

1 **Structure of *Toxoplasma gondii* glideosome-associated connector suggests a role as an**
2 **elastic element in actomyosin force generation for gliding motility**

3 Yu-Fu Hung¹, Qu Chen^{2#}, Isa Pires^{1#}, Peter B. Rosenthal³ & Inari Kursula^{1,4*}

4 ¹Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; ²Structural
5 Biology Science Technology Platform, The Francis Crick Institute, United Kingdom;

6 ³Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, United
7 Kingdom; ⁴Department of Biomedicine, University of Bergen, Norway

8 *Corresponding author: inari.kursula@uib.no

9 #Equal contribution

10 **Keywords:** actin-binding protein, Apicomplexa, armadillo repeat, cryo-EM, crystal structure,
11 glideosome, HEAT repeat, invasion, membrane binding, parasite, phosphatidic acid,
12 pleckstrin-homology domain, small-angle X-ray scattering, solenoid, spring, X-ray
13 crystallography

14 **Abstract**

15 *Toxoplasma gondii* glideosome-associated connector (GAC) is a giant armadillo-repeat
16 protein, essential for parasite motility and conserved across Apicomplexa. It connects actin
17 filaments to the plasma membrane *via* interactions with phosphatidic acid and membrane-
18 spanning adhesins. It is unclear how GAC contributes to gliding motility and invasion and why
19 such a large connector is needed. We determined the crystal structure of full-length *T. gondii*
20 GAC at 2.3 Å resolution and explored its conformational space in solution using small-angle
21 X-ray scattering and cryogenic electron microscopy. The crystal structure reveals a compact
22 conformation but, in solution, GAC adopts both compact and extended forms. The PH domain
23 stabilizes the compact form and may act as a switch triggered by membrane sensing. Based on
24 its spring-like architecture, we suggest a role for GAC as an elastic element in actomyosin force
25 generation during gliding motility and invasion.

26 The diseases malaria and toxoplasmosis are caused by obligatory intracellular parasites of the
27 apicomplexan phylum, *Plasmodium* spp. and *Toxoplasma gondii* (*Tg*), respectively. These
28 parasites display a unique substrate-dependent form of motility, termed gliding, during the
29 motile and invasive stages of their life cycle¹. Force for gliding motility is generated by the
30 parasite actomyosin system², and the whole gliding machinery is bridged from the inner
31 membrane complex (IMC) to the parasite plasma membrane through a connection between
32 actin filaments and adhesins formed by a 280 kDa protein called glideosome-associated
33 connector (GAC)³. GAC is conserved throughout Apicomplexa, unique to these parasites, and
34 essential for gliding motility³. The N-terminal part of GAC binds to and stabilizes actin
35 filaments, the middle part is required for conoid targeting, and the C-terminal part associates
36 with adhesins in the parasite plasma membrane³. A pleckstrin-homology (PH) domain in the C
37 terminus binds to phosphatidic acid (PA) enriched membranes³.

38 Preliminary structural analysis and homology modeling of GAC suggested a club-shaped
39 molecule with a maximum dimension of 27 nm for the full-length (FL) *Tg*GAC and 16 nm for
40 the N-terminal actin-filament-binding region³. FL-*Tg*GAC was predicted to possess a
41 substantial armadillo-repeat region with a wider end around the actin-binding region and a
42 narrow end with the PH domain at the tip, far from the N-terminal actin-binding region³.
43 Armadillo-repeat domains are in general involved in protein-protein interactions⁴. GAC is a
44 unique example of an armadillo-super-helical structure directly binding to and stabilizing
45 filamentous actin³. However, its exact actin-binding mode and function in the glideosome are
46 unknown.

47 Here, we present a high-resolution crystal structure of *Tg*GAC and explore its conformational
48 space using single-particle cryogenic electron microscopy (cryo-EM) and small-angle X-ray
49 scattering (SAXS). The crystal structure reveals a surprising compact conformation compared
50 to the previous low-resolution solution structure³, and we show that GAC can exist in both the
51 compact and an extended conformation in solution. The overall shape of this giant armadillo-
52 like repeat protein would enable GAC to function as an elastic linker between actin filaments

53 and the plasma membrane and suggests a role in storing mechanical energy as myosin A
54 (MyoA) undergoes its power stroke.

55

56 **Results**

57 ***GAC is a giant solenoid that can exist in a compact or an extended conformation***

58 The crystal structure of FL-*TgGAC* was determined to 2.3 Å resolution (**Table 1**). The final
59 model contains amino acids from Lys7 to Phe2639, missing only the first six N-terminal
60 residues and comprising 73% α -helices, 1.4% β -strands, and 28% loop regions. FL-*TgGAC* in
61 the crystal has a compact solenoid structure with 164 α -helices, connected by short loops,
62 forming 53 continuous armadillo or Huntington, elongation factor 3, protein phosphatase 2A
63 (HEAT) -like repeat units (RUs)⁵, ending in the C-terminal PH domain (**Fig. 1a**). Also the loop
64 connections between the RUs are mostly short, comprising 3-5 residues. Of note, there is a 45-
65 Å long α -helix protruding from the end of RU 50, linking it to the first helix of RU 51 through
66 a long loop formed by Gln2280-Ala2311. Surprisingly, this long insertion does not influence
67 the solenoid trajectory and is only present in *T. gondii* and *Neospora caninum* (**Fig. 1** and
68 **Extended Data Figs. 1 and 2**), which are closely related parasites in family Sarcocystidae
69 within Apicomplexa⁶.

70 Following the solenoid domain, starting from Ser2476, is a loop region connected to the PH
71 domain (Ser2512-Phe2639) at the C terminus of *TgGAC* (**Fig. 1b**). Interestingly, the C-
72 terminal region with the PH domain, which was identified as a distal adhesin-binding tip
73 towards the plasma membrane, folds close to the N-terminal actin-filament binding region,
74 stacking against RUs 42-51 (**Fig. 1**). This leads to the crystal structure, with approximate
75 dimensions of 150 x 130 x 75 Å, presenting a much more compact structure in comparison to
76 our previous low-resolution SAXS envelope, obtained from batch mode data collection³.

77 To further elucidate the configuration of FL-*TgGAC* in solution, we prepared *TgGAC* samples
78 with and without crosslinking by glutaraldehyde for negative staining and cryo-EM. Native
79 FL-*TgGAC* appeared as elongated and heterogenous particles when viewed by negative

80 staining or cryo-EM (**Fig. 2a**). When crosslinked, it adopted a compact shape that closely
81 resembles the crystal structure. The crosslinked sample allowed for reconstructing a single
82 particle cryo-EM structure of FL-*TgGAC* at 7.6 Å (**Supplementary Data Table 1**), where
83 well-resolved α -helices can be seen in the N-terminal solenoid region. However, slightly
84 weaker density is observed for the C-terminal solenoid and the PH domain, suggesting
85 flexibility of this region (**Fig. 2b** and **c** and **Extended Data Fig. 3**). In a size-exclusion
86 chromatography (SEC) coupled SAXS experiment, FL-*TgGAC* eluted from the column in a
87 compact conformation, with a globular shape and a D_{\max} of 152 Å, closely resembling the
88 conformation seen in the crystal structure (**Fig. 2d**, **Extended Data Fig. 4a**, and
89 **Supplementary Data Table 2**).

90 ***Subdomains of the GAC solenoid domain***

91 The first and last RUs of the solenoid act as capping RUs^{5,7} with conserved hydrophobic
92 residues facing towards the hydrophobic core to protect it from solvent and to stabilize the
93 structure. The outer (convex) and inner (concave) helices of the RUs are amphipathic⁴ and
94 stack approximately in parallel to the RUs with conserved Val, Ile, and Leu side chains pointing
95 towards counterparts of neighboring repeats, contributing to a concealed hydrophobic space
96 spanning the entire chain. Across Apicomplexa, the solvent-exposed residues are less
97 conserved than the buried Val-Ile-Leu (VIL) clusters (**Extended Data Figs. 1** and **2**). The
98 whole flexible solenoid domain, constituting 93% of FL-*TgGAC*, seems to be supported by the
99 stacking of these hydrophobic VIL clusters (**Extended Data Fig. 1**). Most of the inner helices
100 in the RUs are tilted by approximately 15° relative to the neighboring inner helices⁸. The
101 crossover angle between RUs is influenced by the distribution of the hydrophobic residues
102 around the interface between RUs and the length of the linker turns/loops^{9,10}. Kinks on the
103 outer helices affect the curvature of the RU chain as well¹¹. As the RUs stack with a right-
104 handed twist, the trajectory of the RU chain twists and circulates into a right-handed solenoid¹².
105 From the top view, looking down from the N-terminal part towards the C terminus, the RU
106 chain forms three major circular coils (**Fig. 3**). Notably, between RUs 6-7, 13-14, 19-20, and
107 27-28, the inner helices are tilted by approximately 90° to the next inner helix, resulting in four

108 significant kinks in the solenoid structure. The top circular coil, here named coil 1, is
109 constituted by RUs 1 to 19 (**Fig. 3a**). After the third kink, starting from RU 20, coil 2 spirals
110 to RU 37 (**Fig. 3b**). Of note, from RU 30 onwards, the spiral trajectory of the RU chain becomes
111 narrower, forming a funnel-like shape (**Fig. 3b**). In contrast to coils 1 and 2, which are formed
112 by alternating armadillo/HEAT RUs, coil 3 (RUs 38-53) is mainly composed of armadillo
113 repeats that stack into a narrow spiral without any significant kinks (**Fig. 3c**). Coil 3 ends in a
114 loop region before the C-terminal PH domain (**Fig. 3d**). Coils 1 and 3 contain more conserved
115 VIL clusters than coil 2 (**Extended Data Fig. 1**), which may indicate different structural or
116 functional stability. The interactions between coil 3 and coil 1 are a mixture of hydrophobic
117 interactions and hydrogen bonds as well as salt bridges between residues from the N-terminal
118 loop and RU 1 (coil 1) and RUs 49-50 (coil 3). There are fewer contacts between coil 3 and
119 coil 2, a salt bridge between Glu2207 and Arg765 being the main interaction point. In addition,
120 the PH domain interacts with coil 2, as discussed below.

121 Previously, *TgGAC* had been divided into three regions (N-terminal, middle, and C-terminal),
122 based on sequence only³. Of these, only FL-*TgGAC* and the N-terminal region (N-*TgGAC*,
123 residues 1-1117) could be purified in sufficient amounts for biochemical and structural
124 characterization³. Based on the crystal structure, we redefined potential functional subdomain
125 boundaries and produced new truncated forms of *TgGAC*, hereafter called subdomains. The
126 new constructs encoded for the full solenoid domain formed by coils 1-2-3 (*TgGAC* coil 1-2-
127 3; residues 1-2477), the N-terminal solenoid domain formed by coils 1-2 (*TgGAC* coil 1-2;
128 residues 1-1664), the C-terminal solenoid domain, *i.e.* coil 3 (*TgGAC* coil 3; residues 1664-
129 2477), and coil 3 with the PH domain (*TgGAC* C3-PH; residues 1664-2639) (**Fig. 3, Extended**
130 **Data Fig. 5, and Supplementary Data Table 3**). In SEC, all other subdomain combinations,
131 except for coil 1-2 and the PH domain, eluted earlier than FL-*TgGAC* (**Extended Data Fig.**
132 **5**), indicating that they have larger hydrodynamic radii than FL-*TgGAC*, despite their smaller
133 molecular weight.

134 We used EM and SEC-SAXS to further explore the conformational space of the different
135 *TgGAC* subdomains. While native FL-*TgGAC* without crosslinking was too heterogenous for

136 EM reconstruction, we could study the conformation of the subdomains using negative staining
137 (**Supplementary Data Table 4**). When analyzing *TgGAC* coil 1-2, coherent averages were
138 obtained for coil 2, but no density was observed for coil 1, even when crosslinked. This is
139 evidence for flexibility of coil 1. Crosslinking, however, resulted in a more homogeneous coil
140 2 structure, suggesting that crosslinking reduces intrinsic flexibility of coil 2 (**Extended Data**
141 **Fig. 6**). In contrast to the flexible upper coils, *TgGAC* coil 3 has a single, seemingly rigid
142 conformation (**Extended Data Fig. 7**). Negatively stained micrographs of crosslinked FL-
143 *TgGAC* coil 1-2-3 show coils 2 and 3, but not coil 1. However, coil 3 shows a range of positions
144 relative to coil 2 (**Fig. 4a and b** and **Extended Data Fig. 8**). In SEC-SAXS, *TgGAC* coil 1-2-
145 3 shows an open conformation and a D_{max} larger than the one observed for FL-*TgGAC*
146 (**Extended Data Fig. 4b** and **Supplementary Data Table 1**).

147 The combined data show that *TgGAC* can exist in both compact and open forms, which differ
148 in length by approximately two-fold. The open form is interpretable as a flexible association
149 of the component coils with differing intrinsic flexibility (coil 3 < coil 2 < coil 1). The PH
150 domain makes intimate contact with coil 3 and to a lesser extent with coil 2 (**Fig. 1** and
151 **Extended Data Fig. 9**). Removal of the PH domain results in relative mobility of coils 2 and
152 3, simultaneously releasing them from coil 1 (**Fig. 4a and b**). This kind of mobility can be
153 enabled by the hinge helix between RUs 37 and 38 (**Figs. 1, 3, and 4c and d**). Rotating coil 3
154 along this hinge point would enable a continuous spiral all the way from the N-terminal coil 1
155 down to the end of coil 3, representing the most extended conformation possible (**Fig. 4d**).

156 ***The PH domain has conserved membrane-binding motifs***

157 In the crystal structure, the *TgGAC* PH domain is snugly accommodated by the concave groove
158 of coil 3 (**Fig. 1** and **Extended Data Fig. 9**). The core of the PH domain consists of a β -barrel
159 formed by two perpendicular β -sheets, 4 and 5 strands each, with two strands shared between
160 the two sheets. The C-terminal α -helix closes the barrel on one side. In addition, there are two
161 shorter helices outside the barrel structure. Between β -strands 5 and 6, α -helix 2 of the PH
162 domain, is amphipathic and makes contacts to coil 2 of the solenoid domain, forming a salt
163 bridge between Lys2583 and Glu836. Also Arg2587 has several Asp/Glu residues from coil 2

164 at a close distance. α -helix 2 is conserved in all GACs and is present also in the PH domain of
165 phospholipase C- δ 1¹³ (PLC- δ 1).

166 Using the FATCAT server¹⁴, the PH domains of PLC- δ 1 (PDB ID: 1MAI)¹³ and the acylated
167 PH (APH) domain of *T. gondii* (PDB ID: 6F8E)¹¹ were identified as the closest homologs of
168 the *TgGAC* PH domain (**Fig. 5**). The PLC- δ 1 PH domain has been studied extensively and
169 binds stereospecifically to both PtdIns(4,5)P₂ and Ins(1,4,5)P₃ via its so-called canonical lipid
170 binding site (**Fig. 5**)¹⁵. In the *TgGAC* PH domain, this site has a reversed (negative) charge
171 compared to both PLC- δ 1 and APH PH domains (**Fig. 5**). *TgGAC*-PH has a highly conserved
172 Lys at position 2525 on β strand 1, followed by Phe2527 and Leu2528, which are also key
173 residues to anchor the β 1- β 2 loop of APH into the membrane¹¹ (**Fig. 5**). The short amphipathic
174 α -helix is only found in GACs and the PLC- δ 1 PH domain, according to a structural similarity
175 alignment generated using iPBA¹⁶. In the PLC- δ 1 PH domain, the corresponding α -helix is
176 linked to the stability of IP3-binding^{17,18}. In the *TgGAC* PH domain, the last Lys at the end of
177 this α -helix is highly conserved and a part of a KxK-like motif and could, thus, be a cooperative
178 motif for regulation by lipid binding. Nearby, tandem KxK-Kxn(K/R)xR motifs in an extended
179 basic patch, comprising 18 basic residues, indicate a non-canonical PA-binding surface, as seen
180 in several other PH domains^{11,19-21}. This Lys-Arg cluster is facing out towards solvent from
181 the half-buried *TgGAC*-PH in the groove of coil 3 and would enable lipid sensing or binding
182 in the compact form (**Figs. 1b and 5 and Extended Data Fig. 9**).

183 In summary, the *TgGAC* PH domain contains conserved lipid-binding residues, which are
184 exposed to solvent in the compact form. This suggests, indeed, a role in membrane
185 recognition/interactions. A second function for the PH domain appears to be to lock coil 3 to
186 coils 1 and 2 in the compact form.

187 ***The entire TgGAC solenoid domain binds to actin***

188 Our previous results identified the N-terminal region (N-*TgGAC*, residues 1-1117) as the
189 cytosolic actin-filament-binding region³. The following middle-region (M-*TgGAC*, residues
190 1118-1968) was localized apically *in vivo* and not found to interact with actin filaments *in*
191 *vitro*³. The C-terminal region (C-*TgGAC*, 1512-2639) was poorly expressed *in vivo* and

192 insoluble *in vitro*³. With the new subdomains and the surprising positioning of the PH domain
193 and coil 3, we decided to map more carefully the actin-binding site of *TgGAC* using actin
194 cosedimentation assays (**Fig. 6**). The different *TgGAC* subdomains were all in the soluble
195 fraction in the absence of actin. Surprisingly, all combinations containing any of *TgGAC* coils
196 1 to 3 cosedimented with actin, although coil 1-2-3 seemed to bind to actin in a higher ratio
197 than FL-*TgGAC*. All the *TgGAC* coils cosedimented with both *PfActI*, which is a close
198 homolog of *TgAct*, and vertebrate skeletal muscle α -actin filaments but seemed to have higher
199 affinity to *PfActI* than to α -actin (**Fig. 6**). The PH domain (residues 2501-2639) did not interact
200 with either *PfActI* or α -actin. Thus, the whole solenoid domain seems to be involved in or is at
201 least capable of actin binding. The variable conformations adapted by FL-*TgGAC* in solution
202 and the attachment of the PH domain to coil 1 in the closed conformation seem to affect the
203 ability of *TgGAC* to bind to actin.

204

205 **Discussion**

206 ***Functional insight into the solenoid domain***

207 The *TgGAC* solenoid domain makes three helical turns with a radius that progressively
208 narrows, moving from the N terminus towards the C-terminal, membrane-binding, PH domain.
209 In a partially extended form, it would resemble a conical compression spring bridging between
210 actin and membrane attachment sites. In the compact form, the structure is twisted upon itself
211 by at least two hinge regions. This compact structure also exists in solution but has the tendency
212 to extend under certain conditions or over time, as seen from our previous batch SAXS
213 experiments³ and the native EM structures. The solenoid spiral architecture is enabled and
214 maintained by the arrangement of the armadillo/HEAT-like RUs and the conserved
215 hydrophobic core, formed by the VIL clusters. Such a hydrophobic core can be a significant
216 factor driving protein folding to maintain structure and function⁴. In the *TgGAC* solenoid
217 domain, the hydrophobic core extends throughout the whole RU chain, maintaining not only
218 local folding of each RU but also retaining the tertiary structure. The solenoid domain might
219 therefore undergo significant deformation without disrupting secondary or tertiary

220 structures^{22,23}. Considering the placement of GAC in the glideosome complex, and its potential
221 to behave as an extensible, spring-like, connection between actin and the plasma membrane it
222 might be expected to play a mechanical functional role.

223 While we previously mapped actin binding to the N-terminal coil region, we now, with the
224 newly designed subdomains, show that the entire solenoid domain interacts with actin, and
225 only the C-terminal PH domain does not. Based on cosedimentation assays, all combinations
226 containing coils 1 and 2 but not the PH domain bind actin more effectively than the FL-*TgGAC*
227 or coil 3. The most conserved parts, in addition to the VIL clusters throughout the solenoid, are
228 found in coil 3 and the top surface of coil 1 (**Extended Data Figs. 1 and 2**), which may indicate
229 the most important regions. The conservation of coil 3 may reflect the importance of its
230 interactions with the PH domain, and the more efficient actin binding in the absence of the PH
231 domain supports a regulatory function of the PH-coil 3 interaction.

232 Since the entire solenoid binds actin this means GAC might lie parallel between the actin
233 filament and the plasma membrane consistent with the limited space of approximately 30 nm
234 between the plasma membrane and the IMC, of which the actomyosin complex already
235 occupies approximately half. This lateral binding mode would also be compatible with
236 stabilization of actin filaments. However, it is not known whether all the coils bind to actin
237 simultaneously or if sequential binding events take place as MyoA moves actin rearwards. It
238 seems plausible that parts of the binding interface may only be exposed as the compact structure
239 extends, given the higher binding ratio in the absence of the PH domain that locks the FL
240 protein in the compact conformation.

241 ***Role of the PH domain***

242 A prerequisite for gliding motility and invasion is that adhesin molecules, present on the outer
243 surface of the parasite, must anchor to the host cell surface or the moving junction^{24,25}. *TgGAC*
244 is immobilized to the inner leaflet of the parasite plasma membrane by binding to the intra-
245 cellular portion of adhesin and PA in the membrane *via* its C-terminal solenoid domain and/or
246 the PH domain. PH domains are versatile modules for protein-protein and protein-membrane
247 interactions, mostly in eukaryotic cells²¹. The PH domain of *TgGAC* is quite distant even from

248 its closest homologs, PLC-δ1 and the APH domain-containing protein. Although sequence
249 identities are very low, overall structures are conserved. Structurally, the *TgGAC* PH domain
250 more closely resembles PLC-δ1 but functionally, it seems closer to the APH PH domain with
251 the extended non-canonical lipid binding site and PA binding. The APH domain-containing
252 protein is essential for motility, cell entry, and egress of *P. falciparum* and *T. gondii*. It is
253 recruited to PA-enriched membranes *via* both canonical and non-canonical lipid binding sites
254 (**Fig. 5**)¹¹.

255 We have previously shown that *TgGAC* transiently associates with *TgMIC2* and that the
256 *TgGAC* PH domain binds PA and adhesin tails³. This would be in line with a location of the
257 PH domain at the periphery of FL-*TgGAC*, far from the actin-binding region, as proposed in
258 our previous extended SAXS model³. The closed conformation stabilized by the PH domain
259 may be important for recruitment to the conoid at the apical tip, which is also dependent on
260 methylation by the apical complex lysine (K) methyltransferase (AKMT)^{3,26}. It is possible that
261 GAC would then, upon binding to both an actin filament and the plasma membrane, adopt an
262 extended structure. Thus, PH domain membrane interactions may function as a switch, leading
263 to the compact GAC structure extending upon PA-enriched membrane and actin binding (**Fig.**
264 **4c and d**).

265 ***Elastic spring model for GAC in gliding motility***

266 Given the elastic characteristics of solenoid domains^{22,23,27-36} and examples of helical repeat
267 proteins, like the catenin core complex in adherens junctions^{37,38} and talin in focal
268 adhesions^{39,40}, it seems plausible that GAC may act as a spring-like connection between the
269 short (~100 nm) actin filaments⁴¹⁻⁴³ and the adhesion complex that is formed during gliding
270 motility and invasion (**Fig. 7**). This could be analogous to the ankyrin repeats in the NOMPC-
271 TRP ion channel, which have been suggested to play an important role in its mechanosensory
272 function ⁴⁴. GAC may cluster or accumulate during gliding and invasion, as suggested by the
273 observation of intense ring-like structures at the moving junction³. GAC molecules presumably
274 accumulate along with the apico-basal waves of filamentous actin and adhesins^{3,45} to sustain
275 mechanical force during gliding.

276 Based on the localization of GAC and its hinged conical spring-like architecture, we propose a
277 role for GAC in storing and transmitting mechanical work and force during gliding motility
278 and host cell invasion (**Fig. 7**). Force from the MyoA power-stroke is transferred in series,
279 across the actin-GAC complex, to the adhesin, driving the adhesion site rearwards, towards the
280 basal end of the parasite. GAC might act as an elastic storage element, allowing the force
281 generated by several MyoA molecules to sum, thereby producing sufficient force to drive the
282 parasite into the red blood cell during invasion. Relaxation of the extended GAC spring would
283 maintain the force required to drive the IMC forwards relative to the rearward (basal)
284 movement of the tight-junction region that is observed as the merozoite penetrates the red blood
285 cell.

286

287 **Concluding remarks**

288 GAC is a protein unique to and conserved across apicomplexan parasites and indispensable for
289 their gliding motility. It is the largest armadillo-repeat protein in Apicomplexa⁴ and the largest
290 armadillo-repeat protein, for which a structure is known to date. GAC has two-fold
291 conformational flexibility: (i) The C-terminal PH domain anchors it in the compact
292 conformation and may function as a sensor for lipid binding and as a switch between the open
293 and closed states. (ii) The solenoid domain confers spring-like flexibility storing mechanical
294 energy for gliding motility.

295

296 **Methods**

297 ***Expression and purification of FL-TgGAC and the subdomains***

298 The FL-*TgGAC* construct was modified from the His-FL-*TgGAC* published before³ to add a
299 GST tag at the N terminus, followed by a TEV protease site, and an uncleavable 6×His tag at
300 the C terminus. All the subdomains (**Supplementary Data Table 2**) were constructed using
301 the same fusion tag strategy.

302 Selenomethionine-derivatized FL-*Tg*GAC was expressed in the methionine auxotroph T7
303 Express Crystal *Escherichia coli* strain (NEB #C3022) cultured in SelenoMethionine Medium
304 Base plus Nutrient Mix (Molecular Dimensions MD12-501), supplemented with 25 mg l⁻¹
305 kanamycin and 40 mg l⁻¹ L(+)-Selenomethionine (Acros Organics). The culture was incubated
306 at 37°C while shaking at 200 r.p.m. until the optical density at 600 nm (OD600) reached 1.0.
307 FL-*Tg*GAC expression was then induced with 0.75 mM isopropyl-β-D-thiogalactoside (IPTG)
308 and the culture continued at 18°C for 20 h. Native FL-*Tg*GAC and all the subdomains were
309 produced in *E. coli* BL21 (DE3) using auto-induction ZY-5052 medium supplemented with 25
310 mg l⁻¹ kanamycin at 18°C for 24 h.

311 All the native and Se-Met-derivatized *Tg*GAC proteins were purified from sonicated cell
312 lysates in buffer A (50 mM Tris-HCl, pH 7.5, 500 mM NaCl) with 10 mM TCEP, 0.2 mg ml⁻¹
313 lysozyme, and SIGMAFAST™ Protease Inhibitor Cocktail Tablets. The lysate was clarified
314 by centrifugation at 18000 g for 35 min at 4°C and then incubated with Pierce™ Glutathione
315 Agarose (Thermo Scientific™) equilibrated with buffer A with 1 mM TCEP at 10°C for 1 h.
316 Following the incubation, the protein-agarose mixture was poured and washed in a gravity-
317 flow column with buffer A with 1 mM TCEP and then buffer B (20 mM Tris-HCl, pH 7.5,
318 50 mM NaCl, 0.5 mM TCEP) for 5 column volumes (CV), each. The bound FL-*Tg*GAC was
319 eluted after incubation with TEV protease in buffer B and subsequently loaded onto a HisPur™
320 Ni-NTA Resin column (Thermo Scientific™). Then, 5 CV of 15 mM and 80 mM imidazole
321 containing buffer B were applied to wash the resin and to elute the FL-*Tg*GAC, respectively.
322 The purified FL-*Tg*GAC was concentrated and applied to a size exclusion column (Superdex
323 200 Increase, GE Healthcare), equilibrated with buffer C (10 mM Tris-HCl, pH 7.5, 50 mM
324 ammonium acetate, 0.2 mM TCEP). The final purified FL-*Tg*GAC was concentrated to 15-20
325 mg ml⁻¹ for crystallization.

326 The *Tg*GAC subdomains were expressed in *E. coli* BL21 (DE3) using auto-induction ZY-5052
327 medium supplemented with 25 mg l⁻¹ kanamycin at 18°C for 24 h. The proteins were purified
328 from *E. coli* lysates after sonication in buffer A supplemented with 1 mM TCEP, 0.2 mg ml⁻¹
329 lysozyme, and SIGMAFAST™ Protease Inhibitor Cocktail Tablets. The clarified lysates were

330 incubated with Pierce™ Glutathione Agarose (Thermo Scientific™) equilibrated with buffer
331 A with 1 mM TCEP at 10°C for 1 h. Following the incubation, the protein-agarose mixture was
332 poured and washed in a gravity-flow column with buffer A with 1 mM TCEP and then buffer
333 B for 5 CV, each. The bound proteins were eluted from the beads after incubation with TEV
334 protease in buffer B. The purified subdomains were subsequently concentrated and applied to
335 a size exclusion column (Superdex 75 increase, GE Healthcare for *TgGAC-PH* and Superdex
336 200 Increase, GE Healthcare for the other subdomains), equilibrated with buffer D (50 mM
337 Tris-HCl, pH 7.5, 50 mM NaCl, 0.1 mM TCEP).

338 ***Crystallization, data collection, and structure determination***

339 Purified native and Se-Met FL-*TgGAC* were crystallized using the hanging-drop vapor
340 diffusion method at 16°C. Crystals grew from a 2:1 mixing ratio of FL-*TgGAC* to reservoir
341 solution, containing 0.1 M Tris, pH 8.4, 1.4 M potassium sodium tartrate, 50 mM magnesium
342 acetate. All crystals were cryoprotected with cryoprotectant solution containing 0.1 M Tris, pH
343 8.4, 2.3 M potassium sodium tartrate, 50 mM magnesium acetate, 50 mM ammonium acetate,
344 and 0.2 mM TCEP.

345 The crystal structure of FL-*TgGAC* was determined using selenomethionine (Se-Met)-labeling
346 and single-wavelength anomalous diffraction (SAD). The final X-ray diffraction experiments
347 were carried out at 100 K on the protein crystallography beamline X06DA-PXIII at the Swiss
348 Light Source, Paul Scherrer Institute, Villigen, Switzerland. SAD data of the SeMet-derivatized
349 crystal were collected using a $50 \times 90 \mu\text{m}^2$ X-ray beam with a wavelength of 0.9729 Å. The
350 substructure and the preliminary model were solved from a Se-Met-labeled FL-*TgGAC* crystal
351 diffracting to 2.6 Å. The final high-resolution model was refined using data from a different
352 Se-Met-FL-*TgGAC* crystal, diffracting to 2.3 Å (**Table 1**). The SAD and native data were
353 processed and scaled using the XDS⁴⁶ package. HKL2MAP⁴⁷ was used for phase
354 determination, and CRANK2⁴⁸ was used to build an initial model. Interactive manual model
355 building in COOT⁴⁹ and refinement with PHENIX.REFINE⁵⁰, using TLS in the final rounds,
356 against the higher resolution data were then performed. The final structure has 96.6% of
357 residues in the favored and 3.3% in allowed regions of the Ramachandran plot (**Table 1**). The

358 secondary structure contents were analyzed using PDBsum⁵¹ and the conservation using
359 ConSurf⁵². Figures were prepared using PyMOL⁵³ and ChimeraX 1.1⁵⁴.

360 ***Cryo-EM sample preparation, imaging, and data processing for FL-TgGAC***

361 FL-TgGAC was diluted to 0.2 mg ml⁻¹ in 20 mM HEPES, pH 8.0, 50 mM NaCl, 10 mM MgCl₂
362 with or without 1 wt% glutaraldehyde (GA). The sample with GA was kept on ice for 5 min
363 for crosslinking reaction before plunge freezing. 4 µl of the crosslinked or native sample were
364 applied to amylamine glow-discharged (25 mA, 30 s) Quantifoil R2/2 grids in the
365 environmental chamber of a Vitrobot Mark IV (FEI/Thermo) at 4°C and 95% humidity, and
366 the grid was blotted with filter paper for 4 s and then plunge frozen in liquid ethane at liquid
367 nitrogen temperature.

368 The grids were screened on a Talos Arctica microscope (FEI/Thermo) at 200 kV, and one of
369 the crosslinked TgGAC grids was selected for an overnight data collection using EPU v 2.11.
370 A total of 952 ten-frame movies were collected using a Falcon III camera in linear mode, with
371 dose rate and exposure time of 46 e/Å²/s and 1.52 s, respectively. The pixel size of the movies
372 is 1.61 Å, and the defocus range was set from -1.5 to -3.5 µm with 0.5 µm interval.

373 Pre-processing of the movies was conducted in Relion v. 4.0⁵⁵. The frames were aligned and
374 dose weighted with Relion's own motion correction (a typical micrograph shown in **Extended**
375 **Data Fig. 3b**), followed by CTF estimation with CTFFIND v. 4.4.13⁵⁶. Ten micrographs with
376 various defocus values were selected and picked with crYOLO⁵⁷ general model, after which
377 refinement for the picking was done manually. The selected coordinates were then used to train
378 a model in crYOLO v 1.8.2, which was then used to predict the coordinates of the particles
379 from the whole dataset. In total, 569554 raw particles were picked, extracted binned 2 (pixel
380 size 3.22 Å, box size 100), and transferred to CryoSPARC v. 3.3.1⁵⁸ for 2D classification. After
381 2D classification, 136937 particles were selected and re-extracted in Relion with full size (pixel
382 size 1.61 Å, box size 200). 3D classification was performed with ab-initial reconstruction in
383 CryoSPARC, and 69523 particles were selected and subjected to 3D refinement (non-uniform
384 refinement). The refined map was local filtered by Local Anisotropic Sharpening in Phenix v.
385 1.20.1⁵⁹. The workflow from movies to final map is displayed in **Extended Data Fig. 3c**. The

386 final refined map has a global resolution of 7.6 Å, calculated by gold-standard Fourier shell
387 correlation (**Extended Data Fig. 3d**). The crystal structure of FL-*TgGAC* was rigidly docked
388 into the cryo-EM map in Chimera v. 1.13.1⁵⁴ using the ‘fit in map’ function.

389 ***Negative stain sample preparation, imaging, and data processing for TgGAC subdomains***

390 Structures of the *TgGAC* subdomains were explored using the negative stain EM imaging
391 method. The coil 3 sample was diluted to 0.2 mg ml⁻¹ with the same buffer as used for FL-
392 *TgGAC*. The coil 1-2-3 sample was diluted to 0.2 mg ml⁻¹ in the same buffer supplemented
393 with 1 wt% GA. Coil 1-2 was diluted to 0.2 mg ml⁻¹ and split into two samples with 1 wt% GA
394 added into one of them. The samples were kept on ice for 4 min before pipetting 4 µl onto a
395 copper mesh grid with a continuous carbon film. The sample was blotted away with filter paper
396 from the side of the grid after 1 min, and 4 µl of 1 wt% sodium silicotungstate were immediately
397 applied to the grid. The stain was kept on the grid for 45 s before being blotted away using the
398 same method as above. The grid was then dried on filter paper before inserting into the
399 microscope.

400 Images were acquired with a CCD camera in a Tecnai Spirit TEM (FEI) operated at 120 kV
401 using SerialEM (v 3.7.6) for automatic data collection. For each sample, 200-300 single-frame
402 micrographs with an exposure time of 1 s were collected. Typical images of coil 1-2 (native
403 and crosslinked), coil 3 and coil 1-2-3 are shown in **Extended Data Fig. 6a**, **Extended Data**
404 **Fig. 6g**, **Extended Data Fig. 7a**, and **Extended Data Fig. 8a**. The pixel size used was 3.3 Å,
405 and the defocus range was -1.5 to -3 µm. The data processing protocol was identical to the
406 cryo-EM dataset except that no motion correction was performed. The resolutions for the final
407 refined maps are in the range of 20-23 Å. The workflow and the important steps of the data
408 processing for the negative stain dataset are shown in **Extended Data Fig. 6**, **Extended Data**
409 **Fig. 7**, and **Extended Data Fig. 8**. The crystal structures of the corresponding fractions of
410 *TgGAC* were rigidly docked into the 3D maps in Chimera v. 1.13.16.

411

412

413 ***Size exclusion chromatography-coupled small-angle X-ray scattering***

414 SEC-SAXS data were collected on the SWING beamline⁶⁰ at the Synchrotron SOLEIL, Paris,
415 France. SAXS data were obtained from FL-*Tg*GAC and *Tg*GAC coil 1-2-3 at concentrations 1
416 and 5 mg ml⁻¹, respectively. The protein samples were loaded onto an Agilent Biosec3-300 in
417 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1% sucrose, 0.5 mM TCEP at 0.3 ml min⁻¹. The SAXS
418 data were recorded using a detector distance of 2 m, and exposure time of 990 ms/frame, and a
419 wavelength of 1.033 Å. The data were processed and analyzed using programs from the
420 ATSAS package⁶¹. *Ab initio* models were generated using either DAMMIN⁶² or GASBOR⁶³.
421 The crystal structure of FL-*Tg*GAC was fitted to the experimental data using CRYSTAL⁶⁴. The
422 figures were generated using ChimeraX 1.1⁵⁴.

423 ***Actin cosedimentation assays***

424 To assess the binding of the *Tg*GAC subdomains to α-actin (produced and purified as
425 previously⁶⁵) and *Pf*ActI (expressed and purified as previously⁶⁶), a cosedimentation assays
426 were performed. *Pf*ActI in G buffer (10 mM HEPES, pH 7.5, 0.2 mM CaCl₂, 0.5 mM ATP,
427 and 0.5 mM TCEP) and α-actin (10 mM Tris-HCl, pH 7.5, 0.2 mM CaCl₂, 0.5 mM ATP, and
428 0.5 mM TCEP) were polymerized for 2 h at room temperature by adding F buffer to final
429 concentrations of 50 mM KCl, 4 mM MgCl₂, and 1 mM EGTA. The polymerized actins were
430 mixed with the *Tg*GAC subdomains to final concentrations of 4 and 0.5 μM, respectively. The
431 filaments were sedimented at 435000 g for 1 h at room temperature. Both pellet and
432 supernatant fractions were analyzed using SDS-PAGE and Coomassie Brilliant Blue staining.

433

434 ***Data availability***

435 The crystal structure coordinates and structure factor amplitudes have been deposited to the
436 Protein Data Bank (PDB code 8BT6) and the EM maps to the Electron Microscopy Data Base
437 (EMDB codes EMD-16257, EMD-16258, EMD-16259, and EMD-16260).

438 **References**

- 439 1. Frénal, K., Dubremetz, J. F., Lebrun, M. & Soldati-Favre, D. Gliding motility powers
440 invasion and egress in Apicomplexa. *Nature Reviews Microbiology* 15, 645–660 (2017).
- 441 2. Dobrowolski, J. M., Carruthers, V. B. & Sibley, L. D. Participation of myosin in gliding
442 motility and host cell invasion by *Toxoplasma gondii*. *Mol. Microbiol.* 26, 163–173
443 (1997).
- 444 3. Jacot, D. *et al.* An Apicomplexan Actin-Binding Protein Serves as a Connector and
445 Lipid Sensor to Coordinate Motility and Invasion. *Cell Host Microbe* 20, 731–743
446 (2016).
- 447 4. Tewari, R., Bailes, E., Bunting, K. A. & Coates, J. C. Armadillo-repeat protein
448 functions: Questions for little creatures. *Trends in Cell Biology* 20, 470–481 (2010).
- 449 5. Andrade, M. A., Petosa, C., O'Donoghue, S. I., Müller, C. W. & Bork, P. Comparison
450 of ARM and HEAT protein repeats. *Journal of Molecular Biology* 309, 1–18 (2001).
- 451 6. Dubey, J. P., Carpenter, J. L., Speer, C. A., Topper, M. J. & Uggla, A. Newly recognized
452 fatal protozoan disease of dogs. *J. Am. Vet. Med. Assoc.* 192, 1269–1285 (1988).
- 453 7. Dao, T. P., Majumdar, A. & Barrick, D. Capping motifs stabilize the leucine-Rich repeat
454 protein PP32 and rigidify adjacent repeats. *Protein Sci.* 23, 801–811 (2014).
- 455 8. Scotney, P. D. & Teh, T. Turn up the heat. *Nat. Energy* 3, 1015 (2018).
- 456 9. Brunette, T. J. *et al.* Exploring the repeat protein universe through computational protein
457 design. *Nature* 528, 580–584 (2015).
- 458 10. Parmeggiani, F. & Huang, P. S. Designing repeat proteins: a modular approach to
459 protein design. *Current Opinion in Structural Biology* 45, 116–123 (2017).
- 460 11. Darvill, N. *et al.* Structural Basis of Phosphatidic Acid Sensing by APH in
461 Apicomplexan Parasites. *Structure* 26, 1059–1071.e6 (2018).
- 462 12. Kobe, B. & Kajava, A. V. When protein folding is simplified to protein coiling: The
463 continuum of solenoid protein structures. *Trends in Biochemical Sciences* 25, 509–515
464 (2000).
- 465 13. Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Structure of the high
466 affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology
467 domain. *Cell* 83, 1037–1046 (1995).
- 468 14. Li, Z., Jaroszewski, L., Iyer, M., Sedova, M. & Godzik, A. FATCAT 2.0: Towards a
469 better understanding of the structural diversity of proteins. *Nucleic Acids Res.* 48, W60–
470 W64 (2020).
- 471 15. Lemmon, M. A., Ferguson, K. M., O'Brien, R., Sigler, P. B. & Schlessinger, J. Specific
472 and high-affinity binding of inositol phosphates to an isolated pleckstrin homology
473 domain. *Proc. Natl. Acad. Sci. U. S. A.* 92, 10472–10476 (1995).
- 474 16. Gelly, J.-C., Joseph, A. P., Srinivasan, N. & de Brevern, A. G. iPBA: a tool for protein
475 structure comparison using sequence alignment strategies. *Nucleic Acids Res.* 39, W18–
476 W23 (2011).
- 477 17. Tanio, M. & Nishimura, K. Analysis of the phospholipase C- δ 1 pleckstrin homology
478 domain using native polyacrylamide gel electrophoresis. *Anal. Biochem.* 431, 106–114
479 (2012).
- 480 18. Tanio, M. & Nishimura, K. Intramolecular allosteric interaction in the phospholipase C-
481 δ 1 pleckstrin homology domain. *Biochim. Biophys. Acta - Proteins Proteomics* 1834,
482 1034–1043 (2013).
- 483 19. Anand, K., Maeda, K. & Gavin, A.-C. Structural Analyses of the Slm1-PH Domain
484 Demonstrate Ligand Binding in the Non-Canonical Site. *PLoS One* 7, e36526 (2012).

485 20. Ceccarelli, D. F. J. *et al.* Non-canonical interaction of phosphoinositides with pleckstrin
486 homology domains of Tiam1 and ArhGAP9. *J. Biol. Chem.* 282, 13864–13874 (2007).

487 21. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. *Nature*
488 *Reviews Molecular Cell Biology* 9, 99–111 (2008).

489 22. Kappel, C., Zachariae, U., Dölker, N. & Grubmüller, H. An unusual hydrophobic core
490 confers extreme flexibility to HEAT repeat proteins. *Biophys. J.* 99, 1596–1603 (2010).

491 23. Grinthal, A., Adamovic, I., Weiner, B., Karplus, M. & Kleckner, N. PR65, the HEAT-
492 repeat scaffold of phosphatase PP2A, is an elastic connector that links force and
493 catalysis. *Proc. Natl. Acad. Sci. U. S. A.* 107, 2467–2472 (2010).

494 24. Carruthers, V. B. & Tomley, F. M. Microneme Proteins in Apicomplexans BT -
495 Molecular Mechanisms of Parasite Invasion: Subcellular Biochemistry. in (eds.
496 Burleigh, B. A. & Soldati-Favre, D.) 33–45 (Springer New York, 2008).

497 25. Tonkin, M. L. *et al.* Host cell invasion by apicomplexan parasites: Insights from the co-
498 structure of AMA1 with a RON2 peptide. *Science (80-)* 333, 463–467 (2011).

499 26. Heaslip, A. T., Nishi, M., Stein, B. & Hu, K. The Motility of a Human Parasite,
500 *Toxoplasma gondii*, Is Regulated by a Novel Lysine Methyltransferase. *PLoS Pathog.*
501 7, e1002201 (2011).

502 27. Bush, M. *et al.* An ensemble of flexible conformations underlies mechanotransduction
503 by the cadherin–catenin adhesion complex. *Proc. Natl. Acad. Sci. U. S. A.* 116, 21545–
504 21555 (2019).

505 28. Nicholl, I. D. *et al.* α -Catenin Structure and Nanoscale Dynamics in Solution and in
506 Complex with F-Actin. *Biophys. J.* 115, 642–654 (2018).

507 29. Lee, G. *et al.* Nanospring behaviour of ankyrin repeats. *Nature* 440, 246–249 (2006).

508 30. Conti, E., Müller, C. W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic
509 transport. *Current Opinion in Structural Biology* 16, 237–244 (2006).

510 31. Cingolani, G., Petosa, C., Weis, K. & Müller, C. W. Structure of importin- β bound to
511 the IBB domain of importin- α . *Nature* 399, 221–229 (1999).

512 32. Fournier, D. *et al.* Functional and Genomic Analyses of Alpha-Solenoid Proteins. *PLoS*
513 *One* 8, e79894 (2013).

514 33. Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. Conformational
515 Variability of Nucleo-cytoplasmic Transport Factors. *J. Biol. Chem.* 279, 2176–2181
516 (2004).

517 34. Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import
518 complex dissociation by RanGTP. *Nature* 435, 693–696 (2005).

519 35. Aramburu, I. V. & Lemke, E. A. Floppy but not sloppy: Interaction mechanism of FG-
520 nucleoporins and nuclear transport receptors. *Seminars in Cell and Developmental*
521 *Biology* 68, 34–41 (2017).

522 36. Friedrich, D., Marintchev, A. & Arthanari, H. The metaphorical swiss army knife: The
523 multitude and diverse roles of HEAT domains in eukaryotic translation initiation.
524 *Nucleic Acids Res.* 50, 5424–5442 (2022).

525 37. Takeichi, M. Dynamic contacts: Rearranging adherens junctions to drive epithelial
526 remodelling. *Nature Reviews Molecular Cell Biology* 15, 397–410 (2014).

527 38. Meng, W. & Takeichi, M. Adherens Junction: Molecular Architecture and Regulation.
528 *Cold Spring Harb. Perspect. Biol.* 1, a002899–a002899 (2009).

529 39. Dedden, D. *et al.* The Architecture of Talin1 Reveals an Autoinhibition Mechanism.
530 *Cell* 179, 120–131.e13 (2019).

531 40. Kanchanawong, P. *et al.* Nanoscale architecture of integrin-based cell adhesions. *Nature*
532 468, 580–584 (2010).

533 41. Schmitz, S. *et al.* Malaria parasite actin filaments are very short. *J. Mol. Biol.* 349, 113–
534 125 (2005).

535 42. Kumpula, E. P., Lopez, A. J., Tajedin, L., Han, H. & Kursula, I. Atomic view into
536 plasmodium actin polymerization, ATP hydrolysis, and fragmentation. *PLoS Biol.* 17,
537 1–28 (2019).

538 43. Vahokoski, J. *et al.* Structural Differences Explain Diverse Functions of Plasmodium
539 Actins. *PLoS Pathog.* 10, e1004091 (2014).

540 44. Howard, J. & Bechstedt, S. Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP
541 ion channel is the gating spring of mechanoreceptors. *Curr. Biol.* 14, R224–R226
542 (2004).

543 45. Tosetti, N., Dos Santos Pacheco, N., Soldati-Favre, D. & Jacot, D. Three F-actin
544 assembly centers regulate organelle inheritance, cell-cell communication and motility in
545 *Toxoplasma gondii*. *Elife* 8, e42669 (2019).

546 46. Kabsch, W. *et al.* XDS. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 125–132 (2010).

547 47. Pape, T. & Schneider, T. R. HKL2MAP : a graphical user interface for macromolecular
548 phasing with SHELX programs. *J. Appl. Crystallogr.* 37, 843–844 (2004).

549 48. Skubak, P. *et al.* A new MR-SAD algorithm for the automatic building of protein models
550 from low-resolution X-ray data and a poor starting model. *IUCrJ* 5, 166–171 (2018).

551 49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.
552 *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 486–501 (2010).

553 50. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with
554 phenix.refine. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 68, 352–367 (2012).

555 51. Laskowski, R. A. *et al.* PDBsum: A Web-based database of summaries and analyses of
556 all PDB structures. *Trends in Biochemical Sciences* 22, 488–490 (1997).

557 52. Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
558 evolutionary conservation in macromolecules. *Nucleic Acids Res.* 44, W344–W350
559 (2016).

560 53. Wagner, T. *et al.* SPHIRE-crYOLO is a fast and accurate fully automated particle picker
561 for cryo-EM. *Commun. Biol.* 2, 218 (2019).

562 54. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers,
563 educators, and developers. *Protein Sci.* 30, 70–82 (2021).

564 55. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for
565 automated cryo-EM single-particle analysis in RELION-4.0. *Biochem. J.* 478, 4169–
566 4185 (2021).

567 56. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
568 electron micrographs. *J. Struct. Biol.* 192, 216–221 (2015).

569 57. Wagner, T. *et al.* SPHIRE-crYOLO is a fast and accurate fully automated particle picker
570 for cryo-EM. *Commun. Biol.* 2, 218 (2019).

571 58. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms
572 for rapid unsupervised cryo-EM structure determination. *Nat. Methods* 14, 290–296
573 (2017).

574 59. Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and
575 atomic models. *Acta Crystallogr. Sect. D Struct. Biol.* 74, 814–840 (2018).

576 60. Thureau, A., Roblin, P. & Pérez, J. BioSAXS on the SWING beamline at Synchrotron
577 SOLEIL. *J. Appl. Crystallogr.* 54, 1698–1710 (2021).

578 61. Manalastas-Cantos, K. *et al.* ATSAS 3.0: Expanded functionality and new tools for
579 small-angle scattering data analysis. *J. Appl. Crystallogr.* 54, 343–355 (2021).

580 62. Svergun, D. I. Restoring low resolution structure of biological macromolecules from
581 solution scattering using simulated annealing. *Biophys. J.* 76, 2879–2886 (1999).

582 63. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. J. Determination of domain structure
583 of proteins from x-ray solution scattering. *Biophys. J.* 80, 2946–2953 (2001).

584 64. Svergun, D., Barberato, C. & Koch, M. H. CRYSTAL - A program to evaluate X-ray
585 solution scattering of biological macromolecules from atomic coordinates. *J. Appl.*
586 *Crystalllogr.* 28, 768–773 (1995).

587 65. Ignatev, A., Bhargav, S. P., Vahokoski, J., Kursula, P. & Kursula, I. The Lasso Segment
588 Is Required for Functional Dimerization of the Plasmodium Formin 1 FH2 Domain.
589 *PLoS One* 7, 33586 (2012).

590 66. Moreau, C. A. *et al.* A unique profilin-actin interface is important for malaria parasite
591 motility. *PLOS Pathog.* 13, e1006412 (2017).

592

593 **Acknowledgments**

594 We are grateful to Dr. Justin Molloy for enlightening discussions on the manuscript, motor
595 proteins, and the spring model and to Dr. Petri Kursula for discussions on the GAC structure
596 and for critical reading of the manuscript. We thank Drs. Chia-Ying Huang, Vincent Olieric,
597 and Sylvain Engilberge from Paul Scherrer Institute for valuable help during numerous data
598 collections for obtaining the phases for the crystal structure and Aleksi Sutinen for help with
599 SAXS data collection and preliminary data processing. We thank Dr. Andrea Nans of the
600 Francis Crick Institute Structural Biology Science Technology Platform for advice on data
601 collection and computing as well as Drs. Philip Walker and Andrew Purkiss of the Francis
602 Crick Institute Structural Biology Science Technology Platform and the Francis Crick Institute
603 Scientific Computing Science Technology Platform for computational support. We also
604 gratefully acknowledge the following synchrotron beam lines for crystal screening as well as
605 X-ray diffraction and SAXS data collection time: X06DA-PXIII at Swiss Light Source; P11 at
606 DESY; P12, P13, and P14 at EMBL/DESY: SWING at Synchrotron SOLEIL; and I03 and I04
607 at Diamond Light Source. We thank the Academy of Finland, Sigrid Jusélius foundation, Emil
608 Altonen foundation, Jane and Aatos Erkko foundation, and the Norwegian Research Council
609 for financial support. P.B.R. was supported by the Francis Crick Institute, which receives its
610 core funding from Cancer Research UK (CC2106), the UK Medical Research Council
611 (CC2106), and the Wellcome Trust (CC2106). For the purpose of Open Access, the authors

612 have applied a CC BY public copyright license to any Author Accepted Manuscript version
613 arising from this submission.

614 **Table 1. FL-TgGAC crystal structure data collection and refinement statistics.**

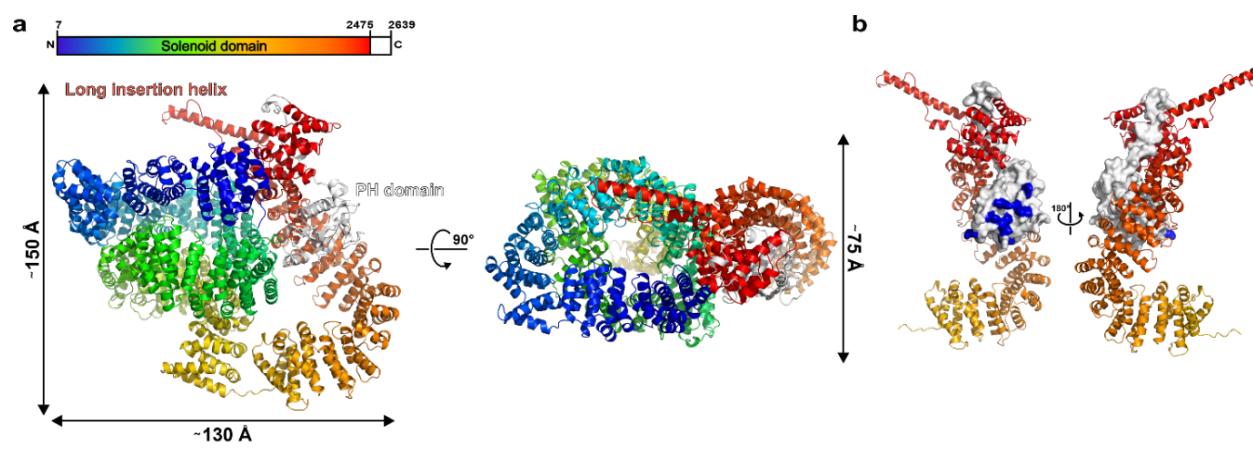
	Phasing *	Native *
Data collection **		
Space group	P212121	P212121
Cell dimensions		
<i>a, b, c</i> (Å)	121.5 148.7 185.7	121.4 146.7 185.9
α, β, γ (°)	90, 90, 90	90, 90, 90
Resolution (Å)	48 - 2.65 (2.815 2.65)	47 - 2.33 (2.39 - 2.33)
No. of total reflections	1319718 (202072)	1915291 (142575)
No. of unique reflections	188583 (29567)	141753 (10315)
R_{merge}	0.17 (2.02)	0.12 (3.08)
CC (½) (%)	99 (41)	100 (53)
$I / \sigma I$	8.9 (0.9)	14.2 (1.2)
Completeness (%)	99.4 (96.5)	99.9 (99.5)
Redundancy	7.0 (6.8)	13.5 (13.8)
Refinement **		
Resolution (Å)		47 - 2.33 (2.41 - 2.33)
No. of reflections used		141694 (13984)
No. of TLS groups		3
$R_{\text{work}} / R_{\text{free}}$		0.2296 (0.4061) / 0.2720 (0.4581)
No. protein residues		2633
No. atoms		
Protein		19955
Ligand/ion		9
Water		62
Average <i>B</i> -factors		
Protein		78.69
Ligand/ion		101.71
Water		69.75
R.m.s. deviations		
Bond lengths (Å)		0.002
Bond angles (°)		0.53
Ramachandran plot		
Favored (%)		96.6
Additionally allowed		3.3
Outliers		0.1

615 *A single crystal used for data collection. **Values in parentheses are for highest-resolution shell.

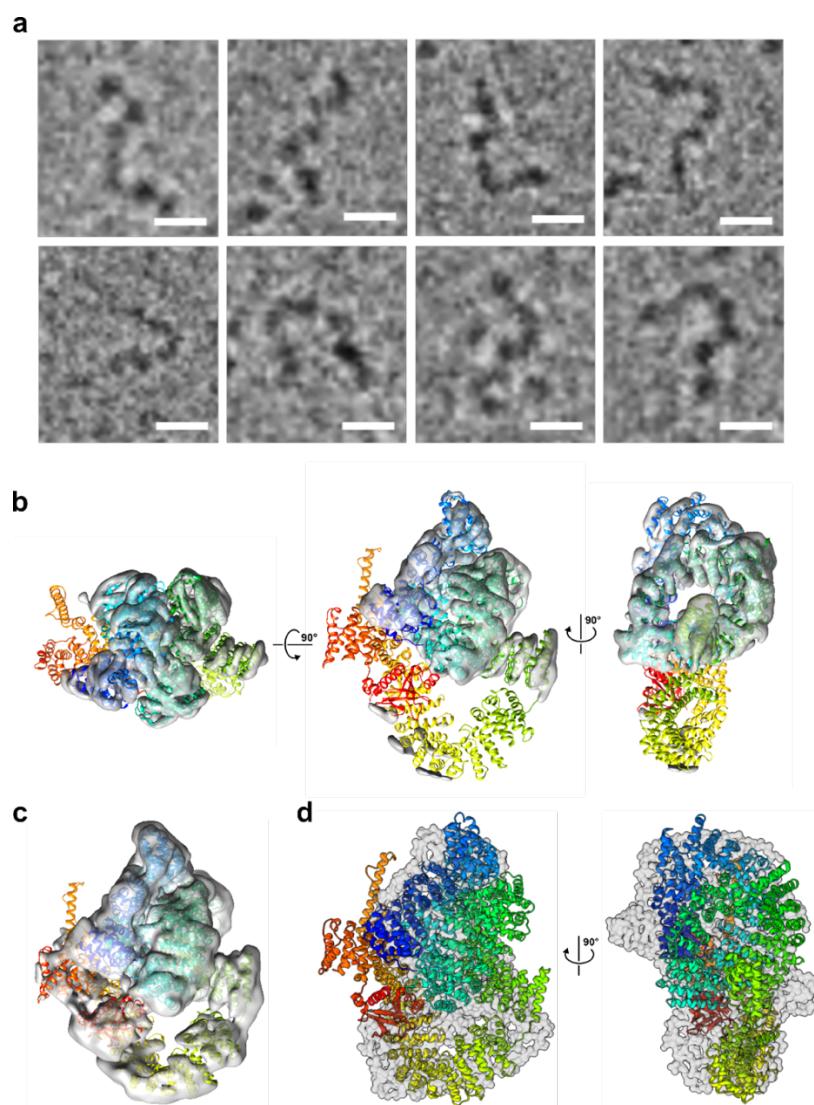
616

FIGURES

617

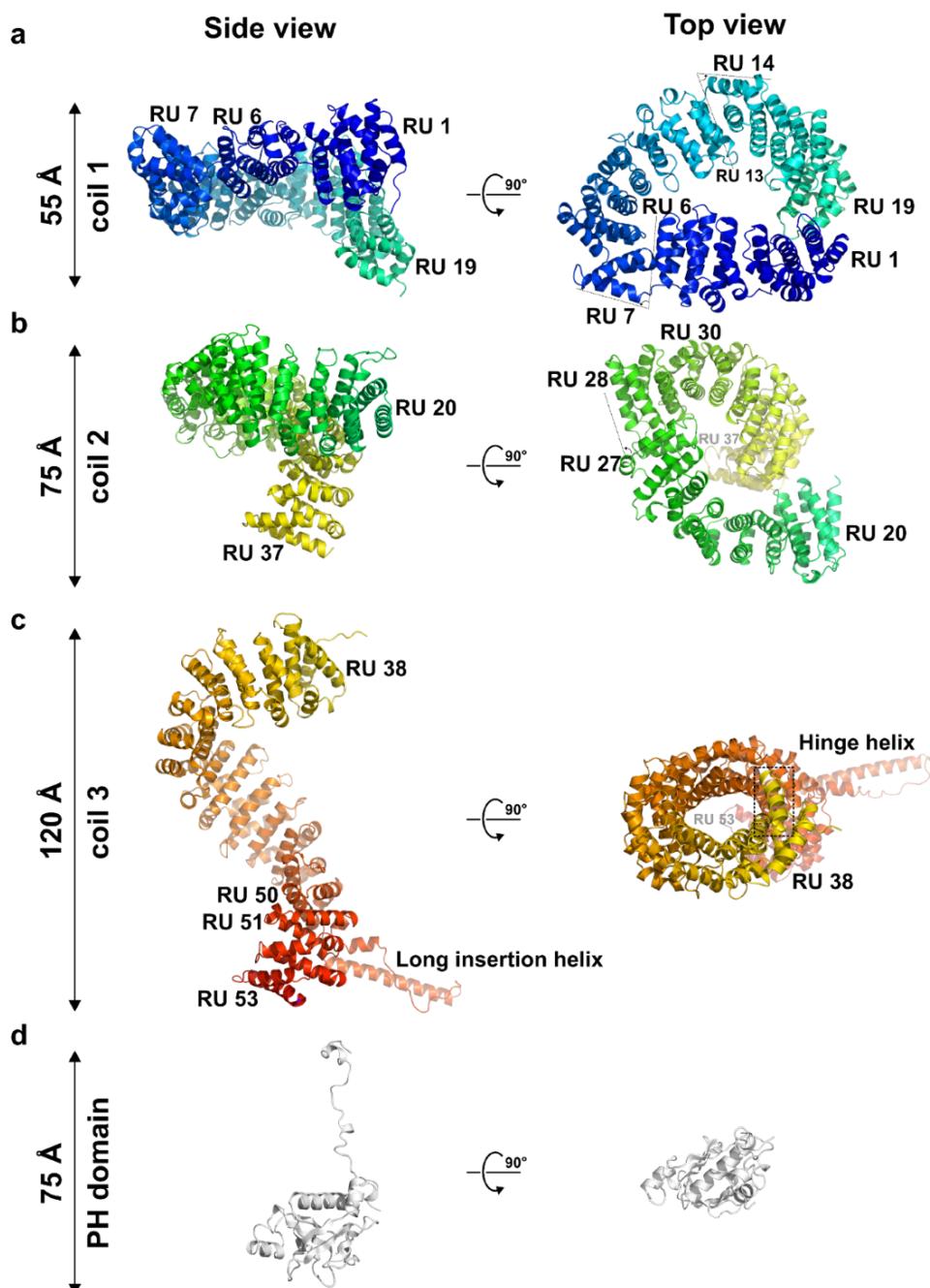

related to the manuscript

618

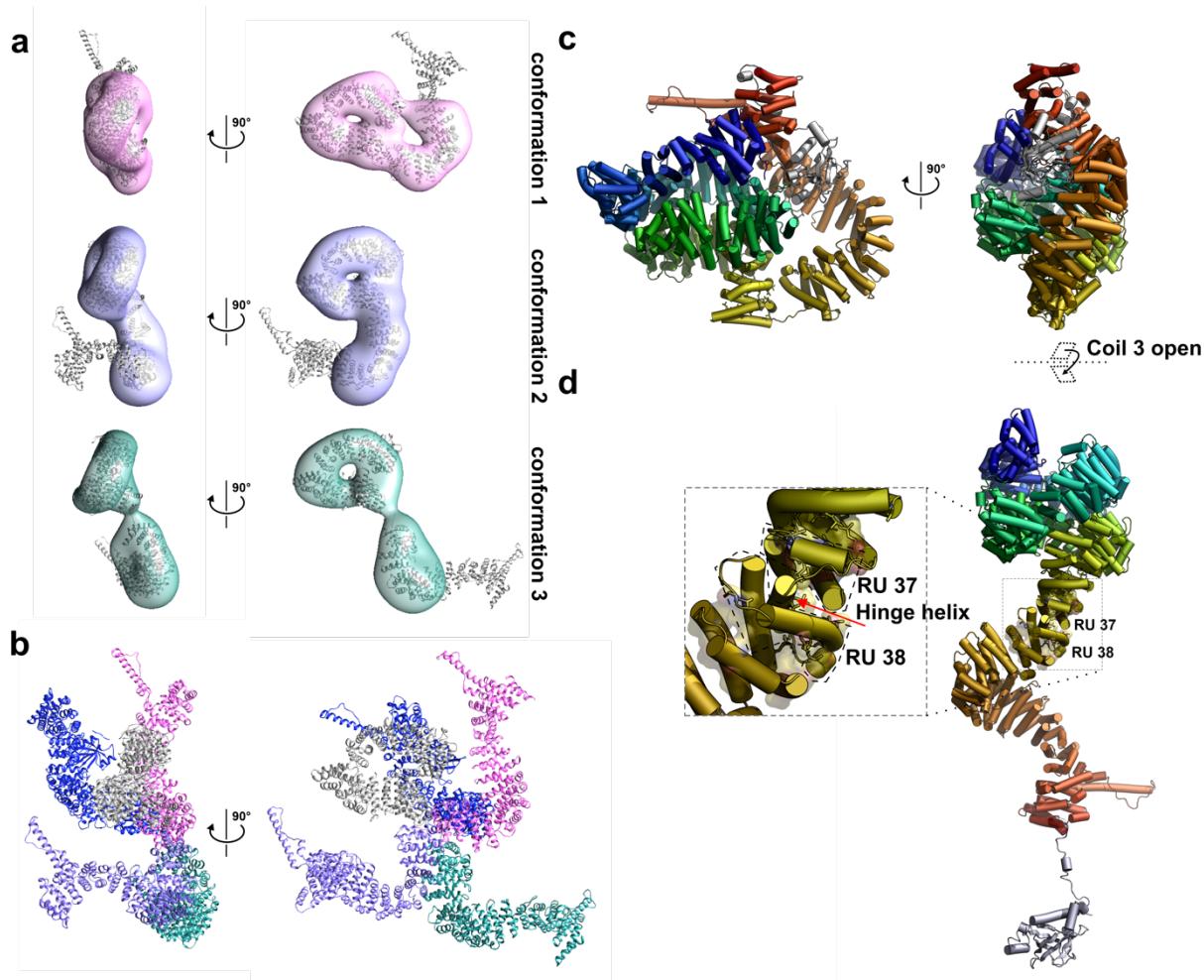

Structure of *Toxoplasma gondii* glideosome-associated connector suggests a role as an elastic element in actomyosin force generation for gliding motility

620

Yu-Fu Hung, Qu Chen, Isa Pires, Peter B. Rosenthal & Inari Kursula

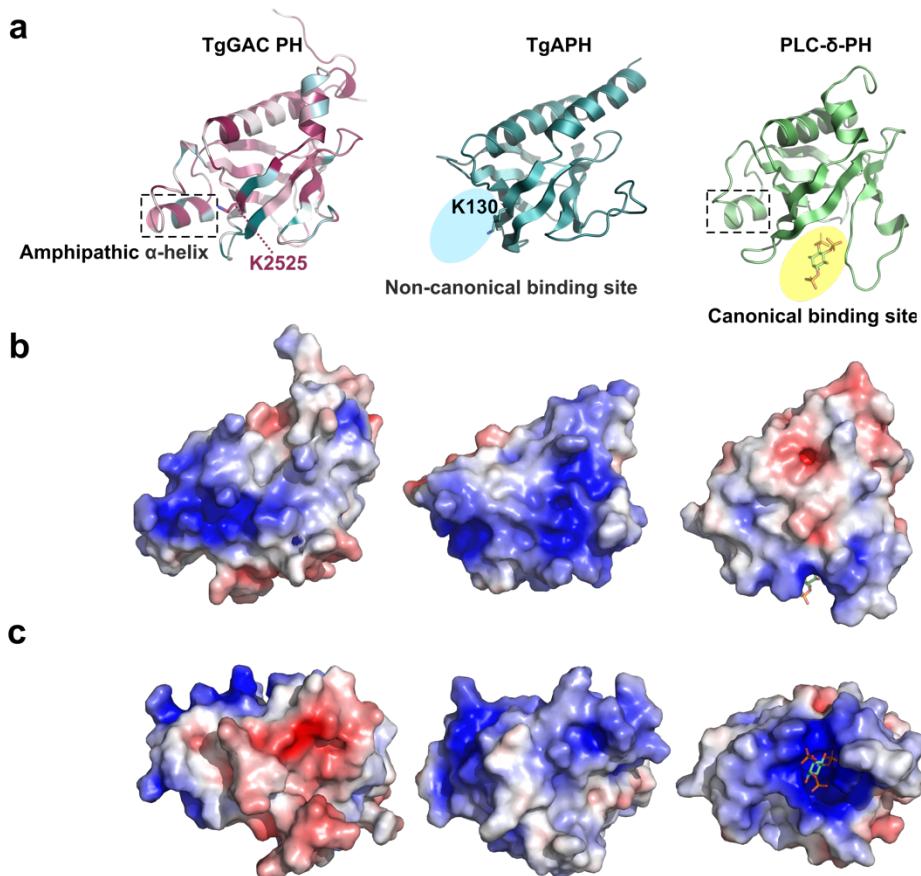


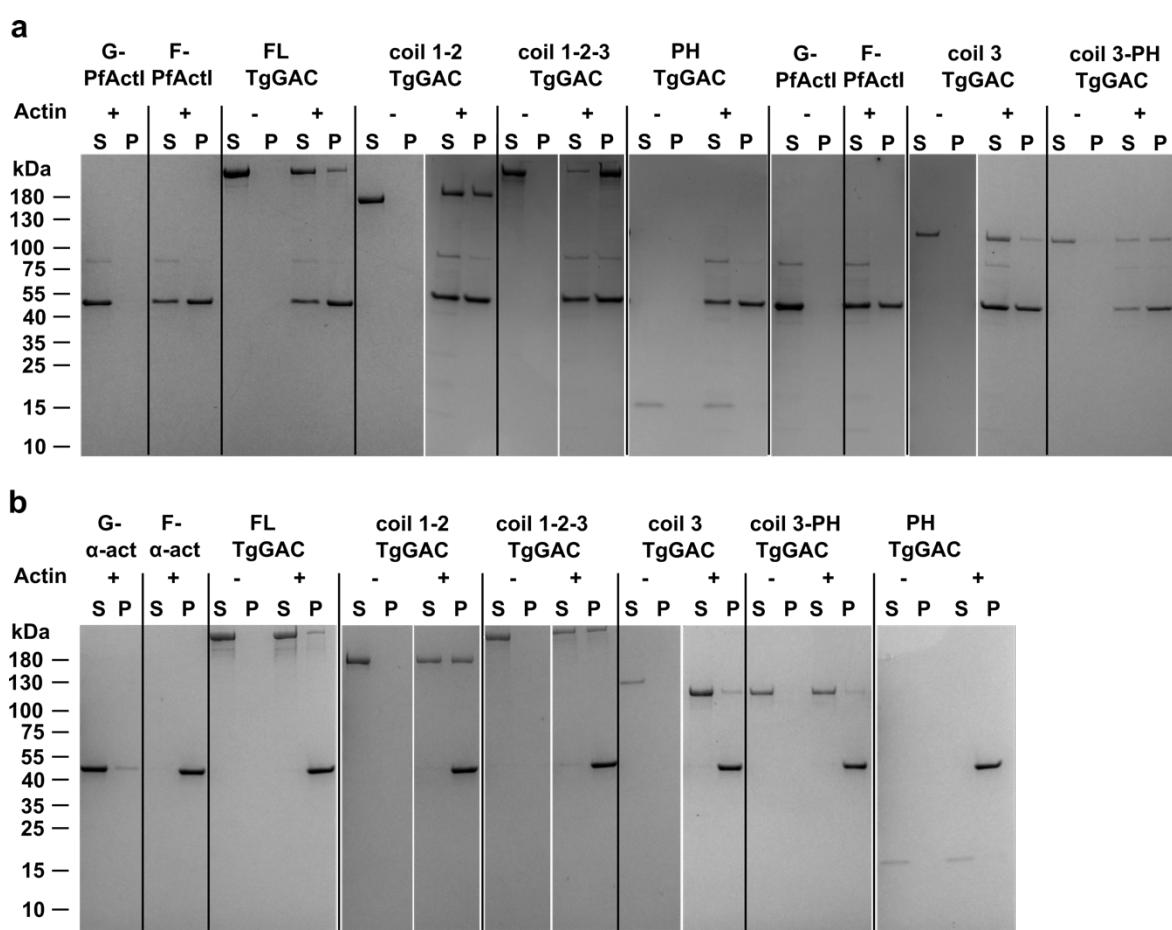
623 **Fig 1. Crystal structure of FL-TgGAC.** a. The overall crystal structure and domain
624 organization of TgGAC. The solenoid domain from the N to the C terminus is represented in
625 rainbow colors from blue to red, respectively. The PH domain is shown in light gray. The image
626 on the right (“top view”) is rotated 90° along the X axis compared to the image on the left
627 (“side view”). The solenoid domain consists of residues 7-2475 and the PH domain residues
628 2476-2639. The first six residues were not visible in the structure. The approximate dimensions
629 of the structure are indicated on the side. b. The packing of the PH domain against coil 3. Coil
630 3 is shown as cartoon in shades of red and the PH domain surface in light gray. The Lys/Arg
631 residues forming the non-canonical lipid-binding site are colored blue. The two images are
632 rotated by 180° along the Y axis.



633
634

635 **Fig 2. Cryo-EM results of FL-TgGAC.** a. Representative images of individual particles
636 selected from the native FL-TgGAC data set show the extended form and flexibility of the
637 native sample. Scale bars represent 10 nm. b. Local filtered cryo-EM map of crosslinked
638 TgGAC with the crystal structure fit into the volume in three different orientations, 90° rotated
639 with respect to the middle one. The threshold of the map is 2.2σ . c. The same map as in (b)
640 with the threshold set to 1σ , showing the density for the whole molecule. d. Manual
641 superposition of the FL-TgGAC crystal structure onto the SEC-SAXS envelope in two different
642 orientations, 90° apart.




Fig. 3. The subdomains of TgGAC. For visualization purposes, the subdomains have been separated in the figure and are colored as in Fig. 1 with rainbow colors for the solenoid domain and the PH domain in light gray. The left side shows the “side view” and the right side the “top view”, which is rotated by 90° about the X axis compared to the side view. The approximate dimensions of each of the subdomains are indicated on the side. a. Coil 1 is formed by RUs 1-19. RUs 6-7 and 13-14 are hinge regions, where the solenoid domain turns and forms a spiral conformation. b. From coil 1, the solenoid domain continues down to RU 20 at the beginning of coil 2, which ends at RU 37. RUs 27-28 form a hinge region, which allows the solenoid domain to spiral downwards to coil 3 with a decreasing radius. c. Followed by the hinge helix, coil 3 is constituted by RUs 38-53, continuing the trajectory screwing downwards with no influence from the long insertion helix between RUs 50 and 51. d. The PH domain is linked to the solenoid domain with a flexible loop region, which in the crystal structure turns back, so that the PH domain sits in the groove of coil 3.

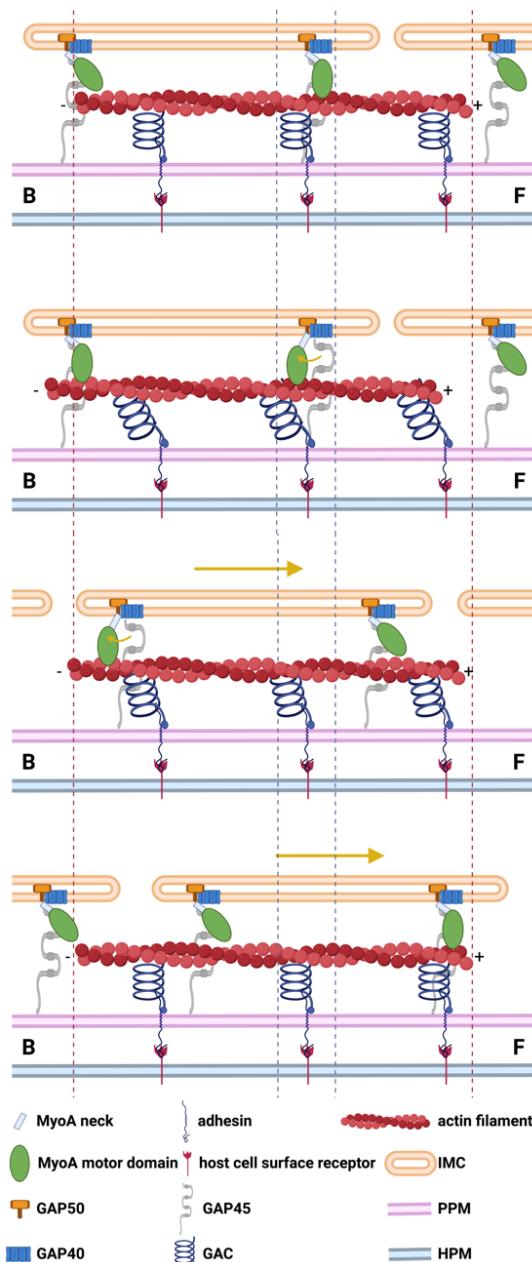

658
659

Fig 4. The flexible coil configuration of TgGAC. a-b. Volumes obtained by 3D analysis of negative stained micrographs of crosslinked coil 1-2-3 of *TgGAC* (no PH domain) showing three distinct 'open' conformations of *TgGAC*. a. Front and top views of EM volumes corresponding to three 'open' conformations of *TgGAC* with coil 2 and coil 3 models docked into the densities. b. Superposition of the three configurations in (a), with coil 2 in gray, and models of coil 3 having the same color codes as the EM maps in (a). The model in dark blue represents the position of coil 3 in the FL-*TgGAC* crystal structure. c. The compact conformation of FL-*TgGAC* in two different orientations, 90° apart. d. Hypothetical model of how the compact FL-*TgGAC* in panel (c) may convert to an extended conformation upon binding to an actin filament and adhesin and/or when subject to pulling forces. The hinge region is shown in the inset, and the hinge helix is indicated with an arrow. The continuous surface of the VIL clusters would be capable of supporting a continuous super-helical conformation also from the end of coil 2 onwards. The PH domain is also shown in an opened-up conformation, but it may also stay bound to the groove of coil 3 in this model.

688
689 **Fig 6. Cosedimentation of TgGAC with actin.** a. FL-TgGAC and all the subdomains, except
690 for the PH domain, cosedimented with filamentous PfActl. The experiment was performed as
691 biological triplicates and shown are representative gels of three. b. FL-TgGAC and all the
692 subdomains, except for the PH domain, cosedimented with vertebrate skeletal muscle α-actin.
693 This control experiment was performed only once. In both panels, S denotes the supernatant
694 and P the pellet fractions. G-actin served as an actin quality control. The molecular weight
695 marker sizes in kDa are indicated to the left of the gels.

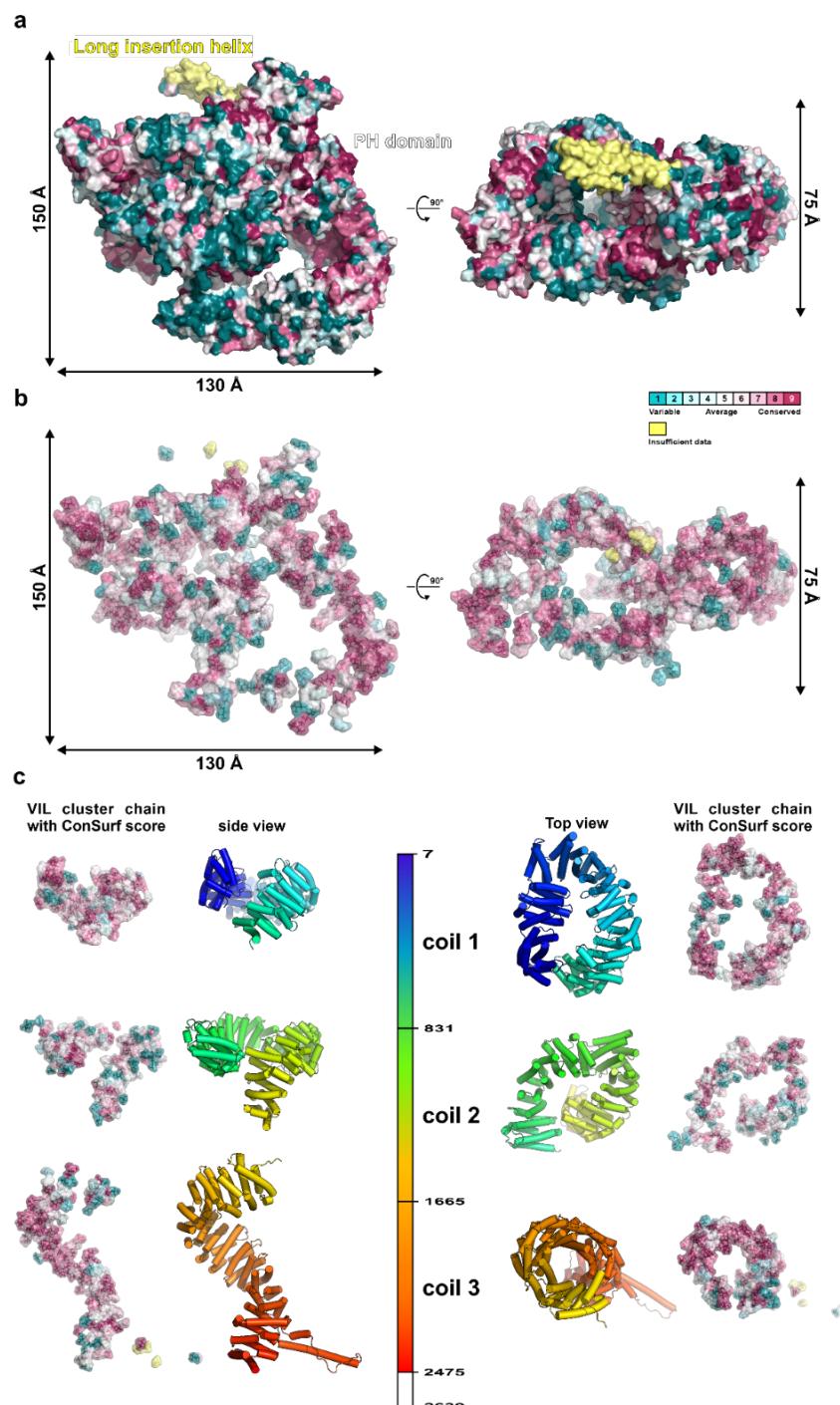
697
698

699 **Fig 7. The spring model of GAC as an elastic element in the glideosome.** a. GAC is in a
700 relaxed (contracted) conformation, connecting the actin filament to the adhesin in the parasite
701 plasma membrane (PPM). b. The MyoA power stroke shifts back the actin filament, leading to
702 extension of the GAC solenoid structure. Partial (c) and full (d) relaxation of the solenoid
703 domain to the contracted state lead to forward movement of the actin filament and the IMC
704 relative to the adhesin in the PPM and host plasma membrane (HPM). The GAC-actin filament
705 units can be periodically powered by successive myosins to transport the IMC-myosin complex
706 toward the apical end and eventually move the whole parasite forward. GAC as an elastic
707 element allows each actin filament to act as an independent unit, releasing the requirement of
708 synchronization of all the myosins. Depicted are GAC, an actin filament, MyoA motor and
709 neck domains, gliding associated proteins (GAP) 50, 40, and 45, an adhesin, a host cell surface
710 receptor, the IMC, PPM, and HPM. The large arrows represent the forward movement of the
711 parasite, the small arrows represent the MyoA power stroke direction. F denotes the apical
712 (front) and B the posterior (back) end of the parasite. The figure was generated using
713 BioRender.

714

EXTENDED DATA FILES

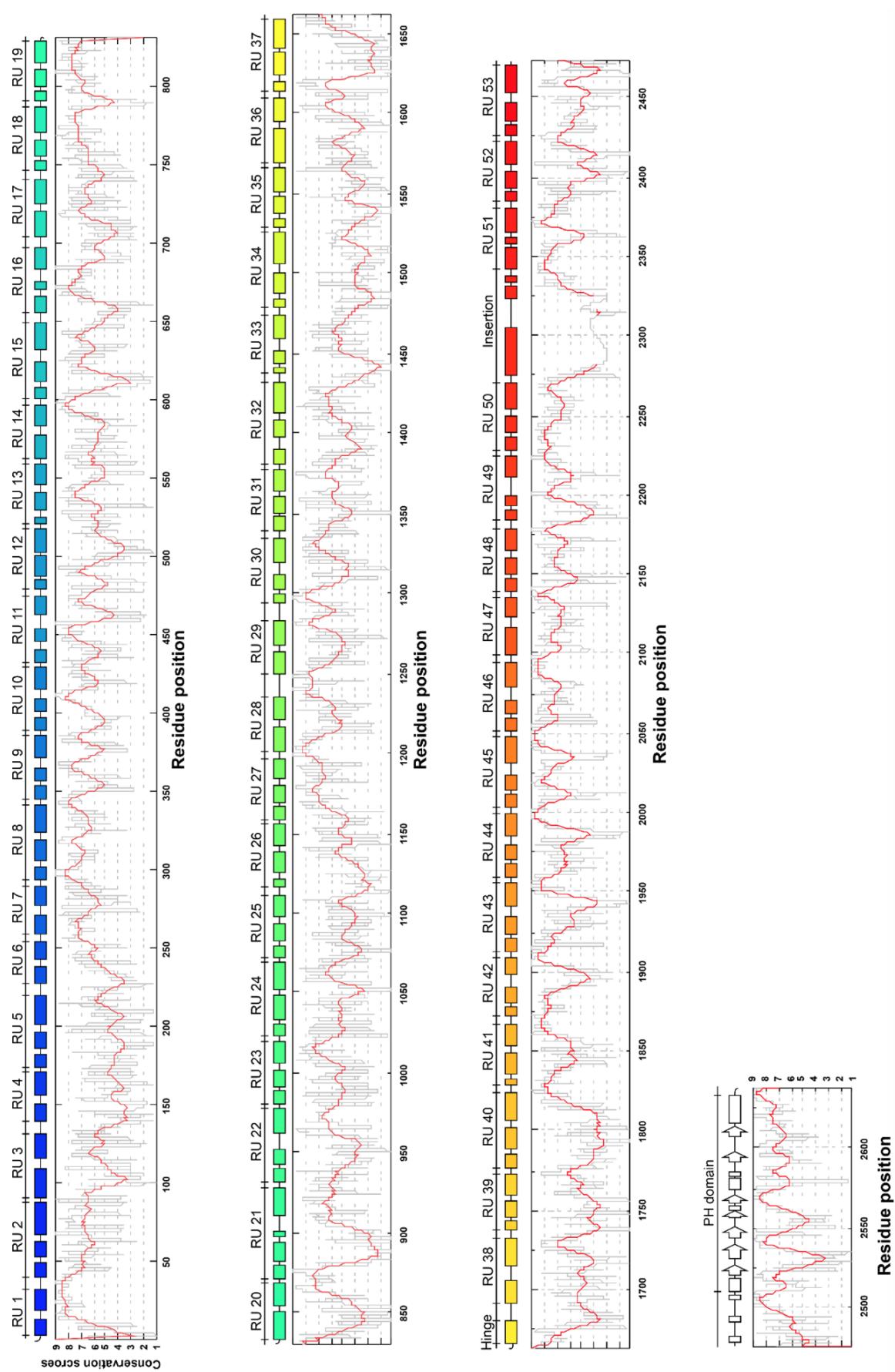
715


related to the manuscript

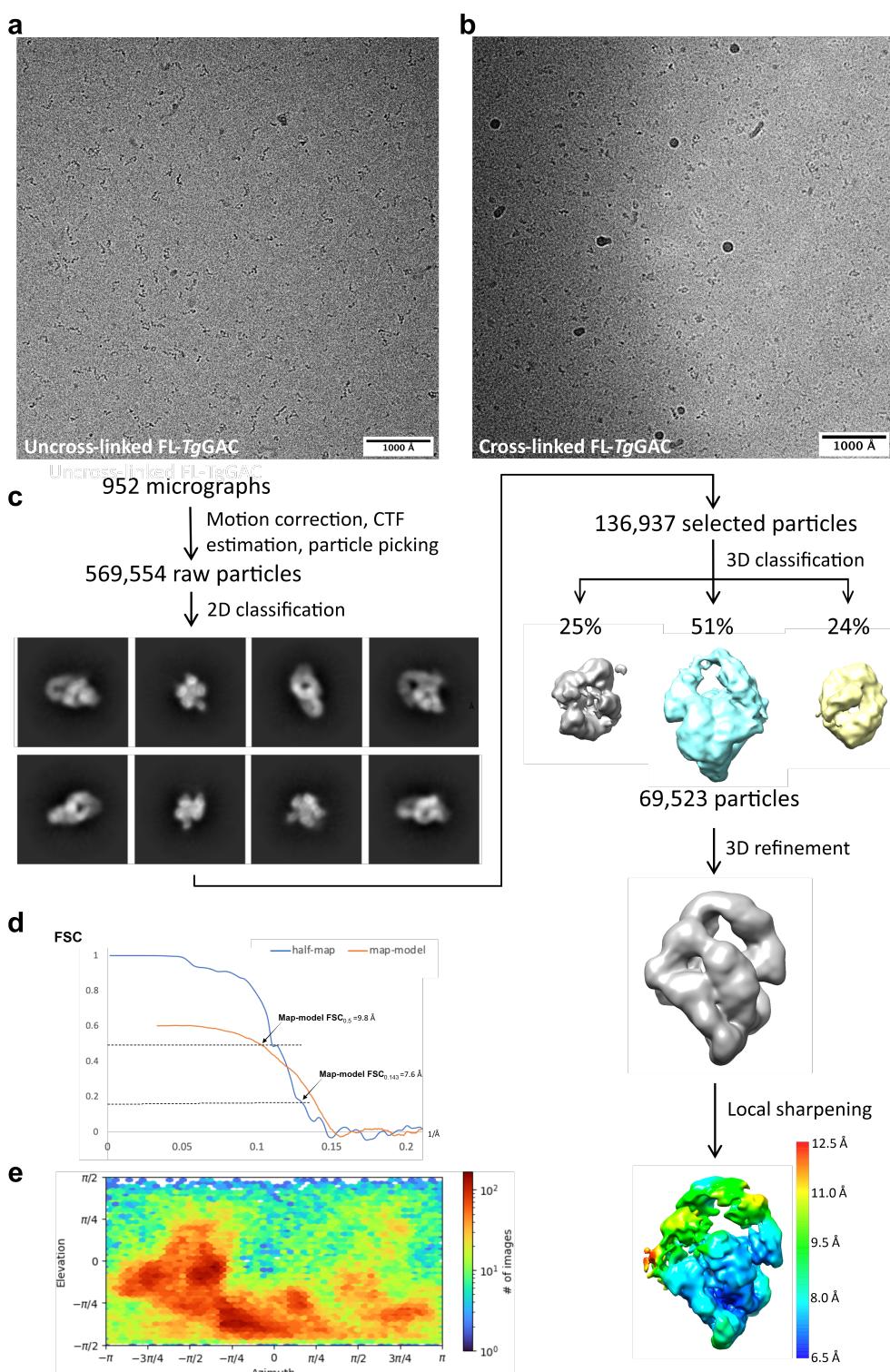
716

Structure of *Toxoplasma gondii* glideosome-associated connector suggests a role as an elastic element in actomyosin force generation for gliding motility

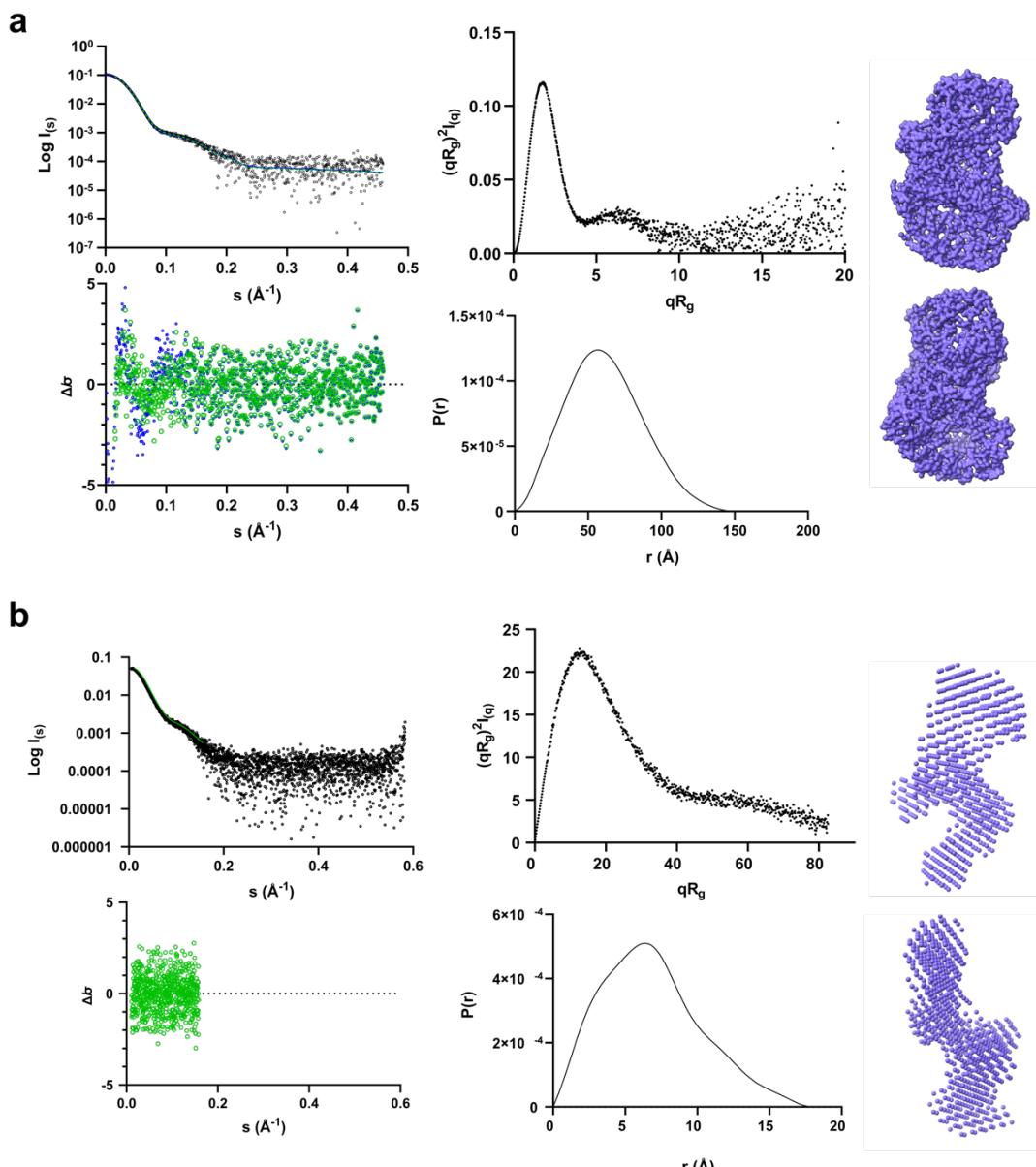
718


Yu-Fu Hung, Qu Chen, Isa Pires, Peter B. Rosenthal & Inari Kursula

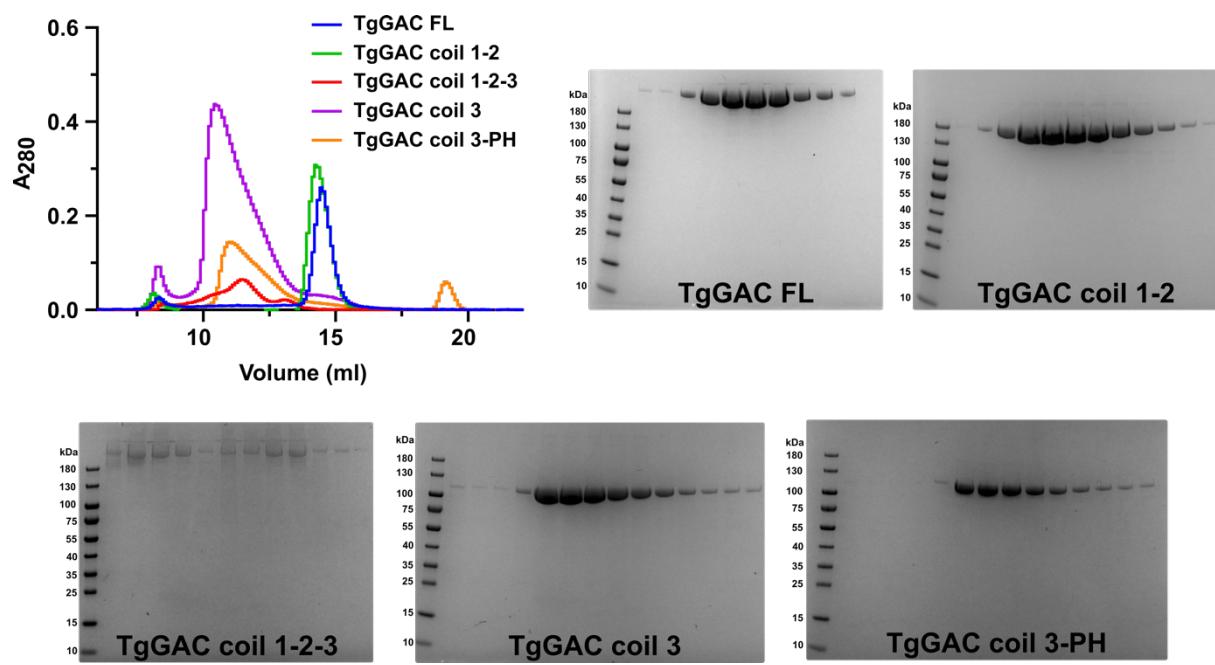
719
720


721 **Extended Data Fig. 1. Conservation along the TgGAC solenoid subdomain surface and**
722 **the VIL clusters.** a. The FL-TgGAC surface colored by the conservation scores from ConSurf.
723 The long insertion helix is shown in yellow due to insufficient data for conservation
724 comparison. The C-terminal region (coil 3) of GAC possesses the largest continuous conserved
725 surface. The N-terminal coil 1 contains some conserved regions, in particular on the “top” of
726 the coil. The middle region contains the lowest amount of conserved VIL clusters and surface.
727 b. The VIL cluster surface of TgGAC with the same color definition as in (a), showing that the
728 VIL clusters are generally conserved throughout the solenoid domain. c. The conservation of
729 the VIL clusters displayed in the “opened-up” form.

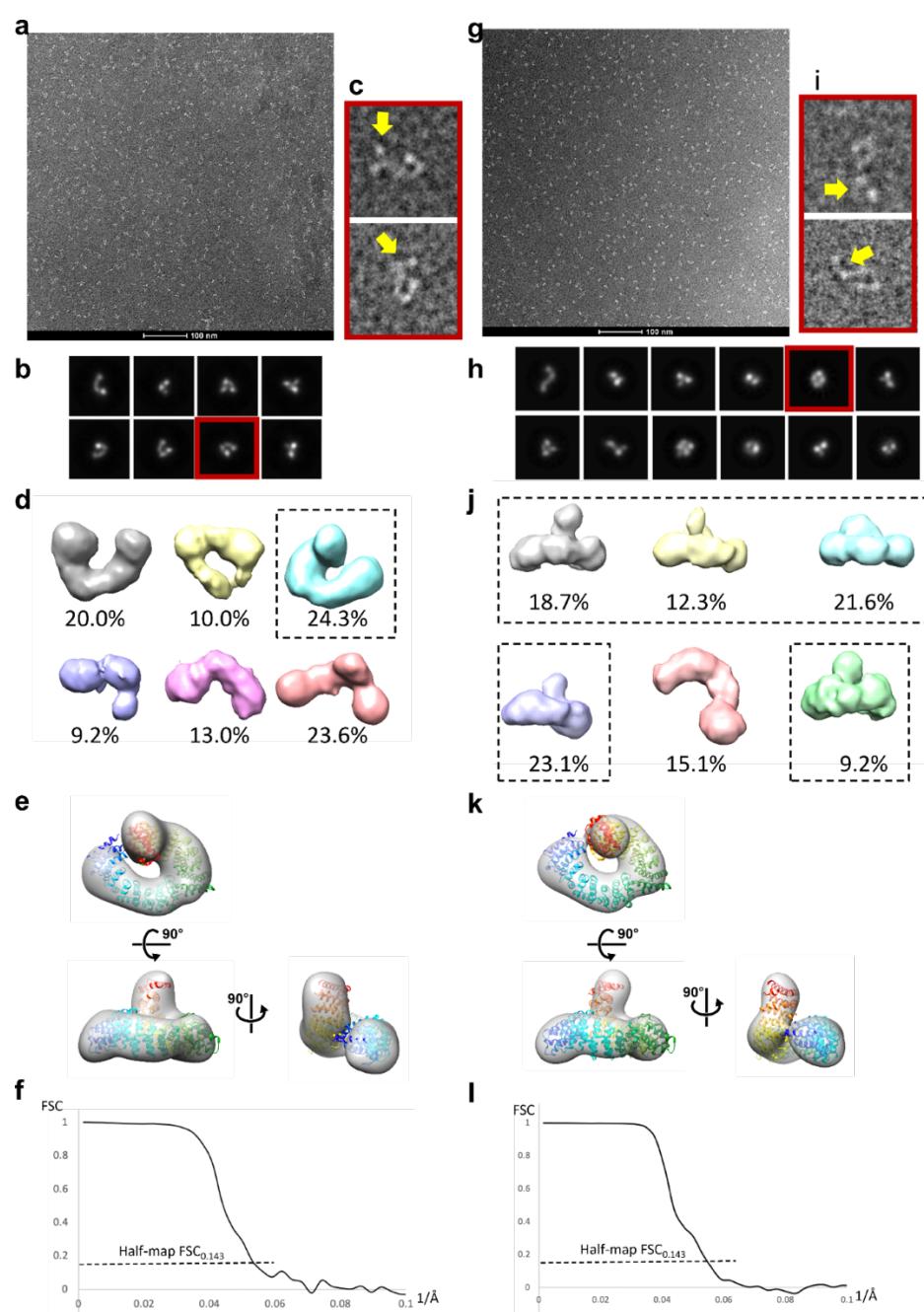
730

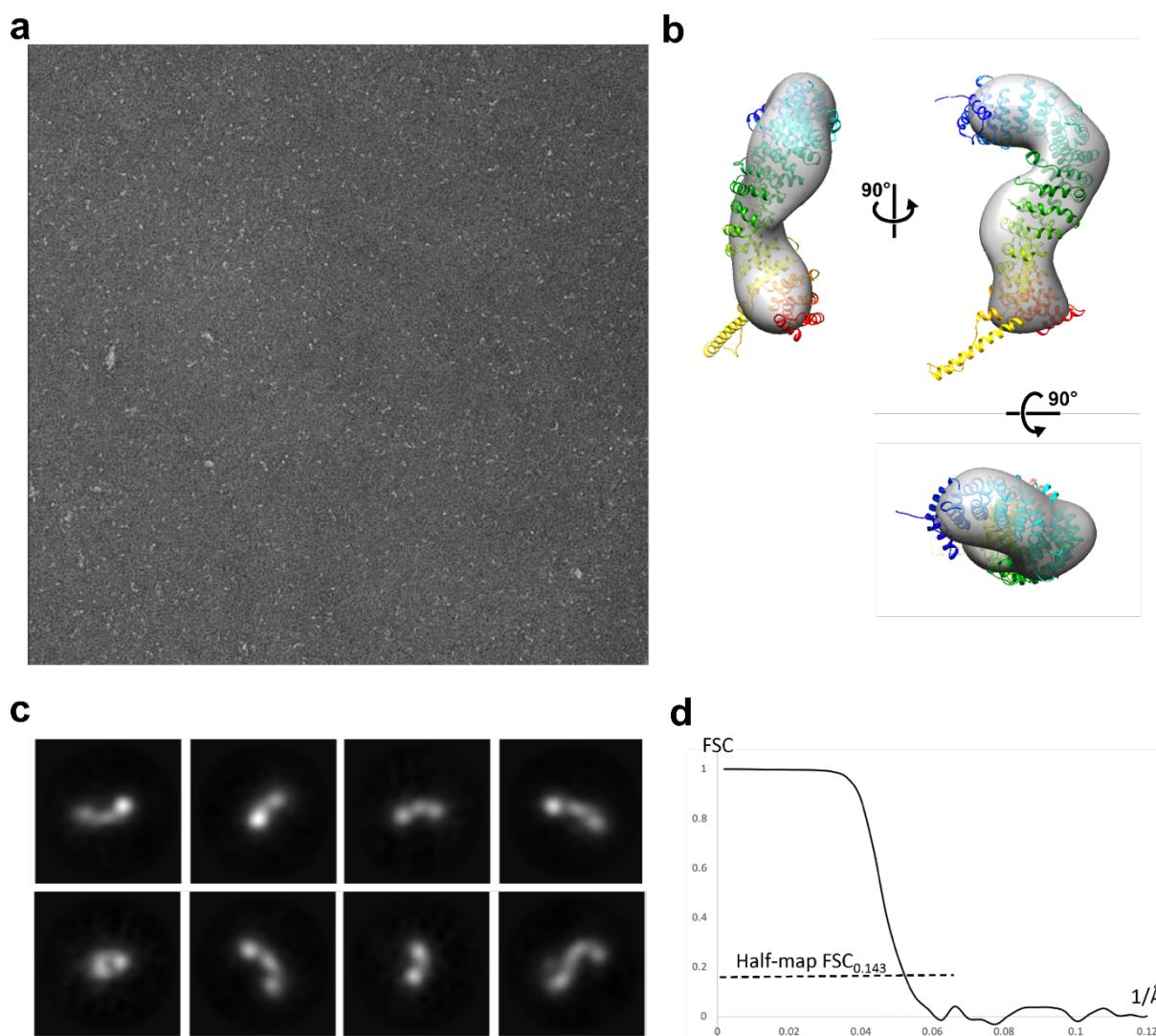

731

732 **Extended Data Fig. 2. Conservation plot of the *TgGAC* sub-solenoid domains and the**
733 **organization of the RUs.** The conservation score is plotted as a function of *TgGAC* residue
734 position across GAC sequences from apicomplexan species: *T. gondii*, *P. falciparum*, *N.*
735 *caninum* Liverpool, *Pliocolobus tephrosceles*, *Eimeria maxima*, *Cyclospora cayetanensis*,
736 *Besnoitia besnoiti*, *Babesia bigemina*, and *Theileria equi* strain WA. The grey trace indicates
737 scores for individual residues, the red trace indicates scores averaged over an 11-residue
738 stretch, smoothed by Origin. The secondary structure elements above the plot are colored in
739 rainbow colors from blue to red for the solenoid domain and white for the PH domain. The
740 RUs are numbered from 1 to 53, except for two helices, the hinge helix in between RU 37 and
741 RU 38 and the insertion helix in between RU 50 and 51.

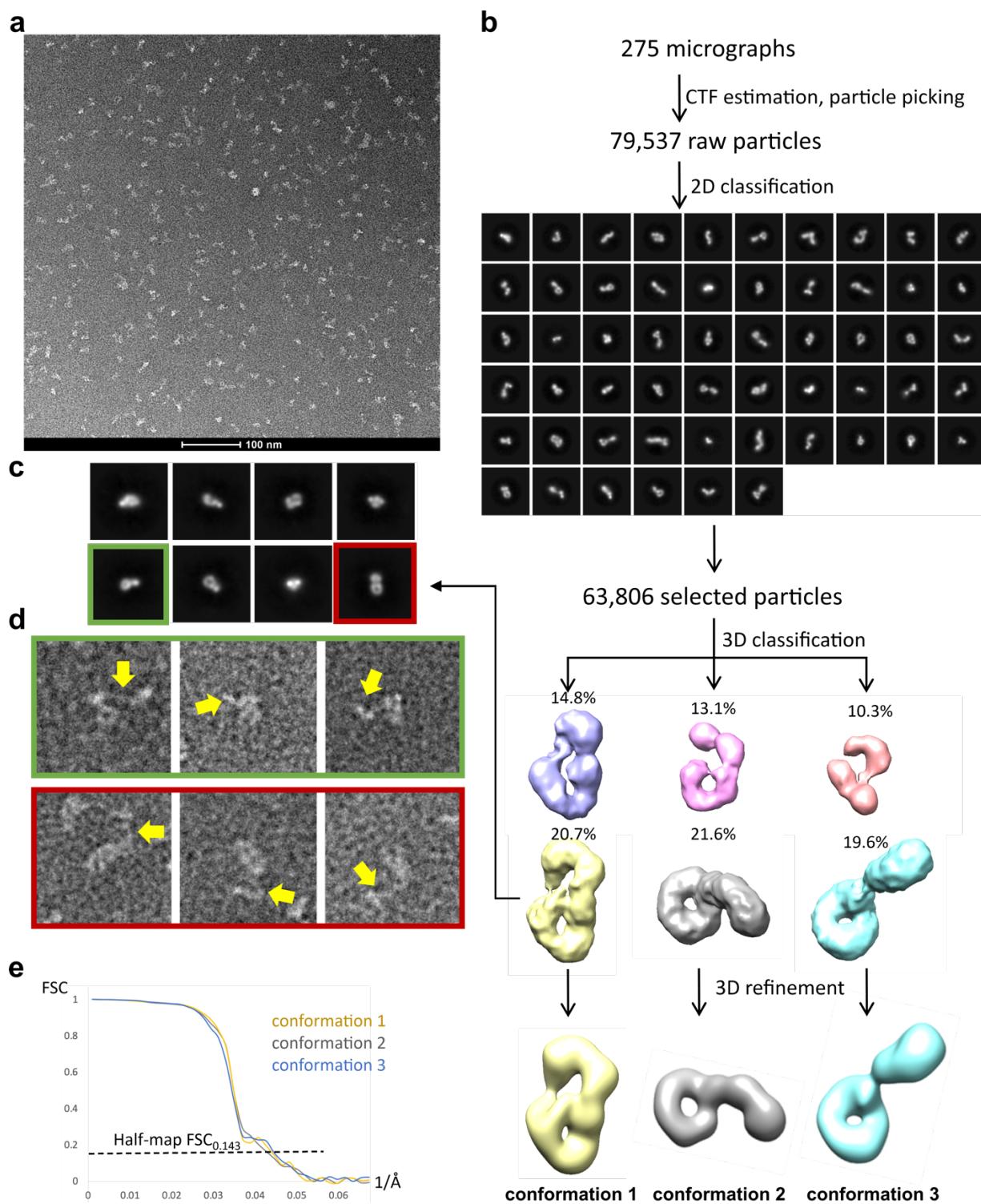

742
743

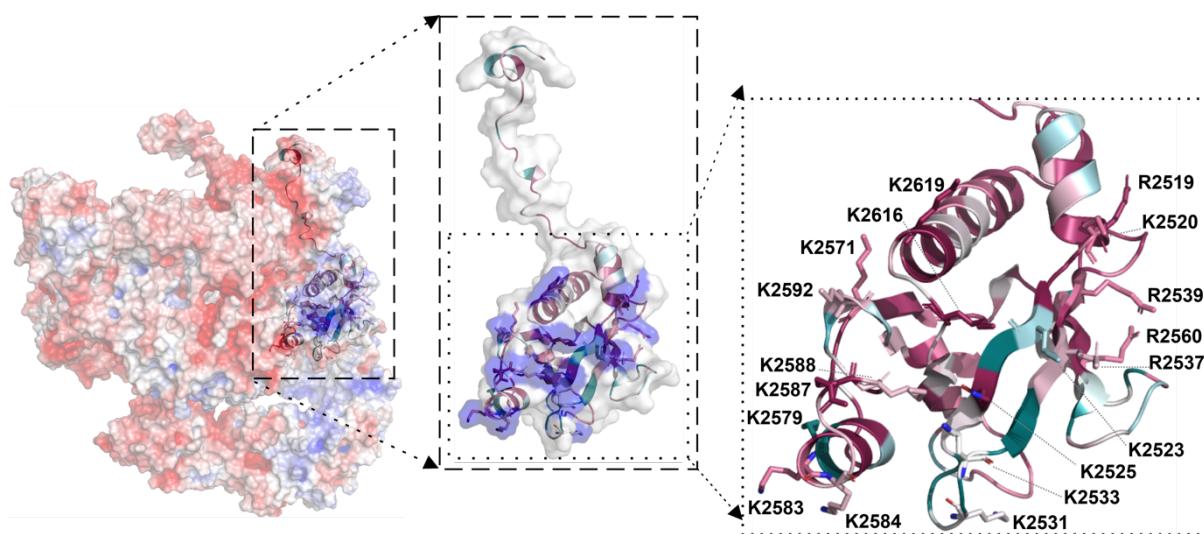
744 **Extended Data Fig. 3. Workflow of single particle analysis of FL-TgGAC.** a. A typical field
745 of view of native FL-TgGAC. b. A typical field of view of crosslinked FL-TgGAC. c. Flow
746 chart for data processing of crosslinked FL-TgGAC. Representative 2D classes are shown. The
747 final refined map is based on 69523 particles. The local sharpened map is colour coded with
748 local resolution. d. Gold standard Fourier shell correlation (FSC) and map-model FSC curves
749 with estimated resolutions calculated in Phenix. Coil 1-2 of the crystal structure of FL-TgGAC
750 was used for map-model FSC. e. Angular distribution of the particles used in the final
751 homogeneous refinement.


752
753


754 **Extended Data Fig. 4. Conformations of FL-TgGAC and TgGAC coil 1-2-3 obtained from**
 755 **SEC-SAXS.** a. Upper left: The fit of the GASBOR model of FL-TgGAC (green line) and the
 756 crystal structure superimposed using CRYSTAL (blue line) to the experimental SAXS data
 757 (black dots). The residuals are shown in the lower left panel, where $\Delta/\sigma = [I_{\text{exp}}(q) - I_{\text{mod}}(q)]/\sigma(q)$.
 758 The dimensionless Kratky plot (upper middle) suggests a folded globular protein. The distance
 759 distribution function (lower middle) suggests a globular protein with a maximum
 760 intramolecular distance of approximately 150 Å. On the right, an *ab initio* model generated
 761 using GASBOR is shown in two orientations. b. Upper left: The fit of the GASBOR model of
 762 TgGAC coil 1-2-3 (green line) to the experimental SAXS data (black dots). The residuals are
 763 shown in the lower left panel, where $\Delta/\sigma = [I_{\text{exp}}(q) - I_{\text{mod}}(q)]/\sigma(q)$. The dimensionless Kratky plot
 764 (upper middle) suggests an elongated, partially unstructured flexible protein. The distance
 765 distribution function (lower middle) suggests the presence of several distinct domains with a
 766 maximum intramolecular distance of approximately 180 Å. On the right, an *ab initio* model generated
 767 using DAMMIN is shown in two orientations.

768
769


770 **Extended Data Fig. 5. Analytical SEC of the TgGAC subdomains.** The SEC elution profiles
771 of the different TgGAC subdomains from a Superose 6 column is on the upper left. The curves
772 correspond to FL-TgGAC (black), coil 1-2 (green), coil 1-2-3 (red), coil 3 (blue), and coil 3-
773 PH (purple). The respective Coomassie-stained SDS-PAGEs are shown in the other panels.
774 The molecular weight marker sizes in kDa are indicated on the left side of each gel.



790
791

792 **Extended Data Fig. 7. Negative stain structure of TgGAC coil 3.** a. A negative stain image
793 of TgGAC coil 3 (native). b. Representative averaged 2D classes showing different viewing
794 angles. c. negative stain map of TgGAC coil 3 with the crystal structure. (d) Gold standard FSC
795 of the map in (c). The resolution is approximately 20 Å.

807
808
809 **Extended data Fig. 9. The *TgGAC* PH domain has a solvent-accessible positively charged**
810 **patch.** The electrostatic surface potential of FL-*TgGAC* is shown on the left. The insets show
811 the zoomed-in surface and a cartoon representation of the PH domain with the 18 Lys residues
812 highlighted in blue in the surface and as stick models and labeled in the cartoon representation.