is a versatile, high-throughput cell-based phenomics platform and we
49 showcase its utility by identifying clinically relevant *S. aureus* pathoadaptive mutations that
50 promote intracellular residency.

51

52 **Introduction**

53 *Staphylococcus aureus* is a leading cause of hospital-acquired infections, a problem exacerbated by
54 increasing resistance to last-line antibiotics (Murray et al., 2022; Tong et al., 2015). *S. aureus* is
55 traditionally considered an extracellular pathogen as it produces many secreted virulence factors,
56 including superantigens, degradative enzymes and cytolytic toxins (Tam & Torres, 2019). The potent
57 pore-forming toxins (PFTs), including alpha-hemolysin and leukocidins, are among the major
58 virulence determinants of *S. aureus* (Cheung et al., 2021). These toxins induce rapid host cell death,
59 including death of the leukocytes and neutrophils recruited to remove bacteria from infected tissues
60 (Surewaard et al., 2016; Thammavongsa et al., 2015).

61

62 Long-term asymptomatic *S. aureus* carriage is common but invasive infection is rare. Thus,
63 understanding the changes enabling *S. aureus* to switch from a common coloniser of the nasal cavity
64 to an invasive pathogen is a major research focus. A powerful discovery approach has been used to
65 compare the cytolytic activities of secreted *S. aureus* virulence factors between colonising and
66 bacteraemia isolates, followed by genomics to uncover the bacterial genetic loci linked with
67 high/low cytolytic activity (Collins et al., 2008; Giulieri et al., 2018; Laabei et al., 2014, 2021;
68 McConville et al., 2022). These toxicity analyses use methods that monitor eukaryotic cell viability
69 upon exposure to *S. aureus* culture supernatants (Dankoff et al., 2020; Das et al., 2016; Giulieri et
70 al., 2018) and integrate these phenotypes within genome wide association studies (GWAS) and
71 other comparative bacterial population genomics techniques (Giulieri et al., 2018; Recker et al.,
72 2017). However, such toxicity assays are limited in that they focus on exogenous virulence factors
73 that have accumulated in the culture media during bacterial growth. Thus, such methods can be
74 limiting as they report phenotypes that are temporally skewed and ignore the host cell-bacterium
75 context under which the production of these factors is controlled during infection. When these
76 endpoint toxicity assays are conducted at scale with many hundreds of bacterial isolates, additional

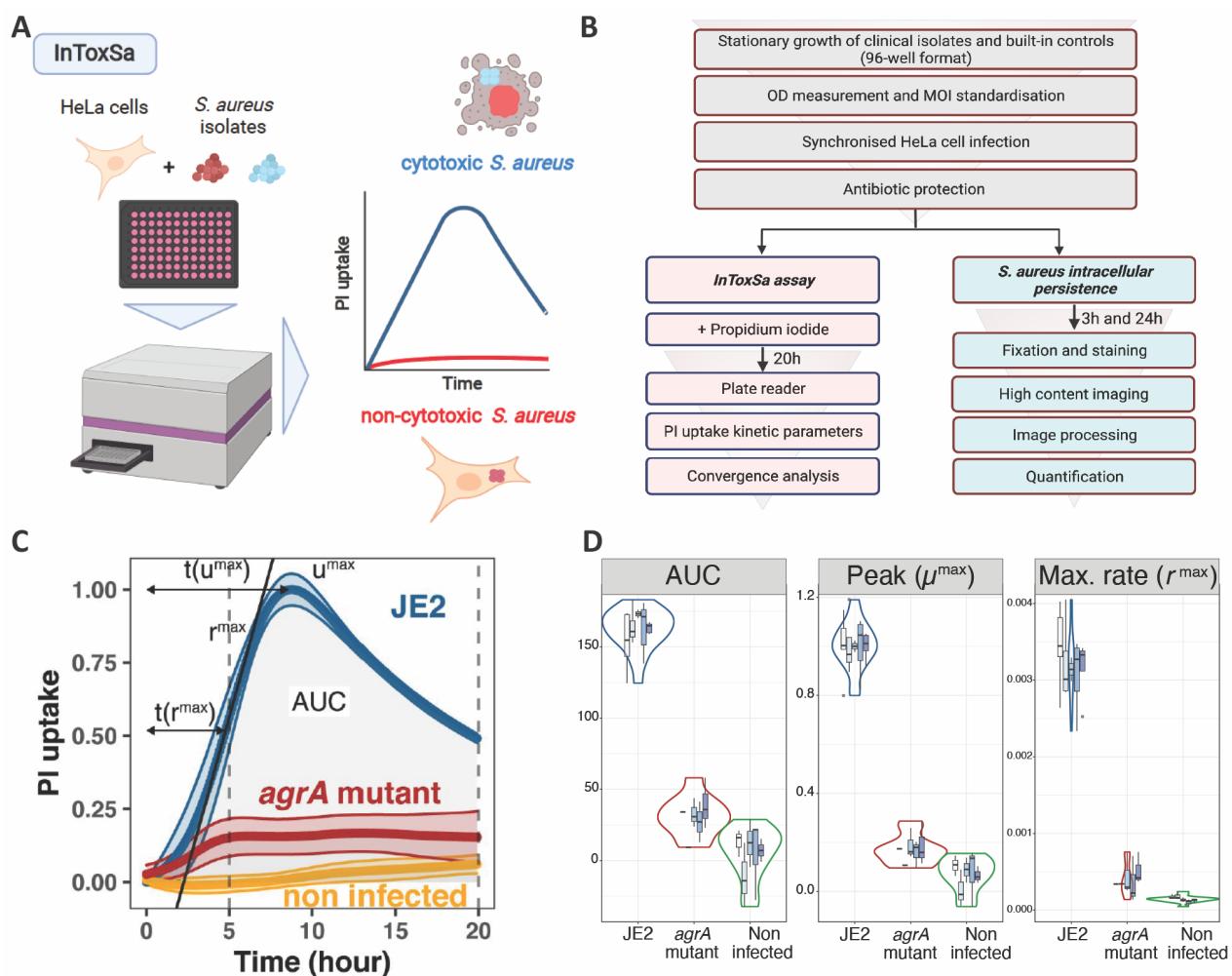
77 issues caused by filter-sterilisation, freeze-storage and other manipulations during the preparation
78 of bacterial supernatants prior to incubation with host cells may increase assay variability (Giulieri
79 et al., 2018; McConville et al., 2022).

80

81 Another restriction of toxicity assays is that they treat *S. aureus* as an obligate extracellular
82 pathogen, whilst the literature has reported its capacity to adopt an intracellular behaviour, readily
83 adhering to and invading various eukaryotic cells, including non-professional phagocytes (Flannagan
84 et al., 2016; Foster et al., 2014; Soe et al., 2021). Upon internalisation, intracellular *S. aureus* initially
85 reside in phagolysosomes, where low pH is a cue for bacterial replication (Flannagan et al., 2018;
86 L  m et al., 2010). *S. aureus* uses its arsenal of PFTs to escape from this degradative compartment,
87 into the cytosol and cause the death of host cells (Moldovan & Fraunholz, 2019; Siegmund et al.,
88 2021). This intracellular niche confers protection to *S. aureus* from antibiotics and immune
89 responses (Peyrusson et al., 2020; Strobel et al., 2016). While guarding *S. aureus* from host attack,
90 intracellular residency also enables the creation of a reservoir for the pathogen to persist in an
91 infected host and could lead to bacterial transmigration into distal host tissues, from where the
92 bacteria can cause protracted infections and more serious disease (Jorch et al., 2019; Surewaard et
93 al., 2016). Toxicity and persistence of *S. aureus* in an intracellular context are critical pathogenesis
94 traits. However, understanding these traits and their microevolution across diverse collections of
95 clinical *S. aureus* strains, and correlating them with specific bacterial genetic variations has been
96 hampered by the lack of a high-throughput platform for trait characterisation.

97

98 To address these issues, we took advantage of the capacity of *S. aureus* to invade cultured epithelial
99 cell lines and established a 96-well assay format to accurately monitor over time the bacterial
100 toxicity exerted from within host cells. HeLa cells are adherent epithelial cells and represent an
101 amenable model to study the pathogenesis of most intracellular bacteria causing human disease,


102 including *S. aureus* (Das et al., 2016; Stelzner, Hertlein, et al., 2020; Stelzner, Winkler, et al., 2020).
103 We modified an antibiotic/enzyme protection assay, using a combination of gentamicin and
104 lysostaphin, to kill extracellular bacteria while preserving the viability of intracellular bacteria (Kim
105 et al., 2019). Using propidium iodide as a marker of host cell death, the assay measured changes in
106 fluorescence of HeLa cells over time caused by the presence of intracellular *S. aureus*. Combined
107 with the power of bacterial genomics and evolutionary convergence analysis, we used the assay to
108 screen a large collection of *S. aureus* bacteraemia isolates. Our large-scale pheno-genomics
109 approach revealed known and previously undescribed loss-of-function mutations that were
110 significantly associated with reduced intracellular cytotoxicity and increased intracellular
111 persistence.

112

113 RESULTS

114 *InToxSa* assay development.

115 We set out to develop a high-throughput and continuous cell death assay that could measure the
116 intracellular toxicity of *S. aureus* in a format we named *InToxSa*. We used adherent HeLa-CCL2
117 epithelial cells as an infection model in a 96-well format and infected them with *S. aureus* at a
118 standardised multiplicity of infection (MOI). Following an infection period of 2h, infected cells were
119 treated with an antibiotic/enzyme combination to specifically kill extracellular bacteria and prevent
120 further reinfection by bacteria released by cells dying during the assay. HeLa cell viability was
121 continuously monitored by measuring propidium iodide (PI) fluorescence (see methods). Reduced
122 HeLa cell viability was indicated by increasing fluorescence over time (Figure 1A). We used
123 regression to fit standardised curves to the PI uptake data and calculated seven kinetic parameters
124 including the area-under-the-curve representing the total of PI uptake over time [AUC], peak PI

Figure 1: Establishing the intracellular toxicity of *S. aureus* (InToxSa) assay. (A) Overview of InToxSa assay. (B) Flow chart of the analytical pathway. (C) Plot of PI fluorescence uptake over 20h as a measure of *S. aureus* intracellular cytotoxicity in HeLa cells. Depicted curves are wild type *S. aureus* JE2 (blue), the isogenic *S. aureus* JE2 *agrA* transposon mutant (red), and uninfected cells (yellow). The PI uptake curve for JE2 is annotated with five kinetic parameters. For each curve, the thick line represents the mean and the shading, the standard deviation. Curves are fitted with cubic smooth splines (see methods). To minimise batch effect, all kinetics data have been transformed using proportion of maximum scoring (POMS) using JE2 controls as reference minimum and maximum values (Little, 2013). X-axis is time and Y-axis is PI-uptake, represented as a proportion of maximal fluorescence in JE2-infected cells, where for every measured plate, a PI uptake value of 1 represents the maximum of JE2 PI uptake and zero its minimum. (D) Summary of five independent InToxSa experiments to assess assay and parameter variation. Violin plots represent the density distribution of all five replicates and the nested box plots show the distribution of within plate replicates (3-5 technical replicates per plate replicate) for the three most discriminatory of seven parameters inferred from the PI uptake data (Supplementary file 1).

125 uptake [μ^{\max}], the time to μ^{\max} [$t(\mu^{\max})$], the maximum rate in PI uptake [r^{\max}], the time to r^{\max}

126 $[t(r^{\max})]$), trough and time to trough (Supplementary file 1).

127

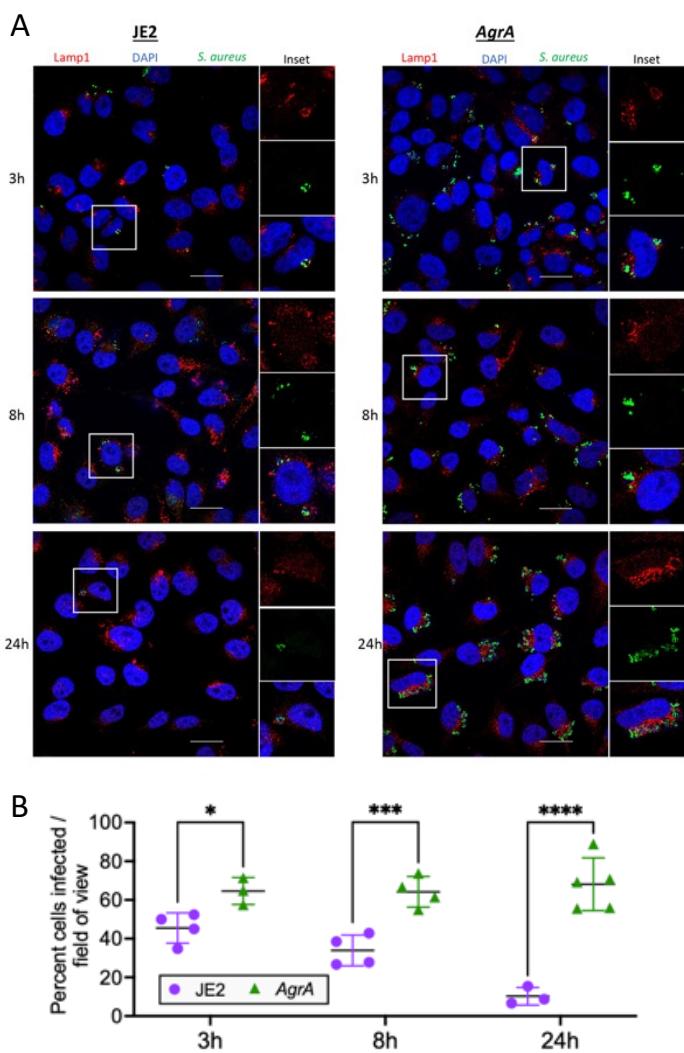
128 We then mapped out a series of experiments to validate *InToxSa* and explored bacterial genetic
129 factors linked to intracellular cytotoxicity (Figure 1B). To demonstrate method performance, we
130 measured the intracellular toxicity of the wild type *S. aureus* USA300 strain JE2 against an isogenic
131 *agrA* mutant (Nebraska Transposon Library mutant NE1532 (Fey et al., 2013)), using non-infected
132 cells as a baseline (Figure 1C). *S. aureus* JE2 caused a rapid and substantial increase in PI fluorescence
133 over time, reflective of the known high cytotoxicity of this strain (Das et al., 2016; Grosz et al., 2014;
134 McConville et al., 2022). Cells infected with the *agrA* mutant yielded significantly lower PI uptake
135 (AUC) and slower (r^{\max}), indicating HeLa cell viability during the infection course and is consistent
136 with the reported low cytotoxicity of *S. aureus* *agr* mutants (Figure 1C) (Laabei et al., 2021;
137 McConville et al., 2022).

138

139 We then assessed the reproducibility and repeatability of *InToxSa* across five experimental
140 replicates, each time using both biologically independent HeLa cell culture passages and
141 independent *S. aureus* cultures with the same two comparator strains (JE2 wild type and the
142 isogenic *agrA* transposon mutant) (Figure 1C). We measured seven PI-uptake curve kinetic
143 parameters (Figure 1C, Supplementary file 1). We observed that the PI-uptake area-under-the-curve
144 (AUC), peak PI uptake [μ^{\max}] and maximum PI uptake rate [r^{\max}] for *S. aureus* JE2 compared to the
145 *agrA* mutant and non-infected cells were significantly different, had very low intra-assay variation,
146 and were among the most discriminatory and reproducible PI uptake curve parameters (Figure 1D,
147 Table 1, Supplementary file 1). At experimental endpoints, the acidity of the culture media had not
148 changed, and no bacterial growth was observed after plating the media from infected 96-well
149 plates, indicating that *InToxSa* assessed the cytotoxicity caused only by intracellular *S. aureus* (data
150 not shown).

151 **Table 1: Summary of *InToxSa* assay performance**

Strain	No. biological replicates	Area under the curve [AUC]		Peak uptake [μ^{\max}]		Max uptake [r^{\max}]	
		Mean	CoV	Mean	CoV	Mean	CoV
<i>S. aureus</i> JE2 wild type	25	162	0.09	1	0.09	0.003	0.13
<i>S. aureus</i> JE2 <i>agrA</i> mutant	11	30.90	0.45	0.17	0.35	0.0004	0.52
Non-infected	15	5.28	3.46	0.07	1.02	0.0001	0.32


152 **Note:** CoV = Coefficient of Variation

153

154 **Confirmation of *S. aureus* internalisation in HeLa cells**

155 We used confocal microscopy to confirm the presence of intracellular *S. aureus* (Figure 2A). HeLa
156 cells grown on coverslips were infected with the same conditions used for *InToxSa* and analysed at
157 3h, 8h and 24h post-infection. These timepoints were selected to reflect the key *InToxSa* timepoints
158 highlighted during JE2 infection (start of PI uptake measurement, peak PI uptake [μ^{\max}] and
159 experimental endpoint, respectively). We observed that at each timepoint, both JE2 and the *agrA*
160 mutant co-localised with the lysosomal marker LAMP-1. However, the *agrA* mutant was detected in
161 higher numbers within cells compared to wild type (Figure 2A, B). At later time points (8h and 24h)
162 the number of JE2-infected cells decreased, with fewer detectable intracellular bacteria, suggesting
163 that JE2-infected cells had died, consistent with bacterial cytotoxicity. In contrast, the number of
164 cells infected with the *agrA* mutant did not vary significantly, indicating cell survival during the
165 infection time course (Figure 2B). It also appeared that the number of intracellular bacteria
166 increased for cells infected with the *agrA* mutant, suggesting bacterial replication over time. This
167 latter observation was explored in more depth using high-content/high-throughput imaging (see

168 later section). The microscopy results support the *InToxSa* assay outputs and indicate that non-
169 cytotoxic *S. aureus*, such as the *agrA* mutant, can persist within cells without affecting cell viability.
170

Figure 2: Fluorescence confocal microscopy of intracellular *S. aureus*. (A) HeLa cells were infected with *S. aureus* (wild type JE2 or isogenic *agrA* mutant) and imaged at 3h, 8h and 24h post-infection. Fixed cells were labelled with LAMP-1, *S. aureus* antibodies and DAPI. **(B)** Manual quantification of confocal microscopy. Graph shows the percentage of cells infected with *S. aureus* at each of the three timepoints. At least 50 cells (n cells=51-112) were counted in 3-5 fields of view, with at least 12 cells counted per field (n field=12-40). Shown are all data points, mean and standard deviation. Significance was assessed using 2-way ANOVA. Null hypothesis (no difference between means) rejected for adj p <0.05. * p =0.04, *** p =0.007, **** p =<0.0001

171

172 ***InToxSa* benchmarking against trypan blue exclusion assay**

173 In a previous study we used a trypan blue exclusion assay with THP1 human macrophages exposed
174 to culture supernatants to test within-host cytotoxicity variations from 51 clinical *S. aureus* isolated
175 from 20 patients with bacteraemia (Giulieri et al., 2018). These 51 *S. aureus* isolates were originally
176 selected because they were associated with phenotypic changes occurring during bacteraemia, such
177 as infection relapse, antibiotic treatment failure, longer duration of bacteraemia and augmented
178 vancomycin MIC; phenotypes likely resulting from within-host evolution (Giulieri et al., 2018). Thus,

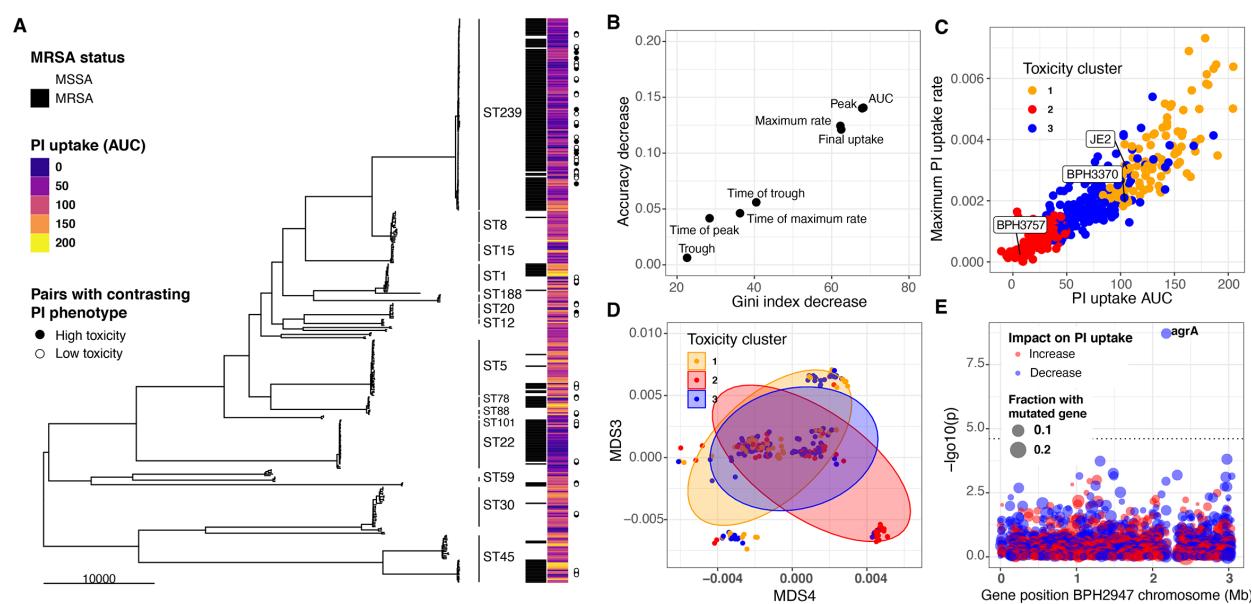
179 the isolates were categorised by patient and by their sequential isolation, with the first isolate
180 considered as 'baseline' and the subsequent isolates designated as 'evolved'.

Figure 3: Performance of InToxSa against Trypan blue exclusion assay. Comparative evaluation of *S. aureus* intracellular cytotoxicity with bacterial supernatants for 51 paired isolates from 20 patients with *S. aureus* bacteraemia. (A) Supernatant-based cytotoxicity on THP1 cells. Episode with significant difference in THP1 survival between baseline and evolved isolates is boxed in blue ($p < 0.05$). Assay performed in biological and technical duplicates. Bars represent mean percentage of dead cells; error bars show range between duplicates. Toxicity within isolate groups was compared using analysis of the variance (ANOVA) with Bonferroni correction (B) PI uptake of infected HeLa cells. Values are mean AUC and standard deviation. Episodes exhibiting significant phenotypic differences between baseline and evolved isolates are boxed in red ($p < 0.05$). Assay performed in biological and technical triplicates. PI uptake AUC within isolate groups was compared using ANOVA with Bonferroni correction.

181
182 All 51 isolates were screened with *InToxSa* and compared with the original trypan blue assay data
183 (Figure 3). Using trypan blue exclusion, only the evolved isolate from patient 50 (P_50) showed a
184 significant phenotypic difference in cytotoxicity (Fig 3A). This difference was attributed to a loss-of-
185 function mutation in *agrA* (T88M). *InToxSa* also identified a significant cytotoxicity difference for
186 the P_50 isolate pair, validating the previous observation, despite the methodological and host cell

187 type differences. However, *InToxSa* detected significantly reduced cytotoxicity for the evolved
188 isolates from five more patient pairs compared to the original trypan blue screen (Figure 3B). These
189 results support the higher sensitivity of *InToxSa* in uncovering *S. aureus* cytotoxicity variations
190 resulting from the evolution of the bacterial population during bloodstream infection.

191


192 **Screening a large collection of clinical *S. aureus* to evaluate intracellular cytotoxicity**

193 A major motivation for developing the *InToxSa* assay was to develop a pheno-genomics platform to
194 efficiently measure the intracellular cytotoxicity profiles of a large collection of clinical *S. aureus*
195 isolates and then use the power of comparative and statistical genomics to find bacterial genetic
196 loci associated with intracellular cytotoxicity. To this end, we analysed 387 clinical *S. aureus* isolates,
197 obtained from 298 episodes of bacteraemia and for which genome sequences were available
198 (Giulieri et al., 2018; Holmes et al., 2011, 2014; VANESSA study group, on behalf of the Australasian
199 Society for Infectious Diseases (ASID) Clinical Research Network (CRN) et al., 2018). A 164,449 SNP
200 core genome phylogeny was inferred for this collection. The 387 isolates spanned 32 sequence types
201 (STs) and were dominated by ST239, accounting for 30% of isolates (n:117), followed by ST22 (n:32,
202 8%), ST5 (n:34, 8%), ST45 (n:28, 7%), and ST1 (n:18, 5%). Fifty-three percent of the isolates were
203 *mecA* positive (Figure 4A) (Supplementary file 3).

204

205 We assessed each of the 387 isolates by *InToxSa*, with the cytotoxicity phenotype for each isolate
206 represented by mean PI uptake (AUC) and displayed as a heatmap, aligned with the core genome
207 phylogeny (Figure 4A). Several patterns were readily seen in the data. There was a wide range of
208 cytotoxicity profiles across the 387 isolates, with notable variations within each sequence type
209 suggesting frequent adaptation events affecting intracellular cytotoxicity levels. Two sequence
210 types (ST239 and ST22) strongly associated with lower cytotoxicity. These variations are consistent
211 with previous observations (Laabei et al., 2021).

212 To select the most suitable *InToxSa* parameters for our statistical genomics approach, we assessed
 213 their relative importance by fitting the data using unsupervised random forest (RF) machine learning
 214 (Mantero & Ishwaran, 2021). In this model, ‘observations’ were each of the PI-uptake values for the
 215 387 isolates and controls and ‘features’ were the seven PI uptake curve parameters (Supplementary
 216 file 4). We then tested RF feature importance and showed with *variable importance plots* that the

Figure 4. Intracellular cytotoxicity assessment of 387 bloodstream-associated clinical *S. aureus* isolates. (A) Maximum likelihood phylogeny based on 164,449 core genome SNPs for 387 *S. aureus*, showing sequence type (ST) and MRSA distribution. The heatmap depicts the mean area under the curve (AUC) of cytotoxicity based on *InToxSa* PI uptake assay. AUC values range from non-cytotoxic (score: 0, dark blue) to highly cytotoxic (score: 200, yellow). Adjacent to the heatmap (closed and open circles) are 28 pairs of genetically related, but phenotypically discordant isolates (see Figure 5). (B) ‘Variable importance plot’ showing different PI uptake metrics (features) in an unsupervised random forest (RF) machine learning model. The higher the value of ‘accuracy decrease’ or ‘Gini index decrease’, the higher the importance of the feature in the model. (C) Scatter plot of the two most discriminatory PI uptake kinetic metrics (AUC and maximum PI uptake rate). Dots are coloured based on the clustering obtained from the proximity matrix of the RF model. (D) Scatter plot showing the two principal components with the strongest association with PI uptake (lineage effect as measured using pyseer). Dots and ellipses are coloured based on the clustering obtained from the proximity matrix of the unsupervised machine learning model. (E) Manhattan plot of gene-burden GWAS of cytotoxicity (PI uptake AUC) of 387 clinical isolates.

217 PI uptake parameters, AUC, μ^{\max} and r^{\max} were the most informative features for the model (Figure
218 4B), consistent with our initial *InToxSa* assessment using JE2 and the *agrA* mutant (Figure 1C and
219 1D). Using the *proximity matrix* from the unsupervised RF model, we defined three main PI-uptake
220 clusters, corresponding with *low*, *moderate*, and *high* intracellular cytotoxicity categories. We
221 labelled each of the 387 PI-uptake data points with these three (*low*, *moderate*, *high*) cytotoxicity
222 categories and plotted the AUC and r^{\max} values against each other (Figure 4C). As expected, these
223 parameters were strongly, positively correlated, suggesting that the AUC alone is sufficient to
224 capture intracellular cytotoxicity differences between *S. aureus* isolates. We used principal
225 component analysis (PCA) of the PI-uptake data as an alternative unsupervised learning approach
226 (Figure 4- Supplementary Figure 1). When considering the first two components (67% of the
227 variance explained), we observed a similar pattern where the same toxicity groups could be
228 recognised within a cytotoxicity continuum among clinical isolates (Figure 4- Supplementary Figure
229 1).

230

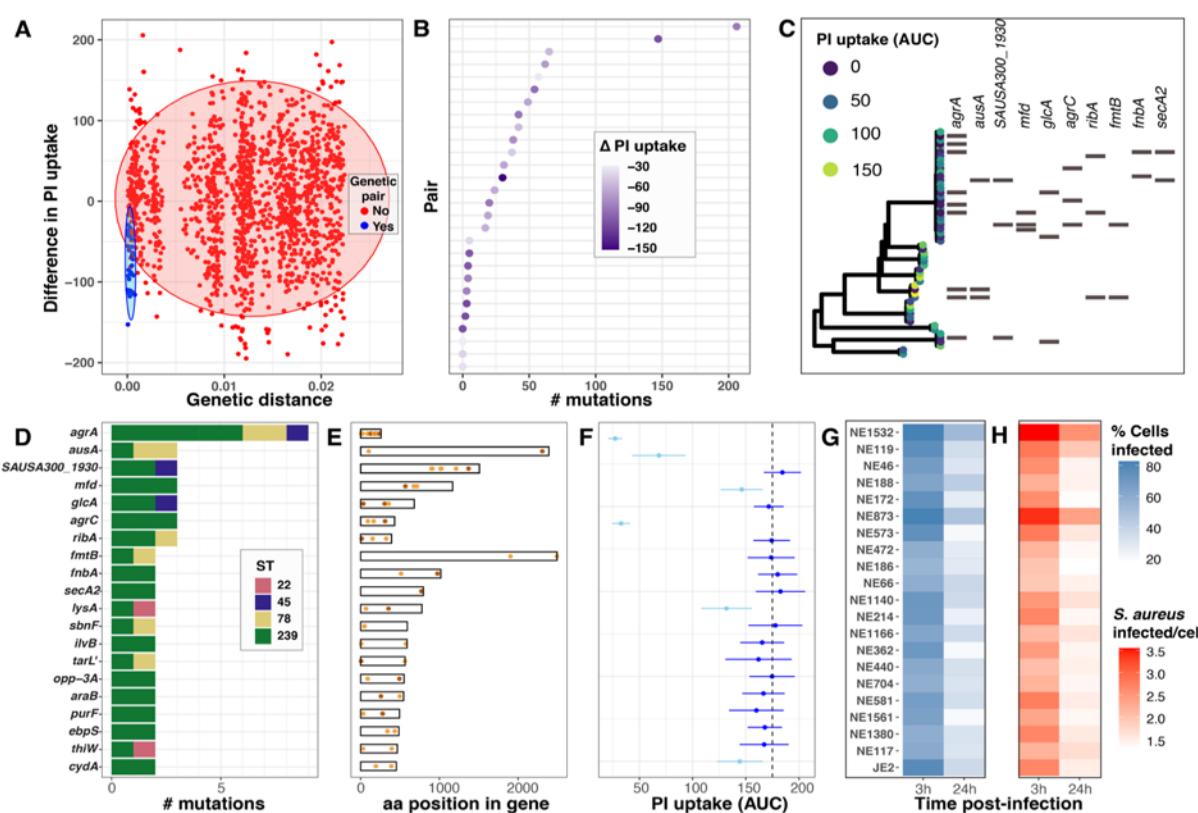
231 **GWAS analysis using *InToxSa* outputs to identify *S. aureus* genes linked to intracellular
232 cytotoxicity**

233 We next used GWAS to identify genetic correlates of strain-level cytotoxicity, expressed as mean PI
234 uptake AUC. The fraction of cytotoxicity variation explained by genetic variation (heritability: h^2)
235 was 49%, a figure lower than the ones obtained for other phenotypes such as vancomycin resistance
236 (Giulieri, Guérillot, Holmes, et al., 2022). A lower heritability could be resulting from the *InToxSa*
237 assay variability or caused by differences in gene expression levels or due to epigenetic changes.

238

239 To assess the contribution of lineage effects relative to locus effects, we defined lineages using
240 multi-dimensional scaling (MDS) of a pairwise genetic distance matrix generated by Mash, a tool
241 that reduces genome content to a set of 'sketches' (hashed k-mers) (Ondov et al., 2016). Major MDS

242 axes correlated with the most prevalent STs, for example ST239 was mainly defined by MDS1
243 (negative correlation) and MDS2 (positive correlation) (Figure 4- Supplementary Figure 3A). We then
244 tested the association between the first 10 MDS axes (90% of the genetic variance explained) and
245 the PI uptake phenotype in Pyseer (Earle et al., 2016; Giulieri, Guérillot, Holmes, et al., 2022; Lees
246 et al., 2018). In agreement with the initial observations based on the phylogeny and cytotoxicity
247 heatmap (Figure 4A), we observed significant cytotoxicity-lineage associations represented by
248 MDS3 and MDS4 (Figure 4D, Figure 4- Supplementary Figure 2). Because of the ST-MDS lineages
249 correlation, this is consistent with differences in cytotoxicity between clones (Figure 4-
250 Supplementary Figure 3B). Using the three cytotoxicity clusters defined by RF as categorical labels
251 (Figure 4C), we plotted the 387 genomes along these two dimensions. While intracellular
252 cytotoxicity was strongly associated with some *S. aureus* lineages, this analysis showed that lineage
253 alone does not completely explain the phenotype, as indicated by the significant overlap between
254 the three cytotoxicity clusters across MDS3 and MDS4 (Figure 4D). This pattern is consistent with
255 other adaptive phenotypes (Earle et al., 2016; Giulieri, Guérillot, Holmes, et al., 2022; Su et al., 2021)
256 and suggests that locus effects from specific micro-evolutionary events modulate cytotoxicity,
257 supporting the use of GWAS and convergent evolution approaches to identify these mutations.


258
259 Correcting for the observed population structure, we then used gene-burden GWAS to try and
260 identify *S. aureus* loci significantly associated with intracellular cytotoxicity (PI uptake AUC) as a
261 continuous variable. After correcting for multiple testing, only *agrA* reached the p<0.05 significance
262 threshold, supporting the important contribution of this locus to strain-level cytotoxicity (Figure 4E,
263 Supplementary file 5). We also considered the highest-ranking loci that did not reach genome-wide
264 statistical significance. The second most significant gene, *secA2* (p = 1.5x10-4) encodes the accessory
265 ATPase to the Sec protein export system and is essential for the transport of SraP, a surface exposed
266 and serine-rich staphylococcal protein which is associated with adhesion to, and invasion of

267 epithelial cells and binding to human platelets (Siboo et al., 2005; Yang et al., 2014). Another high-
268 ranking GWAS locus was *iIeS* ($p=9.9\times 10^{-4}$), encoding an isoleucyl-tRNA synthetase linked with
269 mupirocin resistance, and previously associated with *S. aureus* cytotoxicity (Yokoyama et al., 2018).

270

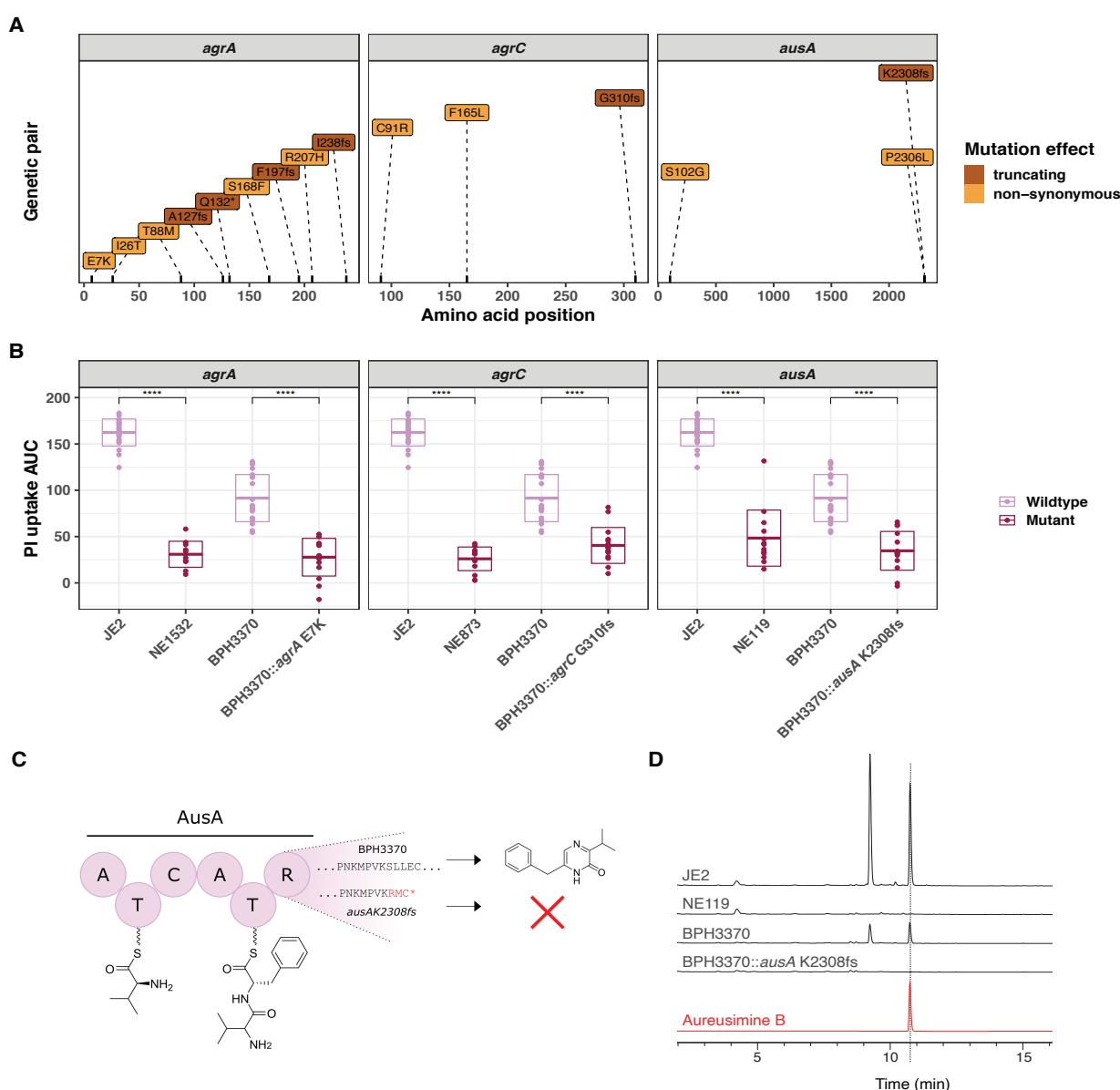
271 **Identification of convergent mutations in genetic pairs with divergent *InToxSa* cytotoxicity
272 profiles**

273 Despite the relatively small sample size for this kind of analysis, the gene-burden GWAS detected
274 the *agrA* locus with a high significance, but it did not have sufficient power to detect mutations
275 other than the *agr* genes. We further sought to identify rare mutations that might alter the
276 intracellular cytotoxicity using comparative genomics approaches, a complementary strategy to
277 microbial GWAS (Chen & Shapiro, 2021; Giulieri, Guérillot, Holmes, et al., 2022; Saund & Snitkin,
278 2020). We used evolutionary convergence analysis to identify additional loci associated with
279 intracellular cytotoxicity among the 387 *S. aureus* isolates. Our approach was to identify genetically
280 related pairs of isolates with contrasting PI-uptake AUC values from across the phylogeny and then
281 search for homoplasic mutations between the pairs. We calculated genetic distances between all
282 387 genome-pairwise comparisons (149,769 combinations) and calculated a delta-PI uptake AUC
283 value for each pair. We selected 28 *S. aureus* pairs with a genetic distance <200 core-genome SNPs
284 and a significant decrease in PI uptake AUC between reference (isolate-1) and control (isolate-2)
285 (Wilcoxon rank-sum test) (Figure 5A). Variants within each pair (*i.e.*, found in isolate-2 but not in
286 isolate-1) were identified and annotated using a strategy that we have developed for *S. aureus*
287 within-host evolution analysis (Giulieri, Guérillot, Duchene, et al., 2022a). We have previously
288 shown that a SNP-calling approach using *de novo* assembly of one genome in a pair as a reference
289 provided the most accurate estimate of the genetic distance (Higgs et al., 2022). There were
290 between 0 – 206 mutations within the 28 pairs (Figure 5B). Mapping the genes in which these
291 mutations were found back to a core-genome phylogeny constructed from the 56 paired *S. aureus*

Figure 5. Evolutionary convergence analysis to identify *S. aureus* genes linked with intracellular cytotoxicity. (A) Distribution of genetic distance determined by pairwise comparisons using MASH distances among the 387 *S. aureus* genomes, against the difference in PI uptake AUC between each pair. The shaded circles denote the 95% multivariate t-distribution (blue: pairs included in the convergence analysis; red: pairs excluded from the analysis). (B) Ranked distribution of the difference in PI-uptake AUC between the 28 pairs. Heatmap shows reduction in AUC values. (C) Core genome phylogeny for the 28 pairs of isolates. Tree tips are coloured by PI-uptake AUC. Aligned with the phylogeny, the 10 first genes targeted by convergent mutations are shown. (D) Number of mutations detected for each of the 20 genes, coloured by *S. aureus* ST. (E) Location of convergent mutations in each gene (non-synonymous in orange, truncating in maroon). (F) Effect of loss of function for each of the 20 genes on intracellular cytotoxicity measured by InToxSa, using mutants from the Nebraska transposon library. Dotted line shows mean PI-uptake AUC of positive control strain JE2. Depicted are mean (dot) and SD (bar) of biological triplicates. Mutants causing significantly lower PI uptake AUC to JE2 are depicted in light blue, non-significant changes are in dark blue (Wilcoxon rank-sum test, corrected for multiple testing). (G)&(H) Operetta high-content imaging analysis for each of the 20 Nebraska transposon mutants and JE2 positive control. Heat maps show the percentage of HeLa cells infected with each transposon mutant (blue) and the number of bacteria per infected cells at 3h and 24h post-infection (red).

293 also identified potentially convergent mutations in several other genes (6 with three independent
294 mutations and 35 with two independent mutations) (Figure 5C, D, E, Supplementary file 6).
295 However, because of the strong lineage effect and the paucity of representation for some *S. aureus*
296 lineages (clonal complexes [CC] and sequence types [ST]), half of these mutations were only found
297 in ST239, a well-represented lineage in our collection. In addition to target loci dedicated to the
298 regulation of virulence factors such as the *agr* locus or involved in adhesion to host extracellular
299 matrix proteins such as fibronectin and elastin (*fnbA* and *ebpS*), some of the convergent mutations
300 were found in genes involved in metabolic processes (*ribA*, *purF*, *sbnF*, *ilvB*, *lysA*, *araB*), associated
301 with the cell wall (*fmtB*), devoted to the last step of the cell wall teichoic acid biosynthesis (*tarL'*),
302 implicated in DNA repair (*mfd*), in protein transport (*secA2*), in solute transport (*glcA*, *opp-3A*, *thiW*),
303 in respiration (*cydA*) and found in a phage-associated locus (SAUSA300_1930). Aside from *agrA* and
304 *agrC* genes (Giulieri et al., 2018; Laabei et al., 2014, 2015; Mairpady Shambat et al., 2016), and those
305 found in the promoter of the *tar* locus (Brignoli et al., 2022; Laabei et al., 2014), mutations in the
306 other loci have not been associated with the reduction of cytotoxicity in clinical *S. aureus* isolates.
307 Interestingly, homoplastic mutations were also found in the gene *ausA*, known to be involved in *S.*
308 *aureus* escape from epithelial cell endosomes and the phagosome of phagocytic cells (Blättner et
309 al., 2016).
310

311 **Functional assessment of genes with convergent mutations**


312 To assess the functional consequences of the convergent mutations (caused by at least two
313 homoplastic mutations per gene), we again turned to the Nebraska transposon library and selected
314 transposon mutants for 20 genes we had identified (Figure 5D). We used *InToxSa* to assess the effect
315 of gene disruption on the intracellular cytotoxicity phenotype for each mutant compared to the JE2
316 wild type (Figure 5F). Over the 20 transposon mutants tested, six showed a statistically significant
317 reduction in cytotoxicity, namely NE1532 (*agrA*), NE119 (*ausA*), NE188 (*mfd*), NE873 (*agrC*), NE1140

318 (*lysA*), and NE117 (*cydA*). Strains with transposon insertions in *agrA*, *agrC* and *ausA* showed a highly
319 significant reduction in PI-uptake AUC (adjusted $p=5.4\times 10^{-4}$, Wilcoxon rank-sum test), confirming
320 their reported roles in affecting bacterial cytotoxicity and validating our convergence analysis
321 (Figure 5F) (Blättner et al., 2016; Das et al., 2016; Laabei et al., 2021; Mairpady Shambat et al., 2016).
322 We extended this analysis and used high-content, high-throughput microscopy to observe and
323 quantify in an unbiased manner the impact of each mutation on the *S. aureus* infectivity and
324 intracellular persistence (see methods). There was an inverse relationship between *InToxSa* and
325 high-content imaging outputs, with the three mutants most reduced in cytotoxicity showing both a
326 higher percentage of infected cells recovered after 24 hours of infection, and a high number of
327 bacteria per infected cell at 24h post-infection as compared to the wild type control JE2 (Figure 5G,
328 H).

329

330 **Functional assessment of specific convergent mutations**

331 To further assess the impact of specific convergent mutations on intracellular cytotoxicity, we used
332 site-directed mutagenesis in *S. aureus* BPH3370 (ST239) to recreate a subset of the convergent
333 mutations. We selected isolate BPH3370 for these experiments as it displayed high *InToxSa* PI-
334 uptake AUC (comparable to JE2, Figure 4C) cytotoxicity without bearing any of the convergent
335 mutations we intended to introduce. We focused our attention on mutations likely to affect protein
336 function and based on the attenuation in cytotoxicity of the cognate transposon mutants. We
337 selected six mutations, previously not documented nor characterised, including non-synonymous
338 mutations leading to residue substitution (*agrA* E7K and *cydA* R390C [a reversion of C390R]),
339 frameshifts leading to truncated proteins (*agrC* G310 frameshift, *ausA* K2308 frameshift, and *lysA*
340 K354 frameshift), and introduction of a stop codon (*mdf* W568 stop codon) in the sequences of
341 convergent genes (Figure 6A, and Figure 6 Supplementary Figure 1). We then used *InToxSa* to assess
342 the cytotoxicity of each targeted mutant, compared to BPH3370 wild type, JE2 and the

Fig 6. Introduction of convergent *agrA*, *agrC* and *ausA* mutations in the clinical isolate BPH3370 reduces its intracellular cytotoxicity while *ausA* mutation affects aureusimine B production.

(A) Position and nature of convergent mutations identified in the genes *agrA*, *agrC* and *ausA*. For each gene, the amino acid position affected by mutations is shown on the x-axis for each gene. Convergent mutations causing a significant contrasting PI uptake phenotype are colored according to their consequence on protein function: non-synonymous (orange), truncating (characterized by the introduction of a frameshift (fs) or a stop codon (*)) (maroon). (B) Effect of convergent mutations on the intracellular cytotoxicity of the clinical isolate BPH3370. The PI uptake AUC values for JE2, the cognate Nebraska transposon mutants of convergent genes, BPH3370 wildtype and BPH3370 bearing the mutations affecting *agrA*, *agrC*, and *ausA*. The crossbar represents mean and standard deviation ($P < 0.0001$). (C) Predicted impact of K2308fs mutation on aureusimines synthesis (D) HPLC analysis of *S. aureus* ethyl-acetate extracts for aureusimines compared to an Aureusimine B synthetic standard.

344 corresponding JE2 Nebraska transposon mutant, for each of the six loci (Figure 6B, Figure 6-figure
345 supplement 1). We observed that recreation of the E7K *agrA* mutation, the *agrC* G310 frameshift
346 mutation and the *ausA* K2308 frameshift mutations lead to a significant reduction in intracellular
347 cytotoxicity in BPH3370 (Figure 6B). However, the W568 stop codon *mfd* mutation, the K354
348 frameshift *lysA* mutation and the *cydA* R390C mutation had no significant effect on the cytotoxicity
349 of the BPH3370 strain (Figure 6 - Supplementary Figure 1). It is noteworthy that transposon
350 insertions in these three genes also had a less pronounced effect on the phenotype of JE2 strain as
351 compared to the *agr* and *ausA* loci (Figure 5F).

352

353 We predicted that the *ausA* K2308 frameshift causing a 11 base pair deletion mutation in BPH3370
354 would lead to a loss of aureusimine biosynthesis. This was because the frameshift occurred within
355 the *ausA* reducing domain and would thus prevent the release of the dipeptide L-Val-L-Tyr~T2 to
356 form the intermediate amino aldehyde, with no cyclization to form the imine (Figure 6C)
357 (Zimmermann & Fischbach, 2010). As expected, HPLC analysis confirmed the absence of
358 aureusimines in the BPH3370 K2308fs mutant, similarly to the transposon *ausA* mutant (NE119)
359 (Figure 6D).

360

361 **Discussion**

362 Recurrent and persistent staphylococcal infections have been proposed to result from within-host
363 selective pressures leading to the evolution of adaptive traits by the bacteria, a process also
364 observed in other human bacterial pathogens (Didelot et al., 2016; Gatt & Margalit, 2021; Giulieri,
365 Guérillot, Duchene, et al., 2022). The emergence of mutations affecting regulators controlling toxin
366 production has been proposed as a mechanism enabling *S. aureus* to adapt to its host while evading
367 cellular immune responses (Giulieri, Guérillot, Duchene, et al., 2022; Young et al., 2012, 2017).
368 Identifying the molecular signatures supporting the pathoadaptation of *S. aureus* at the host cell

369 interface is important for understanding how *S. aureus* can cause persistent, difficult-to-treat
370 infections lasting many months (Gao et al., 2015).

371

372 Several studies of *S. aureus* clinical isolates have attempted to identify such signatures by assessing
373 the cytotoxicity of bacterial supernatants applied onto host cells, in an *ex-cellulo* fashion (Giulieri et
374 al., 2018; McConville et al., 2022; Recker et al., 2017). Such assessments would be adequate if *S.*
375 *aureus* was an extracellular pathogen exerting its cytotoxicity from without host cells (Soe et al.,
376 2021), but *S. aureus* is a facultative intracellular pathogen able to invade and persist in a wide range
377 of eukaryotic cells (Al Kindi et al., 2019; Krauss et al., 2019; Luqman et al., 2019; Musilova et al.,
378 2019; Sinha & Fraunholz, 2010). We developed the *InToxSa* cytotoxicity assay to address this
379 shortcoming and to try and identify *S. aureus* pathoadaptive mutations that support a *S. aureus*
380 intracellular lifestyle. By harnessing the power of comparative and statistical bacterial genomics
381 with *InToxSa* readouts for a large collection of bacteraemia-associated *S. aureus* isolates, we
382 identified mutations in *S. aureus* that reduced the intracellular cytotoxicity and increased
383 intracellular persistence.

384

385 We showed the performance and sensitivity of *InToxSa* with the identification of cytotoxicity
386 differences between *S. aureus* isolates that had not previously been detected by *ex-cellulo* methods
387 (Figure 3) (Giulieri et al., 2018). The difference in phenotypic outputs for both methods may be in
388 part explained by the different cell types exploited for the readout (THP1 macrophages for Trypan
389 blue exclusion assay versus HeLa-229 epithelial cells for *InToxSa*) and the bacterial fraction
390 examined (culture supernatants versus bacterial cells) (Figure 3). The capacity of *InToxSa* to detect
391 subtle phenotypes missed by gross cytotoxicity assessments is also conferred by its temporally
392 granular and objective measurements of PI-uptake as a marker of host cell viability. *InToxSa* assesses
393 the *S. aureus* toxicity caused by bacterial virulence factors produced in response to the intracellular

394 environment and is proportional to a defined bacterial load. This approach contrasts with methods
395 relying on the presence of toxins accumulating over time in bacterial supernatants and whose
396 production relies almost solely on the functionality of the *Agr* quorum sensing system (Altman et
397 al., 2018; Giulieri et al., 2018; McConville et al., 2022).

398

399 We further showed the performance of this analytical pipeline by readily identifying mutations in
400 loci such as the *Agr* quorum sensing system, which is well known to control *S. aureus* cytolytic
401 activity (Giulieri et al., 2018; Giulieri, Guérillot, Duchene, et al., 2022; Laabei et al., 2021; Mairpady
402 Shambat et al., 2016; Recker et al., 2017). However, our approach also enabled discovery of
403 mutations in less characterised systems, including changes in *ausA*, that reduced *S. aureus*
404 cytotoxicity and increased intracellular persistence of clinical isolates. AusA is a non-ribosomal
405 peptide synthetase responsible for production of aureusimines, pyrazinone secondary metabolites.
406 Our observations are consistent with previous reports showing that aureusimines contribute to the
407 phagosomal escape of *S. aureus* JE2 to the cytosol (Blättner et al., 2016; Wilson et al., 2013).

408 Interestingly, *S. aureus* mutants that were most affected in cytotoxicity also had a propensity to
409 persist intracellularly (Figure 5). Infected host cells have been proposed as trojan horses for
410 intracellular *S. aureus*, increasing the risks of systemic dissemination to organs, such as the liver and
411 kidneys, following bacteraemia and contribute to infection persistence (Jorch et al., 2019;
412 Surewaard et al., 2016; Thwaites & Gant, 2011). Whilst *agr*-dysfunctional isolates were associated
413 with persistent infections (Fowler, Jr. et al., 2004; Schweizer et al., 2011), intracellular persistence
414 caused by mutations in *agr* loci could possibly constitute a population bottleneck (Pollitt et al., 2018;
415 Spaan et al., 2013). However, such population bottlenecks may be transient as it has been suggested
416 that mutations arising in *agr* defective pathoadapted clinical isolates could possibly compensate for
417 the loss of *agr* functionality and restore *S. aureus* virulence, suggesting a stepwise within-host
418 evolution of clinical isolates (Altman et al., 2018; Giulieri, Guérillot, Duchene, et al., 2022).

419 Current statistical genomics strategies in human genetic support combining allele-counting
420 methods (GWAS), for the detection of common variants, with comparative genomics approaches to
421 identify rare variants (Singh et al., 2022; Trubetskoy et al., 2022). In microbial genomics, this strategy
422 is best achieved by combining microbial GWAS and convergent evolution studies (Chen & Shapiro,
423 2021; Giulieri, Guérillot, Holmes, et al., 2022; Guérillot et al., 2018; Saund & Snitkin, 2020). Whilst
424 our GWAS approach only identified *agrA* as significantly associated with low cytotoxicity (Figure 4E),
425 our evolutionary convergence analysis on genetic pairs among our 387 bacteraemia isolates
426 identified mutations in several *S. aureus* genes that led to reduced cytotoxicity (Figure 5). However,
427 only convergent mutations occurring in *agrA*, *agrC* and *ausA* were confirmed to affect the
428 cytotoxicity and intracellular persistence phenotypes when introduced into a clinical isolate (Figure
429 6). This may be due to epistatic effects or combinations of mutations within a specific *S. aureus*
430 strain may be acting in concert to control the expression of the numerous bacterial cytolytic
431 determinants, underscoring the need to functionally confirm the findings of the convergence
432 analysis

433

434 Our study also shows that intracellular cytotoxicity levels vary between sequence types. Despite
435 causing bacteraemia, the ST22 and ST239 isolates were overall less cytotoxic than the ST8 isolates
436 in our collection (as shown on the heatmap in Figure 4A), further corroborated by the direct
437 cytotoxicity comparison between strains JE2 (ST8) and BPH3370 (ST239) (Figure 6B). The evolution
438 of reduced Agr functionality (and thus cytotoxicity) in hospital-acquired ST239 and ST22 isolates has
439 already been reported by our group and others and is confirmed by the *InToxSa* outputs (Baines et
440 al., 2015; Collins et al., 2008; Giulieri et al., 2018; Laabei et al., 2021; Li et al., 2016). Consistent with
441 their reduced cytotoxicity and with our hypothesis of inverse correlation between toxicity and
442 intracellular replication, ST239 isolates caused higher degrees of bacterial persistence in infected
443 animal models (Baines et al., 2015; Li et al., 2016) and showed increased intracellular persistence in

444 osteoblasts (Bongiorno et al., 2021). Within the limits of our experimental settings, the relatively
445 lower cytotoxicity of ST239 and ST22 isolates indicates that the amplitude of this phenotype should
446 probably be considered within a genetic lineage. The inclusion of representative isolates per lineage,
447 with defined cytotoxicity levels, would identify cytotoxicity thresholds and perhaps allowing
448 identification of more subtle genomic changes affecting phenotypes. Moreover, some of the loci
449 detected by the convergence and GWAS analyses may also have more pronounced effects in some
450 lineages than in others. For instance, mutations affecting *tarL* and *SecA2* may affect the export and
451 secretion of virulence factors that are only present in a subset of lineages, thus explaining the
452 absence of effect on cytotoxicity caused by the cognate transposon mutants (Figure 5F).

453

454 We developed *InToxSa* using HeLa cells, a well-defined, adherent, and non-phagocytic cellular
455 model (Das et al., 2016; Stelzner, Hertlein, et al., 2020; Stelzner, Winkler, et al., 2020). We used
456 adherent epithelial cells because they can be maintained for extended infection periods and so
457 allow the acquisition of useful kinetic measurements of cytotoxicity. However, we also acknowledge
458 the limitation in using these cells in that they do not have the bactericidal modalities of the
459 phagocytes encountered by *S. aureus* in the bloodstream (Brinkmann, 2004; Chow et al., 2020;
460 Krause et al., 2019). Neutrophils are amongst the first immune cells to engage *S. aureus* during
461 bacteraemia (Brinkmann, 2004). However, neutrophils have a relatively short *in vitro* lifespan
462 following their purification from blood and would not be well-suited to an *InToxSa*-style assay
463 format (Ge et al., 2020; Rosales, 2020; Tak et al., 2013; Zwack et al., 2022). Polymorphonuclear cell
464 lines such as HL-60, exploited in other *ex-cellulo* assays, may represent an alternative to primary
465 neutrophils (McConville et al., 2022; Rose et al., 2015). These cells display some of the same
466 important biological functions as neutrophils, including neutrophil extracellular traps (NETs)
467 (Scieszka et al., 2020), critical in the clearing of *S. aureus* (Brinkmann, 2004; Greenlee-Wacker et al.,
468 2014; Zwack et al., 2022). While PI-uptake by these cells could be used as a readout of their viability,

469 HL-60 cells also don't cover all the bactericidal enzymatic activities of primary neutrophils, a
470 potential limitation for their use (Nordenfelt et al., 2009; Yaseen et al., 2017).

471

472 We used *InToxSa* to identify *S. aureus* pathoadaptive mutations, enriched in bacterial populations
473 that are associated with human disease (e.g., upon transit from colonising to invasive). We
474 hypothesised that these mutations would support an intracellular persistence for *S. aureus*. Our
475 future research will focus on understanding how these genetic changes might be allowing the
476 bacterium to avoid cell-intrinsic surveillance systems, such as lytic programmed cell death; the self-
477 destructive processes restricting systemic progression of intracellular bacterial pathogens (Wanford
478 et al., 2022). Unlike well-described intracellular gram-negative bacteria, *S. aureus* does not have
479 effector proteins to block lytic programmed cell death (Soe et al., 2021). Pathoadaptive mutations
480 such as those arising in the *agr* locus might prevent cellular injuries caused by *S. aureus* toxins under
481 *Agr* control, that would be sensed by cell-intrinsic surveillance platforms such as the inflammasomes
482 and trigger cell death (Krause et al., 2019; Soe et al., 2021). Loss-of-function mutations in *ausA*,
483 preventing the biosynthesis of aureusimines might be confining *S. aureus* to a lysosomal
484 compartment where the bacteria have the potential to replicate, and conceivably evade host
485 surveillance mechanisms (Blättner et al., 2016; Flannagan et al., 2016; Grosz et al., 2014; Moldovan
486 & Fraunholz, 2019).

487

488 Conclusion

489 Current large-scale comparative genomics of *S. aureus* bacteraemia isolates can be further refined
490 by including underexplored pathogenicity traits such as the capacity of *S. aureus* to invade and
491 survive in host cells. We have addressed this poorly characterised trait of *S. aureus* pathogenicity by
492 creating the *InToxSa* assay that measures the intracellular cytotoxicity of many hundreds of *S.*
493 *aureus* clinical isolates at scale. We showcase the robustness and reproducibility of phenotypic

494 outputs which, in combination with comparative and statistical genomics, have confidently
495 identified convergent mutations arising in *agr* and *ausA* genes that reduced the intracellular
496 cytotoxicity and increased the intracellular persistence of bacteraemia isolates during infection. The
497 adoption of the *InToxSa* methodology in future pheno-genomics studies would improve the
498 detection of pathoadaptive mutations supporting the persistence and relapse of *S. aureus*
499 infections.

500

501 **Materials and Methods**

502 *S. aureus* isolates

503 Clinical isolates were selected from a combined collection of 843 clinical isolates of *S. aureus*
504 bacteraemia (Giulieri et al., 2018) that was obtained from the vancomycin sub-studies of the
505 Australian and New Zealand Cooperative on Outcome in Staphylococcal Sepsis (ANZCOSS) study
506 (Holmes, JID 2012) and the Vancomycin Efficacy in Staphylococcal Sepsis in Australasia (VANESSA)
507 study (Holmes, BMC Infectious Diseases 2018). We selected 387 isolates to maximise the likelihood
508 to detect phenotype-genotype associations by sampling different lineages and enriching for
509 episodes where multiple isolates per patient were available. See supplementary file 3.

510

511 *Whole genome sequencing*

512 After subculturing strains twice from -80C glycerol stock, DNA was extracted using the Janus®
513 automated workstation (PerkinElmer) or manual extraction kits (Invitrogen PureLink genomic DNA
514 kit or the Sigma GenElute kit). Normalised DNA (at a concentration of 0.2 ng/ml) was prepared for
515 sequencing using Nextera® XT DNA (Illumina) and sequencing was performed on Illumina MiSeq and
516 NextSeq platforms. Reads quality was assessed based on mean read depth and percentage of *S.*
517 *aureus* reads as computed using Kraken2 (Wood et al., 2019). Reads were assembled using Shovill,
518 an assembly pipeline that optimises the Spades assembler (<https://github.com/tseemann/shovill>).

519 Annotation was performed using Prokka, with a minimal contig size of 500 bp (Seemann, 2014).
520 Assembly and annotation metrics were used to further quality control of the reads. Genetic distance
521 between clinical isolates was calculated using Mash with a sketch size of 10,000 (Ondov et al., 2016).
522 We used the distance matrix generated by Mash to perform multidimensional scaling (MDS) using
523 the function ‘cmdscale()’ in base R. Multi-locus sequence type (ST) were inferred from the
524 assemblies using mlst (<https://github.com/tseemann/mlst>). We assessed the correlation between
525 the most prevalent ST and the MDS axes using the get_correlations() function in the R package
526 bugwas (Earle et al., 2016).

527

528 *Variants calling: single reference*

529 Clinical isolates' reads were mapped to internal reference BPH2947 (accession GCF_900620245.1),
530 a sequence type 239 reference genome that was generated from the collection. We used snippy,
531 v4.6.0 for mapping and variant calling, with default settings (<https://github.com/tseemann/snippy>).
532 The core genome alignment was constructed using Snippy-core. We defined core genome as
533 positions where at least 90% of the sequences had a minimum coverage of 10 reads and used
534 Goalign v0.3.4 and SNP-sites v2.5.1 to extract core genome positions. To infer a maximum likelihood
535 phylogenetic tree of the clinical isolates collection we ran IQ-TREE v2.0.3 using a GTR-G4 model. We
536 used HomoplasyFinder (Crispell, Microb Genomics 2019) to identify homoplasic sites based on the
537 consistency index. The consistency index was calculated with the following formula: (Number of
538 nucleotides at site -1)/Minimum number of changes on tree.

539

540 *Construction of mutants by allelic exchange.*

541 Engineering of convergent mutations in *agrA*, *agrC*, *ausA*, *mfd*, *lysA*, and *cydA* genes in the strain
542 BPH3370 was performed by allelic exchange as described previously (Monk & Stinear, 2021) using
543 oligonucleotides described in supplementary table 7 (outlining residues modified by convergent

544 mutations). Upstream and downstream regions of each mutation were PCR amplified and gel
545 extracted and then a splice by overlap extension (SOE) PCR was performed to generate each insert.
546 Each insert was cloned into linearised pIMAY-Z vector by Seamless Ligation Cloning Extract (SLiCE)
547 cloning (Zhang et al., 2012) to generate six plasmids. Each plasmid was separately transformed into
548 *E. coli* strain IM08B (Monk et al., 2015) confirmed by colony PCR, then purified and transformed into
549 *S. aureus* strain BPH3370 by electroporation. Mutant candidates were screened by Sanger
550 Sequencing (Australian Genome Research Facility, Melbourne, VIC, AUS) and positive clones were
551 validated by whole genome sequencing (WGS) on an Illumina MiSeq or NextSeq550 platforms
552 (Illumina, San Diego, CA, USA) to confirm their genotype. The resultant reads were mapped to the
553 BPH3370 reference genome and mutations were identified using snippy (v4.6.0,
554 <https://github.com/tseemann/snippy>).

555

556 *Clinical isolates library preparation*

557 The collection of clinical isolates was prepared to be readily inoculated from 96-well microtiter
558 plates. Clinical isolates were grown in 10 ml Brain Heart Infusion (BHI) broth (BD Bacto) from single
559 colonies to stationary phase. Briefly, a volume corresponding to 1-unit OD600 for each culture was
560 centrifuged at 10,000 x g for 5 min. The bacterial pellets were washed once with 500 µL of fresh BHI
561 and centrifuged again. The washed bacterial pellets were resuspended in 600 µL of storage media
562 (BHI containing 40% glycerol), vortexed briefly and 200 µL were distributed across 96-well microtiter
563 plates. To prevent operator and plate effect biases, the 387 isolates were randomly distributed with
564 each plate to include 29 distinct isolates, represented in non-contiguous technical triplicates. Built-
565 in controls for cytotoxicity were included in each plate. The wild-type JE2 strain was used as positive
566 cytotoxicity control and the BPH3757 strain, an ST239 isolate bearing the T88M *agrA* mutation
567 described in (Giulieri et al., 2018), as a non-cytotoxic control. Six wells were kept empty to monitor

568 the viability of non-infected controls and account for residual PI uptake. Plates were stored at -80°C.

569 Each plate was at least tested in 3 biological replicates.

570

571 *Tissue culture*

572 HeLa-CCL2 cells (ATCC) were maintained and propagated in Dubelcco's Modified Eagle Medium

573 (DMEM) + GlutaMAX (4.5 g/L D-Glucose and 110 mg/L sodium pyruvate) supplemented with heat-

574 inactivated 10% Foetal Bovine Serum (Gibco) and in absence of antibiotics.

575

576 *InToxSa assay*

577 *S. aureus* isolates were inoculated directly from stabbed frozen parsed plates stock into 100 µL of

578 BHI broth dispensed in flat bottom 96-well microtiter plates. Inoculated plates were incubated for

579 16 hours in a heat-controlled plate reader (CLARIOstar plate reader, BMG Labtech) set at 37°C.

580 Bacterial growth was assessed by OD⁶⁰⁰ measurement every 10 min. The endpoint optical densities

581 of cultures were used to infer bacterial density (1-unit OD⁶⁰⁰ corresponding to 5*10⁸ bacteria/ml).

582 Bacterial cultures were standardised and serially diluted in DMEM to reach a multiplicity of infection

583 (MOI)~10. 100 µL of bacterial suspension were added to infect 40,000 HeLa-CCL2 cells grown (70%

584 confluence per well) in 96 well black plates, clear bottom (Sigma). Infection was synchronised by

585 centrifugation at 500 x g for 10 min (Eppendorf 5810R) at room temperature. Infected plates were

586 incubated 2h at 37°C and 5% CO₂ to allow for *S. aureus* internalization. The infective media was

587 then discarded, and cells washed once with sterile PBS and further incubated 1h with 100 µL DMEM

588 containing cell impermeable antibiotics (80 µg/ml gentamicin (Baxter) and 10 µg/ml of lysostaphin

589 (Ambi)) at 37°C and 5% CO₂ (Kim et al., 2019). This first step of antibiotic-protection assay was

590 followed by another using a lower antibiotic concentration (40 µg/ml gentamicin and 10 µg/ml

591 lysostaphin), in media supplemented with 5% FBS (Gibco), and 1 µg/ml propidium iodide, a live cell-

592 impermeant nucleic acid dye (Sigma). Plates were then incubated in the CLARIOstar Plus plate

593 reader (BMG Labtech) set at 37°C and 5% CO₂ throughout the infection (up to 20 h post-infection).
594 The fluorescence signal emitted by PI positive cells was acquired every 6 min from each well
595 (excitation at 535 nm, emission at 617 nm, using the spiral well scanning mode with 50 flashes per
596 well). Non-infected control cells were permeabilised with 0.1% Triton X-100 to determine the
597 maximum level PI uptake and HeLa cell death.

598

599 *High-content imaging*

600 The Operetta high content microscope (PerkinElmer) was employed to accurately quantify and
601 analyse intracellular persistence at the single-cell resolution. HeLa-CCL2 cells were seeded in Cell
602 Carrier-96 black and optically clear bottom plates (PerkinElmer) to reach a density of 15,000 cells
603 per well at the day of infection. HeLa cells were infected as described in the above section.
604 Post-infection, cells were washed twice with sterile PBS and fixed with 40µl of freshly prepared 4%
605 paraformaldehyde (PFA, ThermoFisher Scientific) for 10 minutes. Fixed cells were further washed
606 five times and stored at 4°C in PBS. Fixed cells were first permeabilised with 40µl of 0.2% Triton X-
607 100 for 3 minutes, washed thrice with PBS, and incubated one hour in 40µl of blocking solution (PBS-
608 BSA 3%). Bacteria were detected with polyclonal antibodies raised in rabbits against whole fixed
609 cells of *S. aureus* USA300 strains, JE2::spa, BPH2919 and BPH3672 (WEHI antibody technology
610 platform, <https://www.wehi.edu.au/research/research-technologies/antibody-technologies>). Sera
611 were used at 1:1000, diluted in PBS-BSA 3%, tween 0.05% for 5 hours at room temperature. Wells
612 were then washed thrice with PBS and incubated 45 min with a secondary antibody (donkey anti-
613 rabbit coupled to Alexa 488, 1:2000 dilution, Invitrogen) in PBS-BSA 3% containing 0.05% Tween-20
614 (Sigma) and 10% normal donkey serum (Abcam). Wells were washed thrice with PBS and incubated
615 with Phalloidin-TRITC (1:4000) and DAPI (1:4000) (Sigma) in PBS for 15 min. Finally, wells were
616 washed 5 times with PBS and covered with 200µl of PBS. Plates were covered with aluminium foil
617 and stored at 4°C until image acquisition on the Operetta microscope.

618

619 *Confocal microscopy*

620 HeLa-CCL2 grown on coverslips were infected using the same conditions described above. Coverslips
621 were treated with PBS supplemented with 1% BSA and 0.2% triton-X100 for 20 minutes at room
622 temperature to permeabilize cells and incubated overnight in a blocking buffer (PBS supplemented
623 with 1% BSA and 0.1% Tween 20). Coverslips were then probed one hour at room temperature with
624 an anti-LAMP1 monoclonal antibody (1:250, clone H4A3 (mouse), Developmental Studies
625 Hybridoma Bank) and 1:1000 polyclonal anti-*S. aureus* diluted in blocking buffer supplemented with
626 10% normal goat serum (Abcam). Coverslips were washed thrice with then incubated overnight at
627 4°C with 1:2000 anti-rabbit (488), anti-mouse (647) secondary antibodies diluted in blocking buffer
628 supplemented with 10% normal goat serum. Coverslips were then incubated 7 minutes with DAPI
629 (1:5000), washed 5 times and mounted in Prolong Gold antifade (ThermoFisher Scientific). Samples
630 were imaged on the Zeiss LSM780 confocal microscope.

631

632 *High-content imaging acquisition and analysis*

633 Cells were analyzed using the Operetta CLS high-content analysis system (Perkin Elmer). For each
634 well, images were acquired in a single plane at 11 non-overlapping fields of view (675 x 508μm /
635 1360x1024 pixels in size) using a 20x PLAN long working distance objective (NA 0.45). DAPI
636 fluorescence (HeLa cell nuclei) was imaged with the filter set: excitation = 360–400nm, emission:
637 410–480nm; 50ms exposure). A488 fluorescence (*S. aureus*) was imaged with the filter set:
638 excitation = 460-490nm, emission = 500-550nm; exposure = 200ms. A594 fluorescence (HeLa actin
639 stained by Phalloidin-TRITC) was imaged with the filter set "StdOrange1/Cy3" filter set (excitation:
640 520–550nm, emission: 560–630nm; 0.5-sec exposure).

641 Image processing and analysis were performed using the PhenoLOGIC™ machine learning option in
642 the Harmony software (Perkin Elmer, v4.1). Nuclei were segmented from the DAPI channel using

643 the 'Find Nuclei algorithm' (Method B, Area filter $> 40\mu\text{m}^2$, Common Threshold of 0.4). Cells were
644 segmented from the A594 channels using the Find Cells algorithm (Method C, Area filter $> 100\mu\text{m}^2$,
645 Common Threshold of 0.5). The A488 signals corresponding to *S. aureus* were further processed
646 using a sliding parabola (curvature, 50 pixels) and Gaussian filter (filter width, 1 pixel) to remove
647 noise and improve the signal-to-noise ratio. *S. aureus* were segmented by applying the Find Spots
648 algorithm (Method A, Relative Spot Intensity 0.280, Splitting Co-efficient 0.5).

649

650 *Processing of PI fluorescence signals*

651 For every 96 well plate, the PI uptake data for each well at each timepoint were standardised to the
652 JE2 strain control using Proportion Of Maximum Scoring (POMS): $(\text{PI uptake} - \min(\text{PI uptake [JE2]}))$
653 $/ \text{range}(\text{PI uptake [JE2]})$. Experiments with less than two JE2 replicates available per plate were
654 excluded from our analyses. Standardized data were used to fit a cubic smoothing spline (Little,
655 2013) using the R function `smooth.spline()`. Technical replicates within each plate were classified as
656 outliers and excluded if $> 10\%$ of their timepoint values differed by more than 1.5 times the
657 interquartile range (Tukey method), between the fitted value and the mean for a given isolate. After
658 excluding outlier replicates, fitted data were used to calculate the following PI uptake parameters:
659 area under the curve (AUC), maximum PI uptake rate (rmax), peak PI uptake (μmax), time to
660 maximum PI uptake rate ($t(r\text{max})$), time to peak PI uptake ($t(\mu\text{max})$), trough PI uptake, time of
661 trough, and final PI uptake.

662

663 *Dimensionality reduction of PI uptake data*

664 Principal component analysis was performed using the 'dudi.pca()' function in the R package
665 'adegenet' and the randomForest package in R was used for fitting an unsupervised random Forest
666 model. We used the similarity matrix generated by the model to define similarity cluster of PI
667 uptake. We used the output of the random forest model to calculate the importance of each PI

668 uptake parameter defined as mean decrease in Gini index and mean decrease in accuracy (Breiman,
669 2001).

670

671 *PI uptake GWAS*

672 We transformed the mean PI-uptake AUC data using the automated normalisation package
673 `bestNormalize` in R. A genome-wide association study (GWAS) using the normalised AUC data and
674 the 158,169 core genome variants (all positions where at least 90% of the strains had at least 10
675 reads coverage, see above) obtained after mapping isolates reads to reference genome BPH2947.

676 To correct for the population structure, we used the factored spectrally transformed linear mixed
677 models (FaST-LMM) implemented in *pyseer* v1.3.6 (Lees et al., 2018). Random effects in Fast-LMM
678 were computed from a kinship matrix based on the core genome SNPs generated by Gemma v0.98.1
679 (Zhou and Stephens, 2012). The Bonferroni method was used to correct P values for multiple testing.

680 We performed the GWAS using single variants and the gene-burden test implemented in *pyseer*.
681 We excluded synonymous mutations for single variants and gene-burden GWAS. As suggested in
682 the *pyseer* documentation (<https://pyseer.readthedocs.io/en/master/index.html>), we kept only
683 mutations with a minimum allele fraction (MAF) of 0.01 and at least two independent acquisitions
684 across the phylogeny in the single variants GWAS and only rare mutations (MAF < 0.01) in the gene-
685 burden GWAS. For consistent annotation of mutations, we identified BPH2947 genes homologs
686 using BLASTP and annotated FPR3757 genes using *aureowiki* (Fuchs et al., 2018) and *Microbesonline*
687 (Alm et al., 2005). The GWAS analysis was run using a customised in-house pipeline
688 (<https://github.com/stefanogg/CLOGEN>).

689

690 *Determination of genetic pairs with contrasting PI uptake*

691 Isolate pairs for the convergent evolution analysis were identified by screening pairs separated by
692 less than 200 mutations distance for statistically significant differences in the PI uptake AUC (Mann-

693 Whitney test), wherein an isolate causing low PI uptake (isolate 2) was compared to a reference
694 isolate causing higher PI uptake (isolate 1). The genetic distance between closely related isolates
695 was calculated using Snippy and is based on the number of variants identified when mapping the
696 reads of isolate 2 on the draft assembly of isolate 1 (Higgs et al., 2022). To avoid biases related to
697 assembly errors and uneven reads coverage between the two isolates, variants calls were filtered
698 as previously described (https://github.com/stefanogg/staph_adaptation_paper) (Giulieri,
699 Guérillot, Duchene, et al., 2022). Non-redundant and phylogenetically independent genetic pairs
700 were identified by manual inspection of the phylogenetic tree.

701

702 *Genetic pairs analysis*

703 Mutations identified in genetic pairs and filtered as described above were further characterised
704 using a multilayered annotation strategy as previously described (Giulieri, Guérillot, Duchene, et al.,
705 2022). Firstly, mutated coding regions (amino-acid sequences) across draft genomes were clustered
706 using CD-HIT. We then used BLASTP to identify homologs of each cluster within the *S. aureus*
707 USA300 FPR3757 reference genome that was annotated using the AureoWiki repository (Fuchs et
708 al., 2018), with a 90% identity and 50% coverage threshold. As genetic pairs were phylogenetically
709 independent and non-redundant, emergence of the same mutation or mutations in the same locus
710 in multiple pairs indicated convergent evolution and was suggestive of positive selection. Based on
711 this, we ranked USA300 FPR3757 homologs according to the number of pairs with mutations.

712

713 *Code and data availability*

714 Scripts to process PI uptake data and to perform genomic analyses are available on github at
715 <https://github.com/stefanogg/InToxSa>. The code for genomic analyses is available on
716 <https://github.com/stefanogg/CLOGEN> (GWAS analysis),

717 and on https://github.com/stefanogg/staph_adaptation_paper (comparative genomics of genetic
718 pairs).

719

720 Whole genome sequences of the 387 clinical strains are available in the European Nucleotide
721 Archive under Bioproject accession number PRJEB27932.

722

723 *Aureusimine B identification*

724 Bacterial extracts were isolated from 30 ml cultures grown in TSB at 37°C overnight under agitation.
725 Bacterial cells were pelleted by centrifugation at 4000 x g during 30 min and the culture
726 supernatants were sterilized by passage through a 0.22mM filter. For each strain, 10 millilitres of
727 supernatant were added to an equal volume of ethyl acetate in glass tubes, vortexed and allowed
728 to extract at room temperature overnight. Ethyl acetate extracts were dried *in vacuo*. Dried ethyl
729 acetate extracts were resuspended in 100 ml methanol and 2ml of each sample was analyzed by
730 HPLC using the Shimadzu Prominence HPLC system coupled to a SPD-M20A diode array detector.
731 The column oven (CTO-20A) was set to 40°C and aureusimine B was separated on Kinetex C18, 75 x
732 3mm, 2.6 µm column (Phenomenex). Purified aureusimine B was used as reference standard
733 (Bioaustralis Fine Chemicals). All used chemicals were of analytical grade.
734 Samples were run with water, 0.1% TFA (solvent A) and acetonitrile (solvent B). The gradient elution
735 was performed on the HPLC at a flow rate of 0.5ml/min as follows: 10% B for 3.5 mins, 10-100% B
736 over 12.5 mins, 100-10% B over 1 min, then 10% B for 7 mins (total run time, 24 mins).

737

738 **References**

739

740 Al Kindi, A., Alkahtani, A. M., Nalubega, M., El-Chami, C., O'Neill, C., Arkwright, P. D., & Pennock, J.

741 L. (2019). *Staphylococcus aureus Internalized by Skin Keratinocytes Evade Antibiotic Killing.*

742 *Frontiers in Microbiology*, 10, 2242. <https://doi.org/10.3389/fmicb.2019.02242>

743 Alm, E. J., Huang, K. H., Price, M. N., Koche, R. P., Keller, K., Dubchak, I. L., & Arkin, A. P. (2005). The

744 MicrobesOnline Web site for comparative genomics. *Genome Research*, 15(7), 1015–1022.

745 <https://doi.org/10.1101/gr.3844805>

746 Altman, D. R., Sullivan, M. J., Chacko, K. I., Balasubramanian, D., Pak, T. R., Sause, W. E., Kumar, K.,

747 Sebra, R., Deikus, G., Attie, O., Rose, H., Lewis, M., Fulmer, Y., Bashir, A., Kasarskis, A.,

748 Schadt, E. E., Richardson, A. R., Torres, V. J., Shopsin, B., & van Bakel, H. (2018). Genome

749 Plasticity of *agr* -Defective *Staphylococcus aureus* during Clinical Infection. *Infection and*

750 *Immunity*, 86(10), e00331-18. <https://doi.org/10.1128/IAI.00331-18>

751 Baines, S. L., Holt, K. E., Schultz, M. B., Seemann, T., Howden, B. O., Jensen, S. O., van Hal, S. J.,

752 Coombs, G. W., Firth, N., Powell, D. R., Stinear, T. P., & Howden, B. P. (2015). Convergent

753 Adaptation in the Dominant Global Hospital Clone ST239 of Methicillin-Resistant

754 *Staphylococcus aureus*. *MBio*, 6(2), e00080-15. <https://doi.org/10.1128/mBio.00080-15>

755 Blättner, S., Das, S., Paprotka, K., Eilers, U., Krischke, M., Kretschmer, D., Remmeli, C. W., Dittrich,

756 Müller, T., Schuelein-Voelk, C., Hertlein, T., Mueller, M. J., Huettel, B., Reinhardt, R.,

757 Ohlsen, K., Rudel, T., & Fraunholz, M. J. (2016). *Staphylococcus aureus* Exploits a Non-

758 ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes.

759 *PLOS Pathogens*, 12(9), e1005857. <https://doi.org/10.1371/journal.ppat.1005857>

760 Bongiorno, D., Musso, N., Caruso, G., Lazzaro, L. M., Caraci, F., Stefani, S., & Campanile, F. (2021).

761 *Staphylococcus aureus* ST228 and ST239 as models for expression studies of diverse

762 markers during osteoblast infection and persistence. *MicrobiologyOpen*, 10(2).

763 <https://doi.org/10.1002/mbo3.1178>

764 Breiman, L. (2001). [No title found]. *Machine Learning*, 45(1), 5–32.

765 <https://doi.org/10.1023/A:1010933404324>

766 Brinkmann, V. (2004). Neutrophil Extracellular Traps Kill Bacteria. *Science*, 303(5663), 1532–1535.

767 <https://doi.org/10.1126/science.1092385>

768 Chen, P. E., & Shapiro, B. J. (2021). *Classic genome-wide association methods are unlikely to*
769 *identify causal variants in strongly clonal microbial populations* [Preprint]. Genomics.

770 <https://doi.org/10.1101/2021.06.30.450606>

771 Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of *Staphylococcus*
772 *aureus*. *Virulence*, 12(1), 547–569. <https://doi.org/10.1080/21505594.2021.1878688>

773 Chow, S. H., Deo, P., Yeung, A. T. Y., Kostoulias, X. P., Jeon, Y., Gao, M.-L., Seidi, A., Olivier, F. A. B.,
774 Sridhar, S., Nethercott, C., Cameron, D., Robertson, A. A. B., Robert, R., Mackay, C. R.,
775 Traven, A., Jin, Z.-B., Hale, C., Dougan, G., Peleg, A. Y., & Naderer, T. (2020). Targeting
776 NLRP3 and staphylococcal pore-forming toxin receptors in human-induced pluripotent
777 stem cell-derived macrophages. *Journal of Leukocyte Biology*.

778 <https://doi.org/10.1002/JLB.4MA0420-497R>

779 Collins, J., Buckling, A., & Massey, R. C. (2008). Identification of factors contributing to T-cell
780 toxicity of *Staphylococcus aureus* clinical isolates. *Journal of Clinical Microbiology*, 46(6),
781 2112–2114. <https://doi.org/10.1128/JCM.00156-08>

782 Dankoff, J. G., Pallister, K. B., Guerra, F. E., Parks, A. J., Gorham, K., Mastandrea, S., Voyich, J. M., &
783 Nygaard, T. K. (2020). Quantifying the Cytotoxicity of *Staphylococcus aureus* Against
784 Human Polymorphonuclear Leukocytes. *Journal of Visualized Experiments*, 155, 60681.

785 <https://doi.org/10.3791/60681>

786 Das, S., Lindemann, C., Young, B. C., Muller, J., Österreich, B., Ternette, N., Winkler, A.-C.,
787 Paprotka, K., Reinhardt, R., Förstner, K. U., Allen, E., Flaxman, A., Yamaguchi, Y., Rollier, C.,
788 S., van Diemen, P., Blättner, S., Remmeli, C. W., Selle, M., Dittrich, M., ... Fraunholz, M. J.

789 (2016). Natural mutations in a *Staphylococcus aureus* virulence regulator attenuate
790 cytotoxicity but permit bacteremia and abscess formation. *Proceedings of the National
791 Academy of Sciences*, 113(22), E3101–E3110. <https://doi.org/10.1073/pnas.1520255113>

792 Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W., & Wilson, D. J. (2016). Within-host evolution of
793 bacterial pathogens. *Nature Reviews Microbiology*, 14(3), 150–162.
794 <https://doi.org/10.1038/nrmicro.2015.13>

795 Earle, S. G., Wu, C.-H., Charlesworth, J., Stoesser, N., Gordon, N. C., Walker, T. M., Spencer, C. C.
796 A., Iqbal, Z., Clifton, D. A., Hopkins, K. L., Woodford, N., Smith, E. G., Ismail, N., Llewelyn, M.
797 J., Peto, T. E., Crook, D. W., McVean, G., Walker, A. S., & Wilson, D. J. (2016). Identifying
798 lineage effects when controlling for population structure improves power in bacterial
799 association studies. *Nature Microbiology*, 1(5), 16041.
800 <https://doi.org/10.1038/nmicrobiol.2016.41>

801 Fey, P. D., Endres, J. L., Yajjala, V. K., Widholm, T. J., Boissy, R. J., Bose, J. L., & Bayles, K. W. (2013).
802 A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential
803 *Staphylococcus aureus* Genes. *MBio*, 4(1), e00537-12.
804 <https://doi.org/10.1128/mBio.00537-12>

805 Flannagan, R. S., Heit, B., & Heinrichs, D. E. (2016). Intracellular replication of *Staphylococcus*
806 *aureus* in mature phagolysosomes in macrophages precedes host cell death, and bacterial
807 escape and dissemination. *Cellular Microbiology*, 18(4), 514–535.
808 <https://doi.org/10.1111/cmi.12527>

809 Flannagan, R. S., Kuiack, R. C., McGavin, M. J., & Heinrichs, D. E. (2018). *Staphylococcus aureus*
810 Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in
811 Macrophages. *MBio*, 9(4). <https://doi.org/10.1128/mBio.01143-18>

812 Foster, T. J., Geoghegan, J. A., Ganesh, V. K., & Höök, M. (2014). Adhesion, invasion and evasion:
813 The many functions of the surface proteins of *Staphylococcus aureus*. *Nature Reviews
814 Microbiology*, 12(1), 49–62. <https://doi.org/10.1038/nrmicro3161>

815 Fowler, Jr., V. G., Sakoulas, G., McIntyre, L. M., Meka, V. G., Arbeit, R. D., Cabell, C. H., Stryjewski,
816 M. E., Eliopoulos, G. M., Reller, L. B., Corey, G. R., Jones, T., Lucindo, N., Yeaman, M. R., &
817 Bayer, A. S. (2004). Persistent Bacteremia Due to Methicillin-Resistant *Staphylococcus
818 aureus* Infection Is Associated with *agr* Dysfunction and Low-Level In Vitro Resistance to
819 Thrombin-Induced Platelet Microbicidal Protein. *The Journal of Infectious Diseases*, 190(6),
820 1140–1149. <https://doi.org/10.1086/423145>

821 Fuchs, S., Mehlan, H., Bernhardt, J., Hennig, A., Michalik, S., Surmann, K., Pané-Farré, J., Giese, A.,
822 Weiss, S., Backert, L., Herbig, A., Nieselt, K., Hecker, M., Völker, U., & Mäder, U. (2018a).
823 Aureo Wiki-The repository of the *Staphylococcus aureus* research and annotation
824 community. *International Journal of Medical Microbiology*, 308(6), 558–568.
825 <https://doi.org/10.1016/j.ijmm.2017.11.011>

826 Gao, W., Monk, I. R., Tobias, N. J., Gladman, S. L., Seemann, T., Stinear, T. P., & Howden, B. P.
827 (2015). Large tandem chromosome expansions facilitate niche adaptation during persistent
828 infection with drug-resistant *Staphylococcus aureus*. *Microbial Genomics*, 1(2).
829 <https://doi.org/10.1099/mgen.0.000026>

830 Gatt, Y. E., & Margalit, H. (2021). Common Adaptive Strategies Underlie Within-Host Evolution of
831 Bacterial Pathogens. *Molecular Biology and Evolution*, 38(3), 1101–1121.
832 <https://doi.org/10.1093/molbev/msaa278>

833 Ge, C., Monk, I. R., Monard, S. C., Bedford, J. G., Braverman, J., Stinear, T. P., & Wakim, L. M.
834 (2020). Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the
835 dissemination of *Staphylococcus aureus* from the upper to the lower airways. *Immunology
836 & Cell Biology*, 98(7), 577–594. <https://doi.org/10.1111/imcb.12343>

837 Giulieri, S. G., Baines, S. L., Guerillot, R., Seemann, T., Gonçalves da Silva, A., Schultz, M., Massey,
838 R. C., Holmes, N. E., Stinear, T. P., & Howden, B. P. (2018). Genomic exploration of
839 sequential clinical isolates reveals a distinctive molecular signature of persistent
840 Staphylococcus aureus bacteraemia. *Genome Medicine*, 10(1), 65.
841 <https://doi.org/10.1186/s13073-018-0574-x>

842 Giulieri, S. G., Guérillot, R., Duchene, S., Hachani, A., Daniel, D., Seemann, T., Davis, J. S., Tong, S.
843 Y., Young, B. C., Wilson, D. J., Stinear, T. P., & Howden, B. P. (2022). Niche-specific genome
844 degradation and convergent evolution shaping Staphylococcus aureus adaptation during
845 severe infections. *eLife*, 11, e77195. <https://doi.org/10.7554/eLife.77195>

846 Giulieri, S. G., Guérillot, R., Holmes, N. E., Baines, S. L., Hachani, A., Daniel, D. S., Seemann, T.,
847 Davis, J. S., Van Hal, S., Tong, S. Y. C., Stinear, T. P., & Howden, B. P. (2022). A statistical
848 genomics framework to trace bacterial genomic predictors of clinical outcomes in
849 Staphylococcus aureus bacteraemia [Preprint]. Infectious Diseases (except HIV/AIDS).
850 <https://doi.org/10.1101/2022.04.21.22273941>

851 Greenlee-Wacker, M. C., Rigby, K. M., Kobayashi, S. D., Porter, A. R., DeLeo, F. R., & Nauseef, W.
852 M. (2014). Phagocytosis of *Staphylococcus aureus* by Human Neutrophils Prevents
853 Macrophage Efferocytosis and Induces Programmed Necrosis. *The Journal of Immunology*,
854 192(10), 4709–4717. <https://doi.org/10.4049/jimmunol.1302692>

855 Grosz, M., Kolter, J., Paprotka, K., Winkler, A.-C., Schäfer, D., Chatterjee, S. S., Geiger, T., Wolz, C.,
856 Ohlsen, K., Otto, M., Rudel, T., Sinha, B., & Fraunholz, M. (2014). Cytoplasmic replication of
857 Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α .
858 *Cellular Microbiology*, 16(4), 451–465. <https://doi.org/10.1111/cmi.12233>

859 Guérillot, R., Gonçalves da Silva, A., Monk, I., Giulieri, S., Tomita, T., Alison, E., Porter, J., Pidot, S.,
860 Gao, W., Peleg, A. Y., Seemann, T., Stinear, T. P., & Howden, B. P. (2018). Convergent
861 Evolution Driven by Rifampin Exacerbates the Global Burden of Drug-Resistant

862 *Staphylococcus aureus*. *MSphere*, 3(1), e00550-17.

863 <https://doi.org/10.1128/mSphere.00550-17>

864 Higgs, C., Sherry, N. L., Seemann, T., Horan, K., Walpola, H., Kinsella, P., Bond, K., Williamson, D. A.,

865 Marshall, C., Kwong, J. C., Grayson, M. L., Stinear, T. P., Gorrie, C. L., & Howden, B. P.

866 (2022). Optimising genomic approaches for identifying vancomycin-resistant *Enterococcus*

867 *faecium* transmission in healthcare settings. *Nature Communications*, 13(1), 509.

868 <https://doi.org/10.1038/s41467-022-28156-4>

869 Holmes, N. E., Turnidge, J. D., Munckhof, W. J., Robinson, J. O., Korman, T. M., O'Sullivan, M. V. N.,

870 Anderson, T. L., Roberts, S. A., Gao, W., Christiansen, K. J., Coombs, G. W., Johnson, P. D. R.,

871 & Howden, B. P. (2011). Antibiotic Choice May Not Explain Poorer Outcomes in Patients

872 With *Staphylococcus aureus* Bacteremia and High Vancomycin Minimum Inhibitory

873 Concentrations. *The Journal of Infectious Diseases*, 204(3), 340–347.

874 <https://doi.org/10.1093/infdis/jir270>

875 Holmes, N. E., Turnidge, J. D., Munckhof, W. J., Robinson, J. O., Korman, T. M., O'Sullivan, M. V. N.,

876 Anderson, T. L., Roberts, S. A., Warren, S. J. C., Coombs, G. W., Tan, H.-L., Gao, W., Johnson,

877 P. D. R., & Howden, B. P. (2014). Genetic and molecular predictors of high vancomycin MIC

878 in *Staphylococcus aureus* bacteremia isolates. *Journal of Clinical Microbiology*, 52(9), 3384–

879 3393. <https://doi.org/10.1128/JCM.01320-14>

880 Jorch, S. K., Surewaard, B. G., Hossain, M., Peiseler, M., Deppermann, C., Deng, J., Bogoslawski, A.,

881 van der Wal, F., Omri, A., Hickey, M. J., & Kubes, P. (2019). Peritoneal GATA6+

882 macrophages function as a portal for *Staphylococcus aureus* dissemination. *The Journal of*

883 *Clinical Investigation*, 129(11), 4643–4656. <https://doi.org/10.1172/JCI127286>

884 Kim, J.-H., Chaurasia, A. K., Batool, N., Ko, K. S., & Kim, K. K. (2019). Alternative Enzyme Protection

885 Assay To Overcome the Drawbacks of the Gentamicin Protection Assay for Measuring Entry

886 and Intracellular Survival of Staphylococci. *Infection and Immunity*, 87(5), e00119-19.

887 <https://doi.org/10.1128/IAI.00119-19>

888 Krause, K., Daily, K., Estfanous, S., Hamilton, K., Badr, A., Abu Khweek, A., Hegazi, R., Anne, M. N.,

889 Klamer, B., Zhang, X., Gavrilin, M. A., Pancholi, V., & Amer, A. O. (2019). Caspase-11

890 counteracts mitochondrial ROS-mediated clearance of *Staphylococcus aureus* in

891 macrophages. *EMBO Reports*, 20(12). <https://doi.org/10.15252/embr.201948109>

892 Krauss, J. L., Roper, P. M., Ballard, A., Shih, C.-C., Fitzpatrick, J. A. J., Cassat, J. E., Ng, P. Y., Pavlos,

893 N. J., & Veis, D. J. (2019). *Staphylococcus aureus* Infects Osteoclasts and Replicates

894 Intracellularly. *MBio*, 10(5), e02447-19. <https://doi.org/10.1128/mBio.02447-19>

895 Laabei, M., Peacock, S. J., Blane, B., Baines, S. L., Howden, B. P., Stinear, T. P., & Massey, R. C.

896 (2021). Significant variability exists in the cytotoxicity of global methicillin-resistant

897 *Staphylococcus aureus* lineages. *Microbiology*, 167(12).

898 <https://doi.org/10.1099/mic.0.001119>

899 Laabei, M., Recker, M., Rudkin, J. K., Aldeljawi, M., Gulay, Z., Sloan, T. J., Williams, P., Endres, J. L.,

900 Bayles, K. W., Fey, P. D., Yajjala, V. K., Widholm, T., Hawkins, E., Lewis, K., Parfett, S.,

901 Scowen, L., Peacock, S. J., Holden, M., Wilson, D., ... Massey, R. C. (2014). Predicting the

902 virulence of MRSA from its genome sequence. *Genome Research*, 24(5), 839–849.

903 <https://doi.org/10.1101/gr.165415.113>

904 Laabei, M., Uhlemann, A.-C., Lowy, F. D., Austin, E. D., Yokoyama, M., Ouadi, K., Feil, E., Thorpe, H.

905 A., Williams, B., Perkins, M., Peacock, S. J., Clarke, S. R., Dordel, J., Holden, M., Votintseva,

906 A. A., Bowden, R., Crook, D. W., Young, B. C., Wilson, D. J., ... Massey, R. C. (2015).

907 Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of *Staphylococcus aureus*.

908 *PLOS Biology*, 13(9), e1002229. <https://doi.org/10.1371/journal.pbio.1002229>

909 Läm, T.-T., Giese, B., Chikkaballi, D., Kühn, A., Wolber, W., Pané-Farré, J., Schäfer, D., Engelmann,

910 S., Fraunholz, M., & Sinha, B. (2010). Phagolysosomal Integrity Is Generally Maintained

911 after *Staphylococcus aureus* Invasion of Nonprofessional Phagocytes but Is Modulated by
912 Strain 6850. *Infection and Immunity*, 78(8), 3392–3403. <https://doi.org/10.1128/IAI.00012-10>

913

914 Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N., & Corander, J. (2018). pyseer: A
915 comprehensive tool for microbial pangenome-wide association studies. *Bioinformatics*,
916 34(24), 4310–4312. <https://doi.org/10.1093/bioinformatics/bty539>

917 Li, M., Dai, Y., Zhu, Y., Fu, C.-L., Tan, V. Y., Wang, Y., Wang, X., Hong, X., Liu, Q., Li, T., Qin, J., Ma, X.,
918 Fang, J., & Otto, M. (2016). Virulence determinants associated with the Asian community-
919 associated methicillin-resistant *Staphylococcus aureus* lineage ST59. *Scientific Reports*,
920 6(1), 27899. <https://doi.org/10.1038/srep27899>

921 Little, T. D. (2013). *Longitudinal structural equation modeling*. The Guilford Press.

922 Luqman, A., Ebner, P., Reichert, S., Sass, P., Kabagema-Bilan, C., Heilmann, C., Ruth, P., & Götz, F.
923 (2019). A new host cell internalisation pathway for SadA-expressing staphylococci triggered
924 by excreted neurochemicals. *Cellular Microbiology*, 21(9).
925 <https://doi.org/10.1111/cmi.13044>

926 Mairpady Shambat, S., Siemens, N., Monk, I. R., Mohan, D. B., Mukundan, S., Krishnan, K. C.,
927 Prabhakara, S., Snäll, J., Kearns, A., Vandenesch, F., Svensson, M., Kotb, M., Gopal, B.,
928 Arakere, G., & Norrby-Teglund, A. (2016). A point mutation in AgrC determines cytotoxic or
929 colonizing properties associated with phenotypic variants of ST22 MRSA strains. *Scientific
930 Reports*, 6(1), 31360. <https://doi.org/10.1038/srep31360>

931 Mantero, A., & Ishwaran, H. (2021). Unsupervised random forests. *Statistical Analysis and Data
932 Mining*, 14(2), 144–167. <https://doi.org/10.1002/sam.11498>

933 McConville, T. H., Austin, E. D., Geng, W., Shi, Q., Balasubramanian, D., Kubin, C. J., Torres, V. J., &
934 Uhlemann, A.-C. (2022). *In Vitro* Cytotoxicity and Clinical Correlates of MRSA Bacteremia.

935 *Antimicrobial Agents and Chemotherapy*, 66(1), e01559-21.

936 <https://doi.org/10.1128/AAC.01559-21>

937 Moldovan, A., & Fraunholz, M. J. (2019). In or out: Phagosomal escape of *Staphylococcus aureus*.

938 *Cellular Microbiology*, 21(3), e12997. <https://doi.org/10.1111/cmi.12997>

939 Monk, I. R., & Stinear, T. P. (2021). From cloning to mutant in 5 days: Rapid allelic exchange in

940 *Staphylococcus aureus*. *Access Microbiology*, 3(2). <https://doi.org/10.1099/acmi.0.000193>

941 Monk, I. R., Tree, J. J., Howden, B. P., Stinear, T. P., & Foster, T. J. (2015). Complete Bypass of

942 Restriction Systems for Major *Staphylococcus aureus* Lineages. *MBio*, 6(3), e00308-15.

943 <https://doi.org/10.1128/mBio.00308-15>

944 Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C.,

945 Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F.,

946 Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal,

947 B., ... Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A

948 systematic analysis. *The Lancet*, 399(10325), 629–655. [https://doi.org/10.1016/S0140-6736\(21\)02724-0](https://doi.org/10.1016/S0140-6736(21)02724-0)

949 6736(21)02724-0

950 Musilova, J., Mulcahy, M. E., Kuijk, M. M., McLoughlin, R. M., & Bowie, A. G. (2019). Toll-like

951 receptor 2-dependent endosomal signaling by *Staphylococcus aureus* in monocytes

952 induces type I interferon and promotes intracellular survival. *The Journal of Biological*

953 *Chemistry*, 294(45), 17031–17042. <https://doi.org/10.1074/jbc.RA119.009302>

954 Nordenfelt, P., Bauer, S., Lönnbro, P., & Tapper, H. (2009). Phagocytosis of *Streptococcus*

955 *pyogenes* by All-Trans Retinoic Acid-Differentiated HL-60 Cells: Roles of Azurophilic

956 Granules and NADPH Oxidase. *PLoS ONE*, 4(10), e7363.

957 <https://doi.org/10.1371/journal.pone.0007363>

958 Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., & Phillippy, A.
959 M. (2016). Mash: Fast genome and metagenome distance estimation using MinHash.
960 *Genome Biology*, 17(1), 132. <https://doi.org/10.1186/s13059-016-0997-x>

961 Peyrusson, F., Varet, H., Nguyen, T. K., Legendre, R., Sismeiro, O., Coppée, J.-Y., Wolz, C., Tenson,
962 T., & Van Bambeke, F. (2020). Intracellular *Staphylococcus aureus* persisters upon
963 antibiotic exposure. *Nature Communications*, 11(1), 2200. <https://doi.org/10.1038/s41467-020-15966-7>

964

965 Pollitt, E. J. G., Szkuta, P. T., Burns, N., & Foster, S. J. (2018). *Staphylococcus aureus* infection
966 dynamics. *PLOS Pathogens*, 14(6), e1007112.
967 <https://doi.org/10.1371/journal.ppat.1007112>

968 Recker, M., Laabei, M., Toleman, M. S., Reuter, S., Saunderson, R. B., Blane, B., Török, M. E., Ouadi,
969 K., Stevens, E., Yokoyama, M., Steventon, J., Thompson, L., Milne, G., Bayliss, S., Bacon, L.,
970 Peacock, S. J., & Massey, R. C. (2017). Clonal differences in *Staphylococcus aureus*
971 bacteraemia-associated mortality. *Nature Microbiology*, 2(10), 1381–1388.
972 <https://doi.org/10.1038/s41564-017-0001-x>

973 Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. *Journal of*
974 *Leukocyte Biology*, 108(1), 377–396. <https://doi.org/10.1002/JLB.4MIR0220-574RR>

975 Rose, H. R., Holzman, R. S., Altman, D. R., Smyth, D. S., Wasserman, G. A., Kafer, J. M., Wible, M.,
976 Mendes, R. E., Torres, V. J., & Shopsin, B. (2015). Cytotoxic Virulence Predicts Mortality in
977 Nosocomial Pneumonia Due to Methicillin-Resistant *Staphylococcus aureus*. *Journal of*
978 *Infectious Diseases*, 211(12), 1862–1874. <https://doi.org/10.1093/infdis/jiu554>

979 Saund, K., & Snitkin, E. S. (2020). Hogwash: Three methods for genome-wide association studies in
980 bacteria. *Microbial Genomics*, 6(11). <https://doi.org/10.1099/mgen.0.000469>

981 Schweizer, M. L., Furuno, J. P., Sakoulas, G., Johnson, J. K., Harris, A. D., Shardell, M. D., McGregor,
982 J. C., Thom, K. A., & Perencevich, E. N. (2011). Increased Mortality with Accessory Gene

983 Regulator (*agr*) Dysfunction in *Staphylococcus aureus* among Bacteremic Patients.

984 *Antimicrobial Agents and Chemotherapy*, 55(3), 1082–1087.

985 <https://doi.org/10.1128/AAC.00918-10>

986 Scieszka, D., Lin, Y.-H., Li, W., Choudhury, S., Yu, Y., & Freire, M. (2020). *Netome: The Molecular*
987 *Characterization of Neutrophil Extracellular Traps (NETs)* [Preprint]. *Immunology*.

988 <https://doi.org/10.1101/2020.05.18.102772>

989 Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*, 30(14), 2068–
990 2069. <https://doi.org/10.1093/bioinformatics/btu153>

991 Siboo, I. R., Chambers, H. F., & Sullam, P. M. (2005). Role of SraP, a Serine-Rich Surface Protein of
992 *Staphylococcus aureus* , in Binding to Human Platelets. *Infection and Immunity*, 73(4),
993 2273–2280. <https://doi.org/10.1128/IAI.73.4.2273-2280.2005>

994 Siegmund, A., Afzal, M. A., Tetzlaff, F., Keinhörster, D., Gratani, F., Paprotka, K., Westermann, M.,
995 Nietzsche, S., Wolz, C., Fraunholz, M., A. Hübner, C., Löffler, B., & Tuchscher, L. (2021).
996 Intracellular persistence of *Staphylococcus aureus* in endothelial cells is promoted by the
997 absence of phenol-soluble modulins. *Virulence*, 12(1), 1186–1198.
998 <https://doi.org/10.1080/21505594.2021.1910455>

999 Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D., Bass, N., Bigdeli, T. B., Breen,
1000 G., Bromet, E. J., Buckley, P. F., Bunney, W. E., Bybjerg-Grauholm, J., Byerley, W. F.,
1001 Chapman, S. B., Chen, W. J., Churchhouse, C., Craddock, N., Cusick, C. M., ... Daly, M. J.
1002 (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. *Nature*,
1003 604(7906), 509–516. <https://doi.org/10.1038/s41586-022-04556-w>

1004 Sinha, B., & Fraunholz, M. (2010). *Staphylococcus aureus* host cell invasion and post-invasion
1005 events. *International Journal of Medical Microbiology*, 300(2–3), 170–175.
1006 <https://doi.org/10.1016/j.ijmm.2009.08.019>

1007 Soe, Y. M., Bedoui, S., Stinear, T. P., & Hachani, A. (2021). Intracellular *STAPHYLOCOCCUS AUREUS* and
1008 host cell death pathways. *Cellular Microbiology*, 23(5). <https://doi.org/10.1111/cmi.13317>

1009 Spaan, A. N., Surewaard, B. G. J., Nijland, R., & van Strijp, J. A. G. (2013). Neutrophils Versus
1010 *Staphylococcus aureus*: A Biological Tug of War. *Annual Review of Microbiology*, 67(1),
1011 629–650. <https://doi.org/10.1146/annurev-micro-092412-155746>

1012 Stelzner, K., Boyny, A., Hertlein, T., Sroka, A., Moldovan, A., Paprotka, K., Kessie, D., Mehling, H.,
1013 Potempa, J., Ohlsen, K., Fraunholz, M. J., & Rudel, T. (2021). Intracellular Staphylococcus
1014 aureus employs the cysteine protease staphopain A to induce host cell death in epithelial
1015 cells. *PLOS Pathogens*, 17(9), e1009874. <https://doi.org/10.1371/journal.ppat.1009874>

1016 Stelzner, K., Hertlein, T., Sroka, A., Moldovan, A., Paprotka, K., Kessie, D., Mehling, H., Potempa, J.,
1017 Ohlsen, K., Fraunholz, M. J., & Rudel, T. (2020). *Intracellular Staphylococcus aureus*
1018 *employs the cysteine protease staphopain A to induce host cell death in epithelial cells*
1019 [Preprint]. *Microbiology*. <https://doi.org/10.1101/2020.02.10.936575>

1020 Stelzner, K., Winkler, A.-C., Liang, C., Boyny, A., Ade, C. P., Dandekar, T., Fraunholz, M. J., & Rudel,
1021 T. (2020). Intracellular Staphylococcus aureus Perturbs the Host Cell Ca^{2+} Homeostasis To
1022 Promote Cell Death. *MBio*, 11(6), e02250-20. <https://doi.org/10.1128/mBio.02250-20>

1023 Strobel, M., Pförtner, H., Tuchscherer, L., Völker, U., Schmidt, F., Kramko, N., Schnittler, H.-J.,
1024 Fraunholz, M. J., Löffler, B., Peters, G., & Niemann, S. (2016). Post-invasion events after
1025 infection with *Staphylococcus aureus* are strongly dependent on both the host cell type
1026 and the infecting *S. aureus* strain. *Clinical Microbiology and Infection*, 22(9), 799–809.
1027 <https://doi.org/10.1016/j.cmi.2016.06.020>

1028 Su, M., Davis, M. H., Peterson, J., Solis-Lemus, C., Satola, S. W., & Read, T. D. (2021). Effect of
1029 genetic background on the evolution of Vancomycin-Intermediate *Staphylococcus aureus*
1030 (VISA). *PeerJ*, 9, e11764. <https://doi.org/10.7717/peerj.11764>

1031 Surewaard, B. G. J., Deniset, J. F., Zemp, F. J., Amrein, M., Otto, M., Conly, J., Omri, A., Yates, R. M.,

1032 & Kubes, P. (2016). Identification and treatment of the *Staphylococcus aureus* reservoir in

1033 *vivo*. *Journal of Experimental Medicine*, 213(7), 1141–1151.

1034 <https://doi.org/10.1084/jem.20160334>

1035 Tak, T., Tesselaar, K., Pillay, J., Borghans, J. A. M., & Koenderman, L. (2013). What's your age

1036 again? Determination of human neutrophil half-lives revisited. *Journal of Leukocyte*

1037 *Biology*, 94(4), 595–601. <https://doi.org/10.1189/jlb.1112571>

1038 Tam, K., & Torres, V. J. (2019). *Staphylococcus aureus* Secreted Toxins and Extracellular Enzymes.

1039 *Microbiology Spectrum*, 7(2). <https://doi.org/10.1128/microbiolspec.GPP3-0039-2018>

1040 Thammavongsa, V., Kim, H. K., Missiakas, D., & Schneewind, O. (2015). Staphylococcal

1041 manipulation of host immune responses. *Nature Reviews Microbiology*, 13(9), 529–543.

1042 <https://doi.org/10.1038/nrmicro3521>

1043 Thwaites, G. E., & Gant, V. (2011). Are bloodstream leukocytes Trojan Horses for the metastasis of

1044 *Staphylococcus aureus*? *Nature Reviews Microbiology*, 9(3), 215–222.

1045 <https://doi.org/10.1038/nrmicro2508>

1046 Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). *Staphylococcus*

1047 *aureus* Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and

1048 Management. *Clinical Microbiology Reviews*, 28(3), 603–661.

1049 <https://doi.org/10.1128/CMR.00134-14>

1050 Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J.,

1051 Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J.

1052 C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., ... van Os, J. (2022). Mapping

1053 genomic loci implicates genes and synaptic biology in schizophrenia. *Nature*, 604(7906),

1054 502–508. <https://doi.org/10.1038/s41586-022-04434-5>

1055 VANESSA study group, on behalf of the Australasian Society for Infectious Diseases (ASID) Clinical
1056 Research Network (CRN), Holmes, N. E., Robinson, J. O., van Hal, S. J., Munckhof, W. J.,
1057 Athan, E., Korman, T. M., Cheng, A. C., Turnidge, J. D., Johnson, P. D. R., & Howden, B. P.
1058 (2018). Morbidity from in-hospital complications is greater than treatment failure in
1059 patients with *Staphylococcus aureus* bacteraemia. *BMC Infectious Diseases*, 18(1), 107.
1060 <https://doi.org/10.1186/s12879-018-3011-2>

1061 Wanford, J. J., Hachani, A., & Odendall, C. (2022). Reprogramming of Cell Death Pathways by
1062 Bacterial Effectors as a Widespread Virulence Strategy. *Infection and Immunity*, e0061421.
1063 <https://doi.org/10.1128/iai.00614-21>

1064 Wilson, D. J., Shi, C., Teitelbaum, A. M., Gulick, A. M., & Aldrich, C. C. (2013). Characterization of
1065 AusA: A Dimodular Nonribosomal Peptide Synthetase Responsible for the Production of
1066 Aureusimine Pyrazinones. *Biochemistry*, 52(5), 926–937.
1067 <https://doi.org/10.1021/bi301330q>

1068 Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2.
1069 *Genome Biology*, 20(1), 257. <https://doi.org/10.1186/s13059-019-1891-0>

1070 Yang, Y.-H., Jiang, Y.-L., Zhang, J., Wang, L., Bai, X.-H., Zhang, S.-J., Ren, Y.-M., Li, N., Zhang, Y.-H.,
1071 Zhang, Z., Gong, Q., Mei, Y., Xue, T., Zhang, J.-R., Chen, Y., & Zhou, C.-Z. (2014). Structural
1072 Insights into SraP-Mediated *Staphylococcus aureus* Adhesion to Host Cells. *PLoS
1073 Pathogens*, 10(6), e1004169. <https://doi.org/10.1371/journal.ppat.1004169>

1074 Yaseen, R., Blodkamp, S., Lüthje, P., Reuner, F., Völlger, L., Naim, H. Y., & von Köckritz-Blickwede,
1075 M. (2017). Antimicrobial activity of HL-60 cells compared to primary blood-derived
1076 neutrophils against *Staphylococcus aureus*. *Journal of Negative Results in BioMedicine*,
1077 16(1), 2. <https://doi.org/10.1186/s12952-017-0067-2>

1078 Yokoyama, M., Stevens, E., Laabei, M., Bacon, L., Heesom, K., Bayliss, S., Ooi, N., O'Neill, A. J.,
1079 Murray, E., Williams, P., Lubben, A., Reeksting, S., Meric, G., Pascoe, B., Sheppard, S. K.,

1080 Recker, M., Hurst, L. D., & Massey, R. C. (2018). Epistasis analysis uncovers hidden
1081 antibiotic resistance-associated fitness costs hampering the evolution of MRSA. *Genome
1082 Biology*, 19(1), 94. <https://doi.org/10.1186/s13059-018-1469-2>

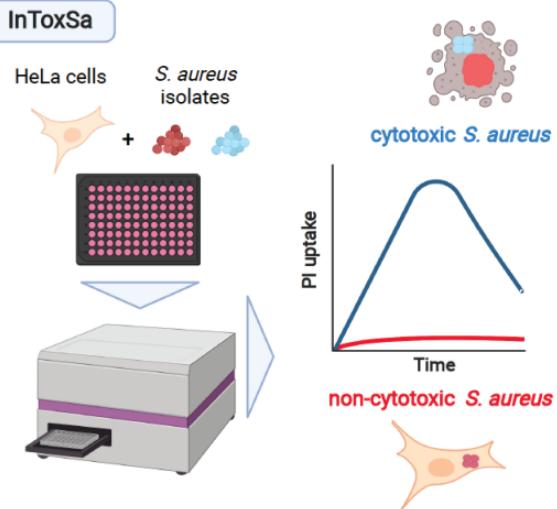
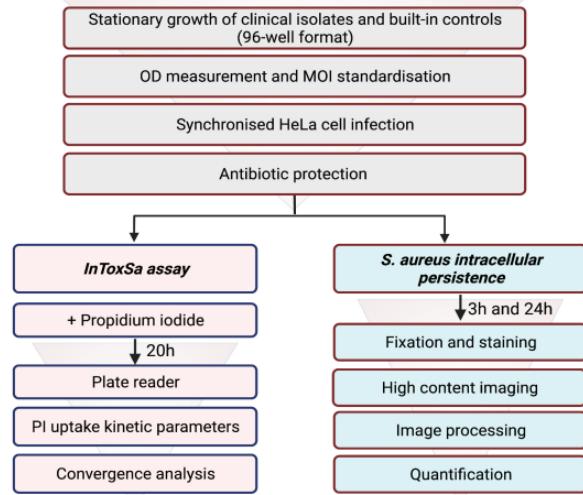
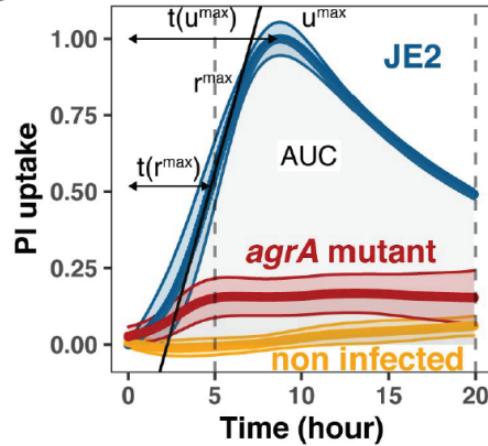
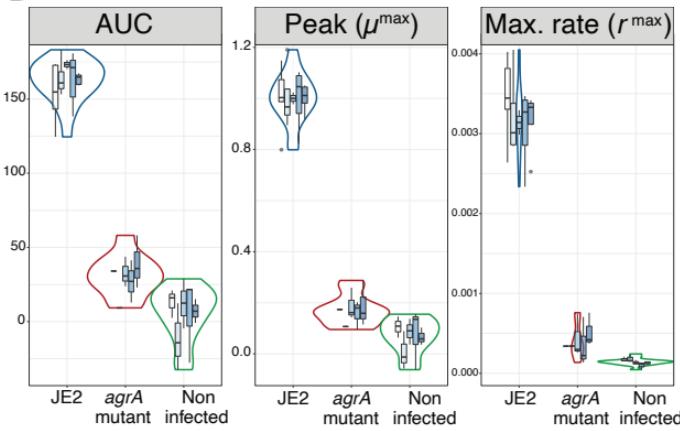
1083 Young, B. C., Golubchik, T., Batty, E. M., Fung, R., Larner-Svensson, H., Votintseva, A. A., Miller, R.
1084 R., Godwin, H., Knox, K., Everitt, R. G., Iqbal, Z., Rimmer, A. J., Cule, M., Ip, C. L. C., Didelot,
1085 X., Harding, R. M., Donnelly, P., Peto, T. E., Crook, D. W., ... Wilson, D. J. (2012).
1086 Evolutionary dynamics of *Staphylococcus aureus* during progression from carriage to
1087 disease. *Proceedings of the National Academy of Sciences*, 109(12), 4550–4555.
1088 <https://doi.org/10.1073/pnas.1113219109>

1089 Young, B. C., Wu, C.-H., Gordon, N. C., Cole, K., Price, J. R., Liu, E., Sheppard, A. E., Perera, S.,
1090 Charlesworth, J., Golubchik, T., Iqbal, Z., Bowden, R., Massey, R. C., Paul, J., Crook, D. W.,
1091 Peto, T. E., Walker, A. S., Llewelyn, M. J., Wyllie, D. H., & Wilson, D. J. (2017). Severe
1092 infections emerge from commensal bacteria by adaptive evolution. *eLife*, 6, e30637.
1093 <https://doi.org/10.7554/eLife.30637>

1094 Zhang, Y., Werling, U., & Edelmann, W. (2012). SLiCE: A novel bacterial cell extract-based DNA
1095 cloning method. *Nucleic Acids Research*, 40(8), e55. <https://doi.org/10.1093/nar/gkr1288>

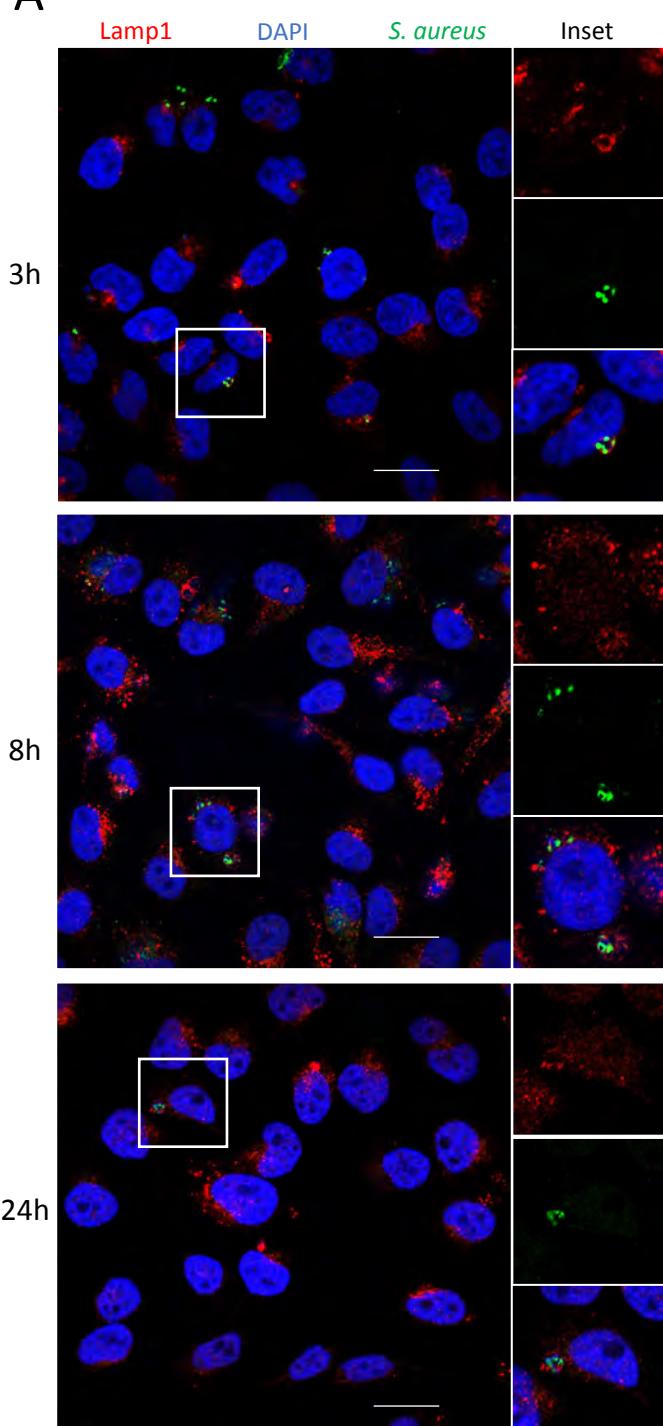
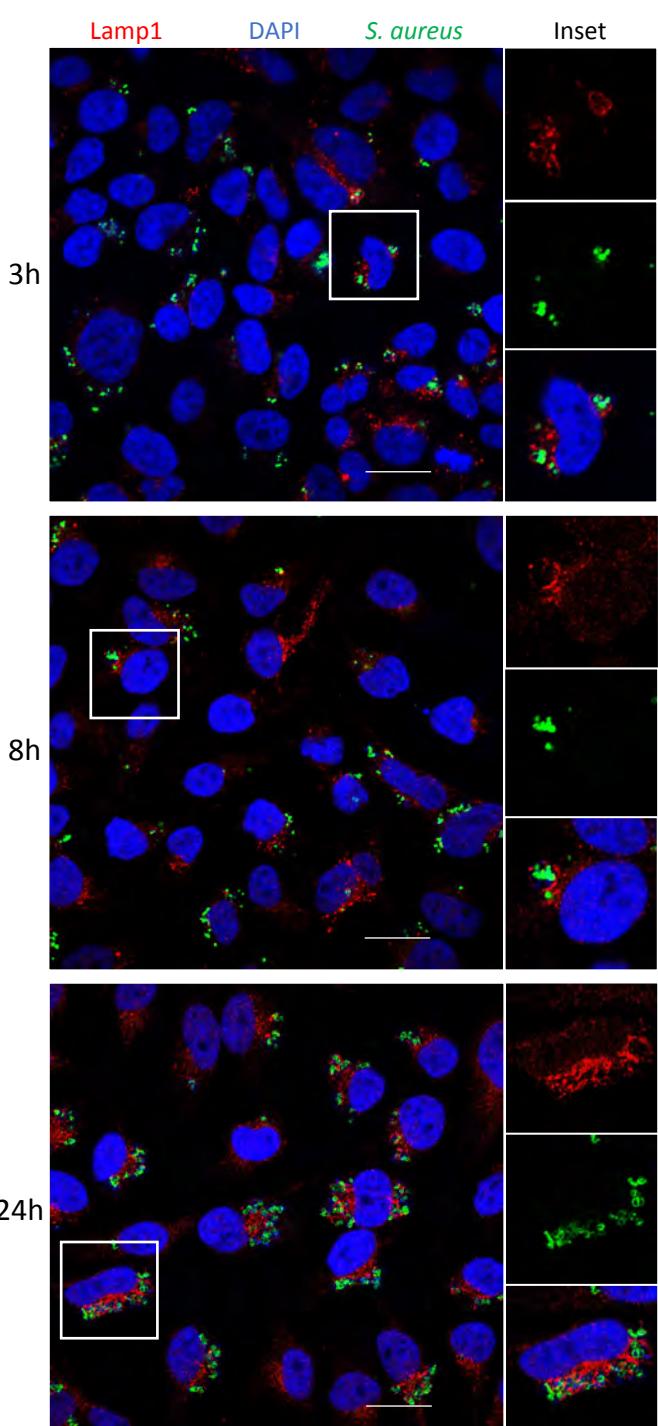
1096 Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association
1097 studies. *Nature Genetics*, 44(7), 821–824. <https://doi.org/10.1038/ng.2310>

1098 Zimmermann, M., & Fischbach, M. A. (2010). A Family of Pyrazinone Natural Products from a
1099 Conserved Nonribosomal Peptide Synthetase in *Staphylococcus aureus*. *Chemistry &
1100 Biology*, 17(9), 925–930. <https://doi.org/10.1016/j.chembiol.2010.08.006>

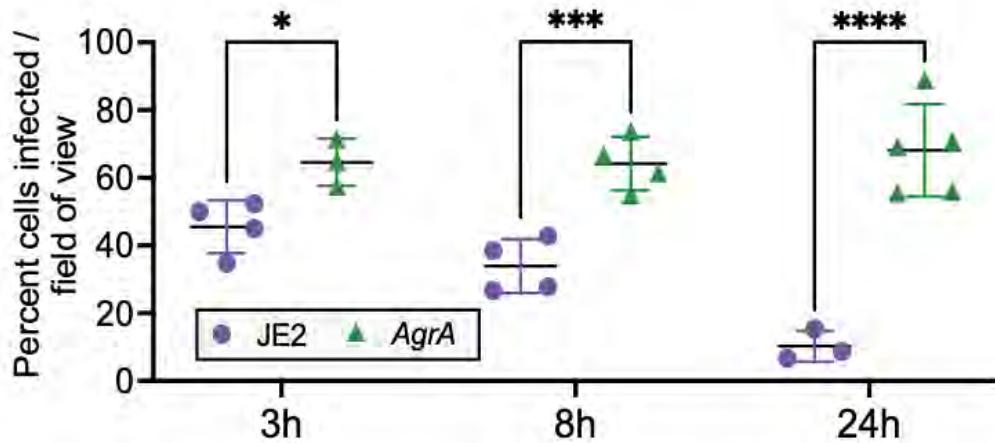




1101 Zwack, E. E., Chen, Z., Devlin, J. C., Li, Z., Zheng, X., Weinstock, A., Lacey, K. A., Fisher, E. A., Fenyö,
1102 D., Ruggles, K. V., Loke, P., & Torres, V. J. (2022). *Staphylococcus aureus* induces a muted
1103 host response in human blood that blunts the recruitment of neutrophils. *Proceedings of*

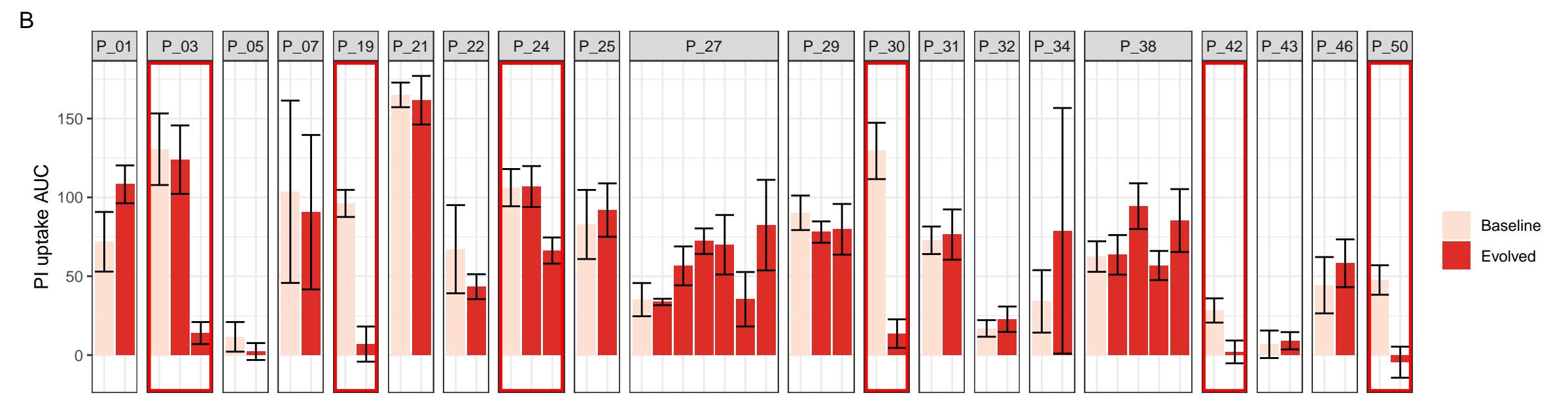
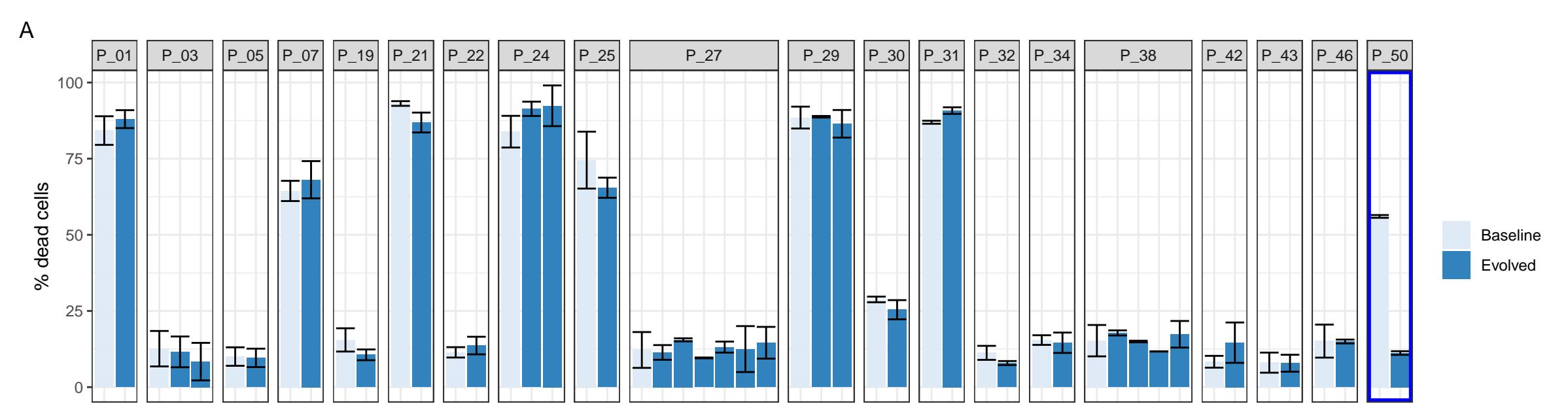
1104 *the National Academy of Sciences of the United States of America*, 119(31), e2123017119.

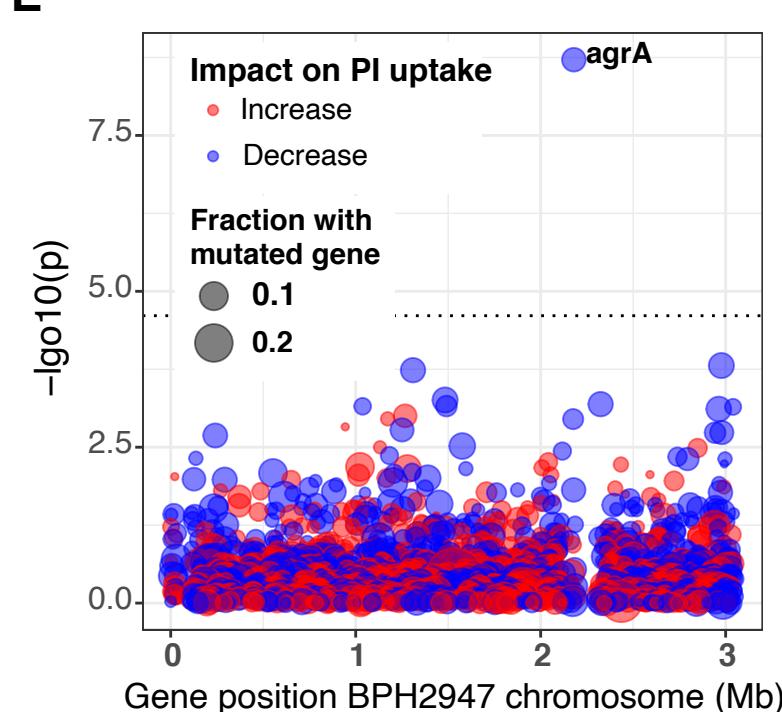
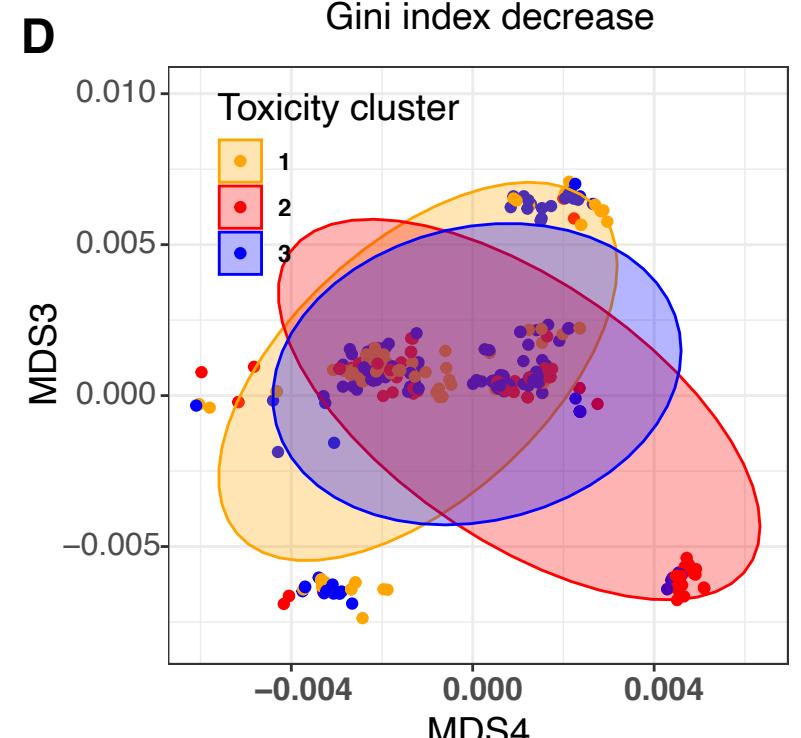
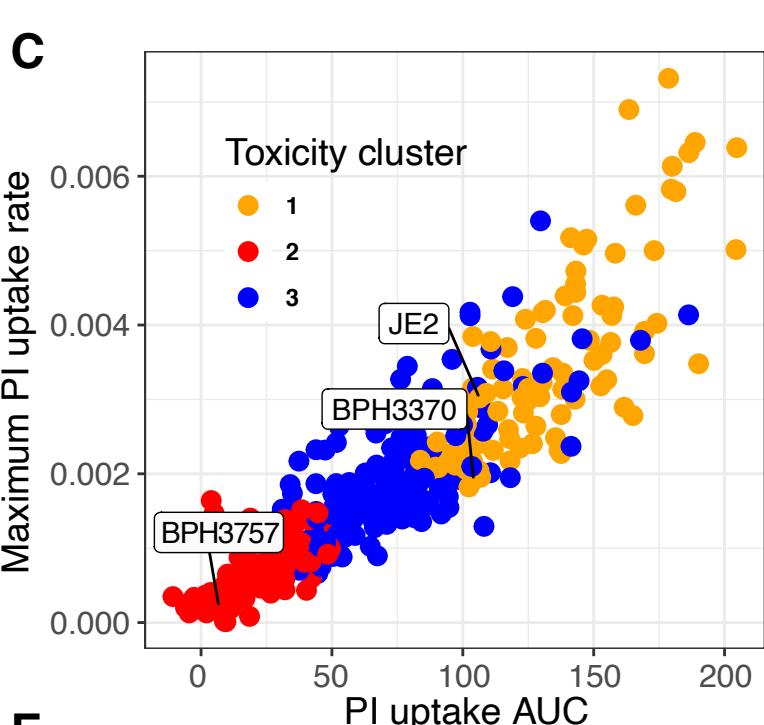
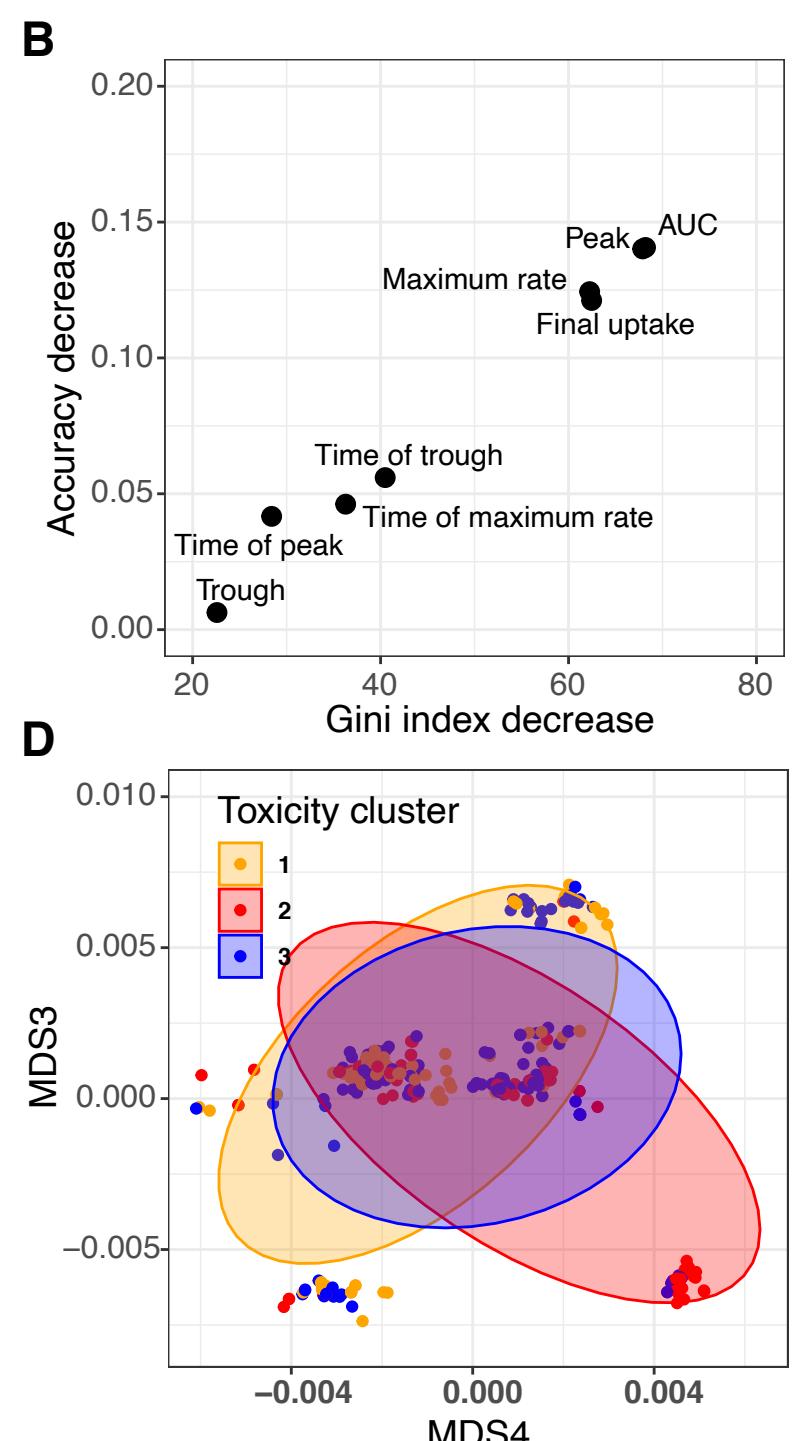
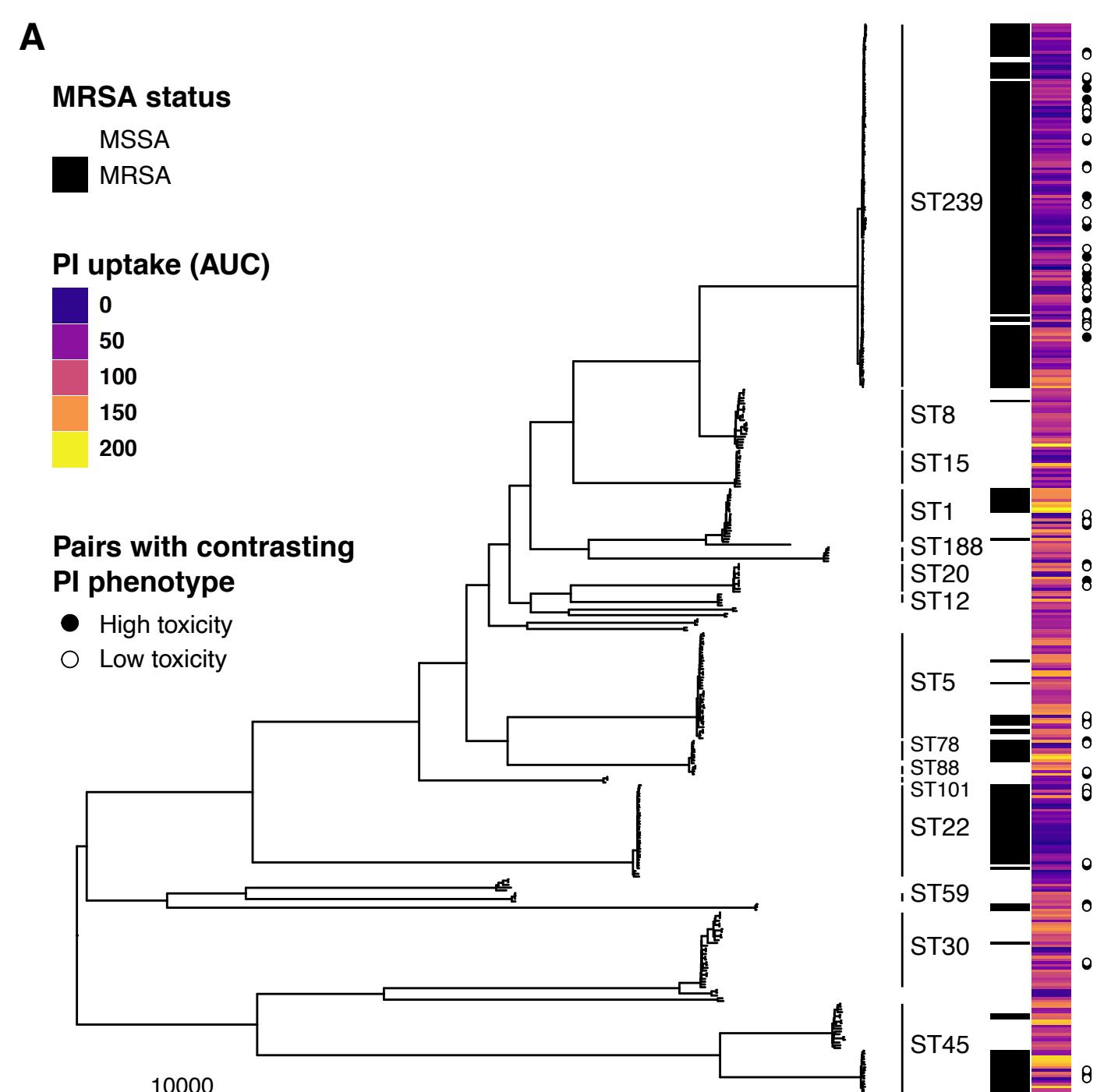
1105 <https://doi.org/10.1073/pnas.2123017119>



1106

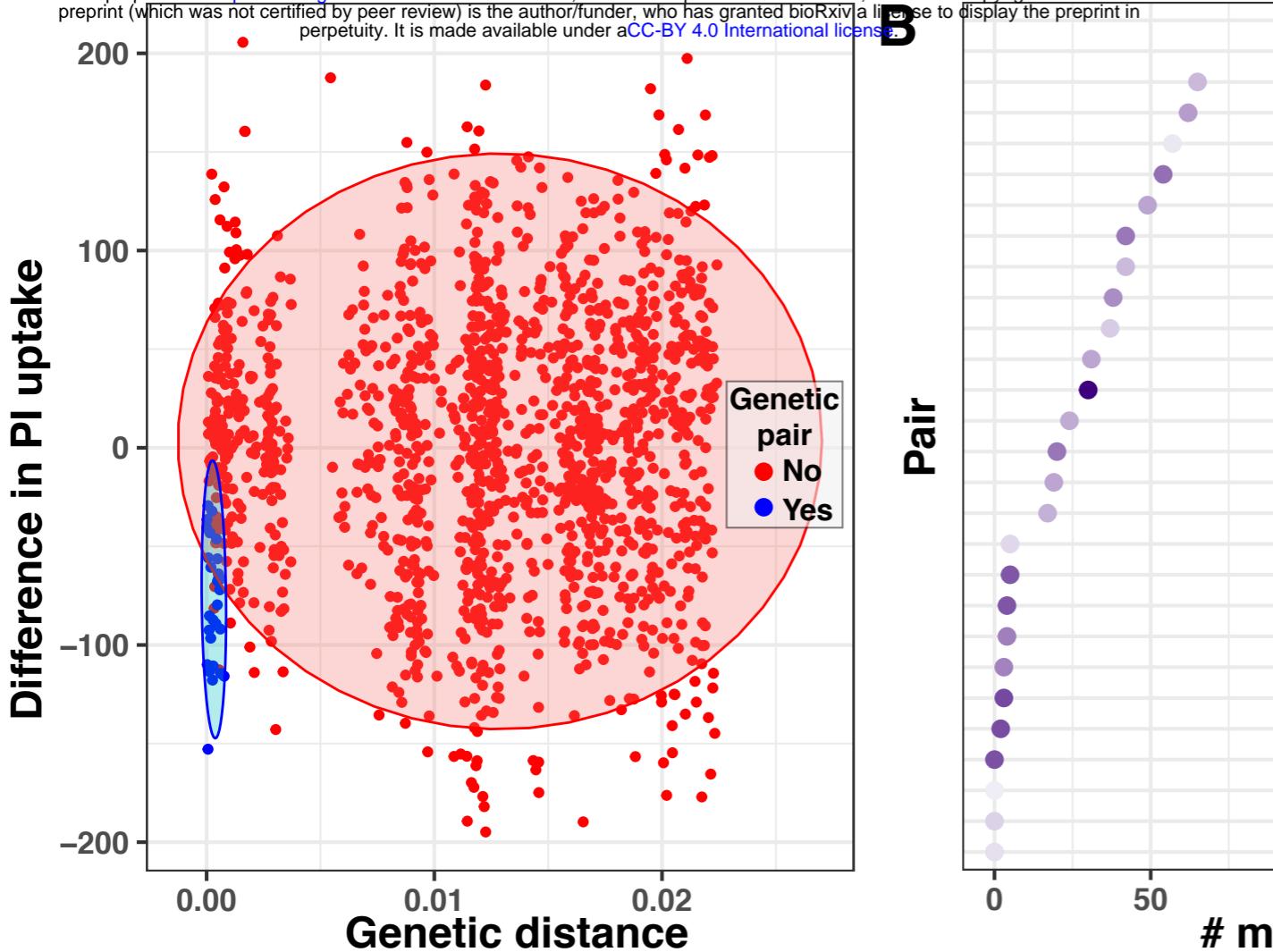
1107

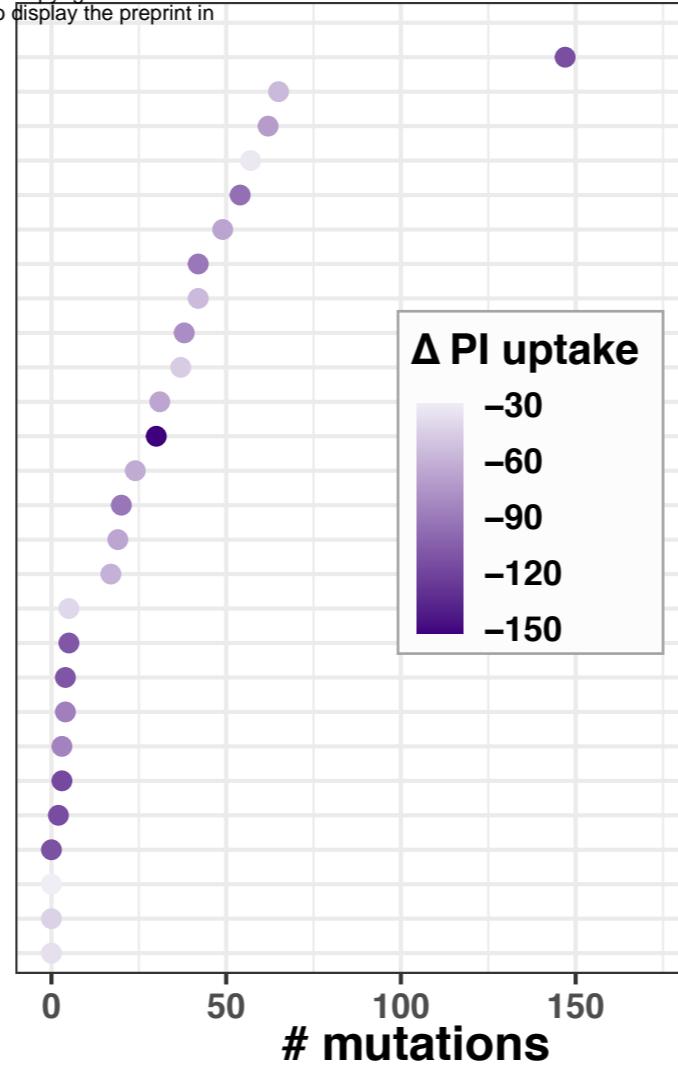

A**B****C****D**

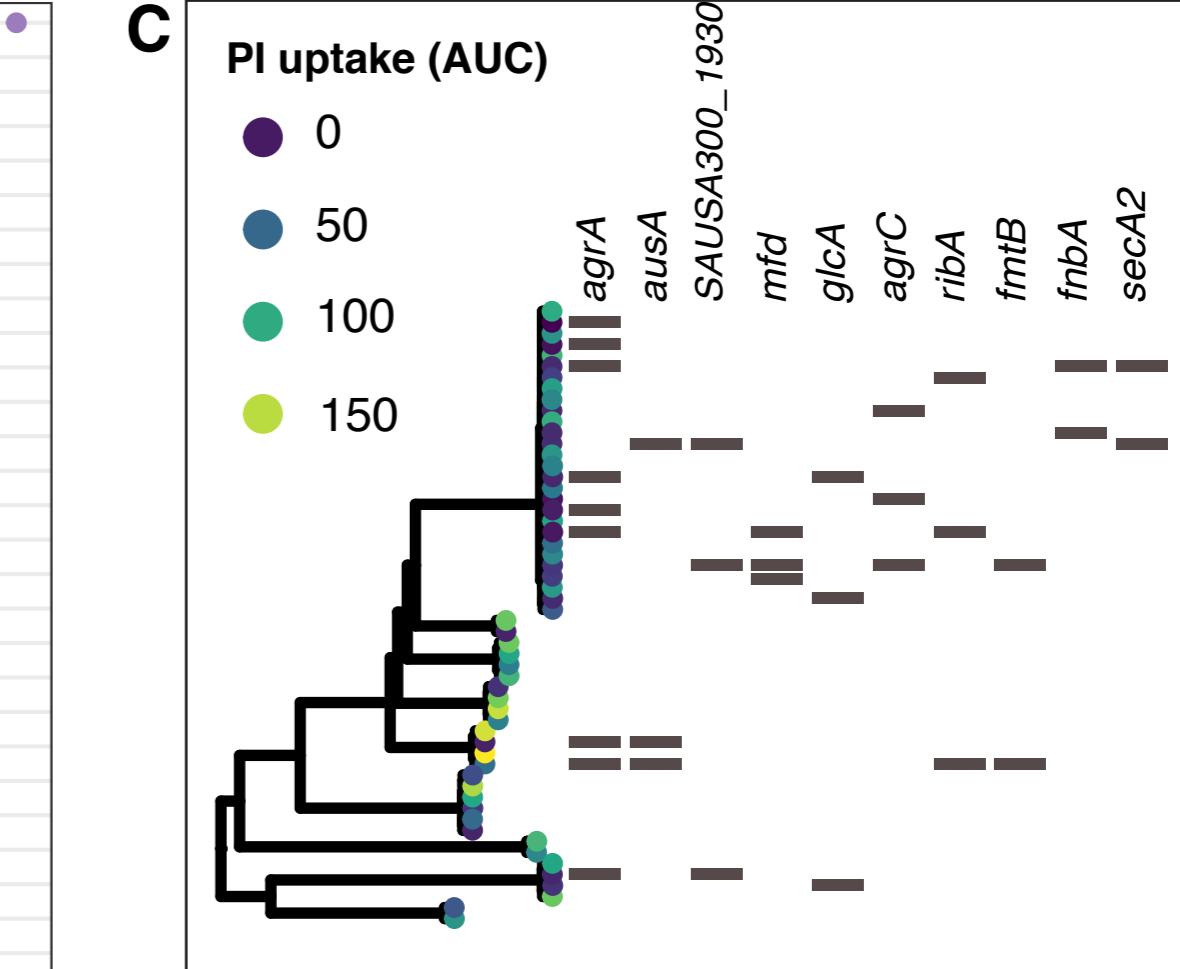


A

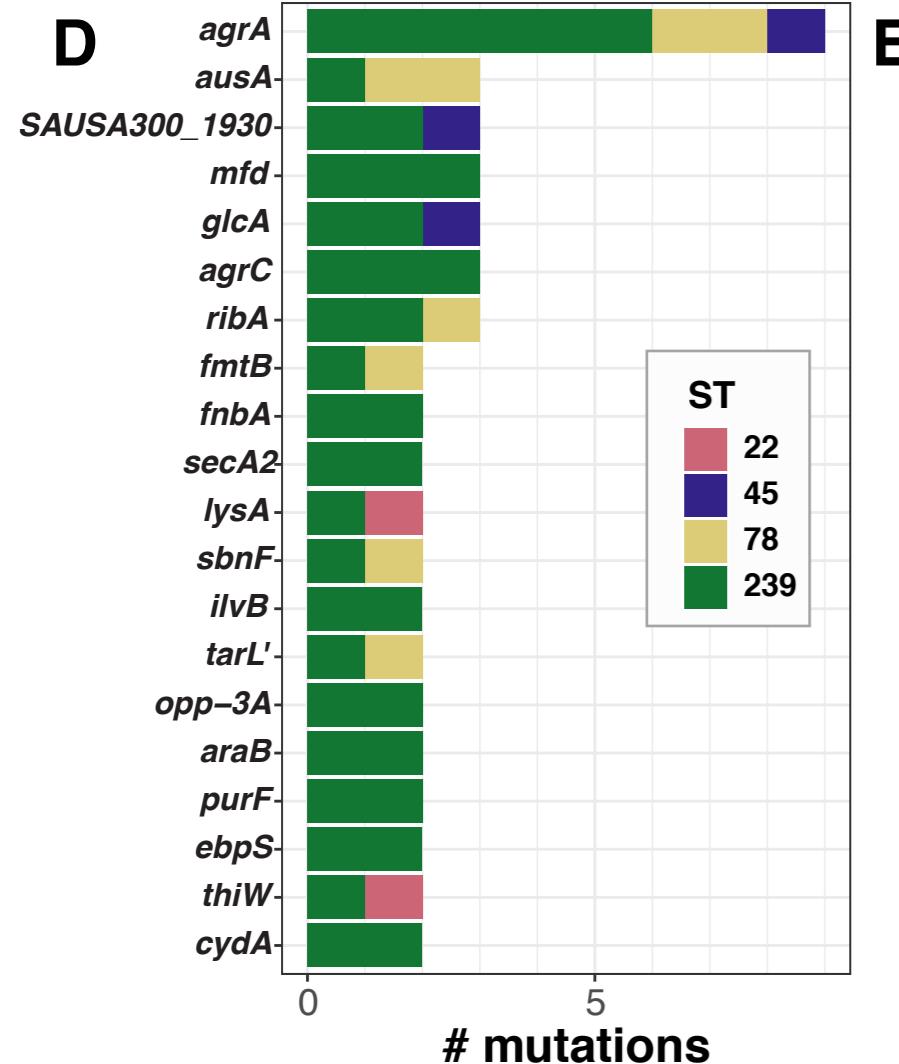





JE2

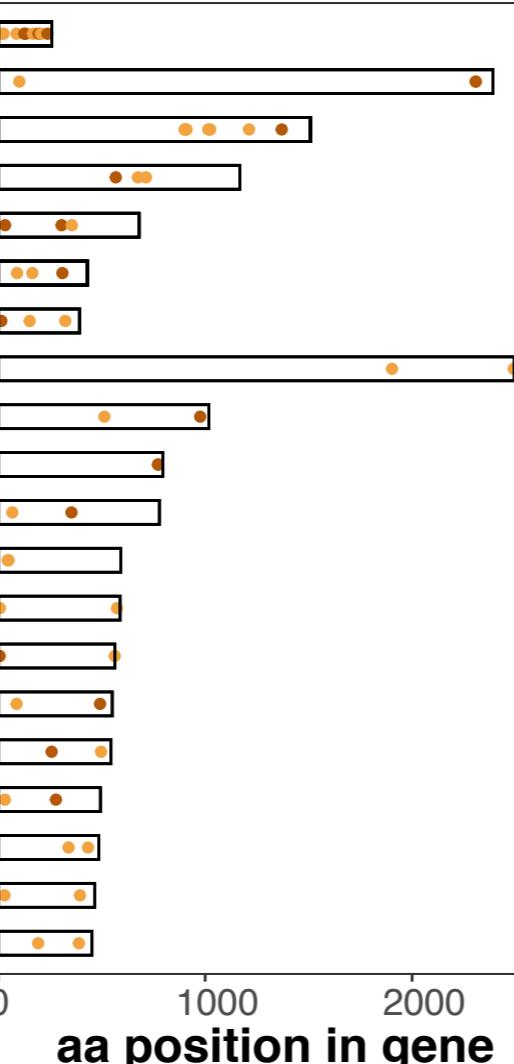
agrA

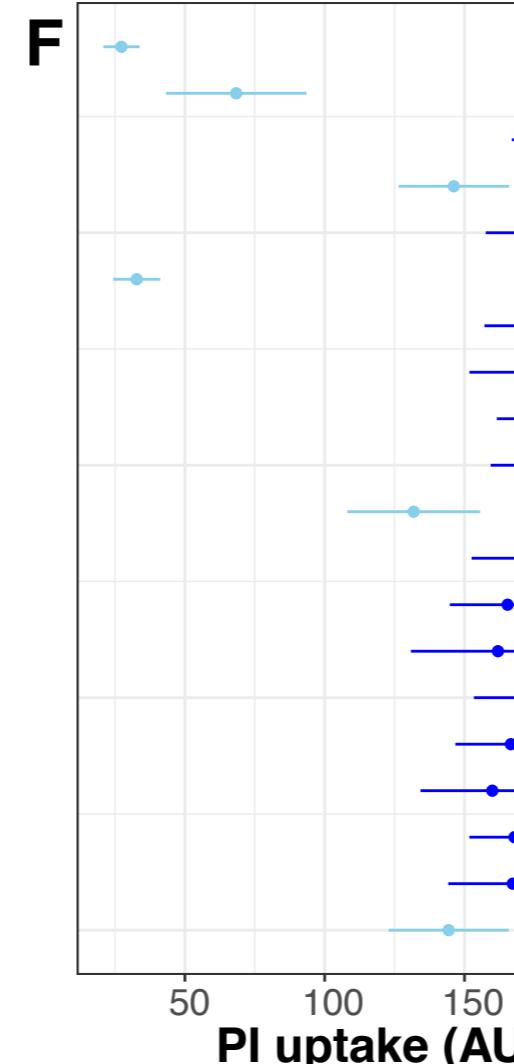

B

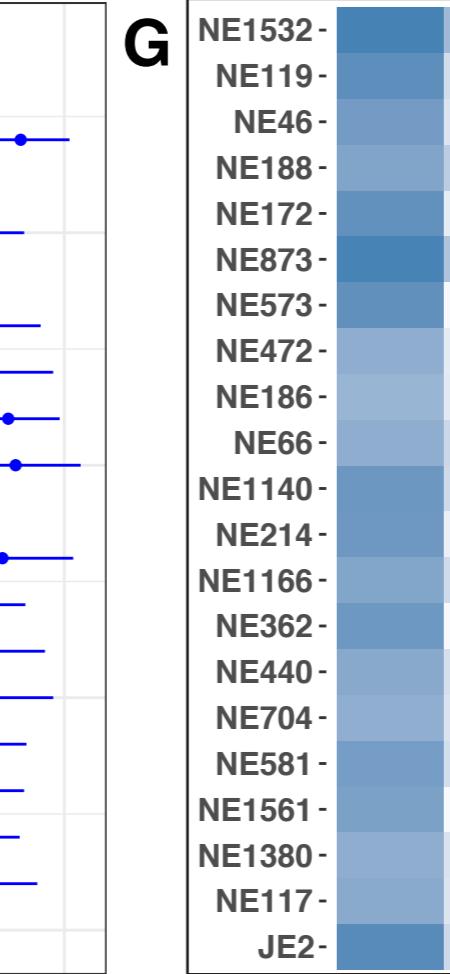


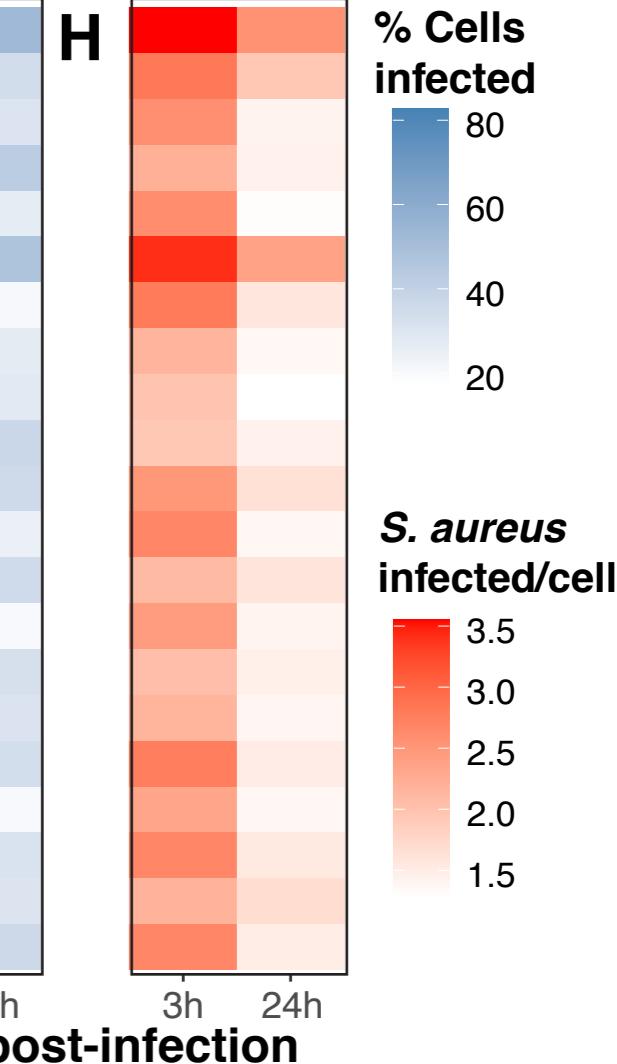

A


B


C


D


E


F

G

H

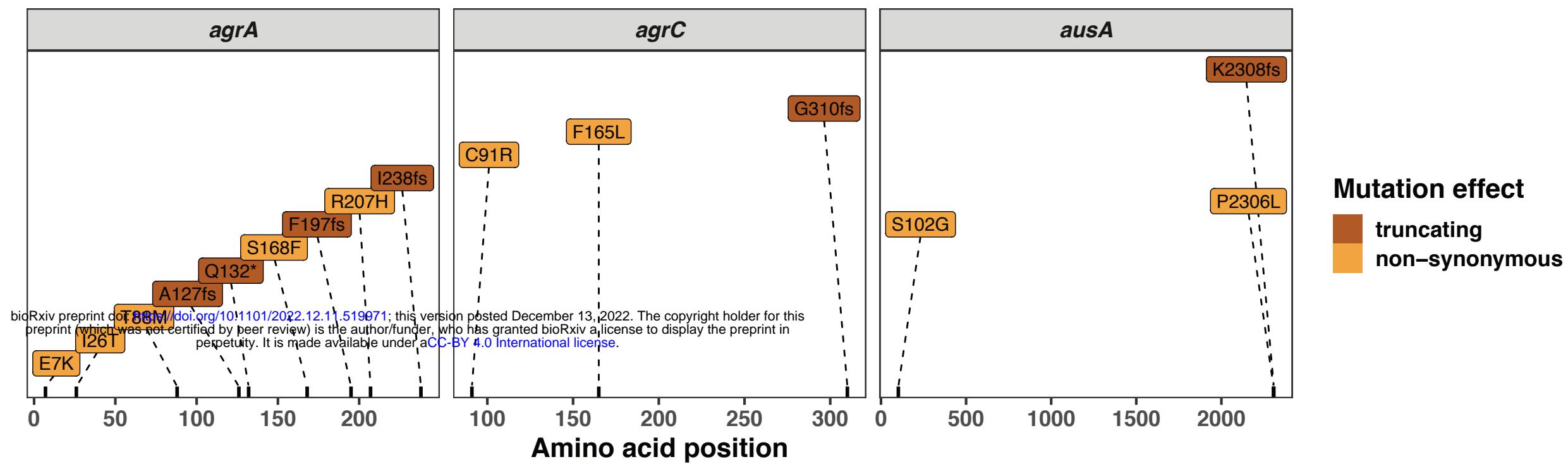
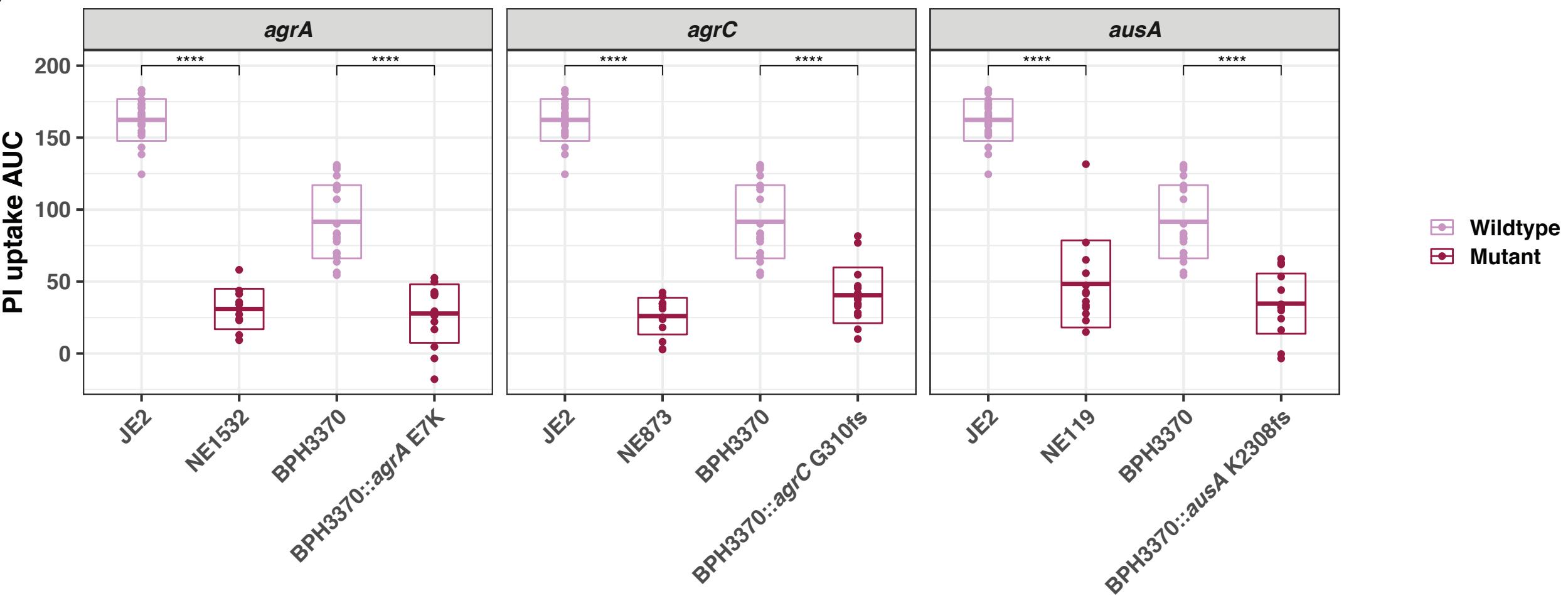
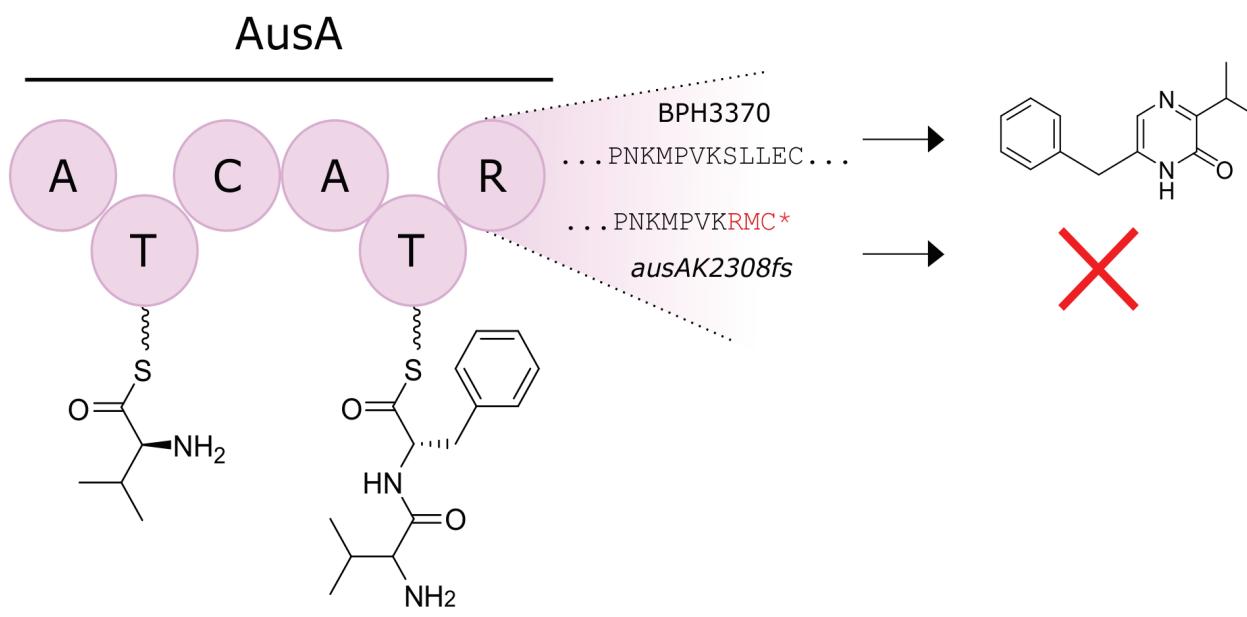
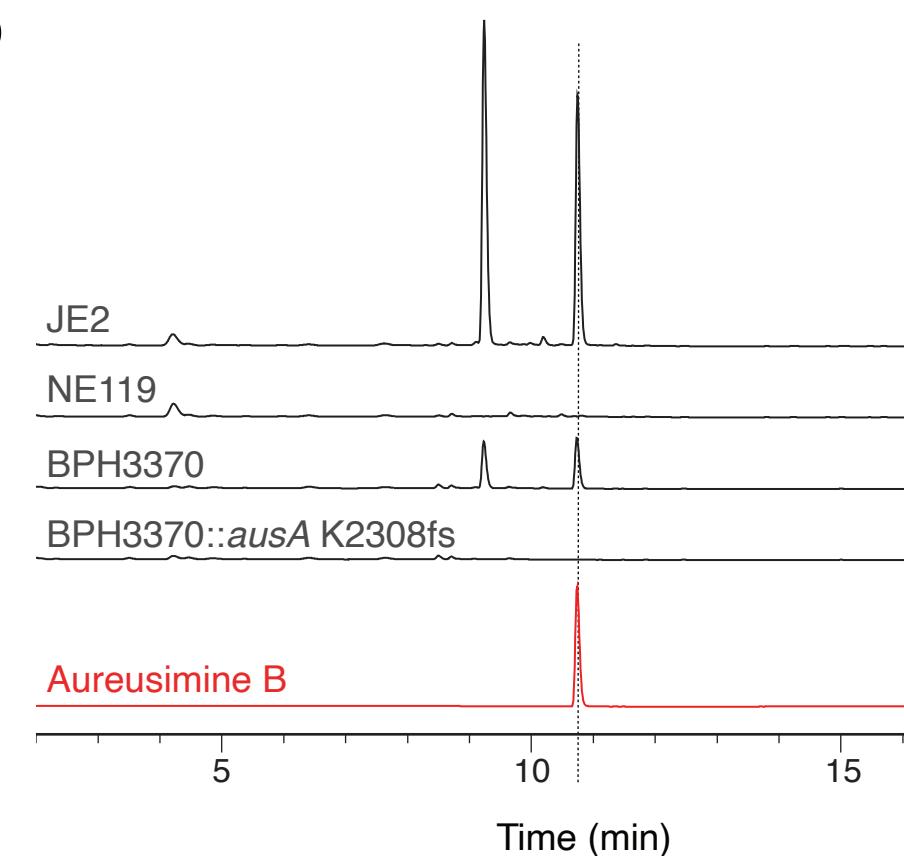
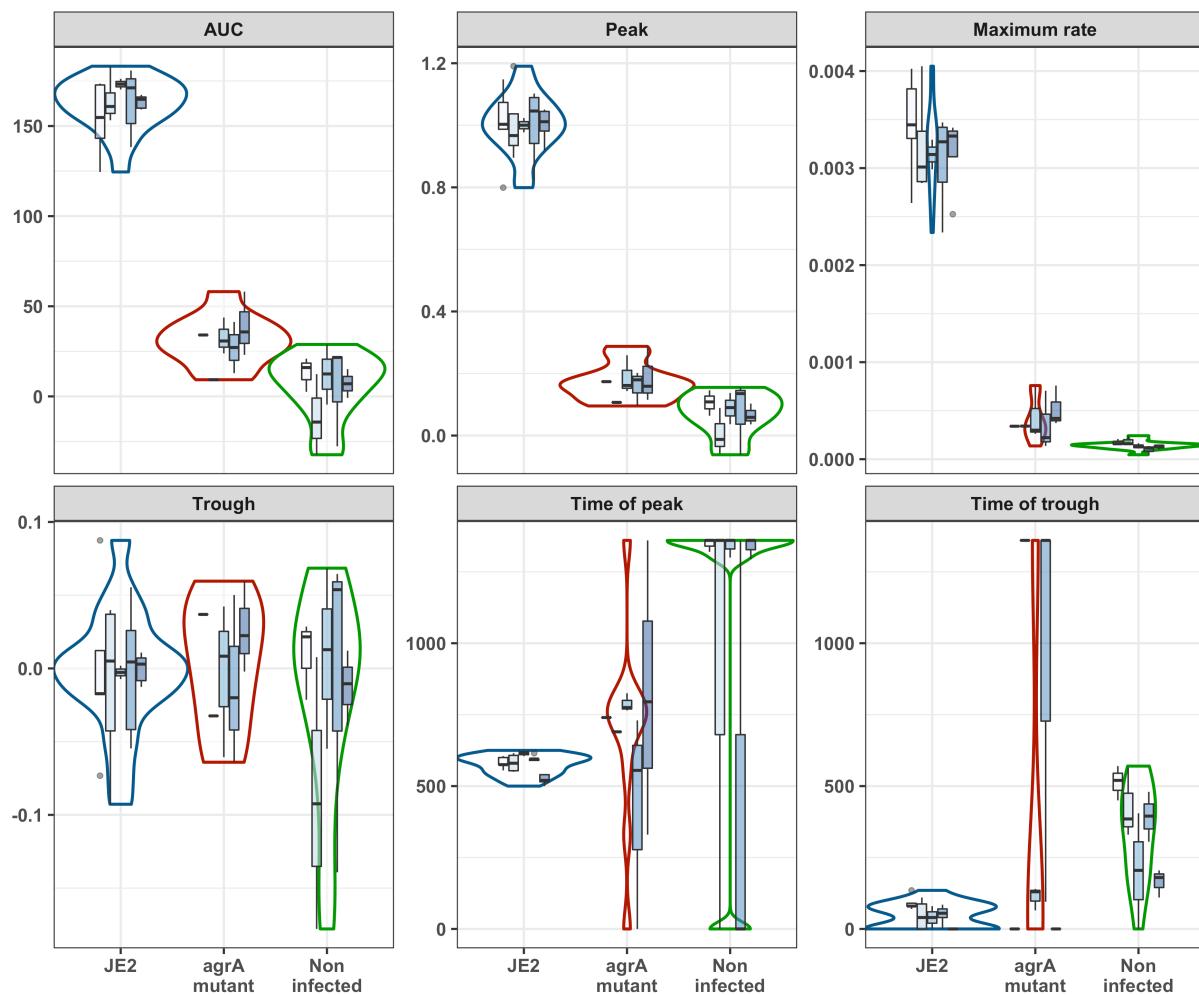
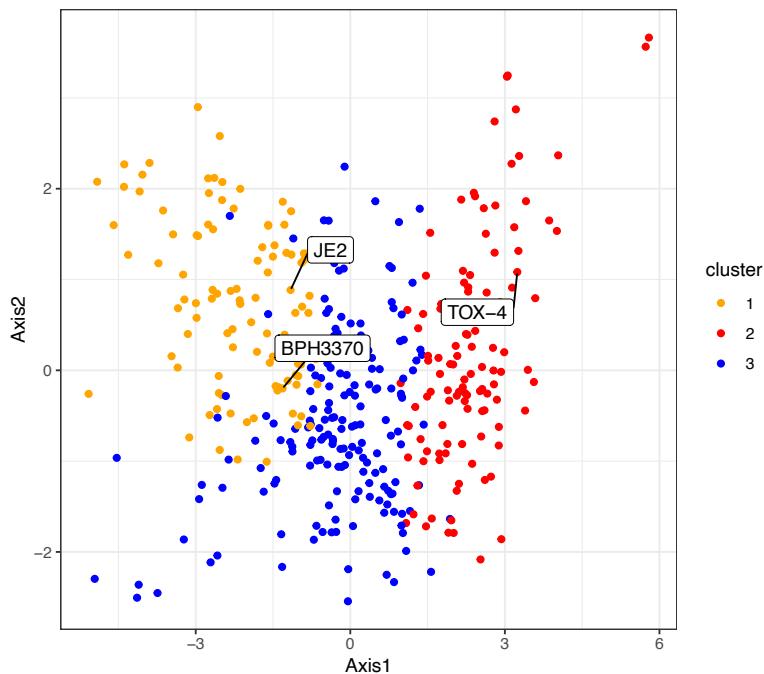





A**B****C****D**

Figure 1—Supplementary figure 1.



Summary of all PI uptake parameters across five experimental replicates

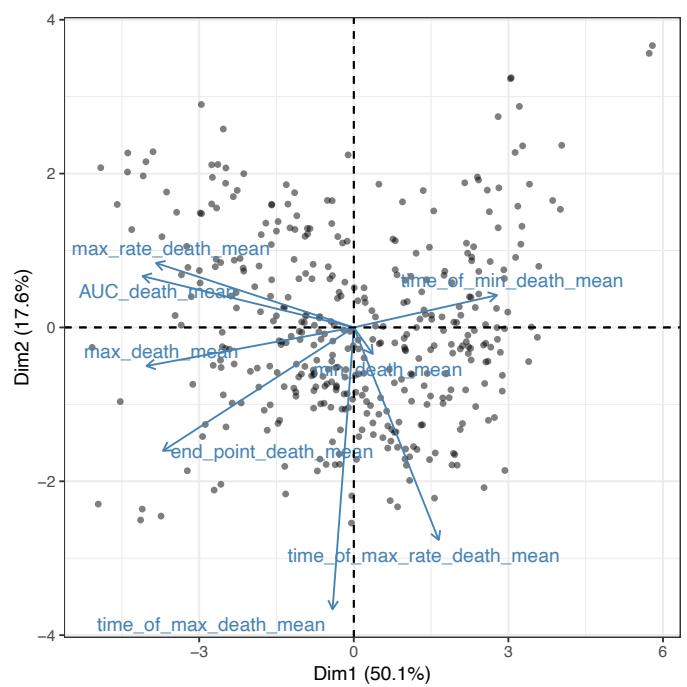
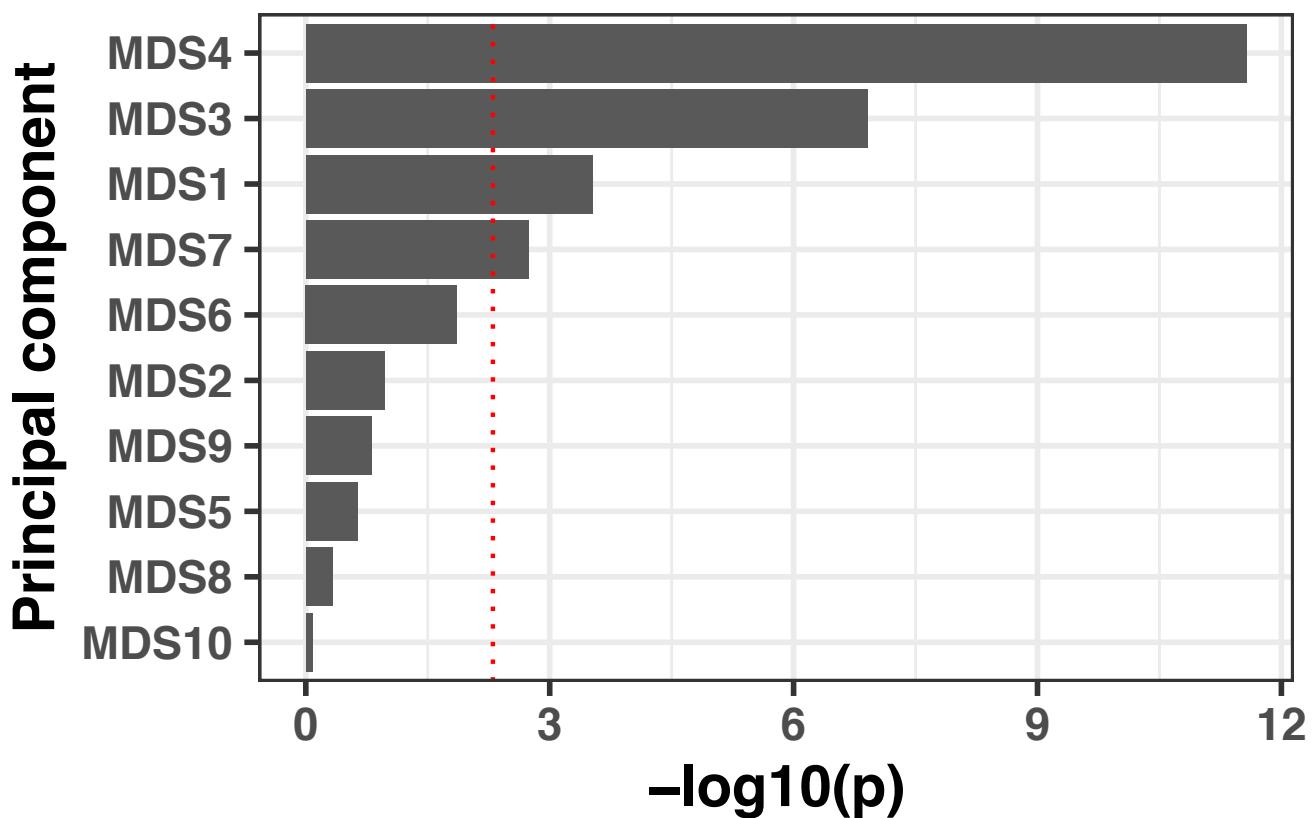

Violin plots represent the density distribution of all five replicates and the nested box plots show the distribution of within plate replicates (3-5 technical replicates per plate replicate) for t area-under-the-curve representing the total of PI uptake over time [AUC], peak PI uptake [μ^{\max}], the maximum rate in PI uptake [r^{\max}], the time to r^{\max} [$t(r^{\max})$]), trough and time to trough. Error bars represent the standard deviation across the five independent experiments.

Figure 4—Supplementary figure 1.

A

B

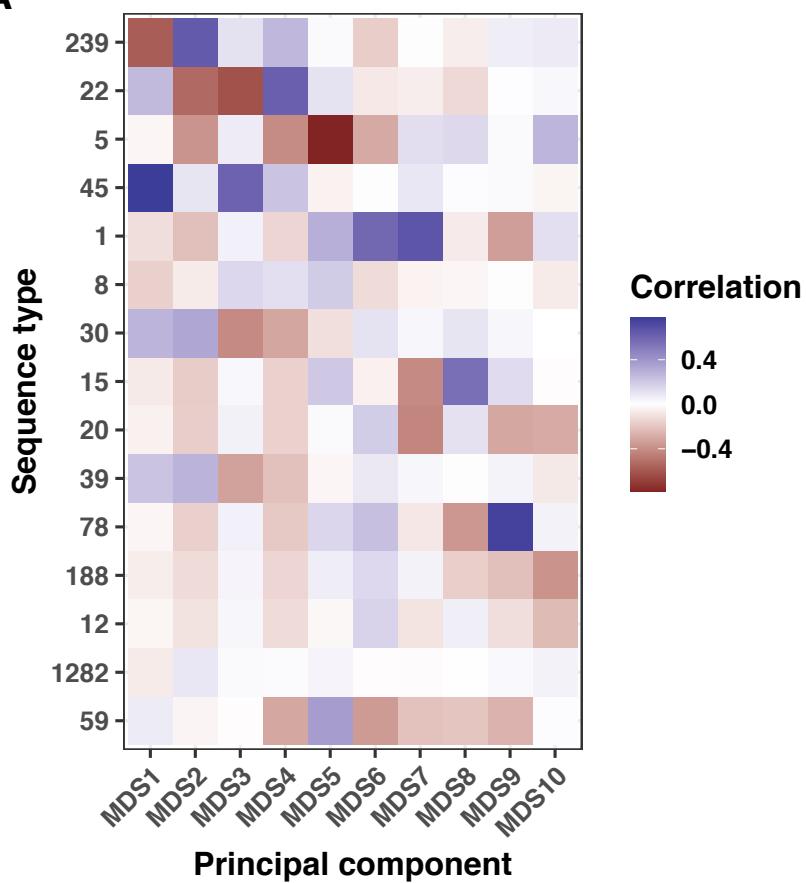


Principal component analysis of mean value of PI uptake parameters.

(A) Scatter plot of the first two principal components, representing 67% of the variance. Dots are coloured based on the clustering obtained from the proximity matrix of the unsupervised model.

(B) Loading plot showing the contribution of each PI uptake parameter to the first two PCA components.

Figure 4—Supplementary figure 2.



Lineage effects of cytotoxicity (AUC of PI uptake).

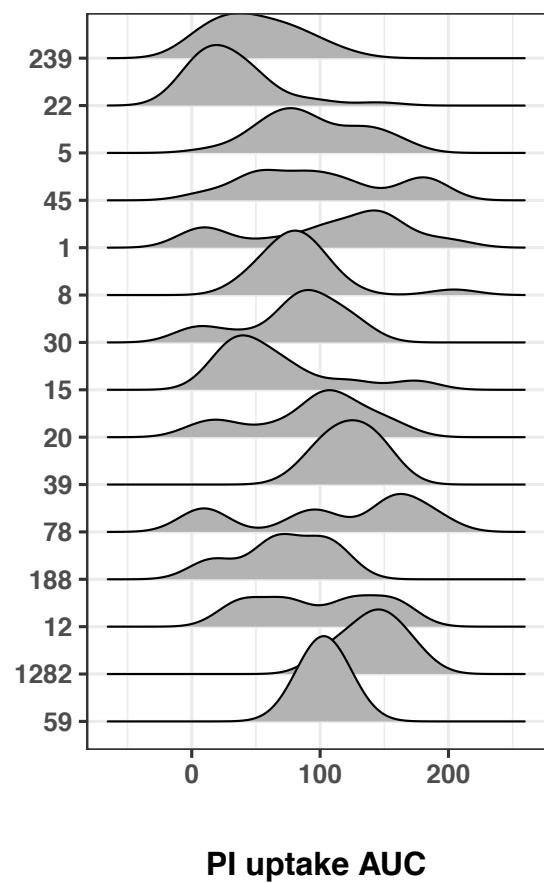
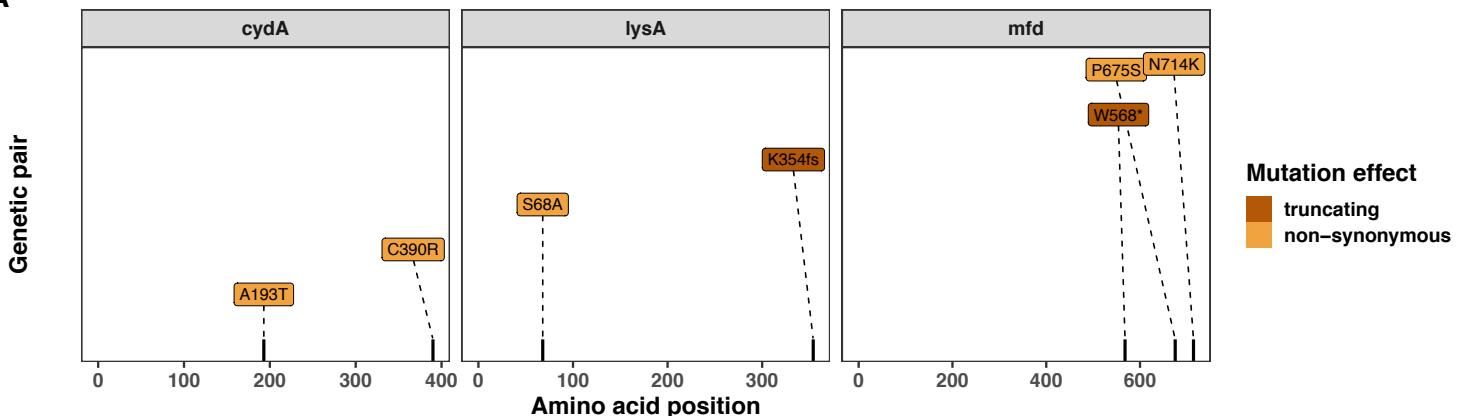

Lineages were calculated using multidimensional scaling on a distance matrix generated by Mash. The association with the phenotype was calculated by computing the fixed effect of the first 10 components by linear regression.

Figure 4—Supplementary figure 3.

A

B


Interplay between multidimensional scaling (MDS) axes, sequence types and PI uptake.

(A) Heatmap showing the correlation between the first ten MDS axes and the fifteen most prevalent sequence types (ST). Here, MDS was applied to a genetic distance matrix calculated from Mash sketches (10,000 hashed k-mers per set). The correlations were calculated using the R package *bugwas*.

(B) Ridge plots depicting the PI uptake AUC distribution for the fifteen most prevalent STs.

Figure 6—Supplementary figure 1.

A

B

Introduction of convergent *cydA*, *lysA* and *mfd* mutations in the clinical isolate BPH3370 do not affect its intracellular cytotoxicity.

(A) Position and nature of convergent mutations identified in the genes *cydA*, *lysA* and *mfd*. For each gene, the amino acid position affected by mutations is shown on the x-axis for each gene. Convergent mutations causing a significant contrasting PI uptake phenotype is colored according to its consequence on protein function: non-synonymous (orange) and truncating (characterized by the introduction of a frameshift (fs) or a stop codon (*)) (maroon).