

1 Main manuscript for

2

3

4 Endosomal egress and intercellular transmission of hepatic ApoE-
5 containing lipoproteins and its exploitation by the hepatitis C virus

6

7

8 Minh-Tu Pham^{1,2}, Ji-Young Lee^{1,2}, Christian Ritter⁴, Roman Thielemann^{4,5}, Uta Haselmann¹,
9 Charlotta Funaya⁵, Vibor Laketa^{2,6}, Karl Rohr⁴, and Ralf Bartenschlager^{1,2,3,*}

10 ¹Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious
11 Diseases Research, Heidelberg University, Heidelberg, Germany

12 ²German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany

13 ³Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ),
14 Heidelberg, Germany

15 ⁴BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg,
16 Germany

17 ⁵Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany

18 ⁶Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases
19 Research, Heidelberg University, Heidelberg, Germany

20 Current Address:

21 #Roman Thielemann: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of
22 Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

23

24 *Corresponding author: Ralf Bartenschlager

25 E-mail: Ralf.Bartenschlager@med.uni-heidelberg.de

26

27

28 Abstract

29 Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play
30 central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic
31 disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized
32 at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however,
33 ApoE-LPs transport from there to the plasma membrane is largely unknown. Here, we established
34 an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found
35 that ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed
36 the co-egress of ApoE-LPs and extracellular vesicles (EVs) along the late endosomal trafficking
37 route. Moreover, complexes of ApoE-LPs and CD63-positive EVs were found to be transmitted
38 from cell to cell. Given the important role of ApoE in viral infections, we studied the hepatitis C virus
39 (HCV) and found that the viral replicase protein NS5A is enriched in ApoE-containing intraluminal
40 vesicles. Interaction between NS5A and ApoE is required for the efficient release of EVs containing
41 viral RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken
42 together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway
43 that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication,
44 these insights provide new starting points for research into the pathophysiology of ApoE-related
45 metabolic and infection-related disorders.

46

47 Author Summary

48 The post-Golgi egress pathway of hepatocyte-derived ApoE-containing lipoproteins (ApoE-LPs) is
49 largely unknown. By using integrative imaging analyses, we show that ApoE-LPs are enriched in
50 CD63-positive endosomes suggesting that these endosomes might be a central hub for the storage
51 of ApoE-LPs from which they are released into the circulation. In addition, we provide evidence for
52 the co-egress of ApoE-LPs with extracellular vesicles (EVs) along the late endosomal route and
53 their transfer from cell to cell. This pathway is hijacked by the hepatitis C virus that induces the
54 production of ApoE-associated EVs containing viral RNA. Given the important role of ApoE in
55 multiple metabolic, degenerative and infectious diseases, and the role of EVs in cell-to-cell
56 communication, these results provide important information how perturbations of ApoE might
57 contribute to various pathophysiologies.

58

59

60 Introduction

61 Hepatocytes play a central role in lipid metabolism, both by production and clearance of plasma
62 lipoproteins (LPs). Changes in hepatic lipid metabolism may contribute to chronic liver disease,
63 such as nonalcoholic fatty liver disease (1). Moreover, infections with hepatotropic viruses, most
64 notably the hepatitis C virus (HCV), perturb hepatic lipid homeostasis, leading to hepatosteatosis,
65 which is due to virus-induced increased intracellular lipid accumulation and impaired lipid release
66 from infected cells (2). These alterations promote viral replication that requires both intracellular
67 lipids to build up a membranous replication factory (3) and to assemble particular virions,
68 designated lipoviroparticles, because of the lipid profile resembling the one of LPs (4) and the
69 association with apolipoproteins, especially apolipoprotein E (ApoE) (5).

70

71 LPs such as very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) are water-
72 soluble assemblies of macromolecules comprising a lipid core of triglycerides and cholestryl
73 esters that is surrounded by a hydrophilic phospholipid monolayer. The latter is decorated with
74 apolipoproteins such as ApoB and ApoE that stabilize the complex and provide a functional identity
75 (6). ApoE is synthesized primarily in hepatocytes and several non-hepatic tissues, including the
76 brain, artery walls, spleen, kidney, muscle, and adipose tissue, but most LP subclasses in the
77 plasma associate with hepatocyte-derived ApoE (6-8). ApoE regulates the clearance of cholesterol-
78 rich LPs from circulatory systems via its binding to receptors on the surface of hepatocytes,
79 including heparan sulfate proteoglycan (HSPG) and low-density lipoprotein receptor (LDLR) (6). It
80 was reported that liver-generated ApoE is superior to ApoE from other tissues in the clearance of
81 LP remnants (9). Abnormal function of ApoE was found in patients with type III
82 hyperlipoproteinemia, which is a disorder characterized by high blood levels of triglycerides and
83 cholesterol (10, 11). Moreover, a recent study reported that liver-generated ApoE affects integrity
84 of the brain (12). At least 18 diseases, including Alzheimer's and cardiovascular diseases are
85 strongly associated with *APOE* genotypes (13). Moreover, *APOE* genotypes appear to correlate
86 with the outcome of some viral diseases such as coronavirus disease of 2019 (COVID-19) (14-17).

87 Notably, hepatic ApoE is an essential integral component of HCV and hepatitis B virus (HBV)
88 particles and has been suggested to be a promising target for the development of effective HCV
89 vaccines (18, 19). In addition, recent findings indicate that plasma ApoE and other apolipoproteins
90 form a protein coat around secreted extracellular vesicles (EVs) and affect EV signaling function
91 (20-22).

92

93 Despite a long history of intensive research, the trafficking, egress, and transmission route of
94 hepatic ApoE-LPs are poorly understood. ApoE is a 299 amino acids (aa) long protein that contains
95 an 18 aa N-terminal signal peptide targeting the protein co-translationally into the ER lumen (23,
96 24). ER-luminal ApoE is transported to the Golgi where it is modified by O-linked sialylation (25,
97 26) and associates with nascent LPs containing ApoB100 and triglycerides. Thereafter, ApoE-
98 ApoB100-containing LPs are further lipidated giving rise to mature LPs that have lower buoyant
99 density (6, 25-27). To be secreted, mature LPs must be transported from the *trans*-Golgi network
100 (TGN) to the plasma membrane (PM), but this process is poorly understood. By using an *in vitro*
101 assay, Hossain and colleagues reported a novel transport vesicle delivering VLDL to the PM of rat
102 hepatocytes, but the identity of this vesicle class is unknown (28). At least in macrophages,
103 secretion of ApoE follows the microtubule network along a protein kinase A and calcium-dependent
104 pathway (29). In addition, in a pigment cell type ApoE associates with intraluminal vesicles (ILVs)
105 within endosomes and is released with these vesicles in the form of exosomes (30). The
106 observation that inhibition of ApoE sorting to endosomes retains ApoE at the Golgi compartment
107 argues for Golgi–endosome transport of ApoE (30). The endosomal compartment is also required
108 for the export of HCV particles that are thought to follow a noncanonical secretory route (31). Since
109 HCV particles associate intracellularly with hepatic ApoE (17, 32) hepatocyte-derived ApoE-LPs
110 might also be released via an endosomal egress pathway. Consistently, HCV hijacks the

111 endosomal pathway for the transmission of viral RNA genomes via endosome-derived CD63-
112 positive extracellular vesicles (EVs) (33-36).

113

114 To study the egress pathway of ApoE-LPs, we established a fully functional fluorescently tagged
115 ApoE and show that ApoE-LPs enrich in CD63-positive endosomes of hepatocytes. Intracellular
116 ApoE-LPs and CD63-positive EV precursors associate with each other and are co-secreted for cell-
117 to-cell transmission. Expanding these observations to HCV, we report that the viral replicase factor
118 nonstructural protein 5A (NS5A) associates with ApoE. This interaction is required for the release
119 of ApoE-associated CD63-positive EVs containing viral RNA and being taken up by non-infected
120 bystander cells. Thus, endosomal release of ApoE-LPs appears to be a physiological pathway that
121 is exploited by HCV.

122

123 **Results**

124 **Establishment of fully functional fluorescently tagged**

125 **ApoE**

126 Live-cell imaging of ApoE requires a suitable fluorescently tagged protein that retains full
127 functionality. GFP was previously selected for ApoE labeling, but ApoE-GFP fusion proteins are
128 prone to undesired cleavage and lack full functionality (37). To overcome this limitation, we probed
129 alternative fluorescent protein (FP) tags that were fused to the C-terminus of ApoE. As target cells,
130 we employed hepatocyte (Huh7)-derived cells (cell line Huh7-Lunet/CD81H), because they are well
131 suitable for various imaging approaches (32) and highly permissive to HCV (38). To avoid
132 excessive overexpression, endogenous ApoE amount was reduced to undetectable level by stable
133 knockdown, prior to lentiviral transduction of the cells with constructs encoding various ApoE fusion
134 proteins (FPs) (32). Western blot analysis revealed that in the case of all ApoE-redFPs, in addition
135 to the full-length proteins (~58-kDa), truncated proteins (~46 kDa) were detected (Fig S1A). This
136 truncation might be due to hydrolysis of the N-acylimine group of the DsRed-like chromophores in

137 these FPs, especially under the acidic conditions in late endosomes where ApoE is expected to
138 reside. Therefore, we tagged ApoE with mTurquoise2 (mT2) and eYFP. Consistent with our
139 assumption, ApoE^{mT2} and ApoE^{eYFP} were not fragmented (Fig S1A, upper right). Because mT2 is a
140 rapidly-maturing cyan monomer with very low acid sensitivity ($pK_a = 3.1$) (39), we selected this
141 tagged ApoE for functional validation.

142

143 ApoE^{mT2} was efficiently secreted into the cell culture supernatant (Fig 1A). Moreover, the
144 association of secreted LPs with ApoE^{mT2} was well comparable to the one with wildtype (wt) ApoE
145 as determined by separation of LPs using sucrose density gradient centrifugation (peak density of
146 ApoE^{mT2} and ApoE^{wt} = 1.05 vs. 1.04 g/ml, respectively) (Fig 1B). Moreover, in addition to a weak
147 and diffuse ER-like pattern, ApoE^{mT2} formed strong and dotted puncta characteristic for LPs and
148 colocalized with ApoB, a well-established LP marker (Fig 1C). Of note, ApoE puncta detected by
149 immunofluorescence in fixed cells were much dimmer than those containing mT2, thus increasing
150 sensitivity of our analyses, especially in live-cell imaging (Fig 1C). We further investigated ApoE^{mT2}
151 subcellular distribution in nonhepatic cells having undetectable levels of ApoE such as HEK293T
152 and Hela cells (30, 40). Upon ectopic expression of ApoE^{mT2}, we observed a dot-like pattern in both
153 cell lines, which was well comparable to the one detected in Huh7-Lunet cells (Fig S1B).

154

155 Next, we validated the functionality of ApoE^{mT2} by probing its capacity to rescue the production of
156 infectious HCV, which was used as readout because this virus incorporates ApoE into virions
157 intracellularly to increase viral infectivity (32, 41). To facilitate the analysis, we employed the HCV
158 reporter virus JcR2a encoding Renilla luciferase (42). JcR2a *in vitro* transcripts were transfected
159 into ApoE knock-down Huh7-Lunet cells expressing ApoE^{mT2} or ApoE^{wt} or containing the empty
160 expression vector. RNA replication, determined by luciferase assay and intracellular accumulation
161 of core protein, was comparable among all 3 cell pools (Figs S1C and S1D). As expected, ApoE^{wt}
162 and ApoE^{mT2} expression significantly alleviated the secretion of HCV virions as determined by
163 quantifying extracellular HCV core protein and infectivity assay (Fig 1D). Baseline production of
164 HCV in empty vector-transduced Huh7-Lunet cells was further reduced when we used the

165 nonhepatic cell line HEK293T-miR122, which does not express endogenous apolipoproteins but
166 supports HCV RNA replication (40), arguing that the expression of non-ApoE LPs in Huh7-derived
167 cells compensates, at least in part, for ApoE deficiency (43, 44) (Fig S2). Also in these cells, ApoE^{wt}
168 and ApoE^{mT2} rescued infectious HCV particle production (Fig S2). Taken together, our data show
169 that mT2 is a novel and well-applicable tag for labeling and functional analyses of ApoE.

170

171 **Endosomal trafficking and egress of ApoE in hepatocytes**

172 Having established a suitable FP-tagged ApoE, we employed light and electron microscopy
173 methods to study the trafficking and egress route of ApoE in hepatocytes. First, we confirmed the
174 conventional trafficking route of ApoE, which starts at the ER where it is co-translationally delivered
175 into the lumen to enter the secretory pathway (23, 24). Consistently, in Huh7-Lunet/ApoE^{mT2} cells
176 we detected reticular ApoE^{mT2} signals overlapping with the ER marker PDI (Fig 2A, top row). In
177 addition, we observed condensed ApoE^{mT2} puncta in the Golgi area containing GM130, a marker
178 of the Golgi apparatus, consistent with the assembly of ApoE-LPs at this site (Fig 2A, middle row).

179

180 To determine whether hepatocyte-derived ApoE-LPs are released via an endosomal egress
181 pathway, we initially determined its colocalization with CD63, the commonly used marker of ILVs
182 that are sorted into late endosomes (45, 46). We detected numerous ApoE^{mT2}-containing structures
183 in Golgi-devoid areas and these signals predominantly overlapped with CD63, indicating
184 accumulation of ApoE in late endosomes (Fig 2A, bottom row). Consistently, a fraction of ApoE
185 signals overlapped strongly with Rab7 (a marker of late endosomes), but rarely with ADRP (a
186 marker of lipid droplets) (Fig S3). We further identified the ultrastructure of ApoE-CD63 positive
187 signals by correlative light and electron microscopy (CLEM) using lipid droplets as fiducial markers,
188 because they are easy to detect in both light and electron microscopy and have a unique distribution
189 and size in each Huh7 cell (Fig 2B). We found that ApoE-CD63 double-positive signals

190 predominantly corresponded to regions containing electron-dense vesicles of ~500 nm in diameter,
191 which is a typical feature of endosomal compartments (47) (Fig 2B, right panel).

192

193 With the aim to track and record the dynamics of ApoE association with CD63, we took advantage
194 of ApoE^{MT2} and conducted time-lapse confocal microscopy (Movie S1). We observed co-trafficking
195 of ApoE-CD63 double-positive puncta as indicated by their similar mean squared displacement
196 values (Fig 2C, top). Particle size and velocity of ApoE-CD63 double-positive signals were also
197 computed, revealing substantial heterogeneity of particle motions (Fig 2C, middle and bottom).
198 Importantly, a subpopulation of these vesicles displayed directed motions (Fig 2D, upper panel),
199 suggesting microtubule-dependent trafficking of late endosomes containing ApoE and CD63 (48,
200 49). An example of ApoE-CD63 co-trafficking dynamics showing a directed motion towards the cell
201 periphery is shown in Fig 2D, lower panel.

202

203 To visualize the intracellular trafficking of ApoE-associated CD63-positive ILVs, we took advantage
204 of the acidic pH in endosomes that gets neutral as endosomes fuse with the PM to release ILVs
205 contained therein. As an endosome-PM fusion sensor, we employed an improved version of
206 pHluorin (50) that was inserted into the first extracellular loop of CD63, thus exposing pHluorin to
207 the acidic environment of the endosomes. The signal of pHluorin-tagged CD63 is quenched in the
208 endosomes and is exclusively excited upon exposure of the endosomes' interior to the neutral pH
209 of the extracellular environment (51). To capture ApoE-CD63 co-secretion, we used time-lapse live-
210 cell confocal microscopy by setting the focal plane to the PM as determined by the basal
211 fluorescence of the CD63^{pHluorin} signal (Fig 2E and Movie S2). As expected, CD63^{pHluorin} expressed
212 in Huh7-Lunet cells showed a predominant fluorescent signal in the PM. Of note, we observed
213 occasional steep and rapid increases of the vesicular ApoE-associated pHluorin signal (Fig 2E,

214 time point t_2) corresponding most likely to the fusion of ApoE-CD63 containing endosomes with the
215 PM and thus, the release of ApoE-associated CD63-positive ILVs.

216

217 **Co-secretion and cell-to-cell co-transmission of ApoE**
218 **and endosome-derived extracellular vesicles**

219 A recent study by Busatto and colleagues demonstrated that EVs in crude plasma frequently bind
220 to and fuse with LPs arguing for a physiological interaction between these two nano-particle species
221 (20). Given the cotrafficking of intracellular hepatic ApoE with CD63 and the secretion of ApoE-
222 associated CD63 (Fig 2), we speculated that extracellular hepatic ApoE might associate with CD63-
223 positive EVs via LPs. Given the difficulties to separate EVs from LPs (21, 52-54), we employed
224 ApoE-specific pull-down to isolate ApoE from the supernatant of Huh7-Lunet cells that had been
225 cultured in EV-depleted medium. Captured complexes were eluted under native conditions and
226 analyzed by EM revealing predominantly small vesicles, which had the size of regular LDL or large
227 HDL particles (mean diameter ~ 25 nm) (Fig 3A). Of note, we detected in much lower quantity co-
228 captured bigger vesicles (mean diameter ≥ 50 nm) (Fig 3A, labeled with stars), a fraction of them
229 staining positive for CD63 and being associated with the smaller ApoE-positive particles (Fig 3B).
230 This result argued for the stable interaction between secreted ApoE-LPs and CD63-positive EVs,
231 consistent with a previous study (20).

232

233 Next, we examined the possible cell-to-cell co-transfer of ApoE-LPs associated with CD63-positive
234 EVs. To this end, we used hepatic donor cells expressing fluorescently labeled ApoE^{mT2} and
235 CD63^{mCherry}, and recipient cells expressing the human HRAS-derived CaaX peptide that was fused
236 to eYFP (Fig 3C, D, gray cells). In this fusion protein the CaaX motif, which is a farnesylation signal,
237 targets the protein to cellular membranes making them easily trackable via eYFP and allowing the
238 faithful discrimination of recipient and donor cells. Cells were seeded into imaging dishes and 16 h
239 later, examined by live-cell confocal microscopy. We observed donor-derived ApoE^{mT2}-CD63^{mCherry}

240 double-positive structures in recipient cells, indicating transfer and uptake of these structures (Fig
241 3D and Movie S3). Quantitative image analysis revealed a time-dependent increase in the number
242 of ApoE^{mT2}-CD63^{mCherry} double-positive structures in single recipient cells, especially at 48 h post-
243 seeding (Fig 3E). Taken together, this result indicates intercellular transmission of endosome-
244 derived EVs bound to hepatic ApoE-LPs.

245

246 **Intracellular enrichment of HCV NS5A in ApoE-positive** 247 **structures independent from virion assembly**

248 As alluded to in the introduction, ApoE associates with HCV particles, most likely via the viral
249 envelope glycoprotein complex E1/E2 (32, 55) and with the viral replicase factor NS5A (56-58).
250 While the ApoE-E1/E2 interaction appears to be critical for HCV particle production, NS5A has
251 been detected in purified EV preparations (59, 60), raising the question of whether NS5A follows
252 the ApoE endosomal egress pathway. To address this question, we monitored ApoE, NS5A and
253 E2 trafficking in HCV-replicating Huh7-Lunet cells stably expressing ApoE^{mT2}. FPs for NS5A and
254 E2 were chosen to allow clear spectral separation from each other and from ApoE^{mT2}. In each case,
255 fusion with the FP did not affect the functionality of the protein as shown here for ApoE^{mT2}, and
256 earlier for tagged NS5A and E2 (61, 62). To allow live-cell imaging under low biosafety conditions,
257 we took advantage of the HCV trans-complementation system (63) in which the HCV genome is
258 genetically split into a stably expressed unit encoding the viral assembly factors (core-E1-E2^{eYFP}-
259 p7-NS2) and a self-replicating subgenomic replicon encoding the viral replicase proteins (NS3-4A-
260 4B-5A^{mCherry}-5B) (Fig 4A). To determine the overall subcellular distribution of FP-tagged ApoE^{mT2},
261 NS5A^{mCherry}, and E2^{eYFP} during the course of HCV infection, we acquired time-lapse images by
262 confocal spinning disc microscopy in 30 min intervals between 5 and 54 h post-electroporation
263 using minimum laser exposure to avoid phototoxicity. Prior to electroporation of the subgenomic
264 replicon, E2^{eYFP} showed a reticular ER-like pattern consistent with its ER retention (64). Around 25
265 h post-electroporation, E2^{eYFP} subcellular distribution began to change and NS5A^{mCherry}-E2^{eYFP}
266 double-positive foci became visible (Fig 4B, arrowheads; Movie S4) (62). In addition, ApoE^{mT2}-

267 NS5A^{mCherry}-E2^{eYFP} triple-positive foci, putative sites of HCV assembly, were observed, but their
268 abundance was very low (Fig 4B, stars). Consistent with ongoing HCV replication, NS5A^{mCherry}
269 signal intensity increased steadily and NS5A^{mCherry}-ApoE^{mT2} double-positive foci formed. Their
270 abundance increased significantly over time (Fig 4C), much higher as compared to NS5A^{mCherry}-
271 E2^{eYFP} positive foci. We confirmed the high number of NS5A^{mCherry}-ApoE^{mT2} double-positive foci at
272 a late stage of infection by live-cell imaging using a shorter time interval (10 sec/frame). Under this
273 imaging condition, NS5A^{mCherry}-ApoE^{mT2} foci were readily detectable (Movie S5).

274

275 To confirm the formation of NS5A-ApoE double-positive structures in the context of a full-length
276 HCV genome, we transfected Huh7-Lunet/ApoE^{mT2} cells with *in vitro* transcripts of a cloned HCV
277 genome and determined NS5A and ApoE subcellular distribution in relation to the ER marker PDI
278 by immunofluorescence. Also under these conditions, ApoE signals significantly overlapped with
279 NS5A, confirming that the trans-complementation system faithfully recapitulates events occurring
280 in natural infection (Figs S4A and S4B).

281

282 Next we determined whether formation of NS5A-ApoE positive structures depends on viral
283 assembly or is linked to some other events such as the formation of EVs. To this end, we used the
284 same experimental approach as shown in Fig 4A, but employed a construct lacking the viral
285 assembly factor NS2 (core-E1-E2^{eYFP}-p7) (Fig 4D, upper panel) (65). While under these conditions
286 NS5A^{mCherry}-E2^{eYFP} double-positive structures were no longer detected, NS5A^{mCherry}-ApoE^{mT2}
287 double-positive dots still formed (Figs 4D and 4E). These results suggested that enrichment of
288 NS5A in ApoE-positive puncta does not depend on HCV assembly.

289

290 **Formation of NS5A- and ApoE-containing intraluminal
291 vesicles in CD63-positive endosomes**

292 Since HCV has been reported to transmit its RNA via a noncanonical pathway comprising
293 endosome-derived CD63-positive EVs (34-36, 66) and because ApoE-LPs also egress along the

294 CD63-positive late endosomal pathway (Figs 2 and 3), we characterized the association of ApoE-
295 NS5A double-positive structures with CD63 in greater detail by using super-resolution microscopy.
296 To make this possible, we exchanged the FPs of ApoE^{mT2} and NS5A^{mCherry} for SNAPf and CLIPf,
297 respectively (Fig 5A, upper). Both fusion proteins were fully functional as revealed by the secretion
298 of ApoE^{SNAPf} and the replication competence of NS5A^{CLIPf} (Figs S4C and S4D, respectively). In the
299 first set of experiments, Huh7-Lunet/ApoE^{SNAPf} cells were transfected with subgenomic replicon
300 RNA and 48 h later, cells were incubated with medium containing the dyes SNAP-SIR647 and
301 CLIP-ATTO590, respectively for 1 h. Thereafter, cells were washed to remove unbound dyes and
302 subjected to live-cell imaging or fixed-cell microscopy (Fig 5A, lower). Confocal imaging of the cells
303 revealed specific labeling of ApoE^{SNAPf} and NS5A^{CLIPf} and strong colocalization of both proteins (Fig
304 5B), consistent with our previous results with FP-tagged ApoE and NS5A (Fig 4). Importantly, we
305 found that about half of ApoE - NS5A double-positive foci also contained CD63 (Fig 5C, Fig S4E).
306 When we visualized NS5A and ApoE by super-resolution STED microscopy, in addition to the
307 reticular ER and the ring-like lipid droplet staining patterns of NS5A^{CLIPf}, we detected ~100-200 nm
308 diameter NS5A^{CLIPf}-positive structures that were decorated with ApoE^{SNAPf} at CD63-positive sites
309 (Fig 5D, arrows).

310
311 To determine the ultrastructure of ApoE-NS5A double-positive sites, we employed CLEM using
312 Huh7-Lunet/ApoE^{mT2} cells expressing the HCV assembly factors and containing a subgenomic
313 replicon (refer to Fig 4A). We observed an overlap of NS5A^{mCherry}-ApoE^{mT2} double-positive signals
314 with endosomes (Figs 6A and 6B). Strikingly, inside these endosomes, we detected numerous ILVs
315 with double or multi-membrane bilayers (Fig 6B, crop 1, 2, and 3, arrowheads), which were only
316 rarely detected in NS5A^{mCherry}-negative, ApoE^{mT2}-positive endosomes (crop 4). Sites of
317 NS5A^{mCherry}-E2^{eYFP} double-positive structures, putative HCV assembly sites, overlapped with HCV-
318 induced accumulations of double-membrane vesicles (DMVs), the presumed sites of viral RNA
319 replication that were often found in close proximity to lipid droplets (Fig 6B, crop 5 and 6) as reported

320 earlier (62). Taken together, these results argued for the accumulation of NS5A- and ApoE-
321 containing ILVs at sites of CD63-positive endosomes.

322

323 **Co-secretion and co-transmission of ApoE-positive**
324 **lipoproteins with endosome-derived extracellular**
325 **vesicles containing HCV NS5A and viral RNA**

326 ApoE associates with NS5A in regions of endosomes containing HCV-produced intraluminal double
327 or multi-membrane vesicles (Figs 5 and 6). Moreover, HCV suppresses the fusion of late
328 endosomes with lysosomes (67). Therefore, we hypothesized that secreted ApoE- LPs might
329 associate with HCV-produced EVs containing NS5A and viral HCV RNA. To address this
330 assumption, we employed a subgenomic HCV replicon that supports viral RNA transmission via
331 endosome-derived EVs, albeit with a rather low efficiency (33-36). In the first set of experiments,
332 we determined whether ApoE associates with NS5A and viral RNA released from cells containing
333 a stable subgenomic HCV replicon or parental control cells by using ApoE-specific pull-down.
334 Captured complexes were analyzed by HCV-specific RT-qPCR. As shown in Fig 7A, we detected
335 HCV RNA in immuno-captured ApoE-containing complexes isolated from supernatants of replicon-
336 containing cells. Samples captured with control antibodies or from mock-transfected cells were at
337 the background level arguing for the release of EVs containing viral RNA from replicon cells.

338

339 To verify the presence of NS5A in the ApoE-captured complexes, we transfected Huh7-Lunet cells
340 with a subgenomic replicon RNA encoding Nanoluciferase (Nluc)-tagged NS5A to allow its
341 sensitive detection in cell culture supernatants (Fig 7B, upper). In agreement with a previous report
342 (60), we observed time-dependent secretion of NS5A^{Nluc} into the cell culture supernatant (Fig 4F).
343 Importantly, Nluc activity was clearly detected upon ApoE-specific immunocapture indicating a
344 direct or indirect association between NS5A and ApoE (Fig 7B, lane 2). The specificity of the pull-
345 down was confirmed by using mock cells or an unrelated antibody (Fig 7B, lane 1 and 3,

346 respectively). Surprisingly, the highest Nluc activity was detected in NS5A-captured
347 immunocomplexes, arguing that NS5A is well-accessible on the outside of EVs (Fig 7B, lane 4).
348 Negative-staining of immunocaptured samples confirmed that NS5A- and ApoE-associated
349 structures correspond, at least in part, to EVs that were frequently associated with LP-like structures
350 (Fig 7C, arrows).

351

352 Next, we examined the possible relevance of ApoE-NS5A interaction for the secretion of EVs
353 containing HCV RNA. To this end, we used an NS5A mutant (APK99AAA) reported to have a defect
354 in interaction with ApoE (Fig S4G) (57). Of note, Huh7-Lunet cells containing a stable subgenomic
355 replicon encoding mutant NS5A^{APK99AAA} released much lower amounts of HCV-RNA than the
356 wildtype replicon (Fig 7D). These results suggest that ApoE - NS5A interaction is required for the
357 efficient release of EVs containing viral RNA, providing an explanation for the association of ApoE
358 with NS5A-positive EVs released from HCV-replicating cells.

359

360 With the aim to visualize intracellular HCV RNA and its association with ApoE, we employed single
361 molecule Fluorescence In Situ Hybridization (smFISH). Used probes were conjugated to Alexa
362 Fluor 647 and enabled visualization of single HCV RNA molecules without signal amplification (Fig
363 S5A). In spite of some nuclear background staining, cytoplasmic staining of HCV RNAs was specific
364 as we detected numerous cytoplasmic foci of viral RNA in replicon cells, but not in the control cells
365 (Fig S5B). To determine if ApoE associates with HCV RNA-containing EVs that might be transferred
366 to neighboring (bystander) cells, we established Huh7-Lunet/ApoE^{mT2} cells containing a stable
367 subgenomic HCV replicon and expressing CD63^{mCherry} (Fig 7E). These cells were used for co-
368 culture experiments and served as donors. As recipient cells, we used HCV-negative Huh7-Lunet
369 cells expressing the CaaX^{eYFP} membrane sensor (see Fig 3C). HCV RNAs were found to partially
370 colocalize with ApoE-CD63 double-positive puncta in donor cells (Fig S5C, area 1). Remarkably,
371 we could detect distinct foci of HCV RNA in single recipient cells, around 13% of them being ApoE-
372 CD63 double-positive (example image in Fig S5C, area 2; quantification in Fig 7F). These data

373 suggest that HCV might hijack the late endosomal trafficking and egress of ApoE-LPs to transmit
374 NS5A and viral RNA via endosome-derived EVs.

375

376 Discussion

377 In this study, we developed two tags for ApoE labeling that do not impact its function while allowing
378 the tracking of hepatocyte-made ApoE by live-cell imaging and various other imaging modalities.
379 Obtained results suggest that hepatic ApoE-LPs follow the trafficking pathway of CD63-positive
380 late endosomes. This pathway appears to be hijacked by HCV using the multi-functional protein
381 NS5A that binds to ApoE to release EVs containing viral RNA. Our observations suggest that late
382 endosomes in hepatocytes might be a central site for the storage and secretion of ApoE-LPs. Since
383 biosynthesis and secretion of ApoE-LPs such as VLDL depend largely on the availability of dietary
384 fat, and have to respond rapidly to elevated plasma insulin levels by retaining hepatic lipids (68,
385 69), a lipid reservoir like late endosomes would allow rapid response to fluctuating food and insulin
386 levels.

387

388 Several viruses exploit ApoE for their replication cycles. Two prominent examples are HBV and
389 HCV that both associate with ApoE-containing lipoprotein particles (17, 32, 70). In the case of HCV,
390 ApoE interacts with NS5A and the envelope glycoproteins and these interactions are critical for
391 HCV particle assembly and maturation (32, 57, 58). Here, we provide evidence that ApoE-NS5A
392 interaction is additionally required for the secretion of HCV-induced EVs containing viral RNA.
393 Release of HCV NS5A and virion-free RNA has been suggested in several independent studies
394 (33-36, 59, 60, 71), but the role of ApoE in this process has not been studied. Our results suggest
395 that ApoE is a critical component for the release of EVs from HCV-replicating cells and these
396 vesicles can be transmitted to naïve bystander cells, consistent with the virion-free transfer of intact
397 HCV genomes from cell to cell (33-36).

398

399 Our results address another long-standing conundrum in HCV biology, i.e. the tight association
400 between ApoE and NS5A (56-58). Although both proteins localize to opposing sites of the ER
401 membrane (28, 72), we can efficiently capture EVs from HCV-replicating cells by NS5A pull-down,
402 indicating that NS5A resides on the surface of EVs where it can interact with ApoE. How NS5A
403 might end up on the surface of these vesicles is not known. For the poliovirus it has been shown
404 that the viral replicase complex resides on the surface of the replication vesicles, which are double-
405 membrane vesicles like for HCV, and a similar topology might apply to NS5A (73-75). Regarding
406 the functional relevance, we note that the ApoE-NS5A interaction is not required for HCV virion
407 assembly, at least in the subgenomic replicon model, but appears to boost the release of viral RNA
408 from infected cells, e.g. to avoid recognition by innate RNA sensors such as TLR3 (59).

409

410 EVs are phospholipid bilayer-enclosed structures released from cells and containing various
411 signaling molecules (76-79). They are considered as a “language” exploited by cells and viruses
412 for intercellular communication (80-83). Several lines of evidence argue for interaction between
413 LPs and EVs. First, various procedures of EV isolation and purification, including size and density
414 fractionation as well as enrichment of CD63-positive EVs do not allow complete separation of LPs
415 and EVs (52-54, 84). Second, LPs were found to attach *in vitro* to purified EVs or even fuse to
416 crude EVs in blood plasma (20, 21, 85, 86). Third, pigment cell-derived ApoE associates with
417 endosome-derived ILVs and plays an important role in the sorting of a distinct cargo to ILVs and its
418 release via exosomes (30). Although these studies suggest an association of LPs with ILVs/EVs,
419 to the best of our knowledge, the association between liver-generated LPs and endosome-derived
420 EVs is not well documented and their possible intercellular co-transmission has been unknown.

421

422 Our data suggest that in naïve and HCV-infected hepatocytes, ApoE-LPs and endosome-derived
423 CD63-positive ILVs/EVs not only share a common intracellular late endosomal trafficking route, but
424 also are partially co-secreted. These particle complexes forming intracellularly co-enter target cells,
425 arguing for a stable interaction between ApoE-LPs and CD63-positive ILVs/EVs. This would explain
426 the difficulty to separate LPs from EVs (52-54, 84), which poses a major challenge to assign distinct

427 functions to each of these vesicle species individually (87). The mechanism underlying this
428 interaction is unknown, but might be mediated by associations between ApoE on LPs and
429 scavenger receptor class B type 1 (SR-BI) or heparan sulfate decorating the surface of ILVs/EVs
430 (86, 88). These interactions could also modulate lipid transfer from LPs to ILVs/EVs (86). Moreover,
431 since hepatic ApoE-LPs are secreted into the blood stream, they might alter the systemic spread
432 of EVs into different distant tissues and organs, thus manipulating various biological responses
433 depending on EV content. For instance, the amount of liver-generated plasma ApoE was found to
434 be associated with unfavorable alterations in neurodegenerative diseases including synaptic
435 integrity (89). The underlying mechanism has not been determined but might be due to the direct
436 contribution of ApoE to lipid metabolism or ApoE-facilitated blood-brain barrier passage of EVs (90-
437 93). Another example is COVID-19 where plasma-derived EVs isolated from COVID-19 patients
438 alter multiple signaling pathways (94), which might contribute to the broad spectrum of clinical
439 symptoms (95). Importantly, COVID-19 derived EVs preparations contain multiple apolipoproteins
440 including ApoE, ApoB, ApoA2, ApoD, and ApoH (94).

441
442 Our study has some limitations. It is primarily based on the use of human hepatoma cells that are
443 highly permissive to HCV and easy to manipulate. However, because LPs and ILV/EV profiles in
444 vivo are somewhat different, future studies require more physiologically relevant systems, which
445 are however, not permissive to HCV and difficult to manipulate. In addition, although the HCV
446 subgenomic replicon model allows excluding the transmission of HCV RNA via virions, HCV-
447 produced ILVs/EVs might also contain viral structural proteins including the envelope glycoproteins
448 E1 and E2, potentially assisting in the spread of these vesicles (96). Finally, the physiological
449 consequences of co-spread of hepatic LPs with -EVs in general and in the context of HCV infection,
450 the latter possibly allowing HCV RNA spread independent of virus particles (33-36) remain to be
451 determined but they are beyond the scope of the present study.

452
453 In conclusion, our study provides insights into the endosomal egress and transmission of
454 hepatocyte-derived ApoE-containing LPs and the strategy how HCV exploits this pathway. Given

455 the more general role of EV-mediated cell-to-cell communication, the association of ApoE-LPs with
456 EVs reported here provides new starting points for research into the pathophysiology of ApoE-
457 related metabolic and infection-related disorders.

458

459 **Materials and Methods**

460 **Materials**

461 Reagents and resources used in this study are provided in Table S1.

462

463 **Methods**

464 **Cell lines and culture conditions**

465 All cells used in this study were cultured in Dulbecco's modified Eagle medium (DMEM, Thermo
466 Fisher Scientific), supplemented with 2 mM L-glutamine, nonessential amino acids, 100 U/ml of
467 penicillin, 100 µg/ml of streptomycin, 10% fetal calf serum (DMEMcplt) and given concentrations of
468 antibiotics to select for stable expression of genes of interest. Huh7-Lunet/CD81H cells (750 µg/ml
469 G418) derived from the Huh7 subclone Huh7-Lunet (97) and expressing high levels of the HCV
470 entry receptor CD81, and Huh7-Lunet/CD81H/ApoE-KD cells (5 µg/ml puromycin) with a stable
471 knockdown of ApoE have been described earlier (32, 38). For reasons of simplicity, in this study
472 Huh7-Lunet/CD81H cells are designated Huh7-Lunet cells. HEK293T-miR122 cells (2 µg/ml
473 puromycin), kindly provided by Thomas Pietschmann, have been reported elsewhere (40). Huh7.5
474 and HEK293T cells have been described elsewhere (98, 99). HEK293T-miR122, Hela Kyoto, and
475 Huh7-Lunet/ApoE-KD cells were used to generate ApoE^{mT2} expressing cells by lentiviral
476 transduction and stable selection with 10 µg/ml blasticidin. For the production of HCV-like
477 transcomplemented particles (HCV_{TCP}), Huh7-Lunet/ApoE-KD/ApoE^{mT2} cells (designated Huh7-
478 Lunet/ApoE^{mT2} in this study for reasons of simplicity) were transduced with lentiviruses encoding
479 the HCV structural proteins (C-E1-E2^{eYFP}-p7-NS2 or C-E1-E2^{eYFP}-p7), selected with 500 µg/ml

480 Zeocin and maintained in 50 µg/ml Zeocin-containing DMEMcplt. To obtain cells with stably
481 replicating subgenomic replicon of the HCV strain JFH1 and used for the coculture experiment,
482 Huh7-Lunet/ApoE^{mT2}/CD63^{mCherry} cells were electroporated with *in vitro* transcripts of the construct
483 sgHyg/JFH1. To monitor HCV RNA secretion in the context of an ApoE-binding defective NS5A
484 mutant or wildtype NS5A, Huh7-Lunet cells were electroporated with *in vitro* transcripts of the
485 construct sgHyg/JFH1/NS5A^{APK99AAA} or sgHyg/JFH1, respectively. Stable cells were selected in a
486 medium containing 400 µg/ml hygromycin and maintained in 150 µg/ml hygromycin-containing
487 DMEMcplt. FCS devoid of extracellular vesicles (EVs) was prepared as previously described (59).
488 The full names of constructs used in this study are given in the Supporting Table 1.
489

490 **Antibodies and immunofluorescence reagents**

491 All antibodies and immunofluorescence reagents used in this study are listed in S1 Table.
492

493 **DNA plasmid constructs**

494 The lentiviral construct pWPI_ApoE encoding human ApoE3 was described previously (100). To
495 generate pWPI_ApoE^{FP} and pWPI_ApoE^{SNAPf} constructs, the FP- and the SNAPf-coding
496 sequences were amplified by PCR using the corresponding plasmids as templates (see Supporting
497 Table 1) and inserted at the 3' end of the ApoE-coding sequence via the linker sequence SGGRGG.
498 Construct pWPI_CD63^{mCherry} encodes a fusion protein of human CD63 and C-terminal mCherry. To
499 generate the construct pWPI_eYFP-CaaX, the eYFP-coding sequence was extended at the 3' end
500 by the CaaX coding sequence derived from the human HRAS protein and inserted into the lentiviral
501 vector pWPI. To generate pWPI_CD63_M153R_pHluorin, the CD63-pHluorin coding sequence
502 contained in plasmid pCMV-Sport6-CD63-pHluorin (51) was amplified by PCR and inserted into
503 the lentiviral vector pWPI. To stabilize pHluorin and increase signal intensity, we inserted the
504 M153R mutation (50) by using PCR and primers carrying the desired nucleotide substitutions.
505

506 The full-length HCV constructs Jc1 and JcR2A have been described elsewhere (42, 101). The
507 lentiviral constructs encoding the HCV structural proteins Core-NS2/E2^{eYFP} or Core-p7/E2^{eYFP} were
508 created by replacing the eGFP-coding sequence reported previously (62) by the eYFP-coding
509 sequence. Plasmid pFK_I389neoNS3-3'_dg_JFH1_NS5A-aa2359_mCherry_NS3-K1402Q
510 (designated sgNeo/JFH1/NS5A^{mcherry} in this study) has been reported earlier (102). To generate
511 the subgenomic replicon encoding a CLIPf-tagged NS5A and the neomycin resistance gene
512 (construct sgNeo/JFH1/NS5A^{CLIPf}), the mCherry-coding sequence in construct
513 sgNeo/JFH1/NS5A^{mcherry} was replaced by the CLIPf-coding sequence. To allow selection with
514 hygromycin, the neomycin resistance gene was replaced by the hygromycin resistance gene. To
515 generate the subgenomic replicon construct encoding a NanoLuciferase-tagged NS5A
516 (sgHyg/JFH1/NS5A^{Nluc}), the mCherry-coding sequence of construct sgHyg/JFH1/NS5A^{mCherry} was
517 replaced by the NanoLuciferase-coding sequence (103). The mutations in NS5A interfering with
518 ApoE interaction (APK99AAA) (57, 104) were inserted into the replicon construct sgHyg/JFH1 by
519 using PCR-based mutagenesis.
520 To generate plasmids encoding myc-tagged NS5A wildtype and the APK99AAA mutant
521 corresponding plasmids were used as template for PCR using primers encoding the myc-tag
522 sequence and NS5A sequences were inserted into the pCDNA3+ vector. Other plasmids used in
523 this study are listed in the Supporting Table 1.
524

525 **Preparation of *in vitro* transcripts and electroporation of HCV 526 RNA**

527 HCV RNA preparations generated by *in vitro* transcription and transfection of cells by
528 electroporation have been described elsewhere (105). In brief, plasmids containing HCV JFH1
529 genomes were linearized using the restriction enzyme MluI-HF (NEB) and purified using the
530 NucleoSpin Extract II Kit (Macherey-Nagel). RNA transcripts were synthesized via *in vitro*
531 transcription using T7 RNA polymerase in 100 μ l-reaction mixtures [80 mM HEPES (pH 7.5), 12
532 mM MgCl₂, 2 mM spermidine, 40 mM dithiothreitol, 3.125 mM of each rNTP, 1 U/ μ l RNasin

533 (Promega), 0.6 U/ μ l T7 RNA polymerase, and the respective linearized DNA template]. After 4 h at
534 37°C, the DNA template was degraded by 45 min treatment with 2 U of RNase-free DNase
535 (Promega) per 1 μ g DNA at 37°C. RNA was purified by acidic phenol-chloroform extraction,
536 precipitated with isopropanol, and dissolved in RNase-free water. The integrity and concentration
537 of RNA were evaluated using agarose gel electrophoresis and spectrophotometry.
538 For electroporation, confluent cell monolayers were trypsinized and resuspended in Cytomix [120
539 mM KCl, 0.15 mM CaCl₂, 10 mM potassium phosphate buffer, 25 mM HEPES (pH 7.6), 2 mM
540 EGTA, and 5 mM MgCl₂] (106) containing 2 mM ATP and 5 mM glutathione (1-2x10⁷ cells/ml). *In*
541 *vitro* transcripts (5 μ g) were mixed with 200 μ l of the cell suspension and electroporation was
542 performed at 975 μ F and 166 V using the Gene Pulser system (Bio-Rad) and a cuvette with a gap
543 width of 2 mm (Bio-Rad). Alternatively, 10 μ g *in vitro* transcripts were mixed with 400 μ l of the cell
544 suspension and electroporation was performed at 975 μ F and 270 V using a cuvette with a gap
545 width of 4 mm. After electroporation, cells were immediately transferred to DMEMcplt and seeded
546 into the desired cell culture dishes.

547

548 **Western blot analysis**

549 Cell extracts were prepared using 2x sample buffer [120 mM Tris-HCl (pH 6.8), 60 mM SDS, 100
550 mM DTT, 1.75% glycerol, 0.1% bromophenol blue] supplemented with 5 mM MgCl₂ and 5 U/ml
551 benzonase. Samples were denatured by heating to 95°C for 5 min. Proteins were separated by
552 SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) membrane that was blocked by
553 incubation in 5% skim milk-containing PBS-0.05% Tween 20, pH 7.4 (PBST) for 1 h at room
554 temperature (RT). The membrane was incubated with a primary antibody in 1% skim milk-
555 containing PBST for either 1 h at RT or overnight at 4°C and subsequently incubated with a
556 secondary antibody conjugated with horseradish peroxidase (HRP) for 1 h at RT. Bound secondary
557 antibodies were detected using the Western Lightning Plus-ECL reagent (PerkinElmer) and signals
558 were visualized by using the Intas ChemoCam Imager 3.2 (Intas).

559

560 **Quantitative detection of HCV RNA by RT-qPCR**

561 Total RNA contained in cell lysates or cell culture supernatant was extracted using the NucleoSpin
562 RNA extraction kit (Macherey-Nagel) according to the instruction of the manufacturer. HCV RNA
563 copy numbers in extracted samples were determined with HCV-specific primers and a probe by
564 using the Quanta BioSciences qScript XLT One-Step RT-qPCR KIT (Quanta Biosciences,
565 Gaithersburg, MD) as described elsewhere (59). Serially diluted HCV *in vitro* transcripts were
566 included in parallel to calculate HCV RNA copy numbers contained in analyzed samples.

567

568 **Quantification of HCV Core protein**

569 HCV core protein amount was quantified using a commercial Chemiluminescent Microparticle
570 Immunoassay (CMIA) (6L47, ARCHITECT HCV Ag Reagent Kit, Abbott Diagnostics) as reported
571 earlier (62).

572

573 **Production of lentiviruses**

574 Lentiviruses encoding genes of interest were produced as described recently (107). In brief, HEK-
575 293T cells were co-transfected with the human immunodeficiency virus-Gag packaging plasmid
576 pCMV-dR8.91, the vesicular stomatitis virus-G encoding plasmid pMD2.G, and the pWPI construct
577 containing the gene of interest by using polyethylenimine (Polysciences Inc.). Lentivirus-containing
578 supernatants were harvested at about 48 h post-transfection and filtered through a 0.45 µm pore-
579 size filter (MF-Millipore).

580

581 **Live-cell time-lapse confocal microscopy**

582 Cells were seeded onto either 4-compartment (CELLview, Greiner BIO-ONE) or 1-compartment
583 (MatTek Corporation) 35 mm-diameter glass-bottom imaging dishes. Prior to imaging, cells were
584 washed twice and cultured in phenol red-free DMEMcplt. Live-cell time-lapse confocal microscopy
585 was performed in a humidified incubation chamber at 37°C and 5% CO₂ using a PerkinElmer
586 UltraVIEW Vox Spinning Disc microscope equipped with Yokogawa CSU-X1 spinning disk head,
587 Nikon TiE microscope body, a Hamamatsu C9100-23B EM-CCD camera, an automated stage and

588 the Perfect Focus System (PFS). An Apo TIRF 60x/1.49 N.A. oil immersion objective was used.
589 Multichannel images were acquired sequentially using solid state lasers with excitation at 445 nm
590 for mTurquoise2, 488 nm for pHluorin, 514 nm for eYFP, 561 nm for CLIP^{ATTO590}, 640 nm for
591 SNAP^{SiR647}, and matching emission filters. For imaging of pHluorin-tagged CD63 expressing cells,
592 the medium was supplemented with 25 mM Hepes (pH 7.4) to stabilize neutral pH. The imaging
593 time interval of each experiment is specified in the figure legends.

594

595 **Immunofluorescence staining and confocal microscopy**

596 Immunofluorescence (IF) staining was performed as previously described (32). Briefly, cells seeded
597 onto coverslips were fixed with 4 % paraformaldehyde (PFA) in PBS for 10 min at RT and
598 permeabilized with 0.1% Triton X-100 in PBS for 10 min at RT. After blocking with 3% (w/v) bovine
599 serum albumin (BSA) in PBS for 20 min at RT, cells were incubated with a diluted primary antibody
600 in 1% BSA/PBS for 1 h at RT or overnight at 4°C. Cells were further incubated with a diluted
601 secondary antibody conjugated with an Alexa fluorophore (1:1000) in 1% BSA/PBS (Molecular
602 Probes) for 1 h in a dark condition at RT. If required, cell nuclei were counterstained with DAPI
603 (1:3000) (Molecular Probes). In-between each step, cells were washed at least 3 times with 1x
604 PBS. Unless otherwise stated, coverslips were mounted with Fluoromount-G mounting medium
605 (Electron Microscopy Sciences, Ft. Washington, USA) overnight at 4°C. For selective
606 permeabilization assay, cells were permeabilized in 5 µg/ml digitonin dissolved in PBS for 15 min
607 at 4°C. IF images were generated with a spinning disc confocal microscope (PerkinElmer).

608

609 **Super-resolution microscopy**

610 Huh7-Lunet/ApoE^{SNAP^f} cells stably expressing ApoE^{SNAP^f} were electroporated with *in vitro*
611 transcripts of HCV sgNeo/JFH1/NS5A^{CLIP^f} and grown on high precision glass coverslips
612 (Deckglaeser, Marienfeld). At 48 h post-electroporation, cells were sequentially incubated with
613 CLIP^{ATTO590} (1:2500) and 5 µM SNAP^{SiR647} (NEB) in DMEMcplt for 1 h. Cells were washed
614 intensively at least 3 times with DMEMcplt and cultured for 15 min. Thereafter, cells were washed

615 3 times with PBS, fixed with 4% PFA in PBS for 10 min at RT, and subjected to immunofluorescence
616 staining using anti-CD63 antibody conjugated to Alexa Fluor 488 (Santa Cruz). Cells were mounted
617 with ProLong Gold Antifade Mountant (ThermoFisher Scientific) by overnight incubation at RT.
618 STED imaging was conducted using an Expert Line STED system (Abberior Instruments GmbH,
619 Göttingen, Germany) equipped with an SLM based easy3D module, an Olympus IX83 microscope
620 body, solid state pulsed lasers (488 nm, 590 nm, and 640 nm), and the 775 nm STED laser. The
621 100x oil immersion objective (NA, 1.4; Olympus UPlanSApo) was used. Initially, confocal images
622 were captured in the line sequential mode using the following excitation lasers: 488 nm for AF488,
623 590 nm for ATTO590, 640 nm for SIR647, and the corresponding 525/50, 615/20, and 685/70
624 emission filters. These filters are placed in front of avalanche photodiodes for detection. Small
625 regions of interest were selected and subjected to STED imaging. STED images in selected areas
626 were captured sequentially using the 590 nm and 640 nm excitation laser lines in the line sequential
627 mode with corresponding 615/20 and 685/70 emission filters, followed by the depletion using the
628 775 nm STED laser. STED images were deconvoluted using the Huygens Deconvolution software
629 (Scientific Volume Imaging) using Classic Maximum Likelihood Estimation (CMLE) algorithm and
630 Deconvolution Express mode with “Conservative” settings.

631

632 **HCV RNA detection by single-molecule fluorescence in situ 633 hybridization**

634 Intracellular HCV RNAs were visualized by smFISH using Hulu probes (PixelBiotech, Germany)
635 according to the manufacturer's instruction with slight modifications. In brief, cells grown on glass
636 coverslips were fixed with 4% paraformaldehyde (PFA) in PBS for 30 min at RT. Cells were then
637 treated with 150 mM glycine in PBS to quench residual PFA, permeabilized by treatment with 0.1%
638 Triton X-100 in PBS for 10 min, and incubated with proteinase K (1:4000) (ViewRNA ISH Kit,
639 ThermoFisher Scientific) in PBS for 5 min. HCV RNAs were hybridized to Hulu probes targeting the
640 positive strand in the NS3 coding region (nucleotides 3733-4889 of the JFH-1 genome; GenBank
641 accession number AB047639). Hybridization was done in HuluHyb solution (2xSSC, 2 M Urea,

642 10% dextran sulfate, 5x Denhardt's solution) using a humidified chamber at 30°C overnight. Cells
643 were washed extensively with HuluWash and coverslips were mounted on glass slides with Prolong
644 Gold Antifade Mountant (ThermoFisher Scientific) by overnight incubation at RT.

645

646 **Immunoprecipitation**

647 HEK293T-miR122 cells were co-transfected with HA-tagged ApoE construct, or an empty vector,
648 or pCDNA3+ myc-tagged NS5A^{wt}, or myc-tagged NS5A^{APK99AAA}, respectively, using the TransIT-
649 LT1 Transfection Reagent (Mirus Bio). After 30 h, cells were lysed by 10 min incubation in lysis
650 buffer [50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, 10% glycerol, 1x
651 protease inhibitor cocktail (Roche)] on ice. Cell lysates were centrifuged at 15,000 x g for 15 min at
652 4°C. Cleared supernatants were incubated with protein G-magnetic bead slurry (Dynabeads,
653 ThermoFisher Scientific) for 30 min at 4°C to remove proteins binding to the resin. Beads were
654 removed by pelleting with a magnetic stand and supernatants were incubated with rabbit anti c-
655 myc antibody at 4°C overnight. Protein complexes were captured by adding protein G bead slurry
656 and 1 h incubation of samples under continuous rotation at 4°C. Beads were washed 5 times with
657 lysis buffer lacking glycerol, captured protein complexes were eluted with 2x sample buffer and
658 denatured for 5 min at 95°C. Proteins were analyzed by Western blot using mouse anti-HA
659 antibody.

660

661 **Iodixanol density gradient centrifugation**

662 Cells were washed and cultured for 5 h in 1% FCS-containing DMEM. Thereafter, cell culture
663 supernatant was filtered through a 0.45 µm pore-size filter (MF-Millipore), loaded on top of a PBS-
664 based 10-50% iodixanol gradient (Sigma Aldrich), and subjected to isopycnic centrifugation for 18
665 h at 34,000 rpm (~120,000 x g) at 4°C using an SW60 rotor (Beckman Coulter, Inc.). Eleven
666 fractions were collected from top to bottom and analyzed by density measurement using a
667 refractometer (Kruess, AGS Scientific) and Western blot.

668

669 **Luciferase reporter assay**

670 HCV RNA replication kinetics were determined by using the HCV JcR2A reporter construct. Briefly,
671 cells were collected at 4, 24, 48 and 72 h post-electroporation and lysed in luciferase lysis buffer
672 (1% Triton X-100, 10% glycerol, 25 mM glycylglycine, 15 mM MgSO₄, 4 mM EGTA, and 1 mM DTT)
673 for 15 min at RT. Cell lysates were transferred to 96-well plates and coelenterazine-containing
674 luciferase assay buffer (25 mM glycylglycine, 15 mM MgSO₄, 4 mM EGTA, 1 mM DTT, and 15 mM
675 K₃PO₄, pH 7.8) was injected. Renilla luciferase activities were measured using a Mithras LB 940
676 plate luminometer (Berthold Technologies, Freiburg, Germany). Obtained values were normalized
677 to the 4 h value of each transfection to correct for transfection efficiency. To measure the
678 transmission of HCV, culture supernatants were used to inoculate naïve Huh7.5 cells, and after 72
679 h, cells were lysed and subjected to luciferase assay. NanoLuciferase (NLuc) activity was measured
680 using the Nano-Glo Luciferase Assay System (Promega) according to the instruction of the
681 manufacturer with slight modifications. In brief, 50 µl of samples were mixed with 50 µl NLuc
682 substrate (1:1000) in the assay buffer and NLuc activities were measured using a Mithras LB 940
683 plate luminometer (Berthold Technologies, Freiburg, Germany).

684

685 **Immunocapture of extracellular ApoE-associated structures**

686 Supernatants of cells cultured in EV-free DMEM were collected, filtered through a 0.45 µm pore-
687 size filter (MF-Millipore), and incubated with an anti-ApoE antibody for 3 h at 4°C. ApoE-associated
688 structures were captured using protein G-magnetic beads (Dynabeads, ThermoFisher Scientific)
689 and overnight incubation at 4°C with continuous rotation. After 5 times washing with ice-cold PBS,
690 protein complexes were eluted by 10 min incubation with 0.1 M glycine, pH 2.5 at RT, and samples
691 were neutralized by adding 1 M Tris, pH 7.5.

692

693 **Transmission electron microscopy and correlative light and**
694 **electron microscopy (CLEM)**

695 Sample preparation, data acquisition, and data processing were conducted as described earlier
696 (62) with slight modifications. For CLEM, cells were fixed for 30 min at RT with a fixative containing
697 0.2% glutaraldehyde (GA) and 4% PFA and then washed 3 times with PBS to remove the fixative.
698 The coordinates of cells-of-interest on the gridded MatTek dish were captured with the 20x objective
699 using transmitted light with differential interference contrast (DIC). Cells were then subjected to
700 immunofluorescence imaging using an oil immersion 60x objective, covering the ~2.8 μ m cell
701 thickness with 0.2 μ m spacing between optical planes before and after the addition of LipidToxTM
702 Deep Red Neutral Lipid Stain (Invitrogen). Cells were further postfixed in 2.5% GA in CaCo buffer
703 with supplemented ions [2.5% GA, 2% sucrose, 50 mM sodium cacodylate (CaCo), 50 mM KCl,
704 2.6 mM MgCl₂, and 2.6 mM CaCl₂] for 30 min or overnight at 4°C. After 3 washes with 50 mM CaCo
705 buffer, cells were incubated with 2% osmium tetroxide in 50 mM CaCo for 40 min on ice, washed
706 3 times with milli-Q water, and incubated with 0.5% uranyl acetate in water at 4°C. Samples were
707 washed again with water prior to the sequential dehydration of cells using a graded ethanol series
708 from 50% to 100% at RT. Samples were embedded in Epon 812 (Carl Roth) and incubated for at
709 least 2 days at 60°C to allow polymerization of the resin. Epon was detached from the glass
710 coverslips by dipping it several times into liquid nitrogen followed by hot water. Cells of interest
711 were identified by the negative imprint of the gridded coverslips and cut into 70 nm ultrathin sections
712 using an ultramicrotome (Leica EM UC6, Leica Microsystems). Sections were collected on
713 pioloform coated copper palladium slot grids (Science Services, GMBH) and counterstained
714 sequentially with 3% uranyl acetate in water for 5 min and lead citrate (Reynold's) for 5 min. Images
715 were acquired by using the Jeol JEM-1400 (Jeol Ltd., Tokyo, Japan) transmission electron
716 microscope (TEM) equipped with a 4k pixel digital camera (TemCam F416; TVIPS, Gauting,
717 Germany) and the EM-Menu or Serial EM software (108). Lipid droplets were used as fiducial
718 markers to correlate the EM with the light micrographs using the Landmark Correspondences plugin
719 in the Fiji software package (109). To visualize ApoE-containing structures enriched by
720 immunocapture, samples were added onto freshly glow-discharged carbon- and pioloform-coated
721 300-mesh copper grids (Science Services GmbH, Munich, Germany) and subjected to negative
722 staining using 3% uranyl acetate for 5 min at RT.

723

724 **Immunogold labeling**

725 For immunogold labeling of ApoE-associated structures, all incubation and washing steps were
726 conducted by floating the grids on top of drops at RT. In-between each step, samples were washed
727 at least 5 times for 2 min with PBS. The basic protocol employed has been reported elsewhere
728 (110) and only slight modifications were made. In brief, samples absorbed onto copper grids were
729 blocked with the blocking solution [0.8% BSA (Roth, Karlsruhe, Germany), 0.1% fish skin gelatin
730 (Sigma-Aldrich), 50 mM glycine in PBS]. For ApoE and CD63 labeling, grids were incubated with
731 goat anti-ApoE antibody (1:100) and mouse anti-CD63 antibody (1:100) in blocking solution,
732 respectively, for 30 min at RT. Grids were further incubated with rabbit anti-goat- or anti-mouse-
733 bridging antibody (1:150) in the blocking solution for 20 min. Bound antibodies were detected with
734 protein A conjugated to 10-nm gold particles diluted 1:50 in blocking buffer for 30 min. Grids were
735 fixed with 1% glutaraldehyde in PBS for 5 min, washed 7 times with H₂O, briefly rinsed with 3%
736 uranyl acetate, and negatively stained again with 3% uranyl acetate for at least 5 min.

737

738 **Automated particle tracking in fluorescence microscopy images**

739 Particle tracking in fluorescence microscopy images was performed by using a probabilistic particle
740 tracking approach that is based on Bayesian filtering and multi-sensor data fusion (111). This
741 approach combines Kalman filtering and particle filtering and integrates multiple measurements by
742 separate sensor models as well as sequential multi-sensor data fusion. The sensor models
743 determine detection-based and prediction-based measurements via elliptical sampling (112) and
744 take into account different uncertainties. In addition, the tracking approach exploits motion
745 information by integrating displacements in the cost function for correspondence finding. Particles
746 are detected by the spot-enhancing filter (SEF) (113) consisting of a Laplacian-of-Gaussian (LoG)
747 filter followed by intensity thresholding of the filtered image and determination of local maxima.

748

749 **Motility analysis of ApoE^{mT2} and CD63^{mCherry}**

750 The motility of ApoE^{mT2} - and $\text{CD63}^{\text{mCherry}}$ -positive puncta was quantified by a mean squared
751 displacement (MSD) analysis (114) using the computed trajectories. For each trajectory with a
752 minimum of 10 time points (corresponding to a time duration of 32.5 s), we computed the MSD as
753 a function of the time interval Δt . All MSD curves corresponding to ApoE and CD63 respectively
754 were averaged to obtain the respective MSD curves. To quantify the motility, we fitted the
755 anomalous diffusion model $MSD(\Delta t) = 4\Gamma\Delta t^\alpha$ to the MSD values and obtained the anomalous
756 diffusion exponent α for motion classification and the transport coefficient $\Gamma[\mu\text{m}^2\text{s}^{-\alpha}]$. The motion of
757 ApoE^{mT2} and $\text{CD63}^{\text{mCherry}}$ was classified into confined diffusion ($\alpha \leq 0.1$), obstructed diffusion ($0.1 <$
758 $\alpha < 0.9$), normal diffusion ($0.9 \leq \alpha < 1.1$), and directed motion ($\alpha \geq 1.1$) (115). To quantify the
759 diffusion coefficient $D[\mu\text{m}^2\text{s}^{-1}]$, we fitted the normal diffusion model $MSD(\Delta t) = 4D\Delta t$ to the MSD
760 values.

761 Automatic colocalization of ApoE^{mT2} and $\text{CD63}^{\text{mCherry}}$ was performed using the computed
762 trajectories with a minimum of 10 time points (corresponding to a time duration of 32.5 s). For each
763 time point, colocalization was determined using a graph-based k-d-tree approach, which efficiently
764 computes a nearest neighbor query based on Euclidean distances. An ApoE particle is considered
765 to be colocalized with a CD63 particle, if the ApoE particle has a nearest CD63 particle within a
766 maximum distance for at least a minimum number of consecutive frames. Otherwise, the ApoE
767 particle is considered as non-colocalized with a CD63 particle. We used a maximum distance of 5
768 pixels (corresponding to 0.449 μm) and a minimum number of four consecutive frames
769 (corresponding to 13 s). The computed colocalization information was visualized by color
770 representations, and the motility of colocalized and non-colocalized ApoE was quantified by a MSD
771 analysis.

772

773 To quantify the directed motion of colocalized ApoE^{mT2} and $\text{CD63}^{\text{mCherry}}$, we performed a MSD
774 analysis (114) using the computed colocalized trajectories of these proteins. To robustly classify
775 the motion type into directed and non-directed motion of colocalized ApoE, we fitted for each
776 trajectory the anomalous diffusion model $MSD(\Delta t) = 4\Gamma\Delta t^\alpha$ to the MSD values in two intervals from
777 $\Delta t = 0$ s to 25 s and from $\Delta t = 0$ s to 60 s. Directed motion is considered if for one of the intervals

778 we have $\alpha \geq 1.1$, otherwise non-directed motion is considered. For the classified trajectories, the
779 MSD curves were averaged to obtain a MSD curve for colocalized ApoE with directed and non-
780 directed motion, and the motion was quantified by the transport coefficient $\Gamma[\mu\text{m}^2\text{s}^{-1}]$, the diffusion
781 coefficient $D[\mu\text{m}^2\text{s}^{-1}]$, and the anomalous diffusion exponent α .

782

783 **Quantification and statistical analysis**

784 Unless otherwise stated, differences between sample populations were evaluated using a two-
785 tailed, unpaired Student's *t*-test provided in the GraphPad Prism 8 software package. Differences
786 with P-values less than 0.05 are considered to be significant and shown on the graph. The sample
787 size of each experiment is specified in the corresponding figure legend.

788

789 **Acknowledgments**

790 We thank Ulrike Herian, Stephanie Kallis, Marie Bartenschlager and Micha Fauth for excellent
791 technical assistance and Fredy Huschmand for IT assistance. We thank Dr. Thomas Pietschmann
792 at TWINCORE - Centre for Experimental and Clinical Infection Research (Hannover, Germany) for
793 providing HEK293T-miR122 cells. We would like to acknowledge the microscopy support from the
794 Infectious Diseases Imaging Platform (IDIP) at the Center for Integrative Infectious Disease
795 Research (CIID, Heidelberg, Germany) and the University of Heidelberg Electron Microscopy Core
796 Facility (EMCF, Heidelberg, Germany) headed by Dr. Stefan Hillmer. We thank Dr. Barbara Mueller,
797 Djordje Salai and Thorsten Mueller (CIID, Heidelberg, Germany) for kindly providing the CLIPf,
798 CLIP-ATTO590, and mScarlet constructs, respectively. Plasmids pTRE3G-NlucP and pCMV-
799 Sport6-CD63-pHluorin were kind gifts from Masaharu Somiya (Addgene plasmid # 162595) and
800 D.M. Pegtel (Addgene plasmid # 130901), respectively. We are grateful to all members of the
801 Molecular Virology unit for continuous stimulating discussions.

802
803

804

805 References

- 806 1. Arvind A, Osganian SA, Cohen DE, Corey KE. Lipid and Lipoprotein Metabolism in Liver
807 Disease. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et
808 al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc. Copyright © 2000-2022,
809 MDText.com, Inc.; 2000.
- 810 2. Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. *Trends
811 Endocrinol Metab.* 2010;21(1):33-40.
- 812 3. Paul D, Madan V, Bartenschlager R. Hepatitis C virus RNA replication and assembly: living
813 on the fat of the land. *Cell Host Microbe.* 2014;16(5):569-79.
- 814 4. Merz A, Long G, Hiet MS, Brügger B, Chlonda P, Andre P, et al. Biochemical and
815 morphological properties of hepatitis C virus particles and determination of their lipidome. *J
816 Biol Chem.* 2011;286(4):3018-32.
- 817 5. Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus
818 particles. *Trends Microbiol.* 2011;19(2):95-103.
- 819 6. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: apolipoprotein
820 structure and function. *J Lipid Res.* 1984;25(12):1277-94.
- 821 7. Getz GS, Reardon CA. Apoprotein E as a lipid transport and signaling protein in the blood,
822 liver, and artery wall. *J Lipid Res.* 2009;50 Suppl(Suppl):S156-61.
- 823 8. Swift LL, Soulé PD, LeQuire VS. Hepatic Golgi lipoproteins: precursors to plasma
824 lipoproteins in hypercholesterolemic rats. *Journal of Lipid Research.* 1982;23(7):962-71.
- 825 9. Raffaï RL, Hasty AH, Wang Y, Mettler SE, Sanan DA, Linton MF, et al. Hepatocyte-derived
826 ApoE is more effective than non-hepatocyte-derived ApoE in remnant lipoprotein clearance.
827 *J Biol Chem.* 2003;278(13):11670-5.
- 828 10. Mahley RW, Angelin B. Type III hyperlipoproteinemia: recent insights into the genetic defect
829 of familial dysbeta lipoproteinemia. *Adv Intern Med.* 1984;29:385-411.
- 830 11. Henneman P, van der Sman-de Beer F, Moghaddam PH, Huijts P, Stalenhoef AF, Kastelein
831 JJ, et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. *Eur
832 J Hum Genet.* 2009;17(5):620-8.
- 833 12. Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, et al. Brain
834 integrity is altered by hepatic APOE ε4 in humanized-liver mice. *Mol Psychiatry.* 2022.
- 835 13. Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-
836 associated disease risks: a genome-wide, registry-based, case-control study utilising the
837 UK Biobank. *EBioMedicine.* 2020;59:102954.
- 838 14. Zhang H, Shao L, Lin Z, Long Q-X, Yuan H, Cai L, et al. APOE interacts with ACE2 inhibiting
839 SARS-CoV-2 cellular entry and inflammation in COVID-19 patients. *Signal Transduction and
840 Targeted Therapy.* 2022;7(1):261.
- 841 15. Ostendorf BN, Patel MA, Bilanovic J, Hoffmann HH, Carrasco SE, Rice CM, et al. Common
842 human genetic variants of APOE impact murine COVID-19 mortality. *Nature.* 2022.
- 843 16. Wang C, Zhang M, Garcia G, Jr., Tian E, Cui Q, Chen X, et al. ApoE-Isoform-Dependent
844 SARS-CoV-2 Neurotropism and Cellular Response. *Cell Stem Cell.* 2021;28(2):331-42.e5.
- 845 17. Weller R, Hueging K, Brown Richard JP, Todt D, Joecks S, Vondran Florian WR, et al.
846 Hepatitis C Virus Strain-Dependent Usage of Apolipoprotein E Modulates Assembly
847 Efficiency and Specific Infectivity of Secreted Virions. *Journal of Virology.*
848 2017;91(18):e00422-17.
- 849 18. Gomez-Escobar E, Burlaud-Gaillard J, Visdeloup C, Silva ARE, Coutant P, Roingeard P, et
850 al. Incorporation of apolipoprotein E into HBV-HCV subviral envelope particles to improve
851 the hepatitis vaccine strategy. *Scientific Reports.* 2021;11(1):21856.
- 852 19. Fauville C, Felmlee DJ, Crouchet E, Lee J, Heydmann L, Lefèvre M, et al. Apolipoprotein E
853 Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. *Gastroenterology.*
854 2016;150(1):206-17.e4.

855 20. Busatto S, Yang Y, Iannotta D, Davidovich I, Talmon Y, Wolfram J. Considerations for
856 extracellular vesicle and lipoprotein interactions in cell culture assays. *J Extracell Vesicles*.
857 2022;11(4):e12202.

858 21. Tóth E, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, et al. Formation of a protein
859 corona on the surface of extracellular vesicles in blood plasma. *J Extracell Vesicles*.
860 2021;10(11):e12140.

861 22. Wolf M, Poupardin RW, Ebner-Peking P, Andrade AC, Blöchl C, Obermayer A, et al. A
862 functional corona around extracellular vesicles enhances angiogenesis, skin regeneration
863 and immunomodulation. *J Extracell Vesicles*. 2022;11(4):e12207.

864 23. Zannis VI, McPherson J, Goldberger G, Karathanasis SK, Breslow JL. Synthesis,
865 intracellular processing, and signal peptide of human apolipoprotein E. *Journal of Biological
866 Chemistry*. 1984;259(9):5495-9.

867 24. Nyathi Y, Wilkinson BM, Pool MR. Co-translational targeting and translocation of proteins to
868 the endoplasmic reticulum. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*.
869 2013;1833(11):2392-402.

870 25. Zannis VI, vanderSpek J, Silverman D. Intracellular modifications of human apolipoprotein
871 E. *J Biol Chem*. 1986;261(29):13415-21.

872 26. Wernette-Hammond ME, Lauer SJ, Corsini A, Walker D, Taylor JM, Rall SC. Glycosylation
873 of Human Apolipoprotein E: The Carbohydrate Attachment Site is Threonine 194. *Journal of
874 Biological Chemistry*. 1989;264(15):9094-101.

875 27. Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. *Arterioscler Thromb Vasc
876 Biol*. 2012;32(5):1079-86.

877 28. Hossain T, Riad A, Siddiqi S, Parthasarathy S, Siddiqi SA. Mature VLDL triggers the
878 biogenesis of a distinct vesicle from the trans-Golgi network for its export to the plasma
879 membrane. *Biochem J*. 2014;459(1):47-58.

880 29. Kockx M, Guo DL, Huby T, Lesnik P, Kay J, Sabaretnam T, et al. Secretion of apolipoprotein
881 E from macrophages occurs via a protein kinase A and calcium-dependent pathway along
882 the microtubule network. *Circ Res*. 2007;101(6):607-16.

883 30. van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, et al. Apolipoprotein E
884 Regulates Amyloid Formation within Endosomes of Pigment Cells. *Cell Reports*.
885 2015;13(1):43-51.

886 31. Bayer K, Banning C, Bruss V, Wiltzer-Bach L, Schindler M. Hepatitis C Virus Is Released via
887 a Noncanonical Secretory Route. *J Virol*. 2016;90(23):10558-73.

888 32. Lee J-Y, Acosta EG, Stoeck IK, Long G, Hiet M-S, Mueller B, et al. Apolipoprotein E likely
889 contributes to a maturation step of infectious hepatitis C virus particles and interacts with
890 viral envelope glycoproteins. *Journal of virology*. 2014;88(21):12422-37.

891 33. Douam F, Lavillette D, Cosset FL. The mechanism of HCV entry into host cells. *Prog Mol
892 Biol Transl Sci*. 2015;129:63-107.

893 34. Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J, Whitten-Bauer C, et al. Short-range
894 exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers
895 innate immunity. *Cell Host Microbe*. 2012;12(4):558-70.

896 35. Devhare PB, Sasaki R, Shrivastava S, Di Bisceglie AM, Ray R, Ray RB. Exosome-Mediated
897 Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic
898 Stellate Cells. *J Virol*. 2017;91(6).

899 36. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C
900 infected patients transmit HCV infection and contain replication competent viral RNA in
901 complex with Ago2-miR122-HSP90. *PLoS Pathog*. 2014;10(10):e1004424.

902 37. Takacs CN, Andreo U, Belote RL, Pulupa J, Scull MA, Gleason CE, et al. Green fluorescent
903 protein-tagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress.
904 *Traffic*. 2017;18(3):192-204.

905 38. Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, Pietschmann T, et al.
906 Characterization of the early steps of hepatitis C virus infection by using luciferase reporter
907 viruses. *J Virol*. 2006;80(11):5308-20.

908 39. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, et al.
909 Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%.
910 *Nature Communications*. 2012;3(1):751.

911 40. Hueging K, Doepke M, Vieyres G, Bankwitz D, Frentzen A, Doerrbecker J, et al.
912 Apolipoprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-
913 to-cell transmission by contributing to a postenvelopment step of assembly. *J Virol.*
914 2014;88(3):1433-46.

915 41. Hishiki T, Shimizu Y, Tobita R, Sugiyama K, Ogawa K, Funami K, et al. Infectivity of Hepatitis
916 C Virus Is Influenced by Association with Apolipoprotein E Isoforms. *Journal of virology.*
917 2010;84:12048-57.

918 42. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, et al. Recruitment and
919 activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the
920 membranous replication compartment. *Cell Host Microbe.* 2011;9(1):32-45.

921 43. Fukuhara T, Wada M, Nakamura S, Ono C, Shiokawa M, Yamamoto S, et al. Amphipathic
922 α -helices in apolipoproteins are crucial to the formation of infectious hepatitis C virus
923 particles. *PLoS Pathog.* 2014;10(12):e1004534-e.

924 44. Lussignol M, Kopp M, Molloy K, Vizcay-Barrena G, Fleck RA, Dorner M, et al. Proteomics of
925 HCV virions reveals an essential role for the nucleoporin Nup98 in virus morphogenesis.
926 *Proceedings of the National Academy of Sciences.* 2016;113(9):2484-9.

927 45. Edgar JR, Eden ER, Futter CE. Hrs- and CD63-Dependent Competing Mechanisms Make
928 Different Sized Endosomal Intraluminal Vesicles. *Traffic.* 2014;15(2):197-211.

929 46. Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63. *Exp Cell Res.*
930 2009;315(9):1584-92.

931 47. Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. *Cold*
932 *Spring Harb Perspect Biol.* 2014;6(10):a016857-a.

933 48. Cabukusta B, Neefjes J. Mechanisms of lysosomal positioning and movement. *Traffic.*
934 2018;19(10):761-9.

935 49. Dennis JR, Howard J, Vogel V. Molecular shuttles: directed motion of microtubules along
936 nanoscale kinesin tracks. *Nanotechnology.* 1999;10(3):232-6.

937 50. Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D, Pelletier R, et al. A live cell
938 reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells.
939 *Nature communications.* 2020;11(1):2092-.

940 51. Verweij FJ, Bebelman MP, Jimenez CR, Garcia-Vallejo JJ, Janssen H, Neefjes J, et al.
941 Quantifying exosome secretion from single cells reveals a modulatory role for GPCR
942 signaling. *J Cell Biol.* 2018;217(3):1129-42.

943 52. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal
944 information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of
945 the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
946 *Journal of Extracellular Vesicles.* 2018;7(1):1535750.

947 53. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, et al. Isolation of High-
948 Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient
949 Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. 2018;9(1479).

950 54. Brennan K, Martin K, FitzGerald SP, O'Sullivan J, Wu Y, Blanco A, et al. A comparison of
951 methods for the isolation and separation of extracellular vesicles from protein and lipid
952 particles in human serum. *Scientific Reports.* 2020;10(1):1039.

953 55. Mazumdar B, Banerjee A, Meyer K, Ray R. Hepatitis C virus E1 envelope glycoprotein
954 interacts with apolipoproteins in facilitating entry into hepatocytes. *Hepatology.*
955 2011;54(4):1149-56.

956 56. Evans MJ, Rice CM, Goff SP. Phosphorylation of hepatitis C virus nonstructural protein 5A
957 modulates its protein interactions and viral RNA replication. 2004;101(35):13038-43.

958 57. Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, Lupberger J, et al. Apolipoprotein
959 E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of
960 infectious particles. *Hepatology.* 2010;51(1):43-53.

961 58. Cun W, Jiang J, Luo G. The C-terminal alpha-helix domain of apolipoprotein E is required
962 for interaction with nonstructural protein 5A and assembly of hepatitis C virus. *J Virol.*
963 2010;84(21):11532-41.

964 59. Grünvogel O, Colasanti O, Lee J-Y, Klöss V, Belouzard S, Reustle A, et al. Secretion of
965 Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in
966 Hepatocytes. *Gastroenterology.* 2018;154(8):2237-51.e16.

967 60. Eyre NS, Aloia AL, Joyce MA, Chulanetra M, Tyrrell DL, Beard MR. Sensitive luminescent
968 reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the
969 extracellular environment. *Virology*. 2017;507:20-31.

970 61. Schaller T, Appel NT, Koutsoudakis G, Kallis S, Lohmann V, Pietschmann T, et al. Analysis
971 of Hepatitis C Virus Superinfection Exclusion by Using Novel Fluorochrome Gene-Tagged
972 Viral Genomes. *Journal of Virology*. 2007;81:7327 -

973 62. Lee JY, Cortese M, Haselmann U, Tabata K, Romero-Brey I, Funaya C, et al. Spatiotemporal
974 Coupling of the Hepatitis C Virus Replication Cycle by Creating a Lipid Droplet- Proximal
975 Membranous Replication Compartment. *Cell Rep*. 2019;27(12):3602-17.e5.

976 63. Steinmann E, Brohm C, Kallis S, Bartenschlager R, Pietschmann T. Efficient trans-
977 encapsidation of hepatitis C virus RNAs into infectious virus-like particles. *J Virol*.
978 2008;82(14):7034-46.

979 64. Dubuisson J, Hsu HH, Cheung RC, Greenberg HB, Russell DG, Rice CM. Formation and
980 intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by
981 recombinant vaccinia and Sindbis viruses. *Journal of virology*. 1994;68(10):6147-60.

982 65. Ma Y, Anantpadma M, Timpe Jennifer M, Shanmugam S, Singh Sher M, Lemon Stanley M,
983 et al. Hepatitis C Virus NS2 Protein Serves as a Scaffold for Virus Assembly by Interacting
984 with both Structural and Nonstructural Proteins. *Journal of Virology*. 2011;85(1):86-97.

985 66. Longatti A, Boyd B, Chisari FV. Virion-independent transfer of replication-competent hepatitis
986 C virus RNA between permissive cells. *J Virol*. 2015;89(5):2956-61.

987 67. Wozniak Ann L, Long A, Jones-Jamtgaard Kellyann N, Weinman Steven A. Hepatitis C virus
988 promotes virion secretion through cleavage of the Rab7 adaptor protein RILP. *Proceedings
989 of the National Academy of Sciences*. 2016;113(44):12484-9.

990 68. Mason TM. The role of factors that regulate the synthesis and secretion of very-low-density
991 lipoprotein by hepatocytes. *Crit Rev Clin Lab Sci*. 1998;35(6):461-87.

992 69. Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting
993 hepatic VLDL assembly and secretion. *Nutr Metab (Lond)*. 2010;7:35.

994 70. Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production.
995 *PLoS Pathog*. 2019;15(8):e1007874.

996 71. Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R. Characterization of
997 cell lines carrying self-replicating hepatitis C virus RNAs. *J Virol*. 2001;75(3):1252-64.

998 72. Brass V, Bieck E, Montserret R, Wölk B, Hellings JA, Blum HE, et al. An amino-terminal
999 amphipathic alpha-helix mediates membrane association of the hepatitis C virus
1000 nonstructural protein 5A. *J Biol Chem*. 2002;277(10):8130-9.

1001 73. Egger D, Pasamontes L, Bolten R, Boyko V, Bieck K. Reversible dissociation of the poliovirus
1002 replication complex: functions and interactions of its components in viral RNA synthesis. *J
1003 Virol*. 1996;70(12):8675-83.

1004 74. Bieck K, Egger D, Pfister T, Troxler M. Structural and functional characterization of the
1005 poliovirus replication complex. *J Virol*. 1992;66(5):2740-7.

1006 75. Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E. Complex dynamic
1007 development of poliovirus membranous replication complexes. *Journal of virology*.
1008 2012;86(1):302-12.

1009 76. Nolte-'t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: Are
1010 they close relatives? *Proc Natl Acad Sci U S A*. 2016;113(33):9155-61.

1011 77. Martins SdT, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same
1012 Coin? 2020;10(737).

1013 78. O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular
1014 vesicles in mammalian cells and its applications. *Nature Reviews Molecular Cell Biology*.
1015 2020;21(10):585-606.

1016 79. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in
1017 host-pathogen interactions. *EMBO Rep*. 2015;16(1):24-43.

1018 80. Dogrammazis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting
1019 Edge Exosome-Based Therapies. *Front Cell Dev Biol*. 2020;8:376-.

1020 81. Santiana M, Ghosh S, Ho BA, Rajasekaran V, Du WL, Mutsafi Y, et al. Vesicle-Cloaked Virus
1021 Clusters Are Optimal Units for Inter-organismal Viral Transmission. *Cell Host Microbe*.
1022 2018;24(2):208-20.e8.

1023 82. Zhang M, Ghosh S, Kumar M, Santiana M, Bleck CKE, Chaimongkol N, et al. Emerging
1024 Pathogenic Unit of Vesicle-Cloaked Murine Norovirus Clusters is Resistant to Environmental
1025 Stresses and UV254 Disinfection. *Environmental Science & Technology*. 2021;55(9):6197-
1026 205.

1027 83. Jones KS, Green PL. Cloaked virus slips between cells. *Nature Medicine*. 2010;16(1):25-7.

1028 84. Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using
1029 fluorescent lipophilic membrane dyes. *J Extracell Vesicles*. 2017;6(1):1388731.

1030 85. Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, et al. Low-
1031 density lipoprotein mimics blood plasma-derived exosomes and microvesicles during
1032 isolation and detection. *Scientific Reports*. 2016;6(1):24316.

1033 86. Angeloni NL, McMahon KM, Swaminathan S, Plebanek MP, Osman I, Volpert OV, et al.
1034 Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like
1035 Nanoparticle Binding to Scavenger Receptor Type B-1. *Scientific Reports*. 2016;6(1):22915.

1036 87. Menard JA, Cerezo-Magaña M, Belting M. Functional role of extracellular vesicles and
1037 lipoproteins in the tumour microenvironment. *Philos Trans R Soc Lond B Biol Sci.*
1038 2018;373(1737):20160480.

1039 88. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.
1040 *Nature Reviews Molecular Cell Biology*. 2018;19(4):213-28.

1041 89. Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, et al. Brain
1042 integrity is altered by hepatic APOE ε4 in humanized-liver mice. *Molecular Psychiatry*. 2022.

1043 90. Brankatschk M, Eaton S. Lipoprotein particles cross the blood-brain barrier in *Drosophila*. *J*
1044 *Neurosci*. 2010;30(31):10441-7.

1045 91. Suzuki K, Adigüzel D, Shinotsuka T, Ishibashi R, Eguchi I, Oshima H, et al. Tunable plasma
1046 lipoprotein uptake/transport across the blood-brain barrier. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 2014;442:157-63.

1047 92. Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, et al. Uptake and
1048 transport of high-density lipoprotein (HDL) and HDL-associated α-tocopherol by an in vitro
1049 blood-brain barrier model. *Journal of Neurochemistry*. 2004;89(4):939-50.

1050 93. Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP,
1051 et al. Extracellular vesicles through the blood-brain barrier: a review. *Fluids Barriers CNS*.
1052 2022;19(1):60.

1053 94. Barberis E, Vanella VV, Falasca M, Caneapero V, Cappellano G, Raineri D, et al. Circulating
1054 Exosomes Are Strongly Involved in SARS-CoV-2 Infection. 2021;8(29).

1055 95. Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. *Am J*
1056 *Physiol Cell Physiol*. 2022;322(1):C1-c11.

1057 96. Deng L, Jiang W, Wang X, Merz A, Hiet M-S, Chen Y, et al. Syntenin regulates hepatitis C
1058 virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes.
1059 *Journal of Hepatology*. 2019;71(1):52-61.

1060 97. Friebe P, Boudet J, Simorre J-P, Bartenschlager R. Kissing-loop interaction in the 3' end of
1061 the hepatitis C virus genome essential for RNA replication. *Journal of virology*.
1062 2005;79(1):380-92.

1063 98. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic
1064 hepatitis C virus RNA replication. *J Virol*. 2002;76(24):13001-14.

1065 99. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed
1066 by DNA from human adenovirus type 5. *J Gen Virol*. 1977;36(1):59-74.

1067 100. Long G, Hiet MS, Windisch MP, Lee JY, Lohmann V, Bartenschlager R. Mouse hepatic cells
1068 support assembly of infectious hepatitis C virus particles. *Gastroenterology*.
1069 2011;141(3):1057-66.

1070 101. Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, et al.
1071 Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C
1072 virus chimeras. 2006;103(19):7408-13.

1073 102. Ruggieri A, Dazert E, Metz P, Hofmann S, Bergeest JP, Mazur J, et al. Dynamic oscillation
1074 of translation and stress granule formation mark the cellular response to virus infection. *Cell*
1075 *Host Microbe*. 2012;12(1):71-85.

1076 103. Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. *J*
1077 *Extracell Vesicles*. 2021;10(13):e12171.

1078

1079 104. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is
1080 an important organelle for hepatitis C virus production. *Nat Cell Biol.* 2007;9(9):1089-97.
1081 105. Paul D, Romero-Brey I, Gouttenoire J, Stoitovalova S, Krijnse-Locker J, Moradpour D, et al.
1082 NS4B self-interaction through conserved C-terminal elements is required for the
1083 establishment of functional hepatitis C virus replication complexes. *Journal of virology.*
1084 2011;85(14):6963-76.
1085 106. van den Hoff MJ, Moorman AF, Lamers WH. Electroporation in 'intracellular' buffer increases
1086 cell survival. *Nucleic Acids Res.* 1992;20(11):2902.
1087 107. Neufeldt CJ, Cortese M, Scaturro P, Cerikan B, Wideman JG, Tabata K, et al. ER-shaping
1088 atlastin proteins act as central hubs to promote flavivirus replication and virion assembly.
1089 *Nature Microbiology.* 2019;4(12):2416-29.
1090 108. Mastronarde DN. Automated electron microscope tomography using robust prediction of
1091 specimen movements. *J Struct Biol.* 2005;152(1):36-51.
1092 109. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
1093 open-source platform for biological-image analysis. *Nat Methods.* 2012;9(7):676-82.
1094 110. Paul D, Hoppe S, Saher G, Krijnse-Locker J, Bartenschlager R. Morphological and
1095 biochemical characterization of the membranous hepatitis C virus replication compartment.
1096 *Journal of virology.* 2013;87(19):10612-27.
1097 111. Ritter C, Wollmann T, Lee JY, Imle A, Müller B, Fackler OT, et al. Data fusion and smoothing
1098 for probabilistic tracking of viral structures in fluorescence microscopy images. *Medical*
1099 *Image Analysis.* 2021;73:102168.
1100 112. Godinez WJ, Rohr K. Tracking multiple particles in fluorescence time-lapse microscopy
1101 images via probabilistic data association. *IEEE Trans Med Imaging.* 2015;34(2):415-32.
1102 113. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M. Automatic tracking of individual
1103 fluorescence particles: application to the study of chromosome dynamics. *IEEE Transactions*
1104 *on Image Processing.* 2005;14(9):1372-83.
1105 114. Saxton MJ. Single-particle tracking: the distribution of diffusion coefficients. *Biophys J.*
1106 1997;72(4):1744-53.
1107 115. Imle A, Kumberger P, Schnellbächer ND, Fehr J, Carrillo-Bustamante P, Ales J, et al.
1108 Experimental and computational analyses reveal that environmental restrictions shape HIV-
1109 1 spread in 3D cultures. *Nat Commun.* 2019;10(1):2144.

1110

1111

1112 **Figure Captions**

1113 **Fig 1. Establishment and characterization of fully functional fluorescently tagged ApoE**

1114 (A) Secretion of ApoE^{mT2}. Lysates and supernatants of Huh7-Lunet/ApoE-KD cells stably
1115 expressing or not mTurquoise2-tagged ApoE were harvested one day after seeding and samples
1116 were analyzed by Western blot using ApoE-specific antibody; α -tubulin served as a loading control
1117 for cell lysates. The ratios of secreted to total ApoE are given below the lanes. The value of ApoE^{wt}
1118 was set to 1.

1119 (B) Density of secreted ApoE^{mT2}. Upper panel: conditioned media of naïve ApoE and ApoE^{mT2}-
1120 reconstituted cells from (A) were subjected to 10-50% iodixanol isopycnic centrifugation and
1121 fractions were analyzed by Western blot using ApoE-specific antibody. I: input, M: protein marker
1122 lane. Lower panel: signal intensities of the Western blot image were quantified and values were
1123 normalized to total ApoE amount in all fractions. Densities of fractions are specified on the right Y-
1124 axis (g/ml). Densities of peak fractions are given.

1125 (C) Normal lipid-binding property of ApoE^{mT2}. Immunofluorescent staining of ApoE^{mT2} in ApoE^{mT2}
1126 reconstituted Huh7-Lunet/ApoE-KD cells using ApoE- and ApoB-specific antibodies. Two-row
1127 images on the right show magnified views of boxed areas in the left overview image. Arrowheads
1128 in cropped images point to signal overlaps of ApoE^{mT2} and ApoB; plot profiles in the right panels
1129 are along the lines indicated with white arrows in the merge images.

1130 (D) Functionality of ApoE^{mT2} as determined by the rescue of infectious HCV particle production.
1131 Left panel: Huh7-Lunet/ApoE-KD cells were transduced with either an empty vector (Empty V.), or
1132 ApoE^{wt}, or ApoE^{mT2} and stably selected. Cells were then electroporated with *in vitro* transcripts of
1133 the Renilla luciferase (RLU) HCV reporter genome JcR2a. At 24, 48 and 72 h post-electroporation,
1134 amounts of extracellular core protein present in culture supernatants were determined by
1135 chemiluminescence assay. Right panel: amount of infectious HCV particles released into the
1136 culture supernatant of electroporated cells. At the indicated time points supernatants were
1137 harvested, naïve Huh7.5 cells were inoculated and 72 h later, luciferase activity was determined.
1138 Values were normalized to HCV RNA replication in each cell line to exclude replication effects.

1139 Data are medians (range) from three independent experiments. P-value was determined using
1140 unpaired Student's *t*-test. N.s: not statistically significant (P>0.05).

1141

1142 **Fig 2. Detection of ApoE in CD63-positive late endosomes, intracellular endosomal**
1143 **trafficking of ApoE and egress from hepatocytes**

1144 (A) Colocalization of ApoE^{mT2} with markers of the ER (PDI), Golgi (GM130), and intraluminal
1145 vesicles/endosomes (CD63). Proteins specified on the top of each panel were detected in Huh7-
1146 Lunet/ApoE^{mT2} cells by immunostaining and cells were analyzed by confocal microscopy. Profiles
1147 on the right of each panel were taken along the lines indicated with white arrows in cropped images.

1148 (B) Endosomal localization of ApoE-CD63 double-positive structures. Huh7-Lunet/ApoE^{mT2} cells
1149 expressing CD63^{mCherry} were analyzed by CLEM using lipid droplets (LDs) stained with lipidTox as
1150 fiducial markers. The overlay image is shown on the left. Middle and right panels: magnified EM
1151 micrographs from an area with ApoE-positive, CD63-negative signals showing Golgi stacks and
1152 vesicles (crop 1) and from an area with ApoE-CD63 double-positive endosomes (crop 2),
1153 respectively.

1154 (C-E) Secretion of ApoE-associated CD63-positive EVs.

1155 (C) Motility of intracellular ApoE-CD63 double-positive structures. [Top] Mean squared
1156 displacement (MSD) of general ApoE and CD63 trafficking. [Middle] Sizes of ApoE-CD63 double-
1157 positive structures. [Bottom] Trafficking velocities of ApoE-CD63 double-positive structures.

1158 (D) [Top] Mean squared displacement (MSD) of general ApoE and CD63 trafficking and those with
1159 directed and non-directed motions. [Bottom] Example of ApoE-CD63 co-trafficking by a directed
1160 motion. Huh7-Lunet/ApoE^{mT2} cells expressing CD63^{mCherry} were analyzed by live-cell confocal
1161 microscopy. A maximum projection image showing co-trafficking of an ApoE-CD63 complex with a
1162 directed motion to the cell periphery is shown. Frame interval = 2.65 sec; whole duration = 53 sec.

1163 (E) Secretion of ApoE-positive ILVs visualized by pHluorin-tagged CD63. Huh7-Lunet cells
1164 expressing ApoE^{mT2} and CD63^{pHluorin} were cultured in imaging medium (pH 7.4) and analyzed by
1165 time-lapse confocal microscopy with a focus on plasma membrane resident CD63-fluorescent
1166 signals. [Top] Maximum fluorescence intensity of CD63^{pHluorin} and associated ApoE in the selected

1167 dashed area indicated in supplementary movie 2. Images taken at indicated time points are
1168 displayed on the bottom and they correspond to initiation (t1), peak (t2), and late-secretion (t3),
1169 respectively.

1170

1171 **Fig 3. Co-secretion and cell-to-cell co-transmission of ApoE with endosome-derived**
1172 **extracellular vesicles**

1173 (A) Visualization of ApoE-containing EVs. Huh7-Lunet cells were cultured in EV-depleted medium
1174 and ApoE-associated vesicles released into the culture medium were captured using ApoE-specific
1175 antibody. Immunocomplexes were analyzed by TEM after negative staining. Arrowheads: ~5-10
1176 nm vesicles; arrows: ~20-30 nm vesicles; stars: ~50-60 nm vesicles. Vesicles in the electron
1177 micrographs were segmented by using Ilastik to allow quantification of vesicle diameters shown in
1178 the histogram below the micrograph.

1179 (B) Association of secreted lipoproteins with EVs. Purified ApoE-associated vesicles from (A) were
1180 immunogold-labeled with ApoE- (upper) and CD63-specific antibodies (lower). Arrowheads point
1181 towards gold particles. A zoom image of a CD63-positive gold particle is shown on the top. Note

1182 that immuno-gold labeling of ApoE alters the vesicular shape of LPs, most likely because of
1183 distortion of ApoE during the labeling procedure thereby destabilizing the LP structure.

1184 (C-E) Visualization of the co-uptake of LP-EV complexes by recipient cells.

1185 (C) Schematic representation of used approach. Huh7-Lunet/ApoE^{mT2}/CD63^{mCherry} served as donor
1186 cells; Huh7-Lunet cells expressing eYFP-tagged CaaX (the farnesylation signal from human HRAS)
1187 as recipients.

1188 (D) Donor and recipient cells from (C) were co-cultured for 16 h and analyzed by live-cell confocal
1189 imaging (refers to supplementary movie 3). D: donor; R: recipient. Arrows in cropped sections on
1190 the bottom indicate transferred ApoE-CD63 signals; stars: transferred CD63-only signals.

1191 (E) Donor and recipient cells from (C) were co-cultured and fixed at 24 h and 48 h post- seeding.
1192 The numbers of ApoE-CD63 double-positive signals in single recipient cells were quantified. Each
1193 dot represents a single cell. P-value was determined using unpaired Student's *t*-test.

1194

1195 **Fig 4. Enrichment of NS5A in ApoE-positive structures and co-trafficking of ApoE^{mT2} with**
1196 **NS5A and E2 independent of HCV assembly**

1197 (A) Experimental approach. Fluorescently tagged ApoE^{mT2}, HCV proteins supporting assembly (C
1198 to NS2 with eYFP-tagged E2), and a subgenomic replicon (dotted lines indicate 5' and 3' NTRs)
1199 are shown from top to bottom; the experimental approach is depicted below. Cells stably expressing
1200 ApoE^{mT2} and C-NS2/E2^{eYFP} were electroporated with the replicon RNA encoding mCherry-tagged
1201 NS5A. Cells were subjected to confocal time-lapse live-cell imaging to monitor signal overlaps of
1202 the various fluorescent proteins: NS5A + E2; ApoE only; ApoE + NS5A; ApoE + NS5A + E2.

1203 (B) Time-dependent enrichment of NS5A-ApoE double-positive structures in HCV-replicating cells.
1204 Huh7-Lunet/ApoE^{mT2} cells expressing HCV Core-NS2/E2^{eYFP} and containing the subgenomic
1205 replicon were subjected to live-cell confocal imaging from 5 to 54 h p.e (30 min/frame) to observe
1206 ApoE, NS5A, and E2 signals. A series of still images taken at time points after electroporation

1207 specified on the top are shown. White arrowheads: NS5A-E2 foci; yellow arrows: ApoE-NS5A foci;
1208 stars: ApoE-NS5A-E2 triple-positive foci.
1209 (C) Quantification of NS5A-ApoE double-positive foci detected in single cells in (B). Ten single cells
1210 were analyzed. P-value was determined using Mann-Whitney test.
1211 (D) Assembly-independent enrichment of NS5A in ApoE-positive foci. Huh7-Lunet/ApoE^{mT2} cells
1212 expressing the C-p7 construct (NS2-deletion; upper panel) were electroporated with *in vitro*-
1213 transcripts of the subgenomic replicon sgJFH1/NS5A^{mCherry} and analyzed by confocal microscopy
1214 to observe ApoE, NS5A, and E2 signals. A representative image showing ApoE-NS5A double-
1215 positive foci (arrowheads) and diffuse E2 signal at 72 h p.e is shown. Images on the right show
1216 magnified views of the boxed area in the left overview image.
1217 (E) Quantification of NS5A-ApoE double-positive foci detected in 100 single cells in (D) at 24, 48,
1218 and 72 h p.e. Data are medians (range) of the number of detected foci. P-value was determined
1219 using unpaired Student's *t*-test.
1220

1221 **Fig 5. Colocalization of NS5A and ApoE with the intraluminal vesicle marker CD63 as**
1222 **revealed by super resolution microscopy**

1223 (A) Experimental approach. Schematic representations of SNAPf-tagged ApoE and the
1224 subgenomic replicon encoding CLIPf-tagged NS5A are shown on the top. Huh7-Lunet cells were
1225 lentivirally transduced with the ApoE expression vector and transfected with the subgenomic
1226 replicon RNA. ApoE and NS5A were detected by STED microscopy and CD63 by
1227 immunofluorescence confocal microscopy.
1228 (B) Colocalization of ApoE^{SNAPf} and NS5A^{CLIPf}. Huh7-Lunet/ApoE^{SNAPf} cells were electroporated with
1229 subgenomic replicon RNA encoding NS5A^{CLIPf} and after 48 h, cells were labeled with SNAP^{SiR647}
1230 and CLIP^{ATTO590} for 1 h, fixed, and subjected to confocal microscopy. Arrowheads: colocalized
1231 ApoE-NS5A signals.
1232 (C) Quantification of CD63-positive ApoE-NS5A double-positive foci. Cells from (B) harvested 72 h
1233 p.e were fixed, permeabilized, and incubated with anti-CD63^{AF488} antibody. To determine the
1234 correlation between ApoE-NS5A double-positive foci and how many of them colocalized with CD63,

1235 100 cells were analyzed. Each dot represents one cell and displays the number of ApoE-NS5A
1236 double-positive foci (x-axis) and the number of CD63-ApoE-NS5A triple-positive foci (y-axis). The
1237 R-squared value is given on the plot.

1238 (D) STED-resolved ApoE-NS5A double-positive structures colocalizing with the intraluminal vesicle
1239 marker CD63. Huh7-Lunet/ApoE^{SNAPf} cells were electroporated with the subgenomic replicon RNA
1240 encoding NS5A^{CLIPf}. After 48 h, cells were labeled with SNAP^{SiR647} and CLIP^{ATTO590} for 1 h, fixed,
1241 and incubated with anti-CD63^{AF488} antibody. ApoE, NS5A, and CD63 fluorescent signals were
1242 sequentially imaged using confocal and STED microscopy, the latter to achieve a higher resolution
1243 of ApoE and NS5A signals that were deconvoluted using Huygens. Arrows: ~100-200 nm-sized
1244 ApoE-NS5A-CD63 positive structures; star: ~500 nm-sized ring-like NS5A positive structure.

1245

1246 **Fig 6. Detection of HCV-produced intraluminal vesicles in NS5A-ApoE double-positive
1247 endosomes**

1248 (A) Huh7-Lunet/ApoE^{mT2} cells expressing HCV Core-NS2/E2^{eYFP} and containing the subgenomic
1249 replicon sgJFH1/NS5A^{mCherry} (Fig. 2A) were investigated with the CLEM method at 48 h p.e. Lipid
1250 droplets stained with lipidTox were used as fiducial markers to correlate light and electron
1251 micrographs. Dashed squares in the overlay image (right panel) refer to NS5A-ApoE double-
1252 positive structures. The left panels show single-channel light or EM micrographs of the enlarged
1253 overlay image on the right. For ease of visualization, endosome peripheries are marked with
1254 dashed lines.

1255 (B) Magnified views of regions indicated in the dashed squared areas in the overlay image in (A).
1256 Cropped areas 1, 2, 3: ApoE-NS5A double-positive ILVs in endosomes; crop 4: an ApoE-positive,
1257 NS5A-negative endosome; cropped areas 5 and 6: NS5A-E2 double-positive areas containing

1258 numerous DMVs. Orange arrowheads point to ILVs in crops 1, 2 and 3; and DMVs in crops 5 and
1259 6. LD, lipid droplet.

1260

1261 **Fig 7. Co-secretion and co-transmission of ApoE-LPs with endosome-derived EVs**
1262 **containing HCV NS5A and RNA.**

1263 (A) Virion-free release of HCV RNA in association with ApoE. Huh7 cells harboring a subgenomic
1264 HCV replicon and control cells were cultured in a medium containing 1% FCS for 6 h. Culture
1265 supernatants were subjected to immunoprecipitation using ApoE-specific or IgG control antibodies.
1266 Immuno-complexes were analyzed by HCV-specific RT-qPCR. Data are means (range) from 2
1267 independent experiments. Single dots represent technical replicates from the two experiments. P-
1268 value was determined using one-way ANOVA and unpaired Student's *t*-tests.

1269 (B-C) Association of secreted ApoE with NS5A-containing EVs.

1270 (B, top panel) Schematic of the Nanoluciferase (NLuc)-tagged NS5A subgenomic replicon construct.
1271 (B, middle and bottom panel) Huh7-Lunet cells were electroporated with subgenomic replicon RNA
1272 encoding the NLuc-tagged NS5A and 72 h p.e, culture supernatant was subjected to
1273 immunoprecipitation using ApoE-, or NS5A-, or control TIA1-specific antibodies. NS5A contained
1274 in captured immuno-complexes was quantified by measuring NLuc activity (middle panel). ApoE
1275 contained in captured complexes was analyzed by Western blot (bottom panel). Data are means
1276 (range) of two independent experiments. P-value was determined using unpaired Student's *t*-test.

1277 (C) Captured complexes from (B) were visualized by negative staining and analyzed by TEM.
1278 Turquoise arrows point to LP-like particles (~20 nm) attached to EVs that were captured with
1279 antibodies specified on the top of each panel.

1280 (D) Reduced virion-free secretion of HCV RNA with the ApoE-binding deficient NS5A^{APK99AAA}
1281 mutant. Total RNA contained in Huh7-Lunet cells with stable wildtype or mutant subgenomic
1282 replicon was extracted and HCV RNA was quantified by RT-qPCR. In addition, total RNA in culture
1283 supernatants was isolated and HCV RNA contained therein was quantified by RT-qPCR. Ratios of
1284 secreted to total HCV RNA are shown. Data are medians (range) from three independent

1285 experiments. Single dots represent technical replicates of the 3 biological experiments. P-value
1286 was determined using unpaired Student's *t*-test.
1287 (E-F) Uptake of ApoE-associated, virion-free released HCV RNA by HCV-negative bystander cells.
1288 (E) Experimental approach. Huh7-Lunet cells expressing tagged ApoE and CD63 and containing
1289 a subgenomic replicon (constructs on the top) served as donor cells. Huh7-Lunet-derived recipient
1290 cells expressed eYFP, fused to the farnesylation signal from human HRAS protein (CaaX) to
1291 visualize cellular membranes. Donor and recipient cells were co-cultured for 24 h, fixed, and HCV
1292 RNA in recipient cells was detected by using smFISH with Hulu probes.
1293 (F) Number of total and ApoE-positive HCV RNA dots in each analyzed cell (n=18) is shown.
1294

1295 **Supporting information captions**

1296 **S1 Fig. Functionality of ApoE^{mT2}.**

1297 (A) Validation of ApoE tagging with various fluorophores and confirmation of expression. Huh7-
1298 Lunet cells with stable knockdown (KD) of ApoE were transduced with lentiviruses encoding
1299 different fluorescently tagged-ApoE variants. After selection for stable expression, lysates of given
1300 cell pools were analyzed by Western blot using an ApoE-specific antibody. α -tubulin served as a
1301 loading control. mScarlet-C1: wildtype mScarlet; mScarlet-H: photo-stable mScarlet (M164H)
1302 variant. (B) Subcellular distribution of ApoE^{mT2} in HEK293T (left) and Hela cells (right) stably
1303 expressing this protein after lentiviral transduction and selection. Cells were characterized by
1304 confocal microscopy. (C-D) HCV replication in Huh7-Lunet/ApoE^{mT2} cells. (C) Cells were
1305 transduced with either an empty vector (Empty V), or wildtype ApoE (ApoE^{wt}), or ApoE^{mT2},
1306 respectively, and selected for stable transgene expression. Cells were then electroporated with *in*
1307 *vitro* transcripts of the HCV Renilla luciferase (RLU)-reporter virus (JcR2a). HCV replication was
1308 determined at indicated time points by measuring RLU activities in cell lysates. (D) Amounts of core

1309 protein contained in cells from (C) at indicated time points were measured by chemiluminescence
1310 assay. Data are means from a representative experiment (n=3).

1311 **S2 Fig. Functionality of ApoE^{mT2} as determined by rescue of infectious HCV particle**
1312 **production.**

1313 (A-B) HCV replication in HEK293T-miR122-ApoE^{mT2} cells. (A) Cells were transduced with either an
1314 empty vector (Empty V), or wildtype ApoE (ApoE^{wt}), or ApoE^{mT2}, respectively, and electroporated
1315 with *in vitro* transcripts of the HCV Renilla luciferase (RLU)-reporter virus (JcR2a). HCV replication
1316 was determined at indicated time points by measuring RLU activities in cell lysates. RLU activities
1317 were normalized to the 4 h value to correct for the transfection efficiency. (B) Amounts of core
1318 protein contained in cells from (A) at indicated time points were measured by chemiluminescence
1319 assay. Data in both panels are means for a representative experiment (n=2). (C-D) Production of
1320 infectious HCV in HEK293T-miR122-ApoE^{mT2} cells. (C) At 24 and 48 h post-electroporation,
1321 amounts of extracellular core protein present in supernatants of cells from (A) were determined by
1322 chemiluminescence assay. (B) Culture supernatants harvested at 24 and 48 h post-electroporation
1323 were used to inoculate naïve Huh7.5 cells and HCV replication therein was measured by
1324 quantifying RLU activity at 72 h after inoculation. Virus titers normalized to HCV RNA replication in
1325 transfected cells are shown. Data in both panels are means for a representative experiment (n=2).

1326 **S3 Fig. Colocalization of ApoE^{mT2} with Rab7 and ADRP.** Huh7-Lunet/ApoE^{mT2} cells were
1327 transduced with lentiviruses encoding Rab7^{mCherry} (upper panel) or ADRP^{mCherry} (lower panel). Cells
1328 were fixed and analyzed by confocal microscopy. Boxed areas in the left panels are shown as
1329 enlarged views in the panels on the right of each row. Arrowheads point to ApoE-Rab7 positive
1330 signals.

1331 **S4 Fig. Characterization of ApoE variants and NS5A mutants.**

1332 (A) ApoE-NS5A colocalization in cells replicating a full-length HCV genome. Huh7-Lunet/ApoE^{mT2}
1333 cells were electroporated with *in vitro* transcripts of the HCV genome Jc1. At 54 h p.e, cells were
1334 fixed, permeabilized, and incubated with NS5A- and PDI-specific antibodies for subsequent

1335 immunofluorescence staining. Images were acquired with a confocal microscope. Arrowheads:
1336 ApoE-NS5A signals. Note the high similarity to the structures detected in cells containing the split
1337 HCV genome (Figure 4). (B) An example of automatic detection of ApoE-NS5A double-positive
1338 puncta from (A). Circles and numbers mark the identity of each detected ApoE-NS5A structure. (C)
1339 Expression and secretion of SNAPf- and KDEL-tagged ApoE. Lysates and culture supernatants of
1340 Huh7-Lunet/ApoE-KD cells expressing ApoE^{SNAPf}, or ApoE^{mT2-KDEL}, or ApoE^{KDEL} were analyzed by
1341 Western blot with ApoE-specific antibody. β-actin served as a loading control. KDEL-tagged ApoE
1342 that is retained in the ER served as specificity control to determine ApoE^{SNAPf} secretion. (D)
1343 Expression of CLIPf-tagged NS5A. Huh7-Lunet cells were electroporated with RNA of the
1344 subgenomic replicon sgJFH1/NS5A^{wt} or sgJFH1/NS5A^{CLIPf}, and cell lysates harvested at 24, 48,
1345 and 72 h p.e were analyzed by Western blot using NS5A-specific antibody. β-actin served as a
1346 loading control. (E) Colocalization of ApoE-NS5A double-positive structure with CD63. Huh7-
1347 Lunet/ApoE^{SNAPf} cells were electroporated with subgenomic replicon RNA encoding NS5A^{CLIPf} and
1348 after 72 h, cells were sequentially labeled with SNAP^{SiR647} and CLIP^{ATTO590} for 1 h, fixed,
1349 permeabilized, incubated with anti-CD63^{AF488} antibody, and subjected to confocal microscopy. Four
1350 images on the bottom show single or merged channels magnified views of the boxed area in the
1351 top overview image. Arrowheads point to ApoE-NS5A-CD63 triple-positive signals. (F) Secretion
1352 of NanoLuciferase (Nluc)-tagged NS5A. Huh7-Lunet cells were electroporated with RNA of the
1353 subgenomic replicon sgJFH1/NS5A^{Nluc}, and cell lysates and supernatants harvested at 24, 48, and
1354 72 h p.e were subjected to Nluc activity measurement. (G) Mitigation of ApoE-NS5A interaction by
1355 a mutation in NS5A domain I. HEK293T-miR122 cells were co-transfected with constructs encoding
1356 HA-tagged ApoE and either an empty vector, or myc-tagged NS5A^{wt}, or myc-tagged NS5A^{APK99AAA},
1357 respectively. At 30 h p.t, cell lysates were subjected to immunoprecipitation (IP) using a myc-
1358 specific antibody and captured complexes were analyzed by Western blot with an HA-specific

1359 antibody. Band intensities of co-captured ApoE were quantified and values were normalized to the
1360 one obtained with NS5A^{wt} that was set to 1. Total cell lysate (0.5%) was loaded as input.

1361 **S5 Fig. Detection of HCV RNA by single molecule (sm) FISH.**

1362 (A) Schematic of the design of smFISH Hulu probes used to detect HCV RNA. These probes target
1363 a region encoding for NS3 (nucleotide 3733 - 4889 of the HCV JFH1 genome; GenBank accession
1364 number AB047639). (B) Specificity of HCV RNA detection by smFISH with Hulu probes. HCV RNA
1365 contained in Huh7-Lunet cells harboring a subgenomic replicon was detected by smFISH. Huh7-
1366 Lunet cells expressing the membrane sensor eYFP-CaaX (farnesylation signal from human HRAS
1367 protein) and that were used as recipient cells in co-culture experiments served as a negative
1368 control. (C) Detection of ApoE-associated HCV RNA in recipient cells. Huh7-
1369 Lunet/ApoE^{mT2}/CD63^{mCherry} cells containing a subgenomic HCV replicon (donors) were co-cultured
1370 with Huh7-Lunet^{eYFP-CaaX} cells (recipients) for 24 h. Thereafter, cells were fixed and processed for
1371 visualization of HCV RNA by using smFISH. An overview image is shown on the top. Dashed area
1372 1: donor cell; dashed area 2: recipient cell. Magnified views of indicated areas are shown on the
1373 bottom panels. Arrows point to ApoE-associated HCV RNA dots detected in both donor and
1374 recipient cells. Arrowheads indicate ApoE-negative HCV RNA dots in the recipient cell.

1375

1376 **S1 Table. Reagent or resource used in this study**

1377 **S1 Movie. Intracellular co-trafficking of ApoE-CD63 complexes in an uninfected hepatocyte**

1378 Huh7-Lunet/ApoE^{mT2} cells expressing CD63^{mCherry} were analyzed by live-cell time-lapse confocal
1379 microscopy. The trajectories of several ApoE-CD63 double-positive signals are marked. Frame
1380 interval = 3.61 sec. Duration of shown imaging = 111.91 sec.

1381 **S2 Movie. Secretion of an ApoE-associated CD63-positive intraluminal vesicle in an
1382 uninfected hepatocyte**

1383 Huh7-Lunet cells expressing ApoE^{mT2} and CD63^{pHluorin} were cultured in imaging medium (pH 7.4)
1384 and analyzed by live-cell time-lapse confocal microscopy with a focus on plasma membrane
1385 resident CD63-fluorescent signals. Frame interval = 3.14 sec. Duration of shown imaging =
1386 200.96 sec.

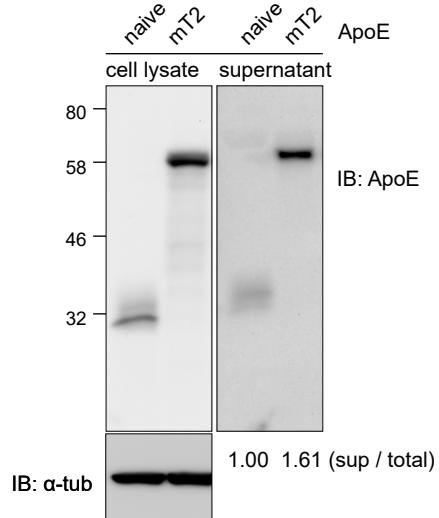
1387 **S3 Movie. Uptake of donor-derived ApoE-CD63 complexes by a recipient cell**

1388 Donor (Huh7-Lunet/ApoE^{mT2}/CD63^{mCherry}) and recipient cells (Huh7-Lunet cells expressing eYFP-
1389 tagged CaaX) were co-cultured for 16 h and analyzed by live-cell time-lapse confocal microscopy.
1390 An area of a recipient cell (gray) showing the donor-derived ApoE-CD63 double-positive signals is
1391 shown. Frame interval = 3.81 sec. Duration of shown imaging: 118.11 sec.

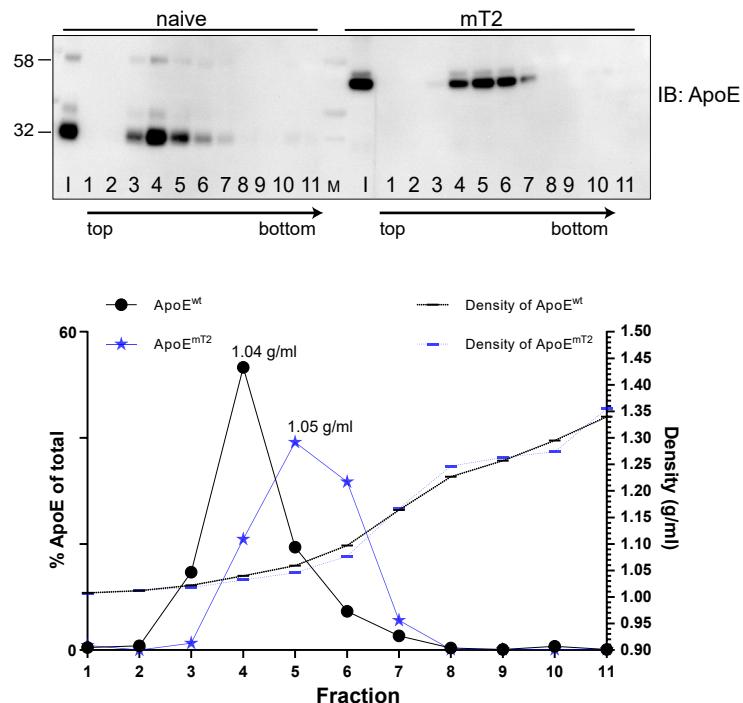
1392 **S4 Movie. Long-term time-lapse confocal imaging of ApoE, NS5A, and E2 trafficking in a
1393 HCV-replicating hepatocyte**

1394 Huh7-Lunet cells stably expressing ApoE^{mT2} and C-NS2/E2^{eYFP} were electroporated with the
1395 replicon RNA encoding mCherry-tagged NS5A. Cells were subjected to time-lapse live-cell

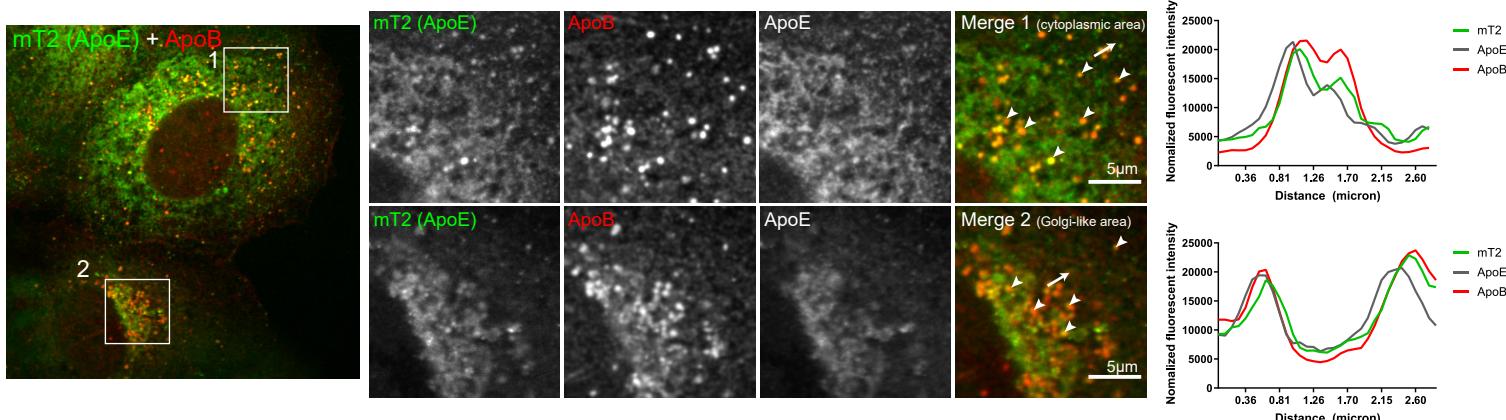
1396 confocal microscopy to monitor ApoE, NS5A, and E2 signals from 5 to 54 h post-electroporation.


1397 A duration from 25.5 to 54 h is shown. Frame interval = 30 min.

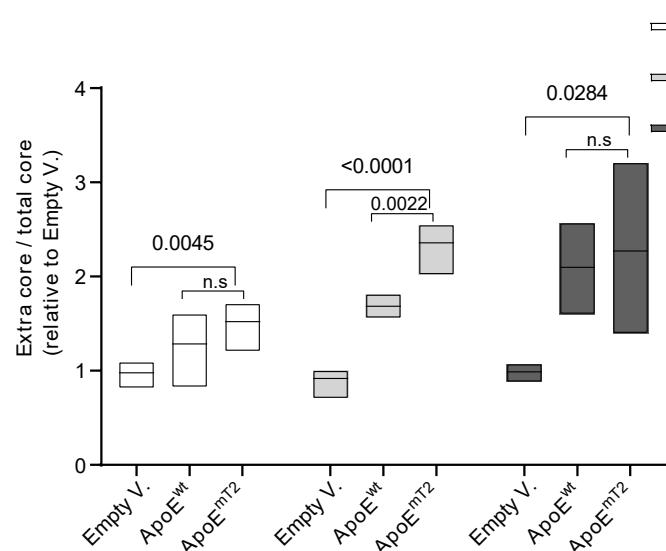
1398 **S5 Movie. Abundance of ApoE-NS5A foci in a HCV-replicating hepatocyte**


1399 Huh7-Lunet cells stably expressing ApoE^{mT2} and C-NS2/E2^{eYFP} were electroporated with the
1400 replicon RNA encoding mCherry-tagged NS5A. At 48 h post-electroporation, cells were subjected
1401 to time-lapse live-cell confocal microscopy to monitor ApoE, NS5A, and E2 signals. Frame
1402 interval = 10.0 sec. Duration of shown imaging: 490.0 sec.

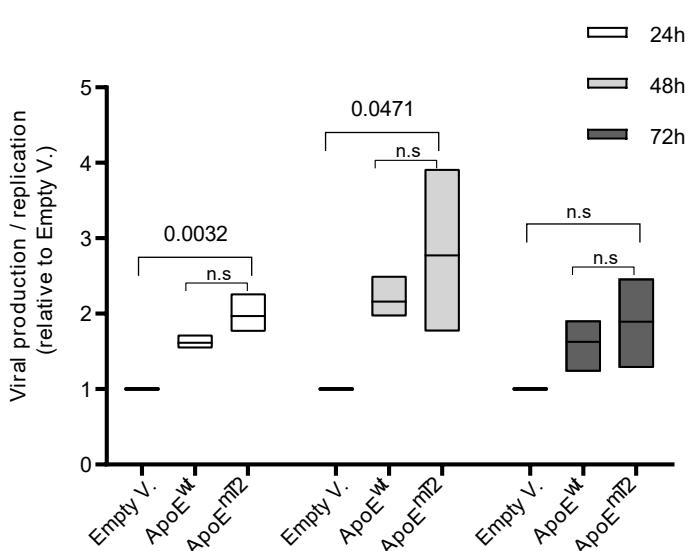
1403


A

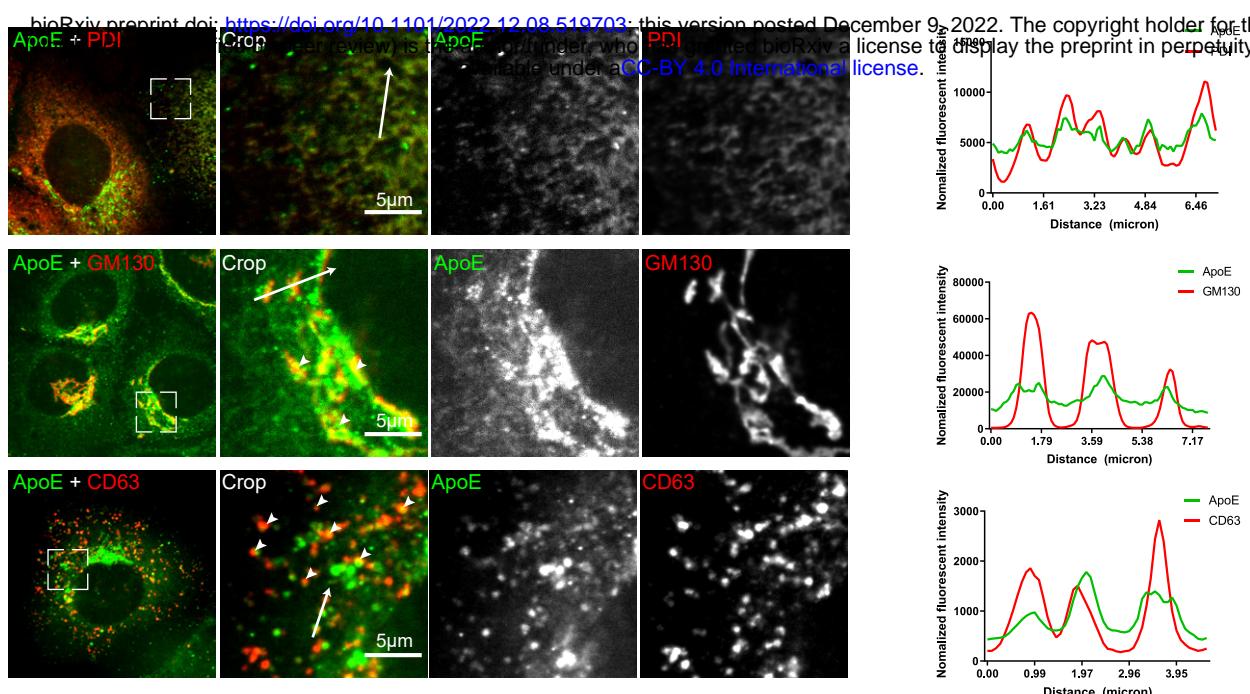
B

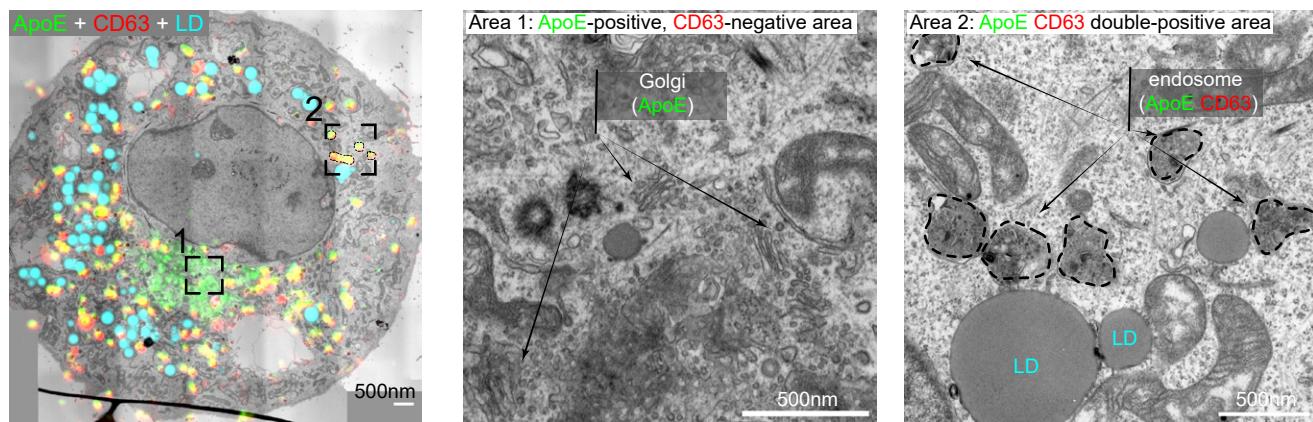


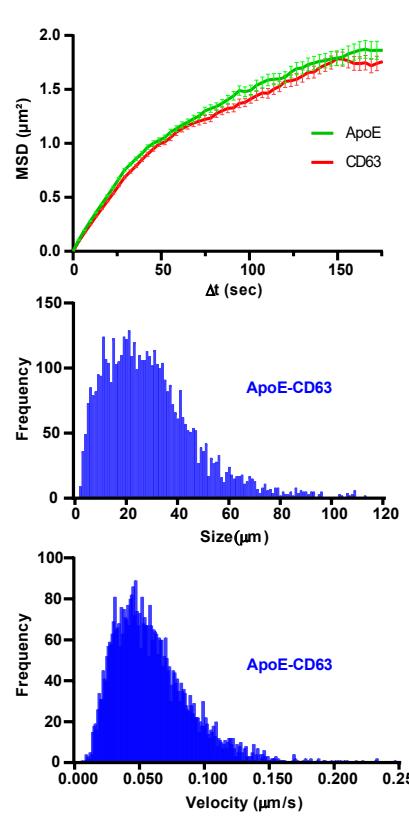
C

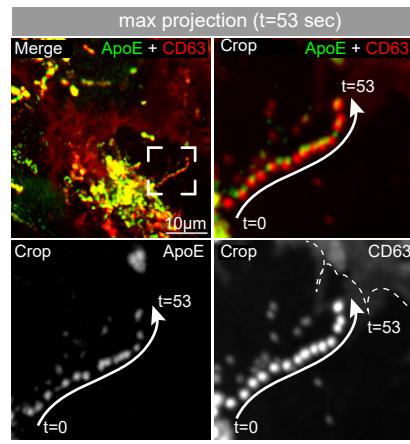
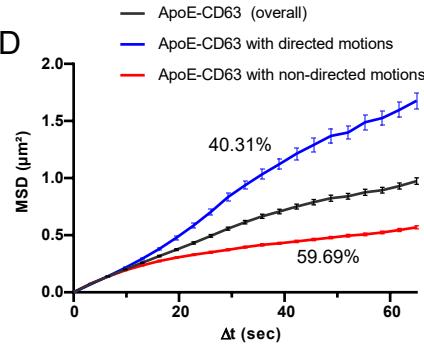


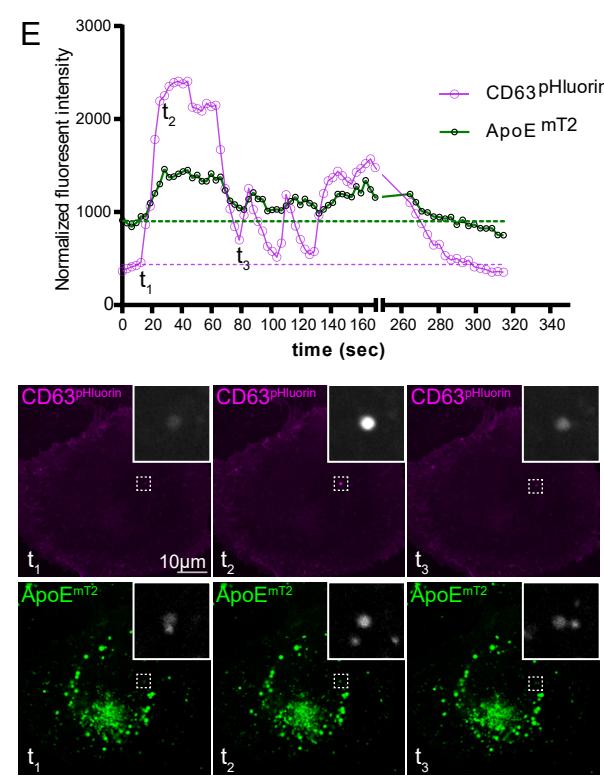
Extracellular core protein


D


Production of infectious virus


A



B


C

D

E

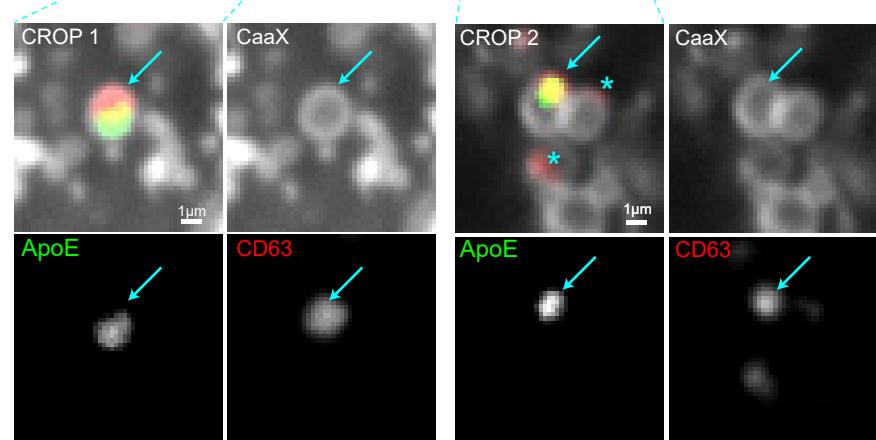
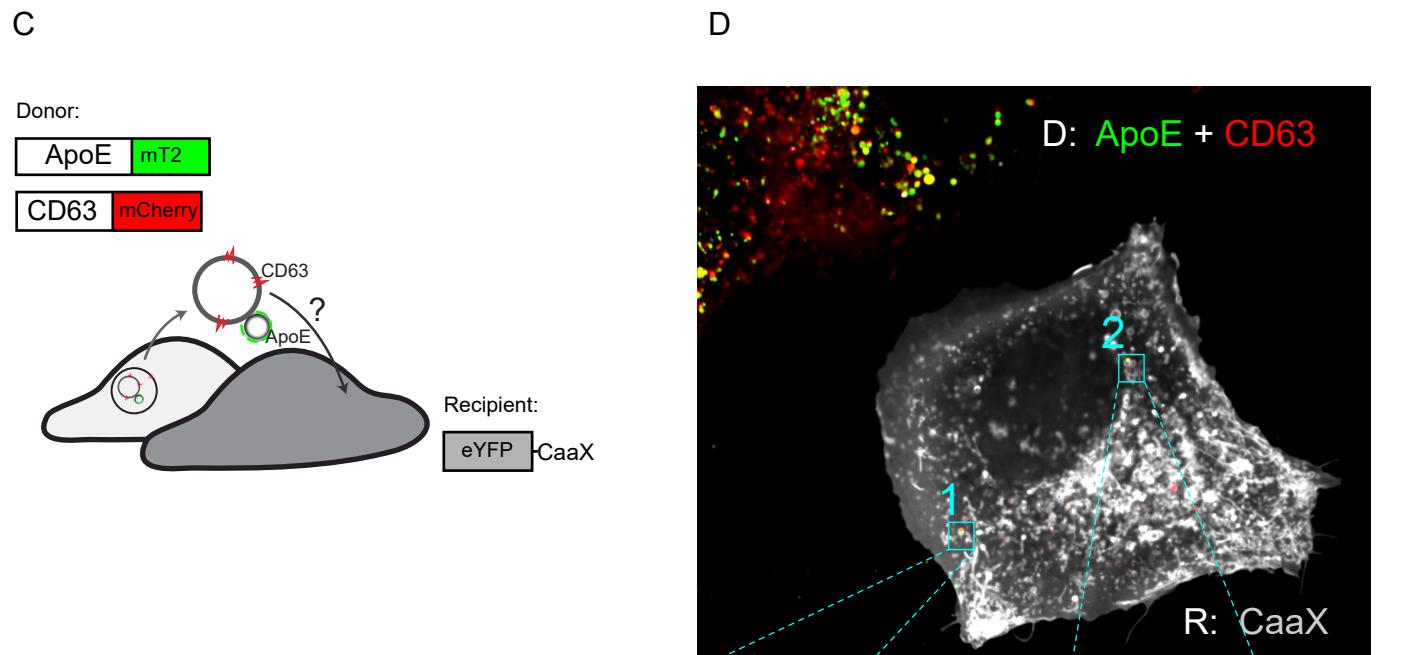
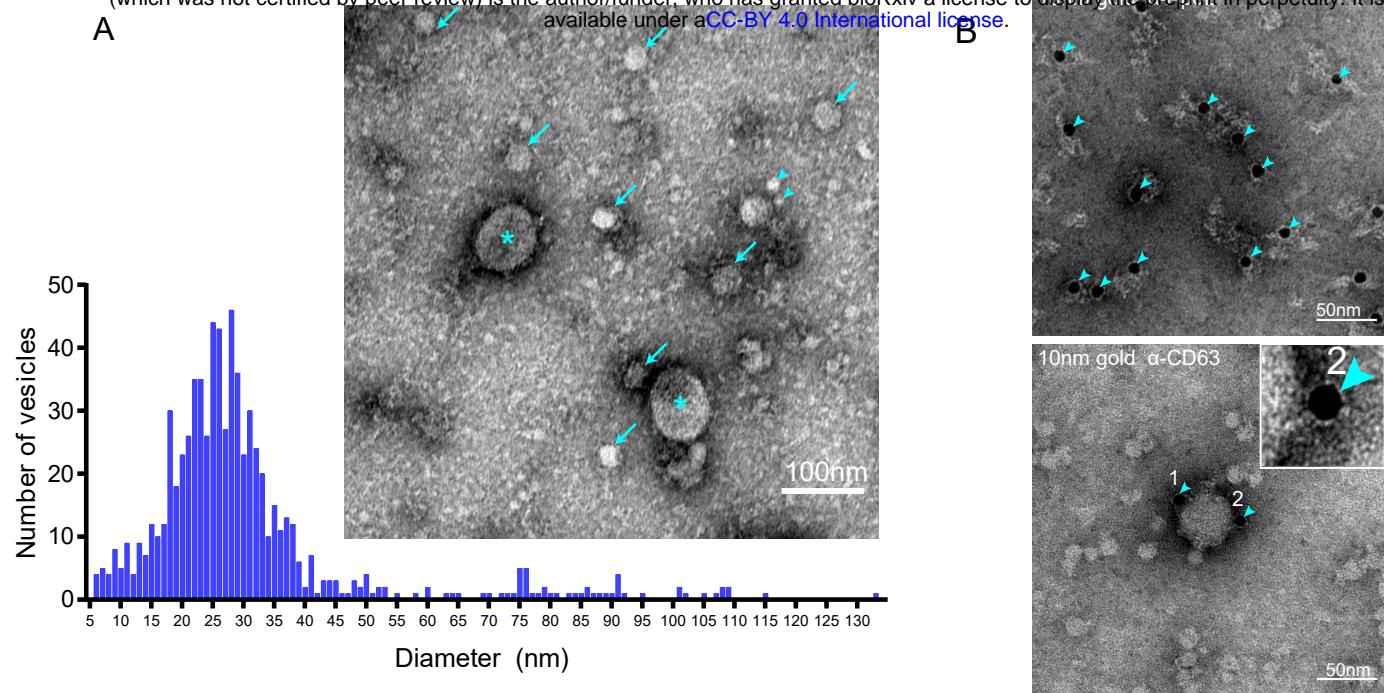




Fig. 3

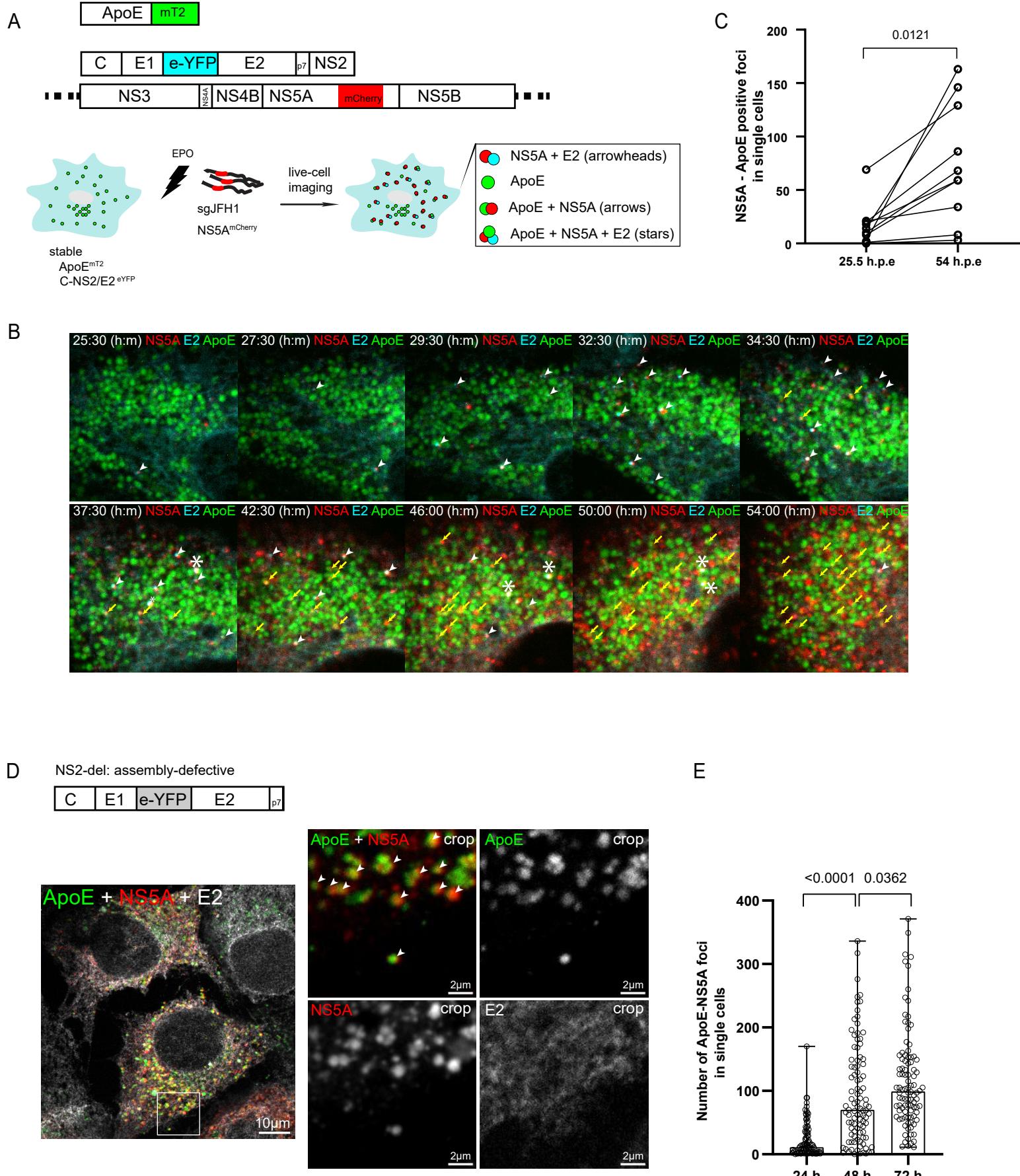
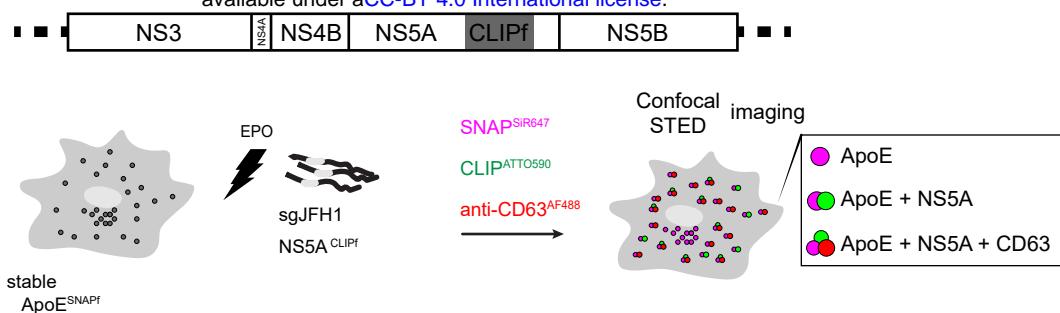
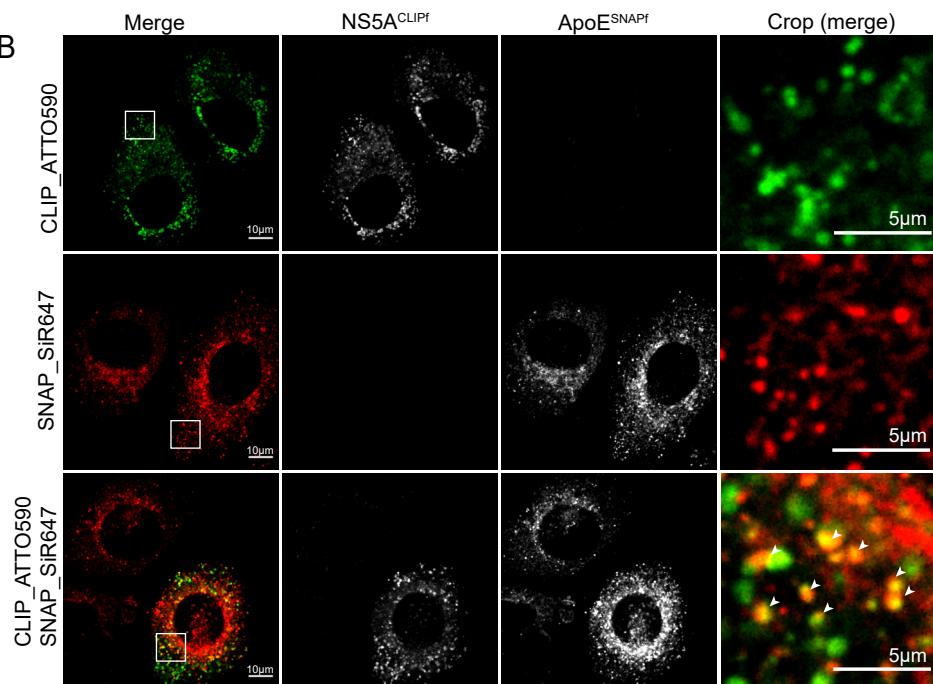
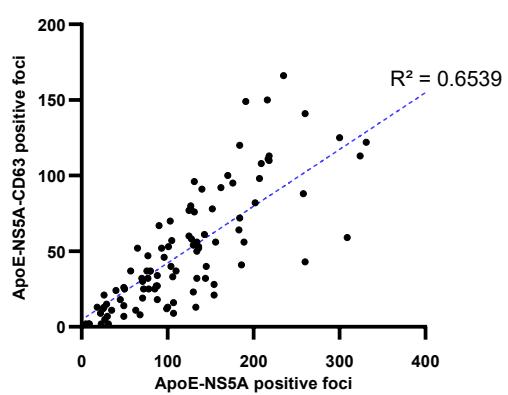
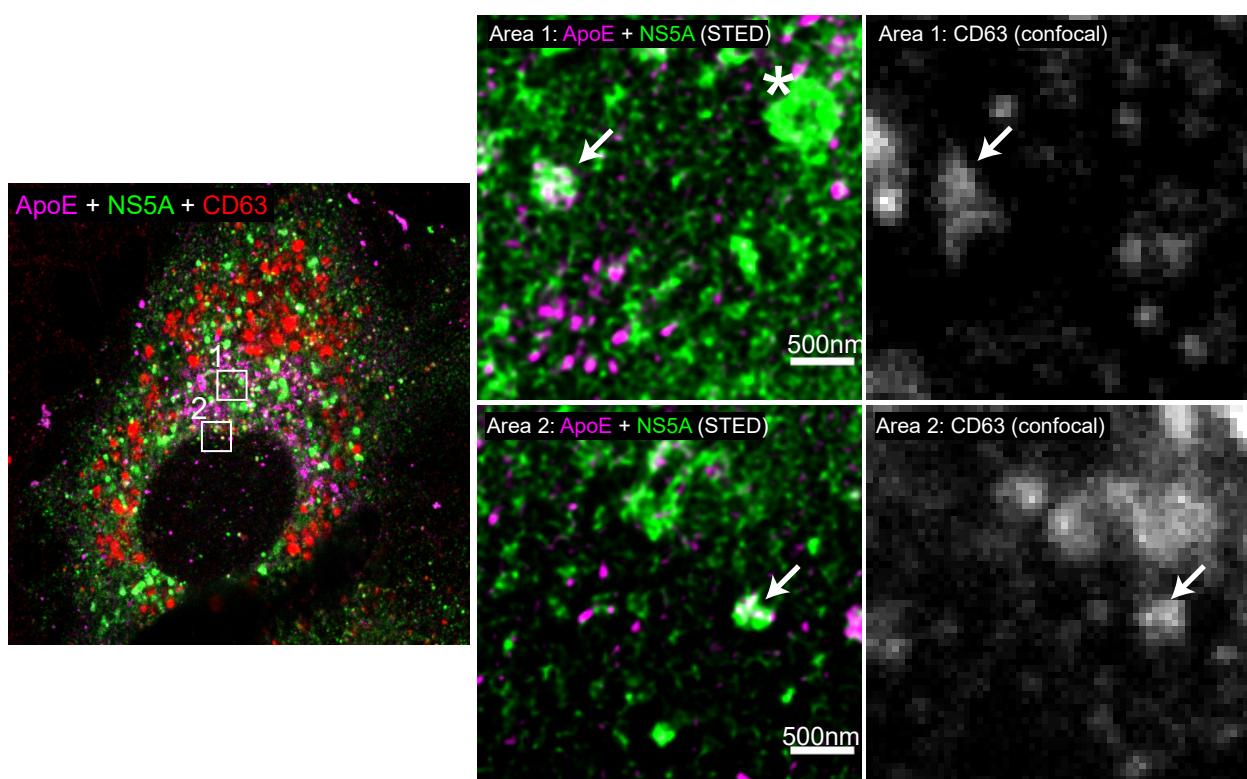
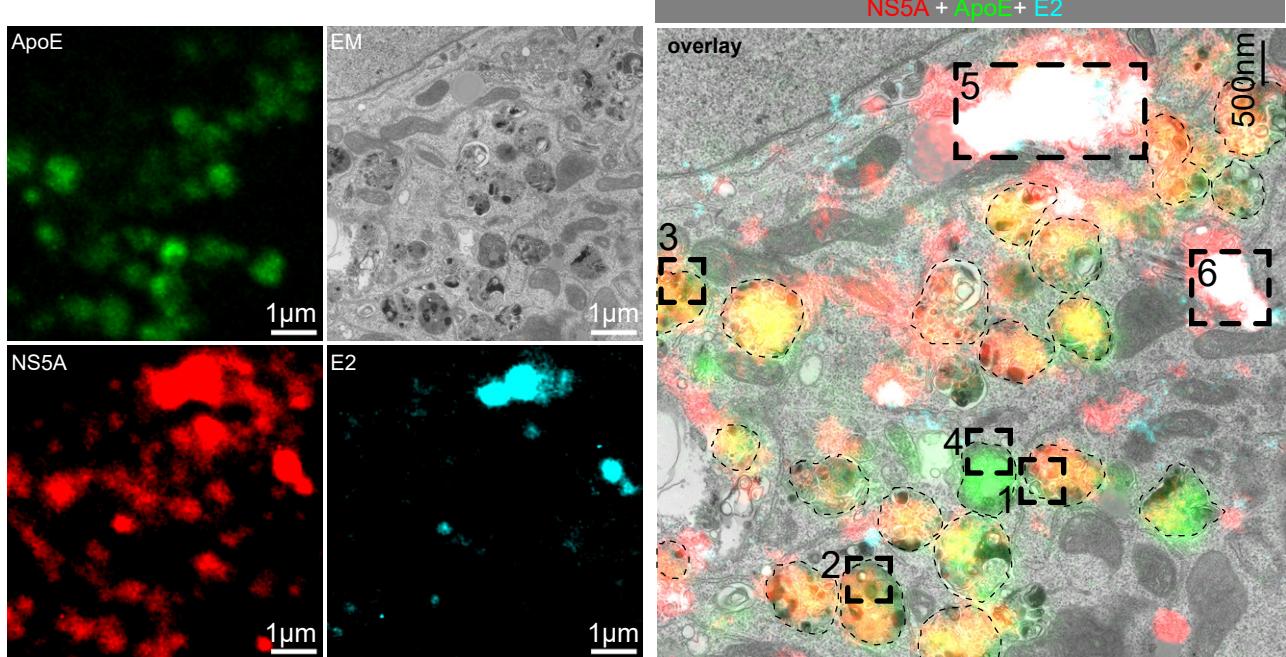
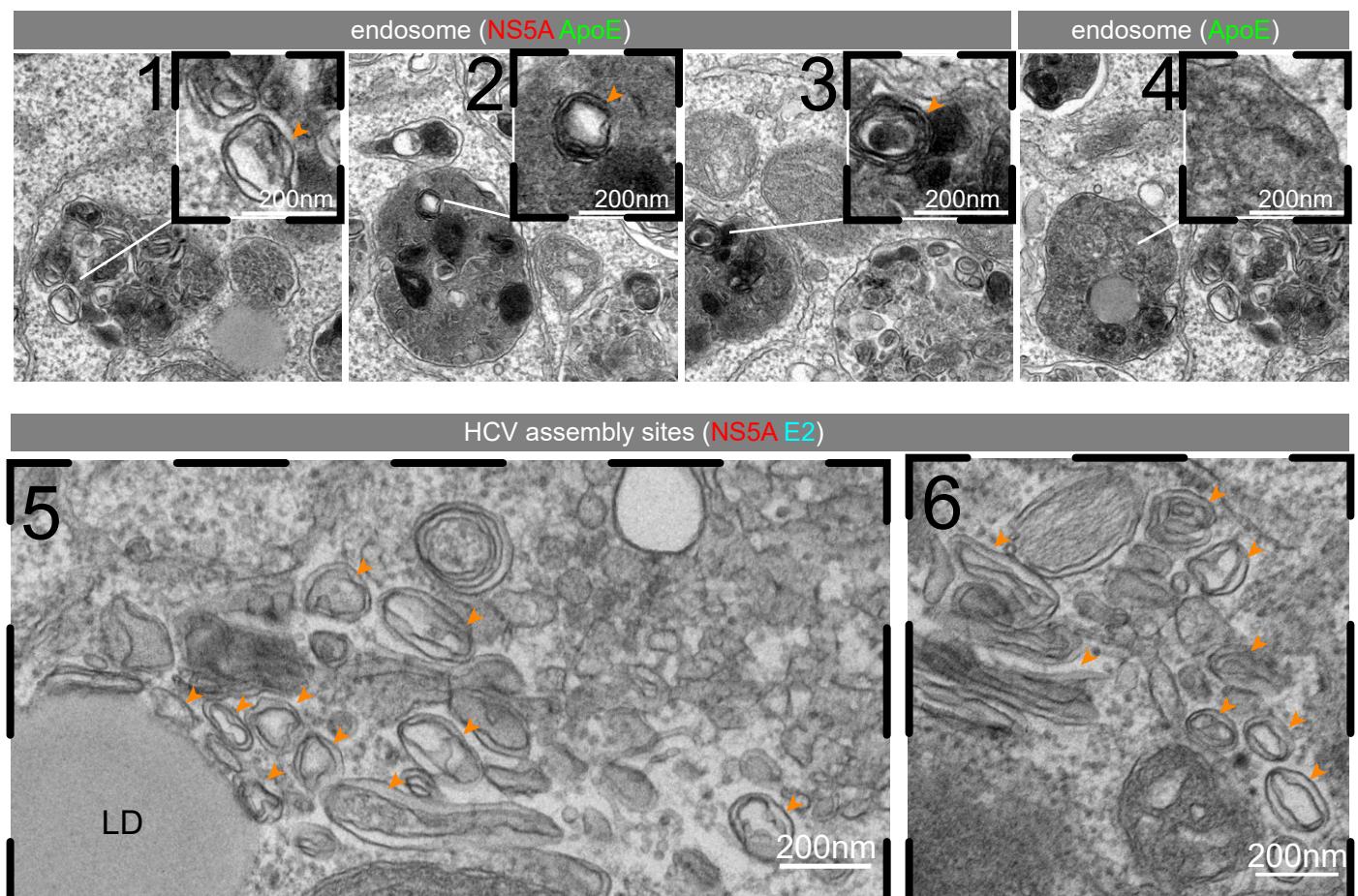




Fig. 4


A


B


C


D

A

B

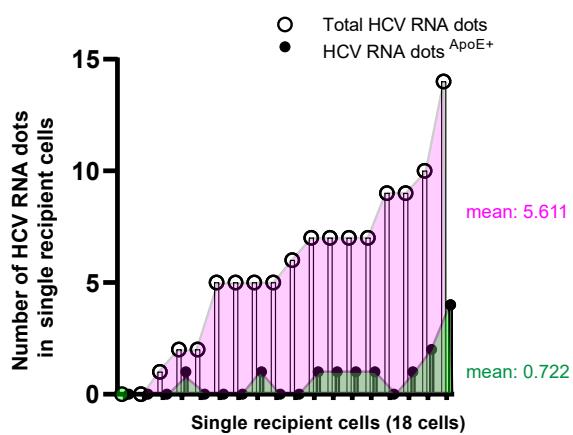
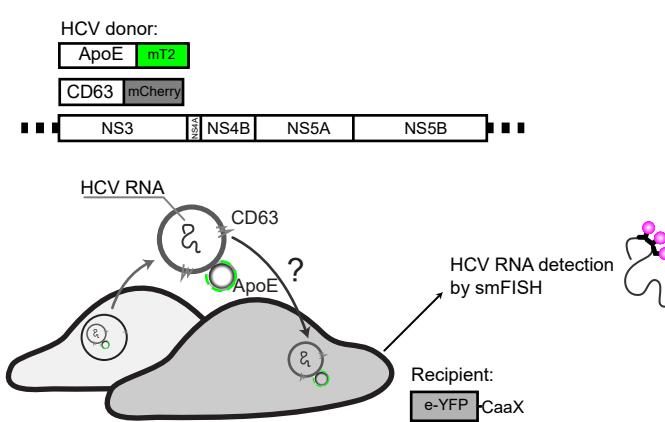
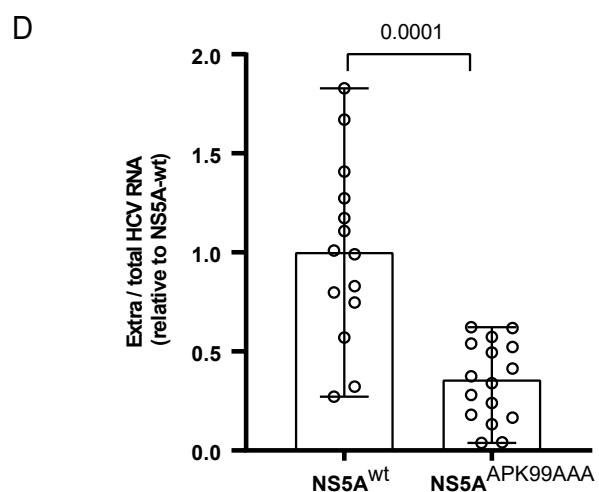
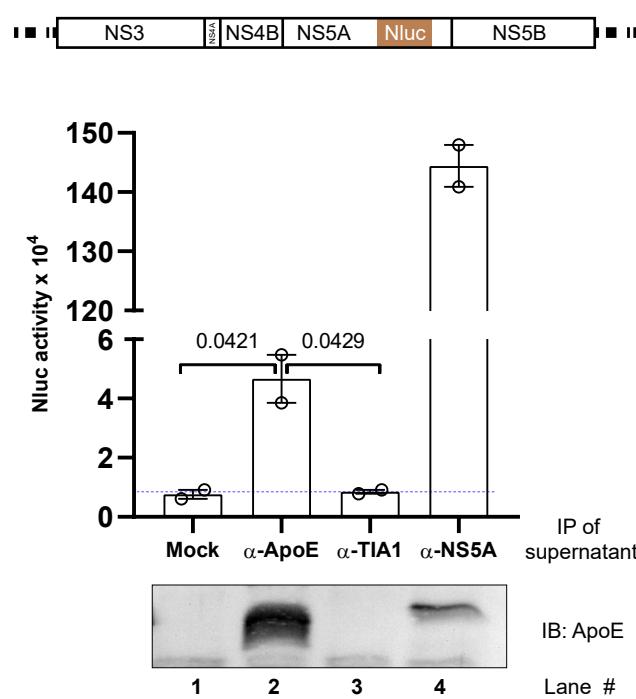
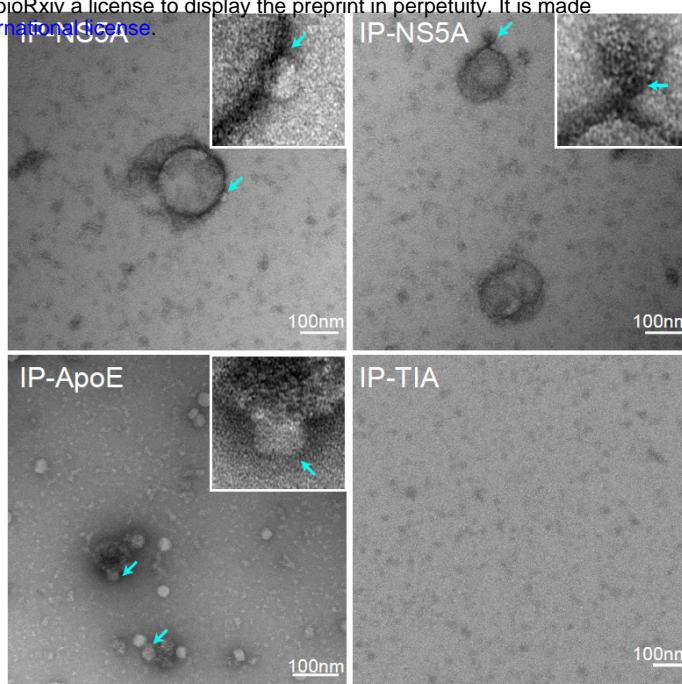
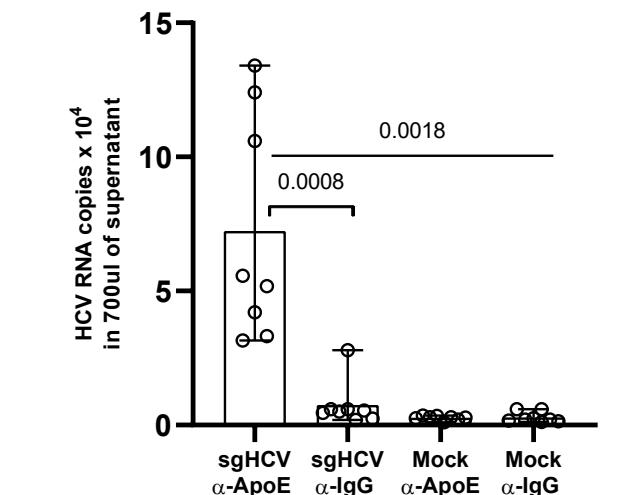







Fig. 7