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ABSTRACT

Metamers, images that are perceived as equal, are a useful tool to study representations of natural
images in biological and artificial vision systems. We synthesized metamers for the mouse visual system
by inverting a deep encoding model to find an image that matched the observed neural activity to the
original presented image. When testing the resulting images in physiological experiments we found that
they most closely reproduced the neural activity of the original image when compared to other decoding
methods, even when tested in a different animal whose neural activity was not used to produce the
metamer. This demonstrates that deep encoding models do capture general characteristic properties of
biological visual systems and can be used to define a meaningful perceptual loss for the visual system.

Main

To decipher the brain’s algorithms of perception it is critical to understand how natural visual scenes
are represented in neural activity. This question has traditionally been studied with two complementary
approaches: encoding methods characterize neural activations as a function of the stimulus, while
decoding methods reconstruct the visual input or specific stimulus features from neuronal recordings. The
ability to record large scale neuronal activity in combination with recent advances in machine learning
have substantially increased the accuracy of encoding and decoding models including in higher visual
areas [1-5]. While encoding models have a clear quality metric—the prediction accuracy of neural
activity—interpreting them can be challenging when modeling responses to natural images given that
neuronal tuning is highly nonlinear [1, 3]. Decoding models, on the other hand, can yield interpretable
stimulus variables represented in specific neuronal populations such as stimulus orientation, the direction
of motion of a stimulus or even entire scenes [4, 6—15]. In particular, decoding models can be used to
produce “metamers”, stimuli that are perceived as the same or produce the same activity in a set of units in
biological or artificial networks [16, 17].

However, decoding algorithms are fundamentally determined by the choice of quality metric, i.e.
training loss function, used to estimate the decoded variables. In the case of decoding specific latent
variables such as the class of an object, the loss function is clearly defined. In more challenging problems
like reconstructing entire visual scenes, the loss function is less clear. Image-based metrics, such as
the commonly used mean-squared-error of pixel intensities, are not well correlated with perceptual
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Figure 1. Data recording paradigm. a) Our stimuli for training the deep encoding model are
composed of 5040 natural images shown for 0.5 seconds interleaved with blank spaces (0.3-0.5 seconds).
b) We record approximately 8000 cells across four visual areas in a 2.4 x 1.8 mm? field of view. c)
Schematic of our proposed reconstruction method. We train a state-of-the-art differentiable encoding
model to predict brain responses and use it to reconstruct arbitrary images not previously shown to the
model. To reconstruct images, we start with a blank image and iteratively modify it to minimize the
distance between the in-vivo recorded response and the prediction from the encoding model using
backpropagation. To evaluate the proposed method we later show the reconstructions, along with the
original images to a similar population of cells in visual cortex.

similarity [18]. Moreover, devising a good perceptual loss function for reconstructing complex natural
scenes is especially difficult for higher visual areas, specialized on representing specific latent variables
from visual scenes such as textures, shapes, colors and faces. Ultimately, what matters most is how
well the decoded stimuli reproduce the original brain activity used to reconstruct them, i.e., synthesizing
metamers of the original image with respect to a neuronal populations. Unfortunately, experimentally it
is practically impossible to decode complex stimuli — such as natural scenes — based on a comparison
between the neural activity elicited by the original and the decoded image recorded in real time. Here, we
reconstructed natural images by “inverting” a deep learning based encoding model (Fig. 1). The objetive
of the inversion process was to synthesize stimuli such that the activity predicted by the encoding model
matched the recorded brain activity to the original image. Measuring the reconstruction quality on the
neural responses, allowed us to obtain stimuli that were neurally equivalent to the original natural image.
When we showed these reconstructed images back to the animals they more accurately reproduced the
original brain activity than images decoded from other algorithms we tested, even when shown to different
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neural populations or even different animals.

We recorded the responses of thousands of excitatory neurons in layer 2/3 across multiple areas
of the mouse visual cortex using two-photon imaging with a wide field-of-view mesoscope to natural
images (Fig 1) [19]. Next, we trained a deep convolutional neural network (CNN) to predict neural
responses as a function of the visual input and measured correlates of behavioral modulation including
running, eye movements and pupil dilation. The encoding model was trained on 5000 natural images and
accurately predicted the activity of thousands of neurons recorded from different cortical visual areas
on a held out test set of natural images. On average across scans, we obtained a normalized correlation
coefficient of 0.61 (absolute correlation coefficient of 0.56) [20]. This deep neural network encoding model
provides an accurate digital twin of the mouse visual cortex and was previously used to find most exciting
input for single neurons [1]. To decode from the digital twin an initially blank image was optimized
via gradient descent to produce predicted responses that matched the in vivo recorded responses while
softly smoothing the image after each iteration to avoid unrealistic high-frequency details (Fig 1c). For
comparison, we also decoded images using three algorithms optimized to directly reproduce the presented
images in pixel space: an L2-regularized linear regression (Linear), a two-layer multi-layer perceptron
(MLP) and a deep neural network with transposed convolutions (Deconv) [21]. Moreover, we decoded
from a Gabor filter bank encoding model of visual cortex (Gabor) [5] and a model that samples natural
images to create reconstructions (AHP) [4]; see Methods for further details. Because of the large number
of neurons (approx. 8200 per mouse), all decoding methods were able to produce reconstructions that
resembled the original image (Fig. 2a, 3a)

We compared the different reconstructions using three metrics: 1) correlation between pixel intensities,
2) the structural similarity index (SSIM) [22]—a widely used measure to judge the perceptual quality of an
image compared to a reference image, and 3) the correlation of neural activity between the original image
and the one elicited by its reconstruction in subsequent in vivo closed-loop experiments. Specifically,
we presented the original images and the reconstructions to the same or a different mouse in the same
visual areas and cortical layer but not necessarily to the same neurons. This is a strong test assessing
whether the reconstruction method puts emphasis on image features that matter for cortex. To the best
of our knowledge, this is the first time that the quality of decoded stimuli is quantified in physiological
experiments.

As expected, on the pixelwise corrrelation metric, reconstruction methods optimized to directly
reproduce the presented images pixel-by-pixel (e.g., MLPs or deep deconvolution networks) outperformed
the others including our method of inverting deep learning encoding models (Fig. 2b, Sup. Tab. 1). On the
SSIM metric our method was on par with the pixel deconvolutional network method (Deconv, Fig. 2¢).
Our method produced more perceptually meaningful reconstructions (Fig. 2e, Sup. Fig. S1) and yielded
the best match between the neural activity elicited between the reconstructed and original image (Fig. 2d,
f, Sup. Tab. 1). Importantly, our encoding based reconstructions also generalized better across animals
(Fig. 2g). Therefore, these closed loop experiments highlight that image-based decoding methods and
quality metrics such as pixel level training loss emphasize unimportant features of decoded stimuli. In
contrast, our method of inverting accurate digital twin models of brain activity synthesize metamers of
the original images with respect to brain activity emphasizing meaningful features for specific neuronal
populations — even across animals.

We further evaluated the decoding methods in a dataset of grayscale images of handwritten digits [23]
akin to datasets used in earlier decoding research [24, 25]. Even though the deep encoding model was
trained on responses to natural images only, our approach produced quantitatively and qualitatively better
reconstructions (Fig. 3). Additionally, we prepended an image generation model (a pretrained variational
auto encoder VAE [26]) to our model and performed gradient descent in the latent image representation of
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Figure 2. Evaluation of natural image reconstructions. a) Sample reconstructions for the six tested
methods (See Sup. Fig. S1 for other examples.) b, ¢) Swarm plots (n = 15 scans) of the pixel-wise
correlation (b) and structural similarity (c) between original images and their reconstructions (averaged
across all images). d) Correlation between neural response to the original image and to the reconstructed
image (n = 4 scans). Each dot shows the mean correlation across images for one scan (error bar is the
standard error of the mean). ‘Shuffled’ is the expected correlation between responses to two unrelated
natural images estimated as the average of the off-diagonal values in the image-to-image response
correlation matrix while ‘Orig.” is the correlation of neural responses to two distinct presentations of the
same image (average of the diagonal of the correlation matrix); these provide a lower and upper bound for
the correlation between images and reconstructions in a scan. e) Sample reconstructions from our method.
The windowing effect results from the field of view of recorded cells not covering the monitor fully. f)
Correlation of neural responses (n = 4 scans) between original images and reconstructions from a
deconvolution network (x axis) and from our method (y axis). In-vivo responses elicited by our method
are more similar to those of the original image (0.61 vs 0.51 mean correlation, t-test p-value=1e-8). g)
Correlation between neural responses (n = 1 scan) from the original images and reconstructions generated
for a different mouse. Error bars show standard error across images.
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this generator rather than on the pixels. This method reconstructed images that were almost identical to
the original input using only in vivo neural responses (Ours+VAE in Fig. 3a).

Our results suggest that deep neural encoding models trained on the responses to natural stimuli can
be used to define an image similarity metric that produces metamers that best match neural activity, across
neurons and animals. These images yield visually accessible qualitative features that are represented in
different parts of the visual systems, and can be quantitatively verified in physiological experiments.

Methods

Experimental setup

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Baylor
College of Medicine. We ran our experiments in seven mice (Mus musculus, 4 female, 3 male) aged
70-188 days old (129 on average) expressing GCaMP6s in excitatory neurons via SLC17a7-Cre and A1162
transgenic lines (JAX stock #023527 and #031562, respectively). We made a 4 mm diameter craniotomy
over visual cortex as previously described [27].

During experiments, mice were head-mounted above a cylindrical treadmill and allowed to run freely.
Calcium imaging was performed using a Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm and
a large field of view mesoscope [19] with a custom objective (0.6 NA, 21mm focal length); laser power
after the objective was kept below 60 mW to avoid tissue damage. We presented visual stimuli to the
left eye with a 25” LCD monitor (ASUS PB258Q, 1920 x 1080 px resolution) positioned 15 centimeters
away from the eye. Rostro-caudal treadmill movement was measured using a rotary optical encoder with a
resolution of 8000 pulses per revolution. To capture eye movements, light diffusing from the laser through
the pupil was reflected through a hot mirror and captured with GigE CMOS camera (Genie Nano C1920M,
Teledyne Dalsa) at 20 fps at 1920 x 1200 px resolution.

Image stimulus
The stimulus consists of 6200 images: 5000 natural images shown once, 30 natural images shown 40
times each and 10 MNIST digit images shown 40 times. Natural images were sampled at random from
the ImageNet dataset [28]: ImageNet images have arbitrary dimensions, we take the maximal 16:9 ratio
crop from the center of the image, resize it to 144 x 256 and turn it into grayscale. From an initial random
sample of 100 images, we hand-selected 30 natural images—the ones shown for more repetitions—to
make sure they show interesting structures; this selection was done before any experiments. The 10
MNIST images [23] were chosen manually from the standard test set to have the canonical appearance of
each digit. MNIST images are 28 x 28 pixels: we resized them to 144 x 144, rotate them 90 degrees and
pad them with black pixels to fill the 144 x 256; we assume that most digits are thin and tall so we rotate
them to lessen effects from the edge of the monitor atop and at the bottom of the digit.

During stimulus presentation, images are interleaved and shown for 0.5 seconds with a blanking
period—where the screen is shown in gray—of 300-500 milliseconds between them. The length of the
blanking period is chosen uniformly at random.

Imaging

Before experiments, we recorded pixel-wise responses (at 0.2 px/um) to drifting bar stimuli for a
2.4 x 2.4 mm? region of interest at 200 um depth from the cortical surface to generate a sign map
for delineating visual areas [29]. We chose an imaging site to maximally cover visual areas while avoiding
blood vessel occlusion and leveled the craniotomy window to keep the surface of the brain parallel to the
objective using the scan’s six degrees of freedom.
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Figure 3. Evaluation for MNIST images. a) MNIST reconstructions for seven different methods. b)
Swarm plots (n = 15 scans) of pixel-wise correlation between original images and their reconstructions
(averaged across all images) for the different methods. ¢) Swarm plots (n = 15 scans) for the accuracy of
a pretrained MNIST classifier on the reconstructions from different methods. d) Correlation between the
neural response to the original digit and the reconstruction. Each dot represents the average correlation
(n = 4 scans) and the error bars show the standard error of the mean. ‘Shuffled’ is the expected correlation
between the neural responses to two unrelated digit images estimated as the average of the off-diagonal
values in the image-to-image correlation matrix while ‘Orig.’ is the correlation between neural responses
to two distinct presentations of the same image (average of the diagonal of the correlation matrix); these
are a lower and upper bound for the correlation between images and reconstructions. e) Correlation of
neural responses (n = 4 scans) between original images and the reconstructions from the deconvolution
method (x axis) and from our method (y axis). Neural responses elicited by our method are not
significantly different than those from the deconvolution method (0.76 vs 0.73 mean correlation, t-test
p-value=0.09)
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During experiments, using a remote objective, we sequentially image three 2400 x 620 um? fields per
frame at 8.1 fps and 0.4 px/um xy-resolution. Fields are recorded side by side with 20um overlap to cover
a 2.4 x 1.8mm? recording plane in layer 2/3 at around 200 pm depth from the surface of the cortex.

Processing of neural and behavioral data

Each frame of the recording field is motion corrected using rigid template matching; the template is
obtained by averaging 2000 frames (approx 4 minutes) from the middle of the scan. Cell masks and
fluorescence traces are obtained using constrained non-negative matrix factorization [30] and spike activity
is deconvolved from these fluorescence traces using the same package. For further analysis, we restrict
to cells in visual areas (V1, LM, AL and RL) that are at least 8 microns from the edge of any recording
field (this avoids any edge effects from recording).This results in approximately 8200 cells per scan on
average. We subsequently average the spike traces over the 500 ms duration of each image (adding 30 ms
start offset meant to account for the time the signal takes to travel from the retina to cortex [31]) to obtain
a single response vector per image.

The encoding model receives treadmill velocity, pupil size, and pupil location as auxiliary signals
during training. To obtain treadmill velocity, we take the numerical gradient of the wheel location using
central differences [32]. The pupil is segmented from each video camera frame using DeepLabCut [33], a
circle is fitted to the predicted mask and its diameter and position is used as pupil size and location. These
behavioral traces are also averaged during image presentation to obtain a single number per image. We
used the open-source DataJoint framework for the computational workflows [34, 35].

Closed loop

To evaluate reconstructions in neural space, we are able to show the reconstructions from one day back
to the mice on the next day. To avoid long calcium imaging sessions, we evaluate the reconstructions
from three methods at a time in a single scan ': we create a stimulus with reconstructions for the 40 test
images (30 natural + 10 digits) repeated 40 times and the original images repeated 60 times (7200 images
in total). Stimulus presentation, recording and data processing parameters are the same as for the original
experiments. We recorded five closed loop scans in total.

From one day to the next, all but the z axis of the scan were locked to allow us to return to the same
imaging site. Although we do not perform day to day cell matching, field of views look visually similar
and we expect the neural population across days to overlap highly. In order to have a consistent monitor
placement relative to the mouse, we placed the aggregate receptive field for each day at the center of
the monitor. To obtain the aggregate receptive field we tiled the center of the screen in a 10 x 10 grid
with single dark dots over bright background (~ 5°) and averaged the calcium trace of a ~150x 150um?
window in the center of our field-of-view from 0.5-1.5 seconds after stimulus onset across all repetitions
of the stimulus for each location. We fitted a ellipsis to this coarse grid and displaced the monitor each day
to keep the field-of-view centered.

Machine Learning model

Data

We train the models using 4500 natural images and their recorded neural responses and select hyper-
parameters with the remaining 500 images. The 30 natural images with repeats (see Sec. ) are used
for evaluation: we average the neural responses across repeats to increase signal-to-noise ratio. We
1sotropically downsampled stimuli images to 36 x 64 pixels. Input images, the target neuronal activities,

"Each scan lasts two hours so we are still able to test all methods in one day.
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behavioral traces, and pupil positions were normalized using the mean and standard deviation from the
training set.

Reconstruction based on deep encoding models
Rather than training a decoding model to predict images from neural responses, we train a differentiable
encoding model and pseudo-invert it using its gradients to obtain a predicted reconstruction.

The encoding model is a three layer neural network that extracts intermediate image features and a
readout layer that learns the position of each cell’s receptive field in the monitor, extracts the intermediate
features at that point and linearly predicts a cell response [1, 36]. To obtain reconstructions, we feed a blank
initial image to the encoding model and iteratively optimize it via gradient descent so that the predicted
neuronal response matches the recorded neuronal response [37]. We use an automatic differentiation
engine [38] to compute the gradient of the mean squared error between predicted and recorded neural
responses with respect to the input image. We gaussian blur the gradient image (standard deviation =
2.5px) each iteration to avoid high frequency noise in the reconstruction [39]. We run the optimization for
1000 steps: it takes around 5 secs in a modern machine. Final reconstructions are bilinearly upsampled to
their original size (144 x 256) and the contrast is scaled to cover the full range of intensity values (0-255).

Minimizing distances between neural responses is more sensible than minimizing distances in the high
dimensional image space used in standard decoding models. The inductive biases learned by encoding
models for the simpler task of neural response prediction may also result in the better reconstructions
produced by our method. Another advantage of our reconstruction method is that we can use a (possibly
hand-crafted or pre-trained) generative model to create the images fed to the encoding model and optimize
directly on the latent space of the generative model rather than in the space of images; this adds a heavy
natural bias on the type of reconstructions we are able to produce and allows us to take advantage of
powerful generative models from the deep learning literature [40—42]. We show this using a variational
autoencoder pre-trained on the MNIST digit images [26]: we optimize on the 20-dimensional latent space
of the autoencoder via gradient descent without any gaussian blurring. Reconstructions look strikingly
similar to the original images (see Ours+VAE in Fig. 3a)

Evaluation
Evaluating the quality of natural image reconstructions is not straightforward and the metrics used may
skew results. We report the two most commonly used similarity metrics: pixel-level correlation and
structural similarity. For any hyperparameter selection we prefer to use structural similarity as, from
experience, it aligns better with the human notion of a good reconstruction and is less biased towards
preferring blurry reconstructions. For reconstruction of MNIST images, we use the performance of an
MNIST classifier on the reconstructed image as an additional measure of reconstruction quality. We
measure this with a pre-trained three layer MLP with an accuracy of 98% on the original MNIST test set.
In a separate experiment, we show the reconstructions back to the mice along with the original images
(see Sec. ); this allows us to compute the similarity of neural responses in the brain, arguably the true
objective of decoding methods. We average recorded responses across trials to compute the correlation
between responses to original images and reconstructions. Because of neuronal variability and instrument
noise, response correlations will never be perfect even when presenting the same image. To estimate an
upper bound on the possible response correlation in a scan, we split the 60 image trials into two disjoint
subsets of 30 trials and compute the correlation between them (averaged across images). We also estimate
a lower bound on the response correlation by computing the correlation of responses to different images
(averaged across all pairs of distinct images); non-zero correlations arise from natural neuron-to-neuron
covariance and image similarities.
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Comparisons to other decoding methods
We compare six different methods. We search across different hyperparameters for each to obtain the best
performing model (see Sup. Sec. A.5).

* Linear: A linear regression model from responses to pixels regularized with either an L2 or L1
penalty. Hyperparameters: image dimensions and regularization weight.

* MLP: A multilayer perceptron with a single hidden layer. Hyperparameters: image dimensions,
learning rate, L2 regularization weight and number of units in the hidden layer.

* Deconvolution network (Deconv): An eleven layer convolutional network with transposed convolu-
tion layers for upsampling. The initial layer is a transposed convolution that upsamples the 1 x 1
neural response to 3 x 5, afterwards every second convolution upsamples its input by a factor of two.
Hyperparameters: learning rate and L2 regularization weight.

* Gabor [5]: Filter all images using a pre-defined Gabor filter bank, learn to predict the weights for
these filters using linear regression (with either L1 or L2 regularization) and create reconstructions
by linearly combining the Gabor filters with the predicted weights. Current state of the art in mice
reconstruction. Hyperparameters: image dimensions, size of the Gabor filter bank and regularization
weight.

* Averaged high posterior (AHP) [4]: Pass many natural images through the encoding model and
average the images that produce a closer predicted response to the target neural response. We use
a bank of 125,000 images that were not used in any other experiment. Hyperparameters: number
of images to sample, whether or not to use a weighted average of images (using the normalized
similarity value between responses as weights).

* QOurs: As explained in the previous sections. We treat the optimization step size and sigma for
gaussian blurring as hyperparameters. Number of iterations used is chosen manually to be large
enough that the optimization converges (1000 in our case).

* Ours + VAE: As explained in the previous sections. No hyperparameters; we manually searched for
a sensible step size and used it for all scans.
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A Supplementary section

A.1 Quantitative evaluation of results

We report results using three metrics: 1) pixel-wise correlation between original image and reconstruction,
2) structural similarity between original image and reconstruction and 3) correlation of responses elicited
in the brain when shown original and reconstructed image. We estimate an upper bound on the brain
response correlation by computing the correlation between responses to presentations of the same image:
we average the responses to two sets of 30 distinct presentations of each natural image and compute the
correlation using those averages. The upper bound on the neuronal response correlation for natural images
was 0.908; the remaining gap to perfect image-to-image correlation can be attributed to natural response
variability and recording limitations.

Method Pixel-wise correlation SSIM  Response correlation

Linear 0.563 0.340 0.438
MLP 0.580 0.344 0.420
Deconv 0.607 0.353 0.505
Gabor 0.566 0.339 0.365
AHP 0.514 0.313 0.468
Ours 0.549 0.351 0.609

Table 1. Evaluation metrics for natural images averaged across scans.

Additionally for MNIST images, we compute the accuracy of an MNIST pretrained classifier to
measure the quality of the reconstructed digits. The upper bound on the correlation of neuronal responses
was 0.944. We skipped testing the neuronal correlation for the "Ours + VAE" reconstructions as they are
very similar to the originals and we presume the correlation will be close to the upper bound.

Methods Pixel-wise correlation Classification accuracy Response correlation
Linear 0.646 0.54 0.535

MLP 0.683 0.707 0.426
Deconv 0.783 0.947 0.730

Gabor 0.570 0.387 0.254

AHP 0.646 0.633 0.539

Ours 0.779 0.980 0.764

Ours + VAE 0.888 0.993 -

Table 2. Evaluation metrics averaged across scans for MNIST images.

A.2 Reconstruction of natural images for all methods
We show reconstructions for some natural images using all different methods (Fig. S1). Hyperparameters
for each method are selected as explained in section A.S.

A.3 Single trial reconstructions
In general, we average the neural activity across many repeats of the image presentation to create recon-
structions. Reconstructions on a single presentation of the stimulus are noisier though still qualitatively
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Figure S1. Additional example reconstructions from all methods.
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similar to the original image (Fig. S2). The quality is contingent on the signal-to-noise ratio of the
recording apparatus.

Original Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Figure S2. Example reconstructions from a single recording trial. Each column shows the
reconstructions computed using the neural responses from a different presentation of the image to the
animal. In the main text reconstructions are obtained from responses averaged over many trials.

A.4 Reconstruction transfer across animals

We tested whether reconstructions from one animal activate the same neurons as the original images in
a different animal (Fig. 2g). Reconstructions were generated with recordings from animal 1 and shown
alongside the original images to animal 2 in a different session. Recording field-of-view in the second
animal is chosen to cover as much of visual cortex as possible. We found that similar trends to those
described in the main text hold, namely, that our method still produced the most similar brain responses
(0.58 neural response correlation) while the closest next method was Deconv (0.49 correlation). Shuffled
shows the correlation of responses from two randomly sampled images, while Orig. shows the correlation
of responses to different presentations of the same image (see Sec. A.1); these provide a lower and upper
bound for the expected neuronal response correlation given the natural variability of responses (0.27-0.89
correlation).

A.5 Model selection
For the sake of completeness, we provide the hyperparameters tested for each method. We search a wide
range of parameters so each method had a good chance of producing its best results.

* Linear: 4 image sizes ((18, 32), (36, 64), (72, 128), (144, 256)), 11 L2-regularization weights or 7
L1-regularization weight. Total: 72 configurations
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* MLP: 4 image sizes ((18, 32), (36, 64), (72, 128), (144, 256)), 5 L2-regularization weights, 2
learning rates (le-5, 1e-4), 3 hidden layer sizes (1K, 5K, 5K). Total: 120 configurations.

* Deconv: 1 image size (144 x 256), 7 L2-regularization weights, 2 learning rates (le-4, le-3). Total:
14 configurations.

* Gabor: 4 image sizes ((18, 32), (36, 64), (72, 128), (144, 256)), 11 L2-regularization weights or 6
L1-regularization weights, 2 Gabor filter sets (one with 2256 filters as in [5], one with 36992 filters).
Total: 136 configurations.

* AHP: 6 number of images to average (1, 3, 10, 32, 136), whether to use a weighted average or not
and 2 types of similarity measure between neural responses (correlation or Poisson log-likelihood).
Total: 24 configurations.

* Ours: 2 optimization step sizes (100, 500), 9 standard deviations for the gaussian blur . Total: 18
configurations.

We select the best hyperparameters as those who produce the best results in datasets that do not
come from the same animal, i.e., we first find the hyperparameters with the highest average SSIM on
the test set in each dataset and then for each dataset, we pick the most common configuration from
datasets that do not use the same animal. Although this seems convoluted, we wanted to avoid directly
using the test set for each model. Initially, we planned to use an extra validation set per dataset (10%
of training images not used for fitting the model) but because these validation images are only shown
once to the mice they produce noisier neural responses and using the validation set for model selection
produced reconstructions that were unnecessarily smooth (Fig. S3). Structural similarity is already biased
towards smother reconstructions and we wanted to make sure we pick a model that still showed detailed
reconstruction. The same hyperparameter selection procedure is used for all methods.

Sigma = 0.0 Sigma = 0.5 Sigma = 1.0 Sigma = 1.5

a8 %

Sigma = 2.0 Sigma = 2.5 Sigma = 3.0 Sigma = 3.5 Sigma = 4.0

Figure S3. Reconstruction from our method across the range of standard deviations for the gaussian blur.
The hyperparameter selection method described above will pick sigma=2.5, using the validation set would
have resulted in picking sigma=3.5 which produces overly blurry reconstructions.

2In preliminary experiments, we also tested with adding pixel jittering or using cosine similarity for the neural response
comparison but they did not have much effect.
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Pixel-wise error

We also computed the reconstruction accuracy (negative of mean squared error) per pixel as a sanity check
(Fig. S4). As expected, methods have a similar performance across the entire FOV. Our method only
optimizes pixels that are important to elicit the recorded neural responses, thus most pixels outside the
field-of-view of the recorded cells are left unchanged, which results in poorer performance (as measured
by MSE) near the edges compared to other methods that will try to "outpaint" pixels outside of this FOV
using the information from pixels inside the FOV.

Linear Deconv

Figure S4. Reconstruction accuracy per pixel (averaged across images) for different methods.
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