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Abstract

Staphylococcus aureus infections are associated with high mortality rates. Often considered an
extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune
responses and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are
limited by testing culture supernatants and endpoint measurements that do not capture the
phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we
have developed a platform called InToxSa (Intracellular Toxicity of S. aureus) to quantify intracellular
cytotoxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and
combined with comparative, statistical and functional genomics, our platform identified mutations
in S. aureus clinical isolates that reduced bacterial cytotoxicity and promoted intracellular
persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our
approach detected mutations in other loci that also impacted cytotoxicity and intracellular
persistence. We discovered that clinical mutations in ausA, encoding the aureusimine non-
ribosomal peptide synthetase, reduced S. aureus cytotoxicity and increased intracellular
persistence. InToxSa is a versatile, high-throughput cell-based phenomics platform and we
showcase its utility by identifying clinically relevant S. aureus pathoadaptive mutations that

promote intracellular residency.
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Introduction

Staphylococcus aureus is a leading cause of hospital-acquired infections, a problem exacerbated by
increasing resistance to last-line antibiotics (Murray et al., 2022; Tong et al., 2015). S. aureus is
traditionally considered an extracellular pathogen as it produces many secreted virulence factors,
including superantigens, degradative enzymes and cytolytic toxins (Tam & Torres, 2019). The potent
pore-forming toxins (PFTs), including alpha-hemolysin and leukocidins, are among the major
virulence determinants of S. aureus (Cheung et al., 2021). These toxins induce rapid host cell death,
including death of the leukocytes and neutrophils recruited to remove bacteria from infected tissues

(Surewaard et al., 2016; Thammavongsa et al., 2015).

Long-term asymptomatic S. aureus carriage is common but invasive infection is rare. Thus,
understanding the changes enabling S. aureus to switch from a common coloniser of the nasal cavity
to an invasive pathogen is a major research focus. A powerful discovery approach has been used to
compare the cytolytic activities of secreted S. aureus virulence factors between colonising and
bacteraemia isolates, followed by genomics to uncover the bacterial genetic loci linked with
high/low cytolytic activity (Collins et al., 2008; Giulieri et al., 2018; Laabei et al., 2014, 2021;
McConville et al., 2022). These toxicity analyses use methods that monitor eukaryotic cell viability
upon exposure to S. aureus culture supernatants (Dankoff et al., 2020; Das et al., 2016; Giulieri et
al., 2018) and integrate these phenotypes within genome wide association studies (GWAS) and
other comparative bacterial population genomics techniques (Giulieri et al., 2018; Recker et al.,
2017). However, such toxicity assays are limited in that they focus on exogenous virulence factors
that have accumulated in the culture media during bacterial growth. Thus, such methods can be
limiting as they report phenotypes that are temporally skewed and ignore the host cell-bacterium
context under which the production of these factors is controlled during infection. When these

endpoint toxicity assays are conducted at scale with many hundreds of bacterial isolates, additional
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issues caused by filter-sterilisation, freeze-storage and other manipulations during the preparation
of bacterial supernatants prior to incubation with host cells may increase assay variability (Giulieri

et al., 2018; McConville et al., 2022).

Another restriction of toxicity assays is that they treat S. aureus as an obligate extracellular
pathogen, whilst the literature has reported its capacity to adopt an intracellular behaviour, readily
adhering to and invading various eukaryotic cells, including non-professional phagocytes (Flannagan
etal., 2016; Foster et al., 2014; Soe et al., 2021). Upon internalisation, intracellular S. aureus initially
reside in phagolysosomes, where low pH is a cue for bacterial replication (Flannagan et al., 2018;
Lam et al., 2010). S. aureus uses its arsenal of PFTs to escape from this degradative compartment,
into the cytosol and cause the death of host cells (Moldovan & Fraunholz, 2019; Siegmund et al.,
2021). This intracellular niche confers protection to S. aureus from antibiotics and immune
responses (Peyrusson et al., 2020; Strobel et al., 2016). While guarding S. aureus from host attack,
intracellular residency also enables the creation of a reservoir for the pathogen to persist in an
infected host and could lead to bacterial transmigration into distal host tissues, from where the
bacteria can cause protracted infections and more serious disease (Jorch et al., 2019; Surewaard et
al., 2016). Toxicity and persistence of S. aureus in an intracellular context are critical pathogenesis
traits. However, understanding these traits and their microevolution across diverse collections of
clinical S. aureus strains, and correlating them with specific bacterial genetic variations has been

hampered by the lack of a high-throughput platform for trait characterisation.

To address these issues, we took advantage of the capacity of S. aureus to invade cultured epithelial
cell lines and established a 96-well assay format to accurately monitor over time the bacterial
toxicity exerted from within host cells. HelLa cells are adherent epithelial cells and represent an

amenable model to study the pathogenesis of most intracellular bacteria causing human disease,
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including S. aureus (Das et al., 2016; Stelzner, Hertlein, et al., 2020; Stelzner, Winkler, et al., 2020).
We modified an antibiotic/enzyme protection assay, using a combination of gentamicin and
lysostaphin, to kill extracellular bacteria while preserving the viability of intracellular bacteria (Kim
et al., 2019). Using propidium iodide as a marker of host cell death, the assay measured changes in
fluorescence of Hela cells over time caused by the presence of intracellular S. aureus. Combined
with the power of bacterial genomics and evolutionary convergence analysis, we used the assay to
screen a large collection of S. aureus bacteraemia isolates. Our large-scale pheno-genomics
approach revealed known and previously undescribed loss-of-function mutations that were
significantly associated with reduced intracellular cytotoxicity and increased intracellular

persistence.

RESULTS

InToxSa assay development.

We set out to develop a high-throughput and continuous cell death assay that could measure the
intracellular toxicity of S. aureus in a format we named InToxSa. We used adherent HelLa-CCL2
epithelial cells as an infection model in a 96-well format and infected them with S. aureus at a
standardised multiplicity of infection (MOI). Following an infection period of 2h, infected cells were
treated with an antibiotic/enzyme combination to specifically kill extracellular bacteria and prevent
further reinfection by bacteria released by cells dying during the assay. Hela cell viability was
continuously monitored by measuring propidium iodide (PI) fluorescence (see methods). Reduced
Hela cell viability was indicated by increasing fluorescence over time (Figure 1A). We used
regression to fit standardised curves to the Pl uptake data and calculated seven kinetic parameters

including the area-under-the-curve representing the total of Pl uptake over time [AUC], peak PI
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Figure 1: Establishing the intracellular toxicity of S. aureus (InToxSa) assay. (A) Overview of
InToxSa assay. (B) Flow chart of the analytical pathway. (C) Plot of Pl fluorescence uptake over
20h as a measure of S. aureus intracellular cytotoxicity in HeLa cells. Depicted curves are wild
type S. aureus JE2 (blue), the isogenic S. aureus JE2 agrA transposon mutant (red), and uninfected
cells (yellow). The PI uptake curve for JE2 is annotated with five kinetic parameters. For each
curve, the thick line represents the mean and the shading, the standard deviation. Curves are fitted
with cubic smooth splines (see methods). To minimise batch effect, all kinetics data have been
transformed using proportion of maximum scoring (POMS) using JE2 controls as reference
minimum and maximum values (Little, 2013). X-axis is time and Y-axis is Pl-uptake, represented
as a proportion of maximal fluorescence in JE2-infected cells, where for every measured plate, a
Pl uptake value of 1 represents the maximum of JE2 Pl uptake and zero its minimum. (D) Summary
of five independent InToxSa experiments to assess assay and parameter variation. Violin plots
represent the density distribution of all five replicates and the nested box plots show the
distribution of within plate replicates (3-5 technical replicates per plate replicate) for the three

most discriminatory of seven parameters inferred from the PI uptake data (Supplementary file 1).

uptake [u™®], the time to u™ [t(u™*)], the maximum rate in Pl uptake [r™®*], the time to r™
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[t(r™#)]), trough and time to trough (Supplementary file 1).

We then mapped out a series of experiments to validate InToxSa and explored bacterial genetic
factors linked to intracellular cytotoxicity (Figure 1B). To demonstrate method performance, we
measured the intracellular toxicity of the wild type S. aureus USA300 strain JE2 against an isogenic
agrA mutant (Nebraska Transposon Library mutant NE1532 (Fey et al., 2013)), using non-infected
cells as a baseline (Figure 1C). S. aureus JE2 caused a rapid and substantial increase in Pl fluorescence
over time, reflective of the known high cytotoxicity of this strain (Das et al., 2016; Grosz et al., 2014;
McConville et al., 2022). Cells infected with the agrA mutant yielded significantly lower Pl uptake
(AUC) and slower (r™#), indicating Hela cell viability during the infection course and is consistent
with the reported low cytotoxicity of S. aureus agr mutants (Figure 1C) (Laabei et al., 2021;

McConville et al., 2022).

We then assessed the reproducibility and repeatability of InToxSa across five experimental
replicates, each time using both biologically independent Hela cell culture passages and
independent S. aureus cultures with the same two comparator strains (JE2 wild type and the
isogenic agrA transposon mutant) (Figure 1C). We measured seven Pl-uptake curve kinetic
parameters (Figure 1C, Supplementary file 1). We observed that the Pl-uptake area-under-the-curve
(AUC), peak Pl uptake [u™*] and maximum Pl uptake rate [r™®] for S. aureus JE2 compared to the
agrA mutant and non-infected cells were significantly different, had very low intra-assay variation,
and were among the most discriminatory and reproducible Pl uptake curve parameters (Figure 1D,
Table 1, Supplementary file 1). At experimental endpoints, the acidity of the culture media had not
changed, and no bacterial growth was observed after plating the media from infected 96-well
plates, indicating that InToxSa assessed the cytotoxicity caused only by intracellular S. aureus (data

not shown).
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Table 1: Summary of InToxSa assay performance

No.

Strain bioloc;ical Area under the Peak uptake Max uptake

max max

replicates curve [AUC] (™1 [r™=1
Mean CoV Mean CoV Mean CoV
S. aureus JE2 wild 25 162 0.09 1 0.09 0.003 0.13

type
S. aureus JE2 agrA 11 30.90 0.45 0.17 0.35 0.0004 | 0.52
mutant

Non-infected 15 5.28 3.46 0.07 1.02 0.0001 0.32

Note: CoV = Coefficient of Variation

Confirmation of S. aureus internalisation in Hela cells

We used confocal microscopy to confirm the presence of intracellular S. aureus (Figure 2A). Hela
cells grown on coverslips were infected with the same conditions used for InToxSa and analysed at
3h, 8h and 24h post-infection. These timepoints were selected to reflect the key InToxSa timepoints
highlighted during JE2 infection (start of Pl uptake measurement, peak Pl uptake [u™*] and
experimental endpoint, respectively). We observed that at each timepoint, both JE2 and the agrA
mutant co-localised with the lysosomal marker LAMP-1. However, the agrA mutant was detected in
higher numbers within cells compared to wild type (Figure 2A, B). At later time points (8h and 24h)
the number of JE2-infected cells decreased, with fewer detectable intracellular bacteria, suggesting
that JE2-infected cells had died, consistent with bacterial cytotoxicity. In contrast, the number of
cells infected with the agrA mutant did not vary significantly, indicating cell survival during the
infection time course (Figure 2B). It also appeared that the number of intracellular bacteria
increased for cells infected with the agrA mutant, suggesting bacterial replication over time. This

latter observation was explored in more depth using high-content/high-throughput imaging (see
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later section). The microscopy results support the InToxSa assay outputs and indicate that non-

cytotoxic S. aureus, such as the agrA mutant, can persist within cells without affecting cell viability.

>

O ==
2 Im
2N

Figure 2: Fluorescence confocal
microscopy of intracellular S. aureus. (A)
HelLa cells were infected with S. aureus
(wild type JE2 or isogenic agrA mutant)
and imaged at 3h, 8h and 24h post-
infection. Fixed cells were labelled with
LAMP-1, S. aureus antibodies and DAPI.
(B) Manual quantification of confocal
microscopy. Graph shows the percentage
of cells infected with S. aureus at each of
the three timepoints. At least 50 cells (n
cells=51-112) were counted in 3-5 fields of

24h

view, with at least 12 cells counted per field

(n field=12-40). Shown are all data points,

B E 100~ : = ""A mean and standard deviation. Significance
‘%gﬁ Zg: ’—;\i_ A_:_‘ :JIV: was assessed using 2-way ANOVA. Null
§§ 40- ._;: B : hypothesis (no difference between means)
P EEe e rejected  for adj  p<0.05. *p=0.04

3h 8h 24h ***p=0-007, ****p=<0_000]

InToxSa benchmarking against trypan blue exclusion assay

In a previous study we used a trypan blue exclusion assay with THP1 human macrophages exposed
to culture supernatants to test within-host cytotoxicity variations from 51 clinical S. aureus isolated
from 20 patients with bacteraemia (Giulieri et al., 2018). These 51 S. aureus isolates were originally
selected because they were associated with phenotypic changes occurring during bacteraemia, such
as infection relapse, antibiotic treatment failure, longer duration of bacteraemia and augmented

vancomycin MIC; phenotypes likely resulting from within-host evolution (Giulieri et al., 2018). Thus,
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the isolates were categorised by patient and by their sequential isolation, with the first isolate

considered as ‘baseline’ and the subsequent isolates designated as ‘evolved’.
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Figure 3: Performance of InToxSa against Trypan blue exclusion assay. Comparative
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-

evaluation of S. aureus intracellular cytotoxicity with bacterial supernatants for 51 paired isolates
from 20 patients with S. aureus bacteraemia. (A) Supernatant-based cytotoxicity on THPI cells.
Episode with significant difference in THP1 survival between baseline and evolved isolates is
boxed in blue (p<0.05). Assay performed in biological and technical duplicates. Bars represent
mean percentage of dead cells; error bars show range between duplicates. Toxicity within isolate
groups was compared using analysis of the variance (ANOVA) with Bonferroni correction (B) Pl
uptake of infected HeLa cells. Values are mean AUC and standard deviation. Episodes exhibiting
significant phenotypic differences between baseline and evolved isolates are boxed in red
(p<0.05). Assay performed in biological and technical triplicates. PI uptake AUC within isolate

groups was compared using ANOVA with Bonferroni correction.
All 51 isolates were screened with InToxSa and compared with the original trypan blue assay data
(Figure 3). Using trypan blue exclusion, only the evolved isolate from patient 50 (P_50) showed a
significant phenotypic difference in cytotoxicity (Fig 3A). This difference was attributed to a loss-of-

function mutation in agrA (T88M). InToxSa also identified a significant cytotoxicity difference for

the P_50 isolate pair, validating the previous observation, despite the methodological and host cell
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type differences. However, InToxSa detected significantly reduced cytotoxicity for the evolved
isolates from five more patient pairs compared to the original trypan blue screen (Figure 3B). These
results support the higher sensitivity of InToxSa in uncovering S. aureus cytotoxicity variations

resulting from the evolution of the bacterial population during bloodstream infection.

Screening a large collection of clinical S. aureus to evaluate intracellular cytotoxicity

A major motivation for developing the InToxSa assay was to develop a pheno-genomics platform to
efficiently measure the intracellular cytotoxicity profiles of a large collection of clinical S. aureus
isolates and then use the power of comparative and statistical genomics to find bacterial genetic
loci associated with intracellular cytotoxicity. To this end, we analysed 387 clinical S. aureus isolates,
obtained from 298 episodes of bacteraemia and for which genome sequences were available
(Giulieri et al., 2018; Holmes et al., 2011, 2014; VANESSA study group, on behalf of the Australasian
Society for Infectious Diseases (ASID) Clinical Research Network (CRN) et al., 2018). A 164,449 SNP
core genome phylogeny was inferred for this collection. The 387 isolates spanned 32 sequence types
(STs) and were dominated by ST239, accounting for 30% of isolates (n:117), followed by ST22 (n:32,
8%), ST5 (n:34, 8%), ST45 (n:28, 7%), and ST1 (n:18, 5%). Fifty-three percent of the isolates were

mecA positive (Figure 4A) (Supplementary file 3).

We assessed each of the 387 isolates by InToxSa, with the cytotoxicity phenotype for each isolate
represented by mean Pl uptake (AUC) and displayed as a heatmap, aligned with the core genome
phylogeny (Figure 4A). Several patterns were readily seen in the data. There was a wide range of
cytotoxicity profiles across the 387 isolates, with notable variations within each sequence type
suggesting frequent adaptation events affecting intracellular cytotoxicity levels. Two sequence
types (ST239 and ST22) strongly associated with lower cytotoxicity. These variations are consistent

with previous observations (Laabei et al., 2021).

11
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To select the most suitable InToxSa parameters for our statistical genomics approach, we assessed
their relative importance by fitting the data using unsupervised random forest (RF) machine learning
(Mantero & Ishwaran, 2021). In this model, ‘observations’ were each of the Pl-uptake values for the
387 isolates and controls and ‘features’ were the seven Pl uptake curve parameters (Supplementary

file 4). We then tested RF feature importance and showed with variable importance plots that the
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Figure 4. Intracellular cytotoxicity assessment of 387 bloodstream-associated clinical S. aureus
isolates. (A1) Maximum likelihood phylogeny based on 164,449 core genome SNPs for 387 S.
aureus, showing sequence type (ST) and MRSA distribution. The heatmap depicts the mean area
under the curve (AUC) of cytotoxicity based on InToxSa PI uptake assay. AUC values range from
non-cytotoxic (score: 0, dark blue) to highly cytotoxic (score: 200, yellow). Adjacent to the
heatmap (closed and open circles) are 28 pairs of genetically related, but phenotypically
discordant isolates (see Figure 5). (B) ‘Variable importance plot’ showing different PI uptake
metrics (features) in an unsupervised random forest (RF) machine learning model. The higher the
value of ‘accuracy decrease’ or ‘Gini index decrease’, the higher the importance of the feature in
the model. (C) Scatter plot of the two most discriminatory PI uptake kinetic metrics (AUC and
maximum PI uptake rate). Dots are coloured based on the clustering obtained from the proximity
matrix of the RF model. (D) Scatter plot showing the two principal components with the strongest
association with PI uptake (lineage effect as measured using pyseer). Dots and ellipses are
coloured based on the clustering obtained from the proximity matrix of the unsupervised machine
learning model. (E) Manhattan plot of gene-burden GWAS of cytotoxicity (Pl uptake AUC) of 387

clinical isolates.
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Pl uptake parameters, AUC, u™* and r™® were the most informative features for the model (Figure
4B), consistent with our initial InToxSa assessment using JE2 and the agrA mutant (Figure 1C and
1D). Using the proximity matrix from the unsupervised RF model, we defined three main Pl-uptake
clusters, corresponding with low, moderate, and high intracellular cytotoxicity categories. We
labelled each of the 387 Pl-uptake data points with these three (low, moderate, high) cytotoxicity
categories and plotted the AUC and r™® values against each other (Figure 4C). As expected, these
parameters were strongly, positively correlated, suggesting that the AUC alone is sufficient to
capture intracellular cytotoxicity differences between S. aureus isolates. We used principal
component analysis (PCA) of the Pl-uptake data as an alternative unsupervised learning approach
(Figure 4- Supplementary Figure 1). When considering the first two components (67% of the
variance explained), we observed a similar pattern where the same toxicity groups could be
recognised within a cytotoxicity continuum among clinical isolates (Figure 4- Supplementary Figure

1).

GWAS analysis using InToxSa outputs to identify S. aureus genes linked to intracellular
cytotoxicity

We next used GWAS to identify genetic correlates of strain-level cytotoxicity, expressed as mean Pl
uptake AUC. The fraction of cytotoxicity variation explained by genetic variation (heritability: h?)
was 49%, a figure lower than the ones obtained for other phenotypes such as vancomycin resistance
(Giulieri, Guérillot, Holmes, et al., 2022). A lower heritability could be resulting from the InToxSa

assay variability or caused by differences in gene expression levels or due to epigenetic changes.

To assess the contribution of lineage effects relative to locus effects, we defined lineages using
multi-dimensional scaling (MDS) of a pairwise genetic distance matrix generated by Mash, a tool

that reduces genome content to a set of ‘sketches’ (hashed k-mers) (Ondov et al., 2016). Major MDS
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axes correlated with the most prevalent STs, for example ST239 was mainly defined by MDS1
(negative correlation) and MDS2 (positive correlation) (Figure 4- Supplementary Figure 3A). We then
tested the association between the first 10 MDS axes (90% of the genetic variance explained) and
the Pl uptake phenotype in Pyseer (Earle et al., 2016; Giulieri, Guérillot, Holmes, et al., 2022; Lees
et al., 2018). In agreement with the initial observations based on the phylogeny and cytotoxicity
heatmap (Figure 4A), we observed significant cytotoxicity-lineage associations represented by
MDS3 and MDS4 (Figure 4D, Figure 4- Supplementary Figure 2). Because of the ST-MDS lineages
correlation, this is consistent with differences in cytotoxicity between clones (Figure 4-
Supplementary Figure 3B). Using the three cytotoxicity clusters defined by RF as categorical labels
(Figure 4C), we plotted the 387 genomes along these two dimensions. While intracellular
cytotoxicity was strongly associated with some S. aureus lineages, this analysis showed that lineage
alone does not completely explain the phenotype, as indicated by the significant overlap between
the three cytotoxicity clusters across MDS3 and MDS4 (Figure 4D). This pattern is consistent with
other adaptive phenotypes (Earle et al., 2016; Giulieri, Guérillot, Holmes, et al., 2022; Su et al., 2021)
and suggests that locus effects from specific micro-evolutionary events modulate cytotoxicity,

supporting the use of GWAS and convergent evolution approaches to identify these mutations.

Correcting for the observed population structure, we then used gene-burden GWAS to try and
identify S. aureus loci significantly associated with intracellular cytotoxicity (Pl uptake AUC) as a
continuous variable. After correcting for multiple testing, only agrA reached the p<0.05 significance
threshold, supporting the important contribution of this locus to strain-level cytotoxicity (Figure 4E,
Supplementary file 5). We also considered the highest-ranking loci that did not reach genome-wide
statistical significance. The second most significant gene, secA2 (p = 1.5x10-4) encodes the accessory
ATPase to the Sec protein export system and is essential for the transport of SraP, a surface exposed

and serine-rich staphylococcal protein which is associated with adhesion to, and invasion of
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epithelial cells and binding to human platelets (Siboo et al., 2005; Yang et al., 2014). Another high-
ranking GWAS locus was ileS (p=9.9x10-4), encoding an isoleucyl-tRNA synthetase linked with

mupirocin resistance, and previously associated with S. aureus cytotoxicity (Yokoyama et al., 2018).

Identification of convergent mutations in genetic pairs with divergent InToxSa cytotoxicity
profiles

Despite the relatively small sample size for this kind of analysis, the gene-burden GWAS detected
the agrA locus with a high significance, but it did not have sufficient power to detect mutations
other than the agr genes. We further sought to identify rare mutations that might alter the
intracellular cytotoxicity using comparative genomics approaches, a complementary strategy to
microbial GWAS (Chen & Shapiro, 2021; Giulieri, Guérillot, Holmes, et al., 2022; Saund & Snitkin,
2020). We used evolutionary convergence analysis to identify additional loci associated with
intracellular cytotoxicity among the 387 S. aureus isolates. Our approach was to identify genetically
related pairs of isolates with contrasting Pl-uptake AUC values from across the phylogeny and then
search for homoplasic mutations between the pairs. We calculated genetic distances between all
387 genome-pairwise comparisons (149,769 combinations) and calculated a delta-Pl uptake AUC
value for each pair. We selected 28 S. aureus pairs with a genetic distance <200 core-genome SNPs
and a significant decrease in Pl uptake AUC between reference (isolate-1) and control (isolate-2)
(Wilcoxon rank-sum test) (Figure 5A). Variants within each pair (i.e., found in isolate-2 but not in
isolate-1) were identified and annotated using a strategy that we have developed for S. aureus
within-host evolution analysis (Giulieri, Guérillot, Duchene, et al., 2022a). We have previously
shown that a SNP-calling approach using de novo assembly of one genome in a pair as a reference
provided the most accurate estimate of the genetic distance (Higgs et al., 2022). There were
between 0 — 206 mutations within the 28 pairs (Figure 5B). Mapping the genes in which these

mutations were found back to a core-genome phylogeny constructed from the 56 paired S. aureus
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Figure 5. Evolutionary convergence analysis to identify S. aureus genes linked with intracellular
cytotoxicity. (A) Distribution of genetic distance determined by pairwise comparisons using MASH
distances among the 387 S. aureus genomes, against the difference in Pl uptake AUC between each
pair. The shaded circles denote the 95% multivariate t-distribution (blue: pairs included in the
convergence analysis; red: pairs excluded from the analysis). (B) Ranked distribution of the
difference in Pl-uptake AUC between the 28 pairs. Heatmap shows reduction in AUC values. (C)
Core genome phylogeny for the 28 pairs of isolates. Tree tips are coloured by Pl-uptake AUC.
Aligned with the phylogeny, the 10 first genes targeted by convergent mutations are shown. (D)
Number of mutations detected for each of the 20 genes, coloured by S. aureus ST. (E) Location of
convergent mutations in each gene (non-synonymous in orange, truncating in maroon). (F). Effect
of loss of function for each of the 20 genes on intracellular cytotoxicity measured by InToxSa,
using mutants from the Nebraska transposon library. Dotted line shows mean Pl-uptake AUC of
positive control strain JE2. Depicted are mean (dot) and SD (bar) of biological triplicates.
Mutants causing significantly lower PI uptake AUC to JE2 are depicted in light blue, non-
significant changes are in dark blue (Wilcoxon rank-sum test, corrected for multiple testing).
(G)&(H) Operetta high-content imaging analysis for each of the 20 Nebraska transposon mutants
and JE2 positive control. Heat maps show the percentage of HeLa cells infected with each
transposon mutant (blue) and the number of bacteria per infected cells at 3h and 24h post-infection
(red).
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also identified potentially convergent mutations in several other genes (6 with three independent
mutations and 35 with two independent mutations) (Figure 5C, D, E, Supplementary file 6).
However, because of the strong lineage effect and the paucity of representation for some S. aureus
lineages (clonal complexes [CC] and sequence types [ST]), half of these mutations were only found
in ST239, a well-represented lineage in our collection. In addition to target loci dedicated to the
regulation of virulence factors such as the agr locus or involved in adhesion to host extracellular
matrix proteins such as fibronectin and elastin (fnbA and ebpS), some of the convergent mutations
were found in genes involved in metabolic processes (ribA, purF, sbnF, ilvB, lysA, araB), associated
with the cell wall (fmtB), devoted to the last step of the cell wall teichoic acid biosynthesis (tarL’),
implicated in DNA repair (mfd), in protein transport (secA2), in solute transport (g/cA, opp-3A, thiw),
in respiration (cydA) and found in a phage-associated locus (SAUSA300_1930). Aside from agrA and
agrC genes (Giulieri et al., 2018; Laabei et al., 2014, 2015; Mairpady Shambat et al., 2016), and those
found in the promoter of the tar locus (Brignoli et al., 2022; Laabei et al., 2014), mutations in the
other loci have not been associated with the reduction of cytotoxicity in clinical S. aureus isolates.
Interestingly, homoplasic mutations were also found in the gene ausA, known to be involved in S.
aureus escape from epithelial cell endosomes and the phagosome of phagocytic cells (Blattner et

al., 2016).

Functional assessment of genes with convergent mutations

To assess the functional consequences of the convergent mutations (caused by at least two
homoplasic mutations per gene), we again turned to the Nebraska transposon library and selected
transposon mutants for 20 genes we had identified (Figure 5D). We used InToxSa to assess the effect
of gene disruption on the intracellular cytotoxicity phenotype for each mutant compared to the JE2
wild type (Figure 5F). Over the 20 transposon mutants tested, six showed a statistically significant

reduction in cytotoxicity, namely NE1532 (agrA), NE119 (ausA), NE188 (mfd), NE873 (agrC), NE1140
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(lysA), and NE117 (cydA). Strains with transposon insertions in agrA, agrC and ausA showed a highly
significant reduction in Pl-uptake AUC (adjusted p=5.4x10*, Wilcoxon rank-sum test), confirming
their reported roles in affecting bacterial cytotoxicity and validating our convergence analysis
(Figure 5F) (Blattner et al., 2016; Das et al., 2016; Laabei et al., 2021; Mairpady Shambat et al., 2016).
We extended this analysis and used high-content, high-throughput microscopy to observe and
quantify in an unbiased manner the impact of each mutation on the S. aureus infectivity and
intracellular persistence (see methods). There was an inverse relationship between InToxSa and
high-content imaging outputs, with the three mutants most reduced in cytotoxicity showing both a
higher percentage of infected cells recovered after 24 hours of infection, and a high number of
bacteria per infected cell at 24h post-infection as compared to the wild type control JE2 (Figure 5G,

H).

Functional assessment of specific convergent mutations

To further assess the impact of specific convergent mutations on intracellular cytotoxicity, we used
site-directed mutagenesis in S. aureus BPH3370 (ST239) to recreate a subset of the convergent
mutations. We selected isolate BPH3370 for these experiments as it displayed high InToxSa PI-
uptake AUC (comparable to JE2, Figure 4C) cytotoxicity without bearing any of the convergent
mutations we intended to introduce. We focused our attention on mutations likely to affect protein
function and based on the attenuation in cytotoxicity of the cognate transposon mutants. We
selected six mutations, previously not documented nor characterised, including non-synonymous
mutations leading to residue substitution (agrA E7K and cydA R390C [a reversion of C390R]),
frameshifts leading to truncated proteins (agrC G310 frameshift, ausA K2308 frameshift, and lysA
K354 frameshift), and introduction of a stop codon (mfd W568 stop codon) in the sequences of
convergent genes (Figure 6A, and Figure 6 Supplementary Figure 1). We then used InToxSa to assess

the cytotoxicity of each targeted mutant, compared to BPH3370 wild type, JE2 and the
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Fig 6. Introduction of convergent agrA, agrC and ausA mutations in the clinical isolate BPH3370
reduces its intracellular cytotoxicity while ausA mutation affects aureusimine B production.

(A) Position and nature of convergent mutations identified in the genes agrA, agrC and ausA. For
each gene, the amino acid position affected by mutations is shown on the x-axis for each gene.
Convergent mutations causing a significant contrasting Pl uptake phenotype are colored according
to their consequence on protein function: non-synonymous (orange), truncating (characterized by
the introduction of a frameshift (fs) or a strop codon (*) (maroon). (B) Effect of convergent
mutations on the intracellular cytotoxicity of the clinical isolate BPH3370. The PI uptake AUC
values for JE2, the cognate Nebraska transposon mutants of convergent genes, BPH3370 wildtype
and BPH3370 bearing the mutations affecting agrA, agrC, and ausA. The crossbar represents mean
and standard deviation (P<0.0001). (C) Predicted impact of K2308fs mutation on aureusimines

synthesis (D) HPLC analysis of S. aureus ethyl-acetate extracts for aureusimines compared to an

Aureusimine B synthetic standard.
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corresponding JE2 Nebraska transposon mutant, for each of the six loci (Figure 6B, Figure 6-figure
supplement 1). We observed that recreation of the E7K agrA mutation, the agrC G310 frameshift
mutation and the ausA K2308 frameshift mutations lead to a significant reduction in intracellular
cytotoxicity in BPH3370 (Figure 6B). However, the W568 stop codon mfd mutation, the K354
frameshift lysA mutation and the cydA R390C mutation had no significant effect on the cytotoxicity
of the BPH3370 strain (Figure 6 - Supplementary Figure 1). It is noteworthy that transposon
insertions in these three genes also had a less pronounced effect on the phenotype of JE2 strain as

compared to the agr and ausA loci (Figure 5F).

We predicted that the ausA K2308 frameshift causing a 11 base pair deletion mutation in BPH3370
would lead to a loss of aureusimine biosynthesis. This was because the frameshift occurred within
the ausA reducing domain and would thus prevent the release of the dipeptide L-Val-L-Tyr~T2 to
form the intermediate amino aldehyde, with no cyclization to form the imine (Figure 6C)
(Zimmermann & Fischbach, 2010). As expected, HPLC analysis confirmed the absence of
aureusimines in the BPH3370 K2308fs mutant, similarly to the transposon ausA mutant (NE119)

(Figure 6D).

Discussion

Recurrent and persistent staphylococcal infections have been proposed to result from within-host
selective pressures leading to the evolution of adaptive traits by the bacteria, a process also
observed in other human bacterial pathogens (Didelot et al., 2016; Gatt & Margalit, 2021; Giulieri,
Guérillot, Duchene, et al., 2022). The emergence of mutations affecting regulators controlling toxin
production has been proposed as a mechanism enabling S. aureus to adapt to its host while evading
cellular immune responses (Giulieri, Guérillot, Duchene, et al., 2022; Young et al., 2012, 2017).

Identifying the molecular signatures supporting the pathoadaptation of S. aureus at the host cell
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interface is important for understanding how S. aureus can cause persistent, difficult-to-treat

infections lasting many months (Gao et al., 2015).

Several studies of S. aureus clinical isolates have attempted to identify such signatures by assessing
the cytotoxicity of bacterial supernatants applied onto host cells, in an ex-cellulo fashion (Giulieri et
al., 2018; McConville et al., 2022; Recker et al., 2017). Such assessments would be adequate if S.
aureus was an extracellular pathogen exerting its cytotoxicity from without host cells (Soe et al.,
2021), but S. aureus is a facultative intracellular pathogen able to invade and persist in a wide range
of eukaryotic cells (Al Kindi et al., 2019; Krauss et al., 2019; Lugman et al., 2019; Musilova et al.,
2019; Sinha & Fraunholz, 2010). We developed the InToxSa cytotoxicity assay to address this
shortcoming and to try and identify S. aureus pathoadaptive mutations that support a S. aureus
intracellular lifestyle. By harnessing the power of comparative and statistical bacterial genomics
with InToxSa readouts for a large collection of bacteraemia-associated S. aureus isolates, we
identified mutations in S. aureus that reduced the intracellular cytotoxicity and increased

intracellular persistence.

We showed the performance and sensitivity of InToxSa with the identification of cytotoxicity
differences between S. aureus isolates that had not previously been detected by ex-cellulo methods
(Figure 3) (Giulieri et al., 2018). The difference in phenotypic outputs for both methods may be in
part explained by the different cell types exploited for the readout (THP1 macrophages for Trypan
blue exclusion assay versus Hela-229 epithelial cells for InToxSa) and the bacterial fraction
examined (culture supernatants versus bacterial cells) (Figure 3). The capacity of InToxSa to detect
subtle phenotypes missed by gross cytotoxicity assessments is also conferred by its temporally
granular and objective measurements of Pl-uptake as a marker of host cell viability. InToxSa assesses

the S. aureus toxicity caused by bacterial virulence factors produced in response to the intracellular
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environment and is proportional to a defined bacterial load. This approach contrasts with methods
relying on the presence of toxins accumulating over time in bacterial supernatants and whose
production relies almost solely on the functionality of the Agr quorum sensing system (Altman et

al., 2018; Giulieri et al., 2018; McConville et al., 2022).

We further showed the performance of this analytical pipeline by readily identifying mutations in
loci such as the Agr quorum sensing system, which is well known to control S. aureus cytolytic
activity (Giulieri et al., 2018; Giulieri, Guérillot, Duchene, et al., 2022; Laabei et al., 2021; Mairpady
Shambat et al., 2016; Recker et al.,, 2017). However, our approach also enabled discovery of
mutations in less characterised systems, including changes in ausA, that reduced S. aureus
cytotoxicity and increased intracellular persistence of clinical isolates. AusA is a non-ribosomal
peptide synthetase responsible for production of aureusimines, pyrazinone secondary metabolites.
Our observations are consistent with previous reports showing that aureusimines contribute to the
phagosomal escape of S. aureus JE2 to the cytosol (Blattner et al., 2016; Wilson et al., 2013).

Interestingly, S. aureus mutants that were most affected in cytotoxicity also had a propensity to
persist intracellularly (Figure 5). Infected host cells have been proposed as trojan horses for
intracellular S. aureus, increasing the risks of systemic dissemination to organs, such as the liver and
kidneys, following bacteraemia and contribute to infection persistence (Jorch et al., 2019;
Surewaard et al., 2016; Thwaites & Gant, 2011). Whilst agr-dysfunctional isolates were associated
with persistent infections (Fowler, Jr. et al., 2004; Schweizer et al., 2011), intracellular persistence
caused by mutations in agr loci could possibly constitute a population bottleneck (Pollitt et al., 2018;
Spaan et al., 2013). However, such population bottlenecks may be transient as it has been suggested
that mutations arising in agr defective pathoadapted clinical isolates could possibly compensate for
the loss of agr functionality and restore S. aureus virulence, suggesting a stepwise within-host

evolution of clinical isolates (Altman et al., 2018; Giulieri, Guérillot, Duchene, et al., 2022).
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Current statistical genomics strategies in human genetic support combining allele-counting
methods (GWAS), for the detection of common variants, with comparative genomics approaches to
identify rare variants (Singh et al., 2022; Trubetskoy et al., 2022). In microbial genomics, this strategy
is best achieved by combining microbial GWAS and convergent evolution studies (Chen & Shapiro,
2021; Giulieri, Guérillot, Holmes, et al., 2022; Guérillot et al., 2018; Saund & Snitkin, 2020). Whilst
our GWAS approach only identified agrA as significantly associated with low cytotoxicity (Figure 4E),
our evolutionary convergence analysis on genetic pairs among our 387 bacteraemia isolates
identified mutations in several S. aureus genes that led to reduced cytotoxicity (Figure 5). However,
only convergent mutations occurring in agrA, agrC and ausA were confirmed to affect the
cytotoxicity and intracellular persistence phenotypes when introduced into a clinical isolate (Figure
6). This may be due to epistatic effects or combinations of mutations within a specific S. aureus
strain may be acting in concert to control the expression of the numerous bacterial cytolytic
determinants, underscoring the need to functionally confirm the findings of the convergence

analysis

Our study also shows that intracellular cytotoxicity levels vary between sequence types. Despite
causing bacteraemia, the ST22 and ST239 isolates were overall less cytotoxic than the ST8 isolates
in our collection (as shown on the heatmap in Figure 4A), further corroborated by the direct
cytotoxicity comparison between strains JE2 (ST8) and BPH3370 (ST239) (Figure 6B). The evolution
of reduced Agr functionality (and thus cytotoxicity) in hospital-acquired ST239 and ST22 isolates has
already been reported by our group and others and is confirmed by the InToxSa outputs (Baines et
al., 2015; Collins et al., 2008; Giulieri et al., 2018; Laabei et al., 2021; Li et al., 2016). Consistent with
their reduced cytotoxicity and with our hypothesis of inverse correlation between toxicity and
intracellular replication, ST239 isolates caused higher degrees of bacterial persistence in infected

animal models (Baines et al., 2015; Li et al., 2016) and showed increased intracellular persistence in

23


https://doi.org/10.1101/2022.12.11.519971
http://creativecommons.org/licenses/by/4.0/

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.11.519971,; this version posted December 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

osteoblasts (Bongiorno et al., 2021). Within the limits of our experimental settings, the relatively
lower cytotoxicity of ST239 and ST22 isolates indicates that the amplitude of this phenotype should
probably be considered within a genetic lineage. The inclusion of representative isolates per lineage,
with defined cytotoxicity levels, would identify cytotoxicity thresholds and perhaps allowing
identification of more subtle genomic changes affecting phenotypes. Moreover, some of the loci
detected by the convergence and GWAS analyses may also have more pronounced effects in some
lineages than in others. For instance, mutations affecting tarL and SecA2 may affect the export and
secretion of virulence factors that are only present in a subset of lineages, thus explaining the

absence of effect on cytotoxicity caused by the cognate transposon mutants (Figure 5F).

We developed InToxSa using Hela cells, a well-defined, adherent, and non-phagocytic cellular
model (Das et al., 2016; Stelzner, Hertlein, et al., 2020; Stelzner, Winkler, et al., 2020). We used
adherent epithelial cells because they can be maintained for extended infection periods and so
allow the acquisition of useful kinetic measurements of cytotoxicity. However, we also acknowledge
the limitation in using these cells in that they do not have the bactericidal modalities of the
phagocytes encountered by S. aureus in the bloodstream (Brinkmann, 2004; Chow et al., 2020;
Krause et al., 2019). Neutrophils are amongst the first immune cells to engage S. aureus during
bacteraemia (Brinkmann, 2004). However, neutrophils have a relatively short in vitro lifespan
following their purification from blood and would not be well-suited to an InToxSa-style assay
format (Ge et al., 2020; Rosales, 2020; Tak et al., 2013; Zwack et al., 2022). Polymorphonuclear cell
lines such as HL-60, exploited in other ex-cellulo assays, may represent an alternative to primary
neutrophils (McConville et al., 2022; Rose et al., 2015). These cells display some of the same
important biological functions as neutrophils, including neutrophil extracellular traps (NETs)
(Scieszka et al., 2020), critical in the clearing of S. aureus (Brinkmann, 2004; Greenlee-Wacker et al.,

2014; Zwack et al., 2022). While Pl-uptake by these cells could be used as a readout of their viability,
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HL-60 cells also don’t cover all the bactericidal enzymatic activities of primary neutrophils, a

potential limitation for their use (Nordenfelt et al., 2009; Yaseen et al., 2017).

We used InToxSa to identify S. aureus pathoadaptive mutations, enriched in bacterial populations
that are associated with human disease (e.g., upon transit from colonising to invasive). We
hypothesised that these mutations would support an intracellular persistence for S. aureus. Our
future research will focus on understanding how these genetic changes might be allowing the
bacterium to avoid cell-intrinsic surveillance systems, such as lytic programmed cell death; the self-
destructive processes restricting systemic progression of intracellular bacterial pathogens (Wanford
et al., 2022). Unlike well-described intracellular gram-negative bacteria, S. aureus does not have
effector proteins to block lytic programmed cell death (Soe et al., 2021). Pathoadaptive mutations
such as those arising in the agr locus might prevent cellular injuries caused by S. aureus toxins under
Agr control, that would be sensed by cell-intrinsic surveillance platforms such as the inflammasomes
and trigger cell death (Krause et al., 2019; Soe et al., 2021). Loss-of-function mutations in ausA,
preventing the biosynthesis of aureusimines might be confining S. aureus to a lysosomal
compartment where the bacteria have the potential to replicate, and conceivably evade host
surveillance mechanisms (Blattner et al., 2016; Flannagan et al., 2016; Grosz et al., 2014; Moldovan

& Fraunholz, 2019).

Conclusion

Current large-scale comparative genomics of S. aureus bacteraemia isolates can be further refined
by including underexplored pathogenicity traits such as the capacity of S. aureus to invade and
survive in host cells. We have addressed this poorly characterised trait of S. aureus pathogenicity by
creating the InToxSa assay that measures the intracellular cytotoxicity of many hundreds of S.

aureus clinical isolates at scale. We showcase the robustness and reproducibility of phenotypic
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outputs which, in combination with comparative and statistical genomics, have confidently
identified convergent mutations arising in agr and ausA genes that reduced the intracellular
cytotoxicity and increased the intracellular persistence of bacteraemia isolates during infection. The
adoption of the InToxSa methodology in future pheno-genomics studies would improve the
detection of pathoadaptive mutations supporting the persistence and relapse of S. aureus

infections.

Materials and Methods

S. aureus isolates

Clinical isolates were selected from a combined collection of 843 clinical isolates of S. aureus
bacteraemia (Giulieri et al., 2018) that was obtained from the vancomycin sub-studies of the
Australian and New Zealand Cooperative on Outcome in Staphylococcal Sepsis (ANZCOSS) study
(Holmes, JID 2012) and the Vancomycin Efficacy in Staphylococcal Sepsis in Australasia (VANESSA)
study (Holmes, BMC Infectious Diseases 2018). We selected 387 isolates to maximise the likelihood
to detect phenotype-genotype associations by sampling different lineages and enriching for

episodes where multiple isolates per patient were available. See supplementary file 3.

Whole genome sequencing

After subculturing strains twice from -80C glycerol stock, DNA was extracted using the Janus®
automated workstation (PerkinEImer) or manual extraction kits (Invitrogen PureLink genomic DNA
kit or the Sigma GenElute kit). Normalised DNA (at a concentration of 0.2 ng/ml) was prepared for
sequencing using Nextera® XT DNA (lllumina) and sequencing was performed on lllumina MiSeq and
NextSeq platforms. Reads quality was assessed based on mean read depth and percentage of S.
aureus reads as computed using Kraken2 (Wood et al., 2019). Reads were assembled using Shovill,

an assembly pipeline that optimises the Spades assembler (https://github.com/tseemann/shovill).
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Annotation was performed using Prokka, with a minimal contig size of 500 bp (Seemann, 2014).
Assembly and annotation metrics were used to further quality control of the reads. Genetic distance
between clinical isolates was calculated using Mash with a sketch size of 10,000 (Ondov et al., 2016).
We used the distance matrix generated by Mash to perform multidimensional scaling (MDS) using
the function ‘cmdscale()’ in base R. Multi-locus sequence type (ST) were inferred from the

assemblies using mist (https://github.com/tseemann/mlist). We assessed the correlation between

the most prevalent ST and the MDS axes using the get_correlations() function in the R package

bugwas (Earle et al., 2016).

Variants calling: single reference
Clinical isolates’ reads were mapped to internal reference BPH2947 (accession GCF_900620245.1),
a sequence type 239 reference genome that was generated from the collection. We used snippy,

v4.6.0 for mapping and variant calling, with default settings (https://github.com/tseemann/snippy).

The core genome alignment was constructed using Snippy-core. We defined core genome as
positions where at least 90% of the sequences had a minimum coverage of 10 reads and used
Goalign v0.3.4 and SNP-sites v2.5.1 to extract core genome positions. To infer a maximum likelihood
phylogenetic tree of the clinical isolates collection we ran IQ-TREE v2.0.3 using a GTR-G4 model. We
used HomoplasyFinder (Crispell, Microb Genomics 2019) to identify homoplasic sites based on the
consistency index. The consistency index was calculated with the following formula: (Number of

nucleotides at site -1)/Minimum number of changes on tree.

Construction of mutants by allelic exchange.
Engineering of convergent mutations in agrA, agrC, ausA, mfd, lysA, and cydA genes in the strain
BPH3370 was performed by allelic exchange as described previously (Monk & Stinear, 2021) using

oligonucleotides described in supplementary table 7 (outlining residues modified by convergent
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mutations). Upstream and downstream regions of each mutation were PCR amplified and gel
extracted and then a splice by overlap extension (SOE) PCR was performed to generate each insert.
Each insert was cloned into linearised pIMAY-Z vector by Seamless Ligation Cloning Extract (SLiCE)
cloning (Zhang et al., 2012) to generate six plasmids. Each plasmid was separately transformed into
E. coli strain IMO8B (Monk et al., 2015) confirmed by colony PCR, then purified and transformed into
S. aureus strain BPH3370 by electroporation. Mutant candidates were screened by Sanger
Sequencing (Australian Genome Research Facility, Melbourne, VIC, AUS) and positive clones were
validated by whole genome sequencing (WGS) on an lllumina Miseq or NextSeq550 platforms
(lumina, San Diego, CA, USA) to confirm their genotype. The resultant reads were mapped to the
BPH3370 reference genome and mutations were identified using snippy (v4.6.0,

https://github.com/tseemann/snippy).

Clinical isolates library preparation

The collection of clinical isolates was prepared to be readily inoculated from 96-well microtiter
plates. Clinical isolates were grown in 10 ml Brain Heart Infusion (BHI) broth (BD Bacto) from single
colonies to stationary phase. Briefly, a volume corresponding to 1-unit OD600 for each culture was
centrifuged at 10,000 x g for 5 min. The bacterial pellets were washed once with 500 uL of fresh BHI
and centrifuged again. The washed bacterial pellets were resuspended in 600 pL of storage media
(BHI containing 40% glycerol), vortexed briefly and 200 pL were distributed across 96-well microtiter
plates. To prevent operator and plate effect biases, the 387 isolates were randomly distributed with
each plate to include 29 distinct isolates, represented in non-contiguous technical triplicates. Built-
in controls for cytotoxicity were included in each plate. The wild-type JE2 strain was used as positive
cytotoxicity control and the BPH3757 strain, an ST239 isolate bearing the T88M agrA mutation

described in (Giulieri et al., 2018), as a non-cytotoxic control. Six wells were kept empty to monitor
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the viability of non-infected controls and account for residual Pl uptake. Plates were stored at -80°C.

Each plate was at least tested in 3 biological replicates.

Tissue culture
Hela-CCL2 cells (ATCC) were maintained and propagated in Dubelcco’s Modified Eagle Medium
(DMEM) + GlutaMAX (4.5 g/L D-Glucose and 110 mg/L sodium pyruvate) supplemented with heat-

inactivated 10% Foetal Bovine Serum (Gibco) and in absence of antibiotics.

InToxSa assay

S. aureus isolates were inoculated directly from stabbed frozen parsed plates stock into 100 uL of
BHI broth dispatched in flat bottom 96-well microtiter plates. Inoculated plates were incubated for
16 hours in a heat-controlled plate reader (CLARIOstar plate reader, BMG Labtech) set at 37°C.
Bacterial growth was assessed by OD®%° measurement every 10 min. The endpoint optical densities
of cultures were used to infer bacterial density (1-unit OD® corresponding to 5*10% bacteria/ml).
Bacterial cultures were standardised and serially diluted in DMEM to reach a multiplicity of infection
(MOI)~10. 100 pL of bacterial suspension were added to infect 40,000 HeLa-CCL2 cells grown (70%
confluence per well) in 96 well black plates, clear bottom (Sigma). Infection was synchronised by
centrifugation at 500 x g for 10 min (Eppendorf 5810R) at room temperature. Infected plates were
incubated 2h at 37°C and 5% CO2 to allow for S. aureus internalization. The infective media was
then discarded, and cells washed once with sterile PBS and further incubated 1h with 100 uL DMEM
containing cell impermeable antibiotics (80 pg/ml gentamicin (Baxter) and 10 pg/ml of lysostaphin
(Ambi)) at 37°C and 5% CO2 (Kim et al., 2019). This first step of antibiotic-protection assay was
followed by another using a lower antibiotic concentration (40 ug/ml gentamicin and 10 pg/ml
lysostaphin), in media supplemented with 5% FBS (Gibco), and 1 ug/ml propidium iodide, a live cell-

impermeant nucleic acid dye (Sigma). Plates were then incubated in the CLARIOstar Plus plate
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reader (BMG Labtech) set at 37°C and 5% CO2 throughout the infection (up to 20 h post-infection).
The fluorescence signal emitted by Pl positive cells was acquired every 6 min from each well
(excitation at 535 nm, emission at 617 nm, using the spiral well scanning mode with 50 flashes per
well). Non-infected control cells were permeabilised with 0.1% Triton X-100 to determine the

maximum level Pl uptake and Hela cell death.

High-content imaging

The Operetta high content microscope (PerkinElmer) was employed to accurately quantify and
analyse intracellular persistence at the single-cell resolution. HelLa-CCL2 cells were seeded in Cell
Carrier-96 black and optically clear bottom plates (PerkinElmer) to reach a density of 15,000 cells
per well at the day of infection. Hela cells were infected as described in the above section.
Post-infection, cells were washed twice with sterile PBS and fixed with 40ul of freshly prepared 4%
paraformaldehyde (PFA, ThermoFisher Scientific) for 10 minutes. Fixed cells were further washed
five times and stored at 4°C in PBS. Fixed cells were first permeabilised with 40ul of 0.2% Triton X-
100 for 3 minutes, washed thrice with PBS, and incubated one hour in 40ul of blocking solution (PBS-
BSA 3%). Bacteria were detected with polyclonal antibodies raised in rabbits against whole fixed
cells of S. aureus USA300 strains, JE2::spa, BPH2919 and BPH3672 (WEHI antibody technology

platform, https://www.wehi.edu.au/research/research-technologies/antibody-technologies). Sera

were used at 1:1000, diluted in PBS-BSA 3%, tween 0.05% for 5 hours at room temperature. Wells
were then washed thrice with PBS and incubated 45 min with a secondary antibody (donkey anti-
rabbit coupled to Alexa 488, 1:2000 dilution, Invitrogen) in PBS-BSA 3% containing 0.05% Tween-20
(Sigma) and 10% normal donkey serum (Abcam). Wells were washed thrice with PBS and incubated
with Phalloidin-TRITC (1:4000) and DAPI (1:4000) (Sigma) in PBS for 15 min. Finally, wells were
washed 5 times with PBS and covered with 200pul of PBS. Plates were covered with aluminium foil

and stored at 4°C until image acquisition on the Operetta microscope.
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Confocal microscopy

HelLa-CCL2 grown on coverslips were infected using the same conditions described above. Coverslips
were treated with PBS supplemented with 1% BSA and 0.2% triton-X100 for 20 minutes at room
temperature to permeabilize cells and incubated overnight in a blocking buffer (PBS supplemented
with 1% BSA and 0.1% Tween 20). Coverslips were then probed one hour at room temperature with
an anti-LAMP1 monoclonal antibody (1:250, clone H4A3 (mouse), Developmental Studies
Hybridoma Bank) and 1:1000 polyclonal anti-S. aureus diluted in blocking buffer supplemented with
10% normal goat serum (Abcam). Coverslips were washed thrice with then incubated overnight at
4°C with 1:2000 anti-rabbit (488), anti-mouse (647) secondary antibodies diluted in blocking buffer
supplemented with 10% normal goat serum. Coverslips were then incubated 7 minutes with DAPI
(1:5000), washed 5 times and mounted in Prolong Gold antifade (ThermoFisher Scientific). Samples

were imaged on the Zeiss LSM780 confocal microscope.

High-content imaging acquisition and analysis

Cells were analyzed using the Operetta CLS high-content analysis system (Perkin Elmer). For each
well, images were acquired in a single plane at 11 non-overlapping fields of view (675 x 508um /
1360x1024 pixels in size) using a 20x PLAN long working distance objective (NA 0.45). DAPI
fluorescence (Hela cell nuclei) was imaged with the filter set: excitation = 360—400nm, emission:
410-480nm; 50ms exposure). A488 fluorescence (S. aureus) was imaged with the filter set:
excitation = 460-490nm, emission = 500-550nm; exposure = 200ms. A594 fluorescence (Hela actin
stained by Phalloidin-TRITC) was imaged with the filter set "StdOrange1/Cy3" filter set (excitation:
520-550nm, emission: 560—630nm; 0.5-sec exposure).

Image processing and analysis were performed using the PhenoLOGIC™ machine learning option in

the Harmony software (Perkin Elmer, v4.1). Nuclei were segmented from the DAPI channel using
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the ‘Find Nuclei algorithm’ (Method B, Area filter > 40um?2, Common Threshold of 0.4). Cells were
segmented from the A594 channels using the Find Cells algorithm (Method C, Area filter > 100um?,
Common Threshold of 0.5). The A488 signals corresponding to S. aureus were further processed
using a sliding parabola (curvature, 50 pixels) and Gaussian filter (filter width, 1 pixel) to remove
noise and improve the signal-to-noise ratio. S. aureus were segmented by applying the Find Spots

algorithm (Method A, Relative Spot Intensity 0.280, Splitting Co-efficient 0.5).

Processing of Pl fluorescence signals

For every 96 well plate, the Pl uptake data for each well at each timepoint were standardised to the
JE2 strain control using Proportion Of Maximum Scoring (POMS): (Pl uptake — min(Pi uptake [JE2]))
/ range(Pl uptake [JE2]). Experiments with less than two JE2 replicates available per plate were
excluded from our analyses. Standardized data were used to fit a cubic smoothing spline (Little,
2013) using the R function smooth.spline(). Technical replicates within each plate were classified as
outliers and excluded if > 10% of their timepoint values differed by more than 1.5 times the
interquartile range (Tukey method), between the fitted value and the mean for a given isolate. After
excluding outlier replicates, fitted data were used to calculate the following Pl uptake parameters:
area under the curve (AUC), maximum PI uptake rate (rmax), peak PI uptake (umax), time to
maximum Pl uptake rate (t(rmax)), time to peak Pl uptake (t(n max)), trough PI uptake, time of

trough, and final Pl uptake.

Dimensionality reduction of Pl uptake data

Principal component analysis was performed using the ‘dudi.pca()” function in the R package
‘adegenet’ and the randomForest package in R was used for fitting an unsupervised random Forest
model. We used the similarity matrix generated by the model to define similarity cluster of PI

uptake. We used the output of the random forest model to calculate the importance of each PI
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uptake parameter defined as mean decrease in Gini index and mean decrease in accuracy (Breiman,

2001).

Pl uptake GWAS

We transformed the mean Pl-uptake AUC data using the automated normalisation package
bestNormalize in R. A genome-wide association study (GWAS) using the normalised AUC data and
the 158,169 core genome variants (all positions where at least 90% of the strains had at least 10
reads coverage, see above) obtained after mapping isolates reads to reference genome BPH2947.
To correct for the population structure, we used the factored spectrally transformed linear mixed
models (FaST-LMM) implemented in pyseer v1.3.6 (Lees et al., 2018). Random effects in Fast-LMM
were computed from a kinship matrix based on the core genome SNPs generated by Gemma v0.98.1
(Zhou and Stephens, 2012). The Bonferroni method was used to correct P values for multiple testing.
We performed the GWAS using single variants and the gene-burden test implemented in pyseer.
We excluded synonymous mutations for single variants and gene-burden GWAS. As suggested in
the pyseer documentation (https://pyseer.readthedocs.io/en/master/index.html), we kept only
mutations with a minimum allele fraction (MAF) of 0.01 and at least two independent acquisitions
across the phylogeny in the single variants GWAS and only rare mutations (MAF < 0.01) in the gene-
burden GWAS. For consistent annotation of mutations, we identified BPH2947 genes homologs
using BLASTP and annotated FPR3757 genes using aureowiki (Fuchs et al., 2018) and Microbesonline
(Alm et al.,, 2005). The GWAS analysis was run using a customised in-house pipeline

(https://github.com/stefanogg/CLOGEN).

Determination of genetic pairs with contrasting Pl uptake
Isolate pairs for the convergent evolution analysis were identified by screening pairs separated by

less than 200 mutations distance for statistically significant differences in the Pl uptake AUC (Mann-
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Whitney test), wherein an isolate causing low Pl uptake (isolate 2) was compared to a reference
isolate causing higher Pl uptake (isolate 1). The genetic distance between closely related isolates
was calculated using Snippy and is based on the number of variants identified when mapping the
reads of isolate 2 on the draft assembly of isolate 1 (Higgs et al., 2022). To avoid biases related to
assembly errors and uneven reads coverage between the two isolates, variants calls were filtered

as previously described (https://github.com/stefanogg/staph adaptation paper) (Giulieri,

Guérillot, Duchene, et al., 2022). Non-redundant and phylogenetically independent genetic pairs

were identified by manual inspection of the phylogenetic tree.

Genetic pairs analysis

Mutations identified in genetic pairs and filtered as described above were further characterised
using a multilayered annotation strategy as previously described (Giulieri, Guérillot, Duchene, et al.,
2022). Firstly, mutated coding regions (amino-acid sequences) across draft genomes were clustered
using CD-HIT. We then used BLASTP to identify homologs of each cluster within the S. aureus
USA300 FPR3757 reference genome that was annotated using the AureoWiki repository (Fuchs et
al., 2018), with a 90% identity and 50% coverage threshold. As genetic pairs were phylogenetically
independent and non-redundant, emergence of the same mutation or mutations in the same locus
in multiple pairs indicated convergent evolution and was suggestive of positive selection. Based on

this, we ranked USA300 FPR3757 homologs according to the number of pairs with mutations.

Code and data availability

Scripts to process Pl uptake data and to perform genomic analyses are available on github at

https://github.com/stefanogg/InToxSa. The code for genomic analyses is available on

https://github.com/stefanogg/CLOGEN (GWAS analysis),
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and on https://github.com/stefanogg/staph adaptation paper (comparative genomics of genetic

pairs).

Whole genome sequences of the 387 clinical strains are available in the European Nucleotide

Archive under Bioproject accession number PRJEB27932.

Aureusimine B identification

Bacterial extracts were isolated from 30 ml cultures grown in TSB at 37°C overnight under agitation.
Bacterial cells were pelleted by centrifugation at 4000 x g during 30 min and the culture
supernatants were sterilized by passage through a 0.22mM filter. For each strain, 10 millilitres of
supernatant were added to an equal volume of ethyl acetate in glass tubes, vortexed and allowed
to extract at room temperature overnight. Ethyl acetate extracts were dried in vacuo. Dried ethyl
acetate extracts were resuspended in 100 ml methanol and 2ml of each sample was analyzed by
HPLC using the Shimadzu Prominence HPLC system coupled to a SPD-M20A diode array detector.
The column oven (CTO-20A) was set to 40°C and aureusimine B was separated on Kinetex C18, 75 x
3mm, 2.6 um column (Phenomenex). Purified aureusimine B was used as reference standard
(Bioaustralis Fine Chemicals). All used chemicals were of analytical grade.

Samples were run with water, 0.1% TFA (solvent A) and acetonitrile (solvent B). The gradient elution
was performed on the HPLC at a flow rate of 0.5ml/min as follows: 10% B for 3.5 mins, 10-100% B

over 12.5 mins, 100-10% B over 1 min, then 10% B for 7 mins (total run time, 24 mins).
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Figure 1—Supplementary figure 1.
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Summary of all PI uptake parameters across five experimental replicates
Violin plots represent the density distribution of all five replicates and the nested
box plots show the distribution of within plate replicates (3-5 technical replicates
per plate replicate) for t area-under-the-curve representing the total of PI uptake
over time [AUC], peak PI uptake [u™*], the maximum rate in PI uptake [r™**], the
time to rmax [t(rmax)]), trough and time to trough. Error bars represent the standard
deviation across the five independent experiments.
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Figure 4—Supplementary figure 1.
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Principal component analysis of mean value of PI uptake parameters.
(A) Scatter plot of the first two principal components, representing 67% of the variance. Dots
are coloured based on the clustering obtained from the proximity matrix of the unsupervised

model.

(B) Loading plot showing the contribution of each PI uptake parameter to the first two PCA

components.
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Figure 4—Supplementary figure 2.
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Lineage effects of cytotoxicity (AUC of PI uptake).

Lineages were calculated using multidimensional scaling on a distance matrix generated
by Mash. The association with the phenotype was calculated by computing the fixed effect
of the first 10 components by linear regression.
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Figure 4—Supplementary figure 3.
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Interplay between multidimensional scaling (MDS) axes, sequence types and PI uptake.

(A)Heatmap showing the correlation between the first ten MDS axes and the fifteen most
prevalent sequence types (ST). Here, MDS was applied to a genetic distance matrix
calculated from Mash sketches (10,000 hashed k-mers per set). The correlations were
calculated using the R package bugwas.

(B) Ridge plots depicting the PI uptake AUC distribution for the fifteen most prevalent STs.
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Figure 6—Supplementary figure 1.
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affect its intracellular cytotoxicity.

Mutation effect
. truncating

non-synonymous

Wildtype
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Introduction of convergent cydA, lysA and mfd mutations in the clinical isolate BPH3370 do not

(A) Position and nature of convergent mutations identified in the genes cydA, lysA and mfd. For each
gene, the amino acid position affected by mutations is shown on the x-axis for each gene. Convergent
mutations causing a significant contrasting PI uptake phenotype is colored according to its

consequence on protein function: non-synonymous (orange) and truncating (characterized by the
introduction of a frameshift (fs) or a strop codon (*) (maroon).
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