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 24 

Abstract 25 

While the introduction of immune checkpoint blockade (ICB) has dramatically improved clinical 26 
outcomes for patients with advanced melanoma, a significant proportion of patients develop 27 
resistance to therapy, and mechanisms of resistance are poorly elucidated in most cases. Further, 28 
while combination ICB has higher response rates and improved progression free survival 29 
compared to single agent therapy in the front line setting, there is significantly increased toxicity 30 
with combination ICB, and biomarkers to identify patients who would disproportionately benefit 31 
from combination therapy vs aPD-1 ICB are poorly characterized. To understand resistance 32 
mechanisms to single vs combination ICB therapy, we analyze whole-exome-sequencing (WES) 33 
of pre-treatment tumor and matched normals of 4 cohorts (n=140) of previously ICB-naïve aPD-34 
1 ICB treated patients. We find that high intratumoral genomic heterogeneity and low ploidy 35 
identify patients with intrinsic resistance to aPD-1 ICB. Comparing to a melanoma cohort from a 36 
pre-targeted therapy and ICB time period (“untreated” cohort), we find that genomic 37 
heterogeneity specifically predicts response and survival in the ICB treated cohorts, but not in 38 
the untreated cohort, while ploidy is also prognostic of overall survival in the “untreated” (by 39 
targeted therapy or ICB) group. To establish clinically actionable predictions, we optimize a 40 
simple decision tree using genomic ploidy and heterogeneity to identify with high confidence 41 
(90% PPV) a subset of patients with intrinsic resistance to and significantly worse survival on aPD1 42 
ICB treatment. We then validate this model in independent cohorts, and further show that a 43 
significant proportion of patients predicted to have intrinsic resistance to single agent aPD-1 ICB 44 
respond to combination ICB, which suggests that nominated patients may benefit 45 
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disproportionately from combination ICB. We further show that the features and predictions of 46 
the model are independent of known clinical features and previously nominated molecular 47 
biomarkers. These findings highlight the clinical and biological importance of genomic 48 
heterogeneity and ploidy, and sets a concrete framework towards clinical actionability, broadly 49 
advancing precision medicine in oncology.   50 

 51 

Introduction 52 

The introduction of immune checkpoint blockade (ICB) has dramatically improved the treatment 53 
landscape for patients with advanced melanoma, but only a subset of patients have durable 54 
response to therapy[1–3]. Single agent aPD1 ICB nivolumab and pembrolizumab as well as 55 
combination aPD1/CTLA4 ICB (ipilimumab + nivolumab) are standard first-line treatment options 56 
for patients with advanced metastatic melanoma, with combination aPD1/CTLA4 ICB 57 
demonstrating improved response rates, PFS, and a strong trend towards improved OS compared 58 
to single agent aPD1 ICB[4]. However, combination therapy has a much higher rate of severe 59 
immune-related adverse events (>50% vs ~15% for single agent aPD1 ICB) [3,5], while the absolute 60 
difference in proportion of patients with durable response to combination vs single agent ICB is 61 
< 10%. Thus, biomarkers to identify patients who would disproportionately benefit from  62 
combination versus single agent ICB in the front line setting would reduce toxicity while 63 
optimizing disease-specific outcomes. Currently no molecular biomarkers have been well-64 
validated to guide these treatment decisions. This highlights the need to improve our 65 
understanding of the molecular determinants of response and resistance to (1) guide more 66 
personalized and rational utilization of ICB treatment options and (2) identify novel targets and 67 
combinations to overcome resistance. Thus far, several markers have been suggested to be 68 
associated with response to aPD-1 ICB. Tumor mutational burden (TMB) was the first to be 69 
associated with response in melanoma patients [6,7]. Subsequently, several additional features 70 
have been proposed based on neoantigen load, immunohistochemical quantification of PD-L1 71 
and CD8, genetic alteration in the antigen presentation genes and gene expression-based IFN-γ 72 
signature [7–13]. Many of these biomarkers were nominated in non-melanoma or pan-cancer 73 
settings, with inconsistent validation in metastatic melanoma and without differentiation of 74 
important clinical context (e.g. different ICB regimens or prior therapy). In recent work predicting 75 
response to aPD1 ICB, we found that prior therapy was a significant stratifier and different 76 
features were associated with therapy response in patients with and without prior treatment 77 
with aCTLA4 ICB. We developed parsimonious predictive models integrating clinical and 78 
molecular features, but were limited in our ability to validate these models due to lack of 79 
available independent cohorts with the requisite data [14]. In this study, we focus on aCTLA4 ICB 80 
naïve metastatic melanoma patients (which represents the current front-line therapy setting for 81 
metastatic melanoma) treated with aPD-1 ICB, finding that genomic heterogeneity and ploidy 82 
predict intrinsic resistance to aPD-1 ICB, and refine our understanding of their predictive (under 83 
therapy) vs prognostic (independent of therapy) role in response and survival. We develop a 84 
simple modified decision tree based on these features to identify with high precision patients 85 
with intrinsic resistance to aPD-1 ICB who may disproportionately benefit from combination ICB, 86 
and validate these findings in independent cohorts of PD-1 and contrast with combination PD-87 
1/CTLA4 ICB treated melanoma patients. We further find that genomic heterogeneity and ploidy, 88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.11.519808doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.11.519808
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the predictions of our model for patients with intrinsic resistance to PD-1 ICB, did not reflect 89 
known clinical features or previously nominated molecular features associated with poor-risk 90 
disease or poor response to ICB.   91 
 92 

Results 93 

 94 
Low ploidy and high heterogeneity discriminate patients with intrinsic resistance to aPD-1 ICB 95 
in multiple independent cohorts 96 
We harmonized several metastatic melanoma patients cohorts described in previous studies and 97 
clinical trials (supplementary table 1) [15,16], focusing on the subset of patients that were 98 
previously ICB-naïve, treated with aPD1 ICB, and had available WES data of pre-treatment tumor 99 
samples (Methods) to identify patients with intrinsic resistance to therapy (progressive disease 100 
(PD) at first restaging, hereafter also referred to as “progressors”). In a previous integrated 101 
genomic, transcriptomic, and clinical analysis of metastatic melanoma patients treated with aPD1 102 
ICB 14, we found that a logistic regression model with features of genomic heterogeneity, ploidy, 103 
and tumor purity predicted intrinsic resistance to aPD1 ICB in previously ICB-naïve patients. In an 104 
independent cohort of patients from two clinical trials (BMS CheckMate-038 and -064 105 
(respectively, 27 and 13 patients included after QC)), the nominated model had a modest AUC of 106 
0.64 (Supplementary figure 1A; AUC in the original cohort 0.76), but examining the individual 107 
features of the model, tumor purity was not associated with response in the independent cohorts 108 
evaluated (Supplementary figure 1B), but the association between higher genomic heterogeneity 109 
and lower ploidy with intrinsic resistance to therapy was robust (ploidy MW p=0.002, 110 
heterogeneity MW p=0.038; ploidy MW p=0.027, heterogeneity MW p=0.018 in the original and 111 
independent cohorts, respectively) (Figure 1A and B). Thus, we developed new models using only 112 
genomic heterogeneity and ploidy in a new combined discovery cohort (Figure 1C) of n=124 113 
patients. Both logistic regression and decision tree models using heterogeneity and ploidy had 114 
moderate AUCs in the combined cohort (AUC of 0.73 and 0.75, respectively; 10 fold cross-115 
validation AUC 0.72; Supplementary figure 2). A prediction of PD was associated with an ORR of 116 
5.1 [95% CI 2.4-10.9] and 8.6 [95% CI 3.7-20.1] for the logistic regression and decision tree 117 
models, respectively (Fig 1D &E). These models also stratified overall survival (OS) and 118 
progression free survival (PFS) with the patients predicted as PD possessing worse OS (Decision 119 
tree HR=3.1 [95% CI 1.8-5.3], p < 0.0001; logistic regression HR=1.9 [95% CI 1.1-3.3], p=0.019) 120 
and PFS (Supplementary figure 3; Decision tree HR=2.5 [95% CI 1.6-3.9], p < 0.0001; logistic 121 
regression HR=2.0 [95% CI 1.3-3.1], p=0.0018). The decision tree model was characterized by 122 
higher precision/positive predictive value (76% vs 66%) and specificity (84% vs 71%) compared 123 
to the logistic regression model (Supplemental Fig 2B and C), and provided a straightforward 124 
approach to predicting patients with intrinsic resistance (Fig 1F). Overall, we found that high 125 
genomic heterogeneity and low ploidy was robustly associated with intrinsic resistance to aPD1 126 
therapy in multiple cohorts, and simple predictive models using these two features identified 127 
patients with intrinsic resistance with reasonable performance.  128 
 129 
Timing of WGD event distinguishes responders versus nonresponders with WGD 130 
We analyzed tumors misclassified by our model, e.g. tumors with low heterogeneity and high 131 
ploidy but observed to have intrinsic resistance, and the converse. Higher ploidy in tumors is 132 
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associated with response to aPD-1 ICB in our data (Supp Fig 4) and is driven by whole genome 133 
doubling (WGD) events (Figure 2A and B). Mutations within WGD tumors have different 134 
multiplicity (i.e. one or two copies per cancer cell) representing mutations that occurred after (1 135 
copy) or before (2 copies) the WGD event (Figure 2C). The ratio of 2:1 multiplicity of mutations is 136 
thus associated with time from the WGD event [17,18]. Interestingly, 3 WGD tumors misclassified 137 
by our predictive model as non-progressors based on low heterogeneity and high ploidy had high 138 
2:1 SNV multiplicity ratio, suggesting that they may represent recent WGD events (Fig 2D). 139 
Including SNV multiplicity as a feature of the model led to a small AUC improvement (Supp Fig 140 
5A & B, with examples of PD samples with EGD and low heterogeneity in panel C; and Responders 141 
samples with WGD and low heterogeneity in panel D).  Conversely, misclassified patients 142 
predicted to have intrinsic resistance (PD) but observed to have non-progressive disease (nPD) 143 
did not have distinguishable genomic or clinical features (Supplementary table 3). Most of these 144 
patients had stable disease as best response (7 SD, 3 PR, 1 CR out of 11 misclassified patients), 145 
and most misclassifications occurred at relatively lower heterogeneity (Supplementary Fig 6), 146 
suggesting poorer outcomes even if not progressive disease at the earliest time point.   147 
 148 
Optimizing a predictive model to identify patients with intrinsic resistance with high specificity 149 
To establish a clinically actionable predictive model, we developed a model to identify patients 150 
with intrinsic resistance to aPD-1 ICB prioritizing high specificity (i.e. high precision/positive 151 
predictive value (PPV)) over sensitivity (identifying all patients with intrinsic resistance correctly), 152 
reasoning that it may be clinically useful to identify patients with high probability of intrinsic 153 
resistance to single agent aPD-1 ICB who may disproportionately benefit from combination 154 
immunotherapies. Accordingly, we developed a modified version of the decision tree model 155 
(MDT) (online methods) using heterogeneity and ploidy (Figure 3A and Supplementary figure 6B). 156 
Using this model, 21 patients (17% of the cohort) were predicted to be PD, with a PPV of 90% 157 
(19/21 correctly predicted) and specificity of 97% (66/68 patients correctly identified as nPD). 158 
The models stratified overall survival (OS) and progression free survival (PFS) with the patients 159 
predicted as PD possessing worse OS (MDT HR=3.0 [95% CI 1.6-5.5], p = 0.00023) and PFS 160 
(Supplementary figure 6C; Decision tree HR=3.0 [95% CI 1.7-5.2], p < 0.0001). 161 
 162 
Patients predicted as intrinsically resistance to aPD-1 ICB have similar clinical features to the 163 
overall cohort 164 
Certain clinical characteristics (e.g. high tumor burden, site-specific metastases (e.g. brain, liver) 165 
denoting worse disease, uveal melanoma) are associated with worse outcomes and often prompt 166 
treatment with combination ICB [19,20,21]. To understand whether patients predicted to be 167 
intrinsically resistant to aPD-1 ICB by our model also have worse clinical characteristics, we 168 
evaluated M stage, LDH baseline level, presence of brain met, primary melanoma subtype, 169 
presence of liver metastasis, ECOG, presence of lung metastasis and age. Overall, we found no 170 
statistically significant difference in clinical characteristics in patients predicted to be PD vs others 171 
in the cohort (Figure 3C). Further, out of the 21 patients predicted as PD only 4 possessed any 172 
known clinical features (2 with brain metastases, 2 with uveal melanoma) that would strongly 173 
favor the choice of combination ICB (Figure 3D, Supplementary table 2). Interestingly, the non-174 
cutaneous melanoma subtypes had higher heterogeneity compared to cutaneous melanomas 175 
(acral (n=9, p=0.021), Ocular/Uveal patients (n=2,p=0.025), Mucosal group (n=9, 176 
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p<0.001))(Supplementary figure 8). However, heterogeneity and ploidy were associated with 177 
response even when limiting the analysis to cutaneous melanoma (heterogeneity pval=0.013, 178 
ploidy pval<0.001; Supplementary figure 8D). We did not identify significant differences in 179 
heterogeneity and ploidy in terms of M stage, LDH level and between patients with and without 180 
brain metastasis (Supplementary figure 9 and 10). Overall, our analysis suggested that our model 181 
predicted patients with intrinsic resistance who otherwise did not have other clinical features 182 
that would have suggested more aggressive disease or resistance to aPD-1 ICB.  183 
 184 
Our model can better define PD and nPD patients compared to established genomic signatures 185 
and biomarkers 186 
Tumor mutational burden and an interferon gamma signature have been associated with 187 
response to aPD-1 ICB in large pan-cancer cohorts [10], though their performance in melanoma-188 
specific cohorts is uneven (AUC 0.60 and 0.64 for TMB and IFN-ɣ signature, respectively).  In this 189 
cohort of metastatic melanoma patients, we tested the stratification of responders (CR+PR) vs 190 
PD in terms of TMB and IFN-ɣ. In the studies of the individual cohorts in our combined discovery 191 
cohort, the association of TMB with response to therapy was mixed[14]. Indeed, in our combined 192 
discovery cohort, one of the highest TMB tumors (>50 mut/MB) was a non-responder, but had 193 
high heterogeneity and low ploidy (Supplementary figure 11) and was correctly classified by our 194 
model. While TMB is independent of heterogeneity and ploidy (Supplementary Figure 7), adding 195 
TMB to the feature space does not significantly improve performance (TMB in the logistic 196 
regression model p=0.08) and is not supported by an AIC/BIC metric (used to trade off 197 
improvement in model performance with increased complexity of the model) (e.g. BIC increase 198 
of 1.74). For a subgroup of patients for whom the RNAseq data were available (n=108, 199 
Supplementary figure 12), IFN-γ was not correlated with ploidy and heterogeneity but does not 200 
improve model performance (Supplementary Figure 13). Finally, we evaluated a recently 201 
developed clinical nomogram [22] predicting response to ICB based on clinical features; 202 
unfortunately, not all the samples in our cohort had available clinical features used by the model 203 
(i.e. neutrophil to lymphocyte ratio, liver metastasis presence, ECOG, and lung metastasis 204 
presence). However, in 5 patients we had sufficient available clinical data to determine that they 205 
would be estimated by the nomogram to be at least intermediate or good response risks, but 206 
due to their low ploidy and high heterogeneity our model correctly predicted them to have 207 
intrinsic resistance (Supplementary figure 14), suggesting additional predictive information being 208 
provided by this genomic data. 209 
 210 
Genomic heterogeneity specifically predicts therapy response, while ploidy is prognostic 211 
To understand the prognostic (i.e. indicating poor biology independent of therapy) vs predictive 212 
(outcome in the setting of therapy) roles of genomic heterogeneity and ploidy, we analyzed data 213 
from a TCGA melanoma cohort which was collected in a time frame where modern targeted and 214 
ICB therapies were not widely available (the “untreated” cohort). Ploidy was significantly higher 215 
in metastatic (n=392) vs primary (n=61) lesions (Fig 4A) consistent with past studies[14,23,24],  216 
showing WGD involvement in tumor evolution and metastasis [25]. In contrast, genomic 217 
heterogeneity was significantly higher in primary samples (Fig 4A), consistent with a founder 218 
bottlenecking effect in metastatic lesions. In univariate Cox survival analyses of the metastatic 219 
subset, ploidy but not heterogeneity was associated with overall survival (Figure 4C-D;  220 
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heterogeneity HR = 1.5 [95% CI 0.55-4.0], p = 0.44, ploidy HR=0.76 [95% CI 0.6-0.96], p=0.02). In 221 
contrast, in our aPD-1 ICB treated cohort, high heterogeneity in metastatic samples was strongly 222 
associated with worse PFS and OS (PFS Cox HR = 8.0 [95% CI 1.5-42], p = 0.013; OS Cox HR = 19.0 223 
[95% CI 4.1-84]), while ploidy had similar (but borderline statistically significant) associations with 224 
improved PFS (Cox HR = 0.74 [95% CI 0.54-1], p = 0.065) and OS (Cox HR = 0.76 [95% CI 0.51-1.1], 225 
p = 0.181) in this smaller cohort. Notably, the effect-size estimates of ploidy on survival was 226 
similar between the untreated and PD-1 ICB treated cohorts, but were not statistically significant 227 
in the aPD-1 ICB treated cohort potentially due to smaller sample size. In the multivariate 228 
analysis, ploidy (but not heterogeneity) again predicted overall survival in the untreated cohort 229 
(Figure 4E; HR = 0.64  [95% CI 0.5-0.84], p = 0.001), while in the aPD-1 ICB treated cohort 230 
heterogeneity strongly stratified PFS and OS while ploidy was no longer a strong predictor (Figure 231 
4F and G; heterogeneity HR = 13.87 [95% CI 2.7-71.3], p = 0.002; ploidy HR = 0.87 [95% CI 0.56-232 
1.4], p=0.55). Taken together, our analysis demonstrates a strong predictive role of genomic 233 
heterogeneity on patient outcomes under aPD-1 ICB therapy but not in untreated patients, while 234 
ploidy is also prognostic in the non-ICB treated setting.  235 
 236 
Model validation in independent cohorts 237 
Finally, to validate this model in an external cohort, we collected and tested our model against a 238 
small independent cohort of 16 additional patients who were ipilimumab- naïve treated with 239 
aPD1/aPD-L1 [26] with 4 patients with CR/PR, 1 patient with SD, 1 patient with mixed response 240 
(MR), and 10 patients with PD as BOR. Even in this small cohort of patients high heterogeneity 241 
and low ploidy identifies intrinsically resistant patients (Figure 5A-C). Further, our modified model 242 
continued to have high precision, with all patients predicted by our optimized model to be 243 
intrinsically resistant correctly predicted (n=5, PPV = 100% and specificity = 100%). We further 244 
applied our model to an independent cohort of combination aPD1/aCTLA4 ICB treated patients 245 
(n=13). Since RECIST annotation was not available for this cohort, we defined intrinsic resistance 246 
(PD) as patients who progressed with a PFS < 6 months vs the patients with PFS higher than 6 247 
months (non-PD). Interestingly, heterogeneity still continued to have a trend towards being 248 
higher in PD patients vs non-PD  (p = 0.052, Figure 5D); but for ploidy there was no significant 249 
difference. Strikingly, 3/7 (43%) of patients predicted to be PD to single agent PD-1 ICB in our 250 
model were non-PD when treated with combination aPD-1/aCTLA-4 ICB, suggesting that some of 251 
the patients identified by this model may differentially benefit from combination ICB compared 252 
to single agent ICB (Figure 5E). 253 
 254 

Discussion 255 

In this study, we identified low ploidy and high genomic heterogeneity as two robust independent 256 
biomarkers of intrinsic resistance to aPD1 ICB in metastatic melanoma patients without prior ICB 257 
in multiple independent cohorts. We then developed a simple predictive model using genomic 258 
heterogeneity and ploidy to identify with high precision a subset of patients with intrinsic 259 
resistance to single agent aPD1 ICB. Our results demonstrated that these patients do not possess 260 
other adverse clinical characteristics that would have indicated poor risk disease. We further 261 
identified genomic heterogeneity as uniquely predictive in the setting of ICB response, while 262 
ploidy is prognostic of overall survival in an untreated cohort of metastatic melanoma patients. 263 
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Further, timing of whole-genome-doubling event, which is the primary driver of ploidy 264 
differences, may impact predictions of response and survival to aPD-1 ICB. 265 
 266 
Intratumoral genomic heterogeneity has been associated with highly mutagenic disease with an 267 
higher likelihood of preexisting or rapidly evolving resistant clones, and associated with worse 268 
clinical outcomes in a range of clinical contexts[14,27–30]. In vivo studies of intratumoral 269 
heterogeneity using mixes of UVB-irradiated subclones have demonstrated increased tumor 270 
growth in heterogeneous compared to homogenous tumors in immune-competent vs 271 
immunodeficient mice [31]. However, it has variable association with response to ICB in different 272 
histologies and clinical contexts, and its utility as a biomarker has not previously been well-273 
demonstrated. The role of ploidy is much more complex. Large-scale differences in ploidy are 274 
driven by WGD events, which are common in cancer (30% of solid tumors in one estimate[23]). 275 
The hypothesized benefit of WGD to tumors is the ability to tolerate copy number alterations 276 
(aneuploidy) across the genome to find more favorable genomic states [25], and mitigate the 277 
accumulation of deleterious somatic alterations [32]. Indeed, in this study we observe WGD and 278 
increased aneuploidy at later tumor stages (Fig 4A) and longitudinally in other studies in 279 
individual patients [33]. Further, the pro- or anti-tumorigenic effects of WGD may be context-280 
dependent [34–36], where WGD is associated with tumorigenesis by increasing aneuploidy [37–39], 281 
but may also activate cellular stress mechanisms including the p53 and Hippo pathways, as well 282 
as immune surveillance [37,40,41]. Prior work has suggested that tumors with WGD may have 283 
unique vulnerabilities [42], but the mechanisms underlying the observation that WGD tumors are 284 
associated with ICB response (e.g. neoantigen presentation, increase in immunogenicity) are 285 
unclear. Interestingly, our observation that timing of WGD, as measured by SNV multiplicity ratio, 286 
may be associated with outlier resistance to ICB suggests that the increased vulnerability to ICB 287 
occurs later in WGD tumors. Clinically, our results suggest that SNV multiplicity should be 288 
evaluated together with WGD and aneuploidy in future studies of biomarkers of therapy 289 
response.   290 
 291 
Interestingly, our data demonstrates that intratumoral genomic heterogeneity is specifically 292 
predictive of response and survival in a ICB therapy setting, while ploidy is also prognostic of 293 
worse outcomes (i.e. poor biology) even in a non-targeted or immuno-therapy treated setting. 294 
This suggests that clinical staging stratifying survival may be improved by incorporating molecular 295 
markers. 296 
 297 
Importantly, we developed a novel approach to developing biomarkers by optimizing specificity 298 
and precision in predicting patients with intrinsic resistance to aPD-1 ICB. By design, we are 299 
tolerating reduced sensitivity (i.e. identification of all intrinsically resistant patients) for increased 300 
positive predictive value of the predicted resistant patients. Clinically, this translates into higher 301 
confidence of predictions in a smaller subset of patients, which may improve clinical applicability 302 
and adoption. Our model predicted intrinsic resistance in ~20% of the entire cohort, with 90% 303 
PPV, and validated in a small independent cohort (5/5 patients correctly predicted to have 304 
intrinsic resistance). We further asked if our model simply replicates known genomic or clinical 305 
features of poor prognosis disease and response to ICB and found that our predictions were 306 
independent of known and nominated features and clinical nomograms, suggesting the 307 
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independent utility of these predictions. Further, application of our model in a small cohort of 308 
combination aPD-1/aCTLA-4 ICB treated patients shows response in a significant subset (3/7, 309 
43%) of patients predicted to have intrinsic resistance to aPD-1 ICB, suggesting that these are 310 
indeed patients who would disproportionately benefit from combination therapy in the front line 311 
setting.  312 
 313 
There remain several limitations to this study. First, our independent validation cohorts were 314 
relatively small (in part due to careful curation of ICB-naïve tumor samples). Validation in larger 315 
cohorts is necessary, though our findings have been robust in every cohort so far. Second, our 316 
assays are based on biopsies of single lesions at a single point in time, which multiple studies[43,44] 317 
have demonstrated may not be accurate representations of tumor genomic heterogeneity even 318 
within the same lesion, and differences in biopsy sites may bias our estimates. However, within 319 
our limited data, we do not observe consistent differences between genomic heterogeneity and 320 
ploidy between biopsy sites (Supplementary Fig 15), and our results suggest high precision even 321 
without explicitly accounting for these differences. Third, the specific biological mechanisms 322 
underpinning the association of intratumoral heterogeneity and ploidy with ICB response (and 323 
prognosis) are unclear and represent important future research directions. Fourth, limiting 324 
clinical actionability, intratumoral heterogeneity and ploidy are estimated here using WES of 325 
matched tumor and normal tissue and associated analytics which are not standardized or 326 
routinely available clinically. Standardized assessments of these genomic metrics [45] remain to 327 
be developed using clinically validated assays in prospective settings. However, we have found 328 
our results to be robust using a different automated tool[46] to infer tumor heterogeneity and 329 
ploidy (Supplementary Fig 16), suggesting the feasibility of this approach. 330 
   331 
Taken together, we have demonstrated genomic heterogeneity and ploidy as robust predictors 332 
of intrinsic resistance to aPD1 ICB in metastatic melanoma, clarified the predictive vs prognostic 333 
role of these features in metastatic melanoma, developed a novel approach to constructing 334 
clinically relevant predictive models, constructed and validated a new predictive model that 335 
identifies patients with intrinsic resistance to aPD1 ICB with high confidence, laying the 336 
foundation for prospective studies to translate these findings to clinical practice. Broadly, this 337 
represents a significant advance in the development and application of molecular biomarkers in 338 
precision oncology.   339 
 340 

 341 

Online Methods 342 

 343 

Patient cohorts 344 
Metastatic melanoma patients treated with immune checkpoint blockade were identified from 345 
published work (Liu et al. Nature Medicine 2019 & Freeman et al. Cell Reports Medicine 346 
2022[14,26]) and completed clinical trials (BMS Checkmate 038 and checkmate 064). We included 347 
only samples without prior exposure to ipilimumab, with WES data of the paired tumor and 348 
normal tissue obtained before PD1 blockade. Clinicopathological and demographic data were 349 
obtained from Liu et al Nature Medicine 2019, from BMS for the two clinical trials and for the 350 
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validation cohort from Freeman et al. [26]. Data are shown in Figure 1 and in Supplementary table 351 
1. The best objective response (BOR) to aPD1 ICB was only available for a subgroup of the patients 352 
included in Freeman et al. and wasn’t available for the combination immunotherapy-treated 353 
(“combo”) cohort. The analysis was performed by defining responders as patients achieving CR 354 
or PR as BOR; patients showing PD as BOR were instead defined as progressors. To understand if 355 
intrinsic resistant patients to aPD1 could benefit from the combo ICB, we also included a 356 
previously unpublished internal cohort of combo treated samples. For the combo cohort, for 357 
which the BOR was not available, we defined patients that progressed in the first six months of 358 
treatment as progressors and compared them versus patients with PFS > 6 months. The definition 359 
of OS and PFS was from initiation of ICB and sample collection as described in their respective 360 
studies.  361 
 362 
This retrospective study and associated informed consent procedures were approved by the 363 
central Ethics Committee (EC) of the University Hospital Essen (12-5152-BO and 11-4715) and of 364 
Dana Farber Cancer Institute (IRB 05-042). Approval by the local EC was obtained by investigators 365 
if required by local regulations.  366 
 367 
Quality control and variant calling 368 
Samples from the BMS and Freeman et al. cohorts were re-analyzed with the Broad institute CGA 369 
pipeline [47–57] using the TERRA platform, adopting the same quality controls filters used for the 370 
Liu et al. Nature Medicine 2019. In particular quality control cutoffs were as follows: mean target 371 
coverage > 50X (tumor) and >30X (normal), cross contamination of samples estimation 372 
(ContEst)<5%, tumor purity >= 10%, DeTiN ≤ 20% TiN. A power filter combining coverage and 373 
tumor purity was applied as described (e.g. minimum 80% power to detect clonal mutations) in 374 
Liu et al. Nature Medicine 2019. Three samples were excluded for low purity and two samples 375 
for low power. 376 
 377 
MuTect2 [47 ] was used to identify somatic single-nucleotide variants in targeted exons, with 378 
computational filtering of artifacts introduced by DNA oxidation during sequencing or FFPE-based 379 
DNA extraction using a filter-based method [50]. Subsequently Strelka [49] was used to identify 380 
small insertions or deletions. Lastly, Oncotator [57] was used to annotate the Identified 381 
alterations. 382 
 383 
Ploidy, Purity and heterogeneity estimation 384 
Absolute was used for the estimation of ploidy, purity and for the cancer cell fraction (CCF) 385 
estimation of individual mutations [54]. For each sample, the optimal solution (purity, ploidy) was 386 
manually selected among the local solutions. Heterogeneity was computed as the proportion of 387 
the subclonal mutations, with a mutation defined as subclonal if the cancer cell fraction (CCF) 388 
was lower than 0.8.   389 
For the TCGA samples, ploidy and heterogeneity were taken from Conway et al. Nat Genet 2020 390 
(which used FACETS46 to estimate purity, ploidy, and individual mutation CCF). 391 
 392 
SNV multiplicity and the time of WGD 393 
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The snv multiplicity for each SNV, representing the number of copies of the SNV per cancer cell, 394 
was estimated using tumor purity and the estimated copy number state at the SNV site (q_hat) 395 
from ABSOLUTE54 to estimate the expected variant allele fraction associated with a multiplicity 396 
of 1: 397 

𝑆𝑁𝑉 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦_1_𝑎𝑓 =
Purity

((𝑃𝑢𝑟𝑖𝑡𝑦∗𝑞_ℎ𝑎𝑡)+2(1−Purity))
  398 

 399 
Then SNV multiplicity was estimated using the observed tumor variant allele fraction (Tumor_f) 400 
and the expected variant allele fraction for a multiplicity of 1. 401 

𝑆𝑁𝑉 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑢𝑚𝑜𝑟_𝑓

𝑆𝑁𝑉 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦_1_𝑎𝑓
 402 

 403 
We then assigned each SNV to either multiplicity 1 or 2 based on a cutoff according to the 404 
distribution of the SNVs, selecting the lowest point in the histogram between the two modes of 405 
multiplicity at 1 and 2 in each individual sample (Supplementary table 1). For each sample, the 406 
ratio of SNV multiplicity 2:1 alterations was used as a metric of time since the WGD event;  407 
patients with a recent WGD are characterized by high SNV multiplicity 2:1 ratio [17,18]. In the 408 
modified logistic regression model the SNV multiplicity, since it is a feature of only the WGD 409 
samples, was included as: 410 

𝑆𝑁𝑉 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 𝑊𝐺𝐷 + 𝑊𝐺𝐷 ∗ 𝑆𝑁𝑉 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 2𝑡𝑜1 𝑟𝑎𝑡𝑖𝑜 ; 411 
 412 
where WGD is 0 or 1, 1 for the samples with one or more WGD events. 413 
 414 
Predictive model generation 415 
In order to develop an interpretable predictive model, we focused on two model types; a logistic 416 
regression and a decision tree model. Both the models were based on just two features: 417 
heterogeneity and ploidy. The model was trained to predict PD as the best RECIST response 418 
versus non-PD (nPD) rather than responder versus progressor to better reflect the real-world 419 
setting where all outcomes (PD, SD, MR, PR and CR) are possible. We also evaluated the 420 
prediction accuracy of a logistic regression model including the snv multiplicity as additional 421 
feature. For the standard decision tree model, we used default complexity, method=”class”, and 422 
in order to avoid overfitting, we used the value of 10 as minimum number of samples included 423 
in the leaf. The modified decision tree model to optimize precision was obtained by increasing 424 
relative weight of nPD samples vs PD samples in a 4-fold cross validation procedure repeated 10 425 
times (using R package caret v 6.0.93). The choice of relative weight (nPD = 2) for the final model 426 
was selected for a tradeoff between increased precision or PPV (elbow method) and decreased 427 
sensitivity (supplementary figure 17). The models were implemented in R version 4.2.0 using the 428 
packages stats (v 4.2.0) and rpart (v 4.1.19); for the confusion matrix and the metrics of the 429 
models was used the R package caret. To estimate the cross-validation AUC of the logistic 430 
regression model, we used k-fold cross-validation using k=10 (splitting the dataset into k-subsets, 431 
training on k − 1 subsets and calculating AUC on the holdout subset) and calculated the mean 432 
cross-validation AUC and standard deviations. Cross-validation scores were calculated using the 433 
cross_val_score function from the Python (v3) sklearn (v 1.0.2) package. 434 
 435 
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TCGA analysis 436 
The TCGA data was obtained from Conway et al. Nat Genet 2020 [58]. Heterogeneity was 437 
calculated using the same cutoff used for the ABSOLUTE analysis (cancer cell fraction > 0.8 438 
defined clonal mutations). Samples were initially divided into primary (n=61) and metastatic 439 
(n=392) samples to compare heterogeneity and ploidy; subsequent analyses focused on the 440 
metastatic lesions with OS data (n=381).  441 
 442 
Transcriptomic analysis 443 
The methods used for sample collection, sequencing and quality control have been described in 444 
previous work [14]. For a subset of the samples included in the discovery cohort bulk RNAseq was 445 
available (n=108). Only transcriptomes from tumors whose WES also passed quality control were 446 
included. 447 
 448 
To evaluate the role of the interferon γ, we used ssGSEA and signature genesets:  449 

- IFN-γ and IFN-γ  related from Rodig et al. Sci. Transl. Med. 201815 450 
- The HALLMARK_INTERFERON_GAMMA_RESPONSE59 451 

we compared progressors and responders in the three cohorts used. The analysis was 452 
implemented in R using the package GSVA 60 (v 1.44.0) and msigdbr 61(v7.5.1). 453 
 454 
Statistics and Reproducibility 455 
Statistical analyses were performed using the stats R package for R version 4.2.0. Reported p-456 
values represent nominal p-values. Two primary response comparisons were made: (1) 457 
responders (defined as having CR or PR as the best RECIST response) versus progressors (defined 458 
as having PD as the best RECIST response) and (2) progressors (PD as the best RECIST response) 459 
versus non-progressors (non-PD as best RECIST response). For the comparison between 460 
continuous clinical and molecular features the Mann-Whitney test was used. For association of 461 
binary variables Fisher’s exact test was used. All statistical tests performed were two-sided. 462 
 463 
Survival Analysis 464 
The survival outcome of patients receiving aPD-1 was evaluated with Kaplan-Meier survival 465 
analysis. The significance of the difference in survival outcome between the patients predicted 466 
as PD (stratified by the P(PD)>50% for the logistic regression) was assessed using a two-sided log-467 
rank test from the survival R package. We performed this test for both overall survival (OS) and 468 
progression free survival (PFS). Checkmate 064 was a trial of sequential therapy with nivolumab 469 
and ipilimumab, therefore patients from this trial (n=13 with first-line aPD1 ICB) were only used 470 
to identify intrinsic resistance (PD at the first restaging scan) and were excluded for the survival 471 
analysis. For the survival analysis, the cohort evaluated is n=111 metastatic melanoma patients. 472 
The impact of clinical and molecular features on overall survival and progression free survival was 473 
also tested using univariate and multivariate Cox proportional hazards model using R version 474 
4.2.0 and the packages survival (v 3.3.1) and survminer (v 0.4.9). 475 
 476 
Code availability 477 
Code to regenerate figures from the data provided with this study is available at github at 478 
https://github.com/davidliu-lab. Additional requests for code will be promptly reviewed by the 479 
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senior authors to verify whether the request is subject to any intellectual property or 480 
confidentiality obligations and shared to the extent permissible by these obligations. 481 
 482 
Data availability 483 
All analyzed data are in supplementary tables or data available on github at 484 
https://github.com/davidliu-lab. Data to reproduce the work of Liu et al. 2019, BMS 485 
Checkmate038 and 064 findings, and Freeman et al. cohort have been already published and are 486 
included in the supplementary table with the same labels [14–16,26]. Raw sequencing data of new 487 
samples included in this analysis are available in dbgap (accession number phs000452.v3.p1). 488 
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FIGURE1. High genomic heterogeneity and low ploidy predict intrinsic resistance in previously 
ICB-naïve PD-1 treated patients
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Figure1. High genomic heterogeneity and low ploidy predict intrinsic resistance in previously 
ICB-naïve PD-1 treated patients. A. Genomic heterogeneity and ploidy in progressors (PD as best 
response, orange) vs responders (CR/PR as best response, green) in the CTLA-4 ICB naïve PD-1 
ICB treated subset of a large discovery cohort of metastatic melanoma patients. (MWW p = 0.038, 
p=0.0021 for heterogeneity, ploidy, respectively) B. Genomic heterogeneity and ploidy 
comparison in progressors vs responders of a validation CTLA-4 ICB naïve PD-1 ICB treated cohort 
drawn from two clinical trials (MWW p = 0.018, p=0.027 for heterogeneity, ploidy, respectively.  
C. A new combined  discovery cohort was constructed combining the patients from three 
different cohorts: the Liu et al. Nature Medicine 2019 paper, the clinical trials Checkmate 038 
and 064. Checkmate-064 was a trial of sequential ipilimumab-nivolumab vs nivolumab-
ipilimumab, and only the patients in the arm A (treated first with nivolumab) were selected; for 
these patients the response was evaluated after 12 weeks, and their data was not included in the 
survival analysis presented in this work. 
D. Decision boundaries of the logistic regression model (LR) with genomic heterogeneity and 
ploidy as features to predict patients with intrinsic resistance (PD) using the new combined 
discovery cohort. The orange area represents the area predicted by the model as PD while the 
blue area represents the patients predicted as non-progressive disease (nPD). The observed 
therapy response of each patient is represented by the orange plus symbol (PD) or the blue 
triangle (nPD). E. Decision boundaries (similar to D) for a decision tree model (DT). F. Structure 
of the decision tree with logic and split cutoff used. In each node: the top number represents the 
overall prediction for the node with 1 = PD and 0 = nPD; the second number represents the 
probability of the patients in that group to be PD; the third number denotes the proportion of 
samples in that node. 
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Figure2. Whole-genome doubling and its timing is associated with response to ICB  
A. Ploidy distribution of whole-genome doubled (WGD) and non-whole-genome-doubled 
tumors. Higher ploidy is driven by WGD events. B. Proportion of patients with WGD event in the 
PD patients vs NPD patients (Fisher’s exact p = 0.011). C. Graphical representation on how to 
compute the SNV multiplicity ratio and estimate the time of WGD event. D. Ratio of multiplicity 
2:1 SNV mutations and heterogeneity scatterplot for WGD tumors. Orange dots represent 
patients with PD as best response (PD), and blue NPD. A high 2:1 SNV multiplicity ratio indicates 
few SNV mutations after genome doubling, consistent with a recent WGD event.  
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Figure3. Constructing a modified decision tree model optimizing precision and specificity for 
predicting intrinsic resistance to PD-1 ICB.  
A. Decision boundaries of the modified decision tree model (MDT). B. Progression free survival 
curve stratified by patients predicted by the MDT model as PD (orange) and NPD (blue) (log rank 
p < 0.0001); in the survival analysis have been excluded the samples from Checkmate 064 that 
received a sequential treatment (n=13). C. Clinical characteristics between predicted PD patients 
(n=21) and the rest of the cohort, comparing ECOG, presence of Brain metastasis, LDH level at 
baseline and Age category; pvalues from fisher exact test. D. Clinical features of the 21 patients 
predicted as PD; only 4 patients (highlighted in red) have clinical features (brain metastasis, 
ocular/uveal primary type) that strongly indicate combination ICB.  
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.11.519808doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.11.519808
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

PRIMARY
(n=61)

METASTASIS
(n=392)

P
LO

ID
Y

0.
2

0.
4

0.
6

0.
8

1.
0

PRIMARY
(n=61)

METASTASIS
(n=392)

H
E

TE
R

O
G

E
N

E
IT

Y

** **

A B

C

OS - MULTIVARIATE COX REGRESSION MODEL 
TCGA UNTREATED SAMPLES

PRIMARY VS METASTASIS COMPARISON 
TCGA SAMPLES

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++ ++ + ++++ + + ++ + + +++ ++ ++

+++++++

++++++++++ ++++++ ++++ + + +++++++ + + +++ ++ + + +++ + ++

p = 0.0059

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120
Time

Su
rv

iva
l p

ro
ba

bi
lit

y

262 168 116 79 56

119 66 35 24 16

0 30 60 90 120
Time

Number at risk

OS - MODIFIED DECISION TREE MODEL
Predicted as PD HR 1.6 [95% CI 1.2-2.3]

C D

heterogeneity

ploidy

(N=366)

(N=366)

(N=21)

0.98

0.64

2.99

(0.33 − 2.92)

(0.50 − 0.84)

(1.54 − 5.79)

0.966

0.001 **

0.001 **

# Events: 130; Global p−value (Log−Rank): 0.00023898 
AIC: 1360.75; Concordance Index: 0.610.1 0.2 0.5 1 2 5

Hazard ratio

mstage (N=345)
M0

M1

reference

OS - MULTIVARIATE COX REGRESSION MODEL
DISCOVERY COHORT TREATED WITH ANTI-PD1

M0

M1

heterogeneity

ploidy

(N=103)

(N=103)

(N=92)

13.87

 0.87

 1.35

(2.70 − 71.3)

(0.56 −  1.4)

(0.41 −  4.5)

0.002 **

0.545

0.626

# Events: 46; Global p−value (Log−Rank): 0.016048 
AIC: 383.25; Concordance Index: 0.65 0.5 1 2 5 10 20 50 100

Hazard ratio

mstage (N=11) reference

M1

PFS - MULTIVARIATE COX REGRESSION MODEL
DISCOVERY COHORT TREATED WITH ANTI-PD1

Hazard ratio

FIGURE4. Association of heterogeneity and ploidy with survival in ICB-treated and -untreated cohorts.

+++++++++++++++++++++ ++++++++++++++++++++++++++++ +++++ +++ ++++++++++++ ++ + +++ ++ + + ++ + ++

+++++++++++++++++++++++++++++++++ ++++++++++ +++++ ++++ +++++++++++ +++ +++ ++++ + + + + +++ + ++ ++

p = 0.01

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120
Time

Su
rv

iva
l p

ro
ba

bi
lit

y

188 123 87 59 44

193 111 64 44 28

0 30 60 90 120
Time

Number at risk

OS - MEDIAN PLOIDY
High ploidy HR 0.65 [95% CI 0.46 - 0.9]

+ +++++++++++++
+++++++++++++++++++++++++++++++++++ ++++ +++++++++ ++++++++++ + ++++ +++ + ++ +++

++++++++++++++++++++ ++++++++++++++++++++ +++++++ +++++++++++ +++++++++++ ++ + +++ + +
+ ++ + +

p = 0.23

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120
Time

Su
rv

iva
l p

ro
ba

bi
lit

y

189 106 64 46 31

192 128 87 57 41

0 30 60 90 120
Time

Number at risk

OS - MEDIAN HETEROGENEITY
High heterogeneity HR 1.2 [95% CI 0.88 - 1.7]

E F

reference

heterogeneity

ploidy

mstage

(N=103)

(N=103)

M1
(N=92)

8.02

0.80

0.56

(1.37 − 46.8)

(0.57 −  1.1)

(0.28 −  1.1)

0.021 *

0.183

0.1

# Events: 72; Global p−value (Log−Rank): 0.017701 
AIC: 583.34; Concordance Index: 0.59 0.5 1 2 5 10 20 50

M0
(N=11)

G

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.11.519808doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.11.519808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure4. Association of heterogeneity and ploidy with survival in ICB-treated and -untreated 
cohorts. A. Difference in genomic heterogeneity and ploidy between primary and metastatic ICB-
untreated samples in the TCGA melanoma cohort. (MWW p = 0.0031, p=0.0062 for heterogeneity 
and ploidy, respectively). B. OS survival of the TCGA samples stratified by predicted PD status 
using the modified DT model. (log rank p = 0.0059)C. OS survival of the TCGA samples stratified 
by median ploidy (log rank p=0.01). D. OS survival of the TCGA samples stratified by median 
heterogeneity (log rank p=0.23). E. Multivariate cox regression model evaluating the effect of 
ploidy and heterogeneity for the OS in the TCGA cohort. F.  Multivariate cox regression model 
evaluating the effect of ploidy and heterogeneity for the OS in the anti-PD1 discovery cohort. G.  
Multivariate cox regression model evaluating the effect of ploidy and heterogeneity for the PFS 
in the anti-PD1 discovery cohort. 
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Figure5. Association of heterogeneity, ploidy, and predicted PD-1 ICB intrinsic resistance with 
ICB response in independent validation cohorts. A. Circos plots of copy number alterations in 
progressors (PD as best response, left) and responders (CR/PR as best response, right) in a PD-1 
ICB treated validation cohort. B. Heterogeneity and ploidy compared in progressors vs 
responders in the validation PD-1 ICB cohort (MWW p =0.008, p=0.23 for heterogeneity and 
ploidy, respectively). C. Decision boundaries for the modified decision tree model using the 
samples from the validation anti-PD1 ICB cohort. D. Heterogeneity and ploidy compared in 
responders (PFS > 6 months) vs progressors (PFS <= 6 months) in a combination PD-1/CTLA-4 ICB 
cohort (MWW p = 0.1, p=1 for heterogeneity and ploidy, respectively).  E. Decision boundaries 
for the modified decision tree model using the samples from the combination PD-1/CTLA-4 ICB 
cohort showing response in 3/7 patients predicted to be intrinsically resistant to PD-1 ICB.  
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