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Abstract 22 
Information theory provides a popular and principled framework for the analysis of neural data. It allows 23 
to uncover in an assumption-free way how neurons encode and transmit information, capturing both 24 
linear and non-linear coding mechanisms and including the information carried by interactions of any 25 
order. To facilitate its application, here we present Neuroscience Information Toolbox (NIT), a new 26 
toolbox for the accurate information theoretical analysis of neural data. NIT contains widely used tools 27 
such as limited sampling bias corrections and discretization of neural probabilities for the calculation of 28 
stimulus coding in low-dimensional representation of neural activity (e.g. Local Field Potentials or the 29 
activity of small neural population).Importantly, it adds a range of recent tools for quantifying information 30 
encoding by large populations of neurons or brain areas, for the directed transmission of information 31 
between neurons or areas, and for the calculation of Partial Information Decompositions to quantify the 32 
behavioral relevance of neural information and the synergy and redundancy among neurons and brain 33 
areas. Further, because information theoretic algorithms have been previously validated mainly with 34 
electrophysiological recordings, here we used realistic simulations and analysis of real data to study how 35 
to optimally apply information theory to the analysis of two-photon calcium imaging data, which are 36 
particularly challenging due to their lower signal-to-noise and temporal resolution. We also included 37 
algorithms (based on parametric and non-parametric copulas) to compute robustly information 38 
specifically with analog signals such as calcium traces. We provide indications on how to best process 39 
calcium imaging traces and to apply NIT depending on the type of calcium indicator, imaging frame rate 40 
and firing rate levels. In sum, NIT provides a toolbox for the comprehensive and effective information 41 
theoretic analysis of all kinds of neural data, including calcium imaging. 42 

43 
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Introduction 44 
Information theory (IT), is the principled mathematical theory of communication [1]. Its use as analysis 45 
tool to measure how neurons encode and transmit information has been key to understanding brain 46 
functions such as sensation, spatial navigation, and decision-making. Mutual information (MI), the key 47 
quantity of IT, measures how well variables important for cognitive functions, such as sensory stimuli, are 48 
encoded in the activity of neurons, and how information is transmitted across brain regions. Its use has 49 
many advantages [2-8]. It provides a single-trial measure of information encoding and it is thus more 50 
relevant for single-trial behavioral or perceptual functions than trial-averaged measures of 51 
discriminability. It quantifies information in units of bits, a meaningful and interpretable uncertainty-52 
reduction scale. It allows largely hypotheses-free measures of information encoding that place upper 53 
bounds to the performance of any decoder, and that can potentially capture the contributions of both 54 
linear and non-linear interactions between variables at all orders. Because of its generality, it can be 55 
applied to any type of brain activity recordings. Also, because neural systems may need to maximize 56 
information encoding for evolutionary reasons, applications of IT to empirical data allows a direct 57 
comparison between the predictions of normative neural theories and real neural data [5, 9]. Because of 58 
these advantages, information theory has deeply influence neuroscience over many years [5, 7, 9-13].  59 

Earlier work using information theory to analyze empirical neuroscience data has focused on low-60 
dimensional measures of neural activity such as such as single neurons, small neural populations or 61 
aggregate measures such as LFPs/EEGs (because of the systematic errors in estimating information with 62 
the small numbers of trials that can be collected empirically are exacerbated with high-dimensional neural 63 
responses [14]). It has also focused mostly on information encoding, regardless of the downstream use of 64 
the encoded information. Seminal studies of this kind have used electrophysiological recordings of neural 65 
activity to demonstrate the role of single-neuron spike timing for the encoding of sensory information [6, 66 
7, 15-17]. Other studies have provided the foundations of how trial-to-trial correlations between neurons 67 
shape the encoding of information and create redundancy and synergy in pairs of neurons [18-20].  68 
Further studies have examined how information is encoded in the neural oscillations found in aggregate 69 
measures of neural activity such as Local Field Potentials (LFPs) [21, 22]. Several algorithms have been 70 
proposed for the application of IT to these low-dimensional neural data [6, 23, 24]. Their ability to provide 71 
accurate and data-robust information estimates has been extensively validated and demonstrated on 72 
electrophysiological recordings, including on spike trains of small populations and on LFPs and EEGs  [24-73 
27], and their use and dissemination has been aided by software toolboxes [25, 28-32].  74 

Over the last decade, due to major progress in the simultaneous recording from many neurons and/or 75 
brain areas, and in the measure and quantification of behavior [33], neuroscience research [34-36] – and 76 
consequently neuroscientific IT – has evolved to investigate how behavior and information processing 77 
emerge from the interaction and communication between neurons and across brain areas. For example, 78 
recent work has coupled IT with dimensionality-reduction techniques to study how information is 79 
encoded in populations of tens to hundreds of neurons [37-46], and of how patterns of synergy between 80 
pairs of neurons are organized within larger networks [20]. Studies have also characterized the transfer 81 
of information between neural populations [47, 48] and between brain areas [49-51]. Importantly, 82 
neuroscientific IT has also been used to measure the information carried by neural activity not only about 83 
sensory stimuli, as in traditional studies, but also about behaviorally relevant signals such as choice and 84 
reward [45]. Moreover, Partial Information Decompositions (PID) [52] has extended Shannon’s IT to 85 
quantify how much of the information encoded in neural activity is used to inform behavioral choices 86 
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during perceptual discriminations [53, 54] and synergistic or redundant transfer of information across 87 
brain regions [49]. However, progress in using latest IT advances in neuroscience to address large 88 
populations, behavioral relevance and information transmission, synergy and redundancy with PID, has 89 
been slowed by the absence of comprehensive toolboxes including all or most these recent tools.  90 

Key to the recent progress in understanding the relevance of neural population activity for behaviors has 91 
been the application of 2-Photon (2P) fluorescence microscopy [55-57] to image the activity of 92 
populations of neurons in animals performing cognitive tasks [58-63], even over days or months [64-68]. 93 
However, applying information theory to 2P imaging recordings is particularly challenging. 2P calcium 94 
imaging measures neural activity only indirectly (by the optically recorded fluorescence signal changes 95 
that originate from changes in calcium concentrations related to changes in neural activity), and it 96 
generally has low SNR and limited temporal resolution. Understanding how to optimize the use of 97 
information theory to analyze large-scale recordings of populations with 2P imaging during behavior 98 
would greatly aid progress in studying neural population coding.  99 

Here, we introduce the Neuroscience Information Toolbox (NIT) to specifically address both the need of 100 
having a single open-source toolbox including many recent advances in IT tools for neuroscience and pf 101 
optimizing its use for 2P calcium imaging. NIT provides a comprehensive set of IT tools (including MI, 102 
directed communication measures, PID tools, binned and copula probability estimators, and limited 103 
sampling bias corrections) applicable to both discrete and continuous measures of neural activity. It thus 104 
can be used with both direct electrophysiological recordings of action potentials and with indirect 105 
measures of neural activity, such as LFP, EEG, fMRI and 2P imaging. Algorithms that we implemented and 106 
optimized in NIT were already validated on electrophysiological recordings [25-27]. However, here we 107 
study extensively, both with realistic simulations and with analysis of real data, how best to extract from 108 
2P imaging data information about variables of interest (sensory stimuli, behavioral choice, and/or the 109 
underling firing levels of neurons) and how best to tune algorithms for information measures and for 110 
calcium imaging processing depending on factors including imaging frames, calcium indicators, signal-to-111 
noise ratio of fluorescence and neural firing regimes. 112 

 113 

Results 114 

NIT: a complete toolbox for information theoretical analysis of neural data 115 
We present NIT, the Neuroscience Information Toolbox. NIT is a comprehensive package of open-source 116 
tools for information-theoretical analysis of neuroscience data. NIT is fully documented, and its MATLAB 117 
interface allows easy integration with custom built analysis pipelines.  118 

Features and structure of NIT are shown in Figure 1. At the core of the software sits a set of modules for 119 
the calculation of information theoretic quantities. The software consists also of a set of routines for 120 
applying dimensionality reduction and neural decoding strategies. Some of the computations are 121 
performed through ad-hoc developed interfaces to external libraries which are distributed with the code, 122 
making NIT a self-contained toolbox. The key features and functions of the software are briefly described 123 
in the following sections. 124 

In the following, we first list and explain the various information theoretic functions and features included 125 
in the toolbox. We then introduce the detailed simulations of 2P calcium imaging recordings together with 126 
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the results of the parametric study used to discuss the limitations of extracting information from those 127 
data as opposed to electrophysiology. Finally, we apply NIT to experimental data, first to validate what 128 
we have observed on synthetic data, as well as to illustrate how the methods implemented in NIT can be 129 
effectively used to reveal a higher level of detail of the information processing principles in the brain.  130 

 131 

Figure 1. Structure of Neuroscience Information Toolbox (NIT) The toolbox comprises modules (black boxes) for calculation of 132 
information-theoretic quantities and dimensionality reduction. External libraries (green boxes) are interfaced (arrows) with some 133 
of NIT native modules to integrate their functionalities. 134 

 135 

Information theoretic algorithms and functions implemented in NIT 136 

Mutual Information 137 
MI between two random variables 𝑅 (in this example the neuronal response) and 𝑆 (in this example an 138 
external stimulus) measures how well a single-trial knowledge of one variable reduces our uncertainty 139 
about the value of the other variable is defined as follows [1]: 140 

 
𝑀𝐼(𝑅; 𝑆) = ) 𝑝(𝑟, 𝑠)𝑙𝑜𝑔! 1

𝑝(𝑟, 𝑠)
𝑝(𝑟)𝑝(𝑠)

2
"∈$,&∈'

 (1) 

where 𝑝(𝑠, 𝑟) is the joint probability of observing in a given trial stimulus s and response r, and 𝑝(𝑠),𝑝(𝑟) 141 
are the corresponding marginal probabilities. 𝑀𝐼(𝑆; 𝑅) is measured in units of bits, it is nonnegative and 142 
it is zero if and only if 𝑆 and 𝑅 are statistically independent. One bit of information means that the 143 
knowledge of one variable halved the uncertainty about the other variable., 𝑅 can be either univariate 144 
(e.g. time-averaged single neuron activity) or multivariate (e.g. neural population activity, with each 145 
dimension of 𝑅 quantifying the activity of each neuron in a population). NIT accepts either univariate or 146 
multivariate entries for both responses and stimuli (useful when several stimulus features are varied 147 
across trials). The value of MI is computed once these probabilities are measured from the data over 148 
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repeated experimental trials and inserted into Equation (1). Different methods to compute MI from real 149 
data typically differ depending on how these probabilities are estimated from the data.  Three different 150 
MI calculation methods are provided in NIT.  151 

 The first one, the direct or plug-in method, consists in estimating the probabilities in Equation (1) by 152 
simply counting the number of occurrences of the discrete values of both 𝑅 and 𝑆 across repeated 153 
presentations of the stimulus. The plug-in method does not make assumptions on the shape of the 154 
probability distributions and has a low computational cost. To make the plug-in method applicable to 155 
cases in which 𝑅 and/or 𝑆 are continuous (e.g. 𝑅 will be continuous if is extracted from unprocessed 2P 156 
calcium traces or from LFP traces), NIT has two built-in discretization functions, that bin data in equally-157 
populated or equally-spaced classes. Equally-populated binning maximizes the entropy available in the 158 
neural response for a given number of bins and thus often leads to larger information values, whereas 159 
equally-spaced binning preserves the shape of the original probability distribution. An interface is 160 
provided for inserting into the workflow other user-defined binning methods.  161 

A second method, applicable only when the underlying distributions of the data are Gaussian, relies on 162 
fitting a Gaussian probability density function to the data. This method, suitable for continuous data not 163 
discretized in post-processing, is less prone to limited sampling bias (see below) than the direct plug-in 164 
method. However, it is applicable only when signals are approximately Gaussian. This may hold in specific 165 
instances for aggregated electrical signals (LFP, EEG, MEG) [21, 25, 30], but it does not hold for 2P calcium 166 
traces of individual cells [69]. 167 

Finally, NIT implements also a Copula estimator, including both parametric Copulas [30, 70]   and Non-168 
Parametric Copula (NPC) MI estimation [71]. Joint multi-dimensional probabilities distributions can be 169 
expressed in terms of marginal probabilities and a copula, a mathematical term that specifically describes 170 
the statistical dependences between the variables (see Materials and methods). The MI between two 171 
variables depends on the copula but not on the marginal probabilities. This allows to estimate MI without 172 
calculating the latter [30, 70, 71]. In the NPC approach, copulas are estimated non-parametrically with 173 
Kernel methods rather than with parametric forms, allowing largely assumption-free information 174 
estimations and avoiding potential mis-estimations of information due to wrong parametric assumptions 175 
being used [71]. Estimating MI with NPC has a much higher computational cost compared to the direct 176 
plug-in method, at the advantage of being more accurate and not requiring the discretization of 177 
continuous variables (although it can be applied also to discrete variables). As an alternative, we also 178 
implemented parametric copula estimator, which use parametric assumptions for the joint probability 179 
density estimators. This has an advantage in terms of computational costs but it may become highly 180 
inaccurate when the Gaussian assumptions are not met  [71]. For continuous margins, we provide 181 
implementations of the normal and the gamma distributions. For discrete margins, we provide the 182 
Poisson, binomial and negative binomial distributions. As bivariate copula building blocks, we provide the 183 
Gaussian, student and Clayton families as well as rotation transformed Clayton families [70].  184 

Mutual Information breakdown to quantify the information content of neuronal correlations 185 
The information about the stimulus encoded in the activity of a population of individual neurons depends 186 
on the strength and structure of correlations among neurons [8, 35]. NIT allows to quantify how 187 
correlations affect neural population encoding of the stimulus by using the Information Breakdown 188 
formalism [19]. The MI between the stimulus and the neuronal population response 𝑅 (a multi-189 
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dimensional vector containing the activity of each neuron in a given trial) is divided in components that 190 
capture the different ways in which correlations affect neural population information, as follows:  191 

 𝑀𝐼(𝑅; 𝑆) = 	𝑀𝐼()* +𝑀𝐼&)+	&)- + 	𝑀𝐼./001)*2 +𝑀𝐼./001234 (2) 

where 𝑀𝐼()*, the linear term, is simply the sum of the 𝑀𝐼 about the stimulus carried by the individual 192 
neurons. The other terms, capturing the differences between 𝑀𝐼(𝑅; 𝑆) and 𝑀𝐼()*	 reflect the effect of the 193 
statistical dependencies between neuronal responses. Such dependencies are traditionally 194 
conceptualized as signal correlations  (correlations of the trial-averaged neural responses across different 195 
stimuli, quantifying the similarity of tuning to stimuli of different neurons) and noise correlations 196 
(correlations in trial-to-trial variability of the activity of different over repeated presentations of the same 197 
stimulus, quantifying functional interactions between neurons after discounting the effect of similarities 198 
in stimulus tuning), see e.g. [35, 72, 73]. The term 𝑀𝐼&)+	&)-, always less than or equal to zero, quantifies 199 
the reduction of information (or increase in redundancy) due to signal correlations (that is, because 200 
neurons have partly similar response profiles to the stimuli). 𝑀𝐼./001)*2  , a term that can be either 201 
positive or negative, quantifies the increment or decrement of information due to the relationship 202 
between signal correlation and noise correlation. The term is positive (providing synergy) if signal and 203 
noise correlations have opposite sign, while is negative (providing redundancy) if signal and noise 204 
correlations have the same sign [19]. 𝑀𝐼./001234 is a non-negative term that quantifies the information 205 
added by the stimulus modulations of noise correlations [19]. The information breakdown includes as a 206 
sub-case other types of decomposition and quantifications of the effect of correlations in population 207 
activity. For example, 𝑀𝐼./001)*2 +𝑀𝐼./001234 quantifies the total effect of noise correlations on 208 
stimulus information and equals the quantity ∆𝐼*/)&3 defined in [74]. Similarly, 𝑀𝐼()* +𝑀𝐼&)+1&)- 209 
quantifies the information that the population would have if all single neurons properties were the same 210 
but noise correlations were absent, and equals the quantity 𝐼*/1*/)&3 of [74]. Finally, 𝑀𝐼./001234 equals 211 
the quantity ∆𝐼 introduced in [75] as  an upper bound to the information that would be lost if a 212 
downstream decoder of neural population activity would ignore noise correlations. The information 213 
breakdown formalism and the related quantities that can be obtained from it have been used in many 214 
studies to empirically characterize the effect of correlations  [8, 16, 20, 38, 76-79].  215 

Partial Information Decomposition 216 
Other methods to decompose the contributions of multivariate dependencies between neurons to 217 
information carried by populations include the Partial Information Decomposition (PID) [52]. In the form 218 
implemented in NIT, PID is applied to three stochastic variables (𝑅5, 𝑅!, 𝑆) (e.g. two neurons with 219 
responses 𝑅5 and  𝑅! respectively, and a stimulus variable 𝑆). The method decomposes the information 220 
that two of them (called source variables, in the example above the two neuronal responses) carry about 221 
the third one (called target variable, in the example above the stimulus), in four non-negative and well-222 
interpretable terms called “atoms”, as follows: 223 

 𝑀𝐼((𝑅5, 𝑅!); 𝑆) = 	𝑆𝐼((𝑅5, 𝑅!); 𝑆) 	+ 𝐶𝐼((𝑅5, 𝑅!); 𝑠) + 𝑈𝐼((𝑅5,\𝑅!); 𝑆)
+ 𝑈𝐼((𝑅!,\𝑅5); 𝑆) 

(3) 

In Equation (3): 𝑆𝐼((𝑅5, 𝑅!); 𝑆)	 is the shared (redundant) information that 𝑅5 and  𝑅! carry about 𝑆; 224 
𝑈𝐼((𝑅5,\𝑅!); 𝑆) is the unique information about 𝑆 that is carried by 𝑅5 but is not carried by 𝑅!; 225 
𝑈𝐼((𝑅!,\𝑅5); 𝑆) is the unique information about 𝑆 only present in 𝑅! but not in 𝑅5; and 𝐶𝐼((𝑅5, 𝑅!); 𝑆) 226 
is the complementary (synergistic) information about 𝑆 that is available only when 𝑅5 and 𝑅! are 227 
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measured simultaneously. NIT calculates the above PID three-variate decomposition using the so-called 228 
BROJA definition [80] through a specifically designed interface to the BROJA-2PID algorithm [81].  229 

Intersection Information 230 
One application of PID is the measure of Intersection Information (𝐼𝐼, see [82, 83]). II applies to tasks such 231 
as perceptual decisions in which in each trial a stimulus (𝑆)  is presented, neural activity (𝑅) is recorded 232 
and the subject’s perceptual report of which stimulus was presented is measured as a behavioral choice 233 
(𝐶). 	𝐼𝐼 measures, in bits, how much of the stimulus information carried by neural activity 𝑀𝐼(𝑅; 𝑆) is  234 
used to inform the behavioral choice, and is defined in terms of PID as follows [83]: 235 

 𝐼𝐼	 = 	𝑚𝑖𝑛(𝑆𝐼((𝑆, 𝑅); 𝐶), 𝑆𝐼(𝐶, 𝑅); 𝑆) (4) 

As shown in Ref [83],  this expression quantifies the part of information carried by neural activity that is 236 
shared between stimulus and choice, and that at the same time is part of the overall information between 237 
stimulus and choice.  𝐼𝐼	is non-negative, is bounded by the stimulus and choice information carried by 238 
neural activity, and by the information between stimulus and choice. 𝐼𝐼	has been used in several studied 239 
to determine the behavioral relevance of aspects of neural population codes (e.g. [39, 54, 83]). NIT has a 240 
specifically built module for the calculation of 𝐼𝐼 with the plug-in probability estimation method.  241 

Measures of directed information transfer between neurons or brain regions 242 
NIT implements also the most used information-theoretic measure of directed information transfer 243 
between different brain regions or neurons: Transfer Entropy (TE) [84], equivalent under the definition 244 
we use to Directed Information [85]. TE is an information-theoretic measure of the causal dependency 245 
between the time series of a putative sender 𝑋 and the time series of a putative receiver 𝑌.  It is based on 246 
the Wiener-Granger causality principle, stating that a signal 𝑌 is causing 𝑋 if the knowledge of the past of 247 
𝑌 reduces the uncertainty about the future of 𝑋. Given the time series 𝑋 and 𝑌 of two signals 248 
simultaneously recoded over time from different neurons or brain regions, TE is defined as: 249 

 𝑇𝐸(𝑋 → 𝑌) = 𝑀𝐼(𝑌403&3*6; 𝑋47&6|𝑌47&6) (5) 

Where 𝑌403&3*6  is the value of signal 𝑌 at the present time, and 𝑋47&6and 𝑌47&6are the values of 𝑋 and	𝑌 250 
at a set of 𝑘 past times. TE computes the MI information that the past values of 𝑋 carries about the present 251 
value of 𝑌, discounting the information that the past of 𝑌 carries about its own present value. These 252 
measures of directed information transfer have been widely used to characterize communication 253 
between brain regions (see e.g.[47, 48, 50, 86]). 254 

NIT allows calculating TE using the direct plug-in method. It allows to define the set of k past value used 255 
to compute TE. In most applications, TE is computed using one past value for X and Y, defined by the delay 256 
between the selected past value and the present [48, 87, 88]. However, NIT allows to include past values 257 
over a range of different delays from the present. NIT features also an optimized routine for fast 258 
calculation of TE on spike trains, taking advantage of the reduced probability space deriving from binary 259 
signals [89].  260 

Note that NIT implements also other more recent extensions of directed information calculations derived 261 
from the PID. For example, it implements also the recently introduced Feature-specific Information 262 
Transfer (FIT) [90]. FIT extends the previously described TE by computing not only the total amount of 263 
directed information that is transmitted from the putative sender 𝑋 and receiver 𝑌, but quantifying how 264 
much of this total transmitted information relates to a specific stimulus feature of interest 𝑆. 265 
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Conceptually, FIT quantifies how much of the MI encoded by the present activity of 𝑌 was shared 266 
(redundant) with information about 𝑆 present already in the past of 𝑌 while being unique with respect to 267 
the stimulus information that was encoded by past activity of 𝑌 [90].  268 

Importantly, NIT allows computing also other more refined directed information transfer measures  269 
derived from PID which can be expressed in terms of  appropriate combinations of MI quantities, such as 270 
those introduced in Refs [49, 91].   271 

Limited sampling bias corrections 272 
Accurate estimation of information quantities depends on accurate estimation of probabilities. Measuring 273 
probabilities from a limited number of experimental trials leads to statistical fluctuations in the estimated 274 
probabilities, which in turn leads to both statistical and systematic errors in information measures. The 275 
systematic error, or limited sampling bias, is due to the non-linear dependence of the information on the 276 
probabilities [14]. In most conditions, the limited sampling bias is positive, meaning that limited sampling 277 
tends to overestimate the MI [14, 92]. Intuitively, this is because differences of stimulus-specific neural 278 
response probabilities generated by random fluctuations due to limited sampling result through the MI 279 
equation as genuine, information -bearing features. The amount of bias is typically higher for less 280 
informative variables, and it decreases approximately linearly with the number of trials [14, 93].  Thus, 281 
although the limited sampling bias is present in all calculations of MI, it is particularly prominent for 282 
neuroscience experiments because of the limited number of trials that can be collected and because of 283 
the relatively small information values of neural activity (in our experience,  in typical experiments with 284 
subjects performing tasks while recording brain activity, it is extremely rare than more than ~100-20 trials 285 
per stimulus or task condition are available, and information values of individual neurons are usually much 286 
smaller than one bit).  287 

Fortunately, several bias correction procedures have been developed, with reduce substantially the 288 
limited sampling bias from neural measures. In case of stimulus-response information 𝑀𝐼(𝑆; 𝑅), Equation 289 
(1), most measures work well when the number of trials per stimulus is at least 4-10 larger than the 290 
number of possible values of response 𝑅 [14, 23, 28]. This is a rule of thumb that is useful to set the 291 
number of bins used to discretize the neural response R. NIT is equipped with a sets of well-used for 292 
limited sampling bis correction in MI measure: Panzeri-Treves [23], linear and quadratic extrapolation 293 
[94], the shuffling procedure [14], the Best Upper Bounds (BUB) estimator[95], and the bootstrap 294 
correction [96]. An analytical bias correction method is specifically available for the Gaussian method [25]. 295 
Interfaces for easy plug-in of user-defined bias correction routines are available. A complete list of the 296 
compatibility between information-theoretic measures, bias correction strategies and information 297 
estimation methods implemented in NIT is provided in Supplementary table 4.  298 

One point of interest that we found while running the NIT on simulated data is that, while the size of the 299 
limited sampling bias for mutual information follows well the analytical predictions of analytical 300 
polynomial expansions of the bias in terms of the inverse of the numbers of trial (e.g. [14]), the bias of II 301 
(which is not a mutual information quantity, but only a part of a mutual information quantity) was in 302 
general smaller than that predicted for mutual information with the same numbers of trials and response 303 
binning. In measures comparing mutual information with PID or II quantities, we thus recommend (as we 304 
did in Figure 8) to evaluate and compare the bias of PID and mutual information quantities in stretches of 305 
data in which we know information must be null (e.g. pre-stimulus time windows for stimulus information 306 
or II) and use those as estimates of bias values.   307 
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When analyzing multi-dimensional data (e.g. the simultaneous responses of neurons in a population), the 308 
number of possible responses of the population increases exponentially with the size of the population. 309 
For example, the binary activity of a population of 10 neurons recorded simultaneously can take 2^10 310 
states, which would require an unrealistic number (~10000) of trials for accurate limited sampling 311 
correction. This makes it impossible to compute directly information from large populations [14, 97]. 312 
Dimensionality reduction and neural decoding algorithms, several of which are embedded as modules in 313 
NIT (Figure 1) embedded in NIT allow to analyze highly multi-dimensional data with a limited amount of 314 
trials. 315 

Dimensionality reduction and neural decoding 316 
Dimensionality Reduction (DR) methods are a precious tool for performing information-theoretical 317 
analyses of multi-dimensional neural data, as they allow to reduce the dimensionality of the response 318 
space 𝑅 in a meaningful way at the expenses of small information losses.  319 

Within NIT we implemented, and coupled with the information theoretic calculation, many such DR 320 
methods that have been popular in the analysis of neural activity. The pipeline first maps the multi-variate 321 
neuronal response 𝑅 to a lower-dimensional space 𝑅C, then NIT computes the mutual information 322 
𝑀𝐼(𝑅C; 𝑆) between the reduced neural variables 𝑅C  and 𝑆. The compression of the neural response space 323 
cannot increase the information and may lead to some information loss because of the data processing 324 
inequality [98]. However, it allows a more reliable sampling of the probability space with the limited 325 
number of experimental trial available.  326 

The first class of DR methods implemented in NIT can be described as supervised decoding methods. 327 
These methods predict in each trial the most likely value of the stimulus S that was presented given the 328 
observation of the neural response 𝑅 in that trial. This data compression for information calculations is 329 
popular [38, 39, 44] as effectively it reduces the response 𝑅 to the smallest space that can in principle 330 
preserve all information about 𝑆 (that is, the 𝑆 space itself). Two modules for neural decoding, 331 
implementing high popular decoding methods in neuroscience, are provided in NIT. The first one is based 332 
on linear, logistic or multinomial regression through elastic-net penalized Generalized Linear Models 333 
(GLM). The core of the GLM regression functionalities are provided by the GLMnet [99] library, directly 334 
interfaced with NIT. This ensures fast and reliable decoding on large datasets characterized by sparse 335 
neuronal activity. Such types of decoders have been popular for neural activity analysis [39, 100, 101]. A 336 
second method for neural decoding applies a Support Vector Machines (SVM) for multi-class classification, 337 
which is also popular in neuroscience [102-104]. The back-end for SVM classification in NIT relies on the 338 
LIBSVM [105] package, providing fast implementation for multi-class Support Vector Classification and 339 
Regression.  340 

NIT contains two modules for applying dimensionality reduction strategies that compress the space of 341 
neural responses in an unsupervised way without relation to the structure of the stimulus. The first one 342 
performs Principal Component Analysis (PCA), often used in neuroscience [106], through a custom-built 343 
fast MATLAB implementation. A second method is based on a Space-Time Non-negative Matrix 344 
Factorization (STNMF) [107]. The method, specifically designed for the analysis of spike trains, allows to 345 
decompose the neuronal response through a space-by-time tensor factorization. Moreover, it identifies 346 
ensembles of simultaneously active neurons and the temporal profiles of their activity. STNMF has been 347 
successfully used to extract information-rich features from the neural activity [107].  348 
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Hypothesis testing 349 
NIT also provides algorithms to test the hypothesis that the measured information values are significantly 350 
different from a null hypothesis distribution of null information. While plug-in values of information for 351 
asymptotically large number of trials follow a chi-square distribution and their significance could be tested 352 
parametrically, no parametric null hypothesis distribution is known for finite number of trials (as it always 353 
the case in real calculation) and for methods different from plug-in. The well-established method to test 354 
for the significance of mutual information is the non-parametric permutation test in which all or part of 355 
the data structure is randomized to remove its information content [25, 30, 38, 108, 109]. This test 356 
computes, from many different random permutations of the data, a null-hypothesis distribution and a 357 
significance threshold to test that hypothesis that a measured value of information (which could be non-358 
zero because of sampling bias or statistical fluctuations even if the data contain no information) for 359 
significance of information given the number of trials available and computational method used.  360 

Significance for the value of 𝑀𝐼(𝑆; 𝑅) is computed by randomly permuting (or “shuffling”) the neural 361 
response 𝑅 across experimental trials to destroy all information they carry about	𝑆. When computing 362 
multivariate information measures, it is sometimes of interest to test the significance of values of 363 
information between two variables conditioned on the value of other variables. For example, whether the 364 
activities of two neurons 𝑅5 and 𝑅!  have statistical dependences beyond the one induced by the common 365 
tuning to the stimulus S, can be tested by computing the significance of 𝑀𝐼(𝑅5; 𝑅!|𝑆), the conditional 366 
mutual information between 𝑅5 and 𝑅! given S. Whether R2 carries stimulus information not carried 367 
already by R1 can be tested by computing the significance of   𝑀𝐼(𝑅!; 𝑆|𝑅5), the stimulus information of 368 
R2 conditioned on R1 [110]. Significance testing of information values conditioned or partialized on values 369 
of other variables can be more precisely done by shuffling the statistical relationship between the 370 
variables we compute information about at fixed value of the variables we condition upon [110, 111]. This 371 
conditioned shuffling destroys the relations between the variables we compute information about while 372 
preserving the relationship that each of them individually has with the variables we condition upon.  373 

In NIT, we implemented routines that easily create null-hypothesis distributions and significance 374 
thresholds for both standard and conditioned mutual information values, performing shuffling of any 375 
variable possibly at fixed values of other variables, with the number of different shuffles created a 376 
parameter of the analysis.  377 

Extensive validation of NIT on simulated 2P data 378 
NIT is a general-purpose toolbox, usable on any kind of neuroscientific data. The above-described 379 
algorithms implemented for computing information from neural activity have been extensively used and 380 
highly validated over the years with electrophysiological recording of spiking activity of single neurons and 381 
populations and with aggregate electrical measures of neural activity such as LFPs and EEG [14, 25, 26, 382 
112-115]. As a result, we known well how to set the parameters of information theoretic calculations with 383 
such signals. However, studies of how best to apply these methods to 2P calcium imaging data are still 384 
limited, and no systematic validation is available.    385 

Thus, we next validated the capabilities of NIT to extract stimulus information from 2P calcium imaging 386 
experiments through extensive simulations of synthetic 2P traces. In the analysis, we strived to cover a 387 
wide range of experimental conditions, relating both to the neuronal response and its modulation by the 388 
stimulus as well as the experimental apparatus. We first detail the model for the generation of imaging 389 
traces, followed by testing the algorithms in NIT in an extensive parametric sweep across all conditions 390 
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examined. Aim of this effort was to offer a solid validation on how to analyze 2P data using information 391 
theory, highlighting the difference between the information content in imaging data compared to 392 
traditional electrophysiology analysis, as well as the advantages of non-parametric copula over binned 393 
estimators when applied to imaging data. 394 

Forward model for the generation of synthetic fluorescence traces 395 
To quantify the extent to which we can extract, from 2P imaging data, all or most neural information 396 
available in the underlying spike trains, we first implemented a realistic forward model for the generation 397 
of synthetic fluorescence data from ground truth spike trains. This forward model is available within NIT 398 
and can be used by users to perform their own simulated experiments to match their own experimental 399 
conditions. We implemented and compared two models for the generation of synthetic two-photon 400 
calcium imaging traces.  401 

The first one (Figure 2A, left panel) defines the spike to fluorescence transfer function through a linear 402 
convolution with a double-exponential kernel [116-118]. This model is a good approximation of the 403 
fluorescence evoked by action potentials in a low spike rate regime, but fails to account for non-linear 404 
effects present at high firing rates [119].  405 

The second model (Figure 2A, right panel) is based on a single compartment model (SCM) of calcium 406 
dynamics in the cytoplasm [120]. Generation of fluorescence from a given spike train is obtained in three 407 
successive steps. The first step models the concentration of unbound calcium within the cell membrane. 408 
Every action potential elicits a step influx of calcium ions. The free calcium intake accounts, in a non-linear 409 
way, for the effects of both endogenous and exogenous (indicator) calcium buffers in the cytoplasm. The 410 
extraction of free calcium from the cell is modelled through a linear leak term combined with a non-linear 411 
extrusion term for the membrane calcium pumps. Non-linear effect of the release of free calcium from 412 
internal buffers in the cell is also included in the model. A second step in the model allows to calculate the 413 
fraction of calcium indicator that is bound to calcium to the one that is not. This is performed through 414 
integration of the indicator binding/unbinding kinetics. A linear model converts the fraction of bound and 415 
unbound indicator to fluorescence values. This biophysically plausible model for fluorescence generation 416 
includes four forms of non-linearity, which cannot be obviously present in the linear convolution model. 417 
Those are related to: calcium intake after every action potential, free calcium release from endogenous 418 
and exogenous buffers, calcium extraction from membrane pumps and saturation of calcium indicator. A 419 
sample train of action potential and the resulting traces for free cytoplasmatic calcium, indicator-bound 420 
calcium and fluorescence is shown in Supplementary figure 1.  421 

In both models, we added Gaussian white noise to the generated fluorescence to account for 422 
experimental noise and manipulate the SNR of simulated recordings (see Methods for details). We 423 
assessed the accuracy of the two methods in generating realistic calcium imaging traces by comparing 424 
synthetic traces with experimental ones. The experimental dataset we used [121, 122] contains 425 
simultaneous calcium imaging t-series and juxtasomal electrophysiological recording in neurons 426 
expressing both GCaMP6f and GCaMP6s. We used the experimentally recorded action potentials as inputs 427 
for both forward models. The levels of noise in the synthetic traces were tuned so that each synthetic 428 
ΔF/F signal had the same signal-to-noise ratio (SNR) than the corresponding experimental trace. The 429 
sample experimental and synthetic ΔF/F traces, on both indicators, are reported in (Figure 2B).  430 
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 431 

Figure 2. Comparison of methods for the generation of synthetic GCaMP6 traces given a spike train. (A)  Schematics of the two 432 
methods considered: a linear convolution of the spike train with a double exponential kernel (left) and a biophysically plausible 433 
Single Compartment Model (SCM) of calcium dynamics (right). The SCM considers the presence of endogenous (orange) and 434 
exogenous (green) calcium buffers in the cytoplasm to predict the concentration of free calcium within the cell membrane. 435 
Binding/unbinding dynamics of free calcium to the indicator is simulated to generate time traces of bound and un-bound 436 
fluorophore concentrations. Synthetic GCaMP6 fluorescence traces are then generated through a linear combination of the 437 
concentration of bound and un-bound indicator concentrations. (B) Sample two-photon GCaMP6 experimental traces (red) 438 
recorded with simultaneous loose-seal cell-attached electrophysiology (black scatter). Experimental data from [122],[121]. The 439 
panel also shows synthetic traces generated using both a linear convolution (light blue) and SCM (dark blue) given the 440 
experimentally recorded spike train, under the same SNR than the experimental GCaMP6 trace. (C) RMSE of synthetic Vs 441 
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experimental GCaMP6 traces for both models considered (**: p < 0.01, one-tailed Kruskal-Wallis test). (D) Correlation coefficient 442 
of synthetic Vs experimental GCaMP6 traces for both models considered (***: p < 0.001, one-tailed Kruskal-Wallis test). (E) 443 
Distribution of the upper 30th percentile of ΔF/F values across all frames in experimental data and both linear convolution and 444 
SCM models. 445 

For each acquisition in the dataset, both Root Mean Square Error (RMSE) (Figure 2C) and Pearson’s 446 
correlation coefficient (Figure 2D) between experimental and synthetic ΔF/F traces were calculated. The 447 
single compartment model showed significantly better performance than the linear convolution model, 448 
both in terms of RMSE and correlation for both considered calcium indicators. To further compare the 449 
performance of the two methods, we assessed their performance in reproducing realistically high levels 450 
of fluorescence. To this end, we compared the distribution of synthetic ΔF/F values against real values 451 
reported by experimental 2P calcium imaging traces (Figure 2E). The SCM shows a longer tail of high ΔF/F 452 
values – especially evident for GCaMP6s – which is closer to the distribution of the experimental data. 453 
This shows that the SCM model allows to generate synthetic 2P calcium imaging traces covering a broader 454 
part of the dynamic range of the indicator with respect to a linear convolution kernel. Overall, these 455 
results show that the SCM generates more realistic synthetic calcium imaging traces. Thus, in all 456 
subsequent NIT information algorithm testing, we used calcium traces generated with the SCM. 457 

 458 

Effect of neuronal firing and experimental conditions on information available from calcium 459 
imaging traces  460 
Recording somatic calcium concentration in neurons through fluorescent two-photon imaging is widely 461 
used to infer the neuronal supra-threshold activity [122-128]. However, we still lack a systematic 462 
appreciation of the consequences of the limitations of calcium imaging for information-theoretic 463 
measures of neural activity and of how best to deal with them. For this reason, we investigated the effect 464 
of a series of variables on calculations of information from 2P calcium imaging traces. These include 465 
factors related to the underlying neurobiology, such as the shape of post-stimulus time histogram (PSTH), 466 
mean spiking rate (SR) to different stimuli, or technical characteristics of the experimental setup, such as 467 
imaging frame rate (FR), signal-to-noise ratio (SNR), calcium indicator. We performed a parametric sweep 468 
over those parameters as follows.  469 

We simulated activity in response to two different categorical “stimuli” (the variable 𝑆, s=1 or s=2, in the 470 
MI calculation, Equation (1)). These simulated stimuli elicit a different neuronal response over a 1 second 471 
post-stimulus window. Differences in stimuli are modeled as differences in the strength and time pattern 472 
of the neural responses they elicit, as explained next. The two stimuli could elicit a time-averaged spike 473 
rate (SR) along the trial of either 1 or 2 Hz (we termed those cases as Low MI, low SR), 12 Hz and 13 Hz 474 
(Low MI, high SR) and 2 Hz and 12 Hz (High MI). For each mean firing rate response, we considered two 475 
different temporal shapes of elicited Post-Stimulus-Time-Histograms (PSTHs): tonic (i.e. uniform over 476 
time) and phasic (i.e. Gaussian-shaped time dependency, peaking at 0.25 s, standard deviation 0.01 s). 477 
Given a time-averaged SR, both phasic and tonic responses have the same integral over time, i.e. the same 478 
expected number of spikes. The shapes of the PSTH are plotted Figure 3A, top panels. Spike trains were 479 
generated through an inhomogeneous Poisson process with an instantaneous rate equal to stimulus-480 
evoked PSTH. We simulated situations with three different frame rates for the imaging set-up: 5 Hz 481 
(representative of galvanometric imaging with raster scanning), 30 Hz (representative of imaging with 482 
resonant scanners) and 100 Hz (representative of alternative high acquisition frequency methods, e.g., 483 
smart line scanning imaging [126]). Spike trains and ΔF/F traces were always generated at a sampling rate 484 
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of 1 kHz, and the latter were then subsampled to the desired sampling rate. SNR was varied systematically 485 
across simulations by varying the amplitude of the noise added to the calcium imaging traces. 486 

Sample spike trains and ΔF/F traces (30 Hz frame rate, SNR = 15, two sample trials per each mean firing 487 
rate) for both GCaMP6f and GCaMP6s are shown in Figure 3B. In this part of the analysis, informaiton 488 
calculation parameters were as follows. We used the plug-in direct method, discretizing these neural 489 
responses in 4 equi-spaced bins. We used peak ΔF/F over the trial as response 𝑅, as it is a widely used 490 
approach for the analysis of two-photon imaging data [64, 129]. For each combination of parameters 491 
(SNR, FR, calcium indicator, PSTH and levels of stimulus-modulated firing rate), 50 independent MI 492 
calculations (each with 400 trials per stimulus) were performed. No limited sampling bias correction was 493 
used, because the number of trials was large enough for the MI to be bias-free [14]. 494 

We first investigated the effect of varying the imaging FR and SNR on the mutual information computed 495 
from the somatic calcium imaging signal for phasic and tonic PSTH shapes (Figure 3C, results of the 496 
statistical tests are summarized in Supplementary table 5). In Figure 3C we used peak ΔF/F of GCaMP6f 497 
to compute information from the calcium traces, but we obtained similar results (not shown) using other 498 
calcium imaging metrics (e.g. mean ΔF/F). Both FR and SNR have a limited effect size on the information 499 
contained in the peak ΔF/F. The notable exception was the case of phasic PSTH shapes and high neural 500 
information, in which case increasing SNR led to a notable increase of stimulus information with SNR 501 
(Figure 3C and Supplementary table 5). The effect of using either a slower (GCaMP6s) or faster (GCaMP6f) 502 
calcium indicator is explored in Figure 3D and Supplementary table 6 (with SNR = 15 frame rate = 30 Hz). 503 
In most cases the information obtained from the calcium traces with peak ΔF/F was approximately the 504 
same with either indicator, with the exception of the high information, phasic PSTH case. In this case using 505 
the GCaMP6s led to higher information extracted from the calcium traces, due to its slower dynamics and 506 
higher dynamic range compared to GCaMP6f.  507 

Because calcium imaging measures indirectly the neural activity, with a lower SNR and lower temporal 508 
resolution that direct electrophysiological recording of spikes, it is commonly assumed that the 509 
information reported by a calcium indicator will be smaller than that encoded in neural activity. To 510 
evaluate this information loss we computed, the average fraction of information present in peak ΔF/F, 511 
relative to the one present in a spike rate code. We found that the percentage of spike rate information 512 
extracted on average from the calcium traces varied widely, from 50% to 100% (Figure 3E), depending in 513 
particular on the features of neuronal firing. More stimulus information is lost when computing it from 514 
the calcium traces rather than from the spike rate when the simulated neuron fires tonically than when it 515 
fires in a phasic way. This is because, as apparent from the individual traces in Figure 3B, the phasic PSTHs 516 
with a stronger and more concentrated spike rate elicit more repeatable and less noisy calcium traces 517 
than those obtained with the tonic PSTHs having a similar number of spikes randomly distributed over 518 
time.   519 
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 520 

Figure 3. Effect of neuronal firing regime and experimental conditions on stimulus information retrieved from calcium imaging 521 
signals. (A) Instantaneous neuron spiking rate (SR) for phasic and tonic post-stimulus time histogram (PSTH) responses (top row), 522 
average firing rates over the trial duration are identical between the two conditions at fixed stimulus. Corresponding Poisson 523 
spike rasters for two sample trials per each stimulus (bottom row). (B) Synthetic GCaMP6f (top row) and GCaMP6s (bottom row) 524 
traces (SNR 9, frame rate 30 Hz) relative to spike rasters in panel (A). (C) Distributions of stimulus information in GCaMP6f ΔF/F 525 
traces at various information levels and for both tonic and phasic PSTH. Effect of SNR and imaging frame rate on stimulus 526 
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information. All calculations of MI consider two stimuli. In Low MI, low SR the neuron responds to the two stimuli with 1 Hz and 527 
2 Hz average spiking rate (blue and green curves panel A). In Low MI, high SR the neuron responds to the two stimuli with 12 Hz 528 
and 13 Hz average spiking rate (orange and violet curves panel A). In High MI the neuron responds to the two stimuli with 2 Hz 529 
and 12 Hz average spiking rate (green and orange curves panel A). Each box plot reports data from 50 simulations. Results of the 530 
statistical analysis for the data in this panel are reported in Supplementary table 5. (D) Effect of calcium indicator on stimulus 531 
information at different PSTH shapes and information levels. Each box plot reports data from 50 simulations. Results of the 532 
statistical analysis for the data in this panel are reported in Supplementary table 6. (E) Percent of stimulus information in max 533 
ΔF/F with respect to MI encoded in spike rate at the same conditions. Values are average values over 50 simulations. All data in 534 
the figure refer to simulated traces. Mutual information is evaluated using plug-in method. All MI calculations consider max ΔF/F 535 
across the trial as a metric of neuronal response. 536 

In sum, our simulations suggest that the NIT information theoretic analysis of calcium traces recovers a 537 
good fraction (between 50% and 100%) of the information encoded in electrophysiological spike rates, 538 
with the extraction being particularly efficient for high-rate phasic responses and high dynamic range 539 
indicators.  540 

Spike rate information is not an upper bound for stimulus information contained in ΔF/F traces 541 
Since as discussed above calcium imaging reports an indirect measure of neural spiking activity , the 542 
information about stimuli computed from ΔF/F traces will miss out on some of the information carried by 543 
the temporal spike pattern as measured from electrophysiology recordings. However, this does not 544 
necessarily imply that in all cases the information computed from the calcium traces will be lower than 545 
the information carried by the underlying spike rate code.  546 

From the mathematical point of view, the data processing inequality [98] ensures that stimulus 547 
information cannot be increased, but can only be lost or remain equal, every time a transformation of 𝑅 548 
not dependent on 𝑆 is applied to the data. This implies that information in the spike rate is always lower 549 
than or equal to the information contained in the full spike train. However, because the transformation 550 
that maps the spike train into a calcium trace is not a direct consequence, in Markovian terms, of the 551 
transformation that links a spike train to spike rate, the stimulus information in the calcium trace may 552 
either be higher, equal or lower than the stimulus information in a rate code.  553 

From the intuitive neurobiological point of view, the fluorescence traces can have more information that 554 
the spike rate in cases in which the latter loses some of the information encoded in the spike timing that 555 
the former captures. Indeed, owing to the slow dynamics of the indicator, ΔF/F traces contain not only 556 
information about how many spikes are emitted by a neuron, but also how close they are in time. The 557 
contribution of this effect to the information content of calcium traces is amplified as the ratio between 558 
the decay constant of the indicator and the stimulus-modulated inter-spike interval increases, and as the 559 
informative content of a spike-rate code alone decreases. As such, it becomes particularly evident for 560 
phasic PSTH when stimulus information is encoded at high mean firing rates and rate information is low 561 
(Figure 4A). Data in Figure 4 are from a limited portion of the full parametric sweep (FR = 5 Hz, SNR = 15, 562 
GCaMP6f), but similar conclusions can be drawn when considering the full range of parameters 563 
investigated (Supplementary figure 4). As an example, we have considered one of the points (green 564 
scatter in Figure 4A, central panel) showing more information in peak ΔF/F than in SR. 565 

In this case, because of the different stimulus-modulated inter-spike interval, even when the two stimuli 566 
elicit an identical spike rate in two different trials, the ΔF/F traces will still show stimulus-related 567 
differences (e.g. different peak activity as show in Figure 4B, top row) similar to their trial-averages (Figure 568 
4B, bottom row). Additionally, for the case of a phasic PSTH, the only stimulus informative spikes are time 569 
located in the narrow window around the peak of phasic activity (Figure 4C). All other spikes emitted in the 570 
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baseline activity period (baseline firing rate set at 0.5 Hz in all simulations reported) are non-informative 571 
and thus degrade the SR information. On the contrary, given the high stimulus-modulated firing rate of 572 
the neurons, and the slow dynamics of calcium indicators, spikes outside of the stimulus-modulated 573 
window have little effect on ΔF/F traces, contributing to increase its stimulus information compared to a 574 
spike rate code. 575 

576 
Figure 4. Information in ΔF/F can be higher than spike rate information. (A) Scatter plots of stimulus information in SR vs stimulus 577 
information in peak ΔF/F. Each scatter results from one over 50 MI calculations across the following parametric sweep: SNR = 15, 578 
FR = 30 Hz, GCaMP6f, phasic PSTH. Red lines are the quadrant bisectors. The green scatter point refers to the point analyzed in 579 
panels (B-D). (B) Top: stimulus-evoked spike rasters and corresponding ΔF/F traces for two specific trials with an identical trial-580 
averaged spike rate (10 Hz) but responding to two different stimuli (color-coded). Bottom: trial-averaged stimulus-evoked ΔF/F 581 
traces. (C) Top: trial-averaged PSTH for the response to the two stimuli. Bottom: spike-timing template used in the decoding 582 
analysis in panel (D). (D) Values of MI between true and decoded stimulus calculated when considering:  max ΔF/F, SR and 583 
simultaneous contribution of SR and spike timing (ST). The analysis is performed on the data corresponding to the green point in 584 
panel (A). Box plots report 100 cross-validated runs of GLM decoder (*: p < 0.05, ***: p < 0.001, Bonferroni corrected Kruskal-585 
Wallis multiple comparison test). All data in the figure refer to simulated traces. Mutual information is evaluated using plug-in 586 
method. 587 

Thus, an ideal decoder of neural activity would use the spike times to consider only those spikes in the 588 
informative window and discard the others, together with weighting spikes in the informative window 589 
proportionally to the instantaneous inter-spike interval. We implemented such decoder by projecting the 590 
neural activity in each trial on a template based on the difference between the trial averaged PSTH when 591 
responding to the two stimuli (Figure 4C, bottom). We have then used the GLM decoder implemented in 592 
NIT to calculate the MI between the real and decoded stimulus when using peak ΔF/F, spike rate (SR) or 593 
the template projected activity and spike rate (SR+ST), to compare their information content. Results are 594 
summarized in Figure 4D. Each box plot in the figure shows the distributions of MI between the real 595 
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stimulus and the decoded one across 100 cross-validated runs of the GLM classifier. While the stimulus 596 
information in the calcium trace is lower than the one present when considering both spike rate and spike 597 
timing, it is significantly higher than the mere SR information. This shows how the calcium dynamics 598 
captures some properties of the optimal spike timing decoder and that spike timing contributes to the 599 
informative content represented in ΔF/F. 600 

While cases like the above example – in which more information is available in the calcium traces than in 601 
the time-averaged spike rates – may not happen frequently with real data, it should be noted that calcium 602 
traces will always contain a mix of spike rate and spike timing information, which is important to keep  in 603 
mind when interpreting empirical results. 604 

 605 

Dependence of stimulus information on the metric used to quantify single-trial calcium 606 
fluorescence responses  607 
In the previous sections, we quantified information from calcium traces using the peak ΔF/F as a metric 608 
of single-trial responses based on two-photon fluorescence. This measure is widely used in the analysis of 609 
calcium imaging data [64, 129-131], but is not the only possible choice. Several other metrics are 610 
commonly used to quantify single-trial activity in a post-stimulus window from calcium imaging signals. 611 
These metrics include: mean ΔF/F [64]  , integral ΔF/F [132-135], linear deconvolution using an exponential 612 
kernel [136]  , spike inference algorithms [127, 137-139]. Among spike inference methods, we focused on 613 
OASIS [137] due its competitive performance [117]. 614 

To inform future information-theoretic analyses of calcium imaging traces, we investigated on simulated 615 
data how well the different metrics listed above performed in extracting stimulus information. All listed 616 
metrics have advantages and disadvantages. The peak ΔF/F captures the strength of the calcium transient 617 
responses but can be heavily influenced by noise and does not capture the temporal structure of the 618 
fluorescence. Mean and integral ΔF/F are less influenced by noise, but they are less effective in capturing 619 
the strength of transient activations.  Both linear deconvolution and OASIS quantify aspects of calcium 620 
signal potentially closer to spiking activity but assume a linear relation between spikes and measured 621 
fluorescence. In addition to the methods listed above, we propose a novel non-linear metric, that we 622 
termed estimated calcium, that inverts the biophysically plausible non-linear forward model to estimate 623 
the concentration of intracellular free calcium from ΔF/F traces (see Materials and methods).  624 

We have thus used the same five-dimensional sweep of simulation parameters (FR, SNR, indicator, PSTH 625 
shape and stimulus modulation of SR) used in Figure 3 to calculate the levels of stimulus information 626 
contained in each of the above-mentioned measures of neural activity in the 1-second-long post-stimulus 627 
window. We computed stimulus MI in both SR and ΔF/F metrics using the direct method with equally-628 
spaced binning in 4 bins. Fifty independent runs are performed in each of the coordinate points of the 629 
parametric sweep. The distribution of ΔF/F metrics showing the highest mean amount of stimulus 630 
information across the parametric sweep is shown in Figure 5A (actual levels of MI across all conditions 631 
in the parametric sweep are reported in Figure 5B, together with the value of stimulus information in the 632 
spike rate code). Overall, peak ΔF/F extracts most stimulus information when the stimulus is encoded at 633 
high rates, mostly when the neuronal response has a tonic PSTH. In these conditions the stimulus will, in 634 
fact, modulate mostly the amplitude of the calcium imaging response. In other conditions, most of the 635 
stimulus information contained in the calcium imaging response was retrieved by estimated calcium. 636 
OASIS shows good performance at high imaging frame rates, though it suffers particularly low rates 637 
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(Supplementary figure 3). When looking at the absolute levels of information retrieved across all 638 
conditions Figure 5B, estimated calcium performs on average better than the other metrics considered 639 
by recovering about 65% of the underlying SR code. 640 

Statistical significance of the results was assessed through Kruskal-Wallis test with Bonferroni correction 641 
for post-hoc comparisons. In all conditions of the parametric sweep, the best performing calcium imaging 642 
metric, together with the others being non statistically different from it (p > 0.05), were marked as best 643 
for that condition (stars in Supplementary figure 3). Figure 5C reports the percentage of cases, across all 644 
the conditions examined, where each metric was part (light grey) – or was the only component (dark grey) 645 
– of the best performing group. Both the linear deconvolution and the newly proposed estimated [Ca] 646 
showed to be the most versatile spiking activity metrics based on ΔF/F. Estimated [Ca] is among the best 647 
performing metrics in more than 80% of the conditions examined in our parametric sweep and is the only 648 
best performing one in around 25% of cases considered. Linear deconvolution works well in retrieving 649 
stimulus information in around 60% of conditions. Mean/integral ΔF/F and OASIS, on the other side, are 650 
only among the best performing groups in around 25% of the cases, showing poorer performance in 651 
reconstructing spiking information. (Note that the poorer performance of OASIS was not due to incorrect 652 
set-up of the algorithm as we have verified (Supplementary figure 2) that the deconvolved activity we 653 
obtained through OASIS had similar correlation with ground-truth spike recordings as reported previously 654 
using this algorithm on the same dataset we use here for validation, see [140]). Linear regression of the 655 
average z-scored deconvolved activity using OASIS and the underlying ground truth SR shows, however, 656 
how the levels of z-scored deconvolved activity predicted by OASIS have a relatively high variability that 657 
cannot be explained by a linear fit (R2 = 0.52 GCaMP6f, R2 = 0.34 GCaMP6s). This suggests that, while 658 
OASIS matches the timing of neuronal activity with reasonable accuracy, the magnitude of the 659 
deconvolved calcium trace reflects less well the underlying firing rate, limiting the applicability of the 660 
method for information-theoretic measures of neuronal activity. The poorer performance of OASIS 661 
becomes especially noteworthy given that spike inference algorithms are typically performing better on 662 
synthetic data than in real experimental conditions, and the assumption of Poisson spiking used in our 663 
synthetic data should favor the method’s accuracy [137]. 664 

In addition to considering which calcium metrics are better for computing single-trial information about 665 
external stimuli, we consider another, and perhaps equally important question, of which metric of calcium 666 
activity best reconstructs the underlying spike rate of the same cell.  We computed the mutual information 667 
between the spike rate during the 1s post-stimulus window in our simulated trials and the calcium metric. 668 
This result (Figure 5D) confirms that estimated calcium and a linear deconvolution are, on average, 669 
carrying more information about the spike rate code than the other calcium metrics analyzed.  670 

An explanation of why calcium metrics that carry higher stimulus information also carry higher 671 
information about the spike rate is that stimulus information is carried by the spiking activity of neurons 672 
and these calcium metrics reconstruct its value well. In support of this explanation, we found that the 673 
levels of stimulus information extracted from the ΔF/F activity with a given set of simulation parameters 674 
correlated with the levels of information present between the calcium imaging signal and the 675 
electrophysiology in the same simulation, as shown by the scatterplot of the two information values 676 
across different simulations for the case of the estimated calcium (Figure 5E).  677 
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 678 

Figure 5. Appropriate processing of ΔF/F signal increases the retrieved stimulus information from calcium imaging traces. (A) 679 
Best performing metric based on ΔF/F signal for each of the conditions explored in the parametric sweep. Best performing metric 680 
at each condition is defined as the one retrieving the highest value of stimulus information. See Materials and methods for 681 
detailed definitions of each of the metrics. (B) Distributions of values of stimulus information reported by each metric (left) and 682 
by a spike rate code (right) across all the calculations performed in the parametric sweep shown in panel (A). (C) Percent of cases, 683 
across the whole parametric sweep shown in panel (A), where each ΔF/F metric has been among the best performing metrics 684 
(light grey bars) or the single best performing one (dark grey bars). Best metrics are defined as the ones recovering the highest 685 
amount of stimulus information (p < 0.05 Bonferroni corrected Kruskal-Wallis multiple comparison test). Full data for this figure 686 
are reported in Supplementary figure 3. (D)  Distributions of values of spike rate information reported by each metric across all 687 
the calculations performed in the parametric sweep shown in panel (A). (E) Scatter plot of stimulus information in Inferred [Ca] 688 
against spike rate information carried by the same metric. Data in this panel include All data in the figure refer to simulated traces. 689 
Mutual information is evaluated using plug-in method using 4 equally-spaced bins do discretize spike rate and the calcium metrics.  690 

 691 

A comparison of non-parametric copula and binned plug-in methods for computing information 692 
from calcium imaging traces 693 
All above examples computed information using the plug-in binned methods, a choice that has been 694 
widely used due to its ease of implementation, robustness and fast computational time [25, 27, 38, 54]. 695 
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However, other more computational demanding but potentially more accurate methods are also available 696 
to compute information from limited experimental samples. NIT implements the recently developed Non-697 
Parametric-Copula information estimation [71]. Here we test the advantages for computation of 698 
information from calcium imaging of this more computationally expensive method.  699 

We first investigated whether the NPC offers advantages in terms of reduction of limited sampling bias in 700 
case limited datasets are available. To this end, we introduced, in the multidimensional sweep over the 701 
simulation parameter space outlined in the previous sections, a further parameter: the available number 702 
of trials per stimulus (here varied in the range 5 to 400). We found (Figure 6A) that, for both copula and 703 
direct plugin method, and consistent with previous studies [14], the information had a big upward bias 704 
for low numbers of trial per stimulus (5 to 20), and then converged to the asymptotic value for larger 705 
number of trials (several tens). To quantify how quickly the information estimate in individual simulations 706 
reached the asymptotic values across methods, we repeated the above analysis over a large number of 707 
simulations with different parameters according to our 5-dimensional parameter sweep. For each 708 
individual set of simulation parameters, we compared the distribution of calcium information values for 709 
different numbers of trials against the asymptotic (400 trials per stimulus) distribution. The lowest number 710 
of trials giving a distribution not significantly different from asymptotic (t-test, p-val < 0.05) was 711 
considered the minimum required by the method to provide a bias-free estimate of MI. We repeated the 712 
process for the whole parametric sweep, computing the ratio between the trials needed by the copula 713 
and by the binned methods. The distribution of the ratio is shown in Figure 6B. In this figure, values lower 714 
than 1 imply that the copula method is performing better than binned methods for bias free information 715 
estimations, while values higher than 1 imply than the binning method works better. For the vast majority 716 
of simulations, the non-parametric copula needed less trials to reach asymptotic values of information. 717 
Thus, the non-parametric copula should be favored when analyzing smaller datasets. 718 

Non-parametric copula is particularly suited to be applied on continuous variables. This suggests that 719 
larger amounts of information can be extracted from calcium signals, which are continuous, with non-720 
parametric copulas than with binned estimators for MI. We thus examined the asymptotic information 721 
values provided by the copula against binned methods for both simulated spike trains and calcium imaging 722 
traces (Figure 6C). For the electrophysiology, the non-parametric copula performed better than binned 723 
methods only in the cases which information content is not high. However, for calcium imaging, the 724 
advantage of the copula was accentuated and was also present in high information cases. This underlies 725 
the specify usefulness of the non-parametric copula for calcium imaging. Note that we did not find 726 
comparably high performance when using parametric Gaussian copulas (also implemented in NIT), rather 727 
than non-parametric copulas. This is because responses of individual neurons carry non-gaussian 728 
dependencies with the stimulus (statistics is of neurons approximately Poisson, which differs from 729 
Gaussians for low spike numbers typically observed in a trial) and this translates in non-gaussian 730 
dependence between stimuli and calcium traces, which make the use of Gaussian copulas not generally 731 
applicable.  732 

Despite the advantages that the copula has compared to the binned methods, there also exist drawbacks 733 
main limitation is the computational time required to fit the copula based on the data. As an example, the 734 
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computations reported in Figure 6A required approximatively 200 time more CPU time with the non-735 
parametric copula than the direct plug-in method. 736 

 737 

Figure 6. Comparison between binned methods and non-parametric copula. (A) MI values (mean±SD) for a single coordinate 738 
point in the considered parametric sweep (GCaMP6f, Frame Rate = 5 Hz, SNR = 5, Low MI, High SR, tonic PSTH) using NPC and 739 
binned direct method with an increasing number of trials per stimulus. The dotted horizonal line represents the y-axis value of 740 
one (when the information estimation reaches its asymptotic value) (B) Distribution of ratio between number of trials needed by 741 
the copula and binned method to reach asymptotic information values. Note that a ratio lower than 1 implies that the copula 742 
retrieves asymptotic values with less trials than binned method. (C) Information values provided by the copula against values 743 
given by the binned method for three different information levels (Low MI, low spike rate; Mid MI, high spike rate; and High MI) 744 
and both electrophysiology and calcium data. All data in the figure refer to simulated traces. Note that the samples included in 745 
this figure correspond only to the deconvolved calcium. 746 

Analysis of experimental data validates findings on synthetic traces 747 
Our information theoretic analysis of realistic simulations of calcium imaging traces generated by neural 748 
spiking activity indicates that the calcium imaging traces are able to extract sizeable amounts information 749 
about both external stimuli and about the levels of the underlying spike rates. It also suggests that certain 750 
metrics of single-trial activity for calcium traces are better than others for extracting such information. 751 
Here, we tested some of the above predictions from simulated activity on real empirical data. We used 752 
NIT to analyze four independent datasets with simultaneous cell-attached electrophysiological and two-753 
photon imaging recordings from both GCaMP6f and GCaMP6s-labelled neurons during spontaneous 754 
activity [119, 122, 141, 142].  We focused on using NIT to compute how much information about the spike 755 
rate each calcium metric provides. We divided the experimental time traces in padded windows of 0.5s, 756 
and then computed the mutual information between the spike rate in a considered window and the 757 
calcium metric in the given window. We used the NPC information calculation method as it performs more 758 
reliably as shown in the previous section. Similar conclusions, however, would have been reached using 759 
the direct binned method (not shown). 760 

Results of this information calculation on all neurons with calcium traces with SNR higher than 9 are 761 
reported in Figure 7. These results confirm that, as with the simulated data, sizeable amount of 762 
information about the underlying spike rate can be obtained from the underlying traces. These 763 
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information values are of the order of 0.2 bits, which corresponds with significant but far from perfect 764 
spike train reconstruction from the calcium metrics.  Comparison of how the amount of information varies 765 
between ΔF/F (Figure 7) confirms the results emerging from the parametric sweep on simulated traces. 766 
Estimated calcium and linear deconvolution were, on average, better at reconstructing spike train 767 
information that other calcium imaging metrics. 768 

The publicly available datasets were designed to test the correspondence between spike rates and calcium 769 
traces and not to study sensory coding, thus had no or insufficient data with responses to sensory stimuli 770 
to study sensory information. However, as shown by our simulations (Figure 5E), metrics that are 771 
appropriate for inferring spike rate values are also expected to be appropriate to extract stimulus 772 
information.  773 

 774 

Figure 7. Validation of performance of spiking activity metrics based on ΔF/F in recovering stimulus information on 775 
experimental data. Box plots of mutual information between different spiking activity metrics based on ΔF/F and spike rate. Data 776 
in this panel refer to simultaneous cell-attached electrophysiology and two-photon imaging recordings from previous publications 777 
[119, 122, 141, 143]. Traces in the original datasets have been filtered for SNR > 9.  778 

Examples of use of intersection information to find pure, stimulus unrelated choice signals 779 
as markers of preparatory activity 780 
We finally exemplify, on real data, possible uses of the PID tools within NIT. In particularly, we exemplify 781 
possible and novel uses of Intersection Information (II) [82, 83], a formalism developed specifically for the 782 
analysis of neural recordings in perceptual decision tasks. As reviewed in the Intersection Information 783 
section above, II measures that amount of information carried by neural activity that is shared by both 784 
stimulus and choice. Thus, II can be interpreted as the part of stimulus information carried by neural 785 
activity that is also choice information. In this interpretation, II has been applied to sensory neuron to 786 
investigate the extent to which the information encoded in sensory areas is relevant to form behavioral 787 
choices [39, 54, 83]. For example, it has been used to investigate whether in primary and secondary 788 
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somatosensory cortices the behavioral discrimination of texture of surfaces is supported by the texture 789 
information encoded in millisecond-precise spike times or in spike rates [83, 144]. The authors found that 790 
on average similar amounts of texture information were encoded by the millisecond precise spike times 791 
and by the spike rate of neurons. However, the behavioral discrimination performance of the rat was 792 
higher when spike times provided correct texture information than when spike times provided incorrect 793 
information, whereas behavioral performance did not depend much on the correctness of the information 794 
provided in spike rates [144]. As a consequence, the amount II carried by spike times was 3 times larger 795 
than that carried by spike rates [83], demonstrating that the texture information carried by spike timing 796 
has a much larger impact on forming correct behavioral choices than the information carried by spike 797 
rates. This type of reasoning is helpful informing hypotheses about the neural code used for sensory 798 
perception [82], as it takes into account not only the amount of information encoded in neural activity 799 
but also its impact on trial-to-trial behavioral discriminations.  800 

Here, to demonstrate the usefulness of this approach also in contexts different from sensory perception, 801 
we use II implemented in NIT to uncover the presence of preparatory motor activity in motor cortices. We 802 
applied NIT to a publicly available dataset [145] of 2P calcium-imaging  recordings  in anterolateral (ALM) 803 
and medial motor (MM) cortex of Thy1-GCaMP6s transgenic mice collected during a tactile delayed two 804 
alternative forced choice (2AFC) discrimination task (see Figure 8A and B). Mice were trained to 805 
discriminate a pole in an anterior or posterior location using their whiskers. The stimulus was presented 806 
for 1.2 seconds during the Sample epoch, followed by a Delay epoch of 3s for the mice to plan the action. 807 
A Go Cue indicated the Response epoch for mice to report their guess. In the original publication [145], 808 
the authors analysis these recordings with a 3-way ANOVA, including as factors selectivity to the sensory 809 
stimulus, the choice reported by the animal, and the trial outcome (correct vs incorrect discrimination). 810 
The authors found earlier choice signal in ALM than in MM, suggesting therefore that preparatory motor 811 
activity arises first in ALM than in MM.   The ANOVA analysis does not include non-linear tuning effects, 812 
and does not per se provide a quantification of the values available for single trial discrimination. These 813 
issues can be better addressed with information theory. We first computed, using Shannon Information 814 
(Equation (1)), the amount of stimulus and choice information carried by the activity of each neuron in 815 
short time windows (1 imaging frame, 70 ms) as function of time during the task. Such information values, 816 
averaged over all neurons imaged in each area, are reported in Figure 8C.  We were particularly interested 817 
in signals at the beginning of the trial, because they inform more about preparatory activity. In the initial 818 
part of the trial (the end of the sample period and the early delay phase), neurons in both areas carried 819 
information about both stimulus and choice, with comparable values of stimulus and choice information 820 
in ALM and much higher values of stimulus information in MM. Neural activity related to movement 821 
preparation can be identified as an early genuinely choice-selective neural signal. However, given that 822 
choice and stimulus in each trial are correlated (because the animal performed the task 74% correct, it is 823 
possible to predict choice from stimulus), the presence of choice information in neural activity may reflect 824 
in full or in part the fact that neurons are actually selective to the stimulus and this in turns make neurons 825 
choice selective. To establish the presence of preparatory activity it is thus important to compute 826 
presence of pure choice information that cannot be explained by the tuning of stimuli. The formalism of 827 
II allows a principled and powerful definition of such pure choice information. II, as explained above, 828 
quantifies the amount of information carried by neural activity that is shared by both stimulus and choice. 829 
Thus, it quantifies the part of choice information carried by neural activity that is also stimulus 830 
information. As a consequence, the difference between II and choice information can be taken as a pure 831 
choice information measure, that is a measure of the amount of choice information in neural activity that 832 
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cannot be explained by the tuning of neurons to stimulus. Figure 8D plots the time course of the average 833 
amount of instantaneous pure choice information carried on average by the activity of a neuron in a short 834 
time window. These results show that, compatible with the results of [145], the pure choice information 835 
is present (that is, larger than zero) at approximately 2 s after the pole removal in ALM, but it is not present 836 
until 2 seconds later (end of delay epoch) in MM. These results confirm those reported by [145] in a new 837 
way that also incorporates the effect of possible non-linearities of tuning of individual neurons. 838 

 839 

Figure 8. (A) Sketch of task. Mice had to lick the right port when the pole was in a posterior location while when in an anterior 840 
location, they had to lick the left pole. (B) Trial was structured into three different epochs. During the sample epoch (1.2 seconds), 841 
the stimulus was provided to the mice. A subsequent delay epoch (3 seconds) without stimulus preceded the Go Cue auditory 842 
signal, that initiates the response epoch, in which the mice must report by licking. (C) Stimulus, choice, and intersection 843 
information over time averaged across neurons computed using 2 bins. Values are bias corrected. Note that we estimated the 844 
bias using the average information values found in the pre-stimulus window. (D) The difference between choice and intersection 845 
information is reported as a proxy of pure choice information measure. Panels A-B redrawn from Ref [145]. 846 

Discussion 847 
 848 
The high relevance of information theory for the analysis of neural data calls for open-source, 849 
comprehensive, and well documented software packages tailored for neuroscience applications. Here we 850 
provide a new such toolbox, NIT, constructed to meet the requirements of the contemporary systems-851 
level neuroscience community. In what follows, we discuss the specific advances of NIT with respect to 852 
existing toolboxes and the implications and relevance of our work for neuroscience.  853 
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 854 
The breadth of algorithms implemented in NIT can address timely questions in systems 855 
neuroscience   856 
 857 
Analysis of activity of populations of neurons recorded during the presentation of sensory stimuli and/or 858 
performance of cognitive tasks is central to the study of neural coding. Over the last decade, the emphasis 859 
of neural coding has shifted from considering purely encoding of sensory information to studying how the 860 
encoded information informs choices and behavior [82]. Other prominent current area of investigation 861 
include the study of the transmission of information between different brain areas, and the investigation 862 
how functions of the brain emerge from interactions among neurons in larger and larger populations [35]. 863 
Compared to current information toolboxes, our toolbox adds several important elements to tackle these 864 
problems.  865 

NIT supports research on the relevance of neural activity to inform behavioral choices by implementing 866 
measures of Intersection Information (II) [82, 83]. II has been proposed and used principally as a measure 867 
of how much of the sensory information encoded in neural activity is used to inform choices [39, 54, 82, 868 
83].  This has led to redefine the concept of neural code as the set of features not only carrying sensory 869 
information, but also used to drive appropriate behavior [82]. Here, in our application to calcium imaging 870 
data (Figure 8), we showed how II can be used to address more questions about neural coding than 871 
originally proposed. We showed how II can be used to individuate pure choice signals which are not 872 
related to stimulus coding. This is of importance in tasks in which sensory signals are associated with the 873 
request to executed specific motor programs, such as turning or licking in a certain direction upon the 874 
presentation of a certain sensory stimulus. 875 

NIT supports research on transmission of information across areas by implementing directed measures of 876 
information transfer, including both Transfer Entropy and Directed Information [84, 85] and it allows the 877 
computation of more refined recent measures based on PID [90, 91]. 878 

NIT supports research on the emergent properties of population codes by implementing tools that 879 
quantify the role of correlations in population codes for creating redundancies and synergies, such as 880 
those based on interaction information and the information breakdown [19, 74, 75] and those based on 881 
PID [49, 146]. Moreover, NIT implements tools that make analyses scalable to large populations, including 882 
unsupervised and supervised advanced dimensionality reduction tools, such as regularized GLM classifiers 883 
[39, 99, 100], regularized SVM classifiers [102, 105], and space-by-time Non-Negative Matrix Factorization 884 
[107, 147]).   885 

Our public, open source, release of the full NIT code will also contribute to the broad effort towards more 886 
effective and reproducible neuroscience, through standardization of tools and methods [148] of which 887 
open source analysis software is a core component [149, 150]. In this respect, the integration of NIT with 888 
other well established analysis pipelines is facilitated by the MATLAB front-end, which can be directly 889 
interfaced with Python through the MATLAB Engine API for Python. 890 

 891 
Comparisons with existing information theoretic toolboxes for neuroscience  892 
The breadth of use of information theory in neuroscience have been supported by several excellent and 893 
impactful toolboxes. It is thus of interest to discuss what NIT adds to this existing toolset. Recent work by 894 
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Timme and Lapish [28] offers an extensive review of existing IT analysis software packages. We have 895 
further complemented their work with an updated overview (Table 1). Of the 12 packages reviewed in 896 
Timme and Lapish [28], none satisfied simultaneously the following requirements: being applicable to 897 
both discrete and continuous data, providing means for significance testing and correction for limited 898 
sampling bias, and implementing calculation of information-theoretic measures beyond MI and transfer 899 
entropy (e.g., those based on PIDs). NIT simultaneously implements all these features.   900 
 901 
The NITT Neuroscience Information Theory Toolbox [28] is, among those previously available, one of the 902 
most complete in terms of information quantities offered. However, like others listed in Table 1, it lacks 903 
limited sampling bias correction. This is not a problem when considering quantities that do not require 904 
the computation of stimulus specific distributions of neural responses, such as entropy and TE. Lack of 905 
bias corrections instead becomes a major problem for studies of coding of sensory or choice variables, as 906 
they require estimation of stimulus-related information variables that are based on calculations of 907 
stimulus-specific response probabilities. In such cases, stimulus-specific information values are dominated 908 
by the bias, if not bias corrected. A lack of bias corrections makes it impossible to meaningfully compare 909 
the amount of information carried by neural representations with different dimensionality such as spike 910 
times vs spike rates [17, 151] or single neurons vs population responses.  The JIDT toolbox [31] also offers 911 
extensive sets of IT measures, although (like the NITT) it lacks methods for dimensionality reduction that 912 
are useful e.g. to apply IT to large populations. Other toolboxes [89, 152] are specialized on transfer 913 
entropy and are thus suitable for study information communication but not information encoding. Finally, 914 
some other toolboxes [30] are effective for specific distributions of neural activity, such as the case of 915 
Gaussian interactions which are relevant for mass measures of activity, but are difficult to apply to 916 
measures with single cell resolution for which statistics and interactions are not well described by 917 
Gaussian distributions.   918 

We made an effort to improve computational performance in NIT, designing it to maximize efficiency and 919 
scalability. This optimized design strategy resulted in fast computational times compared with other state-920 
of-the-art open access codes. We benchmarked our toolbox against NITT [28] on a single MI calculation, 921 
with bootstrap null distribution estimation, obtaining on average 50 times faster computation times with 922 
NIT compared to NITT. 923 

NIT does have limitations, which we plan to address in ongoing and future updates. NIT still lacks 924 
computation of useful quantities, such as maximum entropy (ME) models, which are useful to determine 925 
the order of interactions among neurons [35, 153]. ME models are present in some specialized toolboxes 926 
[29]. Further, NIT includes standard and widely used non-parametric hypothesis testing methods, but does 927 
not yet include group statistics, which to the best of our knowledge among information theoretic 928 
toolboxes has been only implemented in  FRITES [32]. However, the output of NIT analyses can be easily 929 
used as input to group statistics toolboxes [32]. Further, the study of PID is a burgeoning field with many 930 
measures and advances being elaborated [49, 80, 154, 155]. While NIT implements some of the most 931 
established PID quantities, it will be important to keep it updated to include more PID developments and 932 
to interface with new PID software.   933 

 934 

 935 
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Toolbox Information Measures Data Types Significance 
Testing 

Probability Estimation 
Methods 

Bias 
Correction 

Dimensionality 
Reduction 
Methods  

Language 

NIT – this paper Entropy, mutual 
information, transfer 
entropy, information 
breakdown, partial 
information 
decomposition, 
intersection information, 
feature information 
transfer 

Discrete 
and 
continuous 

Non-
parametric 
 

Binning (several methods) 
Gaussian fit 
Parametric copula 
(Gaussian, Clayton, 
student) 
Nonparametric copula 

Yes Yes MATLAB 
front-end, 
interfaceable 
with Python 
through 
MATLAB 
Engine API for 
Python 

Information Breakdown 
Toolbox [25] 

Entropy, mutual 
information, transfer 
entropy, information 
breakdown 

Discrete 
and 
continuous 

Non-
parametric 
 

Binning (several methods) 
Gaussian fit 

Yes No MATLAB  

Gaussian Copula Mutual 
Information [30] 

Entropy, Mutual 
Information 

Discrete 
and 
Continuous 

No Gaussian copula Yes No MATLAB and 
Python 

Neuroscience Information 
Theory Toolbox [28] 

Entropy, mutual 
information, transfer 
entropy, partial 
information 
decomposition, 
information transmission 

Discrete 
and 
continuous 

No Binning (several methods) No No MATLAB 

JIDT [31] Entropy, mutual 
information, transfer 
entropy 

Discrete 
and 
continuous 

Non-
parametric 
 

Binning 
Kernel-based  
Gaussian fit 

Yes No JAVA (with 
Python and 
MATLAB 
wrappers) 

FRITES [32] Entropy, Mutual 
Information, transfer 
entropy 

Discrete 
and 
continuous 

 Non-
parametric 
Group stats 

Binning (equi-spaced) 
Gaussian copula 

Yes No Python 

Inform [156] Entropy, mutual 
information, transfer 
entropy 

Discrete No Binning (several methods) No No C (with 
Python, Julia, 
R and 
Mathematica 
wrappers) 

Transfer Entropy Toolbox 
[89] 

Transfer entropy Spike trains No No No No MATLAB 

Trentool [152] Transfer entropy Continuous Non-
parametric 
Group stats 

Kernel-based  Yes No MATLAB 

MuTE [157] Transfer entropy Continuous Non-
parametric 

Binning (equi-spaced) 
Gaussian fit 
Kernel-based 
 

Yes No MATLAB 

ToolConnect [158] Entropy, transfer entropy Spike trains No No No No C# 

STAToolkit [159] Entropy, mutual 
information 

Spike trains Non-
parametric 
 

Binning Yes No MATLAB (with 
.mex files) 

PyEntropy [29] Entropy, mutual 
information, maximum 
entropy models 

Discrete 
and 
Continuous 

No Binning (several methods) 
Shrink Estimator 

Yes No Python 

ITE Toolbox [160] Entropy, mutual 
information 

Discrete 
and 
Continuous 

No Kernel-based 
 

No No MATLAB and 
Python 

Dit [161] Entropy, mutual 
information, partial 
information 
decomposition 

Discrete No No No No Python 

Climer and Dombeck [162] SMGM information [163] Discrete 
and 
Continuous 

No No No No MATLAB 

Table 1. Comparison with existing information theoretic toolboxes. If the toolbox computes quantities that are defined as simple 936 
linear combinations of entropies or mutual information, for brevity we list them under entropy or mutual information.  937 

 938 

 939 
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Validations and recommendations for the analysis of calcium imaging  940 
The methods presented in NIT are applicable to any kind of neuroscience recordings, both discrete and 941 
continuous. Given that the plug-in binning estimators presented here have been extensively and 942 
successfully validated on electrophysiological data (from spike trains, to LFP and EEG), in this study we 943 
focused on validating the information-theoretical analysis of 2P calcium imaging data. 2P imaging signals 944 
are potentially more challenging than electrophysiological ones to analyze with information theory, 945 
because of the lower SNR and temporal resolution. Moreover, the problem of how to recover from 946 
calcium traces as much information as possible about external stimuli or about the underlying spiking 947 
activity of the imaged neurons has not been systematically studied yet.  948 

We addressed these issues using a thorough analysis of synthetic calcium imaging traces, generated 949 
through a biophysically plausible single-compartment model of cytosolic calcium dynamics. Specifically, 950 
we assessed the effect of the calcium indicator (GCaMP6f vs GCaMP6s), imaging frame rate, SNR, response 951 
profile shape, and spike rate modulation by the stimulus on the stimulus information computed from the 952 
simulated calcium signal. We found that estimates of MI from the ΔF/F signal depended relatively weakly 953 
on the imaging frame rate and SNR. However, the amount of MI that could be obtained from calcium 954 
fluorescence traces is the temporal shape of the neuronal response. A tonic neuronal response transfers 955 
more information in the calcium signal compared to a phasic one, particularly when using an indicator 956 
with slow decay time and high dynamic range (GCaMP6s). We have further observed that, when the 957 
neuron encodes the stimulus in a phasic way at high firing rates, the calcium signal can occasionally 958 
encode more stimulus information than the time-averaged spike rate (Figure 4). The reason for this 959 
counterintuitive finding is that in this condition spiking activity is concentrated within a limited time 960 
interval and thus knowledge of when spike times are more informative adds information, and that the 961 
nonlinearities of calcium dynamics emphasize the signal in this high-firing high-information region and 962 
deemphasize the signal in the low-firing low information region, thereby achieving more information than 963 
the time-average spike rate which instead weighs all spikes equally regardless of when they were fired. 964 

Furthermore, we have proposed a new single-trial calcium metric, based on the inversion of the forward 965 
model that we have used for the generation of synthetic calcium traces, for the estimation of calcium 966 
concentration in the cell given a ΔF/F trace. This approach was inspired previous work [164] inferring 967 
action potentials by building an inverse model of membrane potential from calcium imaging signals. We 968 
assessed the performance of this single-trial calcium metric for computing information from calcium data, 969 
and we compared it with other widely used strategies for quantification of single trial ΔF/F responses. We 970 
found that, across all simulation conditions examined, the newly proposed estimated calcium and the 971 
linear deconvolution of the ΔF/F trace with a decaying exponential were the two single trial calcium 972 
response quantification that allowed to extract more information (about external stimuli or about the 973 
underlying spike rates). Other considered quantifications of single trial calcium responses (max ΔF/F, 974 
mean/integral ΔF/F, OASIS) extracted less information. These results were confirmed on experimental 975 
data coming from four independent datasets – including both GCaMP6f and GCaMP6s signals 976 
simultaneously acquired on individual cells together with juxtasomal electrophysiological recordings. 977 
Careful choice of single-trial quantifications of calcium signals can, thus, significantly increase the amount 978 
of information retrieved, and we propose a new and efficient metric to do so.  979 

Importantly, we compared different information computation methods, all implemented in NIT, to 980 
compute information from calcium data. We found that the non-parametric copula-based estimator for 981 
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mutual information [71] was the one working best, outperforming both binned estimators and parametric 982 
Gaussian copulas in terms of data robustness and accuracy of the estimation. While the non-parametric 983 
copula comes at the expense of major increase of computing time, it should be recommended for calcium 984 
data whenever its computation is practically feasible.  985 
 986 
A result of importance of our simulations and real data analysis was that, when proper quantification and 987 
algorithms were applied, we could recover surprisingly large amounts of information from calcium 988 
imaging. In simulations, the amount of stimulus information obtained from realistically simulated calcium 989 
imaging traces was > 50% of the stimulus information encoded in the simulated spike trains when effective 990 
single-trial calcium metric were applied (Fig 5B). In both simulated and real data, a relatively large amount 991 
of information about the underlying spike rate could be recovered from the calcium traces when using 992 
appropriate calcium metrics and algorithms (Fig 5D,7). These results illustrate the power of calcium 993 
imaging for studying population activity and the importance of coupling it with advanced information 994 
theoretic and signal extraction methods. 995 
 996 
Climer and Dombeck [162] have recently discussed the application to calcium imaging of a specific 997 
information metric termed SMGM. This metric has been first introduced by Skaggs et al. [163] for 998 
electrophysiological data and is often used in the literature for hippocampal place field quantification. It 999 
has been shown [165] that, when applied to spike trains, the SMGM metric approximates well the full 1000 
information content of a spike train only when the average number of spikes per trials is much smaller 1001 
than 1 (i.e. very low firing rates or very short time windows) and that the correlations between spikes are 1002 
small enough so that the firing statistics is close to that of a Poisson process.  Using the SMGM metric with 1003 
the ΔF/F signal as a proxy of the information carried by the underlying spike rates rate additionally 1004 
assumes that a constant proportionality exists between the firing rate and fluorescence signal for a given 1005 
indicator. However, there are known non-linearities between spike rate and fluorescence. Using MI to 1006 
extract information from calcium traces as a proxy of information from spike rates does not require the 1007 
assumption of a linearity between spike rates and calcium fluorescence, because MI is insensitive to 1008 
monotonic non-linearities in the transformation between variables, and it does not require the 1009 
assumption that neuron fire at very low rates with Poisson statistics. Based on these considerations, we 1010 
recommend application of SMGM to estimate information from calcium imaging data only when there is 1011 
an expectation of linearity between spike rates and calcium responses and of very low firing rates of 1012 
neurons. Estimations made using MI are instead valid and applicable under more general circumstances. 1013 
 1014 

Conclusions  1015 
Overall, our toolbox provides a comprehensive set of information theoretic measures applicable to any 1016 
kind of neuroscience data.  1017 

1018 
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 1019 

Materials and methods 1020 

Details of the performed parametric simulation sweep 1021 
Below are listed the values considered for each of the variables considered in the parametric sweep of 1022 
simulations of neural activity and calcium imaging traces. 1023 

• Imaging frame rate: 5, 10, 100 Hz. 1024 
• SNR: 5, 9, 15. 1025 
• PSTH shape: Tonic (gaussian-shaped with peak at 0.25s over a 1s trial duration, standart deviation 1026 

0.01 s), phasic (uniform distribution over time). 1027 
• Stimulus modulation of neuron mean firing rate:  1028 

o [1 Hz – 2 Hz]: Low MI, Low SR 1029 
o [12 Hz – 13 Hz]: Low MI, High SR 1030 
o [2 Hz – 12 Hz]: High MI 1031 

• Indicator: GCaMP6f, GCaMP6s. 1032 
• Number of trials per stimulus: [5,10,20,30,40,50,60,80,100,200,400]. 1033 

Mutual Information (Direct plug-in method) 1034 
	𝑀𝐼(𝑆; 𝑅) has been calculated using Equation (1), where the marginal and joint probabilities have been 1035 
calculated by simply counting the number of occurrences of the discrete values of 𝑅 and 𝑆 across repeated 1036 
presentations of the stimulus. If variables 𝑅 and 𝑆 were continuous, they were discretized using binning 1037 
routines. The binning strategy and number of bins used for each specific analysis using direct plug-in 1038 
method are reported in the main text, together with the use of bias correction method used for the 1039 
specific analysis. 1040 

Mutual Information (Non-Parametric Copula) 1041 
We estimated the mutual information between two variables 𝑅 and 𝑆 using the nonparametric copula 1042 
approached presented in [71]. Copula is defined as the probability function between the CDF’s of the 1043 
marginal variables 𝑈8~CDF(𝑅) and 𝑈9~CDF(𝑆) and it captures the general correlation structure of the 1044 
joint density function between variables. To compute the mutual information I(𝑅; 𝑆), we use the fact that 1045 
it is related to the copula entropy as: 1046 

 I(𝑅; 𝑆) = −𝐻K𝐶(𝑈8 , 𝑈9)L (6) 

Where 𝐶(𝑈8 , 𝑈9) is the joint density function of CDF variables 𝑈8  and 𝑈9. To compute the copula density, 1047 
we used the same analytic solution for a local likelihood kernel estimation of the CDF values after 1048 
optimizing the bandwidth using a genetic optimization developed in Safaai et al. [71] 1049 

We then estimated the copula density over the whole space of CDF’s (𝑈8 , 𝑈9) using the optimized kernels 1050 
and on a grid of size k which defines the resolution of density estimation. We normally used k=50 or k=100 1051 
in our calculation and the change didn’t make significant difference on our results. 1052 

After estimating the copula density on the grid, we generated correlated samples of data by first 1053 
computing the conditional cumulative copula density by integrating the copula density over the grid:  1054 
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𝐶(𝑈8|𝑢9) = N 𝐶(𝑣, 𝑢9)𝑑𝑣

:!

;
 (7) 

Which is a uniform distribution. Using the fact that the marginal distribution of a CDF distribution is 1055 
uniform, the 2-dimensional correlated samples can be generated as follows: 1056 

 𝑢9 =	𝑣9 (8) 

 𝑈8 = 𝐶15(𝑣8|𝑣9) (9) 

Where 𝑣8  and 𝑣9 are independent samples from the uniform distribution (𝑣8 , 𝑣9)~	𝕌[;,5]. We then used 1057 
these samples to estimate the copula entropy, using classical Monte-Carlo approach after expressing the 1058 
entropy as the expectation over copula density 𝐻(𝐶) = −𝔼[log 𝐶(𝑉8 , 𝑉9)]. For the case in which one of 1059 
the variables is discrete, we first transform the variable into the continuous domain by adding an 1060 
appropriate noise which as it was shown in Safaai et al. [71]. 1061 

 1062 

Mutual Information (Parametric Copula) 1063 
We implemented several algorithms for mutual information estimation using parametric copulas that 1064 
have been introduced in neuroscience [30, 70].  Full details are contained in the software documentation. 1065 
In brief, we adapted our algorithms from those of Ref (Onken and Panzeri, 2016). For continuous margins, 1066 
we provide implementations of the normal and the gamma distributions. For discrete margins, we provide 1067 
the Poisson, binomial and negative binomial distributions. We provide the Gaussian, student and Clayton 1068 
bivariate copula families as well as rotation transformed Clayton families. 1069 

 1070 

Generation of synthetic calcium imaging traces 1071 

Convolution with a double exponential kernel 1072 
Fluorescent signal was generated as a convolution of the input spike train with a double exponential 1073 
kernel in the form: 1074 

 
𝐴11 − 𝑒

16
>"#2𝑒

16
>"$$  (10) 

Chen et al.[122] report values of peak amplitude, peak time and half decay time for both GCaMP6f and 1075 
GCaMP6s in  mouse V1 in vivo experiments. Those values are related to the constants 𝐴, 𝜏/* and 𝜏/?? 1076 
defined above, and have been defined through an iterative optimization to generate a double exponential 1077 
kernel with the same peak amplitude, peak time and half decay time than reported in literature. Values 1078 
used of the three constants for the two indicators are reported in Supplementary table 1.  1079 

 GCaMP6f GCaMP6s 
A [-] 0.39 0.51 
τon [s] 0.03 0.14 
τoff [s] 0.09 0.37 

Supplementary table 1. Used constants for the synthetic trace generation through a double exponential kernel 1080 

 Gaussian white noise with given standard deviation is added to the convolved trace to generate the 1081 
synthetic calcium imaging trace with given SNR. 1082 
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Biophysically plausible SCM 1083 
Evolution of cytosolic calcium concentration [Ca] is modelled trough the following differential equation 1084 
[120]: 1085 

 
𝑑[𝐶𝑎(𝑡)]

𝑑𝑡
=
−𝑣-7@

𝐴
𝑉 _

[𝐶𝑎(𝑡)]
[𝐶𝑎(𝑡)] + 𝐾A

− [𝐶𝑎]03&6
[𝐶𝑎]03&6 + 𝐾A

a + ∆[𝐶𝑎]BC𝛿
(𝑡 − 𝑡BC)
𝑑𝑡

1 + 𝑘9 + 𝑘D(𝑡)
 

(11) 

Where 𝑣-7@ is the maximum efflux rate per unit area of the cell membrane, 𝐴 is the membrane area, 𝑉 1086 
is the compartment volume, 𝐾A is the concentration at which extrusion is half maximal, ∆[𝐶𝑎]BC is the 1087 
amount of calcium intake following an action potential, 𝛿 is Dirac’s delta, 𝑡BC are the times of action 1088 
potentials, 𝑘9 is the binding ratio of the endogenous [Ca] buffers, and 𝑘D is the binding ratio of the 1089 
exogenous buffers (the indicator itself). The latter is not a model constant and, for the case of cooperative 1090 
binding, is defined as [166]: 1091 

 
𝑘D = [𝐵E]

𝑛[𝐶𝑎(𝑡)]*15𝐾2*

([𝐶𝑎(𝑡)]* + 𝐾2*)!
 (12) 

Where [𝐵E] is the concentration of the indicator, 𝑛 is the Hill coefficient, 𝐾2  is the dissociation constant 1092 
of the indicator. 1093 

Equation (11) contains two non-linear terms: a saturable mechanism for calcium extrusion from the 1094 
cytoplasm (first term at the numerator on the right-hand side).  Measured values of 𝑣-7@ are hardly 1095 
available in literature. It is more common to find estimates of the extrusion rate 𝛾 in case of a linear 1096 
extrusion mechanism (𝐶𝑎(𝑡)/:6 = 𝛾([𝐶𝑎(𝑡)] − [𝐶𝑎]03&6))[120]. We have thus specified 𝑣-7@ so that the 1097 
extrusion rate would match 𝛾 = 1200	[1/𝑠] in the surroundings of [𝐶𝑎(𝑡)] = [𝐶𝑎]03&6.  1098 

Time integration of Equation (11) allows to obtain the time trace of free cytosolic calcium in the cell. The 1099 
concentration of indicator bound calcium [𝐶𝑎𝐵(𝑡)] has been obtained through integration of: 1100 

 𝑑[𝐶𝑎𝐵(𝑡)]
𝑑𝑡

= 𝑘/*[𝐶𝑎(𝑡)]*([𝐵]E − [𝐶𝑎𝐵(𝑡)]) − 𝑘/??[𝐶𝑎𝐵(𝑡)] 
(13) 

Where 𝑘/* and 𝑘/?? are the association/dissociation rates. 1101 

Once known the fraction of calcium-bound indicator, fluorescence is generated through a linear model 1102 
[166]: 1103 

 𝐹 = ([𝐵]E − [𝐶𝑎𝐵(𝑡)]) + 𝜙[𝐶𝑎𝐵(𝑡)] (14) 

Where the constant Φ is indicator specific and has been tuned to experimental data. 1104 

The value of baseline fluorescence𝐹;, in resting state, steady conditions, is calculated from the resting 1105 
state indicator-bound concentration using Equation (14)[166]: 1106 

 
[𝐶𝑎𝐵]03&6 =

[𝐵]E[𝐶𝑎]03&6*

[𝐶𝑎]03&6* + 𝐾2*
 (15) 

The model then returns the normalized fluorescence, with the addition of white noise term: 1107 

 Δ𝐹
𝐹;

=
𝐹 − 𝐹;
𝐹;

+𝑊𝑁(𝜎) (16) 

The standard deviation of the white noise has been specified to match the desired SNR for a given 1108 
synthetic trace. 1109 
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Constant Units Value Method Reference 
∆[𝐶𝑎]BC [µM] 7.6 From reference [66, 120] 
𝑘9 [-] 110 From reference (L2/3 pyr neuron) [120] 
[𝐵E] [µM] 10 From reference [69] 
𝑣-7@ o

pMol
cm!s

u 1.8E-1 Specified to match linear extrusion rate far 
from saturation in reference 

[166] 

r [µm] 5 From reference (L2/3 pyr neuron) [167] 
𝐴 [m2] 𝐴	 = 	𝜋𝑟! Equation  
𝑉 [m3] 𝑉 = 	4/3	𝜋𝑟F Equation  
𝐾A [µM] 0.8 From reference [168] 

[𝐶𝑎]03&6 [nM] 50 From reference [169] 
Supplementary table 2. Model constants used in the SCM. These constants were independent on the indicator. 1110 

Constant Units Value GCaMP6f Value GCaMP6s Method Reference 
𝑛 [−] 2.47 2.93 Fit to experimental data  
𝐾2  [nM] 375 144 From reference [122] 
𝑘/* [Hz/Mn] 𝑘/* = 𝑘/??/𝐾2* From reference [166] 
𝑘/?? [Hz] 5.16 0.5 Fit to experimental data  
Φ [−] 15.01 62.72 Fit to experimental data  

Supplementary table 3. Indicator specific constant used in the SCM. These constants were indicator-specific and have been 1111 
determined through fitting the model on experimental data. 1112 

Fitting of the SCM to experimental data 1113 
Fitting of the single-compartment model is done in the following way (separately for each indicator 1114 
considered). Among the three variables that are fit to data (Φ, 𝑛,	𝑘/??), the first one is optimized first – 1115 
and independently from the other two – so that saturated indicator reaches the dynamic range reported 1116 
in [122]. This is possible due to the fact that  𝑛 and	𝑘/?? do not impact the steady state brightness of the 1117 
indicator, but only its dynamics.  Simultaneous 2-photon imaging and cell-attached electrophysiology 1118 
data[170] are then used to define the kinetics of the indicator binding/unbinding and its cooperativity. 1119 
Given the experimentally measured spike train, and SNR of the experimental fluorescent trace, we have 1120 
optimized 𝑛 and	𝑘/?? to reduce the root square error between the generated synthetic calcium trace and 1121 
experimental data. Dataset ‘data_20120521_cell5_007.mat’ has been used for GCaMP6f tuning, while 1122 
‘data_20120515_cell1_006.mat’ has been used for GCaMP6s. 1123 

Definition of spiking activity metrics based on ΔF/F 1124 

Max ΔF/F 1125 
Values of peak ΔF/F over a defined post stimulus time interval have been calculated as follows: 1126 

 𝑚𝑎𝑥(ΔF/F) = 𝑚𝑎𝑥(ΔF/F(t) 	− 	ΔF/F(0)) (17) 

Mean/integral ΔF/F 1127 
Values of mean ΔF/F over a defined post stimulus time interval have been calculated as follows: 1128 

 𝑚𝑒𝑎𝑛(ΔF/F) = 𝑚𝑒𝑎𝑛(ΔF/F(t) 	− 	ΔF/F(0)) (18) 

It should be noted that, throughout the text, we refer to this metric as Mean/integral ΔF/F. The reason 1129 
for this is that the mean and integral are related by a constant linear scaling and are de facto equivalent 1130 
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in information-theoretical terms.  The full dataset attached to this paper contains also separate analysis 1131 
for 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(ΔF/F), showing identical performance to 𝑚𝑒𝑎𝑛(ΔF/F). 1132 

Estimated Calcium 1133 
This metric of spiking activity based on the two photon imaging recordings is based on the inversion of 1134 
the forward model detailed in section Biophysically plausible SCM. The inversion, calculating thus [Ca] 1135 
from the ΔF/F assumes that the binding/unbinding happens at chemical equilibrium. In this condition, for 1136 
cooperative binding, we can write the relation between [CaB] and [Ca] as: 1137 

 [𝐶𝑎𝐵(𝑡)]
𝐵E

=
[𝐶𝑎(𝑡)]*

[𝐶𝑎(𝑡)]* + 𝐾2*
 (19) 

Deriving both left and right-hand side: 1138 

 𝑑[𝐶𝑎𝐵(𝑡)]
𝑑𝑡

=
𝑛𝐾2*[𝐶𝑎(𝑡)]*15[𝐵E]
([𝐶𝑎(𝑡)]* + 𝐾2*)!

𝑑[𝐶𝑎(𝑡)]
𝑑𝑡

 (20) 

 1139 

Assuming that the generated fluorescence is a linear combination of the fractions of calcium-free [B] and 1140 
calcium-bound [CaB] indicator we can write the following: 1141 

 𝐹(𝑡) = [𝐵(𝑡)] + 𝜙[𝐶𝑎𝐵(𝑡)] = [𝐵]E − [𝐶𝑎𝐵(𝑡)] + 𝜙[𝐶𝑎𝐵(𝑡)] = [𝐵]E + 𝛼[𝐶𝑎𝐵(𝑡)] (21) 

Where 𝛼 = 𝜙 − 1. Baseline state fluorescence, thus, is: 1142 

 𝐹; = [𝐵]E + 𝛼[𝐶𝑎𝐵]; (22) 

Combining Equations (21) and (22) we have that: 1143 

 ΔF
𝐹
(𝑡) =

𝛼([𝐶𝑎𝐵(𝑡)]−[𝐶𝑎𝐵];)
[𝐵]E + 𝛼[𝐶𝑎𝐵];

 (23) 

Deriving both left and right-hand side of Equation (26) with respect to time: 1144 

 𝑑 ΔF 𝐹| (𝑡)
𝑑𝑡

=
𝛼

[𝐵]E + 𝛼[𝐶𝑎𝐵];
𝑑[𝐶𝑎𝐵(𝑡)]

𝑑𝑡
 

(24) 

Combining Equations (24) and (20): 1145 

 𝑑 ΔF 𝐹| (𝑡)
𝑑𝑡

=
𝛼

[𝐵]E + 𝛼[𝐶𝑎𝐵];
𝑛𝐾2*[𝐶𝑎(𝑡)]*15[𝐵E]
([𝐶𝑎(𝑡)]* + 𝐾2*)!

𝑑[𝐶𝑎(𝑡)]
𝑑𝑡

 
(25) 

Given the time trace of fluorescence, equation (28) can be used to solve for [𝐶𝑎(𝑡)] once [Ca(0)] and  1146 
[𝐶𝑎𝐵]; are known. These values have been defined through the following educated guesses. The baseline 1147 
calcium-bound indicator concentration [𝐶𝑎𝐵]; is taken as the steady state equilibrium concentration 1148 
when [𝐶𝑎] = [𝐶𝑎]03&6 (using Equation (19)). 1149 

In order to estimate the initial concentration of free calcium in the cell we used the following approach. 1150 
Combining equations (23) and (19) we obtain: 1151 

 

ΔF/F =
𝛼 _ [𝐵]E[𝐶𝑎(𝑡)]

*

[𝐶𝑎(𝑡)]* + 𝐾2*
−[𝐶𝑎𝐵];a

[𝐵]E + 𝛼[𝐶𝑎𝐵];
 

(26) 
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Given	ΔF/F at time zero, iterative solution of equation (26) for [Ca(0)]. This sets the initial conditions for 1152 
time integration of equation (28). 1153 

The obtained time trace is finally deconvolved through a single decaying exponential kernel with time 1154 
constant equal to the reciprocal of the unbinding rate of the indicator koff. The mean of the deconvolved 1155 
trace is reported as the estimated [Ca]. 1156 

Linear deconvolution 1157 
The ΔF/F trace has been deconvolved with a decaying exponential with a decaying time constant 𝜏/??. 1158 
The reported value of the deconvolved signal over the post stimulus time interval has been calculated as: 1159 

 
𝐿𝑖𝑛𝑒𝑎𝑟	𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛 1

dΔF/F(t)
𝑑𝑡

	+	
ΔF/F(t)
	𝜏/??

2 (27) 

Where the values of 𝜏/?? (𝜏/?? = 2𝑠 for GCaMP6s and 𝜏/?? = 0.5𝑠 for GCaMP6f) have been estimated 1160 
from the decay of time traces for GCaMP6 indicator reported in Chen et al.[122] 1161 

OASIS 1162 
Time trace of  ΔF/F has been deconvolved using MATLAB implementation of OASIS [137] 1163 
(https://github.com/zhoupc/OASIS_matlab). We have used the second order auto-regressive thresholded 1164 
implementation of the algorithm. This implementation imposes a minimum threshold for the deconvolved 1165 
trace, effectively filtering out spurious deconvolved activity. The parameters of the auto-regressive model, 1166 
the value of the threshold, as well as the SNR levels were estimated by internal functions of the toolbox. 1167 
The returned value of OASIS metric over a post-stimulus window has been calculated as: 1168 

 𝑂𝐴𝑆𝐼𝑆	 = 	𝑚𝑒𝑎𝑛(𝑂𝐴𝑆𝐼𝑆	𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒𝑑	ΔF/F) (28) 

In order to avoid potential issues in using OASIS to deconvolve traces of limited duration, the time traces 1169 
of ΔF/F extended for a total duration of 10s, of which the first second was stimulus modulated and the 1170 
remaining part had a constant baseline SR of 0.5 Hz.  1171 

Definition of preparatory activity in motor cortex 1172 
Stimulus and choice instantaneous information were computed using mutual information between those 1173 
variables and the neural activity over time, resulting in values of information over the trial duration. 1174 
Mutual information and intersection information were computed using the direct plug-in method for 1175 
computational tractability of such a large dataset. Neural activity was binned in 2 equally populated bins 1176 
for every timestep.  1177 
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Supplementary material 1617 

Supplementary tables 1618 
Information quantity Allowed bias correction methods 
Mutual Information (direct method) Quadratic Extrapolation, Panzeri-Treves, 

Bootstrap correction, BUB 
Mutual Information (non-parametric copula) Bootstrap correction 
Mutual Information Breakdown Quadratic Extrapolation, Panzeri-Treves, 

Bootstrap correction 
Transfer Entropy Quadratic Extrapolation, Panzeri-Treves, 

Bootstrap correction 
Partial Information Decomoposition Linear Extrapolation, Quadratic Extrapolation, 

Bootstrap correction 
Intersection Information Linear Extrapolation, Quadratic Extrapolation, 

Bootstrap correction 
Feature Information Transfer Linear Extrapolation, Quadratic Extrapolation, 

Bootstrap correction 
Supplementary table 4. Compatibility matrix between information-theoretic quantities in NIT and applicable bias correction 1619 
strategies. 1620 

 PSTH shape FR SNR 
Low MI, low SR p-val = 2.24e-16 

ω2 = 7.00e-02 
p-val = 3.97e-04 
ω2 = 1.40e-02 

p-val = 7.21e-02 
ω2 = 3.32e-03 

Low MI, high SR p-val = 8.11e-48 
ω2 = 2.08e-01 

p-val = 4.05e-01 
ω2 = -1.70e-04 

p-val = 4.09e-01 
ω2 = -1.85e-04 

High MI p-val = 0 
ω2 = 8.89e-01 

p-val = 9.30e-17 
ω2 = 7.99e-03 

p-val = 5.00e-14 
ω2 = 6.54e-03 

Supplementary table 5. Table of p-values and effect sizes ω2 for data in Figure 3C. Data have been analyzed using a separate 1621 
three-ways ANOVA (considering PSTH shape, FR and SR as grouping variables) for each information level. 1622 

 PSTH shape Indicator 
Low MI, low SR p-val = 4.97e-01 p-val = 4.89e-01 
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ω2 = -2.69e-03 ω2 = -2.61e-03 
Low MI, high SR p-val = 5.61e-01 

ω2 = -1.66e-03 
p-val = 6.47e-01 
ω2 = -1.98e-04 

High MI p-val = 1.5e-07 
ω2 = 4.34e-02 

p-val = 4.18e-01 
ω2 = -5.45e-04 

Supplementary table 6. Table of p-values and effect sizes ω2 for data in Figure 3D. Data have been analyzed using a separate 1623 
two-ways ANOVA (considering PSTH shape and calcium indicator as grouping variables) for each information level. 1624 

1625 
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Supplementary figures 1626 

 1627 

Supplementary figure 1. Generation of fluorescence trace in the Single Compartment Model. (A) Top: simulated trace of relative 1628 
levels of free calcium concentration in the cytoplasm with respect to resting state levels. Circles represent action potentials. 1629 
Middle: simulated trace of the fraction of GCaMP indicator bound to calcium. Bottom: fluorescent trace resulting from the 1630 
fractions of calcium-bound and calcium-free indicator. (B) Relation between generated fluorescence and free calcium 1631 
concentration in the cytoplasm in chemical equilibrium conditions for both GCaMP6f and GCaMP6s in the used model. 1632 
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 1633 

Supplementary figure 2. Performance of OASIS on experimental calibration dataset[170] with simultaneous calcium imaging 1634 
and electrophysiology. (A) Pearson’s correlation coefficient between real and inferred spiking activity using 2nd order auto-1635 
regressive (AR) thresholded OASIS[137] (see Materials and methods). (N = 34 for GCaMP6f, N = 19 for GCaMP6s). (B) Relation 1636 
between z-scored inferred spiking activity in OASIS and ground truth spike rate on 1 s long windows selected randomly over the 1637 
entire experimental acquisition (50 random windows per each experimental trace N = 1700 for GCaMP6f, N = 950 for GCaMP6s). 1638 
Experimental data for this dataset are publicly available at: https://crcns.org/data-sets/methods/cai-1 1639 
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Supplementary figure 3. Information content in ΔF/F traces with respect to SR code. Percentage of stimulus information 1641 
retrieved by each ΔF/F metric with respect to the one contained in spike rate, in all conditions of the parametric sweep considered 1642 
in the study. Values represent the average over 50 simulations. For each combination of frame rate, SNR, information level, 1643 
indicator and PSTH shape, the * symbol marks the metrics with non statistically different mean (p > 0.05 Bonferroni corrected 1644 
Kruskal-Wallis multiple comparison test) from the best performing metric at those conditions. Best performing metric is defined 1645 
as the one returning the highest mean stimulus information. All data in the figure refer to simulated traces. Mutual information 1646 
is evaluated using plug-in method. 1647 

 1648 

Supplementary figure 4. Where is MI in max ΔF/F higher than MI in SR. Percentage of cases, across all conditions investigated 1649 
in the parametric sweep, where MI in max ΔF/F has been found to be higher than the stimulus information in the spike rate code.  1650 
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