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Abstract 

Conserved residues in protein homolog sequence alignments are structurally or 

functionally important. For intrinsically disordered proteins (IDPs) or proteins with 

intrinsically disordered regions (IDRs), however, alignment often fails because they 

lack a steric structure to constrain evolution. Although sequences vary, the 

physicochemical features of IDRs may be preserved in maintaining function. 

Therefore, a method to retrieve common IDR features may help identify functionally 

important residues. We applied un-supervised contrastive learning to train a model 

with self-attention neuronal networks on human IDR orthologs. During training, 

parameters were optimized to match sequences in ortholog pairs but not in other IDRs. 

The trained model successfully identifies previously reported critical residues from 

experimental studies, especially those with an overall pattern (e.g. multiple aromatic 

residues or charged blocks) rather than short motifs. This predictive model can 

therefore be used to identify potentially important residues in other proteins.  

 

Availability and implementation 

The training scripts are available on GitHub (https://github.com/allmwh/IFF). The 

training datasets have been deposited in an Open Science Framework repository 

(https://osf.io/jk29b). The trained model can be run from the Jupyter Notebook in the 

GitHub repository using Binder (mybinder.org). The only required input is the 

primary sequence.    
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Introduction 

DNA/RNA sequences and the proteins they encode carry their evolutionary history, 

and multiple sequence alignment methods can reveal phylogenetic relationships. For 

instance, our extinct Neanderthal and Denisovan cousins were identified from the 

DNA extracted in ancient bones [1, 2]; prokaryotic ribosomal 16S RNA sequences 

contributed to the discovery of Archaea domain [3]; the tracing of myoglobin and 

hemoglobin protein sequences back to their globin origin is another textbook example 

[4, 5]. Protein structures also provide insights into how proteins have evolved, being 

conserved in some cases despite changes in the primary sequence. For example, the 

structural similarity between the motor domains of kinesin and myosin hints that they 

have a common ancestor, despite low sequence identity [6]. The shape of a protein 

also constrains how it evolves and functionally important residues are conserved. 

Indeed, when sequence conservation levels are mapped onto 3D structures, the most 

conserved residues are typically found in key locations, such as the folding core [7] or 

catalytic sites [8]. 

However, these structural constraints on evolution do not apply to intrinsically 

disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs), 

and as a result, the sequences of these proteins, which represent more than half of the 

proteome [9], vary more widely than do those of their folded counterparts (see 

example in Supplementary Figure S1). Although some structural evolutionary 

restraints still apply to some IDRs, especially those that undergo 

folding-upon-binding [10, 11], the evolution of IDRs is mainly constrained by 

function. One recently recognized function of IDRs is their ability to undergo 

liquid-liquid phase separation (LLPS) [12, 13]. This mechanism contributes to the 

formation of membraneless organelles and explains the spatiotemporal control of 

many biochemical reactions within a cell [14, 15]. The proteins within these 

condensates do not adopt specific conformations (i.e. they still behave like random 

coils) [16, 17] and thus evolve without structural restraints. Although multiple 

sequence alignment may work in some instances (for example, the aromatic residues 

in the IDRs of TDP-43 and FUS are conserved, highlighting their potential 

importance for LLPS [18]), most IDRs cannot be aligned, especially when there are 

sequence gaps between orthologs [19]. 

The functionally important physicochemical properties of IDPs/IDRs encoded in 

their primary sequence may be retained during evolution. Aromatic residue patterns 

[20], prion-like amino-acids [21], charged-residues blocks [22], and coiled-coil 

content [23] all contribute to LLPS, but these features cannot be revealed by sequence 

alignment. Multiple sequence alignment methods are, therefore, of limited use in 
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identifying critical residues in IDRs. To overcome this challenge, we propose an 

unsupervised contrastive machine learning model trained using self-attention neuronal 

networks on human IDR orthologs. Our results show that the trained model “pays 

attention” to crucial residues or features within IDRs. We also provide online access 

to our model that uses primary sequences as input. 

 

Methods 

Training dataset preprocessing 

Human protein sequences were retrieved from UniProt [24] and the corresponding 

orthologs were obtained from the Orthologous Matrix (OMA) database [25]. Chordate 

orthologs were aligned using Clustal Omega [26]. The PONDR [27] VSL2 algorithm 

was used to predict the IDR of the human proteins and to define the boundaries of the 

aligned sequences (Figure 1A). Aligned regions were defined as subgroups. 

N-terminal methionines were removed to assist learning (methionine is coded by the 

start codon in protein synthesis). After removing gaps within the aligned sequences, 

all sequences were padded to a length of 512 amino acids (repeating from the 

N-terminus; Figure 1A). The few sequences longer than 512 amino acids (56,086 out 

of 2,402,346, 2.3 %) were truncated from the C-terminus. The training dataset thus 

consisted of 28,955 ortholog subgroups from 13,476 human protein families with 

IDRs longer than 40 amino acids.  

Each training batch consisted of fifty randomly selected subgroups (Figure 1B). 

The human sequence from each subgroup was paired with one of its orthologs (one of 

the non-human sequences in the same subgroup, Figure 1C). The selection probability 

was weighted by the Levenshtein distance [28] from the human sequence to favor low 

similarity pairings. Supplementary Figure S2 shows how different the sequences 

typically were in these ortholog subgroups, along with the corresponding selection 

probabilities. The most dissimilar sequences (high probability of being selected for 

training) in each ortholog group were also deposited in Open Science Framework. A 

classifier token (CLS) was added to the start of the selected sequences, and these were 

mapped to a matrix with an embedding dimension of 128 (embed_dim; Figure 1C).  

Training architecture 

The training architecture was a self-supervised contrastive learning model, 

Momentum Contrast version 3 (MoCo v3) [29]. The base encoder in MoCo v3 was 

replaced with a classical self-attention network [30]. We used 8-head attention and 

tested six attention layers. Fifty human sequences from the same batch and their 

corresponding orthologs (the ones with the lowest similarity to each human sequence, 
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as mentioned above) were sent to the momentum encoders (fq, fk respectively, 

following the original nomenclature [29]), and calculated in parallel (Figure 1D). The 

outputs from each human sequence and its ortholog were a query (q) and key (k+; the 

positive sample for each query). The output of the other 49 orthologs were the 

negative samples (k–). All 50 combinations of q, k+, and k– were formulated to 

minimize a contrastive loss using the adopted InfoNCE [31]: 

  �� � �log
��� ��·��/
�

��� ��·��/
��∑ ��� ��·��/
���
    (1) 

where τ is a temperature hyper-parameter (set to 0.02). The loss was computed in a 

symmetrized manner [29], i.e. the human sequences (q) were also sent to fk, and the 

orthologs (k) were sent to the fq with correspondent outputs for calculating the 

InfoNCE loss. The parameters between the attention layers of fq (light purple blocks 

in Figure 1D) were updated according to a gradient to minimize the cross-entropy loss 

(Equation (1)). The parameters in fk (dark purple blocks) were updated by the 

momentum encoder: (1–m) • query_encoder + m • key_encoder, with m set to 0.999 

by default [29]. This scheme (Figure 1B–D) was repeated ~580 times to include all 

28,955 subgroups in each training epoch. The training consists of 400 epochs, and the 

InfoNCE loss is sufficiently converged (Supplementary Figure S3). The model was 

built on PyTorch and the training was performed on a Nvidia Telsa P100 16G GPU.  

 

Results 

The trained model attributes a high attention score to experimentally confirmed 

critical residues. 

Studies have shown that the aromatic residues (phenylalanine, tyrosine, and 

tryptophan) in the IDRs of TDP-43 [32], FUS [33], and hnRNP-A1[34] are critical for 

LLPS-related functions. These residues obtain a high attention score in our model 

(Figure 2A). The aromatic residues (two tryptophans and ten tyrosines) in galectin-3 

[35] also score highly (Figure 2B, left panel). Interestingly, although zebrafish 

galectin-3 differs substantially in primary sequence from human galectin-3 

(Supplementary Figure S4), the aromatic residues (mostly tryptophan instead of 

tyrosine) also have high attention scores (Figure 2B, right panel). Note that zebrafish 

galectin-3 was not in the OMA ortholog database used for training (OMA number: 

854142). Charged residues (purple arrows in Figure 2C) reported to be associated 

with condensation in NPM1 [36], FMRP [37], and Caprin1 [38] also obtain high 

attention scores (Figure 2C). Our model also assigns high attention scores to the 

methionines in Pbp-1 (labeled in Figure 2D; Pbp-1 is the yeast ortholog of human 
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Ataxin-2), which have been shown to be critical for redox-sensitive regulation [39]. 

Altogether, these results indicate that the trained model correctly identifies known key 

IDR residues. 

 

Most amino acids have broadly distributed attention scores except tryptophan and 

cysteine, whose presence in IDRs hints at potential importance. 

Figure 2E compares the attention score distributions of the amino acids in human 

IDRs. The differences are striking, but the attention scores are not correlated with 

other physical properties, such as disorder/order propensity [40, 41], prion-likeness 

[42], or prevalence in human IDRs (Supplementary Figure S5). The attention scores 

of alanine are always low. Although alanine promotes α-helix formation, which is 

known to contribute to IDR functions such as LLPS [43-45], our model ignores these 

residues. This is probably because α-helices are also promoted by other amino-acid 

types, e.g. leucine or methionine [46, 47], in different combinations not involving 

alanine. Also, since the training process did not include structure information, 

structure-related sequence motifs were ignored. At the other end of the distribution, 

tryptophan and cysteine systematically obtain high attention scores. These 

structure-promoting amino acids rarely appear in unstructured regions [40, 41, 48]; 

therefore, their appearance in IDRs hints at their potential importance. Although little 

is known about the role of cysteine in IDRs, its involvement in tuning structural 

flexibility and stability has been recently discussed [49]. Tryptophan, in contrast, is 

well-known to act as LLPS-driving “stickers” in IDRs [32, 50, 51], and bioinformatic 

analysis shows that they may have evolved in the IDRs of specific proteins to assist 

LLPS [18].  

Finally, the fact that most amino acids, including those highlighted in Figure 

2A–D, have broad attention score distributions (Figure 2E), excludes the possibility 

that our model is biased toward particular amino-acid types rather than sequence 

content as a whole. Moreover, in the machine learning procedure, the protein 

sequences were embedded into higher dimension matrices (as sequences of digits; 

Figure 1C), and amino-acid type information was lost when the matrices were 

transformed into tensors along with the self-attention layers (Figure 1D). These results 

support the predictive ability of the trained model.  

 

Discussion 

Genetic information, in the form of a linear combination of nucleic or amino acids, 

becomes more diverse over time. Comparing levels of diversity between different 
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species reveals how closely related they are. In terms of amino acids, multiple 

sequence alignment not only highlights phylogenetic relationships between proteins 

but also facilitates homology modeling for structure prediction [52-54]. Machine 

learning approaches have recently been used to incorporate information from 

evolution to train structure prediction models [55, 56], and the highly accurate 

predictions from AlphaFold [57] and RoseTTAFold [58] have revolutionized 

structural biology. In contrast, the structural conformations of IDRs do not have a 

one-to-one correspondence with the primary sequence, and multiple sequence 

alignment often fails [18, 59]. These limitations make IDR structural ensembles 

challenging to predict. A few attempts have been reported, such as using generative 

autoencoders to learn from short molecular dynamics simulations [50]. The potential 

and challenges of machine learning in IDR ensemble prediction are also discussed 

[59].  

 Sequence pattern prediction faces similar challenges, including the lack of a 

sufficient stock of “ground-truth” training data, such as image databases or the Protein 

Data Bank. However, unsupervised learning architectures have been developed to 

train models without labeled datasets [60], and this type of approach is especially 

well-suited for IDRs. For instance, Saar et al. used a language-model-based classifier 

to predict whether IDRs undergo LLPS [61]. Moses and coworkers pioneeringly 

applied unsupervised contrastive learning, using protein orthologs as augmentation 

[62], to train their model to identify IDR characteristics [63]. Although we also used 

ortholog sequences as training data, our approach differs in many aspects. Instead of 

convolution neural networks, we used self-attention networks to capture the distal 

features in the entire protein sequence. Additionally, we trained our model using the 

latest contrastive learning architecture (MoCo v3), which greatly reduces memory 

usage for larger batches and enhances efficiency. In contrast to other masked language 

models [64-66], our approach is the first, to the best of our knowledge, to combine 

contrastive learning and self-attention in extracting features using natural language 

processing for protein sequence analysis. Our trained model directly “pays attention” 

to potentially critical residues in the entire sequence instead of mapping the primary 

sequence to learned motifs [63]. In other words, our model identifies overall features 

in an IDR sequence, for example, a predominance of aromatic residues or blocks of 

charged residues (Figure. 2). Moreover, our model provides intuitive results that point 

out potentially important residues for researchers to target for example in mutagenesis 

or truncation experiments.  

 

Conclusion 
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Although the model could be improved by training on larger datasets (e.g., including 

more orthologs other than human’s) or with larger batch sizes (requiring a 

supercomputer), these results show that self-supervised contrastive learning with 

self-attention networks can be used to identify key residues in IDRs, something that 

cannot be achieved by conventional multiple sequence alignment. The model, IFF – 

for IDP Feature Finder, can be accessed online using a primary sequence as the only 

input. We expect our model to be useful in various research fields, notably cell 

biology, to efficiently identify critical residues in proteins with IDRs, such as those 

that undergo LLPS.  
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Figure legends 

 

Figure. 1. Flowchart of the training scheme. (A) Schematic representation of how the 

training datasets were constructed from human sequences (orange lines) and orthologs 

(green lines). (B) A training batch made up of 50 randomly selected subgroups. (C) 

Embedding of the human sequence and one of its orthologs from the same subgroup 

(selection probability weighted by dissimilarity) to different dimensions (as a tensor 

for each sequence). (D) The architecture of the training model. The steps in panels 

B–D were repeated 580 times to cover all subgroups in the training set, and the whole 

process (a training epoch) was repeated 400 times.  
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Figure 2. Results of the trained model for reference proteins and attention score 

distributions for individual amino acids. (A–D) Sequences and attention scores for the 

intrinsically disordered regions of (A) the RNA-binding proteins TDP-43, FUS, and 

hnRNP-A1, (B) human and zebrafish galectin-3, (C) NPMA, FMRP, and Caprin-1, 

and (D) Pbp-1. The attention scores appear as heatmaps from high (red) to low (grey) 

in the top row of each protein along with residue numbers. Amino acids with different 

physical properties are shown on separate rows as indicated in panel (A). Purple 

arrows indicate amino acids of known functional importance. (E) Half-violin plots of 

the distribution of attention scores in human IDRs for each amino acid, sorted by 

median value from high (tryptophan, W) to low (alanine, A).  
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