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 2 

Abstract 20 

Background: Soil microbes play pivotal roles in global carbon cycling, however the 21 

fundamental interactions between microbes and their infecting viruses remain unclear. This is 22 

exacerbated with soil depth, where the patterns of viral dispersal, ecology, and evolution are 23 

markedly underexplored. To investigate viral communities across soil depth, we leveraged a 24 

publicly available metagenomic data set sampled from grassland soil in northern California. 25 

Results: 10,196 non-redundant vOTUs were recovered from soil sampled from 20 cm to 120 26 

cm below the surface. Viral prevalence was high throughout the soil depth profile, with viruses 27 

infecting dominant soil phyla, including Actinomycetota. Contrary to leading hypotheses, 28 

lysogeny did not dominate in the soil viral communities. Viral diversity was investigated at 29 

both the population-level (i.e., macro diversity) and strain-level (i.e., micro diversity) to reveal 30 

diverse ecological and evolutionary patterns of virus-host interactions in surface and 31 

subsurface soil.  32 

Conclusions: By investigating viral micro diversity in soil for the first time, we have 33 

uncovered patterns of antagonistic co-evolution across both surface and subsurface soils. 34 

Furthermore, we have provided evidence of soil viruses augmenting the remineralisation of 35 

soil carbon. While we continue to yield a more comprehensive understanding of soil viral 36 

ecology, our work appeals to future researchers to continue to investigate subsurface viral 37 

communities. 38 

Key words: Antagonistic co-evolution, Lysogeny, Macro diversity, Micro diversity, Positive 39 

selection, Soil depth, Virus-host interactions. 40 
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 3 

Background 42 

Soil microbes are integral members of terrestrial ecosystems, with microbial metabolism 43 

contributing to global carbon cycling [1]. As obligate parasites of microbes, viruses can control 44 

their hosts’ population size through lytic infections and influence their hosts’ metabolic 45 

potential through the expression of auxiliary metabolic genes (AMGs) [2–6]. In the oceans, 46 

where virus-host interactions have been more thoroughly studied, viral lysis is estimated to 47 

turnover ~ 20% of microbial biomass each day [7]. The subsequent liberation of dissolved 48 

carbon and nutrients increases microbial respiration and limits trophic transfer up the food web 49 

[8, 9]. Despite an appreciation for the ecological roles of viruses in marine ecosystems, the 50 

relevant functions of viruses in terrestrial ecosystems have received less attention. To resolve 51 

this, recent methodological developments have provided the means to investigate soil viral 52 

ecology through metagenomics [10–12], and we are beginning to uncover the ecosystem-level 53 

impacts of soil viruses [13].  54 

Integral to understanding soil viral ecology are the fundamentals of viral dispersal, 55 

prevalence, and persistence. The consequence of these factors is demonstrated by the 56 

structuring of viral communities across gradients of space [14–18], time [13, 16, 17], and 57 

root/soil compartment [13, 19]. However, most ecological studies have focussed on surface 58 

soils, rendering subsurface viral communities markedly underexplored. This is particularly 59 

alarming given the disparity in soil biogeochemistry between surface and subsurface niches. 60 

For example, more than half of terrestrial carbon stocks are sequestered in subsurface soils 61 

[20], with microbial respiration and biomass turnover dictating long-term carbon storage [21, 62 

22]. Additionally, subsurface microbial communities are key drivers of pollutant 63 

biodegradation, thus controlling their fate and dispersal to groundwater resources [23]. Given 64 

the pressures of viral infection on the mortality and metabolism of host populations, 65 
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investigations into subsurface soil ecology could inform global actions for mitigating climate 66 

change and promoting bioremediation.  67 

Numerous physicochemical properties of soil vary throughout its vertical profile [24, 25]. 68 

These factors shape the distribution of microbial populations such that community variation 69 

with depth is comparable to the variation observed between surface soils from different biomes 70 

[26]. Thus, the structuring of microbial communities may reflect variation in microbial 71 

responses to nutrient availability between ecological niches. Given the requirement of host 72 

cellular machinery for replication and the specificity of host infection, the structuring of viral 73 

communities is likely highly dependent on that of their host community. Subsequently, there 74 

is great importance in characterising the diversity of fundamental virus-host interactions.  75 

Amid exponentially decreasing host biomass, activity, and diversity in subsurface soil [26, 76 

27], virus-host interactions are likely to vary considerably with depth. For example, 77 

microscopic investigations have found that virus-to-bacteria ratios decrease with soil depth 78 

[28]. Lower virus-to-bacteria ratios have been associated with an increased prevalence of 79 

lysogeny [28, 29], a latent replication strategy where the viral genome replicates passively 80 

within the host’s chromosome until induced. Lysogenic infections can have significant impacts 81 

on the ecology and evolution of their host communities (hereafter referred to as “eco-82 

evolutionary interactions”) [30]. While temperate viruses, capable of lysogeny, have been 83 

predicted to dominate in soils [31–33], relevant metagenomic studies have failed to corroborate 84 

this [12, 13, 34]. The argument for such increased lysogeny, namely the reduced access to 85 

viable hosts [28, 29, 35], has a stronger case in subsurface soil. Therefore, more studies 86 

investigating subsurface viruses are required to determine infection strategy preferences 87 

throughout the soil depth profile. 88 

The co-evolution of viruses and their hosts contributes to the emergence and maintenance 89 

of phenotypic diversity in both partners [36–38]. This relationship is inherently antagonistic 90 
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since the adaptation of one partner disadvantages the survival of the other. However, we 91 

understand very little about in situ antagonistic co-evolution, and even less across 92 

environmental gradients such as soil depth. Given the stark differences in nutrient availability 93 

over short vertical distances [24, 25], which have been evidenced to impact co-evolution 94 

dynamics [39], we hypothesise that the eco-evolutionary interactions between viruses and their 95 

hosts vary throughout the soil depth profile. This is likely to implicate soil viruses in the major 96 

biogeochemical processes existing throughout soil, as has been demonstrated for marine 97 

ecosystems [8, 40]. 98 

In this study, we leveraged a publicly available metagenomic data set assembled from 99 

Californian grassland soil [41] to investigate viral communities from 20 cm to 115 cm below 100 

the soil surface. Grasslands cover ~	40% of non-glacial land area [42], store a third of global 101 

terrestrial carbon [43], and provide numerous ecosystem services from food production to 102 

erosion regulation [44]. This presents grassland ecosystems as an ideal model system for 103 

investigating the eco-evolutionary interactions between soil viruses and their microbial hosts. 104 

Two soil depth profiles were sampled, representing contrasting aboveground vegetation: under 105 

a Garry oak tree (“Garry Oak” samples) versus neighbouring grassland (“Hilly grassland” 106 

samples). To uncover patterns of viral dispersal, ecology, and evolution across soil depth, we 107 

assessed viral diversity at both the population-level (i.e., macro diversity) and strain-level (i.e., 108 

micro diversity). This study aimed to answer the following questions: (1) To what extent does 109 

soil depth shape the assembly of viral communities, and is this effect consistent between sites? 110 

(2) Does lysogeny vary throughout the soil depth profile, such that temperate viruses dominate 111 

in subsurface soil? (3) How do the eco-evolutionary interactions between viruses and their 112 

hosts vary throughout the soil depth profile? 113 

 114 
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Methods 115 

Field site. 116 

Soil was sampled previously [41] at the Sagehorn study site within the Eel River Critical 117 

Zone Observatory in Northern California. The site is underlain by the Central Belt of the 118 

Franciscan Formation, a mélange of sheared argillaceous matrix containing blocks of sandstone 119 

and other lithologies [45]. The soil profile comprises a surface organic-rich horizon (~ 30 cm) 120 

underlain by a clay-rich horizon (10 cm – 20 cm), directly above saprolite [46]. As a result of 121 

the low-porosity bedrock, the critical zone layers become entirely saturated during the winter 122 

wet season [46]. Sagehorn is primarily a grassland ecosystem, with scattered Garry oak 123 

(Quercus garryana) trees. The region has a Mediterranean climate, described by hot, dry 124 

summers (from May – September) and cool, wet winters. The average rainfall for the region is 125 

~ 1800 mm, with 1976 mm of precipitation recorded during the year that soil samples were 126 

taken [46].  127 

Sample collection. 128 

The collection of soil samples was previously performed at the Sagehorn study site in 129 

Northern California in June 2016, by Sharrar et al. [41]. The vertical soil depth profile was 130 

sampled at 20 cm, 40 cm, 60 cm, 80 cm, 100 cm, and 115 cm. Soil pits were dug using a 131 

jackhammer, and the walls of the pits were sampled on both sides with a sterile scoop, resulting 132 

in two samples per soil depth collected approximately 10 cm apart laterally. Soil was sampled 133 

at two sites: under a Garry oak tree (“Garry oak” samples) and from the grassland 134 

approximately 10 m away (“Hilly grassland” samples), for a total of 24 samples. 135 
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Metagenomic data set access. 136 

The metagenomes assembled from each soil sample described above were accessed from 137 

NCBI under project accession PRJNA577476 (sample accessions SAMN13153360-138 

SAMN13153383).  139 

Recovery of viral populations. 140 

Viral contigs were predicted from the pooled assembled metagenomes (PRJNA577476). 141 

Double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) viral contigs ≥ 5 kilobase 142 

pairs (kb) were predicted with DeepVirFinder v1.0 [47], VIBRANT v1.2.1 [48] and VirSorter 143 

v2.2.3 [49], using permissive viral score thresholds where relevant (≥ 0.8 for DeepVirFinder 144 

and ≥ 0.5 for VirSorter). The quality of viral contigs predicted from all three tools was assessed 145 

with CheckV v0.8.1 [50], and resulting trimmed viral sequences were annotated with DRAM 146 

v1.3 [51]. Annotated viral sequences were manually curated following the selection criteria 147 

outlined by Guo et al. [52]. Additionally, viral sequences with the most confident prediction 148 

scores from DeepVirFinder (with corresponding viral scores ≥ 0.95, 𝑝	 ≤ 0.05, and length ≥ 149 

10 kb) and from VIBRANT (with corresponding quality scores of “high quality draft” or 150 

“complete circular”, and length ≥ 10 kb) were retained. Viral sequences were clustered into 151 

viral operational taxonomic units (vOTUs) at 95% nucleotide identity across 85% of shorter 152 

sequence [53] using anicalc.py and aniclust.py scripts [50], resulting in 10,196 vOTUs ≥ 5 kb, 153 

representing approximately species-level viral populations. Additional functional gene 154 

annotations were provided with Prokka v1.14.6 [54] using the Prokaryotic Virus Remote 155 

Homologous Groups (PHROGs) database [55].  156 

To determine whether any recovered vOTUs represented previously isolated phage species, 157 

we clustered our vOTUs with the INfrastructure for a PHAge REference Database 158 

(INPHARED) of phage genomes (accessed February 2022) [56] using anicalc.py and 159 
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aniclust.py scripts [50]. Viral sequences were considered to represent the same species when 160 

they shared 95% nucleotide identity across 85% of shorter sequence [53].  161 

Taxonomy of viral populations. 162 

Taxonomic assessment of vOTUs was achieved through shared protein clustering using 163 

vConTACT2 v0.9.22 [57] with the INPHARED phage genome database (accessed February 164 

2022) [56], and otherwise default settings. The resultant genome network was visualised in R 165 

v4.0.5 [58] using ggnet2 from GGally v2.1.2 [59] and the Fruchterman-Reingold force-directed 166 

algorithm. Nodes (representing viral genomes) were connected by edges (representing shared 167 

protein homology), with significant connections forming viral clusters (VCs) representing 168 

roughly genus-level groups. Viral genomes sharing overlap with genomes from multiple VCs 169 

were considered as singletons. To further interrogate the similarity of recovered vOTUs to a 170 

database of > 600,000 environmental phage sequences, we leveraged the web-based 171 

PhageClouds tool [60], using an intergenomic distance threshold of 0.21.  172 

The phylogeny of jumbo phage vOTU and “jumbo-related” vOTU genomes was 173 

investigated using the DNA polymerase gene. The translated DNA polymerase gene sequences 174 

were queried against the INPHARED phage genomes database [56] (accessed June 2022) to 175 

identify closely related phage genomes using the ublast command from USEARCH v10.0.240 176 

[61] and a similarity E-value threshold < 0.001. For downstream visualisation, an outgroup of 177 

human alphaherpesvirus 1 was included in the analysis. The translated sequences of the DNA 178 

polymerase gene from the vOTUs and reference genomes were then aligned using MAFFT 179 

v7.271 [62, 63], with automated settings. Phylogenetic trees were constructed using IQ-TREE 180 

v1.6.3 [64–66], the Whelan and Goldman protein substitution model, and 1000 bootstrap 181 

replicates. Trees were subsequently visualised in R using ggtree v2.5.3 [67–69]. 182 
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Characterisation of viral populations. 183 

vOTUs were classified as temperate when they were identified by any of the three following 184 

methods. Firstly, if the viral contig was excised from a flanking host scaffold by CheckV. 185 

Secondly, vOTUs carrying at least one gene associated with lysogeny (i.e., transposase, 186 

integrase, excisionase, resolvase, and recombinase) were considered temperate. Lysogeny 187 

associated genes were identified using the Pfam domains: PF07508, PF00589, PF01609, 188 

PF03184, PF02914, PF01797, PF04986, PF00665, PF07825, PF00239, PF13009, PF16795, 189 

PF01526, PF03400, PF01610, PF03050, PF04693, PF07592, PF12762, PF13359, PF13586, 190 

PF13610, PF13612, PF13701, PF13737, PF13751, PF13808, PF13843 and PF13358, as 191 

previously described [70, 71]. Thirdly, vOTUs which formed a VC with at least one known 192 

temperate phage were also considered temperate.  193 

Host assignment was achieved using a combination of methods. Firstly, hosts were inferred 194 

using the microbial taxonomy assigned to the scaffold from which proviral sequences were 195 

excised from. Secondly, CRISPR spacers identified from assembled scaffolds using PILER-196 

CR v1.06 [72] were used to identify complementary protospacers among vOTU genomes using 197 

BLASTn, with default settings and allowing for ≤ 2 mismatches. Additionally, CrisprOpenDB 198 

[73] was used with default settings. Lastly, host genera were predicted de novo using WIsH 199 

v1.0 [74] and a null model trained against 9620 bacterial genomes, as previously described 200 

[70]. Given that some vOTUs had conflicting host predictions between methods, and that only 201 

a single host was considered per vOTU in our analyses, preferential assignment of hosts was 202 

ordered: provirus hosts > CRISPR spacer linkage to MAG > CRISPR spacer linkage to 203 

database genome > WIsH de novo prediction.  204 

Putative viral-encoded AMGs were identified using DRAM-v [51]. Due to the expected 205 

increased false positive signal arising from the high non-viral sequence space in the soil 206 

metagenomes, strict curation of candidate AMGs was performed, as suggested [75]. Briefly, 207 
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this included genes on viral contigs ≥ 10 kb or complete genomes, with an auxiliary score of 208 

1 – 3, and with both the “M” flag (corresponding to metabolic function) and the “F” flag 209 

(corresponding to genes within 5000 bases of the end of the viral contig).  210 

AMGs encoding carbohydrate-active enzymes (CAZymes) were further interrogated for the 211 

detection of conserved functional domains using the Conserved Domain Search (CD-Search) 212 

service [76, 77]. No CAZymes had the “A” flag from DRAM-v, which indicates tail-213 

association, implicating putative CAZymes with host metabolism instead of viral attachment. 214 

Abundance of viral populations. 215 

vOTU abundance was estimated by mapping raw metagenome reads against vOTU 216 

genomes using BBMap [78] with a minimum alignment identity of 90%. vOTUs were only 217 

considered present in a sample if ≥ 75% of the contig length was covered ≥ 1× by reads, as 218 

recommended [53, 79]. Raw reads were normalised by vOTU genome length and library 219 

sequencing depth to generate counts per kilobase million (CPM) using the following formula: 220 

((raw reads / genome length) / sample read depth) × 1 𝑒!. 221 

Recovery of microbial populations. 222 

Microbial operational taxonomic units (OTUs) were recovered using bacterial and archaeal 223 

ribosomal protein S3 (rpS3) sequences, as previously described [41]. Briefly, rpS3 sequences 224 

were identified by searching proteins predicted from the assembled metagenomes using a 225 

custom hidden Markov model. rpS3 protein taxonomy was subsequently inferred using 226 

BLASTp to search against a database of rpS3 proteins [80] with an E-value threshold of 1 𝑒"#$. 227 

While the vast majority of OTUs were assigned to bacterial phyla, some OTUs were assigned 228 

to the archaeal phylum Euryarchaeota or unknown phyla (Table S2). 229 
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In addition to OTUs, previously reconstructed [41] bacterial and archaeal metagenome-230 

assembled genome (MAG) sequences were accessed. Similarly, most of these genomes 231 

belonged to bacterial phyla (Table S3).  232 

Abundance of microbial populations and metagenome-assembled genomes. 233 

The abundance of OTUs and MAGs were estimated by mapping raw metagenome reads 234 

against rpS3-containing scaffolds and MAG genomes, respectively, using BBMap with a 235 

minimum alignment identity of 98%. OTUs and MAGs were only considered present in a 236 

sample if ≥ 75% of the contig length was covered. Coverage per base pair was normalised for 237 

sample sequencing depth using the following formula: (raw coverage/sample read depth) × 238 

average read depth across samples. 239 

Viral micro diversity. 240 

The nucleotide diversity (𝜋) of viral populations and the proportion of non-synonymous to 241 

synonymous polymorphism ratio (pN/pS) of each viral gene in each sample was estimated with 242 

Metapop [81] using BAM files from read mapping (see above) and default parameters, 243 

including thresholds of > 70% genome coverage and > 10 × average read depth. The total 244 

micro diversity of each sample was calculated by averaging over bootstrapped 𝜋 values, as 245 

previously described [82].  246 

Genes under positive selection were identified with pN/pS ratios < 1. Genes encoding 247 

putative ABC transporters were further interrogated for the detection of conserved functional 248 

domains using CD-Search.  249 

Consensus vOTU sequences were constructed using the most common allele from variant 250 

sites identified using inStrain v1.5.7 [83] and BAM files from read mapping. Variants were 251 

called if a site had a minimum of five viral scaffold reads. Strain-level heterogeneity was 252 

subsequently estimated by computing the pairwise ANI of these sample-specific consensus 253 
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sequences. Pairwise comparisons were only considered for analysis when the genome coverage 254 

between samples was > 25%. 255 

Identification of anti-phage systems. 256 

Anti-phage systems were identified from MAGs using DefenseFinder [84, 85] (accessed 257 

May 2022), with default settings. Only MAGs carrying complete anti-phage systems i.e., with 258 

all genes relating to the anti-phage system detected on the scaffold, were considered. 259 

Data analysis and visualisation. 260 

All statistical analyses were conducted using R v4.1.3 [58]. Viral community alpha (within-261 

sample) diversity was described with Shannon’s 𝐻 index computed on vOTU CPM profiles 262 

with phyloseq v1.38.0 [86]. Viral community evenness was estimated with Pielou’s 𝐽 index. 263 

Viral community beta (between-sample) diversity was described by computing a Bray-Curtis 264 

dissimilarity matrix from square root transformed vOTU CPM values, and subsequently 265 

visualised with non-metric multidimensional scaling (NMDS) ordination using vegan v2.6.2 266 

[87]. The same method was used for microbial community beta diversity, using normalised 267 

coverage values. Permutational multivariate analysis of variance (PERMANOVA) tests and 268 

Mantel tests were also performed with vegan. Pearson’s correlation coefficients and linear 269 

regression slopes were calculated with stats v4.2.1. Differential abundance analysis was 270 

performed on raw read counts with DESeq2 v1.34.0 [88]. Genome maps in Figure S10 were 271 

visualised with gggenes v0.4.1 [89]. Fig. S5B was made with ComplexUpset v1.3.3 [90, 91]. 272 

All remaining plots were generated with ggplot2 v3.3.6 [92].  273 

 274 
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Results 275 

Soil viral communities were structured with soil depth at both the population-level and 276 

strain-level. 277 

To investigate viral communities with soil depth, we leveraged a publicly available 278 

metagenomic data set sampled from grassland soil in northern California [41]. Soil samples 279 

were previously collected at six intervals between 20 cm and 115 cm below the surface, at two 280 

sites representing contrasting aboveground vegetation: under a Garry oak tree (“Garry Oak” 281 

samples), and neighbouring grassland (“Hilly grassland” samples). In total, 24 assembled 282 

metagenomes were used to recover viral populations (vOTUs) using a combination of viral 283 

prediction tools. This yielded 10,196 non-redundant vOTUs (> 5 kb), representing 9664 284 

dsDNA viral species and 532 ssDNA viral species (Table S1), with 292 vOTUs (2.9% of total) 285 

identified as complete or high-quality viral genomes. The mean vOTU genome length was ~ 286 

12 kb, while 19 vOTUs had genome lengths > 200 kb (largest 415,894 bp) and represented 287 

“jumbo phages” [93], of which 18 where classified as high-quality genomes.  288 

To estimate the similarity of recovered vOTUs with all currently available phage genomes 289 

[56], shared protein-based classification was performed using vConTACT2 [57] (Fig. S1). The 290 

resultant network contained viral clusters (VCs) representing roughly genus-level taxonomic 291 

groups (Fig. S1A). There were 4124 (42.7% of total) dsDNA vOTUs and 129 (24.2% of total) 292 

ssDNA vOTUs which formed 1310 VCs and 89 VCs, respectively (Table S1). However, only 293 

ten VCs included both our vOTUs and phage genomes that had been previously isolated, 294 

demonstrating the novel viral taxonomic diversity accessed from subsurface soil in this study. 295 

The analysis was expanded to include > 600,000 previously identified environmental viral 296 

sequences, using PhageClouds [60]. Our vOTUs had intergenomic distances < 0.21 with only 297 
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85 previously discovered viral sequences in public databases (Table S4). Of the 75 viral 298 

sequences with available metadata at the time of analysis, 74 were assembled from soil.  299 

While only three jumbo phage vOTUs shared a VC with others (cluster 259), 63 vOTUs < 300 

200 kb shared VCs with jumbo phage vOTUs (hereafter referred to as “jumbo-related” 301 

vOTUs). To investigate the diversity of these vOTUs further, we constructed a phylogeny of 302 

24 DNA polymerase genes identified within the genomes of eight jumbo phage vOTUs and six 303 

jumbo-related vOTUs (Fig. S2). This revealed that the vOTUs belonged to six distinct 304 

phylogenetic groups, which we denoted A-F. Further investigation of the groups with the 305 

closest known relatives (groups A, B, and F) identified that the most similar DNA polymerase 306 

genes were carried by genomes < 200 kb, therefore representing non-jumbo phages (Fig. S3). 307 

To characterise the role of soil depth in shaping the assembly of viral communities, we 308 

assessed population-level viral diversity with soil depth (Fig. 1). This revealed that viral 309 

richness (measured through the detection of vOTUs), viral evenness (measured with Pielou’s 310 

𝐽 index), and viral diversity (measured with Shannon’s 𝐻 index) significantly increased with 311 

soil depth in Garry Oak (Fig. 1A). In contrast, viral richness decreased with soil depth in Hilly 312 

grassland, where no linear relationship was observed with viral evenness and diversity (Fig. 313 

1A). Next, we tested whether soil depth was an ecological driver of viral community 314 

composition through NMDS ordination and a PERMANOVA test. Bray-Curtis dissimilarities 315 

were structured with soil depth (𝑅% = 0.156, 𝐹 = 7.37, 𝑝 = 0.002) (Fig. 1B), such that 316 

significant distance-decay relationships were observed at both sites (Fig. 1C). Additionally, 317 

viral communities were distinct between sites, with aboveground vegetation explaining more 318 

than twice the variation as soil depth (𝑅% = 0.399, 𝐹 = 18.8, 𝑝 = 0.001) (Fig. 1B).  319 

To further contrast soil depth patterns between sites, we assessed viral prevalence to identify 320 

populations enriched in either surface or subsurface soil. This determined that viral prevalence 321 

was high throughout the soil depth profiles, such that 66.0% and 72.1% of vOTUs were shared 322 
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across all samples within Garry Oak and Hilly grassland, respectively (Fig. S4). Nonetheless, 323 

differential abundance analysis identified that > 29% of vOTUs were enriched in either surface 324 

soil (20 cm) or subsurface soil (40 cm − 115 cm) (Table S1). In comparing the relative 325 

abundance of enriched viral populations between the two sites, we found that the vOTUs highly 326 

abundant in subsurface soil in one site were consistently lowly abundant throughout the soil 327 

depth profile in the other site (Fig. S5A). Subsequently, only 11.7% of depth-enriched viral 328 

populations were enriched in both sites, with 64.9% of these populations surface-enriched (Fig. 329 

S5B). In fact, subsurface-enriched viral populations in each site were genetically different, as 330 

the shared populations represented only 18.5% of subsurface-enriched VCs in Garry Oak (Fig. 331 

S1B) and 13.5% in Hilly grassland (Fig. S1C). Together, these results outline the increased 332 

distinction of subsurface soil viral communities between sites. 333 

Lastly, we investigated the effect of soil depth in driving patterns of strain-level viral 334 

diversity (Fig. 2). To achieve this, consensus sequences were reconstructed for each vOTU in 335 

each sample, based on the most common alleles detected across variant sites. Subsequent 336 

distance-decay relationships were observed across strains of 69 vOTUs, for which the pairwise 337 

ANI between consensus sequences decreased towards 0.95 (the threshold for vOTU clustering) 338 

with soil depth (Fig. 2A). To summarise the micro diversity across viral populations of each 339 

sample, average nucleotide diversity (𝜋) was assessed. This summarises the frequency of 340 

nucleotide differences between the individual strains of a population. 𝜋 was greatest in surface 341 

soil and displayed a non-linear relationship with soil depth (Fig. 2B). As a result, no significant 342 

relationship was observed between population-level diversity (i.e., macro diversity) and strain-343 

level diversity (i.e., micro diversity) in either site (Fig. 2C). 344 

Virus-host interactions were diverse with soil depth. 345 

To understand the ecological role of soil viruses with the soil depth gradient, we 346 

characterised the interactions between viruses and their microbial host communities (Fig. 3). 347 
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Strong links were revealed between viruses and microbes by observing significant correlations 348 

between their community structures (Fig. S6) and diversities (Fig. S7). To provide further 349 

evidence of virus-host linkages, we identified the putative host taxa of vOTUs using a 350 

combination of proviral scaffold assessment, CRISPR spacer matches, and de novo prediction 351 

using a probabilistic model [74]. Actinomycetota and Pseudomonadota were the most common 352 

host phyla (Table S1). Moreover, viruses infecting Actinomycetota were dominant members of 353 

viral communities throughout the soil depth profile of both sites (Fig. 3A). While the patterns 354 

of microbial phyla described using OTUs and MAGs were different, they both demonstrated 355 

that Actinomycetota abundance increased with depth in Hilly grassland (Fig. 3A). 356 

Subsequently, Actinomycetota and Pseudomonadota hosts were significantly correlated with 357 

their infecting viruses in Hilly grassland (Fig. S8). 358 

Given that viral replication strategies inform virus-host interactions following infection, we 359 

investigated the prevalence of lysogeny with soil depth. In total, 2911 (28.6% of total) 360 

temperate viruses were detected. The incidence of lysogeny, as measured by the proportion of 361 

detected vOTUs which were identified as temperate, was stable across soil depth (Fig. 3B). In 362 

contrast, the relative abundance of temperate viruses varied, such that a positive relationship 363 

with soil depth was observed in Hilly grassland (Fig. 3C). 364 

In addition to host cell lysis, another fundamental ecological role of viruses is the alteration 365 

of host metabolism through the expression of AMGs during infection. We identified 220 366 

putative AMGs carried by 181 vOTUs (1.77% of total; Table S5), whose functional annotations 367 

included hits to ribosomal proteins (nine genes) and carbohydrate-active enzymes (CAZymes; 368 

43 genes). Six jumbo phage vOTUs carried a single AMG each, while the average length of 369 

vOTUs carrying multiple AMGs was 29,600 bp. vOTUs carrying AMGs were consistently 370 

detected throughout the soil depth profiles, with a small yet statistically significant decrease in 371 
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incidence with depth in Garry Oak (Fig. 3D). No significant depth relationships were observed 372 

for the relative abundance of AMG-carrying vOTUs (Fig. 3E).  373 

Further inspection of candidate CAZymes with CD-Search revealed that 36/43 (83.7%) 374 

gene products contained conserved protein domains associated with carbohydrate metabolism 375 

(Table 1). This included 12 genes with glycoside hydrolase domains, putatively involved in the 376 

metabolism of four different carbon sources: glycans (five genes), amylose (two genes), 377 

cellulose (two genes), and mannose (one gene). vOTUs carrying CAZymes were dispersed 378 

across 21 VCs and 17 singletons in the shared protein network (Fig. S1D). Three quarters of 379 

vOTUs carrying CAZymes were lytic and 17/40 (42.5%) had predicted hosts, spanning 380 

Actinomycetota (20%), Pseudomonadota (12.5%), Acidobacteriota (5%), Bacillota (2.5%), 381 

and Nitrospirota (2.5%). The vOTUs were detected throughout the two soil depth profiles, at 382 

consistently low abundance (Fig. S9). 383 

Virus-host antagonistic co-evolution was dynamic throughout the soil depth profile. 384 

Virus-host interactions can also have implications on the eco-evolutionary dynamics of both 385 

viruses and microbes. Thus, to investigate virus-host antagonistic co-evolution throughout the 386 

soil depth profile, we detected bacterial anti-phage defence systems and estimated the 387 

subsequent selection pressure applied to soil viruses (Fig. 4). More than 75% of microbial 388 

community abundance was represented by MAGs carrying at least one complete anti-phage 389 

system, with systems involving restriction-modification (RM) being the most common (Fig. 390 

4A). Further investigation into the anti-phage system repertoire of MAG communities revealed 391 

a significant increase in system diversity with soil depth in both sites (Fig. 4B).  392 

To assess the resulting evolutionary pressures on viral populations, we identified viral genes 393 

under positive selection using a proportion of non-synonymous to synonymous polymorphism 394 

ratio (pN/pS) > 1. This yielded 532 vOTUs carrying 880 genes under positive selection in at 395 
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least one sample, with nearly half of these genes lacking functional annotations (Table S6). 396 

Nonetheless, we were able to identify functions for 30 tail fibre proteins involved in host cell 397 

recognition [94, 95], four tape measure proteins involved in virion assembly [96] and genome 398 

insertion [97], six ribosomal proteins, and 11 ABC transporters (Table S6). Manual inspection 399 

of putative ABC transporter genes with CD-Search indicated the presence of conserved 400 

secondary structures for ten of the genes, with five genes containing drug efflux transporter 401 

domains (ccmA, drrA, MacAB, MacB, SunT). Moreover, five vOTUs carrying ABC transporter 402 

genes represented high-quality temperate viral genomes, with hits to viral protein families 403 

(PHROGs) both upstream and downstream of putative transporter genes (Fig. S10). While only 404 

one ABC transporter gene was positively selected in surface soil (20 cm), the remaining ten 405 

genes were positively selected in subsurface soil (40 cm – 115 cm). Overall, the number of 406 

vOTUs carrying at least one gene under positive selection increased with soil depth in Hilly 407 

grassland, while a non-linear relationship was observed with soil depth in Garry Oak (Fig. 4C). 408 

 409 

Discussion 410 

High viral dispersal maintains virus-host co-existence throughout the soil depth profile. 411 

Microbial dispersal underpins soil ecology and evolution [98], however we lack 412 

understanding of the distribution patterns of soil viruses. In this study, we observed high viral 413 

prevalence throughout two soil depth profiles, with more than two thirds of viral populations 414 

detected in every soil sample (Fig. S4). This cosmopolitan distribution contrasted with recent 415 

investigations of soil viral dispersal, in which fewer viruses were shared between samples 416 

across horizontal [14, 16, 17, 99, 100] and vertical space [18, 99, 101]. Despite high viral 417 

prevalence, we discovered that soil depth shaped the composition of viral communities (Fig. 418 

1B), such that viral community diversity displayed a distance-decay relationship (Fig. 1C).  419 
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The structuring of viral communities with soil depth is undoubtedly driven by the physical 420 

structure of the soil matrix, which renders virion dispersal a mostly stochastic process [98]. 421 

The rate-limiting factors underlying the transport of viruses through soil are likely different to 422 

those of their hosts [32, 102]. Notably, soil viruses are expected to be passively distributed with 423 

water more easily [103]. Therefore, wetter soils may facilitate the enhanced mobility of viruses 424 

compared to their hosts, resulting in the increased accessibility and infection of susceptible 425 

host cells. Simultaneously, the abundance of viruses are also correlated with soil moisture 426 

content [14, 16, 17, 99], demonstrating how environmental factors may affect virus-host 427 

interactions.  428 

At the Sagehorn site where soil samples were taken, significant winter precipitation raises 429 

the water table close to the soil surface [104]. The resulting annual saturation of soil may 430 

facilitate the immigration of infective viruses and susceptible hosts throughout the soil depth 431 

profile. This would have consequences on both viral and bacterial persistence due to 432 

evolutionary “source-sink dynamics”, where co-existence is maintained by the heterogeneous 433 

distribution of viruses and hosts [105, 106]. This has been demonstrated in biofilm simulations, 434 

whereby the mobility of viruses is a key determinant of phage-bacteria co-existence [107]. 435 

Therefore, we propose that the high viral dispersal is likely to have implications on the eco-436 

evolutionary interactions occurring across the soil niches examined in this study. 437 

Tree association impacts viral community composition in both surface and subsurface 438 

soil. 439 

Intriguingly, the variation in viral communities between sites was greater than the variation 440 

associated with soil depth, such that communities in subsurface soils were more distinct than 441 

those at the surface (Fig. 1B). A considerable distinction between the two sites was the presence 442 

of Garry Oak trees. At the Garry Oak site, the tree canopy could have provided the soil surface 443 

with protection from the sun, potentially maintaining greater soil moisture content as compared 444 
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to the unshaded soil in Hilly grassland. While changes to moisture content would be likely to 445 

affect viral dispersal and the structuring of soil viral communities, no soil property 446 

measurements were available to confirm this hypothesis.  447 

Another consequence of Garry Oak trees is the annual shedding of leaves during winter 448 

[46]. Decaying leaf litter has been shown to shape the composition of RNA viral communities 449 

in both the rhizosphere and bulk soil [108]. While quicker degradation rates mean that the 450 

spatial structuring of RNA viruses may be greater than for DNA viruses, the legacy effects of 451 

leaf litter may have driven differences between surface soils. However, the degradation of shed 452 

leaves would be expected to have less impact on subsurface communities. Instead, we 453 

hypothesise that the presence of tree roots and the associated fungal hyphae impact viral 454 

communities in Garry Oak samples, leading to the discrepancies in the depth patterns between 455 

the two sites. Indeed, fine roots and hyphae have been reported to a depth of at least 2 m at the 456 

same study site [46]. The consequence of growing crop roots on the structures of both DNA 457 

and RNA soil viral communities has been demonstrated previously [13].  458 

The prevalence of lysogeny was consistent throughout the soil depth profile. 459 

Lysogenic viral infections can have significant eco-evolutionary impacts on host 460 

communities [30], most notably through superinfection exclusion, which confers resistance 461 

against further viral infection [109–111]. Typically, lysogeny is expected to dominate in soil 462 

ecosystems because of low host biomass and viability [28, 29, 35]. Under low bacterial 463 

densities (e.g., < 105 cells per gram), host starvation represses viral lytic genes through ATP-464 

dependant signalling cascades [112, 113], promoting lysogeny switching [114]. Subsequently, 465 

lower bacterial abundances have been associated with increased lysogeny in the deep ocean 466 

[115–117]. Recent work has observed an increased prevalence of lysogeny in subsurface soils, 467 

as detected through inducible lysogens [28], however we observed very little change in the 468 

incidence of temperate viruses across soil depth (Fig. 3B). And while the relative abundance 469 
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of temperate phages did increase with soil depth in Hilly grassland, this was not consistent in 470 

Garry Oak (Fig. 3C). Therefore, there could be additional factors which govern lysogeny 471 

switching in soils beyond host density. This could include non-linear relationships with host 472 

metabolism [114], viral-viral interactions [118, 119], and anti-phage defence systems [85]. To 473 

this point, the diversity of anti-phage defence systems was enriched among subsurface 474 

communities in Hilly grassland (Fig. 4B), coinciding with the increased abundance of 475 

temperate viruses. The increased encountering of lysogenic infection mechanisms may have 476 

been responsible for the greater range of defence systems maintained among the host 477 

community [85]. It must also be noted that viruses without lysogenic genes can establish 478 

passive co-existence typified by temperate lifestyles, as demonstrated with ΦcrAss001 in 479 

continuous culture with its host Bacteroides intestinalis [120]. Therefore, non-lysogenic phages 480 

may be able to replicate without eradicating their host population, in contrast to the traditional 481 

view of predator-prey cycles induced by lytic phages. 482 

Jumbo phages recovered from soil were polyphyletic.  483 

We recovered 19 vOTUs representing jumbo phages [93] with genome lengths > 200 kb 484 

(largest 415,894 bp), without implementing a viral contig binning approach. An additional 63 485 

vOTUs formed roughly genus-level VCs with jumbo phages, and together they represented six 486 

distinct clades based on DNA polymerase gene phylogeny (Fig. S2). This is consistent with 487 

previous findings that jumbo phages are polyphyletic, implying that phage genome gigantism 488 

has evolved numerous times instead of originating from a single common ancestor [121, 122]. 489 

Furthermore, the phylogeny revealed that the closest known relatives to jumbo phage vOTUs 490 

had much shorter genomes (Fig. S3). It has been postulated that jumbo phages may have 491 

evolved from recombination events between multiple smaller phage genomes [121]. Another 492 

potential hypothesis for the origin of phage genome gigantism is that the genomes could have 493 

expanded upon the acquisition of additional phage or host genes. The ratchet model describes 494 
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how mutations that increase the capsid size facilitate the acquisition of new viral genes, which 495 

are then stable against loss of function mutations [123].  496 

Previously identified clades of jumbo phages have been discerned by their diverse infection 497 

and replication strategies, biogeography, and host taxa [121, 122]. We have uncovered the 498 

ubiquity of jumbo phages across soil depth, suggesting that large genome sizes are 499 

evolutionarily stable across both surface and subsurface soil niches. Furthermore, jumbo 500 

phages were consistently in the top 20% of the most abundant viruses in each community (Fig. 501 

S11), contrasting with previous findings that giant viruses (> 300kb) are lowly abundant in 502 

forest soil [124].  503 

Soil viruses augment microbial metabolism in subsurface soils. 504 

Viruses can carry and express AMGs during infection to modulate the host’s metabolism 505 

and fitness, and promote their co-existence [2–6]. Moreover, viral-encoded AMGs have the 506 

potential to affect soil biogeochemistry, with viruses previously implicated in soil carbon 507 

processing [13, 18, 19, 34, 99, 125]. In this study, we detected viruses throughout the soil depth 508 

profile carrying CAZymes associated with both carbohydrate anabolism and catabolism (Table 509 

S5). The rank abundance of CAZyme-carrying viruses was highly variable, but their presence 510 

was ubiquitous across all soil depths (Fig. S12). Therefore, soil viruses may stimulate the 511 

degradation of a variety of carbon sources, including plant cell walls, thus contributing to the 512 

remineralisation of soil carbon in surface and subsurface soil. While our discovery of viral 513 

CAZymes adds to the repertoire of potential viral mechanisms contributing to soil carbon 514 

cycling, evidence of their function during the infection cycle has not been confirmed here.  515 

Previously, the abundance of viral-encoded AMGs was found to increase with soil depth 516 

[101]. However, we observed that the abundance of viruses carrying AMGs was consistently 517 

low throughout both soil depth profiles (Fig. 3D-E). The most common host phyla of viruses 518 
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carrying AMGs was Actinomycetota, for which both the host (Fig. 3A) and infecting viruses 519 

(Fig. S13) were more abundant in subsurface soil. Actinomycetota (formerly Actinobacteria) 520 

are dominant soil microbes [126] and contribute to soil carbon cycling by producing 521 

extracellular hydrolytic enzymes which depolymerise plant-derived lignin [127]. Furthermore, 522 

Actinomycetota are resilient to soil drying, such that their relative abundance increases during 523 

drought and declines in the days following re-wetting [128–130]. The abundance and activity 524 

blooms in response to seasonal wetting and drying are likely to affect soil nutrient and carbon 525 

cycling [130].  526 

Viral macro diversity and micro diversity were associated in surface soil only. 527 

The evolution of viral communities can be monitored through micro diversity. In this study, 528 

we have revealed patterns of viral micro diversity across a soil environmental gradient for the 529 

first time. Viral strain-level heterogeneity displayed a distance-decay relationship (Fig. 2A) 530 

and the average micro diversity (𝜋) of viral communities varied across space (Fig. 2B).  531 

Micro diversity is accrued through de novo mutations, and can drive phenotypic variation 532 

to specialise organisms to their environment [83]. More specifically for viruses, micro diversity 533 

reflects evolutionary responses to host infection dynamics, and is directly related to viral 534 

infection rates. Greater viral micro diversity, as measured by larger 𝜋 values, can arise in 535 

multiple ways [81]. Firstly, the active infection of hosts can result in population expansion and 536 

thus more frequent mutations. This can be exacerbated through genetic recombination between 537 

viral populations co-infecting the same host. Such horizontal gene transfer events are made 538 

more likely by the presence of microbial “hotspots” occurring throughout the spatially 539 

structured soil matrix [131]. Secondly, viral populations could maintain greater micro diversity 540 

in their populations as an evolutionary mechanism. Genetic diversity increases the fitness of a 541 

viral population by allowing them to “bet-hedge” if their environment or host changes, 542 

conferring local adaptation [132]. 543 
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The ecological forces driving strain-level variation were distinct from those driving 544 

population-level variation, as demonstrated by their non-significant association (Fig. 2C). This 545 

was surprising given that genetic heterogeneity between strains can result in speciation events 546 

[132, 133], thus relating the two levels of diversity. Throughout ocean depth profiles, a similar 547 

absent relationship was explained by interactions with bacterial macro diversity [82]. However, 548 

no such relationship was observed in these soil samples (Fig. S14). We speculate that 549 

unmeasured physicochemical properties, distinct between soil horizons, may have driven the 550 

non-linear diversity dynamics we observed throughout the soil depth profile. 551 

Interestingly, when the analysis of viral diversity patterns was focussed on the top 60 cm of 552 

soil, viral macro diversity was negatively associated with viral micro diversity (Fig. 2B). This 553 

could have resulted from decreasing host cell density from surface to subsurface soil [26], 554 

which favours inter-specific viral competition (i.e., reflected in macro diversity) over intra-555 

specific viral competition (i.e., reflected in micro diversity). Hence, strain-level heterogeneity 556 

is less favoured when fewer hosts are available, during which species-level competition drives 557 

evolution. This would be expected to impact virus-host interactions by reducing the resilience 558 

of the subsurface soil niche. 559 

Antagonistic co-evolution was distinct among surface and subsurface communities. 560 

Host defence responses to viral infection are expected to drive positive selection among soil 561 

viruses through antagonistic co-evolution. To this aim, we identified 880 viral genes under 562 

positive selection (Table S6), for which non-synonymous polymorphisms were more likely to 563 

be retained than rejected. This included 30 tail fibre genes, which have previously been shown 564 

to be positively selected among gut phages as evidence of their adaptive evolution [134, 135]. 565 

Phage tail fibre proteins are involved in host tropism [94, 95], thus the carriage of genetically 566 

diverse tail fibre genes may expand a population’s host range. Given the positive selection of 567 
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tail fibre gene mutants throughout the soil depth profile, the evolutionary benefit of expanding 568 

host range was universal among viruses occupying both surface and subsurface soil niches.  569 

We also identified 11 ABC transporter genes under positive selection, predominantly in 570 

subsurface soil (40 cm – 115 cm) (Table S6). Five vOTUs carrying ABC transporter genes 571 

represented high-quality temperate viral genomes (Fig. S10), with two of these genes sharing 572 

conserved protein domains with ABC drug efflux transporters. By expressing these genes 573 

during infection, temperate soil viruses may confer antibiotic resistance to their hosts, thus 574 

maintaining their mutual co-existence. Furthermore, the evidence of adaptive evolution among 575 

these genes indicates that there is a selection pressure on these viruses to augment their host’s 576 

interbacterial competition. While this may be the first evidence of soil viruses carrying ABC 577 

transporters, the expression of phosphate-binding pstS genes by cyanophages has implicated 578 

marine viruses in enhancing phosphate uptake in cyanobacterial hosts [136]. Many other viral 579 

genes under positive selection had no functional annotation, suggesting that we may be missing 580 

alternative selection pressures on soil viruses. For example, missing annotations may include 581 

uncharacterised anti-defence proteins, expressed by viruses to target host defence systems and 582 

maintain infective capabilities [137]. 583 

To characterise the range of host defence responses to viral infection, we identified anti-584 

phage defence systems within microbial MAGs. The relative abundance of MAGs adopting at 585 

least one system was high throughout the soil depth profile (Fig. 4A), and the increasing 586 

diversity of anti-phage systems (Fig. 4B) suggested that the antagonistic co-evolution 587 

landscape differed between surface and subsurface niches. Multiple anti-phage defence 588 

systems can be carried within defence islands [138], a genetic toolbox of diverse mechanisms 589 

to resist viral infection, presumably accrued through horizontal gene transfer events [137]. The 590 

genetic diversity of infecting viruses can direct the evolution of host defence strategies, such 591 

that low viral diversity may favour CRISPR-based immunity, while higher viral diversity 592 
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promotes surface modification mechanisms [139]. Thus, the microheterogeneity driven by the 593 

soil matrix would make these virus-host interactions difficult to predict.  594 

 595 

Conclusions 596 

Most soil viral ecology efforts have focussed on the top 20 cm of soil, hindering our 597 

understanding of subsurface viruses. Given the exponential decay in microbial biomass with 598 

soil depth, one might expect relatively minimal ecological impacts of subsurface viral 599 

communities. To the contrary, we have uncovered evidence of soil viruses contributing to 600 

terrestrial ecology in both surface and subsurface soil niches. The prevalence of lysogeny was 601 

consistent throughout the soil depth profile, indicating that additional factors beyond host cell 602 

density may govern lysogeny switching in soils. By investigating patterns of viral micro 603 

diversity across a soil environmental gradient for the first time, we revealed that the local 604 

adaptation of viruses was greatest in surface soil. Furthermore, an increasing diversity of anti-605 

phage defence systems with depth suggests that the antagonistic co-evolution landscape is 606 

distinct in subsurface soil. In the future, we predict that comparative activity studies, 607 

contrasting surface and subsurface niches, will be essential to characterise viral functions 608 

associated with soil depth. 609 
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Fig. 1: Population-level assembly of soil viral communities throughout soil depth. A Alpha 1000 

diversity of viral communities. Richness (number of vOTUs detected), evenness (Pielou’s 𝐽 1001 

index), and alpha diversity (Shannon’s 𝐻 index) for each viral community throughout the soil 1002 

depth profiles. Trend lines represent linear regression estimates, with shaded cloud 1003 

representing 95% confidence interval. 𝑟 corresponds to Pearson’s correlation coefficient and 𝑝 1004 

corresponds to the associated p-value. B Beta diversity of viral communities. Non-metric 1005 

multidimensional scaling (NMDS) ordination plots, representing the Bray-Curtis 1006 

dissimilarities between viral community compositions. Shapes indicate site: Hilly grassland 1007 

(squares) and Garry Oak (triangles). Shapes are coloured based on soil depth. Stress value 1008 

associated with two-dimensional ordination is reported. Percentage contribution to variance by 1009 

site and soil depth, as calculated with a permutational multivariate analysis of variance 1010 

(PERMANOVA) test, and associated p-value are also reported. C Distance-decay relationship 1011 

in viral community structure. Trend lines represent linear regression estimates, with shaded 1012 

cloud representing 95% confidence interval. 𝑟 corresponds to Pearson’s correlation coefficient, 1013 

slope corresponds to linear regression slope, and 𝑝 corresponds to the associated p-value. 1014 
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Fig. 2: Strain-level assembly of soil viral communities throughout soil depth. A Distance 1018 

decay relationship in consensus ANI. Lighter grey lines represent distance-decay relationships 1019 

in consensus ANI for 69 vOTUs with individual significant relationships. Thicker black line 1020 

represents the mean distance decay relationship across all 69 vOTUs. Trend lines represent 1021 

linear regression estimates, with shaded cloud representing 95% confidence interval. 𝑟 1022 

corresponds to Pearson’s correlation coefficient, slope corresponds to linear regression slope, 1023 

and 𝑝 corresponds to the associated p-value. B Viral macro diversity and micro diversity 1024 

throughout the soil depth profiles. Trend lines represent loess smooth regression estimates, 1025 

with shaded cloud representing 95% confidence interval. Colour indicates level of diversity: 1026 

macro diversity (red), micro diversity (blue). C Correlation of macro diversity with micro 1027 

diversity. Shapes indicate site: Hilly grassland (squares) and Garry Oak (triangles). Shapes are 1028 

coloured based on soil depth.  1029 
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Fig. 3: Virus-host interactions throughout soil depth. A Virus-host linkages. Mean 1032 

proportional abundance by host phyla is plotted across soil depth for: vOTUs with predicted 1033 

host phyla (n = 3324), microbial OTUs (n = 1447), and microbial MAGs (n = 337). Fill colour 1034 

indicates host phylum. B Incidence of lysogeny. Proportion of vOTUs detected representing 1035 

temperate viruses plotted across soil depth. C Temperate viral abundance. Proportional 1036 

abundance of vOTUs detected representing temperate viruses plotted across soil depth. D 1037 

Incidence of AMG carriage. Proportion of vOTUs carrying AMGs plotted across soil depth. E 1038 

AMG-carrying viral abundance. Proportional abundance of vOTUs carrying AMGs plotted 1039 

across soil depth. For B, C, and D, trend lines represent linear regression estimates, with shaded 1040 

cloud representing 95% confidence interval. 𝑟 corresponds to Pearson’s correlation coefficient, 1041 

slope corresponds to linear regression slope, and 𝑝 corresponds to the associated p-value. 1042 
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Fig. 4: Virus-host antagonistic co-evolution throughout soil depth. A Anti-phage system 1045 

detection. Proportional abundance of microbial MAGs carrying complete anti-phage systems. 1046 

Fill colour indicates anti-phage system. B Diversity of the anti-phage system repertoire. 1047 

Shannon’s 𝐻 index, calculated on MAGs carrying complete anti-phage systems, plotted across 1048 

soil depth. C Viruses under positive selection. Number of vOTU genomes with at least one 1049 

gene under positive selection (indicated by a pN/pS ratio > 1) plotted across soil depth. For B 1050 

and C, trend lines represent linear regression estimates, with shaded cloud representing 95% 1051 

confidence interval. 𝑟 corresponds to Pearson’s correlation coefficient, slope corresponds to 1052 

linear regression slope, and 𝑝 corresponds to the associated p-value. 1053 
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Fig. S1: Taxonomic novelty of recovered soil vOTUs. Shared protein content of recovered 1056 

soil vOTUs with previously discovered phage genomes. Network graph visualisations are 1057 

annotated to represent A viral cluster identities (6124 dsDNA vOTUs, 193 ssRNA vOTUs, and 1058 

11,600 reference genomes), B depth enrichment in Garry Oak (1637 dsDNA vOTUs, 19 1059 

ssDNA vOTUs), C depth enrichment in Hilly grassland (2820 dsDNA vOTUs, 138 ssDNA 1060 

vOTUs), and D vOTUs carrying AMGs (152 dsDNA vOTUs, 0 ssDNA vOTUs). Bar charts 1061 

(right) summarise the proportion of dsDNA vOTUs and ssDNA vOTUs included in each 1062 

network visualisation. Depth enrichment represents vOTUs enriched in either surface soil (20 1063 

cm) or subsurface soil (40 cm – 115 cm). 1064 
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Fig. S2: Phylogenetic assessment of jumbo phage vOTUs and jumbo-related vOTUs using 1067 

DNA polymerase gene. Phylogeny of jumbo phage vOTUs and vOTUs sharing viral clusters 1068 

with jumbo phage vOTUs (jumbo-related vOTUs) using translated DNA polymerase 1069 

sequences. Phylogenetic tree contains 1284 DNA polymerase sequences from 1205 previously 1070 

isolated phage sequences and 24 DNA polymerase sequences from 14 vOTUs recovered in this 1071 

study (eight jumbo phage vOTUs and six jumbo-related vOTUs). Brand node labels indicate 1072 

branch support: ≥ 0.9 (large circles), ≥ 0.8 (medium circles), ≥ 0.7 (small circles), < 0.7 (no 1073 

circle). Tip labels indicate genome sequence name; vOTUs recovered in this study are labelled 1074 

in gold. Outer ring fill colour denotes known phage families. Letters indicate the locations of 1075 

6 distinct phylogenetic groups of jumbo phage vOTUs and jumbo-related vOTUs. 1076 
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Fig. S3: Phylogenetic groups A, B, and F from assessment of jumbo phage vOTUs and 1080 

jumbo-related vOTUs using DNA polymerase gene. Further investigation of distinct 1081 

phylogenetic groups identified from Fig. S2: A Groups A and B, B Group F. Brand node labels 1082 

indicate branch support: ≥ 0.9 (large circles), ≥ 0.8 (medium circles), ≥ 0.7 (small circles), < 1083 

0.7 (no circle). Tip node fill colour denotes known phage families. Tip labels indicate genome 1084 

sequence name and genome length in bp; vOTUs recovered in this study are labelled in gold. 1085 

Letters indicate the locations of distinct phylogenetic groups of jumbo phage vOTUs and 1086 

jumbo-related vOTUs. 1087 
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Fig. S4: Prevalence of viral populations. Percentage of vOTUs detected in at each percentage 1090 

of soil samples. Number above bars specify the percentage of vOTUs detected.  1091 
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Fig. S5: Overlap in depth-enrichment of viral populations between sites. A Relative 1094 

abundance of depth-enriched viral populations. Proportional abundance of vOTUs enriched in 1095 

either surface soil (20 cm) or subsurface soil (40 cm – 115 cm) based on samples derived from 1096 

Garry Oak and Hilly grassland, across Garry Oak and Hilly grassland samples, respectively. 1097 

Fill colour indicates enrichment: surface-enriched (light brown) or subsurface enriched (dark 1098 

brown). B Overlap in depth enrichment of viral populations between sites. Intersection matrix 1099 

denoting site investigated (bottom-right), total vOTUs detected in each site (bottom-left), 1100 

number of enriched vOTUs in site intersection (middle-right), percentage of enriched vOTUs 1101 

corresponding to surface-enriched or subsurface-enriched, respectively (top-right). 1102 
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Fig. S6: Correlation of viral community and microbial community structure. Trend lines 1105 

represent linear regression estimates, with shaded cloud representing 95% confidence interval. 1106 

𝑟 corresponds to Pearson’s correlation coefficient and 𝑝 corresponds to the associated p-value. 1107 
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Fig. S7: Correlation of viral community and microbial community diversity. Trend line 1110 

represents linear regression estimates, with shaded cloud representing 95% confidence interval. 1111 

𝑟 corresponds to Pearson’s correlation coefficient and 𝑝 corresponds to the associated p-value. 1112 

Shapes indicate site: Hilly grassland (squares) and Garry Oak (triangles). Shapes are coloured 1113 

based on soil depth. 1114 
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Fig. S8: Correlation of viral abundances and host abundances. Trend line represents linear 1117 

regression estimates, with shaded cloud representing 95% confidence interval. 𝑟 corresponds 1118 

to Pearson’s correlation coefficient and 𝑝 corresponds to the associated p-value. 1119 
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Fig. S9: Relative abundance of viruses carrying carbohydrate-active enzymes.  1122 
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Fig. S10: Genome maps of high-quality viral genomes carrying ABC transporters under 1125 

positive selection. Arrow fill colour indicates gene function.  1126 
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Fig. S11: Rank abundance of jumbo phages. Rank abundance represented as a percentage 1129 

of 10,196 vOTUs. 0% indicates the lowest rank and the most abundant vOTU, while 100% 1130 

indicates the highest rank and the least abundant vOTU. Boxes denote median, upper, and 1131 

lower quartiles. Whiskers indicate minimal and maximal values, with outliers in filled circles. 1132 
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Fig. S12: Rank abundance of CAZyme-carrying vOTUs. Rank abundance represented as a 1135 

percentage of 10,196 vOTUs. 0% indicates the lowest rank and the most abundant vOTU, while 1136 

100% indicates the highest rank and the least abundant vOTU. Boxes denote median, upper, 1137 

and lower quartiles. Whiskers indicate minimal and maximal values, with outliers in filled 1138 

circles. 1139 
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Fig. S13: Relative abundance of hosts of viruses carrying auxiliary metabolic genes. 1142 

Proportional abundance of vOTUs carrying AMGs plotted across soil depth. Fill colour 1143 

indicates host phyla.  1144 
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Fig. S14: Correlation of microbial macro diversity and viral micro diversity. Shapes 1148 

indicate site: Hilly grassland (squares) and Garry Oak (triangles). Shapes are coloured based 1149 

on soil depth. 1150 
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