

1 ***Pseudomonas* isolates from ponds populated with duckweed prevent disease**
2 **caused by pathogenic *Pseudomonas* species**

3

4 *Baggs E.L* ¹, *Stark F.G* ¹, *Tiersma M.B* ¹ and *Krasileva K.V* ¹

5 1. Department of Plant and Microbial Biology, University of California Berkeley, USA, 94720

6 **Abstract**

7 Duckweeds are notoriously invasive plants. They are successful in inhabiting diverse
8 environments, despite their lack of conventional immune pathways that are essential for disease
9 resistance in other plant species. It is unclear how duckweeds thrive in the absence of these
10 immune pathways. In this study, we investigated the effect of bacteria from duckweeds' natural
11 habitat on disease progression utilizing the duckweed-*Pseudomonas* pathosystem. Through
12 nanopore sequencing of 16S and ITS rDNA amplicons we identified duckweed-associated
13 bacterial and fungal genera present at three environmental sites. The pond filtrate from one of
14 the three environmental locations primed duckweed's pathogen defenses leading to a reduction
15 in disease symptoms. Furthermore, we were able to identify bacterial isolates from the filtrate
16 that protect duckweed from disease symptoms upon *Pseudomonas* pathogen inoculation. The
17 isolated protective bacteria belong to the *Pseudomonas* genus, and we demonstrated
18 antagonistic interactions between the pathogen and beneficial strains *in vitro* and *in vivo*. The
19 ability of our environmental isolates to protect against *Pseudomonas* pathogens appears to be
20 plant/species specific as environmental strains showed no protective effect against
21 *Pseudomonas* pathogens in *Arabidopsis* assays. Genome sequencing of the beneficial
22 *Pseudomonas* strains showed the presence of several genes involved in bacterial competition.
23 We have thus demonstrated that *Pseudomonas* species from duckweeds natural habitat can
24 successfully antagonize other plant pathogens.

25 **Introduction**

26

27 Plants are holobionts that host a complex assemblage of microbes, which interact with
28 one another and the plant (Hassani et al., 2018). The outcomes of these interactions
29 can be affected by environmental fluctuations, ecological factors, priority effects, host
30 genotype, and microbial genotypes (Henry et al., 2021; Kohl, 2020; Vishwakarma et al.,
31 2020). Within the microbiome, fungi and bacteria are known to interact in a variety of
32 ways, which enables the maintenance of stable communities (Coyte et al., 2015;
33 Hassani et al., 2018; Paasch & He, 2021). To form a stable community, microbes can
34 learn to live in mutualism, however, often they must outcompete other microbes through
35 either ecological competition or interference competition (Coyte et al., 2015; Hassani et
36 al., 2018; Paasch & He, 2021). Ecological competition includes overcoming or imposing
37 nutrient limitations, niche exclusion, and quorum sensing disruption (Bauer et al., 2018;
38 Ghoul & Mitri, 2016; Hibbing et al., 2010). In contrast, interference competition involves

39 direct damage to competitor cells (Bauer et al., 2018; Coyte & Rakoff-Nahoum, 2019).
40 Interference competition can be further subdivided into contact-dependent toxin delivery
41 systems, including Type III, Type IV, and Type VI secretion systems, or contact-
42 independent toxin systems, such as bacteriocin/tailocin and secondary metabolites
43 (Coyte & Rakoff-Nahoum, 2019). Interference competition between plant-associated
44 bacteria is poorly understood. Many studies demonstrate an outcome rather than a
45 mechanism of biocontrols; interference mechanisms such as T6SS were only
46 discovered relatively recently (Hood et al., 2010; Schwarz et al., 2010); and microbiome
47 interactions are complex, requiring interdisciplinary approaches at the intersection of
48 plant pathology, microbiome research, and ecology.
49

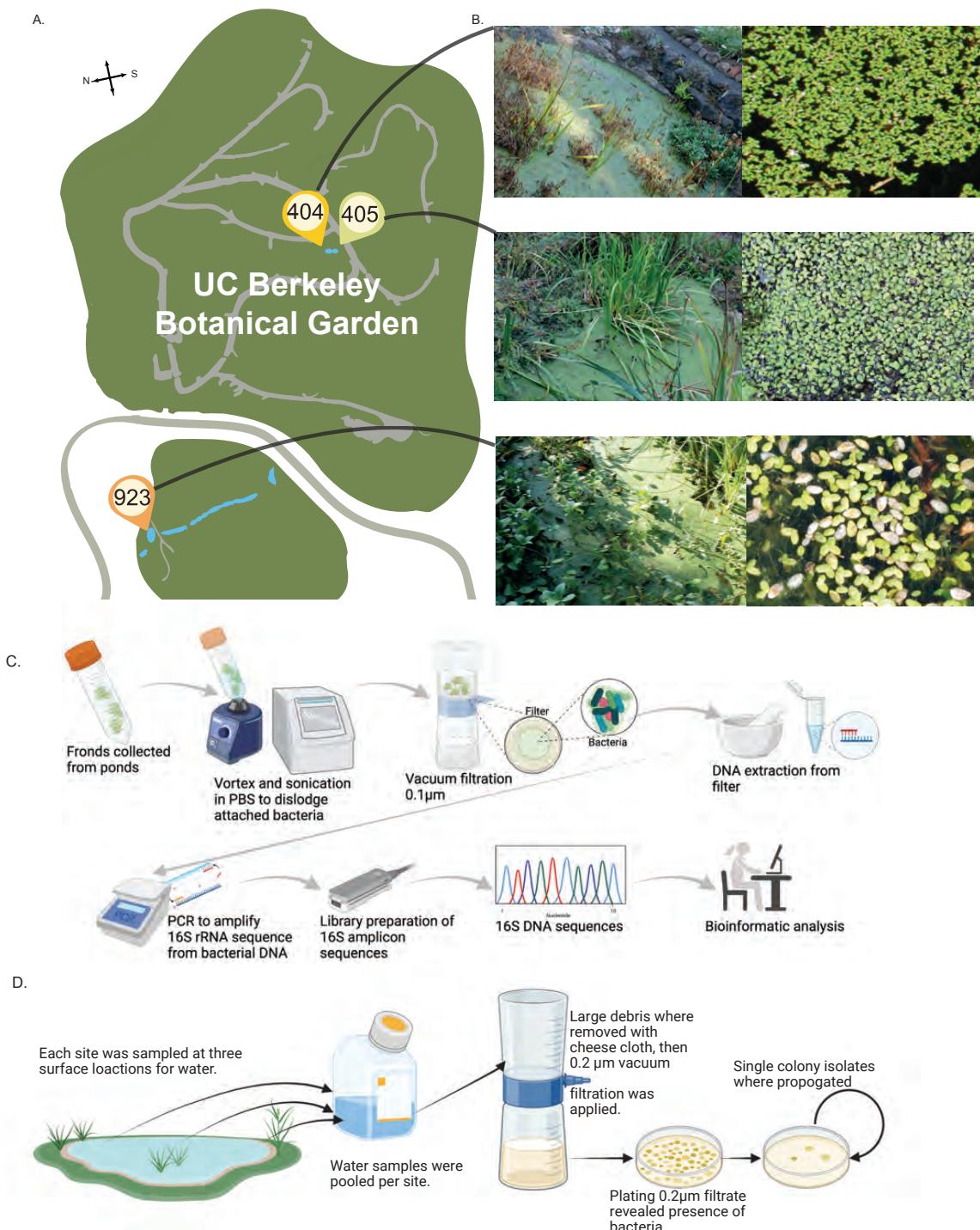
50 The microbiome of plants traditionally considers the terrestrial plant microbiome which
51 has been characterized in a number of plant species, primarily focusing on the distinct
52 rhizosphere and phyllosphere ecological niches (Kwak et al., 2018; Lundberg et al.,
53 2012; Morella et al., 2020; Peiffer et al., 2013; Trivedi et al., 2020). It remains unclear
54 whether many established plant microbiome principles that are derived from terrestrial
55 plant experiments hold true in the understudied aquatic plant microbiome. Studies have
56 begun to investigate the relative abundance of different bacteria phylum and genera
57 associated with the duckweed microbiome (Acosta et al., 2020; O'Brien et al., 2020,
58 2022; Yoneda et al., 2021). Previous work has focused on utilizing duckweed for
59 bioremediation (Acosta et al., 2020; Inoue et al., 2022; O'Brien et al., 2020, 2022;
60 Yoneda et al., 2021), whilst our understanding of bacterial pathogens and their
61 interaction with the aquatic plant microbiome is still limited. Additionally, the fungal
62 constituents of the duckweed microbiome are yet to be fully understood, although many
63 studies have investigated duckweeds as potential sources of antifungal compounds
64 (Das et al., 2012; Effiong & Sanni, 2009; Gülcin et al., 2010). Typically, within the plant
65 microbiome, there are plant growth-promoting bacteria and fungi which have been
66 shown to promote the growth of both terrestrial and aquatic plant species (Hossain et
67 al., 2007, 2017; Ramakrishna et al., 2019; Suzuki et al., 2014; Toyama et al., 2022).
68 Microbiome-mediated mechanisms for promoting growth include: facilitating nutrient
69 acquisition, nitrogen fixation, modulation of phytohormones, and competition with other
70 microbes, including pathogens (Ishizawa et al., 2019, 2020; Olanrewaju et al., 2017;
71 Shalev et al., 2022; Suzuki et al., 2014; Toyama et al., 2022; Yamakawa et al., 2018;
72 Yoneda et al., 2021).
73

74 Plant pathogens belong to dozens of fungal, bacterial, and oomycota genera. Bacterial
75 pathogens from the *Pseudomonas* and *Xanthomonas* genera are globally distributed
76 and contain species highlighted as within the top five economically and scientifically
77 important bacterial phytopathogens (Mansfield et al., 2012). *Pseudomonas syringae* pv.
78 *tomato* (*Pst*) DC3000 and *Arabidopsis thaliana* constitute a model pathosystem (Katagiri

79 et al., 2002; Xin & He, 2013). Once inside the plant, *Pst* DC3000 multiplies to high
80 population density in the substomatal cavity and mesophyll (Katagiri et al., 2002). In
81 order to thrive inside the leaf, the pathogen creates its own niche through the use of
82 effectors to induce water soaking, creating a humid, photosynthate-rich inter-cellular
83 environment (Hernandez & Lindow, 2019). *Pseudomonas syringae* pv. *syringae* B728a
84 (*Pss* B728a) is another pathogenic *Pseudomonas* isolated from *Phaseolus vulgaris*
85 (Hirano et al., 1995) with well-studied virulence mechanisms (Feil et al., 2005;
86 Hernandez & Lindow, 2019; Hirano et al., 1999; Lacombe et al., 2010). *Pss* B728a
87 typically has a longer epiphytic phase on the host plant surface, thought to be due to its
88 greater stress tolerance (Feil et al., 2005; Hirano & Upper, 2000). Disease symptoms
89 following *Pss* B728a infection can be due to colonization of either the leaf surface or the
90 apoplast (Hirano & Upper, 2000). Duckweed species have been shown to be
91 susceptible to *Pss* B728a, *Pst* DC3000, and several pathogenic *Xanthomonas* strains
92 (Baggs et al., 2022). Economically and scientifically important fungal pathogens use an
93 arsenal of strategies to infiltrate the plant and cause disease. Fungal pathogens are
94 also among the dominant causal agents of plant disease with the potential to decimate
95 entire plant populations (Doehlemann et al., 2017). Strategies employed by fungal
96 pathogens include: plant polymer and cell wall degrading enzymes, specialized infection
97 structures such as the appressorium/ haustorium, and virulence factors such as
98 effectors known to evade or manipulate the plant's immune response (Dean et al.,
99 2012).

100
101 Duckweeds have recently been developed as an alternative model system to *A. thaliana*
102 when studying bacterial pathogens (Baggs et al., 2022). The small size of duckweeds,
103 short generation time, small proteome, and low maintenance inputs make them an ideal
104 system for rapid hypothesis testing (Acosta et al., 2021). In contrast to the majority of
105 angiosperms, including *A. thaliana*, duckweeds are missing a conserved immune
106 pathway consisting of EDS1, PAD4, and RNLs (Baggs et al. 2020; Baggs et al. 2022;
107 Lapin et al. 2019). Contrary to the reduced copy number of the NLR intracellular
108 immune receptor gene family, the antimicrobial protein family characterized by the
109 presence of the MiAMP1 domain was expanded and differentially expressed upon
110 pathogen challenge in duckweeds (Acosta et al., 2021; An et al., 2019; Baggs et al.,
111 2022). Despite the overlap between duckweed species and several plant pathogen
112 ranges (Cai et al., 2011; Gutiérrez-Barranquero et al., 2019; Potnis et al., 2015), natural
113 duckweed populations show sparse signs of visible disease (Xu et al., 2015). Duckweed
114 pathogenic fungi include *Tracya lemnae* (Vanký, 1981) and *Olipidium amoebae* (Fisch,
115 1884; Gaumann, 1928), but fungal community ecology has yet to be described in
116 duckweed. The ubiquitous nature of *Pseudomonas* pathogens and model duckweed
117 pathosystem *Spirodela polyrhiza* - *Pst* DC3000 (Baggs et al., 2022) prompted us to
118 investigate whether natural populations of duckweed are in contact with bacterial

119 pathogens. Furthermore, we were interested in how the natural environment could
120 affect the outcome of duckweed populations exposed to pathogenic bacteria.


121
122 To date, it is unclear how plant species from aquatic environments, or plants without
123 EDS1 defense pathways, would be able to survive environmental pathogen pressure.
124 We explored the role of the water filtrates and the plant microbiome in protection of
125 duckweed species against *Pseudomonas* pathogens. Our results confirm that
126 microbiome-mediated protection against disease is present in an aquatic plant
127 environment. Furthermore, we discovered two bacterial strains that confer disease
128 protection for duckweed species challenged with *Pseudomonas* pathogens. We show
129 that the environmental bacterial isolates reduce *Pst* DC3000 colony forming units in the
130 absence of the plant host, with the genomes of the protective strains containing an
131 arsenal of bacterial interference mechanisms. However, the inhibition seen *in vitro* is
132 insufficient to prevent *Pseudomonas* from causing disease in *A. thaliana*. Together, our
133 findings suggest a key role of the microbiome in the protection of duckweed from
134 disease.

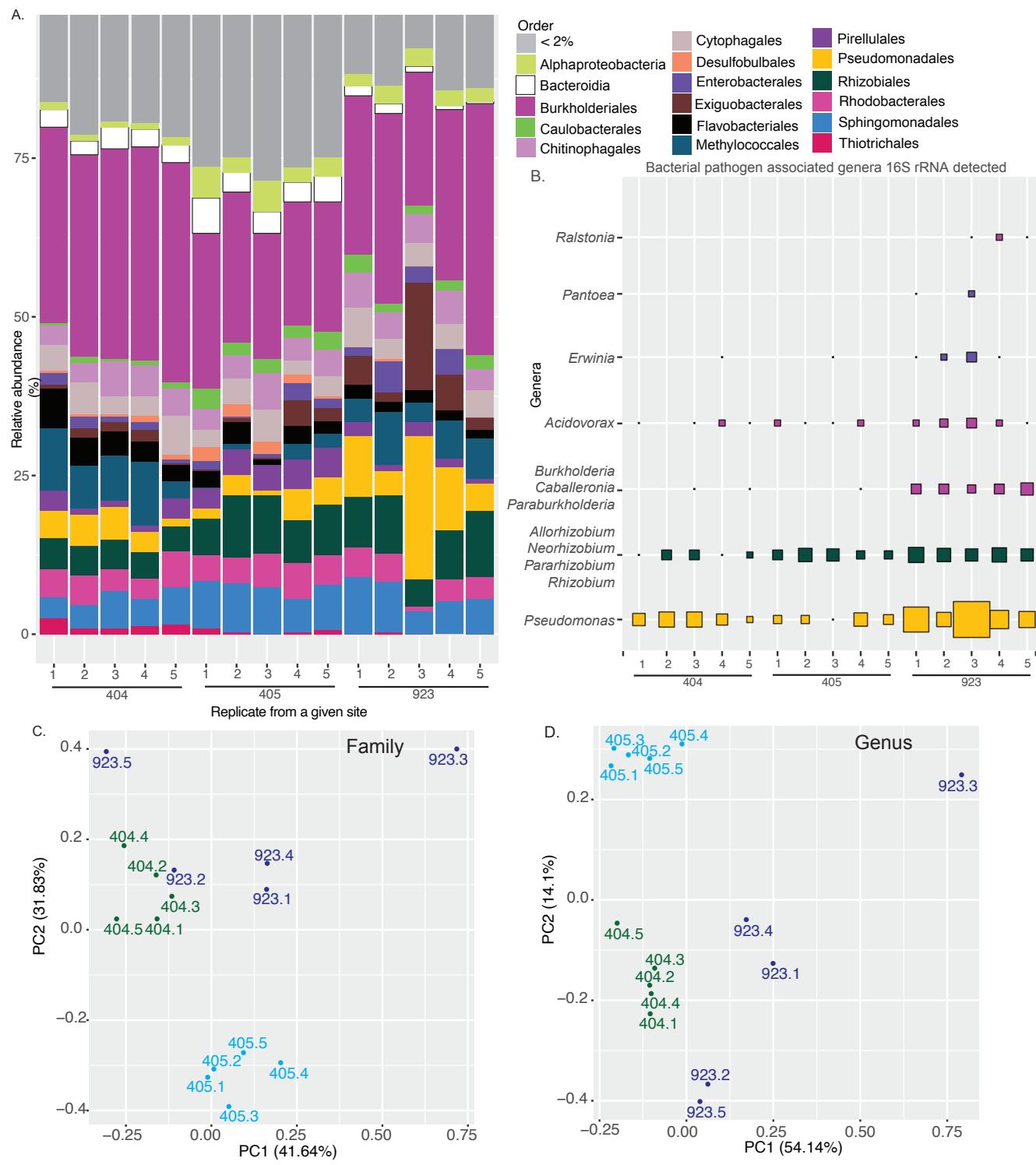
135 **Results**

136 **Community structures of duckweed-associated bacteria and fungi differ from**
137 **those associated with terrestrial plants**

138
139 To understand how natural duckweed (*Lemnaceae*) populations protect themselves
140 from pathogens, we assessed the impact of their aquatic environment on disease
141 progression. On February 27th 2020, we identified and sampled both water and fronds
142 from three populations of *Lemnaceae* at the University of California Berkeley Botanical
143 Garden (UCB-BG) (Fig 1a). Sites will be referred to herein by their UCB-BG bed IDs:
144 404, 405, and 923. The sampling was then repeated on November 3rd 2020 for further
145 studies including microbiome analysis. Each site had healthy duckweed populations
146 with little visible to no visible disease symptoms (Fig 1b). Duckweed and water samples
147 were taken at three distinct locations within each site for further analysis (Fig 1c, d). A
148 subset of environmental *Lemnaceae* fronds (fused leaf and stem) were sterilized to
149 allow aseptic propagation, however, only fronds from site 405 were able to survive this
150 stringent sterilization process. Genotyping of the duckweed from the sample site 405,
151 herein referred to as BG405, using the AtpF marker (Wang et al., 2010) identified it as
152 most closely related to *Landoltia punctata* strain DW2701-4 (100% nucleotide identity
153 for AtpF (File S1)).

154
155 To identify in a culture-independent manner which bacteria and fungi live in close
156 association with duckweed, we washed microbial communities from environmental
157 fronds into Phosphate-Buffered Saline (PBS). The solution was passed through a 0.1

Figure 1. Schematic of location and sample processing for duckweed and its microbiome.
A. Schematic map of the UC Berkeley Botanical Garden sampling location. Blue indicates water bodies, gray shows pathways and point locators show specific ponds sampled. B. Images of the three ponds at time of sampling. C. Experimental procedure for the 16S rRNA amplicon sequencing. D. Experimental procedure for water sampling from each pond.


158 μ m filter, and DNA was then extracted from the filter (Fig 1c). Five biological replicates
159 of duckweed-associated microbial DNA were extracted from each of the three sites.
160 Followed by library preparation and nanopore minION sequencing. Taxonomic
161 assignments were made for the bacterial full-length (V1-V9) 16S rDNA amplicons
162 against the SILVA databases. Bacterial richness at the family and genus level, before
163 and after normalization, was highest at site 404 and lowest at site 923 (Table 2). Genus
164 richness was not saturated when considering biological replicates within sites
165 separately but was when replicates were pooled by site (Fig S1). Shannon diversity
166 index and Simpson diversity index applied to family-level taxon assignments showed
167 that, despite slightly lower taxa richness, site 405 had the highest level of diversity of
168 bacterial families among the three sites.
169

170 Table 2: Family and Genus level diversity statistics for the three sites sampled after
171 SRS normalization.

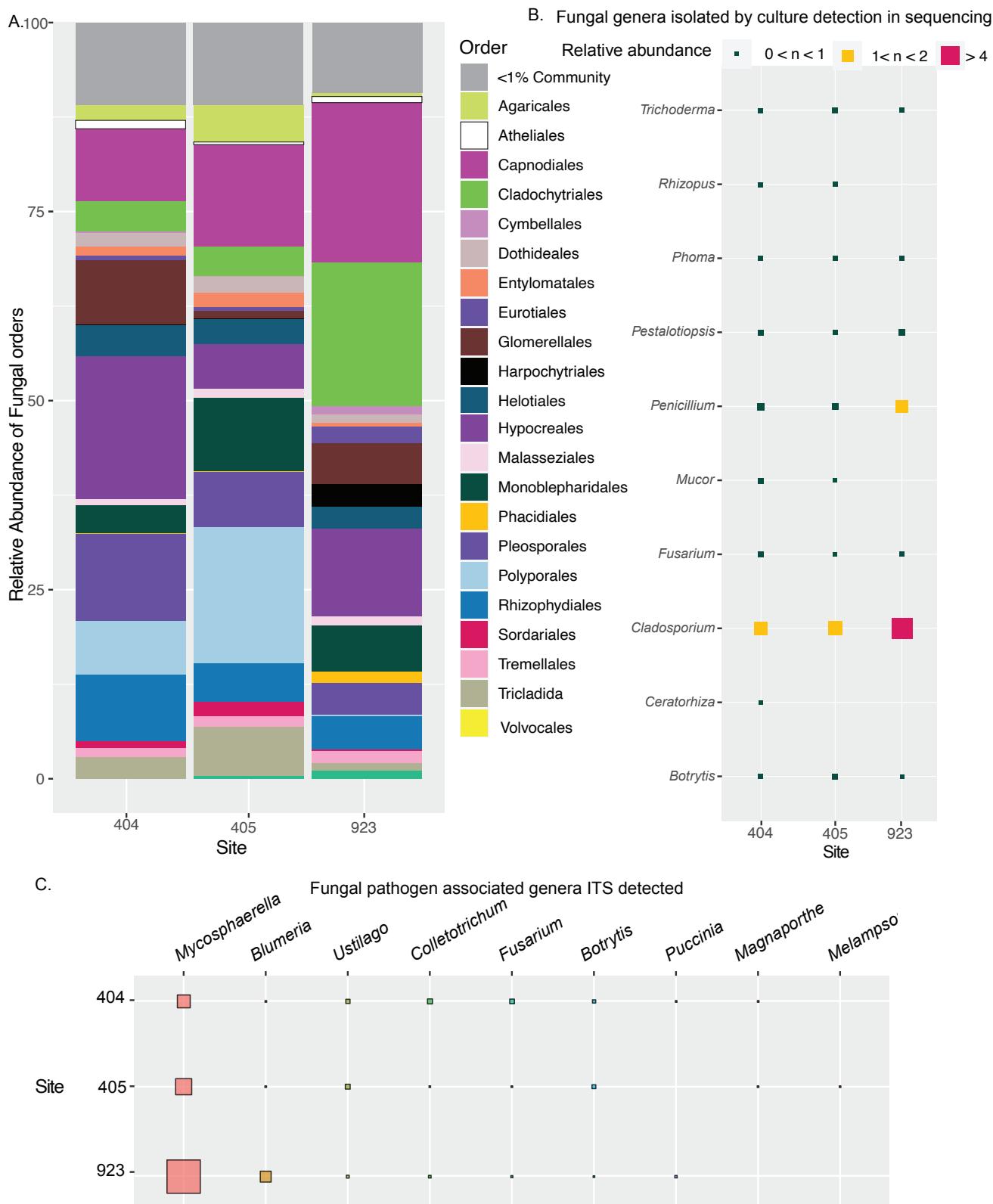
Bacteria	Diversity metric	site 404	site 405	site 923
Family	Richness	85-91	86-97	53-73
	Shannon	2.88-2.99	3.23-3.40	2.48-2.84
	Simpson	0.86-0.88	0.91-0.94	0.82-0.90
Fungi				
Family	Richness	268	229	262
	Shannon	1.53	1.34	2.55
	Simpson	0.46	0.39	0.77

172
173 All reads which passed quality filters were able to be assigned to bacterial orders (Table
174 S1). For each successive taxonomic rank below family an increasing percentage of
175 reads were unclassified, with between 8-21% of reads unclassified at the genus level.
176 The relative abundance of bacterial order classifications across the three sample sites
177 revealed a stable pattern of dominant taxa across sites. Burkholderiales are the most
178 abundant order in all but one site where it was the second most abundant (Fig. 2).
179 Family-level classification showed that Comamonadaceae was the only family with
180 more than 10% classified reads across all sites (Fig. S2, Table S2). The only other
181 family that accounted for more than 3% of classified reads in all replicates was
182 Sphingomonadaceae. The overlap between the core terrestrial bacterial microbiome

183 and the duckweed bacterial microbiome is consistent with prior studies (Acosta et al.,
184 2020; Inoue et al., 2022; O'Brien et al., 2022). Most other families were assigned less
185 than 5% of classified reads at any given site, although the stability of relative abundance
186 varied across taxa. The relative abundance was quite stable ($\pm 5\%$) across all samples
187 for families such as Sphingomonadaceae and Chitinophagacea. Conversely, other
188 families such as Pseudomonadaceae showed high variance in abundance from 0.4% in
189 biological replicate 3 at site 405 to 15% at biological replicate 3 at site 923. The trend of
190 high variability in relative abundance of Pseudomonadaceae was reproduced with
191 *Pseudomonas* at the genus level (Fig 2a, Table S3) accounting for 0.3-2.3% of total
192 abundance among genera in site 405 but 2.6-16% at site 923. Family-level classification
193 of the Lemnaceae-associated microbiome shows there is variability in the dominance
194 and stability of bacterial families across sampled sites.
195
196 Despite the close physical proximity of sites 404 and 405, biplots showed clear
197 separation of all sites given their bacterial family (PC1 41.6%, PC2 31.8%) or genera
198 compositions (PC1 54.14%, PC2 14.1%) (Fig 2b, c). Despite further geographic
199 distance, sites 404 and 923 clustered together when considering family-level
200 classification driven by them having higher levels of Comamonadaceae,
201 Methylomonadaceae, Pseudomonadaceae, and Exiguobacteraceae than site 405 (Fig.
202 S3a). To investigate this clustering further, we looked into the genera-level separation
203 between sites. At this higher resolution, sites 923 and 404 clustered separately with the
204 relative abundance of *Pseudomonas*, *Rhodoferax*, and unknown bacteria being the
205 main drivers separating clusters (Fig. S3b). Comparison of the duckweed bacterial
206 microbiomes across sites showed evidence of stable taxa that remain at a similar level
207 across all sites along with a collection of bacteria whose abundance is highly variable,
208 including *Pseudomonas* species.
209
210 Fungal taxa richness was highest at site 404 and lowest at site 405 (Table 2). Whilst
211 site 923 had the highest Shannon diversity and Simpson diversity when considering
212 genus and family-level taxonomic assignment. Phyla level classification revealed a large
213 percentage of the ITS amplicons at each site (43-63%) didn't belong to fungal taxa but
214 instead were assigned unidentified or to non-fungal phyla (Table S4). Within the reads
215 assigned to a phyla, the relative abundance of chytridiomycota as the first or second
216 most abundant phyla ((33-40% of reads classified at phyla level) Table S5) suggests the
217 fungal community of aquatic plants differs from terrestrial plants where ascomycota and
218 basidiomycota are typically the dominant community members (Bergelson et al., 2019;
219 Fuentes et al., 2020; Qian et al., 2019). However, Ascomycota was the second most
220 abundant phyla (19-45% of reads) while Basidiomycota was the third most abundant
221 phyla (9-22% of reads). Unlike the bacterial communities across the three sites, there
222 was not one clearly dominant fungal order (Fig. 3a, Table S6). At site 923 Capnoideales

Figure 2. Microbiome composition at the UC Botanical Garden sites.

A. Percentage of the 16S rDNA amplicons corresponding to SILVA 16S rRNA family classification for taxa which account for >1% of total classified reads for at least one site. The size of the bar is proportional to percent of total classified 16S rDNA amplicons. B The percentage of ITS amplicons corresponding to plant pathogen associated ITS present at atleast one site. The size of the squares is proportional to percent of total classified ITS rDNA amplicons for that genera. C. Biplot of sites given bacterial family count data. D. As in B but upon genus level classification.


223 taxa were the most prevalent whilst at sites 405 and 404 the highest abundance orders
224 were Polyporales and Hypocreales. Fungi from the Capnoideales and Hypocreales are
225 among the top 10 in relative abundance across all three sites, but this is not the case for
226 Polyporales. The Hypocreales and Capnodiales were core members of the
227 microbiome of *Arabis alpina* root (Almario et al., 2017) and *Arabidopsis thaliana* leaves
228 (Almario et al., 2022) respectively. Tremellales, Helotales, and Pleosporales are also
229 orders which show conserved high relative abundance orders across terrestrial plants
230 and duckweed.

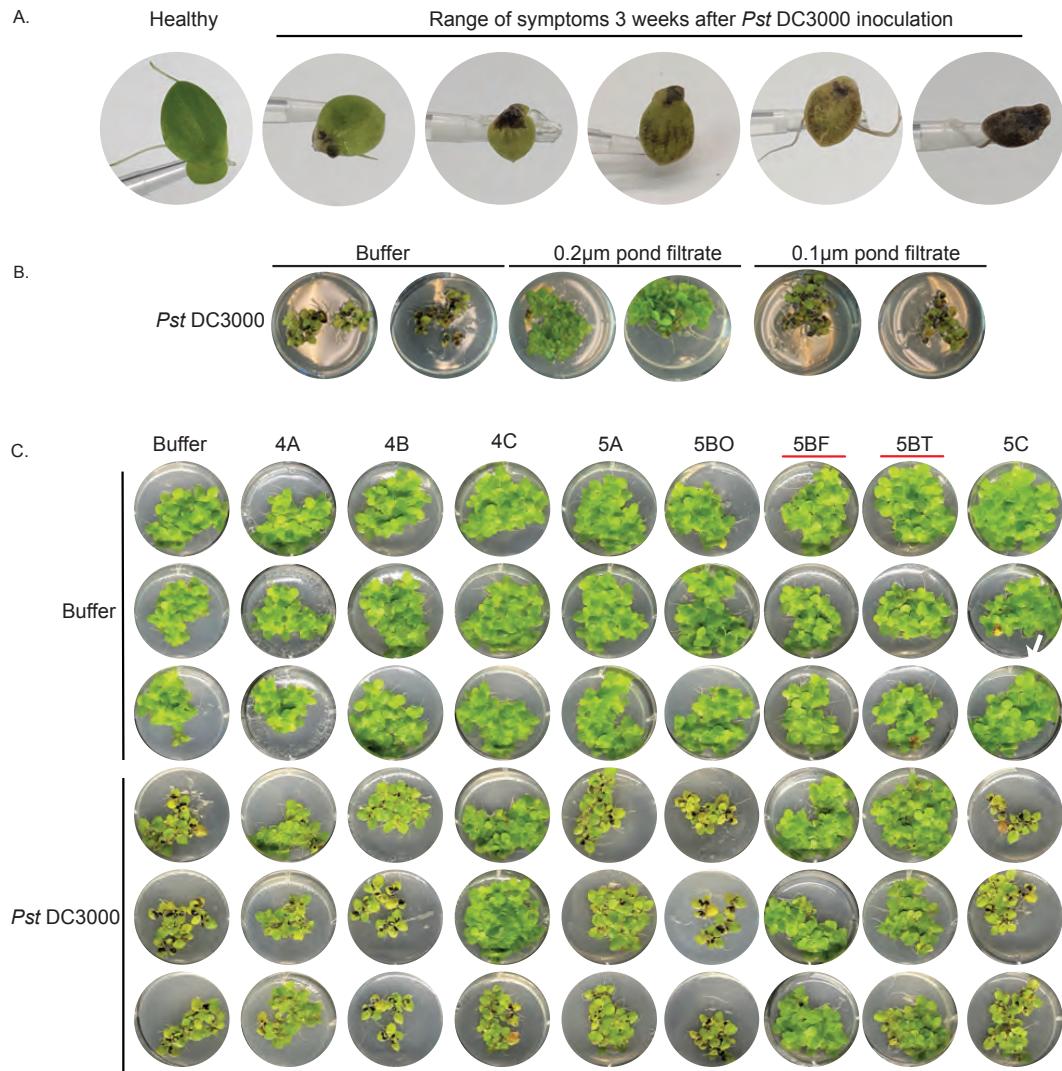
231

232 In order to cross-reference our ITS amplicon sequencing data, we sought to identify
233 fungal isolates that we were able to recover from the material collected at the UC-BG
234 (Fig 3b). Fungal isolates were cultured either from the 0.2 µm PES filter that pond water
235 was passed through or from surface sterilized duckweed populations as described in
236 the methodology. Fungi were grouped into 19 distinct morphotypes through colony
237 phenotype and microscopy then assigned to genera based on 5.8S Fun - ITS4
238 sequencing (Table S7). From our sequencing data we were able to recover reads
239 assigned to all the morpho-type based taxa (Table S8-10) with the exception of
240 *Galactomycetes* genera, however, reads were assigned to the family (Dipodascaceae)
241 which contains *Galactomycetes* (Table S8).

242 **The Duckweed microbiome suggests common pathogenic Bacterial and Fungal
243 genera co-occur.**

244 The ubiquitous nature of *Pseudomonas* pathogens and the susceptibility seen in the
245 model Lemnaceae pathosystem *Spirodela polyrhiza* - *Pst* DC3000 (Baggs et al., 2022)
246 prompted us to investigate the relative abundance of genera that contain the most
247 common plant bacterial and fungal pathogen species (Fig 3c, Table S11). We
248 considered the genera taxonomic level, SRS plots suggested saturation of diversity at
249 the genera taxonomic level when considering all biological replicates from one pond, but
250 not if each biological replicate was considered individually (Fig S4). Therefore, an
251 absence in a particular sample is likely to be due to insufficient sampling depth unless
252 the absence is consistent across all samples. We mined our samples for evidence of
253 the presence of 13 bacterial pathogen genera (though without experimental validation
254 we can't be sure if all members of the genus are pathogens). Site 923 had the highest
255 relative abundance of bacteria pathogen-associated genera within its community
256 composition. This was most evident for the taxa *Pantoea*, *Ralstonia*, and *Burkholderia*-
257 *Caballeronia*-*Parburkholderia*. Sites 404 and 405 had more similar relative abundance
258 of pathogen-associated genera although site 405 typically had a lower relative
259 abundance of *Pseudomonas* but higher *Allorhizobium*-*Neorhizobium*-*Pararhizobium*-
260 *Rhizobium*. The relative abundance of *Pseudomonas* genera was the highest at site
261 923 at between 2.6-7.8%, and the lowest at site 405 with 0.32-2.3%. Previous work has

Figure 3. Percentage abundance of fungi from ITS amplicon sequencing at the three sites at UC Berkeley Botanical Garden.


A. Percentage of the ITS amplicons corresponding to different fungal orders. The size of the colored bar is proportional to percent of total classified ITS amplicons for that order. B. The percentage of ITS amplicons corresponding genera which where morphotyped from samples at the UC Berkeley Botanical Garden. C. Percentage of the ITS amplicons corresponding to plant pathogen associated fungal genera present at atleast one site. The size of the squares is proportional to percent of total classified ITS rDNA amplicons for that genera.

262 shown *L. punctata* was susceptible to *Pseudomonas* spp. which are pathogens or
263 endophytes on other plant species (Baggs et al., 2022). Reads assigned to these
264 genera could come from species with a variety of lifestyles ranging from pathogenic to
265 beneficial. We were unable to identify any reads classified to 4 of the 13 bacterial
266 genera (*Streptomycetes*, *Clavibacter*, *Pectobacterium*, *Spiroplasma*, and *Xylella*). We
267 cannot preclude the possibility that this is a technical artifact due to the bias of
268 molecular biology methods used rather than the absence of any species belonging to
269 these genera.

270
271 All of the nine pathogen-associated fungal genera were recovered from at least one site
272 although often at very low relative abundance (Fig. 6b, Table S12). Notably, two of the
273 morphotyped taxa assignments overlap with fungal pathogen-associated taxa. Site 923
274 had the highest relative abundance of pathogen-associated genera within its community
275 composition at 3.6% compared to 0.577% and 0.78% for sites 404 and 405,
276 respectively. The higher percentage of pathogen-associated genera at site 923 was
277 largely driven by 3.27% of its total community being *Mycosphaerella*. Although
278 *Mycosphaerella* species are responsible for *Mycosphaerella* blight on a number of plant
279 species, there are also some species within the genera that are endophytes of brown
280 algae (Fries, 1979). Further metagenomics and laboratory studies would be needed to
281 estimate the exact disease burden from bacterial and fungal pathogens.

282
283 **Environmental bacteria from pond filtrate protect against disease-causing**
284 ***Pseudomonas* on duckweeds**

285
286 The collected pond water samples were used to investigate the effect of the natural
287 environment on the health of duckweeds. To assay the health implications of the
288 environment on duckweed, we used the *Pst* DC3000 and *S. polyrhiza* pathosystem (Fig
289 4a) (Baggs, Tiersma, Abramsom, et al., 2022). *Pst* DC3000 has previously been shown
290 to be virulent on *S. polyrhiza* and cause induction of black lesions (Baggs et al., 2022).
291 To reduce the complexity of biological compounds in the pond water, we used filtration.
292 Sterile fronds of the *S. polyrhiza* were primed for 24 hrs in the 0.2 μ m filtrate from each
293 site, fronds were then transferred to fresh media and inoculated with *Pst* DC3000. The
294 *S. polyrhiza* plants primed with buffer alone showed symptoms of stunted growth and
295 black lesions upon *Pst* DC3000 treatment comparable with previous descriptions of
296 infection (Baggs et al., 2022). Duckweed primed with site 404 filtrate, when treated with
297 *Pst* DC3000, had symptomatic black lesions comparable to buffer (Fig S5). In contrast,
298 *S. polyrhiza* primed with site 404 filtrate and then treated with *Pst* DC3000 *hrcC*, a
299 mutant unable to deploy effectors, showed signs of increased frond growth compared to
300 buffer priming. Strikingly, site 405 filtrate priming led to a dramatic decrease in disease
301 symptoms on *S. polyrhiza* (Fig 4b). The decrease in symptoms upon priming in site 405

Figure 4. Pond water filtrate and bacterial isolates protection of *S. polyrhiza* against the pathogen *Pst* DC3000

A. Depiction of healthy duckweed and range of symptoms upon *Pst* DC3000 infection. B. Pond water 0.2 µm and 0.1 µm filtrate from site 405, two replicates are shown per treatment (full experiment has been independently replicated 2 times, see Sfig 1). C. Bacterial strains isolated from pond site 404 or 405, as indicated by the first number of the isolate identifier, three replicates within experiment are shown per treatment (full experiment has been independently replicated three times, see Sfig 3 and Sfig 4).

302 filtrate could be reproduced when using pond water samples from February 2020 which
303 was collected as part of a pilot study for the November experiment (Fig S5). However,
304 once the 0.2 µm filtrate was boiled (Fig S6) or upon subsequent filtration through a 0.1
305 µm filter (Fig 4b) the priming effect was lost. Previous work has shown that several
306 bacterial taxa can pass through a 0.2 µm filter but not 0.1 µm (Hahn, 2004). *S. polystachya*
307 primed with site 923 filtrate and then inoculated with either *Pst* DC3000 or *Pst* DC3000
308 *hrcC* showed visible disease symptoms comparable with buffer priming following
309 pathogen treatment (Fig S5).

310

311 To test if environmental bacteria were contributing to the protective effect of the 0.2 µm
312 filtrates we plated the undiluted filtrates and monitored for microbial growth. Without
313 dilution, we were able to isolate 8 strains that were purified via single colony isolation.
314 After establishing pure colonies, we inoculated *S. polystachya* with these isolates
315 individually and together with *Pst* DC3000 (Fig 4c, Fig S7-10). Purified environmental
316 isolates had diverse effects when introduced to *S. polystachya*, ranging from no visible
317 effect (5A, 5BO, 5C), to reduced *S. polystachya* growth (4A), to a beneficial effect when
318 co-inoculated with pathogenic *Pst* DC3000 (5BF, 5BT). Isolate 5BF showed consistent
319 protection against *Pst* DC3000 infection across replicates, whilst isolate 5BT's
320 protective effect was variable between replicates. The 16S rDNA genotyping of isolates
321 (Table S13) 5BF and 5BT revealed that they were distinct *Pseudomonas* species with
322 the highest similarity to *Pseudomonas poae* (98.02%) and *Pseudomonas kielensis*
323 (99.21%), respectively.

324

325 We also tested whether the protective effect of 5BF and 5BT was specific to a single
326 plant species or pathogen isolate. Another pathogenic *Pseudomonas*, *Pss* B728a, when
327 inoculated on its own, has been previously shown to cause white chlorosis of fronds of
328 *L. punctata* 5635 (Baggs et al., 2022). When we inoculated *Pss* B728a together with
329 isolates 5BT or 5BF, we observed reduced or absent chlorosis on *L. punctata* 5635 (Fig
330 S11-13). Together the results suggest that bacterial isolates 5BF and 5BT can provide
331 disease protection for *S. polystachya* and *L. punctata* 5635 against at least two
332 *Pseudomonas* pathogens that have distinct lifestyles and virulence profiles.

333

334 We were interested in whether the duckweed strain *L. punctata* BG405, that we isolated
335 and sterilized from site 405, would be naturally resistant to *Pseudomonas* infection.
336 Previous work showed severe infection symptoms could be observed after infection of
337 *L. punctata* 5635 with *Pss* B728a, whilst fewer symptoms were seen upon *Pst* DC3000
338 infection (Baggs et al., 2022). We therefore investigated *L. punctata* BG405 symptoms
339 upon infection with *Pss* B728a alone or with 5BF or 5BT. Stunted growth and disease
340 symptoms were evident for the *L. punctata* BG405 after inoculation with *Pss* B728a (Fig
341 S14-17). Furthermore, the occurrence of disease symptoms caused by *Pss* B728a were

342 suppressed in the presence of 5BF and 5BT. This suggests that natural populations of
343 *L. punctata* BG405 are susceptible to *Pss* B728a; however, naturally occurring bacteria
344 from the same ponds can suppress the pathogenicity of *Pss* B728a.

345 **Genomes of the protective isolates 5BF and 5BT reveal the presence of several**
346 **natural products and Type VI secretion machinery**

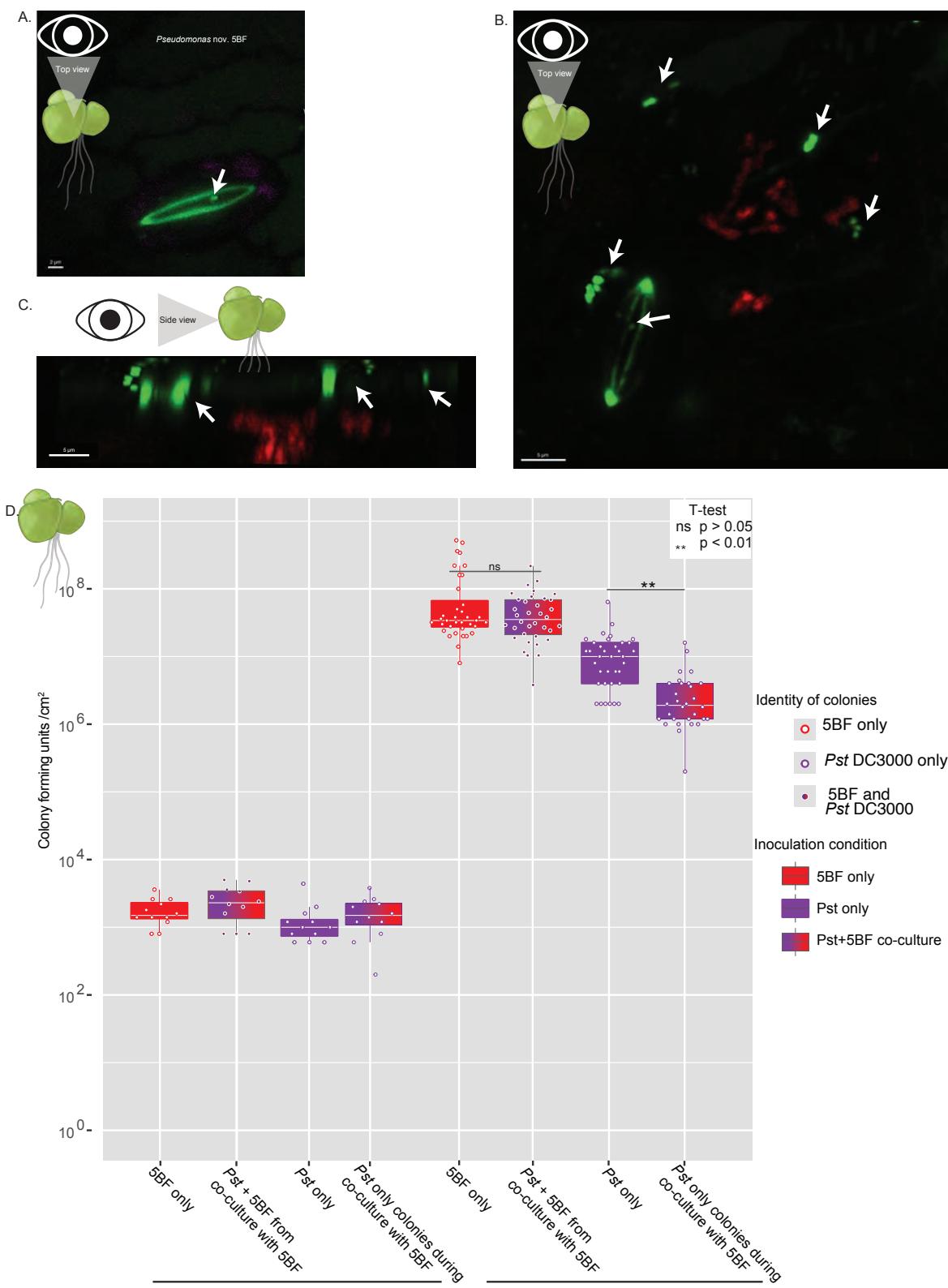
347
348 To compare the protective *Pseudomonas* isolates to other *Pseudomonas* pathogens
349 virulent on *S. polystachya* or *L. punctata* 5635 (Baggs et al., 2022), we sequenced and
350 assembled the genomes of 5BF and 5BT (Fig S18). BUSCO analysis revealed 93.5%
351 and 100% of BUSCOs were present as complete single-copies in the 5BF and 5BT
352 genomes (Table S14). Genomic sequences of 5BF and 5BT allowed us to assign them
353 more confidently to *Pseudomonas* species. The genome sequence of 5BT has 99.5%
354 average nucleotide identity (ANI) to the type specimen genome of *Pseudomonas*
355 *kielensis* [99109] in NCBI GeneBank, with 90.2% total genome coverage. Further
356 analysis indicated that the *Pseudomonas* sp. with the most similar genome to 5BF was
357 *P. poae* with OrthoANI of 88.9%, this is however insufficient to consider them as the
358 same species (95%) (Lee et al., 2016). Therefore, isolate 5BF and 5BT will herein be
359 referred to as *Pseudomonas* nov. 5BF and *Pseudomonas* *kielensis* 5BT.
360

361 We next annotated gene clusters known for their role in interference competition. In the
362 6.7 Mbp genome of isolate 5BF, we identified through antiSMASH (Blin et al., 2019) 13
363 genomic islands that have homology to known secondary metabolite clusters (Table 1,
364 Table S15). Genome annotation further supported the presence of a significant
365 repertoire of interference competition islands with 220 genes classified within the stress
366 response, defense, and virulence subsystem (Fig S19). Type VI, III, IIII, or IV secretion
367 systems were found in *P. nov.* 5BF or *P. kielensis* 5BT but are not present in *Pst*
368 DC3000 or *Pss* B728a (Table S15). In summary, the genomes of isolate *P. nov.* 5BF
369 and *P. kielensis* 5BT revealed the presence of several genomic features that are
370 candidates for mediating interference competition.
371

372 Table 1: A subset of genomic features identified by antiSMASH 5.0 and SecReT6 in the
373 genome of 5BF in comparison to *Pst* DC3000 (NC_004578.1) and *Pss* B728a
374 (NC_007005.1). For the full table see Table S15.

Product of most similar known cluster	Genomic feature	Genomic Location 5BF	Genomic Location 5BT	Present in <i>Pst</i> DC3000 or <i>Pss</i> B728a	Role in interference competition	Reference

Pyoverdin, fluorescent siderophore	NRPS	859,747-910,922	2,580,964 - 2,602,394	Pss B728a, <i>Pst</i> DC3000	Pyoverdine is a siderophore which provides iron that enables faster bacterial growth. It can also translocate into mammalian hosts, where it binds and extracts iron and triggers autophagy.	(Kang et al., 2018; Meyer et al., 1996)
Type VI secretion il	Contact dependent bactericidal effector secretion system	2,050,334-2,069,478	890,104-918,813	<i>Pst</i> DC3000	Although related Type VI secretion il were found in <i>Pst</i> , they both showed little homology or synteny with the Type VI secretion il system in 5BF or 5BT and one was not intact (Fig S30-32).	(Barret et al., 2011; Chien et al., 2020)
Viscosin, antimicrobial lipopeptide	NRPS	3,015,416-3,115,302	None	None	Viscocin is a lipopeptide shown to act as a biosurfactant and inhibit <i>Streptomyces scabies</i> (Fig S29)	((Bonnichen et al., 2015) (Pacheco- Moreno et al., 2021))


375 ***P. nov. 5BF* and *P. kielensis 5BT* isolates localize to the same niche as *Pst*
376 *DC3000* and inhibit growth of *Pst DC3000* in *S. polyrhiza* upon co-inoculation**

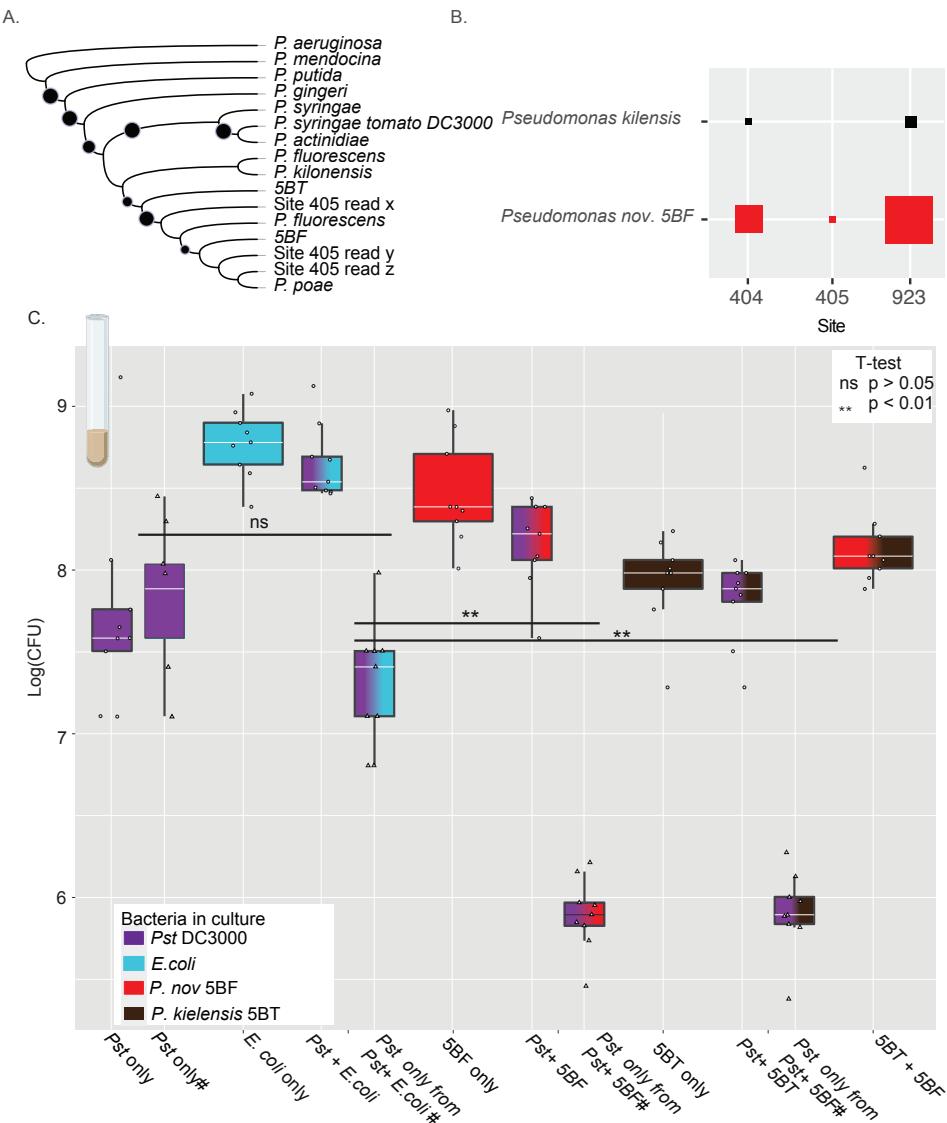
377

378 To investigate how *P. nov. 5BF* and *P. kielensis 5BT* protect *S. polyrhiza* species from
379 pathogenic *Pseudomonas*, we first examined *in planta* niche occupancy of the two
380 isolates after flood inoculation. *S. polyrhiza* 5 days post-inoculation (dpi) had
381 populations of *P. nov. 5BF* (Fig 5a-c) and *P. kielensis 5BT* (Fig S24) on the surface, and
382 small colonies of *P. nov. 5BF* were identified within the stomatal cavity. The presence of
383 *P. nov. 5BF* in the substomatal cavity would suggest that it may use stomata to enter
384 the plant; the same niche occupied by *Pst DC3000* (Baggs et al., 2022).

385

386 To understand why co-inoculation of *P. nov. 5BF* with *Pst DC3000* led to an absence of
387 symptoms on *S. polyrhiza* (Fig 3), we quantified the colony-forming units (CFU) of these
388 *Pseudomonas* isolates when inoculated alone or together. After inoculation of *P. nov.*

Figure 5. Confocal microscopy of 5BF on *Spirodes polyrhiza* fronds and growth points for *Pseudomonas* spp.


A. *S. polyrhiza* frond surface, pink false color shows chlorophyll fluorescence and green indicates SytoBC stained 5BF bacteria. Autofluorescent stomata cell wall can also be seen in green. B. *S. polyrhiza* frond surface, *Pst* DC3000 dsRed is depicted in red and *P. nov* 5BF is shown in green, autofluorescent stomata cell wall can also be seen in green. C. Side view constructed from Z-stack of *Pst* DC3000 and *P. nov* 5BF colored as in B. D. Quantification of bacterial colonies of *Pseudomonas* sp. in *S. polyrhiza*. P-values shown are from t-test are after Holm-Bonferroni adjustment ((n = 4 each day 0 condition, n = 12 for each day 3 condition except *Pst* DC3000 only from co-culture n=10, for each biological replicate in n, three technical replicates were performed) Table S19)

389 5BF alone at a standard low bacterial load, it was able to grow exponentially on *S.*
390 *polyrhiza* to a high density of $\sim 10^8$ CFU/cm² (Fig 5d, Fig S25, Table S10). Co-
391 inoculation of *Pst* DC3000 and *P. nov.* 5BF, when measured at 3 dpi, resulted in a
392 significant decrease (t-test; Holm–Bonferroni adjusted $p \leq 0.01$) in the number of
393 recovered *Pst* DC3000 colonies. The presence of *P. nov.* 5BF appears to inhibit the
394 normal growth of *Pst* DC3000. The visible symptoms of the fronds not sampled for the
395 growth curve were imaged at 10 dpi and supported the conclusion that even at low
396 standard inoculum *P. nov.* 5BF co-inoculation reduces visible symptoms induced upon
397 *Pst* DC3000 treatment (Fig S26).

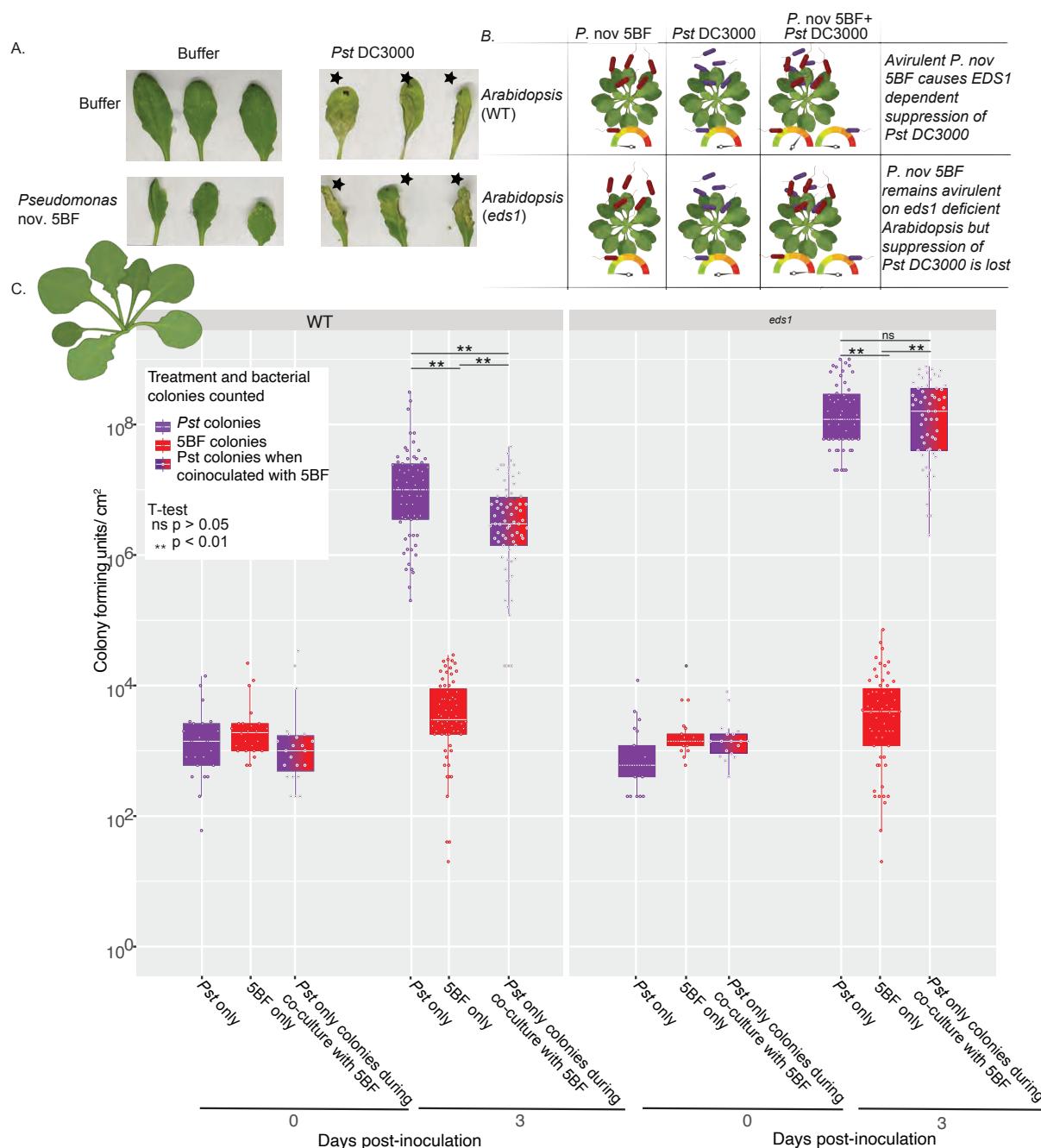
398
399 We then investigated if the 16S rDNA of the protective strains 5BF and 5BT, isolated
400 from pond 405, were present in our amplicon sequence data. To do this we aimed to
401 separate conserved SNPs likely present in the gDNA from those that were technical
402 artifacts generated during PCR and amplicon sequencing. Technical artifact SNPs
403 would likely be randomly distributed in amplicon reads and would be absent from
404 genomic DNA sequence due to high coverage allowing them to be removed during
405 assembly. Alignments were made for sequences with high similarity to isolate 5BF 16S
406 rDNA and isolate 5BT (Fig 6a, b, Fig. S27, Table S16). There were several SNPs
407 present in 5BF that were absent from the closest reference, the 16S rDNA sequence
408 *Pseudomonas poae*. For 7 of 8 positions at which there were reference-specific SNPs,
409 the consensus among aligned reads was nucleotides discrete to *P. nov* 5BF (Table
410 S17,18). The amplicon sequencing therefore supports the presence of the novel
411 species *P. nov* 5BF rather than *P. poae* at the sample sites. There were no discrete
412 SNPs at the 16S rDNA to distinguish 5BT from the bacterial reference strain of
413 *Pseudomonas kielensis*. We were able to recover reads from sites 404 and 923 that
414 passed the threshold of similarity to isolate *P. kielensis*. The false negative of absence
415 of *P. kielensis* from site 404 where it was isolated is not surprising given the sequencing
416 depth is not sufficient for saturation of species-level diversity and that the filtrate from
417 which it was recovered was the product of concentration. The recovery of the reads with
418 high identity to 5BF 16S rDNA, suggests the species is not specific to site 405, which
419 showed protective effects *in vitro*, but rather is likely present at all three sampled sites
420 within the UC Berkeley Botanical Garden.

421 ***In vitro* liquid culture inoculation experiments reveal negative growth effect of**
422 **environmental isolates on *Pst* DC3000**

423
424 To study the interaction between *Pst* DC3000 and 5BF further, we investigated the
425 potential for growth inhibition in *in vitro* co-cultures. *Escherichia coli* was included as a
426 negative control as it should not inhibit *Pst* DC3000 growth. *E. coli* co-culture with *Pst*
427 DC3000 did not cause a significant reduction in *Pst* DC3000 colony forming units (CFU)

Figure 6. *In vitro* interactions between pseudomonads in pond samples and model bacterial species.

A. Maximum likelihood phylogeny showing relationship of read hits at site 405. Dots indicate bootstrap values greater than 70. B. Number of reads to *P. nov* 5BF and *P. kilensis* based on SNP matrix. C. Bacterial colony forming units on LB with no antibiotics or LB supplemented with rifampicin and kanamycin to select for *Pst* DC3000 as indicated by #, the only isolate resistant to both antibiotics. P-values shown are from t-test are after Holm-Bonferroni adjustment ((n = 4 for each treatment condition, for each biological replicate in 'n' three technical replicates were performed) Table S20)((n = 4 for each treatment condition, for each biological replicate in 'n' three technical replicates were performed) Table S20)


428 after 24 hours (t-test, Holm–Bonferroni adjusted $p = 0.0798$) (Fig 7, Table S20).
429 However, co-culture with either *P. nov.* 5BF or *P. kielensis* 5BT under similar conditions
430 resulted in a significant reduction in CFU of *Pst* DC3000 (t-test, Holm–Bonferroni
431 adjusted p-values: 0.00346, 0.00061). The reduction in CFU upon co-culture of *Pst*
432 DC3000 with *P. nov.* 5BF or *P. kielensis* 5BT suggests there could be interference
433 competition between *Pst* DC3000 and *P. nov.* 5BF, as well as *P. kielensis* 5BT.
434

435 Given the potential for co-localization in the shared environment within the plant, we
436 next assessed contact-dependent interactions of both isolates through a cross-streak
437 assay (Fig S28). *P. nov.* 5BF and *P. kielensis* 5BT each showed a pattern of growth
438 along the juxtaposed *Pst* DC3000 colony streak, irrespective of which strain was
439 streaked first. In addition, there was no zone of clearing between 5BF or 5BT and *Pst*
440 DC3000. In contrast, cross streaks of *P. nov.* 5BF and *P. kielensis* 5BT showed an
441 absence of colony establishment at the intersection of the streaks, a pattern consistent
442 with antimicrobial activity.
443

444 ***A. thaliana* does not support 5BF growth resulting in only minor EDS-1 dependent 445 growth suppression of *Pst* DC3000**

446 To further interrogate the mechanisms of disease protection provided by *P. nov.* 5BF
447 and *P. kielensis* 5BT, we decided to test the strains on *A. thaliana*. When infiltrated with
448 a standard high bacterial load of *P. nov.* 5BF and *P. kielensis* 5BT, *A. thaliana* leaves
449 showed signs of small yellow lesions (Fig 8a). To test whether the disease inhibition of
450 *Pst* DC3000 could be replicated in *A. thaliana*, we then inoculated leaves by syringe
451 infiltration with *P. nov.* 5BF and *Pst* DC3000. In contrast to *S. polystachya*, we saw no
452 suppression of disease symptoms; instead, we observed leaf collapse for leaves
453 infiltrated with *P. nov.* 5BF and *Pst* DC3000. Often, *Pst* DC3000 infiltrations alone
454 showed lower symptoms at 48 hours post-inoculation than when co-inoculated with *P.*
455 *nov.* 5BF (Fig. 8a, Fig S29-32).
456

457 To understand the dynamics of *Pst* DC3000 and *P. nov.* 5BF interaction in *A. thaliana*,
458 we performed growth points at 3 dpi, following syringe infiltration of leaves with a
459 standard low bacterial inoculation. In contrast to *S. polystachya*, following inoculation of *P.*
460 *nov.* 5BF alone, *P. nov.* 5BF populations did not grow beyond the level at which it was
461 infiltrated into *A. thaliana* by at 3 dpi. *Pst* DC3000 was able to grow to much higher
462 levels than *P. nov.* 5BF in the leaf (Fig 7b, Fig S33, Table S21). Surprisingly, given the
463 increased severity of symptoms upon high inoculum co-inoculation of *Pst* DC3000 and
464 *P. nov.* 5BF, we observed a small but significant (t-test, Holm–Bonferroni adjusted $p \leq$

Figure 7. *Arabidopsis thaliana* after inoculation with *Pseudomonas* spp.

A. Images of the three leaves per plant 48 hours after syringe infiltration with a standard high inoculum bacterial solution. Black stars indicate leaves that appeared to fully collapse. B. Quantification of CFU of *Pseudomonas* spp. in *A. thaliana* WT and *eds1* knockout line when inoculated alone and together. P-values shown are from t-test after Holm-Bonferroni adjustment ((n=7 for WT plants each treatment condition and n=6 for each *eds1* treatment condition, for each biological replicate in 'n' three technical replicates were performed) Table S21).

466 <0.01) decrease in the number of *Pst* DC3000 colonies at 3 dpi compared with a low
467 standard inoculum.

468
469 Furthermore, we were interested in whether the presence of the EDS1 pathway may
470 play a role in the differential protection of *P. nov.* 5BF after co-inoculation with a high
471 bacterial inoculum across species. To investigate this, we repeated the growth points in
472 an *eds1* knockout line of *A. thaliana*. *P. nov.* 5BF was still unable to grow above starting
473 inoculum levels in the *eds1* mutant plants as in wild-type (Fig 7, Fig S33, Table S21).
474 The absence of *EDS1* alone is not sufficient to explain the difference between *S.*
475 *polyrhiza* and *A. thaliana* in the growth of *P. nov.* 5BF, as in *A. thaliana eds1 P. nov.*
476 5BF was unable to grow to high density and did not significantly suppress *Pst* DC3000
477 CFU/cm². Co-inoculation with *P. nov* 5BF in the *eds1* knockout did not suppress the
478 growth of *Pst* DC3000, suggesting EDS1-dependent interaction in *Arabidopsis* unlike
479 the suppression seen between *P. nov* 5BF and *Pst* DC3000 in duckweed and *in vitro*.

480 **Discussion**

481 Here, we characterized the *Landoltia* sp. microbiome at three different locations within
482 1km of each other. Analysis of the pond water filtrate showed a differential protective
483 effect produced by the 0.2 µm filtrate. From this filtrate we were able to identify two
484 isolates with disease protective effects, which, through 16S rDNA and full genome
485 sequencing, we revealed were *Pseudomonas* species. Genome analysis highlighted the
486 presence of numerous bacterial interference competition genomic islands including type
487 VI secretion systems and viscosin antimicrobial lipopeptide. *In vitro* co-cultivation
488 showed direct inhibition of the number of *Pst* DC3000 colony forming units by *P. nov.*
489 5BF. However, the suppression of *Pst* DC3000 infection was not apparent in *A. thaliana*
490 *eds1* mutants.

491
492 Several *Pseudomonas* species have been established as biocontrol agents due to their
493 ability to suppress pathogen infection, either directly or through induced systemic
494 resistance (ISR) (Cheng et al., 2017; Haney et al., 2018; Pacheco-Moreno et al., 2021).
495 In contrast to site 405 0.2 µm filtrate, filtrates from sites 404 and 923 provided little or no
496 protection against *Pst* DC3000 symptoms. The variation in disease suppression
497 between pond filtrates could be considered similar to terrestrial plant disease-
498 suppressive soils (Pacheco-Moreno et al., 2021; Schlatter et al., 2017). Despite the
499 variation in disease-suppressive pond filtrate, Lemnaceae fronds from all sites appeared
500 healthy. This could be for numerous reasons, such as the insufficient recovery of
501 protective bacterial isolates by our methods, larger protective isolates being unfiltrable
502 through the 0.2 µm filter, or protective bacteria's incapability for disease protection *in*
503 *vitro*.

504

505 Protection from disease can occur when specific members of the plant microbiome
506 trigger host systemic resistance mechanisms such as systemic acquired resistance
507 (SAR) and ISR (Cheng et al., 2017; Duke et al., 2017). Mechanisms such as SAR and
508 ISR require the plant host to rapidly produce diffusible molecules to trigger defense
509 responses upon infection (Duke et al., 2017; Fu & Dong, 2013; Pieterse et al., 2014).
510 However, the definitions of SAR and ISR immunity cannot easily be applied to the
511 duckweed Lemnaceae family given their reduced immune system, clonal reproduction,
512 and body plan consisting of a frond and roots. Furthermore, studies would be needed to
513 establish a role of SAR and ISR in *P. nov.* 5BF-induced resistance. However, if ISR or
514 SAR is involved in disease protection, it is unlikely to be through SA upregulation since
515 it has been shown that exogenous SA does not protect *S. polyrhiza* from *Pst* DC3000
516 infection (Baggs et al. 2022). A number of *Pseudomonas* species have previously been
517 suggested as biocontrol agents (Bano & Musarrat, 2003; Duke et al., 2017; Ligon et al.,
518 2000). However, it remains to be seen if disease protection by *P. nov.* 5BF would be
519 transferable beyond Lemnaceae. Studies have shown that PGPB growth promotion can
520 work upon inoculation of both *Lemna minor* and the dicot plant lettuce (Suzuki et al.,
521 2014). The absence of protection against disease upon *P. nov.* 5BF co-inoculation with
522 *Pst* DC3000 on *A. thaliana* plants and only minor growth suppression suggests that
523 *Pseudomonas* nov. 5BF proliferation is required for the levels of antagonism with *Pst*
524 DC3000 observed in duckweed. It remains unclear if the mechanism of protection would
525 be the same or different from those established by the commensal disease-protective
526 *Pseudomonas* sp. of *A. thaliana* (Shalev et al., 2022).
527

528 In contrast to ISR and SAR, disease protection can also be a byproduct of direct
529 bacteria interaction (Bano & Musarrat, 2003; Harting et al., 2021; Ligon et al., 2000;
530 Pacheco-Moreno et al., 2021; Sun et al., 2017)). The results of our *in vitro* co-
531 inoculation experiments suggest that in the tested environments, *P. kielensis* 5BT and
532 *P. nov.* 5BF can suppress the growth of *Pst* DC3000. A previous study of the
533 Lemnaceae microbiome provided evidence of preferential recruitment of bacterial
534 isolates, which were hypothesized to ameliorate plant stressors (Acosta et al., 2020;
535 O'Brien et al., 2022). Further studies would be needed to test whether *P. nov.* 5BF or *P.*
536 *kielensis* 5BT is preferentially recruited to protect Lemnaceae from pathogen stress.
537

538 Microbiome characterization of closely located Lemnaceae populations at the UC
539 Berkeley Botanical Garden revealed bacterial taxa had a more stable abundance
540 relative to the more dynamic composition of the fungal microbiome. Consistent with
541 prior work, the Lemnaceae bacterial microbiome was composed of similar taxa to those
542 present in terrestrial plants (Acosta et al., 2020; O'Brien et al., 2020). Members of
543 Comamonadaceae, the most abundant family associated with the Lemnaceae in this
544 study, have been previously identified as core taxa in groundwater samples (Deja-

545 Sikora et al., 2019; Inoue et al., 2022) and are enriched in disease-protective
546 rhizospheres (Wen et al., 2020). Sphingomonadaceae include common members of
547 terrestrial plant microbiomes, with species within the family acting as plant growth-
548 promoting bacteria (Innerebner et al., 2011; Luo et al., 2019). There were numerous
549 amplicons from *Pseudomonas* species, despite fronds appearing healthy and previous
550 work showing a number of *Pseudomonas* pathogens capable of infecting sterile
551 duckweed. We were able to identify 16S rDNA amplicon sequences that likely derived
552 from the same species as *P. nov.* 5BF and *P. kielensis* 5BT. The fungal microbiome is
553 more distinct from terrestrial plants with a higher proportion of the duckweed
554 microbiome consisting of Chytridiomycota (Almario et al., 2017; Bergelson et al., 2019;
555 Fuentes et al., 2020). The higher abundance of Chytridiomycota in an aquatic
556 environment is not surprising given their presence typically in freshwater and marine
557 habitats. However, it is interesting to consider how the increased abundance of this
558 phyla may affect interactions within the microbiome and with the plant. Further
559 experiments would be required to understand the relationship between duckweed and
560 these fungal genera, though this data provides a starting point for further exploration of
561 fungal pathogens that could be studied using the duckweed model system.

562
563 It remains unclear how duckweed's association with isolated bacteria is established and
564 the subsequent mechanism that facilitates increased resistance among duckweed
565 fronds. Interestingly, the pond from which *P. nov* 5BF and *P. kielensis* 5BT were
566 isolated had a lower percentage of *Pseudomonas* than sites 404 and 923. For growth
567 inhibition between *Pseudomonas* species, there are a number of established
568 mechanisms, including bacteriocins, type VI secretion systems, and secondary
569 metabolite productions. In the genome of *P. nov.* 5BF, we did not detect complete
570 bacteriocins or bacteriophages known for targeting other *Pseudomonas* (Carim et al.,
571 2021). However, we were able to detect the presence of two type VI secretion systems
572 and 13 secondary metabolites that could mediate bacterial interaction. It would be
573 interesting for future research to determine the molecular mechanism of *Pst* DC3000
574 inhibition by *P. nov.* 5BF as this understanding could be further leveraged for improving
575 biocontrol systems in agriculture.

576 **Materials and Methods**

577
578 **Sampling of healthy populations of duckweed to characterize associated bacteria**

579
580 With the permission of the UC Berkeley Botanical Garden, we sampled three pond
581 locations that had large Lemnaceae populations (site 404: 37° 52' 25.2" N, 122° 14'
582 15.3" W; site 405: 37° 52' 25.0" N, 122° 14' 15.4" W; site 923: 37° 52' 31.9" N 122° 14'
583 23.9" W). We collected surface pond water samples on two separate dates, February

584 27th, 2020, and November 3rd, 2020. Three 166 ml samples spread across each site
585 were taken and combined into the sample for that location for both pond water and
586 duckweed fronds. At each site five 50 ml tubes were filled with duckweed fronds. Similar
587 to Acosta et al. 2020. (Acosta et al., 2020): the water sample from each bed was split
588 into three 166 ml samples and passed through sterilized miracloth to remove solids, and
589 subsequently passed through a 0.2 μ M PES 500 mL filter (Corning 431097) to collect
590 the majority of the microbes on the filters. The resulting 0.2 μ M filtrate was used for
591 priming assays and culturing of bacteria. The filters were then cut into fourths with a
592 sterile scalpel and one-fourth was plated immediately on antibiotics to observe water-
593 associated fungi while the rest of the filter was stored at -80°C. Duckweed samples
594 were processed for culture-dependent and independent analyses as described below.
595

596 **Duckweed microbiome culture-dependent analyses**

597

598 To recover bacterial isolates, 1 ml of 0.2 μ m water filtrate from sites 404 and 405 was
599 plated onto several LB plates and incubated at room temperature for several days.
600 Visually distinct colonies were identified, and a single colony of each distinct
601 morphology was re-streaked onto a fresh plate. This was repeated three times or until
602 no distinct differences in colony morphology were visible. Single colony-derived cultures
603 were given isolate identifiers that consisted of the last number of the bed identifier from
604 which they were isolated, followed by a unique combination of letters. It is of note that
605 some isolates showed pathogenicity after initial isolation (Fig. S7-9); however, this effect
606 was lost upon cryostorage in glycerol. Single colony-derived cultures were assigned a
607 genus using the 16S rDNA (V1-V9).

608

609 Fungal isolates were cultured either from the 0.2 μ M PES filter that pond water was
610 passed through or from surface sterilized duckweed populations. For each pond which
611 consisted of three 166 ml samples, a total of six filters were plated. Two one-fourth
612 sections of each 0.2 μ M PES water filter were plated on individual Malt Extract Agar
613 (MEA) plates containing kanamycin, gentamicin, and rifampicin. Fungal isolates growing
614 from the edge of the filter were transferred to a new plate and morphology groups were
615 assigned. Two isolates from each morphology group were assigned genera using 5.8S
616 Fun - ITS4. To observe fungi in closer association to Lemnaceae, ~3 mL of fronds from
617 each pond were washed with sterilized water over miracloth and separated from debris.
618 These were then split into three ~1 ml aliquots and underwent a surface sterilization
619 procedure similar to (Thomson & Dennis, 2013) in order to select for endophytic fungi.
620 Plants were submerged in 10% v/v bleach for 30 seconds, transferred into 70% v/v
621 ethanol for 30 seconds, washed with sterile water, and then placed on sterile miracloth
622 in a biosafety cabinet to dry. Each side of every frond was then touched to the surface
623 of a MEA plate containing kanamycin, gentamicin, and rifampicin as a control to make

624 sure surface sterilization was complete. The duckweed fronds were then split into
625 pieces with a sterile scalpel to expose the inside of the tissue. For each pond a total of
626 50 duckweed fronds were plated across 6 15 mm x 100 mm Petri dishes containing
627 MEA media with kanamycin, gentamicin, and rifampin. Fungi that visually came out of
628 internal tissue were then re-plated and morphology groups were assigned. Two isolates
629 from each morphology group were assigned genera using 5.8S Fun - ITS4.

630

631 **Duckweed microbiome culture-independent sequencing and analyses**

632

633 Fronds from the environmental pond sampling were separated from water using sterile
634 miracloth and then rinsed with ddH₂O. Fronds were then transferred to a falcon tube
635 containing 40 ml of PBS buffer using sterilized tweezers. To wash the microbial cells off
636 the leaves, sonication (frequency 40 kHz) was performed for 6 min in an ultrasonic
637 cleaning bath, followed by shaking at 200 r min⁻¹ for 20 min at 30°C. Sonication
638 (frequency 40 kHz) was then continued for 3 min. The plant suspension was filtered
639 through miracloth to remove fronds, and the suspension was filtered through a 0.1 µm
640 membrane (CPLabSafety, FX-146-5113-RLS) by vacuum filtration. The filter membrane
641 was removed and stored at -80°C until DNA extraction. Filters were divided into two
642 equal parts using a sterile razor blade. One-half of the filter was used for bacterial DNA
643 extraction using the FastDNA spin Kit (MPBio, 116540600), with the CLS-TC buffer.
644 The extracted DNA was quantified using a Qubit fluorometer. DNA was present in all
645 samples from the environmental duckweed samples, but DNA extractions from
646 laboratory sterile *S. polyrhiza* gave results of nucleic acids below-detectable limits.

647

648 DNA extracts were aliquoted and diluted to 2.5ng in 5 µl of water for 16S rDNA
649 amplicon PCR and barcode integration. To the DNA, 1.5 µl of ddH₂O and 3 µl of each of
650 the following primers at 2.5 µM concentration (Table S22) were added. 12.5 µl of 2X
651 KAPA HiFi HotStart ReadyMix (Roche, 07958960001) was added before vortexing and
652 spinning down. The PCR cycle conditions were as follows: initial denaturation at 95°C
653 for 3 minutes, 27 cycles of denaturation at 95°C for 30 seconds, primer annealing (the
654 ramp rate for the annealing step to ≤ 3°C/ s.) at 57°C for 30 seconds, and template
655 extension at 72°C for 60 seconds.

656

657 To amplify the ITS region for fungal classification 5.5 ul of ddH₂O and 2 µl of each of the
658 following primers at 2.5 µM concentration (Table S23) were added to the 3uL of DNA at a
659 4ng/uL concentration. 12.5 µl of 2X KAPA HiFi HotStart ReadyMix (Roche, 07958960001) was
660 added before vortexing and spinning down. The PCR cycle conditions were as follows:
661 initial denaturation at 95°C for 3 minutes, 34 cycles of denaturation at 95°C for 30

662 seconds, primer annealing (the ramp rate for the annealing step to $\leq 2.5^{\circ}\text{C}/\text{s.}$) at 59°C
663 for 30 seconds, and template extension at 72°C for 60 seconds (Taylor et al., 2016).
664

665 To check for DNA amplification, 1ul of the PCR amplified sample was run on a 0.75%
666 agarose gel, and PCRs were then pooled together. Amplicons were size selected using
667 0.6X AMPure XP bead (Beckman Coulter, A63880) purification. For library preparation,
668 the Nanopore Genomic DNA by ligation (SQK-LSK-110) - Flongle branch was followed.
669

670 The bioinformatic workflow used for oxford nanopore 16S and ITS rDNA amplicon
671 sequencing is available on GitHub (<https://github.com/erin-baggs/DuckweedMicrobes.git>). In brief, the workflow consists of Fast5 files from
672 nanopore that were converted to fasta using guppy Version 4.2.2+effbaf8, reads were
673 demultiplexed using porechop v 0.2.4 (<https://github.com/rrwick/Porechop>) utilizing the
674 custom barcodes (Table S23). Then an adapted version of the PuntSeq V1 protocol
675 (<https://github.com/d-j-k/puntseq version 1>)(Urban et al., 2021) was used for read
676 mapping and species abundance quantification for bacterial 16S and ITS rDNA.
677

678 For analysis of bacterial communities all reads were aligned to the SILVA database
679 using minimap2. All reads that passed quality filters could be assigned classification to
680 at least the class level (Table S24). The SRS R package (Beule & Karlovsky, 2020) was
681 used to calculate diversity index values and downsample. Saturation of order, family,
682 and taxa level richness required pooling the biological replicates together (Fig S20). Due
683 to uneven numbers of reads per site, the read counts were normalized by scaling with
684 ranked subsampling (Table S1-6) (Beule & Karlovsky, 2020). Some reads could be
685 assigned to a site by the forward barcode but could not be demultiplexed to an
686 individual replicate as reads were missing reverse barcodes. Among these reads for site
687 404 were reads assigned to *Xanthomonas* and *Streptomyces*, whilst at 923 reads
688 assigned as *Xanthomonas* were recovered. For *Xanthomonas* genera, reads were only
689 identified from site 404 at very low relative abundance; the absence of a reverse
690 barcode on *Xanthomonas* classified reads meant it could not be assigned to a particular
691 replicate.
692

693 Taxonomic assignments for ITS rDNA amplicons (5.8S Fun - ITS4) were made by
694 mapping with minimap2 against the UNITE database (Nilsson et al., 2019). Read
695 processing and rarefaction were otherwise performed as with the 16S rDNA analysis.
696 Due to uneven numbers of reads per site, the read counts were normalized by scaling
697 with ranked subsampling (Table S8-9) (Beule & Karlovsky, 2020). Sub-sampling
698 richness curves suggest that fungal genus taxa richness was saturated at all 3 sites
699 after $\sim 80,000$ reads respectively including the reads which do not map to the fungal
700 kingdom (Fig S4). Reads that were assigned unidentified were removed as a majority of
701 these represented non-fungal kingdoms (Table S25).
702

703

704 **Genome sequencing and assembly**

705

706 Bacterial cultures were grown to $OD_{600} = 0.6$ in liquid culture at 28 °C within a shaking
707 incubator (20.5 g). Monarch High Molecular Weight DNA Extraction Kit for tissue
708 (T3060L) was used to extract DNA. For library preparation, Genomic DNA by ligation
709 (SQK-LSK-110) - Flongle branch was followed. Resulting libraries were then run-on
710 consecutive days on two flongle flow cells. Base-calling was done using guppy (Version
711 4.2.2+effbaf8). Assembly was constructed using flye v2.8.3-b1695 on read fasta files
712 (Kolmogorov et al., 2020). Medaka v.1.0.3 was used for genome polishing
713 (<https://github.com/nanoporetech/medaka>). This was confirmed using orthoANI (Lee et
714 al., 2016) to assess the similarity of isolate 5BF to *Pseudomonas poae*, the bacterial
715 species with the highest similarity across the 16S rDNA locus. Genome assemblies were
716 submitted to The National Center for Biotechnology Information Genbank and
717 TrueBac™ID (Ha et al., 2019), both identified the 5BF isolate to be a novel
718 *Pseudomonas* specie and 5BT as *Pseudomonas kielensis*.

719

720 Genome assembly statistics and annotation was performed utilizing PATRIC v3.22.0
721 (Brettin et al., 2015). BUSCO version 5.3.0 with the bacteria_odb10 database was used
722 to assess the quality of genome assembly. The *Pst* DC3000 (NC_004578.1) (Buell et
723 al., 2003) and *Pss* B728a (NC_007005.1) (Feil et al., 2005) genomes used for
724 comparison were downloaded on 11/27/21 from NCBI. Type VI Secretion System
725 prediction was carried out using SecReT6 v.3 (Li et al., 2015) prediction on the
726 nucleotide genome assembly (Li et al., 2015). BLASTN of the two T6SS operons from
727 *P. nov.* 5BF against the NCBI nucleotide collection (nr/nt) showed the operons that
728 displayed homology to other *Pseudomonas* species T6SS. To identify secondary
729 product genomic clusters antiSMASH5.0 was used (Blin et al., 2019), and Phaster v.
730 Dec 2022 (Arndt et al., 2016) was used to identify phage in the genome (Arndt et al.,
731 2016).

732

733 **Bacterial 16S PCR genotyping**

734

735 Not all isolates survived well upon serial passaging. For colonies we were able to
736 successfully isolate, a single bacterial colony was resuspended in 6.5 μ l of H₂O. Added
737 to this was 3ul of each of the following primers at 2.5 μ M concentration (Fwd p8-
738 16S_For_bc1005:
739 /5Phos/GCATCCACTCGACTCTCGCGTAGRGTTYGATYMTGGCTCAG, Reverse p16-
740 16S_Rev_bc1033
741 /5Phos/GCATCAGAGACTGCGACGAGARGYTACCTGTTACGACTT). 12.5 μ l of 2X
742 KAPA HiFi HotStart ReadyMix (Roche, 07958960001) was added before vortexing and

743 spinning down. The PCR cycle conditions were as follows: initial denaturation at 95°C for 3
744 minutes, 37 cycles of denaturation at 95°C for 30 seconds, primer annealing (the ramp rate
745 for the annealing step to ≤ 3°C per second) at 57°C for 30 seconds, and extension at 72°C
746 for 60 seconds. PCR product was run on a 0.75% agarose gel to confirm amplification. PCR
747 product excised from gel was extracted using Zymoclean gel DNA recovery kit (Zymogen,
D4007) and mixed with primers before Sanger sequencing at the UC Berkeley DNA Sanger
Sequencing Facility.

748

749 **Duckweed sterilization and genotyping**

750

751 Duckweed fronds collected from the ponds were sterilized by submerging in 10% bleach
752 and agitating on a rotor for ~2 min until whitening was visible along the frond edges. The
753 fronds were then rinsed with sterile deionized water three times and transferred to fresh
754 Schenk and Hildebrandt basal salt media. The fronds were allowed to regenerate over 2
755 months in the growth chamber under the conditions listed above. Only fronds from site
756 405 survived sterilization. DNA was extracted from new growth using Plant DNAeasy
757 extraction kit (Qiagen, 69104). For genotyping, 100ng of DNA was resuspended in 10 µl
758 of H₂O, followed by PCR (GoTaq 5x Buffer 10 µl, 10 mM dNTPs 1.25 µl, 10 µM Primer
759 1 1.25 µl, 10 µM Primer 2 1.25 µl, MgCl₂ 6.25 µl, H₂O 19.75 µl, GoTaq 0.25 µl). The
760 following primers were used: aptF-aptH-Fwd ACTCGCACACACTCCCTTCC, aptF-
761 aptH-Rev GCTTTATGGAAGCTTAACAAT (Wang, et al 2010). PCR conditions were
762 as follows: initial denaturation at 95°C for 2 minutes, 42 cycles of denaturation at 95°C
763 for 1 minute, annealing at 53°C for 1 minute, extension at 72°C for 0.5 minutes, and 1
764 cycle final extension at 72°C for 5 minutes. PCR product was run on a 0.75% agarose
765 gel to check for amplification. PCR product excised from gel was extracted using
766 Zymoclean gel DNA recovery kit (Zymogen, D4007) and mixed with primers before
767 sanger sequencing at the UC Berkeley DNA Sanger Sequencing Facility.

768

769

770

771 **Plant growth conditions**

772

773 Duckweed fronds are propagated every 3-4 weeks by transferring 3 mother fronds to a
774 new well with fresh media from a stock plate. Schenk and Hildebrandt basal salt media
775 (Sigma-Aldrich, S6765-10L) (0.8% agarose, pH 6.5) was used to grow plants in 6 or 12
776 well plates. Plates were then transferred to a growth chamber set to 23 °C with a diurnal
777 cycle of (16hr light (400 lux)/ 8hr dark). *A. thaliana* was grown in sunshine mix 4 in a
778 growth chamber set to 23 °C/19 °C with a diurnal cycle of (16hr light (300 lux)/ 8hr dark).

779

780 **Duckweed priming**

781

782 Sterile *S. polystachya* was primed by placing around 30 duckweed fronds into a 50ml
783 beaker with around 10 ml of 0.2 μ M rifampicin or 0.1 μ M PES filtered pond water (and in
784 one case boiled filtered pond water) from the three separate ponds and sterile PBS for
785 the negative control. The duckweed fronds remained suspended in pond water for 24
786 hours at room temperature and ambient light. Primed duckweed was then transferred
787 onto a sterile miracloth taped over a beaker by pouring the entire solution over the
788 miracloth. Using pipette tips, exactly 5 fronds were transferred into each well of a six
789 well plate containing Schenk and Hildebrandt basal salt media (Sigma-Aldrich, S6765-
790 10L) (0.8% agarose, pH 6.5). The duckweed was then inoculated using vacuum
791 infiltration at 80 PSI with the pathogen *Pst* DC3000, or a *Pst* DC3000 *hrcC* mutant as
792 described in the pathogen inoculation section below.

793

794 **Pathogen inoculation**

795

796 Bacterial strains were grown in LB media supplemented with the following
797 concentrations of antibiotics: *P. syringae* pv. tomato DC3000 (Matthysse et al., 1996;
798 Mudgett & Staskawicz, 1999) with 10 μ g/ml; kanamycin (Km) and 50 μ g/ml; rifampicin
799 (Rif), *P. syringae* pv. tomato DC3000 dsRed (Rufián et al., 2022) with Rif 50 μ g/ml and
800 20 μ g/ml; gentamicin (Gm) and *P. syringae* pv. *syringae* B728a (Feil et al., 2005) with
801 Rif 50 μ g/ml. Plates were washed with 1ml of 10mM MgCl₂ to remove bacteria. The
802 OD₆₀₀ was then measured and adjusted to OD₆₀₀ = 0.1 with 10mM MgCl₂.

803

804 **Growth curves**

805

806 For duckweed standard high inoculum experiments, a total of 500 μ L of bacterial
807 inoculation solution (OD₆₀₀ = 0.1) was pipetted onto three duckweed fronds. The plate
808 was then either placed straight into the incubator or placed in a vacuum (0.8 PSI) for 10
809 minutes.

810

811 *In vitro* cultures were started with a single colony of each bacterium and allowed to grow
812 in LB with no selection. Cultures were sampled after 24 hours, serial dilutions were
813 made of cultures, and dilutions were plated on LB without antibiotics to quantify total
814 bacterial growth and on antibiotic media to select for *Pst* DC3000 alone.

815

816 For standard high inoculum experiments with *A. thaliana*, the leaves were syringe-
817 infiltrated with OD₆₀₀ = 0.1 solution until water soaking was visible across the full leaf
818 surface. For standard low inoculum experiments, 25 μ l of OD₆₀₀ = 0.1 solution was
819 diluted in 25ml of 10mM MgCl₂, infiltrations were then carried out as above with

820 standard high inoculum. On day 0 and day 3, leaves and fronds were harvested,
821 photographed, and sectioned. The tissue was then homogenized with 3mm glass beads
822 in a biospec mini-beadbeater at 2,000 rpm with a vital distance of 1.25 inches. Serial
823 dilutions were made and plated on appropriate selective media. Two days after plating,
824 colonies were counted.

825

826 **Microscopy**

827

828 For microscopy, flood inoculation with 500 ul solutions of inoculum ($OD_{600} = 0.1$) was
829 used. Whole fronds were staged in water on slides and covered with a glass coverslip at
830 7 dpi. The slides were imaged on a Zeiss 710 LSM confocal microscope with either the
831 20x (water), 63x (oil), or 100x (oil) objectives. To image bacteria on duckweed fronds,
832 bacteria were stained with 10ul of 1x Syto™ BC Green Fluorescent Nucleic Acid Stain
833 (Thermo Scientific, S34855). To further investigate whether *Pst* DC3000 and *P. nov.*
834 5BF occupy the same niche, we used *Pst* DC3000 dsRed (Rufián et al., 2022) and
835 SytoBC-stain for bacteria in general. Utilizing the Zeiss LSM900 with Airyscan 2 and
836 then Airy Process using Zen Blue, we were able to identify *P. nov.* 5BF and *Pst* DC3000
837 in the same field of view, though the *Pst* DC3000 appeared embedded in crypts whilst
838 *P. nov.* 5BF was on the surface. The Syto™BC-stain was unable to penetrate the crypt
839 regions as can be seen by the absence of overlapping fluorescent labeling of *Pst*
840 DC3000 that should also be stained by Syto™BC.

841

842 **16S rDNA alignments for species designation**

843

844 Given the accuracy of 98.3% per bp of the R9.4.1 flow cells used for sequencing, we
845 expected that within our ~1,400 bp sequences those with fewer than 23 nucleotide
846 mismatches could correspond to reference 16S rDNA for strains of interest. We used
847 BLASTn to identify reads that passed the threshold of nanopore error corresponding to
848 other known *Pseudomonas* species including pathogens, endophytes, and biological
849 controls (File S2). We were unable to recover any reads that passed the threshold for 9
850 *Pseudomonas* species including *Pst* DC3000 and *Pseudomonas aeruginosa*. At site
851 923, reads were recovered with high similarity to *Pseudomonas fluorescens*, a species
852 that includes known plant pathogenic and protective strains. We were able to recover
853 reads from sites 404 and 923 that passed the threshold of similarity to isolate *P.*
854 *kielensis* using *P. kielensis* 5BT as reference.

855

856 To identify the presence of bacteria of the same species as *P. nov.* 5BF required further
857 filtering due to the high similarity of 16S rDNA of *P. nov.* 5BF and *P. poae*. After the
858 initial filtering, the same reads were often mapped to both species. To distinguish the
859 two species, we performed RNA structure-informed alignment using SSU-align

860 (Nawrocki, 2009) of the 16S rDNA region reads and reference sequences (File S3). The
861 alignments were then inspected for SNP differences between *P. poae* and *P. nov* 5BF.
862 The double-mapped amplicon reads which mapped to both *P. poae* and *P. nov* 5BF
863 sequences were checked as to whether the SNPs follow *P. nov* 5BF's sequences
864 (Table S14,15). For 7 of 8 positions at which there were reference-specific SNPs, the
865 majority of the sequences shared nucleotides with *P. nov* 5BF. The majority of SNPs
866 between reads and *P. nov* 5BF reference sequences were low frequency and even
867 those found in more than 4/37 reads were widely distributed across variable and
868 conserved regions of the 16S rDNA gene (Fig S21). The pattern of distribution of SNPs
869 between and among sequences is largely characteristic of technical errors. The
870 recovery of reads with high identity to *P. nov* 5BF and *P. kielensis* 5BT 16S rDNA,
871 suggests the species are ubiquitous across the sampled sites at the UC Berkeley
872 Botanical Garden.

873

874 *Author contributions*

875 E.L.B. and F.G.S designed and undertook the sampling at the UC Berkeley Botanical
876 Garden. F.G.S conducted pond water filtration. E.L.B and F.G.S conducted
877 phytopathogen assays. E.L.B isolated bacteria from environmental samples. E.L.B and
878 M.B.T conducted *L. punctata* microbiome DNA extraction. E.L.B and F.G.S undertook
879 library preparation, amplicon sequencing and amplicon sequencing analysis. E.L.B
880 undertook bacterial growth curves and was responsible for DNA extraction, library
881 preparation, sequencing, and annotation of the 5BF and 5BT genomes. E.L.B, F.G.S
882 and K.V.K designed the study. E.L.B prepared figures and wrote a complete draft of the
883 manuscript. All authors contributed to writing and editing of the final manuscript.

884 Data availability

885 Sequencing reads for 16S, and ITS rDNA and microbial genomes can be found within the
886 NCBI BioProjects PRJNA785658. The genomes and annotation of *Pseudomonas nov.*
887 5BF and *Pseudomonas kielensis* 5BT are available through the IMG/JGI database with
888 the respective IMG IDs 2931463386 and 2935452895.

889 Acknowledgements

890

891 We would like to thank The UC Berkeley Botanical Garden for allowing us to sample the ponds
892 in their grounds. We would also like to thank Dr. Denise Schichnes and Dr. Steven Ruzin for their expert advice and help with confocal microscopy. Research reported in this publication was supported in part by the National Institutes of Health (NIH) S10 program under award number 1S10RR026866-01. Many thanks to China

896 Lunde for propagation of duckweed during the pandemic and Daniel ChoAhn for his
897 work with the duckweed project team. We thank China Shaw, Wei Wei, Pierre Joubert,
898 Kyungyong Seong, and Chandler Sutherland for their helpful comments and diligent
899 reading of drafts. We thank Dr. Wilfried Haerty and all members of the Krasileva lab for
900 helpful discussions. This research has been supported by the Gordon and Betty Moore
901 Foundation (8802), the Innovative Genomics Institute, and the NIH Director's Award
902 (052239-002).

903 **References**

904 Acosta, K., Appenroth, K. J., Borisjuk, L., Edelman, M., Heinig, U., Jansen, M. A. K.,
905 Oyama, T., Pasaribu, B., Schubert, I., Sorrels, S., Sree, K. S., Xu, S., Michael, T.
906 P., & Lam, E. (2021). Return of the Lemnaceae: duckweed as a model plant
907 system in the genomics and postgenomics era. *The Plant Cell*, 33(10), 3207–3234.

908 Acosta, K., Xu, J., Gilbert, S., Denison, E., Brinkman, T., Lebeis, S., & Lam, E. (2020).
909 Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf
910 microbiome. *PLoS One*, 15(2), e0228560.

911 Almario, J., Jeena, G., Wunder, J., Langen, G., Zuccaro, A., Coupland, G., & Bucher, M.
912 (2017). Root-associated fungal microbiota of nonmycorrhizal *Arabis alpina* and its
913 contribution to plant phosphorus nutrition. *Proceedings of the National Academy of
914 Sciences of the United States of America*, 114(44), E9403–E9412.

915 Almario, J., Mahmoudi, M., Kroll, S., Agler, M., Placzek, A., Mari, A., & Kemen, E.
916 (2022). The Leaf Microbiome of Arabidopsis Displays Reproducible Dynamics and
917 Patterns throughout the Growing Season. *mbio*, 13(3), e0282521.

918 An, D., Zhou, Y., Li, C., Xiao, Q., Wang, T., Zhang, Y., Wu, Y., Li, Y., Chao, D.-Y.,
919 Messing, J., & Wang, W. (2019). Plant evolution and environmental adaptation
920 unveiled by long-read whole-genome sequencing of Spirodela. *Proceedings of the
921 National Academy of Sciences of the United States of America*, 116(38), 18893–

922 18899.

923 Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. S. (2016).

924 PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic Acids*
925 *Research*, 44(W1), W16–W21.

926 Baggs, E. L., Monroe, J. G., Thanki, A. S., O’Grady, R., Schudoma, C., Haerty, W., &
927 Krasileva, K. V. (2020). Convergent Loss of an EDS1/PAD4 Signaling Pathway in
928 Several Plant Lineages Reveals Coevolved Components of Plant Immunity and
929 Drought Response. *The Plant Cell*, 32(7), 2158–2177.

930 Baggs, E. L., Tiersma, M. B., Abramson, B. W., Michael, T. P., & Krasileva, K. V.
931 (2022). Characterization of defense responses against bacterial pathogens in
932 duckweeds lacking EDS1. *The New Phytologist*. <https://doi.org/10.1111/nph.18453>

933 Bano, N., & Musarrat, J. (2003). Characterization of a new *Pseudomonas aeruginosa*
934 strain NJ-15 as a potential biocontrol agent. *Current Microbiology*, 46(5), 324–328.

935 Barret, M., Egan, F., Fargier, E., Morrissey, J. P., & O’Gara, F. (2011). Genomic
936 analysis of the type VI secretion systems in *Pseudomonas* spp.: novel clusters and
937 putative effectors uncovered. *Microbiology*, 157(Pt 6), 1726–1739.

938 Bauer, M. A., Kainz, K., Carmona-Gutierrez, D., & Madeo, F. (2018). Microbial wars:
939 Competition in ecological niches and within the microbiome. *Microbial Cell*
940 *Factories*, 5(5), 215–219.

941 Bergelson, J., Mittelstrass, J., & Horton, M. W. (2019). Characterizing both bacteria and
942 fungi improves understanding of the *Arabidopsis* root microbiome. *Scientific*
943 *Reports*, 9(1), 24.

944 Beule, L., & Karlovsky, P. (2020). Improved normalization of species count data in

945 ecology by scaling with ranked subsampling (SRS): application to microbial
946 communities. *PeerJ*, 8, e9593.

947 Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., &
948 Weber, T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome
949 mining pipeline. *Nucleic Acids Research*, 47(W1), W81–W87.

950 Bonnichsen, L., Bygvraa Svenningsen, N., Rybtke, M., de Bruijn, I., Raaijmakers, J. M.,
951 Tolker-Nielsen, T., & Nybroe, O. (2015). Lipopeptide biosurfactant viscosin
952 enhances dispersal of *Pseudomonas fluorescens* SBW25 biofilms. *Microbiology*,
953 161(12), 2289–2297.

954 Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R.,
955 Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., 3rd,
956 Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: a modular and
957 extensible implementation of the RAST algorithm for building custom annotation
958 pipelines and annotating batches of genomes. *Scientific Reports*, 5, 8365.

959 Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L.,
960 Dodson, R. J., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Daugherty,
961 S., Brinkac, L., Beanan, M. J., Haft, D. H., Nelson, W. C., Davidsen, T., Zafar, N.,
962 Zhou, L., ... Collmer, A. (2003). The complete genome sequence of the
963 *Arabidopsis* and tomato pathogen *Pseudomonas syringae* pv. *tomato* DC3000.
964 *Proceedings of the National Academy of Sciences of the United States of America*,
965 100(18), 10181–10186.

966 Cai, R., Lewis, J., Yan, S., Liu, H., Clarke, C. R., Campanile, F., Almeida, N. F.,
967 Studholme, D. J., Lindeberg, M., Schneider, D., Zaccardelli, M., Setubal, J. C.,

968 Morales-Lizcano, N. P., Bernal, A., Coaker, G., Baker, C., Bender, C. L., Leman,
969 S., & Vinatzer, B. A. (2011). The plant pathogen *Pseudomonas syringae* pv. *tomato*
970 is genetically monomorphic and under strong selection to evade tomato immunity.
971 *PLoS Pathogens*, 7(8), e1002130.

972 Carim, S., Azadeh, A. L., Kazakov, A. E., Price, M. N., Walian, P. J., Lui, L. M., Nielsen,
973 T. N., Chakraborty, R., Deutschbauer, A. M., Mutualik, V. K., & Arkin, A. P. (2021).
974 Systematic discovery of pseudomonad genetic factors involved in sensitivity to
975 tailocins. *The ISME Journal*, 15(8), 2289–2305.

976 Cheng, X., Etalo, D. W., van de Mortel, J. E., Dekkers, E., Nguyen, L., Medema, M. H.,
977 & Raaijmakers, J. M. (2017). Genome-wide analysis of bacterial determinants of
978 plant growth promotion and induced systemic resistance by *Pseudomonas*
979 *fluorescens*. *Environmental Microbiology*, 19(11), 4638–4656.

980 Chien, C.-F., Liu, C.-Y., Lu, Y.-Y., Sung, Y.-H., Chen, K.-Y., & Lin, N.-C. (2020). HSI-II
981 Gene Cluster of *Pseudomonas syringae* pv. *tomato* DC3000 Encodes a Functional
982 Type VI Secretion System Required for Interbacterial Competition. *Frontiers in*
983 *Microbiology*, 11, 1118.

984 Coyte, K. Z., & Rakoff-Nahoum, S. (2019). Understanding Competition and Cooperation
985 within the Mammalian Gut Microbiome. *Current Biology: CB*, 29(11), R538–R544.

986 Coyte, K. Z., Schluter, J., & Foster, K. R. (2015). The ecology of the microbiome:
987 Networks, competition, and stability. *Science*, 350(6261), 663–666.

988 Das, B. K., Das, D. P., Pradhan, J., Priyadarshinee, B., Sahu, I., Roy, P., & Mishra, B.
989 K. (2012). Evaluation of antimicrobial activity and phytochemical screening of
990 ethanolic extract of greater duckweed, *Spirodela polyrrhiza*. *International Journal of*

991 *Pharma and Bio Sciences*, 3, 822–833.

992 Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A.,
993 Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D.
994 (2012). The Top 10 fungal pathogens in molecular plant pathology. *Molecular Plant
995 Pathology*, 13(4), 414–430.

996 Deja-Sikora, E., Gołębiewski, M., Kalwasińska, A., Krawiec, A., Kosobucki, P., &
997 Walczak, M. (2019). Comamonadaceae OTU as a Remnant of an Ancient Microbial
998 Community in Sulfidic Waters. *Microbial Ecology*, 78(1), 85–101.

999 Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. (2017). Plant Pathogenic Fungi.
1000 *Microbiology Spectrum*, 5(1). <https://doi.org/10.1128/microbiolspec.FUNK-0023-2016>

1001 2016

1002 Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L., Dilantha Fernando, W. G.,
1003 Belmonte, M. F., & de Kievit, T. R. (2017). The biocontrol agent *Pseudomonas
1004 chlororaphis* PA23 primes *Brassica napus* defenses through distinct gene
1005 networks. *BMC Genomics*, 18(1), 467.

1006 Effiong, B. N., & Sanni, A. (2009). Antifungal properties and phytochemical screening of
1007 crude extract of *Lemna paucicostata* (Helgelm) against fish feed spoilage fungi.
1008 *Life Science Journal*, 6(3), 19–22.

1009 Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A.,
1010 Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A.,
1011 Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N., & Lindow,
1012 S. E. (2005). Comparison of the complete genome sequences of *Pseudomonas
1013 syringae* pv. *syringae* B728a and pv. *tomato* DC3000. *Proceedings of the National*

1014 *Academy of Sciences of the United States of America*, 102(31), 11064–11069.

1015 Fisch, C. (1884). Beitrage zur Kenntnis der Chytridiaceen, Sitzungsber. *Phys.*
1016 *Med. Soc.*, 16, 29–66.

1017 Fries, N. (1979). Physiological Characteristics of Mycosphaerella ascophylli, a Fungal
1018 Endophyte of the Marine Brown Alga *Ascophyllum nodosum*. *Physiologia*
1019 *Plantarum*, 45(1), 117–121.

1020 Fuentes, A., Herrera, H., Charles, T. C., & Arriagada, C. (2020). Fungal and Bacterial
1021 Microbiome Associated with the Rhizosphere of Native Plants from the Atacama
1022 Desert. *Microorganisms*, 8(2). <https://doi.org/10.3390/microorganisms8020209>

1023 Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: turning local infection into
1024 global defense. *Annual Review of Plant Biology*, 64, 839–863.

1025 Gaumann, E. A. (1928). V. Archimycetes. In E. W. Sinnott (Ed.), *Comparative*
1026 *morphology of fungi* (pp. 17–20). McGRAW-HILL PUBLICATIONS IN THE
1027 AGRICULTURAL AND BOTANICAL SCIENCES.

1028 Ghoul, M., & Mitri, S. (2016). The Ecology and Evolution of Microbial Competition.
1029 *Trends in Microbiology*, 24(10), 833–845.

1030 Gülçin, İ., Kireçci, E., Akkemik, E., Topal, F., & Hisar, O. (2010). Antioxidant and
1031 Antimicrobial Activities of an Aquatic Plant: Duckweed (*Lemna minor* L.). *Turkish*
1032 *Journal of Biology = Turk Biyoloji Dergisi / the Scientific and Technical Research*
1033 *Council of Turkey*, 34(2), 175–188.

1034 Gutiérrez-Barranquero, J. A., Cazorla, F. M., & de Vicente, A. (2019). *Pseudomonas*
1035 *syringae* pv. *syringae* Associated With Mango Trees, a Particular Pathogen Within
1036 the “Hodgepodge” of the *Pseudomonas syringae* Complex. *Frontiers in Plant*

1037 *Science*, 10, 570.

1038 Hahn, M. W. (2004). Broad diversity of viable bacteria in “sterile” (0.2 microm) filtered
1039 water. *Research in Microbiology*, 155(8), 688–691.

1040 Haney, C. H., Wiesmann, C. L., Shapiro, L. R., Melnyk, R. A., O’Sullivan, L. R.,
1041 Khorasani, S., Xiao, L., Han, J., Bush, J., Carrillo, J., Pierce, N. E., & Ausubel, F.
1042 M. (2018). Rhizosphere-associated *Pseudomonas* induce systemic resistance to
1043 herbivores at the cost of susceptibility to bacterial pathogens. *Molecular Ecology*,
1044 27(8), 1833–1847.

1045 Harting, R., Nagel, A., Nesemann, K., Höfer, A. M., Bastakis, E., Kusch, H., Stanley, C.
1046 E., Stöckli, M., Kaever, A., Hoff, K. J., Stanke, M., deMello, A. J., Künzler, M.,
1047 Haney, C. H., Braus-Stromeyer, S. A., & Braus, G. H. (2021). *Pseudomonas*
1048 Strains Induce Transcriptional and Morphological Changes and Reduce Root
1049 Colonization of *Verticillium* spp. *Frontiers in Microbiology*, 12, 652468.

1050 Ha, S. M., Kim, C. K., Roh, J., Byun, J. H., Yang, S. J., Choi, S. B., Chun, J., & Yong, D.
1051 (2019). Application of the Whole Genome-Based Bacterial Identification System,
1052 TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-
1053 Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-
1054 TOF MS) Systems. *Annals of Laboratory Medicine*, 39(6), 530–536.

1055 Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant
1056 holobiont. *Microbiome*, 6(1), 58.

1057 Henry, L. P., Bruijning, M., Forsberg, S. K. G., & Ayroles, J. F. (2021). The microbiome
1058 extends host evolutionary potential. *Nature Communications*, 12(1), 5141.

1059 Hernandez, M. N., & Lindow, S. E. (2019). *Pseudomonas syringae* Increases Water

1060 Availability in Leaf Microenvironments via Production of Hygroscopic Syringafactin.

1061 *Applied and Environmental Microbiology*, 85(18).

1062 <https://doi.org/10.1128/AEM.01014-19>

1063 Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial

1064 competition: surviving and thriving in the microbial jungle. *Nature Reviews.*

1065 *Microbiology*, 8(1), 15–25.

1066 Hirano, S. S., Charkowski, A. O., Collmer, A., Willis, D. K., & Upper, C. D. (1999). Role

1067 of the Hrp type III protein secretion system in growth of *Pseudomonas syringae* pv.

1068 *syringae* B728a on host plants in the field. *Proceedings of the National Academy of*

1069 *Sciences of the United States of America*, 96(17), 9851–9856.

1070 Hirano, S. S., Rouse, D. I., Clayton, M. K., & Upper, C. D. (1995). *Pseudomonas*

1071 *syringae* pv. *syringae* and bacterial brown spot of snap bean: A study of epiphytic

1072 phytopathogenic bacteria and associated disease. *Plant Disease*, 79(11), 1085–

1073 1093.

1074 Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on

1075 *Pseudomonas syringae*-a pathogen, ice nucleus, and epiphyte. *Microbiology and*

1076 *Molecular Biology Reviews: MMBR*, 64(3), 624–653.

1077 Hood, R. D., Singh, P., Hsu, F., Güvener, T., Carl, M. A., Trinidad, R. R. S., Silverman,

1078 J. M., Ohlson, B. B., Hicks, K. G., Plemel, R. L., Li, M., Schwarz, S., Wang, W. Y.,

1079 Merz, A. J., Goodlett, D. R., & Mougous, J. D. (2010). A type VI secretion system of

1080 *Pseudomonas aeruginosa* targets a toxin to bacteria. *Cell Host & Microbe*, 7(1),

1081 25–37.

1082 Hossain, M. M., Sultana, F., & Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF):

1083 Phytostimulation and Induced Systemic Resistance. In D. P. Singh, H. B. Singh, &
1084 R. Prabha (Eds.), *Plant-Microbe Interactions in Agro-Ecological Perspectives:*
1085 *Volume 2: Microbial Interactions and Agro-Ecological Impacts* (pp. 135–191).
1086 Springer Singapore.

1087 Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The
1088 Plant Growth-Promoting Fungus *Penicillium simplicissimum* GP17-2 Induces
1089 Resistance in *Arabidopsis thaliana* by Activation of Multiple Defense Signals. *Plant*
1090 & *Cell Physiology*, 48(12), 1724–1736.

1091 Innerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of *Arabidopsis thaliana*
1092 against leaf-pathogenic *Pseudomonas syringae* by *Sphingomonas* strains in a
1093 controlled model system. *Applied and Environmental Microbiology*, 77(10), 3202–
1094 3210.

1095 Inoue, D., Hiroshima, N., Ishizawa, H., & Ike, M. (2022). Whole structures, core taxa,
1096 and functional properties of duckweed microbiomes. *Bioresource Technology*
1097 *Reports*, 101060.

1098 Ishizawa, H., Kuroda, M., Inoue, D., Morikawa, M., & Ike, M. (2020). Community
1099 dynamics of duckweed-associated bacteria upon inoculation of plant growth-
1100 promoting bacteria. *FEMS Microbiology Ecology*, 96(7).

1101 <https://doi.org/10.1093/femsec/fiaa101>

1102 Ishizawa, H., Kuroda, M., Inoue, K., Inoue, D., Morikawa, M., & Ike, M. (2019).
1103 Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting
1104 Bacteria in the Phytosphere of the Duckweed *Lemna minor*. *Microbial Ecology*,
1105 77(2), 440–450.

1106 Kang, D., Kirienko, D. R., Webster, P., Fisher, A. L., & Kirienko, N. V. (2018).

1107 Pyoverdine, a siderophore from *Pseudomonas aeruginosa*, translocates into *C.*

1108 *elegans*, removes iron, and activates a distinct host response. *Virulence*, 9(1), 804–

1109 817.

1110 Katagiri, F., Thilmony, R., & He, S. Y. (2002). The *Arabidopsis thaliana*-*pseudomonas*

1111 *syringae* interaction. *The Arabidopsis Book / American Society of Plant Biologists*,

1112 1, e0039.

1113 Kohl, K. D. (2020). Ecological and evolutionary mechanisms underlying patterns of

1114 phylosymbiosis in host-associated microbial communities. *Philosophical*

1115 *Transactions of the Royal Society of London. Series B, Biological Sciences*,

1116 375(1798), 20190251.

1117 Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B.,

1118 Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020).

1119 metaFlye: scalable long-read metagenome assembly using repeat graphs. *Nature*

1120 *Methods*, 17(11), 1103–1110.

1121 Kwak, M.-J., Kong, H. G., Choi, K., Kwon, S.-K., Song, J. Y., Lee, J., Lee, P. A., Choi,

1122 S. Y., Seo, M., Lee, H. J., Jung, E. J., Park, H., Roy, N., Kim, H., Lee, M. M., Rubin,

1123 E. M., Lee, S.-W., & Kim, J. F. (2018). Rhizosphere microbiome structure alters to

1124 enable wilt resistance in tomato. *Nature Biotechnology*.

1125 <https://doi.org/10.1038/nbt.4232>

1126 Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse,

1127 H. P., Smoker, M., Rallapalli, G., Thomma, B. P. H. J., Staskawicz, B., Jones, J. D.

1128 G., & Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor

1129 confers broad-spectrum bacterial resistance. *Nature Biotechnology*, 28(4), 365–
1130 369.

1131 Lee, I., Ouk Kim, Y., Park, S.-C., & Chun, J. (2016). OrthoANI: An improved algorithm
1132 and software for calculating average nucleotide identity. *International Journal of*
1133 *Systematic and Evolutionary Microbiology*, 66(2), 1100–1103.

1134 Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H.-J., &
1135 van Pee, K.-H. (2000). Natural products with antifungal activity from *Pseudomonas*
1136 biocontrol bacteria. *Pest Management Science*, 56(8), 688–695.

1137 Li, J., Yao, Y., Xu, H. H., Hao, L., Deng, Z., Rajakumar, K., & Ou, H.-Y. (2015).
1138 SecReT6: a web-based resource for type VI secretion systems found in bacteria.
1139 *Environmental Microbiology*, 17(7), 2196–2202.

1140 Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S.,
1141 Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T. G., Edgar, R. C., Eickhorst,
1142 T., Ley, R. E., Hugenholtz, P., Tringe, S. G., & Dangl, J. L. (2012). Defining the
1143 core *Arabidopsis thaliana* root microbiome. *Nature*, 488(7409), 86–90.

1144 Luo, Y., Wang, F., Huang, Y., Zhou, M., Gao, J., Yan, T., Sheng, H., & An, L. (2019).
1145 *Sphingomonas* sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere
1146 Microbial Community Structure of *Arabidopsis thaliana* Under Drought Stress.
1147 *Frontiers in Microbiology*, 10, 1221.

1148 Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M.,
1149 Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D.
1150 (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. *Molecular*
1151 *Plant Pathology*, 13(6), 614–629.

1152 Matthysse, A. G., Stretton, S., Dandie, C., McClure, N. C., & Goodman, A. E. (1996).

1153 Construction of GFP vectors for use in gram-negative bacteria other than

1154 *Escherichia coli*. *FEMS Microbiology Letters*, 145(1), 87–94.

1155 Meyer, J. M., Neely, A., Stintzi, A., Georges, C., & Holder, I. A. (1996). Pyoverdin is

1156 essential for virulence of *Pseudomonas aeruginosa*. *Infection and Immunity*, 64(2),

1157 518–523.

1158 Morella, N. M., Weng, F. C.-H., Joubert, P. M., Metcalf, C. J. E., Lindow, S., & Koskella,

1159 B. (2020). Successive passaging of a plant-associated microbiome reveals robust

1160 habitat and host genotype-dependent selection. *Proceedings of the National*

1161 *Academy of Sciences of the United States of America*, 117(2), 1148–1159.

1162 Mudgett, M. B., & Staskawicz, B. J. (1999). Characterization of the *Pseudomonas*

1163 *syringae* pv. *tomato* AvrRpt2 protein: demonstration of secretion and processing

1164 during bacterial pathogenesis. *Molecular Microbiology*, 32(5), 927–941.

1165 Nawrocki, E. P. (2009). *Washington University in St.*

1166 <https://search.proquest.com/openview/5227539f9b37c2509352f9c4fe44e034/1?pq-origsite=gscholar&cbl=18750>

1168 Nilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S.,

1169 Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Köljalg,

1170 U., & Abarenkov, K. (2019). The UNITE database for molecular identification of

1171 fungi: handling dark taxa and parallel taxonomic classifications. *Nucleic Acids*

1172 *Research*, 47(D1), D259–D264.

1173 O'Brien, A. M., Laurich, J., & Frederickson, M. E. (2022). Having the “right” microbiome

1174 matters for host trait expression and the strength of mutualism between duckweeds

1175 and microbes. In *bioRxiv* (p. 2022.02.10.479958).

1176 <https://doi.org/10.1101/2022.02.10.479958>

1177 O'Brien, A. M., Laurich, J., Lash, E., & Frederickson, M. E. (2020). Mutualistic

1178 Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed

1179 *Lemna minor*. *Microbial Ecology*, 80(2), 384–397.

1180 Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant

1181 growth promoting bacteria. *World Journal of Microbiology & Biotechnology*, 33(11),

1182 197.

1183 Paasch, B. C., & He, S. Y. (2021). Toward understanding microbiota homeostasis in the

1184 plant kingdom. *PLoS Pathogens*, 17(4), e1009472.

1185 Pacheco-Moreno, A., Stefanato, F. L., Ford, J. J., Trippel, C., Uszkoreit, S., Ferrafiat, L.,

1186 Grenga, L., Dickens, R., Kelly, N., Kingdon, A. D., Ambrosetti, L., Nepogodiev, S.

1187 A., Findlay, K. C., Cheema, J., Trick, M., Chandra, G., Tomalin, G., Malone, J. G.,

1188 & Truman, A. W. (2021). Pan-genome analysis identifies intersecting roles for

1189 *Pseudomonas* specialized metabolites in potato pathogen inhibition. *eLife*, 10.

1190 <https://doi.org/10.7554/eLife.71900>

1191 Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S., &

1192 Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome

1193 under field conditions. *Proceedings of the National Academy of Sciences of the*

1194 *United States of America*, 110(16), 6548–6553.

1195 Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M.,

1196 & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes.

1197 *Annual Review of Phytopathology*, 52, 347–375.

1198 Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad,
1199 G. E., & Jones, J. B. (2015). Bacterial spot of tomato and pepper: diverse
1200 Xanthomonas species with a wide variety of virulence factors posing a worldwide
1201 challenge. *Molecular Plant Pathology*, 16(9), 907–920.

1202 Qian, X., Li, H., Wang, Y., Wu, B., Wu, M., Chen, L., Li, X., Zhang, Y., Wang, X., Shi,
1203 M., Zheng, Y., Guo, L., & Zhang, D. (2019). Leaf and Root Endospheres Harbor
1204 Lower Fungal Diversity and Less Complex Fungal Co-occurrence Patterns Than
1205 Rhizosphere. *Frontiers in Microbiology*, 10, 1015.

1206 Ramakrishna, W., Yadav, R., & Li, K. (2019). Plant growth promoting bacteria in
1207 agriculture: Two sides of a coin. *Applied Soil Ecology: A Section of Agriculture,*
1208 *Ecosystems & Environment*, 138, 10–18.

1209 Rufián, J. S., Ruiz-Albert, J., & Beuzón, C. R. (2022). Fluorescently labeled
1210 *Pseudomonas syringae* DC3000 and 1449b wild-type strains constitutively
1211 expressing either eGFP, eCFP, or dsRED. *microPublication Biology*, 2022.
1212 <https://doi.org/10.17912/micropub.biology.000595>

1213 Schlatter, D., Kinkel, L., Thomashow, L., Weller, D., & Paulitz, T. (2017). Disease
1214 Suppressive Soils: New Insights from the Soil Microbiome. *Phytopathology*,
1215 107(11), 1284–1297.

1216 Schwarz, S., West, T. E., Boyer, F., Chiang, W.-C., Carl, M. A., Hood, R. D., Rohmer,
1217 L., Tolker-Nielsen, T., Skerrett, S. J., & Mougous, J. D. (2010). Burkholderia type VI
1218 secretion systems have distinct roles in eukaryotic and bacterial cell interactions.
1219 *PLoS Pathogens*, 6(8), e1001068.

1220 Shalev, O., Karasov, T. L., Lundberg, D. S., Ashkenazy, H., Pramoj Na Ayutthaya, P., &

1221 Weigel, D. (2022). Commensal *Pseudomonas* strains facilitate protective response
1222 against pathogens in the host plant. *Nature Ecology & Evolution*, 6(4), 383–396.

1223 Sun, D., Zhuo, T., Hu, X., Fan, X., & Zou, H. (2017). Identification of a *Pseudomonas*
1224 *putida* as biocontrol agent for tomato bacterial wilt disease. *Biological Control: Theory and Applications in Pest Management*, 114, 45–50.

1225 Suzuki, W., Sugawara, M., Miwa, K., & Morikawa, M. (2014). Plant growth-promoting
1226 bacterium *Acinetobacter calcoaceticus* P23 increases the chlorophyll content of the
1227 monocot *Lemna minor* (duckweed) and the dicot *Lactuca sativa* (lettuce). *Journal of Bioscience and Bioengineering*, 118(1), 41–44.

1228 Taylor, D. L., Walters, W. A., Lennon, N. J., Bochicchio, J., Krohn, A., Caporaso, J. G.,
1229 & Pennanen, T. (2016). Accurate Estimation of Fungal Diversity and Abundance
1230 through Improved Lineage-Specific Primers Optimized for Illumina Amplicon
1231 Sequencing. *Applied and Environmental Microbiology*, 82(24), 7217–7226.

1232 Thomson, E. L. S., & Dennis, J. J. (2013). Common duckweed (*Lemna minor*) is a
1233 versatile high-throughput infection model for the *Burkholderia cepacia* complex and
1234 other pathogenic bacteria. *PLoS One*, 8(11), e80102.

1235 Toyama, T., Mori, K., Tanaka, Y., Ike, M., & Morikawa, M. (2022). Growth Promotion of
1236 Giant Duckweed *Spirodela polyrhiza* (Lemnaceae) by *Ensifer* sp. SP4 Through
1237 Enhancement of Nitrogen Metabolism and Photosynthesis. *Molecular Plant-Microbe
1238 Interactions: MPMI*, 35(1), 28–38.

1239 Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant-microbiome
1240 interactions: from community assembly to plant health. *Nature Reviews Microbiology*,
1241 18(11), 607–621.

1244 Urban, L., Holzer, A., Baronas, J. J., Hall, M. B., Braeuninger-Weimer, P., Scherm, M.
1245 J., Kunz, D. J., Perera, S. N., Martin-Herranz, D. E., Tipper, E. T., Salter, S. J., &
1246 Stammnitz, M. R. (2021). Freshwater monitoring by nanopore sequencing. *eLife*,
1247 10. <https://doi.org/10.7554/eLife.61504>

1248 Vanky, K. (1981). Two new genera of Ustilaginales: *Nannfeldtiomyces* and
1249 *Pseudodoassansia*, and a survey of allied genera. *Sydowia Annales Mycologici*, 34,
1250 167–178.

1251 Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., & Varma, A.
1252 (2020). Revisiting Plant-Microbe Interactions and Microbial Consortia Application
1253 for Enhancing Sustainable Agriculture: A Review. *Frontiers in Microbiology*, 11,
1254 560406.

1255 Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R., & Messing, J. (2010). DNA
1256 barcoding of the Lemnaceae, a family of aquatic monocots. *BMC Plant Biology*, 10,
1257 205.

1258 Wen, T., Yuan, J., He, X., Lin, Y., Huang, Q., & Shen, Q. (2020). Enrichment of
1259 beneficial cucumber rhizosphere microbes mediated by organic acid secretion.
1260 *Horticulture Research*, 7(1), 154.

1261 Xin, X.-F., & He, S. Y. (2013). *Pseudomonas syringae* pv. *tomato* DC3000: a model
1262 pathogen for probing disease susceptibility and hormone signaling in plants. *Annual
1263 Review of Phytopathology*, 51, 473–498.

1264 Xu, Y., Ma, S., Huang, M., Peng, M., Bog, M., Sree, K. S., Appenroth, K.-J., & Zhang, J.
1265 (2015). Species distribution, genetic diversity and barcoding in the duckweed family
1266 (Lemnaceae). *Hydrobiologia*, 743(1), 75–87.

1267 Yamakawa, Y., Jog, R., & Morikawa, M. (2018). Effects of co-inoculation of two different
1268 plant growth-promoting bacteria on duckweed. *Plant Growth Regulation*, 86(2),
1269 287–296.

1270 Yoneda, Y., Yamamoto, K., Makino, A., Tanaka, Y., Meng, X.-Y., Hashimoto, J., Shin-
1271 Ya, K., Satoh, N., Fujie, M., Toyama, T., Mori, K., Ike, M., Morikawa, M., Kamagata,
1272 Y., & Tamaki, H. (2021). Novel Plant-Associated Acidobacteria Promotes Growth of
1273 Common Floating Aquatic Plants, Duckweeds. *Microorganisms*, 9(6).
1274 <https://doi.org/10.3390/microorganisms9061133>

1275 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H and Chun J. 2017 “Introducing
1276 EzBioCloud: A Taxonomically United Database of 16S rDNA Gene Sequences
1277 and Whole-Genome Assemblies.” *International Journal of Systematic and
1278 Evolutionary Microbiology* 67 (5): 1613–1617.

1279 **Supplementary Figures**

1280 Figure S1. Rarefaction curves for 16S rDNA amplicons.
1281 Figure S2. Bacterial family classification at the UC Botanical Garden sites.
1282 Figure S3. Principal component analysis of bacterial microbiome composition at the UC
1283 Botanical Garden sites.
1284 Figure S4. Rarefaction curves for fungal ITS rDNA amplicons.
1285 Figure S5 *Spirodela polyrhiza* priming with 0.2 µm water filtrate following pathogen
1286 inoculation.
1287 Figure S6. *Spirodela polyrhiza* priming with 0.2 µm water filtrate before and after boiling
1288 followed by pathogen inoculation.
1289 Figure S7. Experiment 2 *Spirodela polyrhiza* co-inoculated with bacteria isolated from
1290 the 0.2 µm water filtrate and *Pst* DC3000.
1291 Figure S8 Experiment 3 *Spirodela polyrhiza* co-inoculated with bacteria isolated from
1292 the 0.2 µm water filtrate and *Pst* DC3000.
1293 Figure S9. Experiment 4 *Spirodela polyrhiza* co-inoculated with bacteria isolated from
1294 the 0.2 µm water filtrate and *Pst* DC3000.
1295 Figure S10. Experiment 5 *Spirodela polyrhiza* co-inoculated with bacteria isolated from
1296 the 0.2 µm water filtrate and *Pst* DC3000.
1297 Figure S11. Experiment 1 *Landoltia punctata* 5635 inoculated with pathogens and
1298 environmental bacteria.
1299 Figure S12. Experiment 2 *Landoltia punctata* 5635 inoculated with pathogens
1300 and environmental bacteria.
1301

1302 Figure S13. Experiment 3 *Landoltia punctata* 5635 inoculated with pathogens and
1303 environmental bacteria.

1304

1305 Figure S14. Experiment 1 Isolate 5BF's protection of *L. punctata* BG405 from
1306 symptomatic Pss B728a infection.

1307 Figure S15. Experiment 2 *Landoltia* BG405 inoculated with pathogens
1308 and environmental bacteria.

1309 Figure S16. Experiment 2 *Landoltia* BG405 with pathogens and environmental bacteria.

1310 Figure S17. Experiment 3 *Landoltia* BG405 with pathogens and environmental bacteria.

1311 Figure S18. Circos plot of *Pseudomonas nov.* 5BF and *Pseudomonas kielensis* 5BT
1312 genome assemblies.

1313 Figure S19. Pie-chart of the number of subsystems within superclasses for
1314 *Pseudomonas* species of interest.

1315 Figure S20. Comparison of isolate *Pseudomonas nov.* 5BF type i1 T6SS with *Pst*
1316 DC3000 type i1 T6SS.

1317 Figure S21. NCBI phylogeny of the top 100 BLASTN hits queried with the
1318 *Pseudomonas nov.* 5BF type i1 T6SS locus.

1319 Figure S22 NCBI phylogeny of the top 50 BLASTN hits to the *Pseudomonas nov.* 5BF
1320 type i3 T6SS locus

1321 Figure S23. Synteny between *Pseudomonas nov.* 5BF and *Pseudomonas fluorescens*
1322 SBW25 at the viscosin secondary metabolic islands

1323 Figure S24. Confocal microscopy of Z-stack of 5BT on *Spirodela polyrhiza* fronds.

1324 Figure S25. Growth curve split by experiment *Spirodela polyrhiza* co-inoculated with low
1325 bacterial load of *Pseudomonas nov.* 5BF and or *Pst* DC3000.

1326 Figure S26. Experiments 1-5 *Spirodela polyrhiza* co-inoculated with low bacterial load of
1327 *Pseudomonas nov.* 5BF and or *Pst* DC3000.

1328 Figure S27. Consensus sequence of nanopore reads and reference 16S rDNA
1329 sequence from secondary structure informed sequence alignment.

1330 Figure S28. *Pseudomonas* interaction streak replicates.

1331 Figure S29. High OD syringe infiltration of *A. thaliana* leaves with *Pseudomonas* spp.

1332 Figure S30. High OD syringe infiltration of *A. thaliana* leaves with *Pseudomonas* spp.

1333 Figure S31. High OD syringe infiltration of *A. thaliana* leaves with *Pseudomonas* spp.

1334 Figure S32. High OD syringe infiltration of *A. thaliana* leaves with *Pseudomonas* spp.

1335 Figure S33. Low OD syringe infiltration of *A. thaliana* leaves with *Pseudomonas* spp.

1336 Figure S34. Model of bacterial plant interactions

1337

1338 **Supplementary Tables**

1339

1340 Table S1 - Percentage abundance of orders across samples for 16S rDNA amplicon
1341 sequencing.

1342 Table S2 - Percentage abundance of families across 16S rDNA amplicon sequencing.
1343 Table S3 - Percentage abundance of genera across 16S rDNA amplicon sequencing
1344 Table S4 - Phyla classification of ITS rDNA amplicons with unidentified reads included
1345 in relative abundance.
1346 Table S5 - Phyla classification of ITS amplicons with unidentified reads removed .
1347 Table S6 - Percentage abundance of orders across sites for ITS amplicon sequencing.
1348 Table S7 - Culture dependent isolation, morphotyping and genotyping of fungi.
1349 Table S8 - Percentage abundance of families across sites for ITS amplicon sequencing.
1350 Table S9 - Percentage abundance of genus across sites for ITS amplicon sequencing.
1351 Table S10 - Relative abundance of ITS amplicons corresponding to morphotyped fungal
1352 taxa.
1353 Table S11 - Relative abundance of 16S rDNA amplicons associated with bacterial
1354 pathogens not including unidentified bacteria.
1355 Table S12 - Relative abundance of ITS amplicons associated with fungal pathogens not
1356 including unidentified ITS sequences.
1357 Table S13 - Isolates from pond water 16S rDNA best hit.
1358 Table S14 - BUSCO genome scores.
1359 Table S15 - Genomic features identified in duckweed associated isolates that play a
1360 role in interbacterial competition in other species.
1361 Table S16 - Number of reads after normalization at sites belonging to *P. nov* 5BF and *P.*
1362 *kielensis* species.
1363 Table S17 - Discriminatory SNP positions between 16S rDNA sequence of *P. nov* 5BF
1364 and *P. poae*.
1365 Table S18 - Table of all sites were there is a SNP/indel in more than 3 reads within the
1366 *P. nov* 5BF and *P. poae* alignment
1367 Table S19 - Colony forming unit counts for duckweed growth curves.
1368 Table S20 - Colony forming unit counts for in vitro growth curves.
1369 Table S21 - Colony forming unit counts for *Arabidopsis thaliana* growth curves.
1370 Table S22 - Barcodes for 16S rDNA amplicon sequencing.
1371 Table S23 - Barcodes for ITS rDNA amplicon sequencing.
1372 Table S24 - Class classification across sites before SRS normalization.
1373 Table S25 - UNITE database kingdom classification for ITS amplicons.
1374
1375 **Supplementary Files**
1376 File S1 - AtpF genotyping of site 405 duckweed isolate.
1377 File S2 - 16S rDNA nucleotide sequences for bacterial reference isolates and
1378 *Pseudomonas* nov. 5BF and *Pseudomonas kielensis* 5BT.
1379 File S3 - 16S rDNA nucleotide sequence alignment for *Pseudomonas* nov. 5BF and raw
1380 reads.
1381