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Abstract

While the introduction of immune checkpoint blockade (ICB) has dramatically improved clinical
outcomes for patients with advanced melanoma, a significant proportion of patients develop
resistance to therapy, and mechanisms of resistance are poorly elucidated in most cases. Further,
while combination ICB has higher response rates and improved progression free survival
compared to single agent therapy in the front line setting, there is significantly increased toxicity
with combination ICB, and biomarkers to identify patients who would disproportionately benefit
from combination therapy vs aPD-1 ICB are poorly characterized. To understand resistance
mechanisms to single vs combination ICB therapy, we analyze whole-exome-sequencing (WES)
of pre-treatment tumor and matched normals of 4 cohorts (n=140) of previously ICB-naive aPD-
1 ICB treated patients. We find that high intratumoral genomic heterogeneity and low ploidy
identify patients with intrinsic resistance to aPD-1 ICB. Comparing to a melanoma cohort from a
pre-targeted therapy and ICB time period (“untreated” cohort), we find that genomic
heterogeneity specifically predicts response and survival in the ICB treated cohorts, but not in
the untreated cohort, while ploidy is also prognostic of overall survival in the “untreated” (by
targeted therapy or ICB) group. To establish clinically actionable predictions, we optimize a
simple decision tree using genomic ploidy and heterogeneity to identify with high confidence
(90% PPV) a subset of patients with intrinsic resistance to and significantly worse survival on aPD1
ICB treatment. We then validate this model in independent cohorts, and further show that a
significant proportion of patients predicted to have intrinsic resistance to single agent aPD-1 ICB
respond to combination ICB, which suggests that nominated patients may benefit
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disproportionately from combination ICB. We further show that the features and predictions of
the model are independent of known clinical features and previously nominated molecular
biomarkers. These findings highlight the clinical and biological importance of genomic
heterogeneity and ploidy, and sets a concrete framework towards clinical actionability, broadly
advancing precision medicine in oncology.

Introduction

The introduction of immune checkpoint blockade (ICB) has dramatically improved the treatment
landscape for patients with advanced melanoma, but only a subset of patients have durable
response to therapy[!™3]. Single agent aPD1 ICB nivolumab and pembrolizumab as well as
combination aPD1/CTLA4 ICB (ipilimumab + nivolumab) are standard first-line treatment options
for patients with advanced metastatic melanoma, with combination aPD1/CTLA4 ICB
demonstrating improved response rates, PFS, and a strong trend towards improved OS compared
to single agent aPD1 ICB[*]. However, combination therapy has a much higher rate of severe
immune-related adverse events (>50% vs ~15% for single agent aPD1 ICB) [3°], while the absolute
difference in proportion of patients with durable response to combination vs single agent ICB is
< 10%. Thus, biomarkers to identify patients who would disproportionately benefit from
combination versus single agent ICB in the front line setting would reduce toxicity while
optimizing disease-specific outcomes. Currently no molecular biomarkers have been well-
validated to guide these treatment decisions. This highlights the need to improve our
understanding of the molecular determinants of response and resistance to (1) guide more
personalized and rational utilization of ICB treatment options and (2) identify novel targets and
combinations to overcome resistance. Thus far, several markers have been suggested to be
associated with response to aPD-1 ICB. Tumor mutational burden (TMB) was the first to be
associated with response in melanoma patients [®7]. Subsequently, several additional features
have been proposed based on neoantigen load, immunohistochemical quantification of PD-L1
and CD8, genetic alteration in the antigen presentation genes and gene expression-based IFN-y
signature ["3]. Many of these biomarkers were nominated in non-melanoma or pan-cancer
settings, with inconsistent validation in metastatic melanoma and without differentiation of
important clinical context (e.g. different ICB regimens or prior therapy). In recent work predicting
response to aPD1 ICB, we found that prior therapy was a significant stratifier and different
features were associated with therapy response in patients with and without prior treatment
with aCTLA4 ICB. We developed parsimonious predictive models integrating clinical and
molecular features, but were limited in our ability to validate these models due to lack of
available independent cohorts with the requisite data [*4]. In this study, we focus on aCTLA4 ICB
naive metastatic melanoma patients (which represents the current front-line therapy setting for
metastatic melanoma) treated with aPD-1 ICB, finding that genomic heterogeneity and ploidy
predict intrinsic resistance to aPD-1 ICB, and refine our understanding of their predictive (under
therapy) vs prognostic (independent of therapy) role in response and survival. We develop a
simple modified decision tree based on these features to identify with high precision patients
with intrinsic resistance to aPD-1 ICB who may disproportionately benefit from combination ICB,
and validate these findings in independent cohorts of PD-1 and contrast with combination PD-
1/CTLA4 ICB treated melanoma patients. We further find that genomic heterogeneity and ploidy,
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89  and the predictions of our model for patients with intrinsic resistance to PD-1 ICB, did not reflect

90 known clinical features or previously nominated molecular features associated with poor-risk

91 disease or poor response to ICB.

92

93 Results

94

95 Low ploidy and high heterogeneity discriminate patients with intrinsic resistance to aPD-1 ICB

96 in multiple independent cohorts

97  We harmonized several metastatic melanoma patients cohorts described in previous studies and

98 clinical trials (supplementary table 1) ['>®], focusing on the subset of patients that were

99  previously ICB-naive, treated with aPD1 ICB, and had available WES data of pre-treatment tumor
100 samples (Methods) to identify patients with intrinsic resistance to therapy (progressive disease
101  (PD) at first restaging, hereafter also referred to as “progressors”). In a previous integrated
102  genomic, transcriptomic, and clinical analysis of metastatic melanoma patients treated with aPD1
103  ICB 4, we found that a logistic regression model with features of genomic heterogeneity, ploidy,
104  and tumor purity predicted intrinsic resistance to aPD1 ICB in previously ICB-naive patients. In an
105 independent cohort of patients from two clinical trials (BMS CheckMate-038 and -064
106  (respectively, 27 and 13 patients included after QC)), the nominated model had a modest AUC of
107  0.64 (Supplementary figure 1A; AUC in the original cohort 0.76), but examining the individual
108 features of the model, tumor purity was not associated with response in the independent cohorts
109  evaluated (Supplementary figure 1B), but the association between higher genomic heterogeneity
110 and lower ploidy with intrinsic resistance to therapy was robust (ploidy MW p=0.002,
111  heterogeneity MW p=0.038; ploidy MW p=0.027, heterogeneity MW p=0.018 in the original and
112  independent cohorts, respectively) (Figure 1A and B). Thus, we developed new models using only
113  genomic heterogeneity and ploidy in a new combined discovery cohort (Figure 1C) of n=124
114  patients. Both logistic regression and decision tree models using heterogeneity and ploidy had
115 moderate AUCs in the combined cohort (AUC of 0.73 and 0.75, respectively; 10 fold cross-
116  validation AUC 0.72; Supplementary figure 2). A prediction of PD was associated with an ORR of
117 5.1 [95% Cl 2.4-10.9] and 8.6 [95% CI 3.7-20.1] for the logistic regression and decision tree
118 models, respectively (Fig 1D &E). These models also stratified overall survival (OS) and
119  progression free survival (PFS) with the patients predicted as PD possessing worse OS (Decision
120 tree HR=3.1 [95% CI 1.8-5.3], p < 0.0001; logistic regression HR=1.9 [95% CI 1.1-3.3], p=0.019)
121  and PFS (Supplementary figure 3; Decision tree HR=2.5 [95% CI 1.6-3.9], p < 0.0001; logistic
122 regression HR=2.0 [95% CI 1.3-3.1], p=0.0018). The decision tree model was characterized by
123 higher precision/positive predictive value (76% vs 66%) and specificity (84% vs 71%) compared
124  to the logistic regression model (Supplemental Fig 2B and C), and provided a straightforward
125 approach to predicting patients with intrinsic resistance (Fig 1F). Overall, we found that high
126  genomic heterogeneity and low ploidy was robustly associated with intrinsic resistance to aPD1
127  therapy in multiple cohorts, and simple predictive models using these two features identified
128  patients with intrinsic resistance with reasonable performance.
129
130 Timing of WGD event distinguishes responders versus nonresponders with WGD
131  We analyzed tumors misclassified by our model, e.g. tumors with low heterogeneity and high
132  ploidy but observed to have intrinsic resistance, and the converse. Higher ploidy in tumors is
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133  associated with response to aPD-1 ICB in our data (Supp Fig 4) and is driven by whole genome
134  doubling (WGD) events (Figure 2A and B). Mutations within WGD tumors have different
135 multiplicity (i.e. one or two copies per cancer cell) representing mutations that occurred after (1
136  copy) or before (2 copies) the WGD event (Figure 2C). The ratio of 2:1 multiplicity of mutations is
137  thus associated with time from the WGD event [1/8]. Interestingly, 3 WGD tumors misclassified
138 by our predictive model as non-progressors based on low heterogeneity and high ploidy had high
139  2:1 SNV multiplicity ratio, suggesting that they may represent recent WGD events (Fig 2D).
140  Including SNV multiplicity as a feature of the model led to a small AUC improvement (Supp Fig
141  5A & B, with examples of PD samples with EGD and low heterogeneity in panel C; and Responders
142  samples with WGD and low heterogeneity in panel D). Conversely, misclassified patients
143  predicted to have intrinsic resistance (PD) but observed to have non-progressive disease (nPD)
144  did not have distinguishable genomic or clinical features (Supplementary table 3). Most of these
145  patients had stable disease as best response (7 SD, 3 PR, 1 CR out of 11 misclassified patients),
146  and most misclassifications occurred at relatively lower heterogeneity (Supplementary Fig 6),
147  suggesting poorer outcomes even if not progressive disease at the earliest time point.

148

149  Optimizing a predictive model to identify patients with intrinsic resistance with high specificity
150 To establish a clinically actionable predictive model, we developed a model to identify patients
151  with intrinsic resistance to aPD-1 ICB prioritizing high specificity (i.e. high precision/positive
152  predictive value (PPV)) over sensitivity (identifying all patients with intrinsic resistance correctly),
153  reasoning that it may be clinically useful to identify patients with high probability of intrinsic
154  resistance to single agent aPD-1 ICB who may disproportionately benefit from combination
155 immunotherapies. Accordingly, we developed a modified version of the decision tree model
156  (MDT) (online methods) using heterogeneity and ploidy (Figure 3A and Supplementary figure 6B).
157  Using this model, 21 patients (17% of the cohort) were predicted to be PD, with a PPV of 90%
158  (19/21 correctly predicted) and specificity of 97% (66/68 patients correctly identified as nPD).
159  The models stratified overall survival (OS) and progression free survival (PFS) with the patients
160 predicted as PD possessing worse OS (MDT HR=3.0 [95% CI 1.6-5.5], p = 0.00023) and PFS
161  (Supplementary figure 6C; Decision tree HR=3.0 [95% Cl 1.7-5.2], p < 0.0001).

162

163  Patients predicted as intrinsically resistance to aPD-1 ICB have similar clinical features to the
164  overall cohort

165  Certain clinical characteristics (e.g. high tumor burden, site-specific metastases (e.g. brain, liver)
166  denoting worse disease, uveal melanoma) are associated with worse outcomes and often prompt
167 treatment with combination ICB ['2921], To understand whether patients predicted to be
168 intrinsically resistant to aPD-1 ICB by our model also have worse clinical characteristics, we
169  evaluated M stage, LDH baseline level, presence of brain met, primary melanoma subtype,
170 presence of liver metastasis, ECOG, presence of lung metastasis and age. Overall, we found no
171  statistically significant difference in clinical characteristics in patients predicted to be PD vs others
172  in the cohort (Figure 3C). Further, out of the 21 patients predicted as PD only 4 possessed any
173  known clinical features (2 with brain metastases, 2 with uveal melanoma) that would strongly
174  favor the choice of combination ICB (Figure 3D, Supplementary table 2). Interestingly, the non-
175 cutaneous melanoma subtypes had higher heterogeneity compared to cutaneous melanomas
176  (acral (n=9, p=0.021), Ocular/Uveal patients (n=2,p=0.025), Mucosal group (n=9,
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177  p<0.001))(Supplementary figure 8). However, heterogeneity and ploidy were associated with
178 response even when limiting the analysis to cutaneous melanoma (heterogeneity pval=0.013,
179  ploidy pval<0.001; Supplementary figure 8D). We did not identify significant differences in
180 heterogeneity and ploidy in terms of M stage, LDH level and between patients with and without
181  brain metastasis (Supplementary figure 9 and 10). Overall, our analysis suggested that our model
182  predicted patients with intrinsic resistance who otherwise did not have other clinical features
183  that would have suggested more aggressive disease or resistance to aPD-1 ICB.

184

185  Our model can better define PD and nPD patients compared to established genomic signatures
186  and biomarkers

187  Tumor mutational burden and an interferon gamma signature have been associated with
188  response to aPD-1 ICB in large pan-cancer cohorts [19], though their performance in melanoma-
189  specific cohorts is uneven (AUC 0.60 and 0.64 for TMB and IFN-y signature, respectively). In this
190 cohort of metastatic melanoma patients, we tested the stratification of responders (CR+PR) vs
191  PDinterms of TMB and IFN-y. In the studies of the individual cohorts in our combined discovery
192  cohort, the association of TMB with response to therapy was mixed[**]. Indeed, in our combined
193  discovery cohort, one of the highest TMB tumors (>50 mut/MB) was a non-responder, but had
194  high heterogeneity and low ploidy (Supplementary figure 11) and was correctly classified by our
195 model. While TMB is independent of heterogeneity and ploidy (Supplementary Figure 7), adding
196 TMB to the feature space does not significantly improve performance (TMB in the logistic
197  regression model p=0.08) and is not supported by an AIC/BIC metric (used to trade off
198 improvement in model performance with increased complexity of the model) (e.g. BIC increase
199 of 1.74). For a subgroup of patients for whom the RNAseq data were available (n=108,
200  Supplementary figure 12), IFN-y was not correlated with ploidy and heterogeneity but does not
201  improve model performance (Supplementary Figure 13). Finally, we evaluated a recently
202 developed clinical nhomogram [%?] predicting response to ICB based on clinical features;
203  unfortunately, not all the samples in our cohort had available clinical features used by the model
204  (i.e. neutrophil to lymphocyte ratio, liver metastasis presence, ECOG, and lung metastasis
205 presence). However, in 5 patients we had sufficient available clinical data to determine that they
206  would be estimated by the nomogram to be at least intermediate or good response risks, but
207  due to their low ploidy and high heterogeneity our model correctly predicted them to have
208 intrinsicresistance (Supplementary figure 14), suggesting additional predictive information being
209  provided by this genomic data.

210

211  Genomic heterogeneity specifically predicts therapy response, while ploidy is prognostic

212  To understand the prognostic (i.e. indicating poor biology independent of therapy) vs predictive
213 (outcome in the setting of therapy) roles of genomic heterogeneity and ploidy, we analyzed data
214  from a TCGA melanoma cohort which was collected in a time frame where modern targeted and
215 ICB therapies were not widely available (the “untreated” cohort). Ploidy was significantly higher
216  in metastatic (n=392) vs primary (n=61) lesions (Fig 4A) consistent with past studies['4?324],
217  showing WGD involvement in tumor evolution and metastasis [*°]. In contrast, genomic
218 heterogeneity was significantly higher in primary samples (Fig 4A), consistent with a founder
219  bottlenecking effect in metastatic lesions. In univariate Cox survival analyses of the metastatic
220 subset, ploidy but not heterogeneity was associated with overall survival (Figure 4C-D;
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221  heterogeneity HR = 1.5 [95% CI 0.55-4.0], p = 0.44, ploidy HR=0.76 [95% CI 0.6-0.96], p=0.02). In
222  contrast, in our aPD-1 ICB treated cohort, high heterogeneity in metastatic samples was strongly
223 associated with worse PFS and OS (PFS Cox HR = 8.0 [95% Cl 1.5-42], p = 0.013; OS Cox HR =19.0
224 [95% Cl 4.1-84]), while ploidy had similar (but borderline statistically significant) associations with
225  improved PFS (Cox HR = 0.74 [95% CI 0.54-1], p = 0.065) and OS (Cox HR =0.76 [95% CI 0.51-1.1],
226 p = 0.181) in this smaller cohort. Notably, the effect-size estimates of ploidy on survival was
227  similar between the untreated and PD-1 ICB treated cohorts, but were not statistically significant
228 in the aPD-1 ICB treated cohort potentially due to smaller sample size. In the multivariate
229  analysis, ploidy (but not heterogeneity) again predicted overall survival in the untreated cohort
230  (Figure 4E; HR = 0.64 [95% Cl 0.5-0.84], p = 0.001), while in the aPD-1 ICB treated cohort
231  heterogeneity strongly stratified PFS and OS while ploidy was no longer a strong predictor (Figure
232 4F and G; heterogeneity HR = 13.87 [95% Cl 2.7-71.3], p = 0.002; ploidy HR = 0.87 [95% CI 0.56-
233 1.4], p=0.55). Taken together, our analysis demonstrates a strong predictive role of genomic
234  heterogeneity on patient outcomes under aPD-1 ICB therapy but not in untreated patients, while
235  ploidy is also prognostic in the non-ICB treated setting.

236

237  Model validation in independent cohorts

238  Finally, to validate this model in an external cohort, we collected and tested our model against a
239  small independent cohort of 16 additional patients who were ipilimumab- naive treated with
240 aPD1/aPD-L1 [?®] with 4 patients with CR/PR, 1 patient with SD, 1 patient with mixed response
241  (MR), and 10 patients with PD as BOR. Even in this small cohort of patients high heterogeneity
242  andlow ploidy identifies intrinsically resistant patients (Figure 5A-C). Further, our modified model
243  continued to have high precision, with all patients predicted by our optimized model to be
244  intrinsically resistant correctly predicted (n=5, PPV = 100% and specificity = 100%). We further
245  applied our model to an independent cohort of combination aPD1/aCTLA4 ICB treated patients
246  (n=13). Since RECIST annotation was not available for this cohort, we defined intrinsic resistance
247  (PD) as patients who progressed with a PFS < 6 months vs the patients with PFS higher than 6
248 months (non-PD). Interestingly, heterogeneity still continued to have a trend towards being
249  higher in PD patients vs non-PD (p = 0.052, Figure 5D); but for ploidy there was no significant
250 difference. Strikingly, 3/7 (43%) of patients predicted to be PD to single agent PD-1 ICB in our
251  model were non-PD when treated with combination aPD-1/aCTLA-4 ICB, suggesting that some of
252  the patients identified by this model may differentially benefit from combination ICB compared
253  tosingle agent ICB (Figure 5E).

254

255 Discussion

256 Inthis study, we identified low ploidy and high genomic heterogeneity as two robust independent
257  biomarkers of intrinsic resistance to aPD1 ICB in metastatic melanoma patients without prior ICB
258 in multiple independent cohorts. We then developed a simple predictive model using genomic
259 heterogeneity and ploidy to identify with high precision a subset of patients with intrinsic
260 resistance to single agent aPD1 ICB. Our results demonstrated that these patients do not possess
261  other adverse clinical characteristics that would have indicated poor risk disease. We further
262 identified genomic heterogeneity as uniquely predictive in the setting of ICB response, while
263  ploidy is prognostic of overall survival in an untreated cohort of metastatic melanoma patients.
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264  Further, timing of whole-genome-doubling event, which is the primary driver of ploidy
265  differences, may impact predictions of response and survival to aPD-1 ICB.

266

267 Intratumoral genomic heterogeneity has been associated with highly mutagenic disease with an
268 higher likelihood of preexisting or rapidly evolving resistant clones, and associated with worse
269  clinical outcomes in a range of clinical contexts[**?’-3°]. In vivo studies of intratumoral
270  heterogeneity using mixes of UVB-irradiated subclones have demonstrated increased tumor
271 growth in heterogeneous compared to homogenous tumors in immune-competent vs
272  immunodeficient mice [3!]. However, it has variable association with response to ICB in different
273  histologies and clinical contexts, and its utility as a biomarker has not previously been well-
274  demonstrated. The role of ploidy is much more complex. Large-scale differences in ploidy are
275  driven by WGD events, which are common in cancer (30% of solid tumors in one estimate[?3]).
276  The hypothesized benefit of WGD to tumors is the ability to tolerate copy number alterations
277  (aneuploidy) across the genome to find more favorable genomic states [?°], and mitigate the
278  accumulation of deleterious somatic alterations [32]. Indeed, in this study we observe WGD and
279 increased aneuploidy at later tumor stages (Fig 4A) and longitudinally in other studies in
280 individual patients [33]. Further, the pro- or anti-tumorigenic effects of WGD may be context-
281  dependent [343¢], where WGD is associated with tumorigenesis by increasing aneuploidy [37%],
282  but may also activate cellular stress mechanisms including the p53 and Hippo pathways, as well
283  as immune surveillance [374%41]. Prior work has suggested that tumors with WGD may have
284  unique vulnerabilities [*?], but the mechanisms underlying the observation that WGD tumors are
285  associated with ICB response (e.g. neoantigen presentation, increase in immunogenicity) are
286 unclear. Interestingly, our observation that timing of WGD, as measured by SNV multiplicity ratio,
287  may be associated with outlier resistance to ICB suggests that the increased vulnerability to ICB
288  occurs later in WGD tumors. Clinically, our results suggest that SNV multiplicity should be
289  evaluated together with WGD and aneuploidy in future studies of biomarkers of therapy
290 response.

291

292 Interestingly, our data demonstrates that intratumoral genomic heterogeneity is specifically
293  predictive of response and survival in a ICB therapy setting, while ploidy is also prognostic of
294  worse outcomes (i.e. poor biology) even in a non-targeted or immuno-therapy treated setting.
295  This suggests that clinical staging stratifying survival may be improved by incorporating molecular
296  markers.

297

298 Importantly, we developed a novel approach to developing biomarkers by optimizing specificity
299 and precision in predicting patients with intrinsic resistance to aPD-1 ICB. By design, we are
300 tolerating reduced sensitivity (i.e. identification of all intrinsically resistant patients) for increased
301 positive predictive value of the predicted resistant patients. Clinically, this translates into higher
302 confidence of predictions in a smaller subset of patients, which may improve clinical applicability
303  and adoption. Our model predicted intrinsic resistance in ~20% of the entire cohort, with 90%
304 PPV, and validated in a small independent cohort (5/5 patients correctly predicted to have
305 intrinsic resistance). We further asked if our model simply replicates known genomic or clinical
306 features of poor prognosis disease and response to ICB and found that our predictions were
307 independent of known and nominated features and clinical nomograms, suggesting the
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308 independent utility of these predictions. Further, application of our model in a small cohort of
309 combination aPD-1/aCTLA-4 ICB treated patients shows response in a significant subset (3/7,
310 43%) of patients predicted to have intrinsic resistance to aPD-1 ICB, suggesting that these are
311 indeed patients who would disproportionately benefit from combination therapy in the front line
312  setting.

313

314  There remain several limitations to this study. First, our independent validation cohorts were
315 relatively small (in part due to careful curation of ICB-naive tumor samples). Validation in larger
316  cohorts is necessary, though our findings have been robust in every cohort so far. Second, our
317  assays are based on biopsies of single lesions at a single point in time, which multiple studies[*>%4]
318 have demonstrated may not be accurate representations of tumor genomic heterogeneity even
319  within the same lesion, and differences in biopsy sites may bias our estimates. However, within
320 our limited data, we do not observe consistent differences between genomic heterogeneity and
321  ploidy between biopsy sites (Supplementary Fig 15), and our results suggest high precision even
322  without explicitly accounting for these differences. Third, the specific biological mechanisms
323  underpinning the association of intratumoral heterogeneity and ploidy with ICB response (and
324  prognosis) are unclear and represent important future research directions. Fourth, limiting
325 clinical actionability, intratumoral heterogeneity and ploidy are estimated here using WES of
326 matched tumor and normal tissue and associated analytics which are not standardized or
327 routinely available clinically. Standardized assessments of these genomic metrics [*°] remain to
328 be developed using clinically validated assays in prospective settings. However, we have found
329  our results to be robust using a different automated tool[*®] to infer tumor heterogeneity and
330 ploidy (Supplementary Fig 16), suggesting the feasibility of this approach.

331

332 Taken together, we have demonstrated genomic heterogeneity and ploidy as robust predictors
333  of intrinsic resistance to aPD1 ICB in metastatic melanoma, clarified the predictive vs prognostic
334  role of these features in metastatic melanoma, developed a novel approach to constructing
335 clinically relevant predictive models, constructed and validated a new predictive model that
336 identifies patients with intrinsic resistance to aPD1 ICB with high confidence, laying the
337 foundation for prospective studies to translate these findings to clinical practice. Broadly, this
338 represents a significant advance in the development and application of molecular biomarkers in
339  precision oncology.

340

341

342  Online Methods

343

344  Patient cohorts

345  Metastatic melanoma patients treated with immune checkpoint blockade were identified from
346  published work (Liu et al. Nature Medicine 2019 & Freeman et al. Cell Reports Medicine
347  2022[**?%]) and completed clinical trials (BMS Checkmate 038 and checkmate 064). We included
348 only samples without prior exposure to ipilimumab, with WES data of the paired tumor and
349 normal tissue obtained before PD1 blockade. Clinicopathological and demographic data were
350 obtained from Liu et al Nature Medicine 2019, from BMS for the two clinical trials and for the
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351 validation cohort from Freeman et al. [?°]. Data are shown in Figure 1 and in Supplementary table
352 1.The best objective response (BOR) to aPD1 ICB was only available for a subgroup of the patients
353 included in Freeman et al. and wasn’t available for the combination immunotherapy-treated
354  (“combo”) cohort. The analysis was performed by defining responders as patients achieving CR
355 or PR as BOR; patients showing PD as BOR were instead defined as progressors. To understand if
356 intrinsic resistant patients to aPD1 could benefit from the combo ICB, we also included a
357  previously unpublished internal cohort of combo treated samples. For the combo cohort, for
358  which the BOR was not available, we defined patients that progressed in the first six months of
359 treatment as progressors and compared them versus patients with PFS > 6 months. The definition
360 of OS and PFS was from initiation of ICB and sample collection as described in their respective
361  studies.

362

363 This retrospective study and associated informed consent procedures were approved by the
364  central Ethics Committee (EC) of the University Hospital Essen (12-5152-BO and 11-4715) and of
365 Dana Farber Cancer Institute (IRB 05-042). Approval by the local EC was obtained by investigators
366 if required by local regulations.

367

368 Quality control and variant calling

369 Samples from the BMS and Freeman et al. cohorts were re-analyzed with the Broad institute CGA
370 pipeline [*~>7] using the TERRA platform, adopting the same quality controls filters used for the
371  Liu et al. Nature Medicine 2019. In particular quality control cutoffs were as follows: mean target
372  coverage > 50X (tumor) and >30X (normal), cross contamination of samples estimation
373  (ContEst)<5%, tumor purity >= 10%, DeTiN < 20% TiN. A power filter combining coverage and
374  tumor purity was applied as described (e.g. minimum 80% power to detect clonal mutations) in
375 Liu et al. Nature Medicine 2019. Three samples were excluded for low purity and two samples
376  for low power.

377

378  MuTect2 [*"] was used to identify somatic single-nucleotide variants in targeted exons, with
379 computational filtering of artifacts introduced by DNA oxidation during sequencing or FFPE-based
380 DNA extraction using a filter-based method [*°]. Subsequently Strelka [*°] was used to identify
381 small insertions or deletions. Lastly, Oncotator [°’] was used to annotate the Identified
382  alterations.

383

384  Ploidy, Purity and heterogeneity estimation

385  Absolute was used for the estimation of ploidy, purity and for the cancer cell fraction (CCF)
386 estimation of individual mutations [**]. For each sample, the optimal solution (purity, ploidy) was
387 manually selected among the local solutions. Heterogeneity was computed as the proportion of
388 the subclonal mutations, with a mutation defined as subclonal if the cancer cell fraction (CCF)
389  was lower than 0.8.

390 For the TCGA samples, ploidy and heterogeneity were taken from Conway et al. Nat Genet 2020
391  (which used FACETS?*® to estimate purity, ploidy, and individual mutation CCF).

392

393 SNV multiplicity and the time of WGD
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394  The snv multiplicity for each SNV, representing the number of copies of the SNV per cancer cell,
395 was estimated using tumor purity and the estimated copy number state at the SNV site (q_hat)
396 from ABSOLUTE>* to estimate the expected variant allele fraction associated with a multiplicity
397 of1:

398 SNV multiplicity_1_af =
399
400  Then SNV multiplicity was estimated using the observed tumor variant allele fraction (Tumor_f)

401 and the expected variant allele fraction for a multiplicity of 1.
Tumor_f

SNV multiplicity_1_af

Purity
((Purity*q_hat)+2(1—Purity))

402 SNV multiplicity =

403

404  We then assigned each SNV to either multiplicity 1 or 2 based on a cutoff according to the
405  distribution of the SNVs, selecting the lowest point in the histogram between the two modes of
406  multiplicity at 1 and 2 in each individual sample (Supplementary table 1). For each sample, the
407  ratio of SNV multiplicity 2:1 alterations was used as a metric of time since the WGD event;
408 patients with a recent WGD are characterized by high SNV multiplicity 2:1 ratio [*8]. In the
409 modified logistic regression model the SNV multiplicity, since it is a feature of only the WGD
410 samples, was included as:

411 SNV multiplicity score = WGD + WGD * SNV multiplicity 2tol ratio ;
412

413  where WGD is O or 1, 1 for the samples with one or more WGD events.

414

415  Predictive model generation

416 Inorder to develop an interpretable predictive model, we focused on two model types; a logistic
417  regression and a decision tree model. Both the models were based on just two features:
418 heterogeneity and ploidy. The model was trained to predict PD as the best RECIST response
419  versus non-PD (nPD) rather than responder versus progressor to better reflect the real-world
420 setting where all outcomes (PD, SD, MR, PR and CR) are possible. We also evaluated the
421  prediction accuracy of a logistic regression model including the snv multiplicity as additional
422  feature. For the standard decision tree model, we used default complexity, method="class”, and
423  in order to avoid overfitting, we used the value of 10 as minimum number of samples included
424  in the leaf. The modified decision tree model to optimize precision was obtained by increasing
425  relative weight of nPD samples vs PD samples in a 4-fold cross validation procedure repeated 10
426  times (using R package caret v 6.0.93). The choice of relative weight (nPD = 2) for the final model
427  was selected for a tradeoff between increased precision or PPV (elbow method) and decreased
428  sensitivity (supplementary figure 17). The models were implemented in R version 4.2.0 using the
429  packages stats (v 4.2.0) and rpart (v 4.1.19); for the confusion matrix and the metrics of the
430 models was used the R package caret. To estimate the cross-validation AUC of the logistic
431  regression model, we used k-fold cross-validation using k=10 (splitting the dataset into k-subsets,
432  training on k - 1 subsets and calculating AUC on the holdout subset) and calculated the mean
433  cross-validation AUC and standard deviations. Cross-validation scores were calculated using the
434  cross_val_score function from the Python (v3) sklearn (v 1.0.2) package.

435
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436  TCGA analysis

437 The TCGA data was obtained from Conway et al. Nat Genet 2020 [*%]. Heterogeneity was
438  calculated using the same cutoff used for the ABSOLUTE analysis (cancer cell fraction > 0.8
439  defined clonal mutations). Samples were initially divided into primary (n=61) and metastatic
440 (n=392) samples to compare heterogeneity and ploidy; subsequent analyses focused on the
441  metastatic lesions with OS data (n=381).

442

443  Transcriptomic analysis

444  The methods used for sample collection, sequencing and quality control have been described in
445  previous work [**]. For a subset of the samples included in the discovery cohort bulk RNAseq was
446  available (n=108). Only transcriptomes from tumors whose WES also passed quality control were
447  included.

448

449  To evaluate the role of the interferon y, we used ssGSEA and signature genesets:
450 - IFN-y and IFN-y related from Rodig et al. Sci. Transl. Med. 2018%

451 - The HALLMARK_INTERFERON_GAMMA_RESPONSE®?

452  we compared progressors and responders in the three cohorts used. The analysis was

453  implemented in R using the package GSVA ®° (v 1.44.0) and msigdbr ®(v7.5.1).

454

455  Statistics and Reproducibility

456  Statistical analyses were performed using the stats R package for R version 4.2.0. Reported p-
457  values represent nominal p-values. Two primary response comparisons were made: (1)
458 responders (defined as having CR or PR as the best RECIST response) versus progressors (defined
459  as having PD as the best RECIST response) and (2) progressors (PD as the best RECIST response)
460 versus non-progressors (non-PD as best RECIST response). For the comparison between
461  continuous clinical and molecular features the Mann-Whitney test was used. For association of
462  binary variables Fisher’s exact test was used. All statistical tests performed were two-sided.

463

464  Survival Analysis

465 The survival outcome of patients receiving aPD-1 was evaluated with Kaplan-Meier survival
466  analysis. The significance of the difference in survival outcome between the patients predicted
467  as PD (stratified by the P(PD)>50% for the logistic regression) was assessed using a two-sided log-
468 rank test from the survival R package. We performed this test for both overall survival (OS) and
469  progression free survival (PFS). Checkmate 064 was a trial of sequential therapy with nivolumab
470  and ipilimumab, therefore patients from this trial (n=13 with first-line aPD1 ICB) were only used
471  toidentify intrinsic resistance (PD at the first restaging scan) and were excluded for the survival
472  analysis. For the survival analysis, the cohort evaluated is n=111 metastatic melanoma patients.
473  Theimpact of clinical and molecular features on overall survival and progression free survival was
474  also tested using univariate and multivariate Cox proportional hazards model using R version
475  4.2.0 and the packages survival (v 3.3.1) and survminer (v 0.4.9).

476

477  Code availability

478  Code to regenerate figures from the data provided with this study is available at github at
479  https://github.com/davidliu-lab. Additional requests for code will be promptly reviewed by the
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480 senior authors to verify whether the request is subject to any intellectual property or
481  confidentiality obligations and shared to the extent permissible by these obligations.

482

483  Data availability

484  All analyzed data are in supplementary tables or data available on github at
485  https://github.com/davidliu-lab. Data to reproduce the work of Liu et al. 2019, BMS
486  Checkmate038 and 064 findings, and Freeman et al. cohort have been already published and are
487 included in the supplementary table with the same labels [1#1626], Raw sequencing data of new
488 samples included in this analysis are available in dbgap (accession number phs000452.v3.p1).
489
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FIGURE1. High genomic heterogeneity and low ploidy predict intrinsic resistance in previously
ICB-naive PD-1 treated patients
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Figurel. High genomic heterogeneity and low ploidy predict intrinsic resistance in previously
ICB-naive PD-1 treated patients. A. Genomic heterogeneity and ploidy in progressors (PD as best
response, orange) vs responders (CR/PR as best response, green) in the CTLA-4 ICB naive PD-1
ICB treated subset of a large discovery cohort of metastatic melanoma patients. (MWW p =0.038,
p=0.0021 for heterogeneity, ploidy, respectively) B. Genomic heterogeneity and ploidy
comparison in progressors vs responders of a validation CTLA-4 ICB naive PD-1 ICB treated cohort
drawn from two clinical trials (MWW p = 0.018, p=0.027 for heterogeneity, ploidy, respectively.
C. A new combined discovery cohort was constructed combining the patients from three
different cohorts: the Liu et al. Nature Medicine 2019 paper, the clinical trials Checkmate 038
and 064. Checkmate-064 was a trial of sequential ipilimumab-nivolumab vs nivolumab-
ipilimumab, and only the patients in the arm A (treated first with nivolumab) were selected; for
these patients the response was evaluated after 12 weeks, and their data was not included in the
survival analysis presented in this work.

D. Decision boundaries of the logistic regression model (LR) with genomic heterogeneity and
ploidy as features to predict patients with intrinsic resistance (PD) using the new combined
discovery cohort. The orange area represents the area predicted by the model as PD while the
blue area represents the patients predicted as non-progressive disease (nPD). The observed
therapy response of each patient is represented by the orange plus symbol (PD) or the blue
triangle (nPD). E. Decision boundaries (similar to D) for a decision tree model (DT). F. Structure
of the decision tree with logic and split cutoff used. In each node: the top number represents the
overall prediction for the node with 1 = PD and 0 = nPD; the second number represents the
probability of the patients in that group to be PD; the third number denotes the proportion of
samples in that node.
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FIGURE2. Whole-genome doubling and its timing is associated with response to ICB
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Figure2. Whole-genome doubling and its timing is associated with response to ICB

A. Ploidy distribution of whole-genome doubled (WGD) and non-whole-genome-doubled
tumors. Higher ploidy is driven by WGD events. B. Proportion of patients with WGD event in the
PD patients vs NPD patients (Fisher’s exact p = 0.011). C. Graphical representation on how to
compute the SNV multiplicity ratio and estimate the time of WGD event. D. Ratio of multiplicity
2:1 SNV mutations and heterogeneity scatterplot for WGD tumors. Orange dots represent
patients with PD as best response (PD), and blue NPD. A high 2:1 SNV multiplicity ratio indicates
few SNV mutations after genome doubling, consistent with a recent WGD event.
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FIGURE3. Constructing a modified decision tree model optimizing precision and specificity for
predicting intrinsic resistance to PD-1 ICB.
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Figure3. Constructing a modified decision tree model optimizing precision and specificity for
predicting intrinsic resistance to PD-1 ICB.

A. Decision boundaries of the modified decision tree model (MDT). B. Progression free survival
curve stratified by patients predicted by the MDT model as PD (orange) and NPD (blue) (log rank
p < 0.0001); in the survival analysis have been excluded the samples from Checkmate 064 that
received a sequential treatment (n=13). C. Clinical characteristics between predicted PD patients
(n=21) and the rest of the cohort, comparing ECOG, presence of Brain metastasis, LDH level at
baseline and Age category; pvalues from fisher exact test. D. Clinical features of the 21 patients
predicted as PD; only 4 patients (highlighted in red) have clinical features (brain metastasis,
ocular/uveal primary type) that strongly indicate combination ICB.
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FIGURE4. Association of heterogeneity and ploidy with survival in ICB-treated and -untreated cohorts.
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Figured. Association of heterogeneity and ploidy with survival in ICB-treated and -untreated
cohorts. A. Difference in genomic heterogeneity and ploidy between primary and metastatic ICB-
untreated samples in the TCGA melanoma cohort. (MWW p =0.0031, p=0.0062 for heterogeneity
and ploidy, respectively). B. OS survival of the TCGA samples stratified by predicted PD status
using the modified DT model. (log rank p = 0.0059)C. OS survival of the TCGA samples stratified
by median ploidy (log rank p=0.01). D. OS survival of the TCGA samples stratified by median
heterogeneity (log rank p=0.23). E. Multivariate cox regression model evaluating the effect of
ploidy and heterogeneity for the OS in the TCGA cohort. F. Multivariate cox regression model
evaluating the effect of ploidy and heterogeneity for the OS in the anti-PD1 discovery cohort. G.
Multivariate cox regression model evaluating the effect of ploidy and heterogeneity for the PFS
in the anti-PD1 discovery cohort.
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FIGURES. Association of heterogeneity, ploidy, and predicted PD-1 ICB intrinsic resistance with ICB response
in independent validation cohorts.
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Figure5. Association of heterogeneity, ploidy, and predicted PD-1 ICB intrinsic resistance with
ICB response in independent validation cohorts. A. Circos plots of copy number alterations in
progressors (PD as best response, left) and responders (CR/PR as best response, right) in a PD-1
ICB treated validation cohort. B. Heterogeneity and ploidy compared in progressors vs
responders in the validation PD-1 ICB cohort (MWW p =0.008, p=0.23 for heterogeneity and
ploidy, respectively). C. Decision boundaries for the modified decision tree model using the
samples from the validation anti-PD1 ICB cohort. D. Heterogeneity and ploidy compared in
responders (PFS > 6 months) vs progressors (PFS <= 6 months) in a combination PD-1/CTLA-4 ICB
cohort (MWW p = 0.1, p=1 for heterogeneity and ploidy, respectively). E. Decision boundaries
for the modified decision tree model using the samples from the combination PD-1/CTLA-4 ICB
cohort showing response in 3/7 patients predicted to be intrinsically resistant to PD-1 ICB.
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