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Abstract

Information theory provides a popular and principled framework for the analysis of neural data. It allows
to uncover in an assumption-free way how neurons encode and transmit information, capturing both
linear and non-linear coding mechanisms and including the information carried by interactions of any
order. To facilitate its application, here we present Neuroscience Information Toolbox (NIT), a new
toolbox for the accurate information theoretical analysis of neural data. NIT contains widely used tools
such as limited sampling bias corrections and discretization of neural probabilities for the calculation of
stimulus coding in low-dimensional representation of neural activity (e.g. Local Field Potentials or the
activity of small neural population).Importantly, it adds a range of recent tools for quantifying information
encoding by large populations of neurons or brain areas, for the directed transmission of information
between neurons or areas, and for the calculation of Partial Information Decompositions to quantify the
behavioral relevance of neural information and the synergy and redundancy among neurons and brain
areas. Further, because information theoretic algorithms have been previously validated mainly with
electrophysiological recordings, here we used realistic simulations and analysis of real data to study how
to optimally apply information theory to the analysis of two-photon calcium imaging data, which are
particularly challenging due to their lower signal-to-noise and temporal resolution. We also included
algorithms (based on parametric and non-parametric copulas) to compute robustly information
specifically with analog signals such as calcium traces. We provide indications on how to best process
calcium imaging traces and to apply NIT depending on the type of calcium indicator, imaging frame rate
and firing rate levels. In sum, NIT provides a toolbox for the comprehensive and effective information
theoretic analysis of all kinds of neural data, including calcium imaging.
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Introduction

Information theory (IT), is the principled mathematical theory of communication [1]. Its use as analysis
tool to measure how neurons encode and transmit information has been key to understanding brain
functions such as sensation, spatial navigation, and decision-making. Mutual information (Ml), the key
quantity of IT, measures how well variables important for cognitive functions, such as sensory stimuli, are
encoded in the activity of neurons, and how information is transmitted across brain regions. Its use has
many advantages [2-8]. It provides a single-trial measure of information encoding and it is thus more
relevant for single-trial behavioral or perceptual functions than trial-averaged measures of
discriminability. It quantifies information in units of bits, a meaningful and interpretable uncertainty-
reduction scale. It allows largely hypotheses-free measures of information encoding that place upper
bounds to the performance of any decoder, and that can potentially capture the contributions of both
linear and non-linear interactions between variables at all orders. Because of its generality, it can be
applied to any type of brain activity recordings. Also, because neural systems may need to maximize
information encoding for evolutionary reasons, applications of IT to empirical data allows a direct
comparison between the predictions of normative neural theories and real neural data [5, 9]. Because of
these advantages, information theory has deeply influence neuroscience over many years [5, 7, 9-13].

Earlier work using information theory to analyze empirical neuroscience data has focused on low-
dimensional measures of neural activity such as such as single neurons, small neural populations or
aggregate measures such as LFPs/EEGs (because of the systematic errors in estimating information with
the small numbers of trials that can be collected empirically are exacerbated with high-dimensional neural
responses [14]). It has also focused mostly on information encoding, regardless of the downstream use of
the encoded information. Seminal studies of this kind have used electrophysiological recordings of neural
activity to demonstrate the role of single-neuron spike timing for the encoding of sensory information [6,
7, 15-17]. Other studies have provided the foundations of how trial-to-trial correlations between neurons
shape the encoding of information and create redundancy and synergy in pairs of neurons [18-20].
Further studies have examined how information is encoded in the neural oscillations found in aggregate
measures of neural activity such as Local Field Potentials (LFPs) [21, 22]. Several algorithms have been
proposed for the application of IT to these low-dimensional neural data [6, 23, 24]. Their ability to provide
accurate and data-robust information estimates has been extensively validated and demonstrated on
electrophysiological recordings, including on spike trains of small populations and on LFPs and EEGs [24-
27], and their use and dissemination has been aided by software toolboxes [25, 28-32].

Over the last decade, due to major progress in the simultaneous recording from many neurons and/or
brain areas, and in the measure and quantification of behavior [33], neuroscience research [34-36] —and
consequently neuroscientific IT — has evolved to investigate how behavior and information processing
emerge from the interaction and communication between neurons and across brain areas. For example,
recent work has coupled IT with dimensionality-reduction techniques to study how information is
encoded in populations of tens to hundreds of neurons [37-46], and of how patterns of synergy between
pairs of neurons are organized within larger networks [20]. Studies have also characterized the transfer
of information between neural populations [47, 48] and between brain areas [49-51]. Importantly,
neuroscientific IT has also been used to measure the information carried by neural activity not only about
sensory stimuli, as in traditional studies, but also about behaviorally relevant signals such as choice and
reward [45]. Moreover, Partial Information Decompositions (PID) [52] has extended Shannon’s IT to
quantify how much of the information encoded in neural activity is used to inform behavioral choices
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87  during perceptual discriminations [53, 54] and synergistic or redundant transfer of information across
88  brain regions [49]. However, progress in using latest IT advances in neuroscience to address large
89  populations, behavioral relevance and information transmission, synergy and redundancy with PID, has
90 been slowed by the absence of comprehensive toolboxes including all or most these recent tools.

91 Key to the recent progress in understanding the relevance of neural population activity for behaviors has
92  been the application of 2-Photon (2P) fluorescence microscopy [55-57] to image the activity of
93  populations of neurons in animals performing cognitive tasks [58-63], even over days or months [64-68].
94  However, applying information theory to 2P imaging recordings is particularly challenging. 2P calcium
95 imaging measures neural activity only indirectly (by the optically recorded fluorescence signal changes
96 that originate from changes in calcium concentrations related to changes in neural activity), and it
97  generally has low SNR and limited temporal resolution. Understanding how to optimize the use of
98 information theory to analyze large-scale recordings of populations with 2P imaging during behavior
99  would greatly aid progress in studying neural population coding.

100  Here, we introduce the Neuroscience Information Toolbox (NIT) to specifically address both the need of
101  having a single open-source toolbox including many recent advances in IT tools for neuroscience and pf
102  optimizing its use for 2P calcium imaging. NIT provides a comprehensive set of IT tools (including Mi,
103 directed communication measures, PID tools, binned and copula probability estimators, and limited
104  sampling bias corrections) applicable to both discrete and continuous measures of neural activity. It thus
105 can be used with both direct electrophysiological recordings of action potentials and with indirect
106  measures of neural activity, such as LFP, EEG, fMRI and 2P imaging. Algorithms that we implemented and
107  optimized in NIT were already validated on electrophysiological recordings [25-27]. However, here we
108  study extensively, both with realistic simulations and with analysis of real data, how best to extract from
109 2P imaging data information about variables of interest (sensory stimuli, behavioral choice, and/or the
110  underling firing levels of neurons) and how best to tune algorithms for information measures and for
111  calcium imaging processing depending on factors including imaging frames, calcium indicators, signal-to-
112 noise ratio of fluorescence and neural firing regimes.

113

114 Results

115  NIT: a complete toolbox for information theoretical analysis of neural data

116  We present NIT, the Neuroscience Information Toolbox. NIT is a comprehensive package of open-source
117  tools for information-theoretical analysis of neuroscience data. NIT is fully documented, and its MATLAB
118 interface allows easy integration with custom built analysis pipelines.

119 Features and structure of NIT are shown in Figure 1. At the core of the software sits a set of modules for
120  the calculation of information theoretic quantities. The software consists also of a set of routines for
121  applying dimensionality reduction and neural decoding strategies. Some of the computations are
122  performed through ad-hoc developed interfaces to external libraries which are distributed with the code,
123 making NIT a self-contained toolbox. The key features and functions of the software are briefly described
124  in the following sections.

125 In the following, we first list and explain the various information theoretic functions and features included
126  inthetoolbox. We then introduce the detailed simulations of 2P calcium imaging recordings together with
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127  the results of the parametric study used to discuss the limitations of extracting information from those
128  data as opposed to electrophysiology. Finally, we apply NIT to experimental data, first to validate what
129  we have observed on synthetic data, as well as to illustrate how the methods implemented in NIT can be
130 effectively used to reveal a higher level of detail of the information processing principles in the brain.
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131

132 Figure 1. Structure of Neuroscience Information Toolbox (NIT) The toolbox comprises modules (black boxes) for calculation of
133 information-theoretic quantities and dimensionality reduction. External libraries (green boxes) are interfaced (arrows) with some
134 of NIT native modules to integrate their functionalities.

135
136  Information theoretic algorithms and functions implemented in NIT

137  Mutual Information

138 MI between two random variables R (in this example the neuronal response) and S (in this example an
139  external stimulus) measures how well a single-trial knowledge of one variable reduces our uncertainty
140  about the value of the other variable is defined as follows [1]:

e p(r,s)

141  where p(s, 1) is the joint probability of observing in a given trial stimulus s and response r, and p(s),p(r)
142  are the corresponding marginal probabilities. MI(S; R) is measured in units of bits, it is nonnegative and
143 it is zero if and only if S and R are statistically independent. One bit of information means that the
144  knowledge of one variable halved the uncertainty about the other variable., R can be either univariate
145  (e.g. time-averaged single neuron activity) or multivariate (e.g. neural population activity, with each
146  dimension of R quantifying the activity of each neuron in a population). NIT accepts either univariate or
147  multivariate entries for both responses and stimuli (useful when several stimulus features are varied
148  across trials). The value of Ml is computed once these probabilities are measured from the data over
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149  repeated experimental trials and inserted into Equation (1). Different methods to compute Ml from real
150  data typically differ depending on how these probabilities are estimated from the data. Three different
151 Ml calculation methods are provided in NIT.

152 The first one, the direct or plug-in method, consists in estimating the probabilities in Equation (1) by
153  simply counting the number of occurrences of the discrete values of both R and S across repeated
154  presentations of the stimulus. The plug-in method does not make assumptions on the shape of the
155  probability distributions and has a low computational cost. To make the plug-in method applicable to
156  cases in which R and/or S are continuous (e.g. R will be continuous if is extracted from unprocessed 2P
157 calcium traces or from LFP traces), NIT has two built-in discretization functions, that bin data in equally-
158  populated or equally-spaced classes. Equally-populated binning maximizes the entropy available in the
159  neural response for a given number of bins and thus often leads to larger information values, whereas
160  equally-spaced binning preserves the shape of the original probability distribution. An interface is
161  provided for inserting into the workflow other user-defined binning methods.

162 A second method, applicable only when the underlying distributions of the data are Gaussian, relies on
163 fitting a Gaussian probability density function to the data. This method, suitable for continuous data not
164  discretized in post-processing, is less prone to limited sampling bias (see below) than the direct plug-in
165  method. However, it is applicable only when signals are approximately Gaussian. This may hold in specific
166 instances for aggregated electrical signals (LFP, EEG, MEG) [21, 25, 30], but it does not hold for 2P calcium
167  traces of individual cells [69].

168 Finally, NIT implements also a Copula estimator, including both parametric Copulas [30, 70] and Non-
169 Parametric Copula (NPC) MI estimation [71]. Joint multi-dimensional probabilities distributions can be
170  expressed in terms of marginal probabilities and a copula, a mathematical term that specifically describes
171  the statistical dependences between the variables (see Materials and methods). The M| between two
172  variables depends on the copula but not on the marginal probabilities. This allows to estimate Ml without
173  calculating the latter [30, 70, 71]. In the NPC approach, copulas are estimated non-parametrically with
174  Kernel methods rather than with parametric forms, allowing largely assumption-free information
175  estimations and avoiding potential mis-estimations of information due to wrong parametric assumptions
176  being used [71]. Estimating MI with NPC has a much higher computational cost compared to the direct
177  plug-in method, at the advantage of being more accurate and not requiring the discretization of
178  continuous variables (although it can be applied also to discrete variables). As an alternative, we also
179  implemented parametric copula estimator, which use parametric assumptions for the joint probability
180  density estimators. This has an advantage in terms of computational costs but it may become highly
181  inaccurate when the Gaussian assumptions are not met [71]. For continuous margins, we provide
182  implementations of the normal and the gamma distributions. For discrete margins, we provide the
183 Poisson, binomial and negative binomial distributions. As bivariate copula building blocks, we provide the
184  Gaussian, student and Clayton families as well as rotation transformed Clayton families [70].

185  Mutual Information breakdown to quantify the information content of neuronal correlations

186  The information about the stimulus encoded in the activity of a population of individual neurons depends
187  on the strength and structure of correlations among neurons [8, 35]. NIT allows to quantify how
188  correlations affect neural population encoding of the stimulus by using the Information Breakdown
189  formalism [19]. The MI between the stimulus and the neuronal population response R (a multi-
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190 dimensional vector containing the activity of each neuron in a given trial) is divided in components that
191  capture the different ways in which correlations affect neural population information, as follows:

MI(R;S) = Ml + Mlsig sim + Mlcorr—ina + MIcorr—dep (2)

192  where MIy;;,, the linear term, is simply the sum of the MI about the stimulus carried by the individual
193  neurons. The other terms, capturing the differences between MI(R; S) and MI;;,, reflect the effect of the
194  statistical dependencies between neuronal responses. Such dependencies are traditionally
195  conceptualized as signal correlations (correlations of the trial-averaged neural responses across different
196  stimuli, quantifying the similarity of tuning to stimuli of different neurons) and noise correlations
197  (correlations in trial-to-trial variability of the activity of different over repeated presentations of the same
198  stimulus, quantifying functional interactions between neurons after discounting the effect of similarities
199 in stimulus tuning), see e.g. [35, 72, 73]. The term Ml; g 5im, always less than or equal to zero, quantifies
200 the reduction of information (or increase in redundancy) due to signal correlations (that is, because
201  neurons have partly similar response profiles to the stimuli). M1 y-r_ina , @ term that can be either
202  positive or negative, quantifies the increment or decrement of information due to the relationship
203  between signal correlation and noise correlation. The term is positive (providing synergy) if signal and
204  noise correlations have opposite sign, while is negative (providing redundancy) if signal and noise
205  correlations have the same sign [19]. M1;o,_gep is @ NOn-negative term that quantifies the information
206  added by the stimulus modulations of noise correlations [19]. The information breakdown includes as a
207  sub-case other types of decomposition and quantifications of the effect of correlations in population
208  activity. For example, Ml orr_ing + Mlcorr—qep Quantifies the total effect of noise correlations on
209  stimulus information and equals the quantity Al defined in [74]. Similarly, My, + Mlgg_sim
210  quantifies the information that the population would have if all single neurons properties were the same
211 but noise correlations were absent, and equals the quantity I;,,_pise Of [74]. Finally, MI;orr—_gep €quals
212 the quantity Al introduced in [75] as an upper bound to the information that would be lost if a
213  downstream decoder of neural population activity would ignore noise correlations. The information
214  breakdown formalism and the related quantities that can be obtained from it have been used in many
215 studies to empirically characterize the effect of correlations [8, 16, 20, 38, 76-79].

216  Partial Information Decomposition

217  Other methods to decompose the contributions of multivariate dependencies between neurons to
218  information carried by populations include the Partial Information Decomposition (PID) [52]. In the form
219  implemented in NIT, PID is applied to three stochastic variables (Ry, R, S) (e.g. two neurons with
220  responses R; and R, respectively, and a stimulus variable S). The method decomposes the information
221  that two of them (called source variables, in the example above the two neuronal responses) carry about
222  the third one (called target variable, in the example above the stimulus), in four non-negative and well-
223  interpretable terms called “atoms”, as follows:

MI((R1,R2); S) = SI((R1,R2); S) + CI((R1,R2); ) + UI((R1,\Rz2); S) (3)
+ UI((R2\R1); 5)
224 In Equation (3): SI((Rq,R;);S) is the shared (redundant) information that R; and R, carry about S;
225  UI((R{,\R3);S) is the unique information about S that is carried by R; but is not carried by R,;
226  UI((R3\R4); S) is the unique information about S only present in R, but not in Ry; and CI((R4, R,); S)
227  is the complementary (synergistic) information about S that is available only when R; and R, are
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228  measured simultaneously. NIT calculates the above PID three-variate decomposition using the so-called
229 BROJA definition [80] through a specifically designed interface to the BROJA-2PID algorithm [81].

230  Intersection Information

231  One application of PID is the measure of Intersection Information (I, see [82, 83]). Il applies to tasks such
232 as perceptual decisions in which in each trial a stimulus (S) is presented, neural activity (R) is recorded
233  and the subject’s perceptual report of which stimulus was presented is measured as a behavioral choice
234  (C). II measures, in bits, how much of the stimulus information carried by neural activity MI(R; S) is
235 used to inform the behavioral choice, and is defined in terms of PID as follows [83]:

II = min(SI((S,R); C), SI(C,R); S) (4)

236  As shown in Ref [83], this expression quantifies the part of information carried by neural activity that is
237 shared between stimulus and choice, and that at the same time is part of the overall information between
238  stimulus and choice. II is non-negative, is bounded by the stimulus and choice information carried by
239  neural activity, and by the information between stimulus and choice. I has been used in several studied
240  to determine the behavioral relevance of aspects of neural population codes (e.g. [39, 54, 83]). NIT has a
241  specifically built module for the calculation of II with the plug-in probability estimation method.

242  Measures of directed information transfer between neurons or brain regions

243 NIT implements also the most used information-theoretic measure of directed information transfer
244  between different brain regions or neurons: Transfer Entropy (TE) [84], equivalent under the definition
245  we use to Directed Information [85]. TE is an information-theoretic measure of the causal dependency
246  between the time series of a putative sender X and the time series of a putative receiver Y. Itis based on
247  the Wiener-Granger causality principle, stating that a signal Y is causing X if the knowledge of the past of
248 Y reduces the uncertainty about the future of X. Given the time series X and Y of two signals
249  simultaneously recoded over time from different neurons or brain regions, TE is defined as:

TE(X-Y)= MI(Ypresent;Xpastlypast) )

250  Where Yypesene is the value of signal Y at the present time, and X, 45:and Yy 4 care the values of X and Y
251  atasetof k past times. TE computes the Ml information that the past values of X carries about the present
252  value of Y, discounting the information that the past of Y carries about its own present value. These
253  measures of directed information transfer have been widely used to characterize communication
254  between brain regions (see e.g.[47, 48, 50, 86]).

255 NIT allows calculating TE using the direct plug-in method. It allows to define the set of k past value used
256  tocompute TE. In most applications, TE is computed using one past value for Xand Y, defined by the delay
257 between the selected past value and the present [48, 87, 88]. However, NIT allows to include past values
258 over a range of different delays from the present. NIT features also an optimized routine for fast
259  calculation of TE on spike trains, taking advantage of the reduced probability space deriving from binary
260  signals [89].

261 Note that NIT implements also other more recent extensions of directed information calculations derived
262  from the PID. For example, it implements also the recently introduced Feature-specific Information
263 Transfer (FIT) [90]. FIT extends the previously described TE by computing not only the total amount of
264  directed information that is transmitted from the putative sender X and receiver Y, but quantifying how
265 much of this total transmitted information relates to a specific stimulus feature of interest S.
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266  Conceptually, FIT quantifies how much of the Ml encoded by the present activity of Y was shared
267  (redundant) with information about S present already in the past of Y while being unique with respect to
268  the stimulus information that was encoded by past activity of Y [90].

269 Importantly, NIT allows computing also other more refined directed information transfer measures
270  derived from PID which can be expressed in terms of appropriate combinations of Ml quantities, such as
271  those introduced in Refs [49, 91].

272  Limited sampling bias corrections

273  Accurate estimation of information quantities depends on accurate estimation of probabilities. Measuring
274  probabilities from a limited number of experimental trials leads to statistical fluctuations in the estimated
275  probabilities, which in turn leads to both statistical and systematic errors in information measures. The
276  systematic error, or limited sampling bias, is due to the non-linear dependence of the information on the
277  probabilities [14]. In most conditions, the limited sampling bias is positive, meaning that limited sampling
278 tends to overestimate the Ml [14, 92]. Intuitively, this is because differences of stimulus-specific neural
279  response probabilities generated by random fluctuations due to limited sampling result through the Ml
280 equation as genuine, information -bearing features. The amount of bias is typically higher for less
281  informative variables, and it decreases approximately linearly with the number of trials [14, 93]. Thus,
282  although the limited sampling bias is present in all calculations of Ml, it is particularly prominent for
283  neuroscience experiments because of the limited number of trials that can be collected and because of
284  the relatively small information values of neural activity (in our experience, in typical experiments with
285  subjects performing tasks while recording brain activity, it is extremely rare than more than ~100-20 trials
286  per stimulus or task condition are available, and information values of individual neurons are usually much
287  smaller than one bit).

288 Fortunately, several bias correction procedures have been developed, with reduce substantially the
289  limited sampling bias from neural measures. In case of stimulus-response information MI(S; R), Equation
290 (1), most measures work well when the number of trials per stimulus is at least 4-10 larger than the
291 number of possible values of response R [14, 23, 28]. This is a rule of thumb that is useful to set the
292  number of bins used to discretize the neural response R. NIT is equipped with a sets of well-used for
293  limited sampling bis correction in MI measure: Panzeri-Treves [23], linear and quadratic extrapolation
294 [94], the shuffling procedure [14], the Best Upper Bounds (BUB) estimator[95], and the bootstrap
295 correction [96]. An analytical bias correction method is specifically available for the Gaussian method [25].
296  Interfaces for easy plug-in of user-defined bias correction routines are available. A complete list of the
297  compatibility between information-theoretic measures, bias correction strategies and information
298  estimation methods implemented in NIT is provided in Supplementary table 4.

299  One point of interest that we found while running the NIT on simulated data is that, while the size of the
300 limited sampling bias for mutual information follows well the analytical predictions of analytical
301 polynomial expansions of the bias in terms of the inverse of the numbers of trial (e.g. [14]), the bias of Il
302  (which is not a mutual information quantity, but only a part of a mutual information quantity) was in
303  general smaller than that predicted for mutual information with the same numbers of trials and response
304  binning. In measures comparing mutual information with PID or Il quantities, we thus recommend (as we
305 didin Figure 8) to evaluate and compare the bias of PID and mutual information quantities in stretches of
306  datain which we know information must be null (e.g. pre-stimulus time windows for stimulus information
307 or Il) and use those as estimates of bias values.
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308  When analyzing multi-dimensional data (e.g. the simultaneous responses of neurons in a population), the
309 number of possible responses of the population increases exponentially with the size of the population.
310  For example, the binary activity of a population of 10 neurons recorded simultaneously can take 2210
311  states, which would require an unrealistic number (~10000) of trials for accurate limited sampling
312  correction. This makes it impossible to compute directly information from large populations [14, 97].
313 Dimensionality reduction and neural decoding algorithms, several of which are embedded as modules in
314  NIT (Figure 1) embedded in NIT allow to analyze highly multi-dimensional data with a limited amount of
315  trials.

316  Dimensionality reduction and neural decoding

317 Dimensionality Reduction (DR) methods are a precious tool for performing information-theoretical
318  analyses of multi-dimensional neural data, as they allow to reduce the dimensionality of the response
319  space R in a meaningful way at the expenses of small information losses.

320  Within NIT we implemented, and coupled with the information theoretic calculation, many such DR
321  methods that have been popular in the analysis of neural activity. The pipeline first maps the multi-variate
322  neuronal response R to a lower-dimensional space R, then NIT computes the mutual information
323 MI(R;S) between the reduced neural variables R and S. The compression of the neural response space
324  cannot increase the information and may lead to some information loss because of the data processing
325 inequality [98]. However, it allows a more reliable sampling of the probability space with the limited
326  number of experimental trial available.

327  The first class of DR methods implemented in NIT can be described as supervised decoding methods.
328 These methods predict in each trial the most likely value of the stimulus S that was presented given the
329  observation of the neural response R in that trial. This data compression for information calculations is
330 popular [38, 39, 44] as effectively it reduces the response R to the smallest space that can in principle
331  preserve all information about S (that is, the S space itself). Two modules for neural decoding,
332  implementing high popular decoding methods in neuroscience, are provided in NIT. The first one is based
333  on linear, logistic or multinomial regression through elastic-net penalized Generalized Linear Models
334  (GLM). The core of the GLM regression functionalities are provided by the GLMnet [99] library, directly
335 interfaced with NIT. This ensures fast and reliable decoding on large datasets characterized by sparse
336  neuronal activity. Such types of decoders have been popular for neural activity analysis [39, 100, 101]. A
337  second method for neural decoding applies a Support Vector Machines (SVM) for multi-class classification,
338  whichis also popular in neuroscience [102-104]. The back-end for SVM classification in NIT relies on the
339 LIBSVM [105] package, providing fast implementation for multi-class Support Vector Classification and
340 Regression.

341 NIT contains two modules for applying dimensionality reduction strategies that compress the space of
342  neural responses in an unsupervised way without relation to the structure of the stimulus. The first one
343  performs Principal Component Analysis (PCA), often used in neuroscience [106], through a custom-built
344  fast MATLAB implementation. A second method is based on a Space-Time Non-negative Matrix
345 Factorization (STNMF) [107]. The method, specifically designed for the analysis of spike trains, allows to
346  decompose the neuronal response through a space-by-time tensor factorization. Moreover, it identifies
347  ensembles of simultaneously active neurons and the temporal profiles of their activity. STNMF has been
348  successfully used to extract information-rich features from the neural activity [107].
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349  Hypothesis testing

350 NIT also provides algorithms to test the hypothesis that the measured information values are significantly
351  different from a null hypothesis distribution of null information. While plug-in values of information for
352  asymptotically large number of trials follow a chi-square distribution and their significance could be tested
353  parametrically, no parametric null hypothesis distribution is known for finite number of trials (as it always
354  the case in real calculation) and for methods different from plug-in. The well-established method to test
355  for the significance of mutual information is the non-parametric permutation test in which all or part of
356 the data structure is randomized to remove its information content [25, 30, 38, 108, 109]. This test
357  computes, from many different random permutations of the data, a null-hypothesis distribution and a
358  significance threshold to test that hypothesis that a measured value of information (which could be non-
359  zero because of sampling bias or statistical fluctuations even if the data contain no information) for
360 significance of information given the number of trials available and computational method used.

361  Significance for the value of MI(S; R) is computed by randomly permuting (or “shuffling”) the neural
362  response R across experimental trials to destroy all information they carry about S. When computing
363 multivariate information measures, it is sometimes of interest to test the significance of values of
364 information between two variables conditioned on the value of other variables. For example, whether the
365  activities of two neurons R; and R, have statistical dependences beyond the one induced by the common
366  tuning to the stimulus S, can be tested by computing the significance of MI(R4; R,|S), the conditional
367  mutual information between R; and R, given S. Whether R2 carries stimulus information not carried
368 already by R1 can be tested by computing the significance of MI(R,; S|R,), the stimulus information of
369 R2 conditioned on R1 [110]. Significance testing of information values conditioned or partialized on values
370  of other variables can be more precisely done by shuffling the statistical relationship between the
371  variables we compute information about at fixed value of the variables we condition upon [110, 111]. This
372  conditioned shuffling destroys the relations between the variables we compute information about while
373  preserving the relationship that each of them individually has with the variables we condition upon.

374 In NIT, we implemented routines that easily create null-hypothesis distributions and significance
375  thresholds for both standard and conditioned mutual information values, performing shuffling of any
376  variable possibly at fixed values of other variables, with the number of different shuffles created a
377  parameter of the analysis.

378  Extensive validation of NIT on simulated 2P data

379 NIT is a general-purpose toolbox, usable on any kind of neuroscientific data. The above-described
380 algorithms implemented for computing information from neural activity have been extensively used and
381  highly validated over the years with electrophysiological recording of spiking activity of single neurons and
382  populations and with aggregate electrical measures of neural activity such as LFPs and EEG [14, 25, 26,
383 112-115]. As a result, we known well how to set the parameters of information theoretic calculations with
384  such signals. However, studies of how best to apply these methods to 2P calcium imaging data are still
385 limited, and no systematic validation is available.

386  Thus, we next validated the capabilities of NIT to extract stimulus information from 2P calcium imaging
387  experiments through extensive simulations of synthetic 2P traces. In the analysis, we strived to cover a
388  wide range of experimental conditions, relating both to the neuronal response and its modulation by the
389  stimulus as well as the experimental apparatus. We first detail the model for the generation of imaging
390 traces, followed by testing the algorithms in NIT in an extensive parametric sweep across all conditions
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391  examined. Aim of this effort was to offer a solid validation on how to analyze 2P data using information
392  theory, highlighting the difference between the information content in imaging data compared to
393  traditional electrophysiology analysis, as well as the advantages of non-parametric copula over binned
394  estimators when applied to imaging data.

395  Forward model for the generation of synthetic fluorescence traces

396 To quantify the extent to which we can extract, from 2P imaging data, all or most neural information
397  available in the underlying spike trains, we first implemented a realistic forward model for the generation
398  of synthetic fluorescence data from ground truth spike trains. This forward model is available within NIT
399  and can be used by users to perform their own simulated experiments to match their own experimental
400  conditions. We implemented and compared two models for the generation of synthetic two-photon
401 calcium imaging traces.

402  The first one (Figure 2A, left panel) defines the spike to fluorescence transfer function through a linear
403  convolution with a double-exponential kernel [116-118]. This model is a good approximation of the
404  fluorescence evoked by action potentials in a low spike rate regime, but fails to account for non-linear
405  effects present at high firing rates [119].

406  The second model (Figure 2A, right panel) is based on a single compartment model (SCM) of calcium
407  dynamics in the cytoplasm [120]. Generation of fluorescence from a given spike train is obtained in three
408  successive steps. The first step models the concentration of unbound calcium within the cell membrane.
409 Every action potential elicits a step influx of calcium ions. The free calcium intake accounts, in a non-linear
410  way, for the effects of both endogenous and exogenous (indicator) calcium buffers in the cytoplasm. The
411  extraction of free calcium from the cell is modelled through a linear leak term combined with a non-linear
412  extrusion term for the membrane calcium pumps. Non-linear effect of the release of free calcium from
413  internal buffers in the cell is also included in the model. A second step in the model allows to calculate the
414  fraction of calcium indicator that is bound to calcium to the one that is not. This is performed through
415  integration of the indicator binding/unbinding kinetics. A linear model converts the fraction of bound and
416  unbound indicator to fluorescence values. This biophysically plausible model for fluorescence generation
417  includes four forms of non-linearity, which cannot be obviously present in the linear convolution model.
418  Those are related to: calcium intake after every action potential, free calcium release from endogenous
419  and exogenous buffers, calcium extraction from membrane pumps and saturation of calcium indicator. A
420  sample train of action potential and the resulting traces for free cytoplasmatic calcium, indicator-bound
421  calcium and fluorescence is shown in Supplementary figure 1.

422 In both models, we added Gaussian white noise to the generated fluorescence to account for
423  experimental noise and manipulate the SNR of simulated recordings (see Methods for details). We
424  assessed the accuracy of the two methods in generating realistic calcium imaging traces by comparing
425  synthetic traces with experimental ones. The experimental dataset we used [121, 122] contains
426  simultaneous calcium imaging t-series and juxtasomal electrophysiological recording in neurons
427  expressing both GCaMP6f and GCaMP6s. We used the experimentally recorded action potentials as inputs
428  for both forward models. The levels of noise in the synthetic traces were tuned so that each synthetic
429  AF/F signal had the same signal-to-noise ratio (SNR) than the corresponding experimental trace. The
430 sample experimental and synthetic AF/F traces, on both indicators, are reported in (Figure 2B).
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Figure 2. Comparison of methods for the generation of synthetic GCaMP6 traces given a spike train. (A) Schematics of the two
methods considered: a linear convolution of the spike train with a double exponential kernel (left) and a biophysically plausible
Single Compartment Model (SCM) of calcium dynamics (right). The SCM considers the presence of endogenous (orange) and
exogenous (green) calcium buffers in the cytoplasm to predict the concentration of free calcium within the cell membrane.
Binding/unbinding dynamics of free calcium to the indicator is simulated to generate time traces of bound and un-bound
fluorophore concentrations. Synthetic GCaMP6 fluorescence traces are then generated through a linear combination of the
concentration of bound and un-bound indicator concentrations. (B) Sample two-photon GCaMP6 experimental traces (red)
recorded with simultaneous loose-seal cell-attached electrophysiology (black scatter). Experimental data from [122],[121]. The
panel also shows synthetic traces generated using both a linear convolution (light blue) and SCM (dark blue) given the
experimentally recorded spike train, under the same SNR than the experimental GCaMP6 trace. (C) RMSE of synthetic Vs
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442 experimental GCaMP6 traces for both models considered (**: p < 0.01, one-tailed Kruskal-Wallis test). (D) Correlation coefficient
443 of synthetic Vs experimental GCaMP6 traces for both models considered (***: p < 0.001, one-tailed Kruskal-Wallis test). (E)
444 Distribution of the upper 30th percentile of AF/F values across all frames in experimental data and both linear convolution and
445 SCM models.

446  For each acquisition in the dataset, both Root Mean Square Error (RMSE) (Figure 2C) and Pearson’s
447  correlation coefficient (Figure 2D) between experimental and synthetic AF/F traces were calculated. The
448  single compartment model showed significantly better performance than the linear convolution model,
449  both in terms of RMSE and correlation for both considered calcium indicators. To further compare the
450  performance of the two methods, we assessed their performance in reproducing realistically high levels
451  of fluorescence. To this end, we compared the distribution of synthetic AF/F values against real values
452  reported by experimental 2P calcium imaging traces (Figure 2E). The SCM shows a longer tail of high AF/F
453  values — especially evident for GCaMP6s — which is closer to the distribution of the experimental data.
454  This shows that the SCM model allows to generate synthetic 2P calcium imaging traces covering a broader
455  part of the dynamic range of the indicator with respect to a linear convolution kernel. Overall, these
456  results show that the SCM generates more realistic synthetic calcium imaging traces. Thus, in all
457  subsequent NIT information algorithm testing, we used calcium traces generated with the SCM.

458

459  Effect of neuronal firing and experimental conditions on information available from calcium
460 imaging traces

461 Recording somatic calcium concentration in neurons through fluorescent two-photon imaging is widely
462  used to infer the neuronal supra-threshold activity [122-128]. However, we still lack a systematic
463  appreciation of the consequences of the limitations of calcium imaging for information-theoretic
464  measures of neural activity and of how best to deal with them. For this reason, we investigated the effect
465  of a series of variables on calculations of information from 2P calcium imaging traces. These include
466  factors related to the underlying neurobiology, such as the shape of post-stimulus time histogram (PSTH),
467  mean spiking rate (SR) to different stimuli, or technical characteristics of the experimental setup, such as
468  imaging frame rate (FR), signal-to-noise ratio (SNR), calcium indicator. We performed a parametric sweep
469  over those parameters as follows.

470  We simulated activity in response to two different categorical “stimuli” (the variable S, s=1 or s=2, in the
471 Ml calculation, Equation (1)). These simulated stimuli elicit a different neuronal response over a 1 second
472  post-stimulus window. Differences in stimuli are modeled as differences in the strength and time pattern
473  of the neural responses they elicit, as explained next. The two stimuli could elicit a time-averaged spike
474  rate (SR) along the trial of either 1 or 2 Hz (we termed those cases as Low M, low SR), 12 Hz and 13 Hz
475  (Low M, high SR) and 2 Hz and 12 Hz (High MI). For each mean firing rate response, we considered two
476  different temporal shapes of elicited Post-Stimulus-Time-Histograms (PSTHSs): tonic (i.e. uniform over
477  time) and phasic (i.e. Gaussian-shaped time dependency, peaking at 0.25 s, standard deviation 0.01 s).
478  Given atime-averaged SR, both phasic and tonic responses have the same integral over time, i.e. the same
479  expected number of spikes. The shapes of the PSTH are plotted Figure 3A, top panels. Spike trains were
480  generated through an inhomogeneous Poisson process with an instantaneous rate equal to stimulus-
481  evoked PSTH. We simulated situations with three different frame rates for the imaging set-up: 5 Hz
482  (representative of galvanometric imaging with raster scanning), 30 Hz (representative of imaging with
483  resonant scanners) and 100 Hz (representative of alternative high acquisition frequency methods, e.g.,
484  smart line scanning imaging [126]). Spike trains and AF/F traces were always generated at a sampling rate

14


https://doi.org/10.1101/2022.12.11.519966
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.11.519966; this version posted December 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

485  of 1 kHz, and the latter were then subsampled to the desired sampling rate. SNR was varied systematically
486  across simulations by varying the amplitude of the noise added to the calcium imaging traces.

487  Sample spike trains and AF/F traces (30 Hz frame rate, SNR = 15, two sample trials per each mean firing
488  rate) for both GCaMP6f and GCaMP6s are shown in Figure 3B. In this part of the analysis, informaiton
489  calculation parameters were as follows. We used the plug-in direct method, discretizing these neural
490 responses in 4 equi-spaced bins. We used peak AF/F over the trial as response R, as it is a widely used
491  approach for the analysis of two-photon imaging data [64, 129]. For each combination of parameters
492 (SNR, FR, calcium indicator, PSTH and levels of stimulus-modulated firing rate), 50 independent Ml
493  calculations (each with 400 trials per stimulus) were performed. No limited sampling bias correction was
494  used, because the number of trials was large enough for the Ml to be bias-free [14].

495  We first investigated the effect of varying the imaging FR and SNR on the mutual information computed
496  from the somatic calcium imaging signal for phasic and tonic PSTH shapes (Figure 3C, results of the
497  statistical tests are summarized in Supplementary table 5). In Figure 3C we used peak AF/F of GCaMP6f
498  to compute information from the calcium traces, but we obtained similar results (not shown) using other
499  calcium imaging metrics (e.g. mean AF/F). Both FR and SNR have a limited effect size on the information
500 contained in the peak AF/F. The notable exception was the case of phasic PSTH shapes and high neural
501 information, in which case increasing SNR led to a notable increase of stimulus information with SNR
502  (Figure 3C and Supplementary table 5). The effect of using either a slower (GCaMP6s) or faster (GCaMP6f)
503  calcium indicator is explored in Figure 3D and Supplementary table 6 (with SNR = 15 frame rate = 30 Hz).
504 In most cases the information obtained from the calcium traces with peak AF/F was approximately the
505  same with either indicator, with the exception of the high information, phasic PSTH case. In this case using
506 the GCaMP6s led to higher information extracted from the calcium traces, due to its slower dynamics and
507  higher dynamic range compared to GCaMP6f.

508 Because calcium imaging measures indirectly the neural activity, with a lower SNR and lower temporal
509 resolution that direct electrophysiological recording of spikes, it is commonly assumed that the
510 information reported by a calcium indicator will be smaller than that encoded in neural activity. To
511  evaluate this information loss we computed, the average fraction of information present in peak AF/F,
512  relative to the one present in a spike rate code. We found that the percentage of spike rate information
513  extracted on average from the calcium traces varied widely, from 50% to 100% (Figure 3E), depending in
514  particular on the features of neuronal firing. More stimulus information is lost when computing it from
515  the calcium traces rather than from the spike rate when the simulated neuron fires tonically than when it
516 firesin a phasic way. This is because, as apparent from the individual traces in Figure 3B, the phasic PSTHs
517  with a stronger and more concentrated spike rate elicit more repeatable and less noisy calcium traces
518 than those obtained with the tonic PSTHs having a similar number of spikes randomly distributed over
519 time.
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521 Figure 3. Effect of neuronal firing regime and experimental conditions on stimulus information retrieved from calcium imaging
522 signals. (A) Instantaneous neuron spiking rate (SR) for phasic and tonic post-stimulus time histogram (PSTH) responses (top row),
523 average firing rates over the trial duration are identical between the two conditions at fixed stimulus. Corresponding Poisson
524 spike rasters for two sample trials per each stimulus (bottom row). (B) Synthetic GCaMP6f (top row) and GCaMP6s (bottom row)
525 traces (SNR 9, frame rate 30 Hz) relative to spike rasters in panel (A). (C) Distributions of stimulus information in GCaMP6f AF/F
526 traces at various information levels and for both tonic and phasic PSTH. Effect of SNR and imaging frame rate on stimulus
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527 information. All calculations of Ml consider two stimuli. In Low M, low SR the neuron responds to the two stimuli with 1 Hz and
528 2 Hz average spiking rate (blue and green curves panel A). In Low M, high SR the neuron responds to the two stimuli with 12 Hz
529 and 13 Hz average spiking rate (orange and violet curves panel A). In High MI the neuron responds to the two stimuli with 2 Hz
530 and 12 Hz average spiking rate (green and orange curves panel A). Each box plot reports data from 50 simulations. Results of the
531 statistical analysis for the data in this panel are reported in Supplementary table 5. (D) Effect of calcium indicator on stimulus
532 information at different PSTH shapes and information levels. Each box plot reports data from 50 simulations. Results of the
533 statistical analysis for the data in this panel are reported in Supplementary table 6. (E) Percent of stimulus information in max
534 AF/F with respect to MI encoded in spike rate at the same conditions. Values are average values over 50 simulations. All data in
535 the figure refer to simulated traces. Mutual information is evaluated using plug-in method. All Ml calculations consider max AF/F
536 across the trial as a metric of neuronal response.

537 In sum, our simulations suggest that the NIT information theoretic analysis of calcium traces recovers a
538  good fraction (between 50% and 100%) of the information encoded in electrophysiological spike rates,
539  with the extraction being particularly efficient for high-rate phasic responses and high dynamic range
540 indicators.

541  Spike rate information is not an upper bound for stimulus information contained in AF/F traces
542  Since as discussed above calcium imaging reports an indirect measure of neural spiking activity , the
543  information about stimuli computed from AF/F traces will miss out on some of the information carried by
544  the temporal spike pattern as measured from electrophysiology recordings. However, this does not
545  necessarily imply that in all cases the information computed from the calcium traces will be lower than
546  the information carried by the underlying spike rate code.

547 From the mathematical point of view, the data processing inequality [98] ensures that stimulus
548 information cannot be increased, but can only be lost or remain equal, every time a transformation of R
549  not dependent on S is applied to the data. This implies that information in the spike rate is always lower
550 than or equal to the information contained in the full spike train. However, because the transformation
551  that maps the spike train into a calcium trace is not a direct consequence, in Markovian terms, of the
552  transformation that links a spike train to spike rate, the stimulus information in the calcium trace may
553  either be higher, equal or lower than the stimulus information in a rate code.

554  From the intuitive neurobiological point of view, the fluorescence traces can have more information that
555  the spike rate in cases in which the latter loses some of the information encoded in the spike timing that
556  the former captures. Indeed, owing to the slow dynamics of the indicator, AF/F traces contain not only
557 information about how many spikes are emitted by a neuron, but also how close they are in time. The
558  contribution of this effect to the information content of calcium traces is amplified as the ratio between
559  the decay constant of the indicator and the stimulus-modulated inter-spike interval increases, and as the
560 informative content of a spike-rate code alone decreases. As such, it becomes particularly evident for
561  phasic PSTH when stimulus information is encoded at high mean firing rates and rate information is low
562  (Figure 4A). Data in Figure 4 are from a limited portion of the full parametric sweep (FR =5 Hz, SNR = 15,
563  GCaMP6f), but similar conclusions can be drawn when considering the full range of parameters
564  investigated (Supplementary figure 4). As an example, we have considered one of the points (green
565  scatter in Figure 4A, central panel) showing more information in peak AF/F than in SR.

566 In this case, because of the different stimulus-modulated inter-spike interval, even when the two stimuli
567 elicit an identical spike rate in two different trials, the AF/F traces will still show stimulus-related
568  differences (e.g. different peak activity as show in Figure 4B, top row) similar to their trial-averages (Figure
569 4B, bottom row). Additionally, for the case of a phasic PSTH, the only stimulus informative spikes are time
570 located in the narrow window around the peak of phasic activity (Figure 4C). All other spikes emitted in the
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571  baseline activity period (baseline firing rate set at 0.5 Hz in all simulations reported) are non-informative
572  and thus degrade the SR information. On the contrary, given the high stimulus-modulated firing rate of
573 the neurons, and the slow dynamics of calcium indicators, spikes outside of the stimulus-modulated
574 window have little effect on AF/F traces, contributing to increase its stimulus information compared to a
575  spike rate code.
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577 Figure 4. Information in AF/F can be higher than spike rate information. (A) Scatter plots of stimulus information in SR vs stimulus
578 information in peak AF/F. Each scatter results from one over 50 Ml calculations across the following parametric sweep: SNR = 15,

579 FR = 30 Hz, GCaMP6f, phasic PSTH. Red lines are the quadrant bisectors. The green scatter point refers to the point analyzed in
580 panels (B-D). (B) Top: stimulus-evoked spike rasters and corresponding AF/F traces for two specific trials with an identical trial-
581 averaged spike rate (10 Hz) but responding to two different stimuli (color-coded). Bottom: trial-averaged stimulus-evoked AF/F
582 traces. (C) Top: trial-averaged PSTH for the response to the two stimuli. Bottom: spike-timing template used in the decoding
583 analysis in panel (D). (D) Values of MI between true and decoded stimulus calculated when considering: max AF/F, SR and
584 simultaneous contribution of SR and spike timing (ST). The analysis is performed on the data corresponding to the green point in
585 panel (A). Box plots report 100 cross-validated runs of GLM decoder (*: p < 0.05, ***: p < 0.001, Bonferroni corrected Kruskal-
586 Wallis multiple comparison test). All data in the figure refer to simulated traces. Mutual information is evaluated using plug-in
587 method.

588  Thus, an ideal decoder of neural activity would use the spike times to consider only those spikes in the
589 informative window and discard the others, together with weighting spikes in the informative window
590 proportionally to the instantaneous inter-spike interval. We implemented such decoder by projecting the
591  neural activity in each trial on a template based on the difference between the trial averaged PSTH when
592  responding to the two stimuli (Figure 4C, bottom). We have then used the GLM decoder implemented in
593  NIT to calculate the Ml between the real and decoded stimulus when using peak AF/F, spike rate (SR) or
594  the template projected activity and spike rate (SR+ST), to compare their information content. Results are
595  summarized in Figure 4D. Each box plot in the figure shows the distributions of M| between the real
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596  stimulus and the decoded one across 100 cross-validated runs of the GLM classifier. While the stimulus
597  information in the calcium trace is lower than the one present when considering both spike rate and spike
598  timing, it is significantly higher than the mere SR information. This shows how the calcium dynamics
599  captures some properties of the optimal spike timing decoder and that spike timing contributes to the
600 informative content represented in AF/F.

601  While cases like the above example — in which more information is available in the calcium traces than in
602  thetime-averaged spike rates — may not happen frequently with real data, it should be noted that calcium
603  traces will always contain a mix of spike rate and spike timing information, which is important to keep in
604  mind when interpreting empirical results.

605

606 Dependence of stimulus information on the metric used to quantify single-trial calcium
607 fluorescence responses

608 In the previous sections, we quantified information from calcium traces using the peak AF/F as a metric
609  of single-trial responses based on two-photon fluorescence. This measure is widely used in the analysis of
610  calcium imaging data [64, 129-131], but is not the only possible choice. Several other metrics are
611  commonly used to quantify single-trial activity in a post-stimulus window from calcium imaging signals.
612 These metrics include: mean AF/F [64] , integral AF/F [132-135], linear deconvolution using an exponential
613  kernel [136] , spike inference algorithms [127, 137-139]. Among spike inference methods, we focused on
614  OASIS [137] due its competitive performance [117].

615  To inform future information-theoretic analyses of calcium imaging traces, we investigated on simulated
616  data how well the different metrics listed above performed in extracting stimulus information. All listed
617  metrics have advantages and disadvantages. The peak AF/F captures the strength of the calcium transient
618 responses but can be heavily influenced by noise and does not capture the temporal structure of the
619  fluorescence. Mean and integral AF/F are less influenced by noise, but they are less effective in capturing
620  the strength of transient activations. Both linear deconvolution and OASIS quantify aspects of calcium
621  signal potentially closer to spiking activity but assume a linear relation between spikes and measured
622 fluorescence. In addition to the methods listed above, we propose a novel non-linear metric, that we
623  termed estimated calcium, that inverts the biophysically plausible non-linear forward model to estimate
624  the concentration of intracellular free calcium from AF/F traces (see Materials and methods).

625 We have thus used the same five-dimensional sweep of simulation parameters (FR, SNR, indicator, PSTH
626  shape and stimulus modulation of SR) used in Figure 3 to calculate the levels of stimulus information
627  contained in each of the above-mentioned measures of neural activity in the 1-second-long post-stimulus
628  window. We computed stimulus Ml in both SR and AF/F metrics using the direct method with equally-
629  spaced binning in 4 bins. Fifty independent runs are performed in each of the coordinate points of the
630 parametric sweep. The distribution of AF/F metrics showing the highest mean amount of stimulus
631 information across the parametric sweep is shown in Figure 5A (actual levels of Ml across all conditions
632  inthe parametric sweep are reported in Figure 5B, together with the value of stimulus information in the
633 spike rate code). Overall, peak AF/F extracts most stimulus information when the stimulus is encoded at
634  high rates, mostly when the neuronal response has a tonic PSTH. In these conditions the stimulus will, in
635  fact, modulate mostly the amplitude of the calcium imaging response. In other conditions, most of the
636  stimulus information contained in the calcium imaging response was retrieved by estimated calcium.
637  OASIS shows good performance at high imaging frame rates, though it suffers particularly low rates
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638  (Supplementary figure 3). When looking at the absolute levels of information retrieved across all
639  conditions Figure 5B, estimated calcium performs on average better than the other metrics considered
640 by recovering about 65% of the underlying SR code.

641  Statistical significance of the results was assessed through Kruskal-Wallis test with Bonferroni correction
642  for post-hoc comparisons. In all conditions of the parametric sweep, the best performing calcium imaging
643  metric, together with the others being non statistically different from it (p > 0.05), were marked as best
644  for that condition (stars in Supplementary figure 3). Figure 5C reports the percentage of cases, across all
645  the conditions examined, where each metric was part (light grey) — or was the only component (dark grey)
646  — of the best performing group. Both the linear deconvolution and the newly proposed estimated [Ca]
647  showed to be the most versatile spiking activity metrics based on AF/F. Estimated [Ca] is among the best
648  performing metrics in more than 80% of the conditions examined in our parametric sweep and is the only
649  best performing one in around 25% of cases considered. Linear deconvolution works well in retrieving
650 stimulus information in around 60% of conditions. Mean/integral AF/F and OASIS, on the other side, are
651  only among the best performing groups in around 25% of the cases, showing poorer performance in
652  reconstructing spiking information. (Note that the poorer performance of OASIS was not due to incorrect
653  set-up of the algorithm as we have verified (Supplementary figure 2) that the deconvolved activity we
654  obtained through OASIS had similar correlation with ground-truth spike recordings as reported previously
655  using this algorithm on the same dataset we use here for validation, see [140]). Linear regression of the
656  average z-scored deconvolved activity using OASIS and the underlying ground truth SR shows, however,
657  how the levels of z-scored deconvolved activity predicted by OASIS have a relatively high variability that
658  cannot be explained by a linear fit (R2 = 0.52 GCaMP6f, R2 = 0.34 GCaMP6s). This suggests that, while
659  OASIS matches the timing of neuronal activity with reasonable accuracy, the magnitude of the
660  deconvolved calcium trace reflects less well the underlying firing rate, limiting the applicability of the
661 method for information-theoretic measures of neuronal activity. The poorer performance of OASIS
662  becomes especially noteworthy given that spike inference algorithms are typically performing better on
663  synthetic data than in real experimental conditions, and the assumption of Poisson spiking used in our
664  synthetic data should favor the method’s accuracy [137].

665 In addition to considering which calcium metrics are better for computing single-trial information about
666  external stimuli, we consider another, and perhaps equally important question, of which metric of calcium
667  activity best reconstructs the underlying spike rate of the same cell. We computed the mutual information
668  between the spike rate during the 1s post-stimulus window in our simulated trials and the calcium metric.
669 This result (Figure 5D) confirms that estimated calcium and a linear deconvolution are, on average,
670  carrying more information about the spike rate code than the other calcium metrics analyzed.

671  An explanation of why calcium metrics that carry higher stimulus information also carry higher
672  information about the spike rate is that stimulus information is carried by the spiking activity of neurons
673  and these calcium metrics reconstruct its value well. In support of this explanation, we found that the
674  levels of stimulus information extracted from the AF/F activity with a given set of simulation parameters
675  correlated with the levels of information present between the calcium imaging signal and the
676  electrophysiology in the same simulation, as shown by the scatterplot of the two information values
677 across different simulations for the case of the estimated calcium (Figure 5E).
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679 Figure 5. Appropriate processing of AF/F signal increases the retrieved stimulus information from calcium imaging traces. (A)
680 Best performing metric based on AF/F signal for each of the conditions explored in the parametric sweep. Best performing metric
681 at each condition is defined as the one retrieving the highest value of stimulus information. See Materials and methods for
682 detailed definitions of each of the metrics. (B) Distributions of values of stimulus information reported by each metric (left) and
683 by a spike rate code (right) across all the calculations performed in the parametric sweep shown in panel (A). (C) Percent of cases,
684 across the whole parametric sweep shown in panel (A), where each AF/F metric has been among the best performing metrics
685 (light grey bars) or the single best performing one (dark grey bars). Best metrics are defined as the ones recovering the highest
686 amount of stimulus information (p < 0.05 Bonferroni corrected Kruskal-Wallis multiple comparison test). Full data for this figure
687 are reported in Supplementary figure 3. (D) Distributions of values of spike rate information reported by each metric across all
688 the calculations performed in the parametric sweep shown in panel (A). (E) Scatter plot of stimulus information in Inferred [Ca]
689 against spike rate information carried by the same metric. Data in this panel include All data in the figure refer to simulated traces.
690 Mutual information is evaluated using plug-in method using 4 equally-spaced bins do discretize spike rate and the calcium metrics.

691
692 A comparison of non-parametric copula and binned plug-in methods for computing information
693  from calcium imaging traces

694  All above examples computed information using the plug-in binned methods, a choice that has been
695 widely used due to its ease of implementation, robustness and fast computational time [25, 27, 38, 54].
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696  However, other more computational demanding but potentially more accurate methods are also available
697  tocompute information from limited experimental samples. NIT implements the recently developed Non-
698 Parametric-Copula information estimation [71]. Here we test the advantages for computation of
699  information from calcium imaging of this more computationally expensive method.

700  We first investigated whether the NPC offers advantages in terms of reduction of limited sampling bias in
701 case limited datasets are available. To this end, we introduced, in the multidimensional sweep over the
702  simulation parameter space outlined in the previous sections, a further parameter: the available number
703  of trials per stimulus (here varied in the range 5 to 400). We found (Figure 6A) that, for both copula and
704  direct plugin method, and consistent with previous studies [14], the information had a big upward bias
705  for low numbers of trial per stimulus (5 to 20), and then converged to the asymptotic value for larger
706  number of trials (several tens). To quantify how quickly the information estimate in individual simulations
707  reached the asymptotic values across methods, we repeated the above analysis over a large number of
708  simulations with different parameters according to our 5-dimensional parameter sweep. For each
709  individual set of simulation parameters, we compared the distribution of calcium information values for
710  different numbers of trials against the asymptotic (400 trials per stimulus) distribution. The lowest number
711 of trials giving a distribution not significantly different from asymptotic (t-test, p-val < 0.05) was
712  considered the minimum required by the method to provide a bias-free estimate of MI. We repeated the
713 process for the whole parametric sweep, computing the ratio between the trials needed by the copula
714  and by the binned methods. The distribution of the ratio is shown in Figure 6B. In this figure, values lower
715  than 1 imply that the copula method is performing better than binned methods for bias free information
716  estimations, while values higher than 1 imply than the binning method works better. For the vast majority
717  of simulations, the non-parametric copula needed less trials to reach asymptotic values of information.
718  Thus, the non-parametric copula should be favored when analyzing smaller datasets.

719 Non-parametric copula is particularly suited to be applied on continuous variables. This suggests that
720 larger amounts of information can be extracted from calcium signals, which are continuous, with non-
721  parametric copulas than with binned estimators for MI. We thus examined the asymptotic information
722  values provided by the copula against binned methods for both simulated spike trains and calcium imaging
723  traces (Figure 6C). For the electrophysiology, the non-parametric copula performed better than binned
724  methods only in the cases which information content is not high. However, for calcium imaging, the
725  advantage of the copula was accentuated and was also present in high information cases. This underlies
726  the specify usefulness of the non-parametric copula for calcium imaging. Note that we did not find
727  comparably high performance when using parametric Gaussian copulas (also implemented in NIT), rather
728  than non-parametric copulas. This is because responses of individual neurons carry non-gaussian
729  dependencies with the stimulus (statistics is of neurons approximately Poisson, which differs from
730  Gaussians for low spike numbers typically observed in a trial) and this translates in non-gaussian
731  dependence between stimuli and calcium traces, which make the use of Gaussian copulas not generally
732  applicable.

733 Despite the advantages that the copula has compared to the binned methods, there also exist drawbacks
734  main limitation is the computational time required to fit the copula based on the data. As an example, the
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735  computations reported in Figure 6A required approximatively 200 time more CPU time with the non-
736  parametric copula than the direct plug-in method.
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738 Figure 6. Comparison between binned methods and non-parametric copula. (A) Ml values (meanSD) for a single coordinate
739 point in the considered parametric sweep (GCaMP6f, Frame Rate = 5 Hz, SNR = 5, Low M, High SR, tonic PSTH) using NPC and
740 binned direct method with an increasing number of trials per stimulus. The dotted horizonal line represents the y-axis value of
741 one (when the information estimation reaches its asymptotic value) (B) Distribution of ratio between number of trials needed by
742 the copula and binned method to reach asymptotic information values. Note that a ratio lower than 1 implies that the copula
743 retrieves asymptotic values with less trials than binned method. (C) Information values provided by the copula against values
744 given by the binned method for three different information levels (Low M, low spike rate; Mid M, high spike rate; and High MI)
745 and both electrophysiology and calcium data. All data in the figure refer to simulated traces. Note that the samples included in
746 this figure correspond only to the deconvolved calcium.

747  Analysis of experimental data validates findings on synthetic traces

748  Our information theoretic analysis of realistic simulations of calcium imaging traces generated by neural
749  spiking activity indicates that the calcium imaging traces are able to extract sizeable amounts information
750  about both external stimuli and about the levels of the underlying spike rates. It also suggests that certain
751  metrics of single-trial activity for calcium traces are better than others for extracting such information.
752 Here, we tested some of the above predictions from simulated activity on real empirical data. We used
753 NIT to analyze four independent datasets with simultaneous cell-attached electrophysiological and two-
754  photon imaging recordings from both GCaMP6f and GCaMP6s-labelled neurons during spontaneous
755  activity [119, 122, 141, 142]. We focused on using NIT to compute how much information about the spike
756  rate each calcium metric provides. We divided the experimental time traces in padded windows of 0.5s,
757  and then computed the mutual information between the spike rate in a considered window and the
758  calcium metricin the given window. We used the NPC information calculation method as it performs more
759  reliably as shown in the previous section. Similar conclusions, however, would have been reached using
760  the direct binned method (not shown).

761 Results of this information calculation on all neurons with calcium traces with SNR higher than 9 are
762 reported in Figure 7. These results confirm that, as with the simulated data, sizeable amount of
763  information about the underlying spike rate can be obtained from the underlying traces. These
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764  information values are of the order of 0.2 bits, which corresponds with significant but far from perfect
765  spike train reconstruction from the calcium metrics. Comparison of how the amount of information varies
766  between AF/F (Figure 7) confirms the results emerging from the parametric sweep on simulated traces.
767 Estimated calcium and linear deconvolution were, on average, better at reconstructing spike train
768  information that other calcium imaging metrics.

769  The publicly available datasets were designed to test the correspondence between spike rates and calcium
770  traces and not to study sensory coding, thus had no or insufficient data with responses to sensory stimuli
771  to study sensory information. However, as shown by our simulations (Figure 5E), metrics that are
772  appropriate for inferring spike rate values are also expected to be appropriate to extract stimulus
773  information.
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775 Figure 7. Validation of performance of spiking activity metrics based on AF/F in recovering stimulus information on
776 experimental data. Box plots of mutual information between different spiking activity metrics based on AF/F and spike rate. Data
777 in this panel refer to simultaneous cell-attached electrophysiology and two-photon imaging recordings from previous publications
778 [119, 122, 141, 143]. Traces in the original datasets have been filtered for SNR > 9.

779  Examples of use of intersection information to find pure, stimulus unrelated choice signals

780  as markers of preparatory activity

781  We finally exemplify, on real data, possible uses of the PID tools within NIT. In particularly, we exemplify
782  possible and novel uses of Intersection Information (I1) [82, 83], a formalism developed specifically for the
783  analysis of neural recordings in perceptual decision tasks. As reviewed in the Intersection Information
784  section above, Il measures that amount of information carried by neural activity that is shared by both
785  stimulus and choice. Thus, Il can be interpreted as the part of stimulus information carried by neural
786  activity that is also choice information. In this interpretation, Il has been applied to sensory neuron to
787  investigate the extent to which the information encoded in sensory areas is relevant to form behavioral
788  choices [39, 54, 83]. For example, it has been used to investigate whether in primary and secondary
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789  somatosensory cortices the behavioral discrimination of texture of surfaces is supported by the texture
790 information encoded in millisecond-precise spike times or in spike rates [83, 144]. The authors found that
791  on average similar amounts of texture information were encoded by the millisecond precise spike times
792  and by the spike rate of neurons. However, the behavioral discrimination performance of the rat was
793  higher when spike times provided correct texture information than when spike times provided incorrect
794  information, whereas behavioral performance did not depend much on the correctness of the information
795  provided in spike rates [144]. As a consequence, the amount Il carried by spike times was 3 times larger
796  than that carried by spike rates [83], demonstrating that the texture information carried by spike timing
797  has a much larger impact on forming correct behavioral choices than the information carried by spike
798  rates. This type of reasoning is helpful informing hypotheses about the neural code used for sensory
799  perception [82], as it takes into account not only the amount of information encoded in neural activity
800  but also its impact on trial-to-trial behavioral discriminations.

801 Here, to demonstrate the usefulness of this approach also in contexts different from sensory perception,
802  we use llimplemented in NIT to uncover the presence of preparatory motor activity in motor cortices. We
803  applied NIT to a publicly available dataset [145] of 2P calcium-imaging recordings in anterolateral (ALM)
804  and medial motor (MM) cortex of Thyl-GCaMP6s transgenic mice collected during a tactile delayed two
805 alternative forced choice (2AFC) discrimination task (see Figure 8A and B). Mice were trained to
806  discriminate a pole in an anterior or posterior location using their whiskers. The stimulus was presented
807  for 1.2 seconds during the Sample epoch, followed by a Delay epoch of 3s for the mice to plan the action.
808 A Go Cue indicated the Response epoch for mice to report their guess. In the original publication [145],
809  the authors analysis these recordings with a 3-way ANOVA, including as factors selectivity to the sensory
810 stimulus, the choice reported by the animal, and the trial outcome (correct vs incorrect discrimination).
811  The authors found earlier choice signal in ALM than in MM, suggesting therefore that preparatory motor
812  activity arises first in ALM than in MM. The ANOVA analysis does not include non-linear tuning effects,
813  and does not per se provide a quantification of the values available for single trial discrimination. These
814  issues can be better addressed with information theory. We first computed, using Shannon Information
815  (Equation (1)), the amount of stimulus and choice information carried by the activity of each neuron in
816  short time windows (1 imaging frame, 70 ms) as function of time during the task. Such information values,
817  averaged over all neuronsimaged in each area, are reported in Figure 8C. We were particularly interested
818  insignals at the beginning of the trial, because they inform more about preparatory activity. In the initial
819  part of the trial (the end of the sample period and the early delay phase), neurons in both areas carried
820 information about both stimulus and choice, with comparable values of stimulus and choice information
821 in ALM and much higher values of stimulus information in MM. Neural activity related to movement
822  preparation can be identified as an early genuinely choice-selective neural signal. However, given that
823 choice and stimulus in each trial are correlated (because the animal performed the task 74% correct, it is
824  possible to predict choice from stimulus), the presence of choice information in neural activity may reflect
825  infull orin part the fact that neurons are actually selective to the stimulus and this in turns make neurons
826  choice selective. To establish the presence of preparatory activity it is thus important to compute
827  presence of pure choice information that cannot be explained by the tuning of stimuli. The formalism of
828 Il allows a principled and powerful definition of such pure choice information. I, as explained above,
829  quantifies the amount of information carried by neural activity that is shared by both stimulus and choice.
830 Thus, it quantifies the part of choice information carried by neural activity that is also stimulus
831 information. As a consequence, the difference between Il and choice information can be taken as a pure
832 choice information measure, that is a measure of the amount of choice information in neural activity that
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833  cannot be explained by the tuning of neurons to stimulus. Figure 8D plots the time course of the average
834  amount of instantaneous pure choice information carried on average by the activity of a neuron in a short
835 time window. These results show that, compatible with the results of [145], the pure choice information
836  ispresent (thatis, larger than zero) at approximately 2 s after the pole removal in ALM, but it is not present
837  until 2 seconds later (end of delay epoch) in MM. These results confirm those reported by [145] in a new
838  way that also incorporates the effect of possible non-linearities of tuning of individual neurons.
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840 Figure 8. (A) Sketch of task. Mice had to lick the right port when the pole was in a posterior location while when in an anterior
841 location, they had to lick the left pole. (B) Trial was structured into three different epochs. During the sample epoch (1.2 seconds),
842 the stimulus was provided to the mice. A subsequent delay epoch (3 seconds) without stimulus preceded the Go Cue auditory
843 signal, that initiates the response epoch, in which the mice must report by licking. (C) Stimulus, choice, and intersection

844 information over time averaged across neurons computed using 2 bins. Values are bias corrected. Note that we estimated the
845 bias using the average information values found in the pre-stimulus window. (D) The difference between choice and intersection
846 information is reported as a proxy of pure choice information measure. Panels A-B redrawn from Ref [145].

847 Discussion

848

849  The high relevance of information theory for the analysis of neural data calls for open-source,
850 comprehensive, and well documented software packages tailored for neuroscience applications. Here we
851  provide a new such toolbox, NIT, constructed to meet the requirements of the contemporary systems-
852  level neuroscience community. In what follows, we discuss the specific advances of NIT with respect to
853  existing toolboxes and the implications and relevance of our work for neuroscience.
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854

855 The breadth of algorithms implemented in NIT can address timely questions in systems
856  neuroscience

857

858  Analysis of activity of populations of neurons recorded during the presentation of sensory stimuli and/or
859  performance of cognitive tasks is central to the study of neural coding. Over the last decade, the emphasis
860  of neural coding has shifted from considering purely encoding of sensory information to studying how the
861  encoded information informs choices and behavior [82]. Other prominent current area of investigation
862  include the study of the transmission of information between different brain areas, and the investigation
863  how functions of the brain emerge from interactions among neurons in larger and larger populations [35].
864  Compared to current information toolboxes, our toolbox adds several important elements to tackle these
865  problems.

866  NIT supports research on the relevance of neural activity to inform behavioral choices by implementing
867  measures of Intersection Information (1) [82, 83]. Il has been proposed and used principally as a measure
868 of how much of the sensory information encoded in neural activity is used to inform choices [39, 54, 82,
869  83]. This has led to redefine the concept of neural code as the set of features not only carrying sensory
870 information, but also used to drive appropriate behavior [82]. Here, in our application to calcium imaging
871  data (Figure 8), we showed how Il can be used to address more questions about neural coding than
872  originally proposed. We showed how Il can be used to individuate pure choice signals which are not
873  related to stimulus coding. This is of importance in tasks in which sensory signals are associated with the
874  request to executed specific motor programs, such as turning or licking in a certain direction upon the
875  presentation of a certain sensory stimulus.

876  NIT supports research on transmission of information across areas by implementing directed measures of
877  information transfer, including both Transfer Entropy and Directed Information [84, 85] and it allows the
878 computation of more refined recent measures based on PID [90, 91].

879 NIT supports research on the emergent properties of population codes by implementing tools that
880  quantify the role of correlations in population codes for creating redundancies and synergies, such as
881 those based on interaction information and the information breakdown [19, 74, 75] and those based on
882 PID [49, 146]. Moreover, NIT implements tools that make analyses scalable to large populations, including
883  unsupervised and supervised advanced dimensionality reduction tools, such as regularized GLM classifiers
884 [39, 99, 100], regularized SVM classifiers [102, 105], and space-by-time Non-Negative Matrix Factorization
885  [107, 147]).

886 Our public, open source, release of the full NIT code will also contribute to the broad effort towards more
887  effective and reproducible neuroscience, through standardization of tools and methods [148] of which
888  open source analysis software is a core component [149, 150]. In this respect, the integration of NIT with
889  other well established analysis pipelines is facilitated by the MATLAB front-end, which can be directly
890 interfaced with Python through the MATLAB Engine API for Python.

891

892  Comparisons with existing information theoretic toolboxes for neuroscience
893  The breadth of use of information theory in neuroscience have been supported by several excellent and
894  impactful toolboxes. It is thus of interest to discuss what NIT adds to this existing toolset. Recent work by
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895 Timme and Lapish [28] offers an extensive review of existing IT analysis software packages. We have
896  further complemented their work with an updated overview (Table 1). Of the 12 packages reviewed in
897  Timme and Lapish [28], none satisfied simultaneously the following requirements: being applicable to
898  both discrete and continuous data, providing means for significance testing and correction for limited
899  sampling bias, and implementing calculation of information-theoretic measures beyond Ml and transfer
900 entropy (e.g., those based on PIDs). NIT simultaneously implements all these features.

901

902  The NITT Neuroscience Information Theory Toolbox [28] is, among those previously available, one of the
903 most complete in terms of information quantities offered. However, like others listed in Table 1, it lacks
904 limited sampling bias correction. This is not a problem when considering quantities that do not require
905 the computation of stimulus specific distributions of neural responses, such as entropy and TE. Lack of
906  bias corrections instead becomes a major problem for studies of coding of sensory or choice variables, as
907 they require estimation of stimulus-related information variables that are based on calculations of
908  stimulus-specific response probabilities. In such cases, stimulus-specific information values are dominated
909 by the bias, if not bias corrected. A lack of bias corrections makes it impossible to meaningfully compare
910 the amount of information carried by neural representations with different dimensionality such as spike
911  timesvs spike rates [17, 151] or single neurons vs population responses. The JIDT toolbox [31] also offers
912  extensive sets of IT measures, although (like the NITT) it lacks methods for dimensionality reduction that
913  are useful e.g. to apply IT to large populations. Other toolboxes [89, 152] are specialized on transfer
914  entropy and are thus suitable for study information communication but not information encoding. Finally,
915 some other toolboxes [30] are effective for specific distributions of neural activity, such as the case of
916  Gaussian interactions which are relevant for mass measures of activity, but are difficult to apply to
917 measures with single cell resolution for which statistics and interactions are not well described by
918  Gaussian distributions.

919 We made an effort to improve computational performance in NIT, designing it to maximize efficiency and
920  scalability. This optimized design strategy resulted in fast computational times compared with other state-
921  of-the-art open access codes. We benchmarked our toolbox against NITT [28] on a single Ml calculation,
922  with bootstrap null distribution estimation, obtaining on average 50 times faster computation times with
923 NIT compared to NITT.

924  NIT does have limitations, which we plan to address in ongoing and future updates. NIT still lacks
925  computation of useful quantities, such as maximum entropy (ME) models, which are useful to determine
926  the order of interactions among neurons [35, 153]. ME models are present in some specialized toolboxes
927 [29]. Further, NIT includes standard and widely used non-parametric hypothesis testing methods, but does
928 not yet include group statistics, which to the best of our knowledge among information theoretic
929  toolboxes has been only implemented in FRITES [32]. However, the output of NIT analyses can be easily
930  used as input to group statistics toolboxes [32]. Further, the study of PID is a burgeoning field with many
931 measures and advances being elaborated [49, 80, 154, 155]. While NIT implements some of the most
932  established PID quantities, it will be important to keep it updated to include more PID developments and
933  tointerface with new PID software.

934

935
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Toolbox Information Measures Data Types Significance Probability Estimation Bias Dimensionality Language
Testing Methods Correction Reduction
Methods
NIT — this paper Entropy, mutual Discrete Non- Binning (several methods) Yes Yes MATLAB
information, transfer and parametric Gaussian fit front-end,
entropy, information continuous Parametric copula interfaceable
breakdown, partial (Gaussian, Clayton, with Python
information student) through
decomposition, Nonparametric copula MATLAB
intersection information, Engine API for
feature information Python
transfer
Information Breakdown Entropy, mutual Discrete Non- Binning (several methods) Yes No MATLAB
Toolbox [25] information, transfer and parametric Gaussian fit
entropy, information continuous
breakdown
Gaussian Copula Mutual Entropy, Mutual Discrete No Gaussian copula Yes No MATLAB and
Information [30] Information and Python
Continuous
Neuroscience Information Entropy, mutual Discrete No Binning (several methods) No No MATLAB
Theory Toolbox [28] information, transfer and
entropy, partial continuous
information
decomposition,
information transmission
JIDT [31] Entropy, mutual Discrete Non- Binning Yes No JAVA (with
information, transfer and parametric Kernel-based Python and
entropy continuous Gaussian fit MATLAB
wrappers)
FRITES [32] Entropy, Mutual Discrete Non- Binning (equi-spaced) Yes No Python
Information, transfer and parametric Gaussian copula
entropy continuous Group stats
Inform [156] Entropy, mutual Discrete No Binning (several methods) No No C (with
information, transfer Python, Julia,
entropy R and
Mathematica
wrappers)
Transfer Entropy Toolbox Transfer entropy Spike trains No No No No MATLAB
[89]
Trentool [152] Transfer entropy Continuous Non- Kernel-based Yes No MATLAB
parametric
Group stats
MuTE [157] Transfer entropy Continuous Non- Binning (equi-spaced) Yes No MATLAB
parametric Gaussian fit
Kernel-based
ToolConnect [158] Entropy, transfer entropy Spike trains No No No No c#
STAToolkit [159] Entropy, mutual Spike trains Non- Binning Yes No MATLAB (with
information parametric .mex files)
PyEntropy [29] Entropy, mutual Discrete No Binning (several methods) Yes No Python
information, maximum and Shrink Estimator
entropy models Continuous
ITE Toolbox [160] Entropy, mutual Discrete No Kernel-based No No MATLAB and
information and Python
Continuous
Dit [161] Entropy, mutual Discrete No No No No Python
information, partial
information
decomposition
Climer and Dombeck [162] SMGM information [163] Discrete No No No No MATLAB
and
Continuous
936 Table 1. Comparison with existing information theoretic toolboxes. If the toolbox computes quantities that are defined as simple
937 linear combinations of entropies or mutual information, for brevity we list them under entropy or mutual information.
938
939
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940 Validations and recommendations for the analysis of calcium imaging

941  The methods presented in NIT are applicable to any kind of neuroscience recordings, both discrete and
942  continuous. Given that the plug-in binning estimators presented here have been extensively and
943  successfully validated on electrophysiological data (from spike trains, to LFP and EEG), in this study we
944  focused on validating the information-theoretical analysis of 2P calcium imaging data. 2P imaging signals
945  are potentially more challenging than electrophysiological ones to analyze with information theory,
946  because of the lower SNR and temporal resolution. Moreover, the problem of how to recover from
947  calcium traces as much information as possible about external stimuli or about the underlying spiking
948  activity of the imaged neurons has not been systematically studied yet.

949  We addressed these issues using a thorough analysis of synthetic calcium imaging traces, generated
950 through a biophysically plausible single-compartment model of cytosolic calcium dynamics. Specifically,
951  we assessed the effect of the calcium indicator (GCaMP6f vs GCaMP6s), imaging frame rate, SNR, response
952  profile shape, and spike rate modulation by the stimulus on the stimulus information computed from the
953  simulated calcium signal. We found that estimates of MI from the AF/F signal depended relatively weakly
954  on the imaging frame rate and SNR. However, the amount of Ml that could be obtained from calcium
955  fluorescence traces is the temporal shape of the neuronal response. A tonic neuronal response transfers
956  more information in the calcium signal compared to a phasic one, particularly when using an indicator
957  with slow decay time and high dynamic range (GCaMP6s). We have further observed that, when the
958  neuron encodes the stimulus in a phasic way at high firing rates, the calcium signal can occasionally
959  encode more stimulus information than the time-averaged spike rate (Figure 4). The reason for this
960  counterintuitive finding is that in this condition spiking activity is concentrated within a limited time
961 interval and thus knowledge of when spike times are more informative adds information, and that the
962  nonlinearities of calcium dynamics emphasize the signal in this high-firing high-information region and
963  deemphasize the signal in the low-firing low information region, thereby achieving more information than
964  the time-average spike rate which instead weighs all spikes equally regardless of when they were fired.

965 Furthermore, we have proposed a new single-trial calcium metric, based on the inversion of the forward
966 model that we have used for the generation of synthetic calcium traces, for the estimation of calcium
967  concentration in the cell given a AF/F trace. This approach was inspired previous work [164] inferring
968  action potentials by building an inverse model of membrane potential from calcium imaging signals. We
969  assessed the performance of this single-trial calcium metric for computing information from calcium data,
970 and we compared it with other widely used strategies for quantification of single trial AF/F responses. We
971  found that, across all simulation conditions examined, the newly proposed estimated calcium and the
972  linear deconvolution of the AF/F trace with a decaying exponential were the two single trial calcium
973  response quantification that allowed to extract more information (about external stimuli or about the
974  underlying spike rates). Other considered quantifications of single trial calcium responses (max AF/F,
975 mean/integral AF/F, OASIS) extracted less information. These results were confirmed on experimental
976  data coming from four independent datasets — including both GCaMP6f and GCaMP6s signals
977  simultaneously acquired on individual cells together with juxtasomal electrophysiological recordings.
978  Careful choice of single-trial quantifications of calcium signals can, thus, significantly increase the amount
979  of information retrieved, and we propose a new and efficient metric to do so.

980 Importantly, we compared different information computation methods, all implemented in NIT, to
981  compute information from calcium data. We found that the non-parametric copula-based estimator for
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982  mutualinformation [71] was the one working best, outperforming both binned estimators and parametric
983  Gaussian copulas in terms of data robustness and accuracy of the estimation. While the non-parametric
984  copula comes at the expense of major increase of computing time, it should be recommended for calcium
985  data whenever its computation is practically feasible.
986
987  Aresult of importance of our simulations and real data analysis was that, when proper quantification and
988  algorithms were applied, we could recover surprisingly large amounts of information from calcium
989  imaging. In simulations, the amount of stimulus information obtained from realistically simulated calcium
990 imaging traces was > 50% of the stimulus information encoded in the simulated spike trains when effective
991  single-trial calcium metric were applied (Fig 5B). In both simulated and real data, a relatively large amount
992  of information about the underlying spike rate could be recovered from the calcium traces when using
993  appropriate calcium metrics and algorithms (Fig 5D,7). These results illustrate the power of calcium
994  imaging for studying population activity and the importance of coupling it with advanced information
995  theoretic and signal extraction methods.
996
997  Climer and Dombeck [162] have recently discussed the application to calcium imaging of a specific
998 information metric termed SMGM. This metric has been first introduced by Skaggs et al. [163] for
999  electrophysiological data and is often used in the literature for hippocampal place field quantification. It
1000  has been shown [165] that, when applied to spike trains, the SMGM metric approximates well the full
1001 information content of a spike train only when the average number of spikes per trials is much smaller
1002  than 1 (i.e. very low firing rates or very short time windows) and that the correlations between spikes are
1003  small enough so that the firing statistics is close to that of a Poisson process. Using the SMGM metric with
1004  the AF/F signal as a proxy of the information carried by the underlying spike rates rate additionally
1005  assumes that a constant proportionality exists between the firing rate and fluorescence signal for a given
1006 indicator. However, there are known non-linearities between spike rate and fluorescence. Using Ml to
1007  extract information from calcium traces as a proxy of information from spike rates does not require the
1008  assumption of a linearity between spike rates and calcium fluorescence, because Ml is insensitive to
1009 monotonic non-linearities in the transformation between variables, and it does not require the
1010  assumption that neuron fire at very low rates with Poisson statistics. Based on these considerations, we
1011  recommend application of SMGM to estimate information from calcium imaging data only when there is
1012  an expectation of linearity between spike rates and calcium responses and of very low firing rates of
1013  neurons. Estimations made using Ml are instead valid and applicable under more general circumstances.

1014

1015  Conclusions
1016  Overall, our toolbox provides a comprehensive set of information theoretic measures applicable to any
1017  kind of neuroscience data.

1018
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1019

1020 Materials and methods

1021  Details of the performed parametric simulation sweep
1022 Below are listed the values considered for each of the variables considered in the parametric sweep of
1023  simulations of neural activity and calcium imaging traces.

1024 e Imaging frame rate: 5, 10, 100 Hz.

1025 e SNR:5,9,15.

1026 e PSTH shape: Tonic (gaussian-shaped with peak at 0.25s over a 1s trial duration, standart deviation
1027 0.01 s), phasic (uniform distribution over time).

1028 e Stimulus modulation of neuron mean firing rate:

1029 o [1Hz-2Hz]: Low MI, Low SR

1030 o [12 Hz-13 Hz]: Low M, High SR

1031 o [2Hz-12 Hz]: High MI

1032 e Indicator: GCaMP6f, GCaMP6s.

1033 e Number of trials per stimulus: [5,10,20,30,40,50,60,80,100,200,400].

1034  Mutual Information (Direct plug-in method)

1035 MI(S; R) has been calculated using Equation (1), where the marginal and joint probabilities have been
1036  calculated by simply counting the number of occurrences of the discrete values of R and S across repeated
1037  presentations of the stimulus. If variables R and S were continuous, they were discretized using binning
1038  routines. The binning strategy and number of bins used for each specific analysis using direct plug-in
1039  method are reported in the main text, together with the use of bias correction method used for the
1040  specific analysis.

1041  Mutual Information (Non-Parametric Copula)

1042  We estimated the mutual information between two variables R and S using the nonparametric copula
1043  approached presented in [71]. Copula is defined as the probability function between the CDF’s of the
1044  marginal variables U~CDF(R) and Us~CDF(S) and it captures the general correlation structure of the
1045  joint density function between variables. To compute the mutual information I(R; S), we use the fact that
1046  itis related to the copula entropy as:

I(R; S) = —H(C(Ug, Us)) (6)

1047  Where C(Ug, Us) is the joint density function of CDF variables Ui and Us. To compute the copula density,
1048  we used the same analytic solution for a local likelihood kernel estimation of the CDF values after
1049  optimizing the bandwidth using a genetic optimization developed in Safaai et al. [71]

1050  We then estimated the copula density over the whole space of CDF’s (Ug, Us) using the optimized kernels
1051  andon a grid of size k which defines the resolution of density estimation. We normally used k=50 or k=100
1052  in our calculation and the change didn’t make significant difference on our results.

1053  After estimating the copula density on the grid, we generated correlated samples of data by first
1054  computing the conditional cumulative copula density by integrating the copula density over the grid:
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us

C(Uglus) =f C(v,us)dv (7)
0
1055  Which is a uniform distribution. Using the fact that the marginal distribution of a CDF distribution is

1056  uniform, the 2-dimensional correlated samples can be generated as follows:
Ug = Vg (8)
Ur = C™*(vg|vs) ©)

1057  Where vg and vg are independent samples from the uniform distribution (vg, vs)~ Upg ;7. We then used
1058  these samples to estimate the copula entropy, using classical Monte-Carlo approach after expressing the
1059  entropy as the expectation over copula density H(C) = —E[log C(Vg, Vs)]. For the case in which one of
1060  the variables is discrete, we first transform the variable into the continuous domain by adding an
1061  appropriate noise which as it was shown in Safaai et al. [71].

1062

1063  Mutual Information (Parametric Copula)

1064  We implemented several algorithms for mutual information estimation using parametric copulas that
1065 have been introduced in neuroscience [30, 70]. Full details are contained in the software documentation.
1066 In brief, we adapted our algorithms from those of Ref (Onken and Panzeri, 2016). For continuous margins,
1067  we provide implementations of the normal and the gamma distributions. For discrete margins, we provide
1068  the Poisson, binomial and negative binomial distributions. We provide the Gaussian, student and Clayton
1069  bivariate copula families as well as rotation transformed Clayton families.

1070

1071  Generation of synthetic calcium imaging traces

1072  Convolution with a double exponential kernel
1073 Fluorescent signal was generated as a convolution of the input spike train with a double exponential
1074  kernel in the form:

—t -t
A (1 - efon> eTors (10)
1075  Chen et al.[122] report values of peak amplitude, peak time and half decay time for both GCaMP6f and
1076  GCaMP6s in mouse V1 in vivo experiments. Those values are related to the constants 4, 7y, and 7,5
1077  defined above, and have been defined through an iterative optimization to generate a double exponential

1078  kernel with the same peak amplitude, peak time and half decay time than reported in literature. Values
1079  used of the three constants for the two indicators are reported in Supplementary table 1.

GCaMP6f GCaMP6s
Al-] 0.39 0.51
Ton [S] 0.03 0.14
Toft [S] 0.09 0.37

1080 Supplementary table 1. Used constants for the synthetic trace generation through a double exponential kernel

1081 Gaussian white noise with given standard deviation is added to the convolved trace to generate the
1082  synthetic calcium imaging trace with given SNR.
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1083  Biophysically plausible SCM
1084  Evolution of cytosolic calcium concentration [Ca] is modelled trough the following differential equation
1085  [120]:

A [Ca(t)] [Ca]res A[Ca] 6(t -t )
d[Ca(t)] _~Vmaxy ([Ca(t)] + Ky [Calrest +tKM> + T (11)
. 1+ kg + kg(t)

1086  Where v;,4, is the maximum efflux rate per unit area of the cell membrane, A is the membrane area, V
1087  is the compartment volume, Kj,; is the concentration at which extrusion is half maximal, A[Ca]4p is the
1088  amount of calcium intake following an action potential, § is Dirac’s delta, t4p are the times of action
1089  potentials, kg is the binding ratio of the endogenous [Ca] buffers, and kg is the binding ratio of the
1090 exogenous buffers (the indicator itself). The latter is not a model constant and, for the case of cooperative
1091 binding, is defined as [166]:

ky = [By] n[Ca(t)]" K7 (12)
([Ca(®O)]™ + Kg)?

1092 Where [Br] is the concentration of the indicator, n is the Hill coefficient, K is the dissociation constant

1093 of the indicator.

1094 Equation (11) contains two non-linear terms: a saturable mechanism for calcium extrusion from the
1095  cytoplasm (first term at the numerator on the right-hand side). Measured values of v,,4, are hardly
1096  available in literature. It is more common to find estimates of the extrusion rate y in case of a linear
1097  extrusion mechanism (Ca(t)ou: = Y([Ca(t)] — [Ca] est))[120]. We have thus specified v, so that the
1098  extrusion rate would match y = 1200 [1/s] in the surroundings of [Ca(t)] = [Ca] est-

1099 Time integration of Equation (11) allows to obtain the time trace of free cytosolic calcium in the cell. The
1100  concentration of indicator bound calcium [CaB(t)] has been obtained through integration of:

ﬂgggﬂ:kaﬁﬂPﬂﬂT‘UhMﬂD—kﬁd&w@H

1101 Where ko, and k, ¢ are the association/dissociation rates.

(13)

1102  Once known the fraction of calcium-bound indicator, fluorescence is generated through a linear model
1103 [166]:

F = ([B]r — [CaB(D)]) + ¢[CaB(t)] (14)
1104  Where the constant @ is indicator specific and has been tuned to experimental data.

1105 The value of baseline fluorescenceF,, in resting state, steady conditions, is calculated from the resting
1106  state indicator-bound concentration using Equation (14)[166]:

[B]T[Ca]?est (15)
[Call,e + Kf
1107 The model then returns the normalized fluorescence, with the addition of white noise term:

[CaB ] rest —

AF F—F,

F R
1108 The standard deviation of the white noise has been specified to match the desired SNR for a given
1109  synthetic trace.

(16)

+ WN (o)
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Constant | Units Value Method Reference
AlCalap | [uM] 7.6 From reference [66, 120]
ks [-] 110 From reference (L2/3 pyr neuron) [120]
[Br] [uM] 10 From reference [69]
Vnmax pMoly | 1.8E-1 Specified to match linear extrusion rate far | [166]
cmzs] from saturation in reference
r [um] 5 From reference (L2/3 pyr neuron) [167]
A [m?] A = nr? Equation
1% [m3] V=4/3nr3 Equation
Ky [uM] 0.8 From reference [168]
[Calyes: | [NM] 50 From reference [169]
Supplementary table 2. Model constants used in the SCM. These constants were independent on the indicator.
Constant | Units Value GCaMP6f | Value GCaMP6s | Method Reference
n [—] 2.47 2.93 Fit to experimental data
K, [nM] | 375 144 From reference [122]
kon [Hz/M"] kon = Korr/Ka" From reference [166]
kogr [Hz] 5.16 0.5 Fit to experimental data
o) [—] 15.01 62.72 Fit to experimental data

Supplementary table 3. Indicator specific constant used in the SCM. These constants were indicator-specific and have been
determined through fitting the model on experimental data.

Fitting of the SCM to experimental data

Fitting of the single-compartment model is done in the following way (separately for each indicator
considered). Among the three variables that are fit to data (®, n, k,sf), the first one is optimized first —
and independently from the other two — so that saturated indicator reaches the dynamic range reported
in [122]. This is possible due to the fact that n and k, s do not impact the steady state brightness of the
indicator, but only its dynamics. Simultaneous 2-photon imaging and cell-attached electrophysiology
data[170] are then used to define the kinetics of the indicator binding/unbinding and its cooperativity.
Given the experimentally measured spike train, and SNR of the experimental fluorescent trace, we have
optimized n and k, s to reduce the root square error between the generated synthetic calcium trace and
experimental data. Dataset ‘data_20120521_cell5_007.mat’ has been used for GCaMP6f tuning, while

‘data_20120515_cell1_006.mat’ has been used for GCaMP6s.

Definition of spiking activity metrics based on AF/F

Max AF/F

Values of peak AF/F over a defined post stimulus time interval have been calculated as follows:

max(AF/F) = max(AF/F(t) — AF/F(0)) (17)

Mean/integral AF/F

Values of mean AF/F over a defined post stimulus time interval have been calculated as follows:
mean(AF/F) = mean(AF/F(t) — AF/F(0)) (18)

It should be noted that, throughout the text, we refer to this metric as Mean/integral AF/F. The reason
for this is that the mean and integral are related by a constant linear scaling and are de facto equivalent
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in information-theoretical terms. The full dataset attached to this paper contains also separate analysis
for integral(AF/F), showing identical performance to mean(AF/F).

Estimated Calcium

This metric of spiking activity based on the two photon imaging recordings is based on the inversion of
the forward model detailed in section Biophysically plausible SCM. The inversion, calculating thus [Ca]
from the AF/F assumes that the binding/unbinding happens at chemical equilibrium. In this condition, for
cooperative binding, we can write the relation between [CaB] and [Ca] as:

[CaB(®)] _  [Ca(®)]" (19)
By [Ca(D]" + K}
Deriving both left and right-hand side:
d[CaB(t)] _ nKg[Ca(t)]"~*[Br] d[Ca(D)] (20)
dt  ([Ca@®I*+K}? dt

Assuming that the generated fluorescence is a linear combination of the fractions of calcium-free [B] and
calcium-bound [CaB] indicator we can write the following:

F(t) = [B(t)] + ¢[CaB(t)] = [B]r — [CaB()] + ¢[CaB(t)] = [B]r + a[CaB(t)] (21)
Where a = ¢ — 1. Baseline state fluorescence, thus, is:
Fy = [B]r + a[CaB], (22)
Combining Equations (21) and (22) we have that:

a([CaB(t)]—[CaB]o) (23)
[B]r + a[CaB]y
Deriving both left and right-hand side of Equation (26) with respect to time:

AF _
7 ) =

d8F/p () a d[CaB(t)] (24)
dt  [B]r +a[CaB], dt
Combining Equations (24) and (20):
a8/ ) a K [Ca(t)]" *[Br] d[Ca(t)] (25)
dt  [Blr +a[CaBly ([Ca@®)]"+K}N?  dt

Given the time trace of fluorescence, equation (28) can be used to solve for [Ca(t)] once [Ca(0)] and
[CaB], are known. These values have been defined through the following educated guesses. The baseline
calcium-bound indicator concentration [CaB]g is taken as the steady state equilibrium concentration
when [Ca] = [Ca]yes: (using Equation (19)).

In order to estimate the initial concentration of free calcium in the cell we used the following approach.
Combining equations (23) and (19) we obtain:

o ([ECAOL (can))

AF/F = [B]r + a[CaB],
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1152  Given AF/F at time zero, iterative solution of equation (26) for [Ca(0)]. This sets the initial conditions for
1153  time integration of equation (28).

1154  The obtained time trace is finally deconvolved through a single decaying exponential kernel with time
1155  constant equal to the reciprocal of the unbinding rate of the indicator kos. The mean of the deconvolved
1156  traceis reported as the estimated [Ca].

1157  Linear deconvolution
1158  The AF/F trace has been deconvolved with a decaying exponential with a decaying time constant 7.
1159  The reported value of the deconvolved signal over the post stimulus time interval has been calculated as:

dAF/F(t) N AF/F(t)) (27)
dt Toff

1160  Where the values of 7,¢f (o5 = 2s for GCaMP6s and 7,75 = 0.5s for GCaMP6f) have been estimated

1161  from the decay of time traces for GCaMP6 indicator reported in Chen et al.[122]

Linear deconvolution = mean <

1162  OASIS

1163  Time trace of AF/F has been deconvolved using MATLAB implementation of OASIS [137]
1164  (https://github.com/zhoupc/OASIS matlab). We have used the second order auto-regressive thresholded
1165  implementation of the algorithm. This implementation imposes a minimum threshold for the deconvolved
1166  trace, effectively filtering out spurious deconvolved activity. The parameters of the auto-regressive model,
1167 the value of the threshold, as well as the SNR levels were estimated by internal functions of the toolbox.
1168  The returned value of OASIS metric over a post-stimulus window has been calculated as:

0ASIS = mean(0OASIS deconvolved AF/F) (28)

1169 In order to avoid potential issues in using OASIS to deconvolve traces of limited duration, the time traces
1170 of AF/F extended for a total duration of 10s, of which the first second was stimulus modulated and the
1171  remaining part had a constant baseline SR of 0.5 Hz.

1172  Definition of preparatory activity in motor cortex

1173  Stimulus and choice instantaneous information were computed using mutual information between those
1174  variables and the neural activity over time, resulting in values of information over the trial duration.
1175 Mutual information and intersection information were computed using the direct plug-in method for
1176  computational tractability of such a large dataset. Neural activity was binned in 2 equally populated bins
1177  for every timestep.
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1180 Software availability

1181 NIT source code, documentation, installation instructions and tutorials can be downloaded from the
1182  following repository: https://gitlab.com/rmaffulli/nit. Software for the realistic calcium imaging
1183  simulations can be downloaded from the following repository: https://gitlab.com/rmaffulli/casim

1184
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1185  Data availability

1186  Simultaneous calcium imaging and electrophysiological recordings used for Figure 7 taken from Refs [119,
1187 122, 141] can be obtained as specified in these publications. Simultaneous calcium imaging and
1188  electrophysiological recordings used for Figure 7 taken from Ref [142] can be obtained from the
1189  corresponding authors upon reasonable request.
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1617 Supplementary material
1618  Supplementary tables
Information quantity Allowed bias correction methods
Mutual Information (direct method) Quadratic Extrapolation, Panzeri-Treves,
Bootstrap correction, BUB
Mutual Information (non-parametric copula) Bootstrap correction
Mutual Information Breakdown Quadratic Extrapolation, Panzeri-Treves,
Bootstrap correction
Transfer Entropy Quadratic Extrapolation, Panzeri-Treves,
Bootstrap correction
Partial Information Decomoposition Linear Extrapolation, Quadratic Extrapolation,
Bootstrap correction
Intersection Information Linear Extrapolation, Quadratic Extrapolation,
Bootstrap correction
Feature Information Transfer Linear Extrapolation, Quadratic Extrapolation,
Bootstrap correction
1619 Supplementary table 4. Compatibility matrix between information-theoretic quantities in NIT and applicable bias correction
1620 strategies.
PSTH shape FR SNR
Low MI, low SR p-val = 2.24e-16 p-val = 3.97e-04 p-val = 7.21e-02
w? = 7.00e-02 w? = 1.40e-02 w?=3.32e-03
Low M, high SR p-val = 8.11e-48 p-val = 4.05e-01 p-val = 4.09e-01
w? = 2.08e-01 w? =-1.70e-04 w? = -1.85e-04
High Ml p-val=0 p-val = 9.30e-17 p-val = 5.00e-14
w? = 8.89e-01 w?=7.99e-03 w? = 6.54e-03
1621 Supplementary table 5. Table of p-values and effect sizes w? for data in Figure 3C. Data have been analyzed using a separate
1622 three-ways ANOVA (considering PSTH shape, FR and SR as grouping variables) for each information level.
PSTH shape Indicator
Low M, low SR p-val = 4.97e-01 p-val = 4.89e-01
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w? =-2.69e-03 w?=-2.61e-03
Low M, high SR p-val = 5.61e-01 p-val = 6.47e-01

w? =-1.66e-03 w? =-1.98e-04
High Ml p-val = 1.5e-07 p-val = 4.18e-01

w? = 4.34e-02 w? = -5.45e-04

1623 Supplementary table 6. Table of p-values and effect sizes w? for data in Figure 3D. Data have been analyzed using a separate
1624 two-ways ANOVA (considering PSTH shape and calcium indicator as grouping variables) for each information level.

1625
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Supplementary figure 1. Generation of fluorescence trace in the Single Compartment Model. (A) Top: simulated trace of relative
levels of free calcium concentration in the cytoplasm with respect to resting state levels. Circles represent action potentials.
Middle: simulated trace of the fraction of GCaMP indicator bound to calcium. Bottom: fluorescent trace resulting from the
fractions of calcium-bound and calcium-free indicator. (B) Relation between generated fluorescence and free calcium
concentration in the cytoplasm in chemical equilibrium conditions for both GCaMP6f and GCaMP6s in the used model.
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Supplementary figure 2. Performance of OASIS on experimental calibration dataset[170] with simultaneous calcium imaging
and electrophysiology. (A) Pearson’s correlation coefficient between real and inferred spiking activity using 2" order auto-
regressive (AR) thresholded OASIS[137] (see Materials and methods). (N = 34 for GCaMP6f, N = 19 for GCaMPé6s). (B) Relation
between z-scored inferred spiking activity in OASIS and ground truth spike rate on 1 s long windows selected randomly over the
entire experimental acquisition (50 random windows per each experimental trace N = 1700 for GCaMP6f, N = 950 for GCaMP6s).
Experimental data for this dataset are publicly available at: https://crcns.org/data-sets/methods/cai-1
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1641 Supplementary figure 3. Information content in AF/F traces with respect to SR code. Percentage of stimulus information
1642 retrieved by each AF/F metric with respect to the one contained in spike rate, in all conditions of the parametric sweep considered
1643 in the study. Values represent the average over 50 simulations. For each combination of frame rate, SNR, information level,
1644 indicator and PSTH shape, the * symbol marks the metrics with non statistically different mean (p > 0.05 Bonferroni corrected
1645 Kruskal-Wallis multiple comparison test) from the best performing metric at those conditions. Best performing metric is defined
1646 as the one returning the highest mean stimulus information. All data in the figure refer to simulated traces. Mutual information
1647 is evaluated using plug-in method.
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1649 Supplementary figure 4. Where is Ml in max AF/F higher than Ml in SR. Percentage of cases, across all conditions investigated
1650 in the parametric sweep, where Ml in max AF/F has been found to be higher than the stimulus information in the spike rate code.
1651
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