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Abstract

Conserved residues in protein homolog sequence alignments are structurally or
functionally important. For intrinsically disordered proteins (IDPs) or proteins with
intrinsically disordered regions (IDRs), however, aignment often fails because they
lack a steric structure to constrain evolution. Although sequences vary, the
physicochemical features of IDRs may be preserved in maintaining function.
Therefore, a method to retrieve common IDR features may help identify functionally
important residues. We applied un-supervised contrastive learning to train a model
with self-attention neuronal networks on human IDR orthologs. During training,
parameters were optimized to match sequences in ortholog pairs but not in other IDRs.
The trained model successfully identifies previously reported critical residues from
experimental studies, especially those with an overall pattern (e.g. multiple aromatic
residues or charged blocks) rather than short motifs. This predictive model can
therefore be used to identify potentially important residuesin other proteins.

Availability and implementation

The training scripts are available on GitHub (https://github.com/almwh/IFF). The
training datasets have been deposited in an Open Science Framework repaository
(https://osf.ioljk29b). The trained model can be run from the Jupyter Notebook in the
GitHub repository using Binder (mybinder.org). The only required input is the
primary sequence.
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I ntroduction

DNA/RNA sequences and the proteins they encode carry their evolutionary history,
and multiple sequence alignment methods can reveal phylogenetic relationships. For
instance, our extinct Neanderthal and Denisovan cousins were identified from the
DNA extracted in ancient bones [1, 2]; prokaryotic ribosomal 16S RNA sequences
contributed to the discovery of Archaea domain [3]; the tracing of myoglobin and
hemoglobin protein sequences back to their globin origin is another textbook example
[4, 5]. Protein structures also provide insights into how proteins have evolved, being
conserved in some cases despite changes in the primary sequence. For example, the
structural similarity between the motor domains of kinesin and myosin hints that they
have a common ancestor, despite low sequence identity [6]. The shape of a protein
also constrains how it evolves and functionally important residues are conserved.
Indeed, when sequence conservation levels are mapped onto 3D structures, the most
conserved residues are typically found in key locations, such as the folding core [7] or
catalytic sites [8].

However, these structural constraints on evolution do not apply to intrinsically
disordered proteins (IDPs) or proteins with intrinsicaly disordered regions (IDRs),
and as a result, the sequences of these proteins, which represent more than half of the
proteome [9], vary more widely than do those of their folded counterparts (see
example in Supplementary Figure S1). Although some structural evolutionary
restraints  still apply to some |IDRs, especialy those that undergo
folding-upon-binding [10, 11], the evolution of IDRs is mainly constrained by
function. One recently recognized function of IDRs is their ability to undergo
liquid-liquid phase separation (LLPS) [12, 13]. This mechanism contributes to the
formation of membraneless organelles and explains the spatiotempora control of
many biochemical reactions within a cell [14, 15]. The proteins within these
condensates do not adopt specific conformations (i.e. they still behave like random
coils) [16, 17] and thus evolve without structural restraints. Although multiple
sequence alignment may work in some instances (for example, the aromatic residues
in the IDRs of TDP-43 and FUS are conserved, highlighting their potential
importance for LLPS [18]), most IDRs cannot be aligned, especially when there are
sequence gaps between orthologs [19].

The functionally important physicochemical properties of IDPS/IDRs encoded in
their primary sequence may be retained during evolution. Aromatic residue patterns
[20], prion-like amino-acids [21], charged-residues blocks [22], and coiled-coil
content [23] all contribute to LLPS, but these features cannot be revealed by sequence
alignment. Multiple sequence alignment methods are, therefore, of limited use in
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identifying critical residues in IDRs. To overcome this challenge, we propose an
unsupervised contrastive machine learning model trained using self-attention neuronal
networks on human IDR orthologs. Our results show that the trained model “pays
attention” to crucial residues or features within IDRs. We also provide online access
to our model that uses primary sequences as input.

Methods

Training dataset preprocessing

Human protein sequences were retrieved from UniProt [24] and the corresponding
orthologs were obtained from the Orthologous Matrix (OMA) database [25]. Chordate
orthologs were aligned using Clustal Omega [26]. The PONDR [27] VSL2 algorithm
was used to predict the IDR of the human proteins and to define the boundaries of the
aligned sequences (Figure 1A). Aligned regions were defined as subgroups.
N-terminal methionines were removed to assist learning (methionine is coded by the
start codon in protein synthesis). After removing gaps within the aligned sequences,
all sequences were padded to a length of 512 amino acids (repeating from the
N-terminus; Figure 1A). The few sequences longer than 512 amino acids (56,086 out
of 2,402,346, 2.3 %) were truncated from the C-terminus. The training dataset thus
consisted of 28,955 ortholog subgroups from 13,476 human protein families with
IDRs longer than 40 amino acids.

Each training batch consisted of fifty randomly selected subgroups (Figure 1B).
The human sequence from each subgroup was paired with one of its orthologs (one of
the non-human seguences in the same subgroup, Figure 1C). The selection probability
was weighted by the Levenshtein distance [28] from the human sequence to favor low
similarity pairings. Supplementary Figure S2 shows how different the sequences
typically were in these ortholog subgroups, along with the corresponding selection
probabilities. The most dissimilar sequences (high probability of being selected for
training) in each ortholog group were also deposited in Open Science Framework. A
classifier token (CLS) was added to the start of the selected sequences, and these were
mapped to a matrix with an embedding dimension of 128 (embed_dim; Figure 1C).

Training architecture

The training architecture was a self-supervised contrastive learning model,
Momentum Contrast version 3 (MoCo v3) [29]. The base encoder in MoCo v3 was
replaced with a classical self-attention network [30]. We used 8-head attention and
tested six attention layers. Fifty human sequences from the same batch and their
corresponding orthologs (the ones with the lowest similarity to each human sequence,
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as mentioned above) were sent to the momentum encoders (f,, fi respectively,
following the original nomenclature [29]), and calculated in paralel (Figure 1D). The
outputs from each human sequence and its ortholog were a query (q) and key (k+; the
positive sample for each query). The output of the other 49 orthologs were the
negative samples (k-). All 50 combinations of q, k+, and k— were formulated to
minimize a contrastive loss using the adopted INfoNCE [31]:

[.: — g €xp (q-k+/'r) (1)

¢ =70 exp (q-k* /1)+Xk— exp (q-k~/7)

where 7is a temperature hyper-parameter (set to 0.02). The loss was computed in a
symmetrized manner [29], i.e. the human sequences (q) were also sent to fi, and the
orthologs (k) were sent to the f; with correspondent outputs for calculating the
INfONCE loss. The parameters between the attention layers of fq (light purple blocks
in Figure 1D) were updated according to a gradient to minimize the cross-entropy loss
(Equation (1)). The parameters in fi (dark purple blocks) were updated by the
momentum encoder: (1-m) ¢ query_encoder + m « key_encoder, with m set to 0.999
by default [29]. This scheme (Figure 1B-D) was repeated ~580 times to include all
28,955 subgroups in each training epoch. The training consists of 400 epochs, and the
InNfONCE loss is sufficiently converged (Supplementary Figure S3). The model was
built on PyTorch and the training was performed on a Nvidia Telsa P100 16G GPU.

Results

The trained model attributes a high attention score to experimentally confirmed
critical residues.

Studies have shown that the aromatic residues (phenylalanine, tyrosine, and
tryptophan) in the IDRs of TDP-43 [32], FUS [33], and hnRNP-A1[34] are critical for
LLPS-related functions. These residues obtain a high attention score in our model
(Figure 2A). The aromatic residues (two tryptophans and ten tyrosines) in galectin-3
[35] aso score highly (Figure 2B, left panel). Interestingly, although zebrafish
galectin-3 differs substantially in primary sequence from human galectin-3
(Supplementary Figure $4), the aromatic residues (mostly tryptophan instead of
tyrosine) aso have high attention scores (Figure 2B, right panel). Note that zebrafish
galectin-3 was not in the OMA ortholog database used for training (OMA number:
854142). Charged residues (purple arrows in Figure 2C) reported to be associated
with condensation in NPM1 [36], FMRP [37], and Caprinl [38] also obtain high
attention scores (Figure 2C). Our model aso assigns high attention scores to the
methionines in Pbp-1 (labeled in Figure 2D; Pbp-1 is the yeast ortholog of human
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Ataxin-2), which have been shown to be critical for redox-sensitive regulation [39].
Altogether, these results indicate that the trained model correctly identifies known key
IDR residues.

Most amino acids have broadly distributed attention scores except tryptophan and
cysteine, whose presence in IDRs hints at potential importance.

Figure 2E compares the attention score distributions of the amino acids in human
IDRs. The differences are striking, but the attention scores are not correlated with
other physical properties, such as disorder/order propensity [40, 41], prion-likeness
[42], or prevalence in human IDRs (Supplementary Figure S5). The attention scores
of alanine are always low. Although alanine promotes o-helix formation, which is
known to contribute to IDR functions such as LLPS [43-45], our model ignores these
residues. This is probably because o-helices are also promoted by other amino-acid
types, e.g. leucine or methionine [46, 47], in different combinations not involving
alanine. Also, since the training process did not include structure information,
structure-related sequence motifs were ignored. At the other end of the distribution,
tryptophan and cysteine systematically obtain high attention scores. These
structure-promoting amino acids rarely appear in unstructured regions [40, 41, 48];
therefore, their appearance in IDRs hints at their potential importance. Although little
is known about the role of cysteine in IDRs, its involvement in tuning structural
flexibility and stability has been recently discussed [49]. Tryptophan, in contrast, is
well-known to act as LLPS-driving “stickers’ in IDRs [32, 50, 51], and bioinformatic
analysis shows that they may have evolved in the IDRs of specific proteins to assist
LLPS[18].

Finaly, the fact that most amino acids, including those highlighted in Figure
2A-D, have broad attention score distributions (Figure 2E), excludes the possibility
that our model is biased toward particular amino-acid types rather than seguence
content as a whole. Moreover, in the machine learning procedure, the protein
sequences were embedded into higher dimension matrices (as sequences of digits;
Figure 1C), and amino-acid type information was lost when the matrices were
transformed into tensors along with the self-attention layers (Figure 1D). These results
support the predictive ability of the trained model.

Discussion
Genetic information, in the form of a linear combination of nucleic or amino acids,
becomes more diverse over time. Comparing levels of diversity between different
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species reveals how closely related they are. In terms of amino acids, multiple
sequence alignment not only highlights phylogenetic relationships between proteins
but also facilitates homology modeling for structure prediction [52-54]. Machine
learning approaches have recently been used to incorporate information from
evolution to train structure prediction models [55, 56], and the highly accurate
predictions from AlphaFold [57] and RoseTTAFold [58] have revolutionized
structural biology. In contrast, the structural conformations of IDRs do not have a
one-to-one correspondence with the primary sequence, and multiple sequence
alignment often fails [18, 59]. These limitations make IDR structural ensembles
challenging to predict. A few attempts have been reported, such as using generative
autoencoders to learn from short molecular dynamics simulations [50]. The potential
and challenges of machine learning in IDR ensemble prediction are also discussed
[59].

Sequence pattern prediction faces similar challenges, including the lack of a
sufficient stock of “ground-truth” training data, such as image databases or the Protein
Data Bank. However, unsupervised learning architectures have been developed to
train models without labeled datasets [60], and this type of approach is especialy
well-suited for IDRs. For instance, Saar et a. used a language-model-based classifier
to predict whether IDRs undergo LLPS [61]. Moses and coworkers pioneeringly
applied unsupervised contrastive learning, using protein orthologs as augmentation
[62], to train their model to identify IDR characteristics [63]. Although we also used
ortholog sequences as training data, our approach differs in many aspects. Instead of
convolution neural networks, we used self-attention networks to capture the distal
features in the entire protein sequence. Additionally, we trained our model using the
latest contrastive learning architecture (MoCo v3), which greatly reduces memory
usage for larger batches and enhances efficiency. In contrast to other masked language
models [64-66], our approach is the first, to the best of our knowledge, to combine
contrastive learning and self-attention in extracting features using natural language
processing for protein sequence analysis. Our trained model directly “pays attention”
to potentially critical residues in the entire sequence instead of mapping the primary
seguence to learned motifs [63]. In other words, our model identifies overall features
in an IDR sequence, for example, a predominance of aromatic residues or blocks of
charged residues (Figure. 2). Moreover, our model provides intuitive results that point
out potentially important residues for researchers to target for example in mutagenesis
or truncation experiments.

Conclusion
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Although the model could be improved by training on larger datasets (e.g., including
more orthologs other than human’'s) or with larger batch sizes (requiring a
supercomputer), these results show that self-supervised contrastive learning with
self-attention networks can be used to identify key residues in IDRs, something that
cannot be achieved by conventional multiple sequence alignment. The model, IFF —
for IDP Feature Finder, can be accessed online using a primary sequence as the only
input. We expect our model to be useful in various research fields, notably cell
biology, to efficiently identify critica residues in proteins with IDRs, such as those
that undergo LLPS.
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Figure. 1. Howchart of the training scheme. (A) Schematic representation of how the
training datasets were constructed from human sequences (orange lines) and orthologs
(green lines). (B) A training batch made up of 50 randomly selected subgroups. (C)
Embedding of the human sequence and one of its orthologs from the same subgroup
(selection probability weighted by dissimilarity) to different dimensions (as a tensor
for each sequence). (D) The architecture of the training model. The steps in panels
B-D were repeated 580 times to cover al subgroupsin the training set, and the whole
process (atraining epoch) was repeated 400 times.
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Figure 2. Results of the trained model for reference proteins and attention score
distributions for individual amino acids. (A—D) Sequences and attention scores for the
intrinsically disordered regions of (A) the RNA-binding proteins TDP-43, FUS, and
hnRNP-A1, (B) human and zebrafish galectin-3, (C) NPMA, FMRPE, and Caprin-1,
and (D) Pbp-1. The attention scores appear as heatmaps from high (red) to low (grey)
in the top row of each protein along with residue numbers. Amino acids with different
physical properties are shown on separate rows as indicated in panel (A). Purple
arrows indicate amino acids of known functional importance. (E) Half-violin plots of
the distribution of attention scores in human IDRs for each amino acid, sorted by
median value from high (tryptophan, W) to low (alanine, A).
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