

1 **BREAKTHROUGH REPORT**

2

3 **The phase separated CO₂-fixing pyrenoid proteome determined by Turboid**

4 Chun Sing Lau¹; Adam Dowle²; Gavin H. Thomas²; Philipp Girr¹; Luke CM Mackinder^{1a}

5

6 ¹Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10
7 5DD, United Kingdom

8 ²Department of Biology, University of York, York, YO10 5DD, United Kingdom

9 ^aCorresponding Author: luke.mackinder@york.ac.uk

10 **Short title:** Turboid to determine the pyrenoid proxome

11 **Abstract**

12 Phase separation underpins many biologically important processes such as RNA metabolism,
13 signaling and CO₂ fixation. However, determining the composition of a phase separated
14 organelle is often challenging due to their sensitivity to environmental conditions which limits
15 the application of traditional proteomics techniques like organellar purification or affinity
16 purification mass spectrometry to understand their composition. In *Chlamydomonas*
17 *reinhardtii*, Rubisco is condensed into a crucial phase separated organelle called the pyrenoid
18 that improves photosynthetic performance by supplying Rubisco with elevated concentrations
19 of CO₂. Here, we developed a Turboid based proximity labeling technique in *Chlamydomonas*
20 chloroplasts, where proximal proteins are labeled by biotin radicals generated from the
21 Turboid-tagged protein. Through the expression of two core pyrenoid components fused with
22 the Turboid tag, we have generated a high confidence pyrenoid proxome that contains the
23 majority of known pyrenoid proteins plus a number of novel pyrenoid candidates.
24 Fluorescence protein tagging of 8 previously uncharacterized Turboid-identified proteins
25 showed 7 were localized to a range of sub-pyrenoid regions. The resulting proxome also
26 suggests new secondary functions for the pyrenoid in RNA-associated processes and redox
27 sensitive iron-sulfur cluster metabolism. This developed pipeline opens the possibility of
28 investigating a broad range of biological processes in *Chlamydomonas* especially at a
29 temporally resolved sub-organellar resolution.

30 **Introduction**

31 Nearly all algae contain a microcompartment in their chloroplast called the pyrenoid, which is
32 estimated to be responsible for ~30% of global CO₂ fixation (Mackinder et al., 2016). The
33 pyrenoid of the model green alga *Chlamydomonas reinhardtii* (*Chlamydomonas* hereafter) is
34 a 1-2 micron biomolecular condensate of the principal CO₂-fixing enzyme Rubisco. It is formed
35 through liquid-liquid phase separation (LLPS) of Rubisco mediated by Essential Pyrenoid
36 Component 1 (EPYC1), that has 5 evenly spaced Rubisco binding motifs (RBM) interspaced
37 by disordered sequence (He et al., 2020; Mackinder et al., 2016; Freeman Rosenzweig et al.,
38 2017; Wunder et al., 2018). The deletion of EPYC1, or the reciprocal binding site of EPYC1
39 on Rubisco, abolishes pyrenoid formation. With correct pyrenoid assembly being essential for
40 a functional CO₂ concentrating mechanism (CCM) (Mackinder et al., 2016) that works to
41 saturate Rubisco with CO₂ to minimize energetically costly photorespiration, thereby improving
42 photosynthetic efficiency (Wang et al., 2015; Fei et al., 2022). In the face of growing food
43 security issues, the engineering of a pyrenoid-based CCM into major C3 crop plants such as
44 rice, soybean and wheat is regarded as a promising strategy for yield improvement with its
45 prospect of increasing food production by up to 60% (Ray et al., 2013; Long et al., 2019).
46 Recent work has reconstituted a proto-pyrenoid in the higher plant *Arabidopsis thaliana*
47 (Atkinson et al., 2020). However, additional structural components, such as traversing
48 thylakoid membranes and a CO₂ diffusion barrier will be required for efficient function (Fei et
49 al., 2022). Many of the proteins underpinning these additional structural requirements are
50 unknown making a deep understanding of the structural organization and molecular function
51 of the pyrenoid critical.

52 Previous pyrenoid proteomes have been achieved via organelle purification (Zhan et
53 al., 2018; Mackinder et al., 2016) and affinity purification mass spectrometry (APMS)
54 (Mackinder et al., 2017), however both these methods have limitations. Whilst multiple robust
55 methods, like APMS, exist to identify strong protein-protein interactions, the ability to identify
56 weak and transient interactions *in vivo* is limited. At a larger spatial scale, subcellular
57 fractionation followed by protein purification and MS is prone to cross-contamination
58 (Christopher et al., 2021). Biomolecular condensates, like the pyrenoid, fall into a class of
59 subcellular structures that are challenging to accurately determine their proteomes as they are
60 typically dynamic, underpinned by weak and transient interactions that are highly sensitive to
61 small changes in the surrounding environment, can vary considerably in size and are not
62 always clearly spatially defined due to the absence of an encapsulating membrane (Hyman et
63 al., 2014; Choi et al., 2020). The recently developed proximity labeling methods such as
64 APEX2 and TurboID (Lam et al., 2015; Branen et al., 2018) are particularly poised to
65 determine the underpinning transient interactions and proteomes of biomolecular condensates

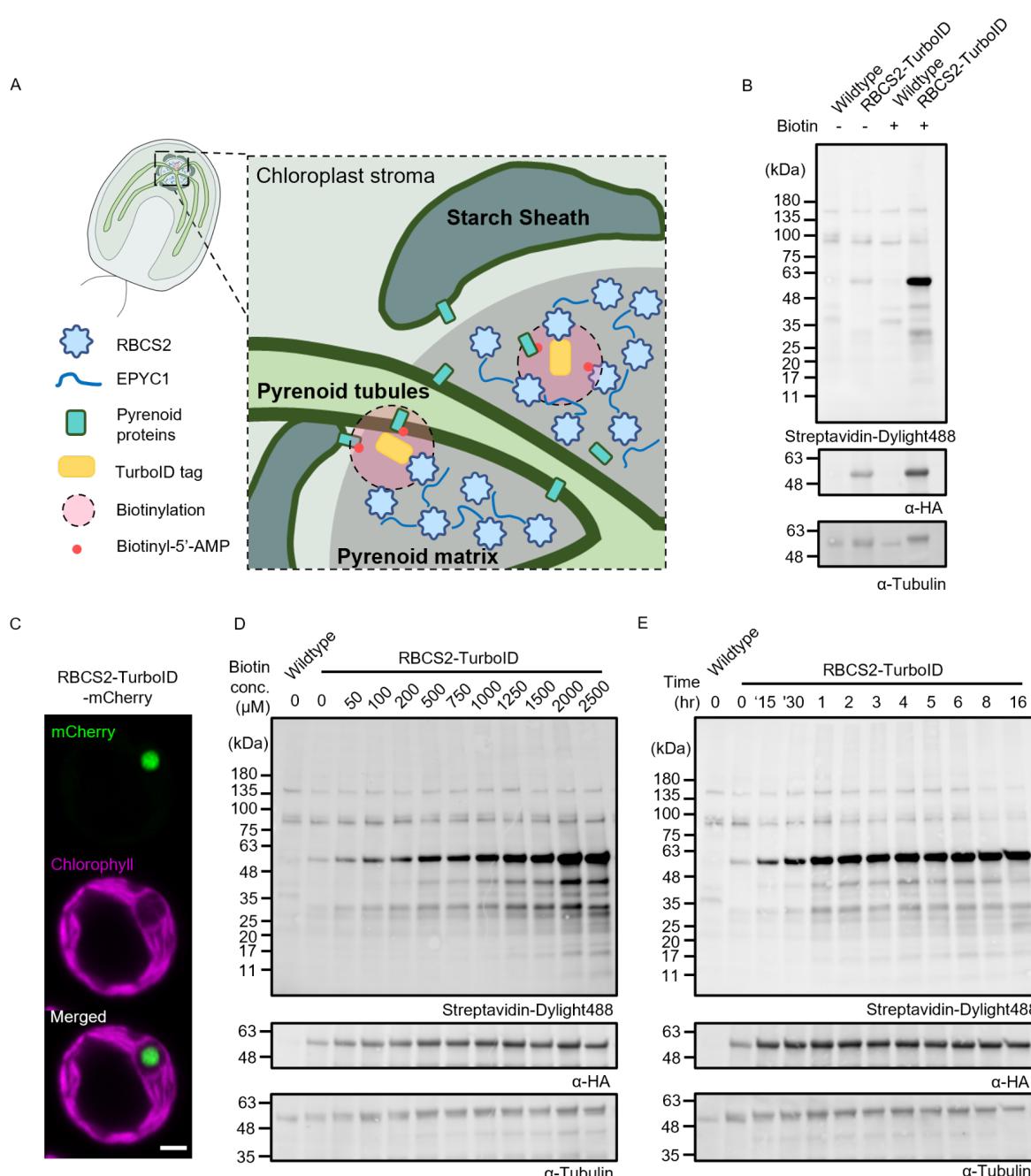
66 (Bracha et al., 2019). APEX2 and TurboID utilize an enzyme tag that drives biotinylation of
67 neighboring proteins *in vivo*. In APEX2 an engineered ascorbate peroxidase converts biotin-
68 phenol to biotin-phenoxyl radicals, while in TurboID an engineered biotin ligase generates
69 biotin-5'-AMP radicals from Biotin and ATP (Branon et al., 2018; Roux et al., 2012). These
70 labile radicals spontaneously biotinylate the surface exposed residues of proteins in close
71 proximity. This reaction gives rise to a localized biotinylation event that is spatially restricted
72 to 10 - 40 nm (Kim et al., 2014, 2016) by the radical's diffusion from the enzyme tag. The *in*
73 *vivo* biotinylation negates the need to purify proteins in their native association, with the high
74 affinity of the biotin tag to streptavidin beads enabling the removal of background contaminants
75 via harsh wash conditions. This results in the identification of strong, weak and transient
76 interactions, in addition to non-interacting proximal proteins. However, since its development
77 proximity labeling has seen limited application in phase-separated systems (Youn et al., 2018;
78 Zhou and Zou, 2021) and has yet to be established in plastids or the model alga
79 *Chlamydomonas*.

80 In this study we attempt to identify those proteins that were missed in APMS and
81 pyrenoid purification by developing a pyrenoid-based proximity labeling methodology. Using
82 TurboID-based proximity labeling we identify a complementary and robust pyrenoid
83 "proxiome". Our pyrenoid proxiome contains the majority of previously known pyrenoid
84 proteins and has identified multiple novel pyrenoid components that show distinct sub-
85 pyrenoid localizations via fluorescence tagging. The ability to identify core proteins involved in
86 pyrenoid phase separation highlights the strength of proximity labeling for investigating
87 biomolecular condensate composition and formation. Furthermore, our method establishes
88 proximity labeling in plastids and the leading model algal system, *Chlamydomonas*.

89

90 **Results**

91 ***Development of proximity labeling in Chlamydomonas reinhardtii***

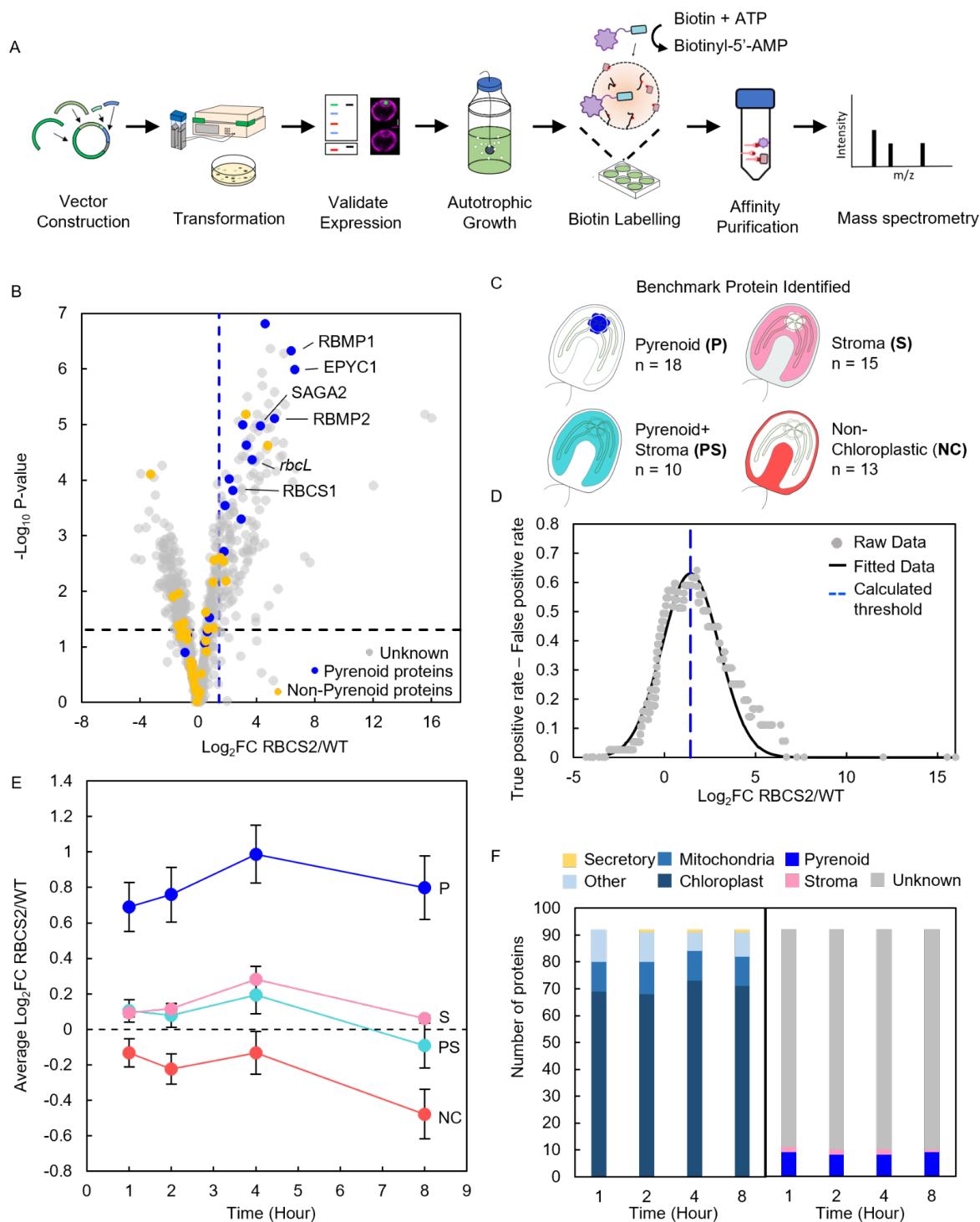

92 We set out to establish proximity labeling in the LLPS pyrenoid within the chloroplast of
93 *Chlamydomonas* (Figure 1A). TurboID has been established in *Arabidopsis* (Mair and
94 Bergmann, 2022; Zhang et al., 2019) and APEX2 in cyanobacteria (Dahlgren et al., 2021) and
95 diatoms (Turnšek et al., 2021). To determine which approach is best suited for
96 *Chlamydomonas*, we designed constructs to test both APEX2 and TurboID (Supplemental
97 Data Set 1). Expression constructs were designed to be compatible with the *Chlamydomonas*
98 modular cloning (MoClo) framework (Crozet et al., 2018) to enable community adoption and
99 compatibility with a broad range of promoters, terminators and selection markers.

100 We initially chose the Rubisco small subunit 2 (Cre02.g120150; RBCS2) as our bait
101 due to Rubisco's central role in pyrenoid LLPS (Wunder et al., 2018; Meyer et al., 2012),

102 previous data showing that exogenous Rubisco small subunit (RBCS) tagging does not affect
103 CCM functionality (Freeman Rosenzweig et al., 2017), and the availability of known interacting
104 partners for downstream validation (Mackinder et al., 2017; Meyer et al., 2020). Both APEX2
105 and TurboID were fused to the C-terminus of RBCS2 under the control of the well-established
106 PSAD promoter/terminator pair previously used for fluorescence protein tagging of a broad
107 range of pyrenoid components including RBCS2 (Mackinder et al., 2017). Constructs were
108 transformed via electroporation into the widely used CC-4533 wildtype (WT) strain (Li et al.,
109 2016, 2019). Hygromycin resistant colonies were screened for genomic insertion of the
110 RBCS2 fusion construct via PCR and then for protein expression via immunoblotting against
111 the C-terminal epitope tag (Supplemental Figures 1A and 2A). Expression lines of each
112 construct were named RBCS2-TurboID and RBCS2-APEX2.

113 We confirmed the correct localization of RBCS2-APEX2 to the pyrenoid by immuno-
114 fluorescence against the 3xFlag tag at the C-terminal of APEX2 (Supplemental Figure 1B). To
115 validate the activity of RBCS2-APEX2, we incubated RBCS2-APEX2 expressing line A2 with
116 biotin-phenol substrate which showed a subtle yet different biotinylation pattern from that of
117 the untagged WT background, especially when activated with higher H₂O₂ concentration
118 (Supplemental Figure 1C). This led us to pursue a preliminary labeling experiment followed
119 by MS of affinity-purified biotinylated proteins. Analysis of this data showed minimal
120 enrichment for Rubisco or known pyrenoid components (Supplemental Figure 1D). However,
121 when assessing APEX2 peroxidase activity using Amplex red, we detected higher peroxidase
122 activity in RBCS2-APEX2 than the untagged counterpart, suggesting the expressed fusion
123 protein is functional (Supplemental Figure 1E). We tentatively conclude that biotin-phenol has
124 limited cellular permeability resulting in poor labeling. This poor permeability agrees with
125 previous reports in *Saccharomyces cerevisiae*, where cell wall modification was required to
126 facilitate the biotin-phenol uptake (Hwang and Espenshade, 2016; Li et al., 2020). The failure
127 of APEX2 to work in *Chlamydomonas* was also seen in the parallel submission establishing
128 proximity labeling in *Chlamydomonas* (Kreis et al.).

129 In contrast, initial tests of RBCS2-TurboID showed clear increased biotinylation in
130 comparison to WT with the addition of the biotin substrate (Figure 1B). We observed a
131 pronounced band at ~50 kDa that likely corresponds to either the self-biotinylation of the
132 RBCS2-TurboID fusion protein (55 kDa) or the Rubisco large subunit (55 kDa) (Figure 1B). A
133 weak biotinylation signal can also be observed in the absence of external biotin addition,
134 indicating that naturally occurring biotin is present in the chloroplast as suggested by the
135 presence of endogenously biotinylated chloroplast proteins (Li-Beisson et al., 2015).


136

137 Figure 1. Establishment and optimization of Turbold labeling in the *Chlamydomonas*
138 chloroplast using RBCS2-Turbold lines. **A**, Schematic representation of the *Chlamydomonas*
139 pyrenoid and RBCS2-Turbold. The pyrenoid matrix is surrounded by a starch sheath and
140 traversed by pyrenoid tubules. The initial Turbold construct is targeted to the pyrenoid matrix
141 and expressed as a RBCS2-Turbold fusion protein. Upon addition of biotin substrate short-
142 lived biotin-radicals (red dots) diffuse from the Turbold tag and spontaneously biotinylate
143 neighboring pyrenoid proteins. **B**, Biotinylation signals of lines transformed with the RBCS2-
144 Turbold construct and the untagged background are assessed by immunoblotting whole-cell
145 lysate with a Streptavidin conjugate. Anti-tubulin is used as a loading control, while anti-HA is
146 used to probe for fusion protein expression. **C**, Confocal imaging of RBCS2-Turbold-mCherry.
147 Green and magenta signals represent the mCherry and chlorophyll autofluorescence
148 respectively. Scale bar 2 μm. **D-E**, RBCS2-Turbold labeling efficiency was determined by

149 labeling cells across a biotin concentration gradient (0 - 2500 μ M) for 4 hours (**D**) or across a
150 time range (0 - 16 hours) with 2.5 mM Biotin substrate (**E**).
151

152 After demonstrating TurboID activity we next assessed the localization of the fusion
153 protein by generating a RBCS2-TurboID-mCherry fusion. Confocal imaging confirmed
154 pyrenoid localization, with the mCherry signal forming a single puncta at the canonical
155 pyrenoid position where there is an absence of chlorophyll signal (Figure 1C). We next
156 optimized biotin substrate concentration and labeling time (Figure 1D and E). Cells were grown
157 photoautotrophically with air-level CO₂ supplementation to induce CCM formation that leads
158 to nearly all Rubisco being condensed into the pyrenoid (Borkhsenious et al., 1998). Cells
159 were then incubated with a range of biotin concentrations (0.1 - 2.5 mM) over different time
160 periods (1 - 16 hours). We found that biotin labeling occurs in a substrate (Figure 1D) and time
161 (Figure 1E) dependent manner. In contrast to higher plants where labeling saturation can be
162 achieved by 50 μ M biotin (Mair et al., 2019; Wurzinger et al.), labeling in *Chlamydomonas*
163 appears to saturate at a much higher biotin concentration of 2.5 mM. This is in line with work
164 published in parallel in this issue where a 1 mM concentration was used (Kreis et al.). To
165 maximize labeling we performed all later experiments using a final concentration of 2.5 mM
166 biotin. In agreement with previous reports (Zhang et al., 2019; Mair et al., 2019), we similarly
167 observed the rapid activity by TurboID which allowed labeling saturation after ~1 hour (Figure
168 1E).

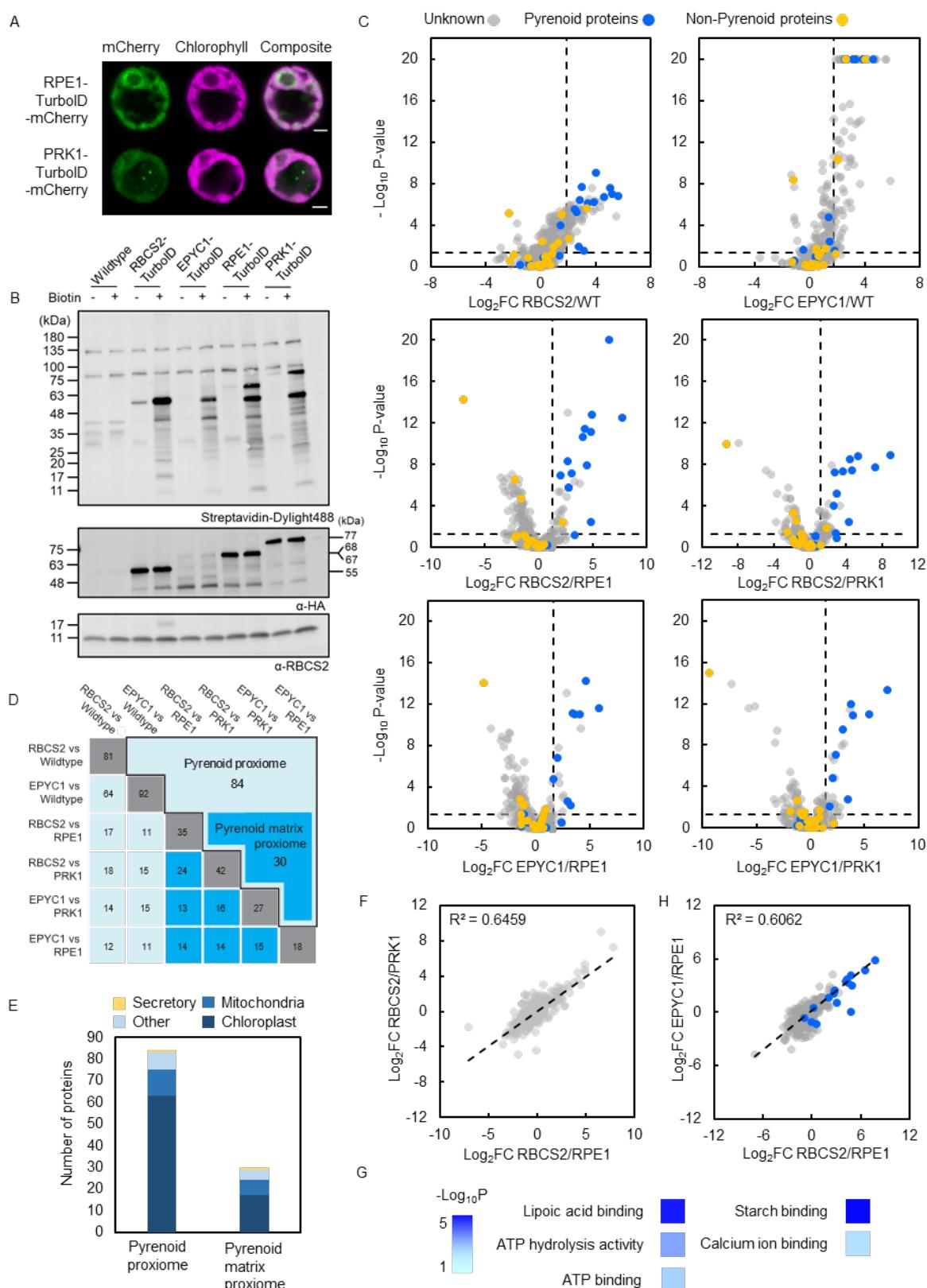
169

170

171 Figure 2. Turbolid pipeline development and optimization of labeling time. **A**, Schematic
 172 representation of the developed Turbolid pipeline. **B**, Volcano plot representing Log₂ fold
 173 change (Log₂ FC) between protein abundance in RBCS2-Turbolid and WT. Proteins are
 174 colored according to their localization: unknown (gray), pyrenoid proteins (blue) and other
 175 localizations including chloroplast stroma, pyrenoid+stroma and non-chloroplastic (yellow).
 176 The Log₂ FC threshold (dashed blue line) is calculated via the ROC analysis where only
 177 pyrenoid proteins are considered true positives. -Log₁₀ P-value was used to represent
 178 statistical significance from the one-way Anova test carried out on the difference in abundance
 179 between RBCS2-Turbolid and WT. P-value of <0.05 was used as a threshold. **C**, Benchmark

180 proteins detected from the RBCS2-TurboID sample. **D**, Tradeoff between the true positive rate
181 and false positive rates was plotted against the \log_2 FC value, a gaussian function was fitted
182 to the experimental data to determine a maximum, which is used as the enrichment threshold
183 used in (B). **E**, \log_2 FC of RBCS2-TurboID according to localization category in (C) was
184 calculated at each labeling time point. **F**, PredAlgo predicted localization and benchmark
185 protein categories of the top 10% enriched proteins from RBCS2-TurboID at each labeling
186 time.

187


188 ***RBCS2-TurboID labels Rubisco interactors and pyrenoid proteins***

189 We next established a pipeline for streptavidin affinity purification and protein identification by
190 LC-MS/MS (Figure 2A; Methods). Due to the relatively high levels of background biotinylation
191 we set out to further optimize labeling time in a pilot experiment. RBCS2-TurboID and the
192 untagged WT lines were incubated with 2.5 mM biotin across a range of incubation times (1
193 hr, 2 hr, 4 hr, 8 hr). Proteins extracted from the labeled cells were then subjected to affinity-
194 purification with Streptavidin magnetic beads. A total of 918 proteins were detected by MS
195 across all samples. Initial results showed a strong enrichment for core pyrenoid localized
196 proteins, including RBCS1, RbcL, EPYC1, SAGA2, RBMP1 and RBMP2 when compared to
197 WT cells not expressing RBCS2-TurboID (Figure 2B and Supplemental Data Set 2). Using the
198 detected proteins we manually curated four benchmark protein sets with known localizations
199 from the literature, namely: Pyrenoid specific proteins (P; 18 proteins), proteins found in the
200 pyrenoid and the stroma (PS; 10 proteins), proteins found in the stroma but excluded from the
201 pyrenoid (S; 15 proteins), and non-chloroplast proteins (NC; 13 proteins) (Figure 2C and
202 Supplemental Data Set 3). We used these benchmark proteins to calculate the enrichment
203 threshold used to assess significant pyrenoid enrichment by applying a Receiver-Operator
204 Characteristic (ROC) analysis ((Branon et al., 2018); Figure 2D). For the ROC analysis we
205 adopted a stringent threshold by considering true positive proteins as exclusively pyrenoid
206 localized (P) proteins. It should be noted that a portion of the pyrenoid localized proteins used
207 for ROC analysis do not partition within the LLPS pyrenoid matrix but localize to the starch
208 plate or the pyrenoid tubules. However, we reasoned that their close association to the
209 pyrenoid would still support their labeling by RBCS2-TurboID.

210 We then investigated protein labeling by RBCS2-TurboID at each time point for the
211 different benchmark sets (Figure 2E). We saw that pyrenoid localized proteins (P) consistently
212 showed the highest labeling across all time points. Chloroplast localized proteins (P, PS and
213 S protein sets) exhibit an increase in labeling from 1 to 4 hours while non-chloroplastic proteins
214 remain stable. Interestingly, all benchmark proteins appear to decrease in labeling at the 8
215 hour time point. This decrease is due to an increase in biotinylated protein abundance in
216 untagged WT, rather than reduced labeling by RBCS2-TurboID (Supplemental Data Set 2).

217 This data suggests that protein labeling in RBCS2-TurboID has approached full saturation
218 within 4 hours. When we compared the top 10% of enriched proteins across the four
219 timepoints, we found consistent enrichment for pyrenoid localized proteins, consistent overlap
220 in protein identity >72% and agreement in their predicted cellular localization (Figure 2F;
221 Supplemental Data Set 2).

222 Collectively, most pyrenoid localized proteins can be enriched within the first 2 hours,
223 however increasing incubation time leads to increased biotinylation, with the largest
224 differences between pyrenoid proteins and pyrenoid-excluded stromal proteins and non-
225 chloroplast proteins occurring at 4 hours. We thus opted for 4 hour incubations for future
226 experiments. We hypothesize that the rapid labeling dynamics of pyrenoid proteins within the
227 first hour and the gradual increase in labeling of pyrenoid, pyrenoid+stroma and stroma can
228 be explained by the LLPS properties of the pyrenoid where Rubisco is present in both the
229 condensed phase (pyrenoid) and dilute phase (stroma). The high concentration of Rubisco in
230 the condensed phase enables rapid labeling of proximal pyrenoid proteins. However, as
231 Rubisco is also in the dilute phase at a much lower concentration, stromal proteins are
232 gradually biotinylated over a longer time period.

233

234 Figure 3. Determining the pyrenoid proteome using proximity labeling **A**, Localization of the
 235 mCherry fusion of RPE1- and PRK1- Turboid. Green and magenta signals represent the
 236 mCherry and chlorophyll autofluorescence respectively. Scale bar: 2 μ m. **B**, Labeling activity
 237 of RBCS2-, EPYC1-, RPE1- and PRK1- Turboid lines were determined in the absence or

238 presence of 2.5 mM biotin for 4 hours. Biotinylation was visualized via immunoblotting whole-
239 cell lysate with streptavidin. Expression of RBCS2-TurboID (55 kDa), EPYC1-TurboID (68
240 kDa), RPE1-TurboID (67 kDa) and PRK1-TurboID (77 kDa) was probed by anti-HA. Anti-
241 RBCS was used as a loading control. **C**, Volcano plots representing the Log₂ Fold Change of
242 RBCS2-TurboID and EPYC1-TurboID compared to WT and stromal controls. Pyrenoid
243 proteins (blue dots) and non-pyrenoid proteins (yellow dots) were used to calculate the
244 enrichment thresholds (vertical dashed line), the values are as follows: RBCS2/WT (1.88);
245 RBCS2/RPE1 (1.31); RBCS2/PRK1 (1.14); EPYC1/WT (1.74); EPYC1/RPE1 (1.67);
246 EPYC1/PRK1 (1.42). Statistical significance for each pairwise comparison was calculated
247 using the PEAKSQ method, a significance P-value cut off of <0.05 was used (horizontal
248 dashed line). The maximum -Log₁₀ P-value computed by PEAKSQ is 20. **D**, Overlap matrix of
249 identified proteins which are above the enrichment threshold in each treatment group. Bolded
250 border highlights the overall pyrenoid proxiome while the dark blue shaded box denotes the
251 pyrenoid matrix proxiome. For both the pyrenoid proxiome and pyrenoid matrix proxiome
252 proteins had to be above the threshold in two or more comparisons. **E**, The distribution of
253 predicted localization in both the pyrenoid proxiome and pyrenoid matrix proxiome obtained
254 from PredAlgo (Tardif et al., 2012). **F**, Comparison of Log₂ Fold Change in RBCS2-TurboID
255 between the two stromal controls. **G**, Gene ontology (GO) enrichment analysis of the pyrenoid
256 matrix proxiome (n=29) using the PANTHER GO Complete Molecular Function dataset.
257 Significance as -Log₁₀ P-value calculated from Fisher's exact test is presented in a color
258 gradient. Only the GO Terms that were represented by two or more proteins are shown. **H**,
259 Comparison of protein enrichment between RBCS2-TurboID and EPYC1-TurboID. Blue dots
260 represent known pyrenoid proteins.

261
262 ***Stromal-TurboID controls enables a refined pyrenoid proteome***

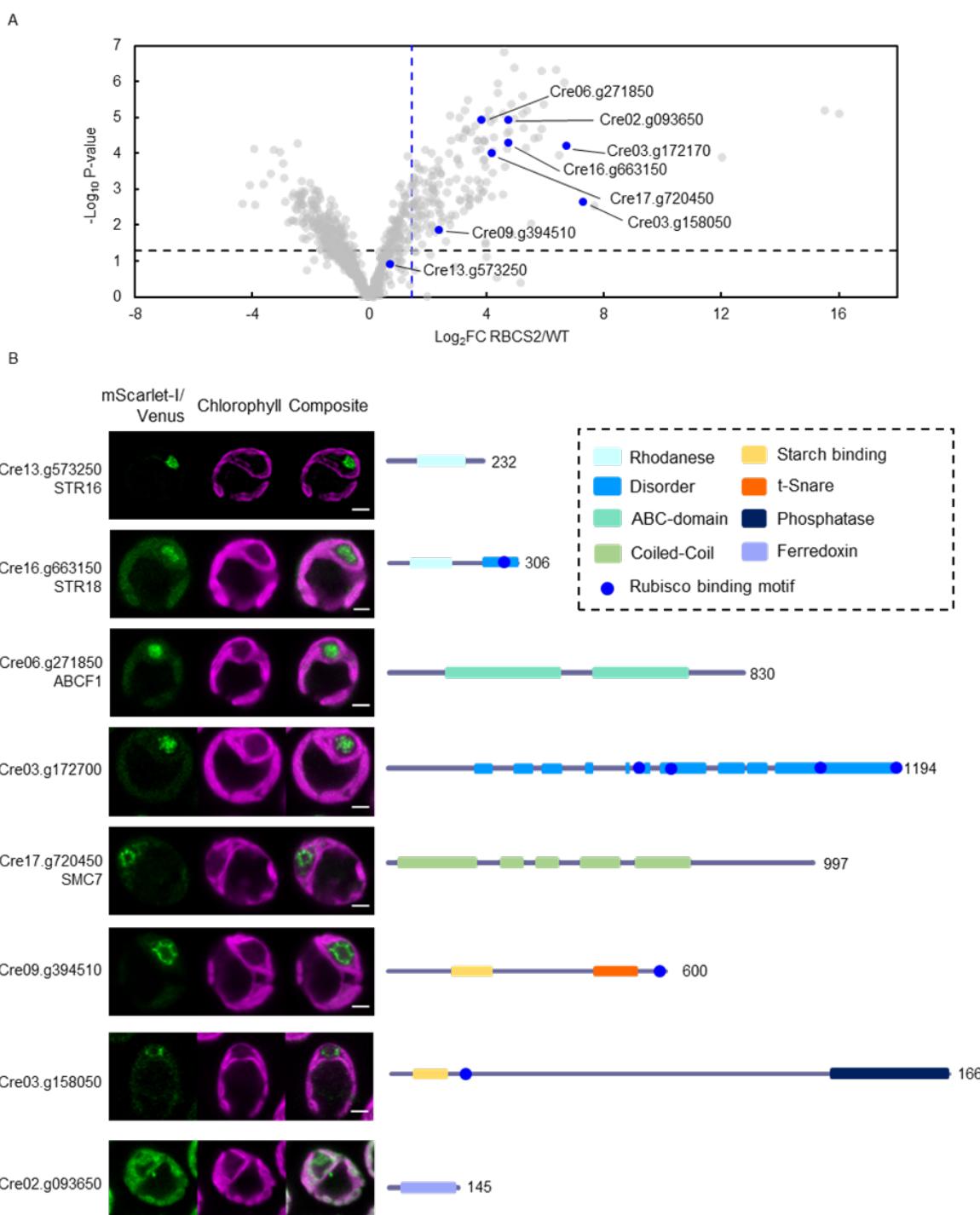
263 Although our current approach enabled enrichment of pyrenoid proteins, we set out to refine
264 the pyrenoid proteome by trying to distinguish between pyrenoid specific proteins and proteins
265 that are found within the pyrenoid and the stroma, and to remove the bias of increased labeling
266 of abundant background proteins - a typical challenge in proximity labeling studies (Han et al.,
267 2018). To achieve this we developed two chloroplast stromal controls and an additional
268 pyrenoid specific TurboID line. For stromal controls we identified two Calvin-cycle enzymes,
269 Ribulose Epimerase 1 (RPE1; Cre12.g511900) and Phosphoribulokinase 1 (PRK1,
270 Cre12.g554800), that are abundant and localize to the chloroplast stroma but are excluded
271 from the pyrenoid matrix (Figure 3A) (Küken et al., 2018). The Rubisco linker protein EPYC1
272 was chosen as an additional pyrenoid specific protein due to its abundance and functional
273 importance for LLPS of Rubisco to form the pyrenoid (Mackinder et al., 2016). These new
274 constructs; RPE1-TurboID, PRK1-TurboID, and EPYC1-TurboID; were assembled as C-
275 terminal TurboID fusions and activity assessed in line with RBCS2-TurboID (Figure 3B and
276 Supplemental Figure 2A and B).

277 To ensure the optimal conditions for identifying the pyrenoid proteome, all expression
278 lines were grown photoautotrophically in 0.04% CO₂ where nearly all of the Rubisco is

279 recruited to the pyrenoid and the CCM is fully induced (Mackinder, 2018). Labeling was
280 allowed to proceed for 4 hours and resulting biotinylated proteins were enriched with
281 streptavidin beads (see methods). Samples in triplicate were Tandem Mass Tag (TMT) labeled
282 to enable a relative-quantification comparison of protein abundance between each line. We
283 identified a total of 831 proteins derived from 5227 peptides with each protein containing at
284 least 2 unique peptides. The \log_2 Fold Change in reporter ion intensity was calculated
285 between the pyrenoid-specific TurboID lines (RBCS2-TurboID and EPYC1-TurboID) and
286 controls (WT, RPE1-TurboID and PRK1-TurboID). We then determined the enrichment of
287 pyrenoid proteins in each comparison. In agreement with our previous pilot experiment, we
288 found pyrenoid proteins are predominantly enriched by the pyrenoid-specific TurboID lines
289 across all comparison groups (Figure 3C; blue dots).

290 To calculate the enrichment threshold used to assess significant pyrenoid enrichment,
291 we applied the ROC analysis as in Figure 2C and D and a significance threshold of p-value
292 <0.05 was calculated by the PEAKSQ significance test (Cox and Mann, 2008). We applied
293 this analysis across all 6 of the comparison groupings (Figure 3C). In total this yielded 141
294 unique proteins across the 6 groups (Supplemental Data Set 5). To further filter out possible
295 non-pyrenoid localized proteins, only identified proteins which are consistently above the
296 enrichment threshold in at least 2 of the comparison groupings were considered true pyrenoid
297 components. This leaves a final 84 unique proteins. We termed this the “pyrenoid proxiome”
298 (Figure 3D, black bordered box). The pyrenoid proxiome contains 14 out of 19 known pyrenoid
299 components detected in our dataset and is highly enriched for proteins that are predicted to
300 be targeted to the chloroplast (Figure 3E).

301 We wondered whether comparison against stromal control lines improves distinction
302 between pyrenoid proteins and stromal proteins relative to a WT control as hypothesized. We
303 first tested if there were any major differences between our two stromal controls. Plotting the
304 \log_2 Fold Change of RBCS2-TurboID/RPE1-TurboID vs RBCS2-TurboID/PRK1-TurboID
305 showed a strong correlation ($R^2=0.6459$; Figure 3F), suggesting that both controls give similar
306 results and that their similar stromal localization is the main driver of protein labeling. We next
307 determined the difference between mean \log_2 Fold Change of known pyrenoid and stromal
308 proteins in each comparison pair (ie: RBCS2-TurboID vs WT or RBCS2-TurboID vs RPE1-
309 TurboID). Indeed, the difference between mean \log_2 fold change of pyrenoid and stromal
310 proteins is most evident in the stromal control comparisons (Supplemental Figure 3). This is
311 further supported by our observation that proteins peripheral to the pyrenoid Rubisco-EPYC1
312 matrix but not in it, such as LCIB, LCIC, STA2 and SBE3 (Yamano et al., 2010; Mackinder et
313 al., 2017), are not enriched when stromal-specific TurboID lines are used as controls in place
314 of WT. Our data here indicates that using the stromal controls gives a robust proteome of the


315 Rubisco matrix. Taking proteins that are only seen above the threshold in two or more
316 comparisons with stromal controls gives us 30 proteins (Supplemental Data Set 6). We named
317 this the “pyrenoid matrix proxiome” (Figure 3D).

318 GO term enrichment analysis of the pyrenoid matrix proxiome indicated that proteins
319 could be functionally grouped into a small number of processes (Figure 3G). This includes
320 Lipoic acid binding which represents sulfur related compounds (GO: GO:0031405),
321 carbohydrate related processes like Alpha-amylase activity and starch binding (GO:
322 GO:0004556 and GO:2001070 respectively) and ATP-binding groups (GO:0005524). We
323 found multiple proteins in the pyrenoid matrix proteome, notably Cre06.g269650,
324 Cre03.g158050 and SAGA1 that contain a starch binding domain alongside a variety of
325 functional domains. This argues that the matrix-starch interface might act as a specialized site
326 for specific structural or biological processes. A broader analysis of the pyrenoid proxiome
327 also reveals that multiple proteins contain iron-sulfur binding domains (Cre05.g240850,
328 Cre13.g592200 and Cre02.g093650) and have RNA-related functions (Cre10.g440050,
329 Cre10.g435800, Cre09.g393358, Cre13.g578650). Tentatively, enrichment of these proteins
330 in the pyrenoid proxiome suggests that the pyrenoid might take on additional roles to carbon
331 fixation.

332

333 **RBCS-TurboID and EPYC1-TurboID result in comparable pyrenoid proteomes**

334 Rubisco and EPYC1 are the two core proteins of the pyrenoid, interact with each other and
335 are both essential for phase separation and pyrenoid formation. However, an APMS study
336 using both RBCS2 (and RBCS1) and EPYC1 as baits identified multiple distinct interacting
337 partners as well as a shared set of interactors (Mackinder et al., 2017). Since the majority of
338 pyrenoid proteins we have used as a benchmark in this study were previously characterized
339 due to their interactions with the RBCS, it is difficult to ascertain whether the use of RBCS2-
340 TurboID has preferentially labeled Rubisco interactors or the more broader pyrenoid
341 proteome. We reasoned that by comparing proteins obtained from RBCS2-TurboID against
342 that of EPYC1-TurboID we might be able to provide the distinction and more broadly determine
343 if proximity labeling of proteins in a dynamic molecular condensate preferentially labels the
344 proteome of the condensate vs direct interactors of the bait. A comparison of EPYC1-TurboID
345 and RBCS2-TurboID's respective fold change against the stromal controls showed a strong
346 correlation ($R^2 = 0.6062$), this was considerably strengthened when we focus on known
347 pyrenoid proteins ($R^2 = 0.7054$; Figure 3H, blue dots). In conclusion, irrespective of bait, using
348 a mobile protein of the phase separated pyrenoid gives a high-confidence proteome of a
349 biomolecular condensate.

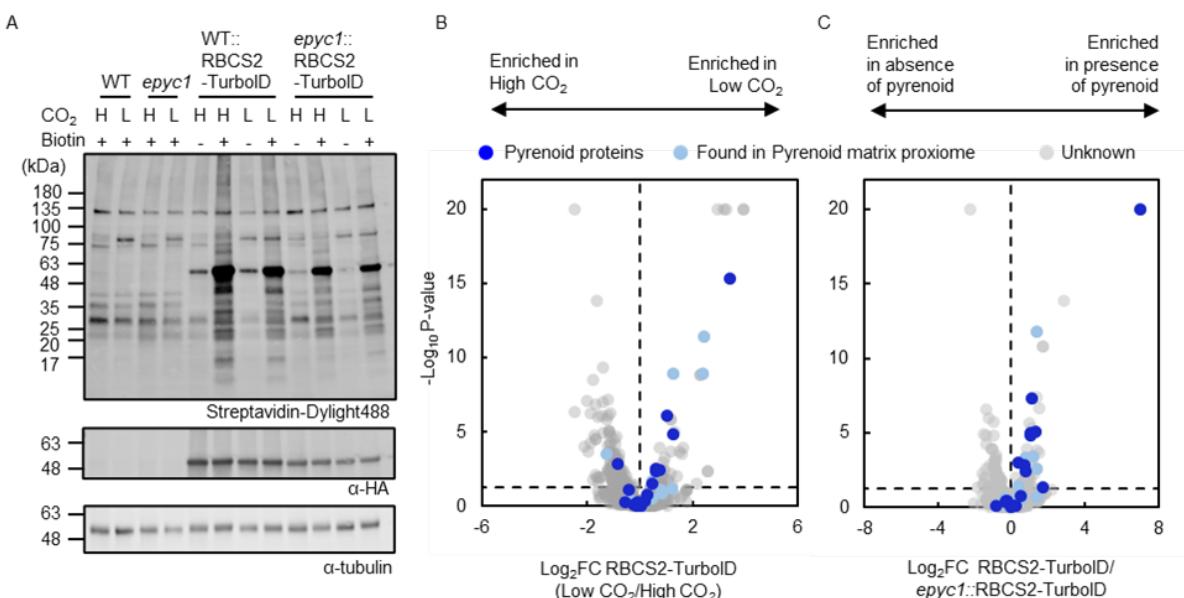
351 Figure 4. Proximity labeling identifies novel pyrenoid proteins. **A**, The Volcano plot in Figure
 352 2B was reproduced here to highlight the proteins that were chosen for localization (blue dots).
 353 **B**, Confocal imaging of the chosen proteins. Proteins were expressed as Venus or mScarlet-
 354 I fusions using their native promoter sequence. Green and magenta signals denote the
 355 fluorescence channel and autofluorescence from chlorophyll. Scale bar: 2 μ m. Schematic
 356 overview of structural prediction from PSI-pred and conserved domains are highlighted next
 357 to the confocal images.

358

359

360

361 **Proximity labeling identified novel pyrenoid proteins**


362 To validate our pyrenoid proteome, 8 previously unlocalized proteins were selected from
363 preliminary data and our initial RBCS2-TurboID vs WT comparison for fluorescence tagging
364 (Figure 4A). Target genes were cloned in frame with a Venus or mScarlet-I fluorescence
365 protein by recombineering that retains their native promoter (Emrich-Mills et al., 2021), then
366 transformed into WT *Chlamydomonas*. Seven of the tagged proteins showed a pyrenoid only
367 localization with a broad range of sub-pyrenoid localization patterns shown (Figure 4B).

368 STR16 (Cre13.g573250), STR18 (Cre16.g663150) and ABCF1 (Cre06.g271850)
369 showed a localization pattern consistent to the pyrenoid matrix, which is supported by their
370 lack of a predicted transmembrane or starch binding domain. STR16 and STR18 contain a
371 catalytically active rhodanese (thiosulfate sulfurtransferase) domain as opposed to CAS1 and
372 RBMP2 that have previously been localized to pyrenoid but lack a critical cysteine in their
373 Rhodanese domains and are thus presumably catalytically inactive. Rhodanese domains have
374 been implicated in an array of functions including disulfide bond formation (Chng et al., 2012)
375 and iron-sulfur (Fe-S) cluster biosynthesis (Bonomi et al., 1977). The latter is particularly
376 interesting as multiple proteins in the pyrenoid proxome contain an iron-sulfur cluster domain
377 (Figure 3G). ABCF1 (Cre06.g271850) is predicted to be an ATP binding cassette family F like
378 protein (ABCF) which has been shown to regulate protein translation via their binding to
379 ribosomes (Boël et al., 2014). The ABCF annotation is also supported by AlphaFold modeling
380 (Supplemental Figure 4, (Jumper et al., 2021)), which suggests ABCF1 contains the canonical
381 arm and linker domain. Cre03.g172700 forms distinct puncta within the pyrenoid matrix unlike
382 the more homogenous signal observed for matrix proteins such as RBCS2. This sub-pyrenoid
383 localization suggests that it may be associated with the pyrenoid tubules. While PSI-pred
384 structural prediction suggests Cre03.g172700 is predominantly disordered, AlphaFold
385 prediction suggests that its latter half is composed of a central long alpha-helix surrounded by
386 multiple shorter helices interspaced with disordered sequences that in total contain 4 RBMs
387 (Supplemental Figure 4). Unlike the other proteins which localize to the pyrenoid matrix, SMC7
388 (Cre17.g720450), Cre09.g394510 and Cre03.g158050 are found at the edge of the pyrenoid
389 matrix, with SMC7 and Cre03.g158050 forming discrete puncta surrounding the matrix while
390 Cre09.g394510 appears to line the starch-matrix interface. These proteins show a similar
391 localization pattern to SAGA1 which occupies the starch-matrix-tubule interface. SMC7 is
392 predicted to be a structural maintenance of chromosomes (SMC) protein. However, SMC7
393 lacks the signature ATP-binding and hinge domain important for its function in chromatin
394 condensation (Harvey et al., 2002), and instead only contains the conserved coiled-coil
395 domain. This structure arrangement mirrors that of SAGA1 and SAGA2 (Itakura et al., 2019)
396 that were also annotated with a SMC prediction. Both Cre09.g394510 and Cre03.g158050

397 contain a CBM20 starch binding domain. Cre09.g394510 possess a t-Snare domain at its C-
 398 terminal, which is known to mediate vesicle fusion processes (Han et al., 2017), suggesting
 399 that Cre09.g394510 could be involved in membrane remodeling of the pyrenoid tubules as
 400 they are structurally reorganized from thylakoid sheets to pyrenoid tubules as they traverse
 401 gaps within the starch sheath (Engel et al., 2015). On the other hand, the C-terminal region of
 402 Cre03.g158050 contains a protein phosphatase domain (PPM-type phosphatase). While the
 403 phosphorylation of EPYC1 in low CO₂ conditions has been proposed to regulate binding to
 404 Rubisco (Turkina et al., 2006; Barrett et al., 2021), such phosphorylation is not necessary for
 405 EPYC1 to phase separate Rubisco (Wunder et al., 2018). The localization of Cre03.g158050
 406 specifically to the pyrenoid periphery suggests that there may be a sub-pyrenoid spatial control
 407 of pyrenoid protein phosphorylation state.

408 Together, the discovery of novel pyrenoid components with diverse localization and
 409 functional annotations provides us with additional candidates which could have a role in
 410 pyrenoid formation.

411

412

413 Figure 5. Proximity labeling suggests the pyrenoid proteome has a subtle response to changes
 414 in CO₂ and phase separation. **A**, Protein labeling of RBCS2-TurboID expressed in WT and
 415 epyc1 as well as their corresponding untagged background were tested under different CO₂
 416 conditions. Respective cell lines were grown photoautotrophically and supplemented with 3%
 417 CO₂ (H) or 0.04% CO₂ (L). Harvested cells were incubated with 2.5 mM biotin for 4 hours.
 418 Labeling was visualized by immunoblotting the whole cell lysate against streptavidin. Anti-HA
 419 was used to probe for RBCS2-TurboID expression and anti-tubulin was used as a loading
 420 control. **B-C**, Volcano plots representing the Log₂ Fold Change of RBCS2-TurboID in low CO₂
 421 vs high CO₂ (**B**); or RBCS2-TurboID expressed in WT background compared to RBCS2-
 422 TurboID expressed in the epyc1 mutant (**C**). Known pyrenoid proteins and the pyrenoid matrix

423 proxiome are colored dark blue and light blue respectively, while unknowns are colored in
424 gray. Statistical significance for each pairwise comparison was calculated using the PEAKSQ
425 method, a significance cut off for P-value <0.05 was used (horizontal dashed line).

426

427 **Changes in the pyrenoid proteome in response to CO₂**

428 At high CO₂, when a CCM is not required the pyrenoid partially dissolves, with ~50% of
429 Rubisco leaving the pyrenoid into the surrounding stroma (Borkhsenius et al., 1998). In
430 addition, the starch sheath breaks down and stromal starch increases (Kuchitsu et al., 1988).
431 However, at a transcriptional and protein abundance level, matrix pyrenoid proteins show a
432 broad range of responses (Fang et al., 2012; Brueggeman et al., 2012; Arias et al., 2020). To
433 explore if the pyrenoid composition changes in response to CO₂ we compared RBCS2-
434 Turbold lines grown at both high and low CO₂ (Figure 5A and B; Supplemental Data Set 7).
435 A large number of previously known pyrenoid proteins and proteins in our pyrenoid matrix
436 proxiome were not preferentially enriched indicating that the vast majority of the pyrenoid
437 proteome is not CO₂ responsive. However, a small number of proteins showed a greater than
438 2-fold change, with 20.5% (7/34) enriched at low CO₂ and 2.9% (1/34) enriched at high CO₂.
439 Three of the low CO₂ enriched proteins, SAGA1, LCI9 and AMA3, are associated with starch
440 binding/metabolism. LCI9 has previously been localized to the starch plate interfaces and
441 proposed to play a role in starch breakdown (Mackinder et al., 2017). AMA3 is an alpha
442 amylase also involved in starch hydrolysis (Gargouri et al., 2015) and mutants in SAGA1 have
443 a severe starch structural defect (Itakura et al., 2019). Collectively, this supports the major
444 remodeling of starch to form the starch sheath under low CO₂ conditions.

445

446 **Possible role of phase separation in recruitment to the pyrenoid matrix**

447 The deletion of EPYC1 leads to abolishment of the pyrenoid and CCM due to the failure to
448 condense Rubisco into the pyrenoid (Mackinder et al., 2016). Confident that the pyrenoid
449 matrix proxiome is labeled by RBCS2-Turbold we explored how labeling changed upon
450 condensation of Rubisco into the pyrenoid. To achieve this we compared RBCS2-Turbold
451 expressed to similar levels in both WT and the *epyc1* mutant (Figure 5A). A large number of
452 known pyrenoid proteins and pyrenoid matrix proxiome proteins are enriched in WT vs *epyc1*
453 (Figure 5C; Supplemental Data Set 7), indicating that phase separation either results in more
454 efficient labeling or that phase separation is required for close proximity to Rubisco. A subset
455 of proteins showed very little enrichment upon Rubisco condensation, suggesting that these
456 proteins may directly interact with Rubisco independent of pyrenoid formation. Unexpectedly,
457 many Rubisco binding motif containing proteins require pyrenoid formation to be enriched (top
458 right quadrant of Figure 5C) indicating that the weak binding affinity (Kd ~3 mM; (He et al.,

459 2020)) of RBMs may not be sufficient to allow Rubisco-RBM complex formation prior to
460 Rubisco condensation by EPYC1.

461
462 **Discussion**

463 We have established TurboID-based proximity labeling in the chloroplast of the model green
464 alga *Chlamydomonas reinhardtii*. Proximity labeling has proven powerful in unraveling a broad
465 range of cellular processes and suborganelle composition in a diverse range of organisms
466 including plants (Mair and Bergmann, 2022; Zhang et al., 2019), diatoms (Turnšek et al., 2021)
467 and cyanobacteria (Dahlgren et al., 2021). However, until now it has not been established in
468 plastids or *Chlamydomonas*. The parallel manuscripts in this issue give a snapshot of the
469 diversity of possible applications of TurboID in both plant (Wurzinger et al.) and algal plastids
470 (our study and Kreis et al.). The independently-determined similar biotin concentrations and
471 incubation time for labeling in the *Chlamydomonas* chloroplast by our work and the work by
472 Kreis et al. highlight the reproducibility and robustness of the method.

473 Once established we applied TurboID to determine the protein composition of the
474 phase-separated pyrenoid. Our data has identified a “pyrenoid proxiome” containing 84
475 proteins. A large number of previously localized pyrenoid proteins (67%) from the literature
476 are seen in our pyrenoid proxiome. However, it does miss several previously classified
477 pyrenoid proteins. A deeper analysis of these proteins indicate that they are within specific
478 pyrenoid sub-domains that matrix generated biotin radicals potentially fail to penetrate due to
479 either spatial or physical constraints. For example, CAH3, a pyrenoid tubule lumen protein is
480 not identified in our proxiome most likely due to the limited penetration of biotin radicals across
481 membranes (Rhee et al., 2013).

482 By including robust stromal controls of proteins that are adjacent to the pyrenoid but
483 do not partition into the matrix we could determine the “pyrenoid matrix proxiome” containing
484 30 proteins. This protein set excluded multiple proteins classed as pyrenoid proteins that are
485 found at the pyrenoid periphery but do not partition into the matrix. These include LC1B, LCI9,
486 LCIC, SBE3. This data along with the identification of nearly all known matrix proteins and
487 proteins with RBMs that are at the matrix interface (i.e. SAGA1, BST4, RBMP2) gives us high
488 confidence in this dataset.

489 GO-term analysis of the pyrenoid matrix proxiome and a broader analysis of the
490 pyrenoid proxiome shows the enrichment of proteins in a small number of biochemical
491 processes suggesting that the pyrenoid plays additional roles to CO₂ concentration. Three
492 groups that stood out were RNA binding/translation proteins, Fe-S containing proteins and
493 starch binding proteins. Biomolecular condensates are regularly associated with RNA
494 sequestration and processing (Banani et al., 2017). This association allows cells to respond

495 in a timely manner in face of cellular stress. In *Chlamydomonas* photosynthetic machinery is
496 translated at a specialized position adjacent to the pyrenoid called the T-zone (or Translation
497 zone; (Sun et al., 2019)). Under light and oxidative stress, the core photosystem II component
498 PsbA mRNA becomes enriched within the pyrenoid matrix (Uniacke and Zerges, 2008; Zhan
499 et al., 2015) which suggests the pyrenoid recruits RNA as a stress response. However, the
500 molecular basis and function of this mRNA sequestration remains unclear. In this study,
501 multiple RNA-associated proteins are found within the pyrenoid proxome (Cre10.g440050,
502 Cre10.g435800, Cre09.g393358, Cre13.g578650). We have also localized a novel ribosome-
503 associated protein ABCF1 to the pyrenoid. An *E.coli* homologue of ABCF1, EttA, was
504 demonstrated to prevent translation by its binding to 70s ribosomes in a ATP/ADP ratio
505 dependent manner (Boël et al., 2014). The localization of ABCF1 to the pyrenoid further
506 supports a role of the pyrenoid in RNA metabolism where it could either act to sequester
507 chloroplastic ribosomes in the pyrenoid or partition ABCF1 away from chloroplastic ribosomes
508 under certain environmental conditions.

509 Fe-S protein assembly and activity is typically sensitive to molecular O₂ (Boyd et al.,
510 2014). It was intriguing to see that the pyrenoid was enriched for both Fe-S assembly and Fe-
511 S containing proteins. A proposed, but unconfirmed, function of the pyrenoid to enhance CO₂
512 fixation is to minimize the presence of O₂ to increase the CO₂:O₂ ratio at the active site of
513 Rubisco. A reduced O₂ environment could also favor other O₂ sensitive biological processes.
514 We found that the rhodanese domain containing proteins STR16 and STR18 were localized
515 into the pyrenoid, with rhodanese domains linked to the biogenesis of Fe-S clusters (Rydz et
516 al., 2021). Pyrenoid localization might allow them to be shielded from the oxygenic
517 environment outside the pyrenoid matrix, allowing these oxygen sensitive processes to be
518 carried out. Alternatively, rhodanese also has been suggested to participate in reactive oxygen
519 species (ROS) scavenging via the production of reactive sulfur species (Wang et al., 2021).
520 Since ROS has also been found to drive pyrenoid formation (Neofotis et al., 2021), the
521 presence of rhodanese domain containing proteins in the pyrenoid suggests that the pyrenoid
522 itself is involved with ROS metabolism or redox signaling.

523 The pyrenoid starch sheath is proposed to act as a diffusion barrier which limits CO₂
524 diffusion away from the pyrenoid matrix. Recent evidence has suggested that this matrix-
525 starch association is critical for the organization of many pyrenoid components. The deletion
526 of a starch-binding protein SAGA1 results in the formation of multiple pyrenoids with altered
527 starch sheath and pyrenoid tubule morphology (Itakura et al., 2019). And the knock-out of
528 Isoamylase 1 (ISA1) that abolishes the pyrenoid starch sheath results in the CCM-essential
529 carbonic anhydrase LCIB to mis-localize as an aggregate at the basal region of pyrenoid
530 (Toyokawa et al., 2020), in contrast to its typical pyrenoid periphery localization. Together,
531 starch binding proteins show crucial importance to the functioning of the pyrenoid in CCM-

532 related processes. In this work, two additional proteins (Cre09.g394510, Cre03.g158050) that
533 contain a starch binding CBM20 domain have been localized to the pyrenoid. Both proteins
534 possess a second functional domain, with this domain arrangement also seen in SAGA1 and
535 LCI9 which incidentally share a similar localization pattern (Mackinder et al., 2017).
536 Investigating the role of these proteins in pyrenoid structural organization and function could
537 provide novel insights into pyrenoid assembly needed for future engineering of a functional
538 pyrenoid into higher plants (Adler et al., 2022).

539

540 Once we had determined a high-confidence pyrenoid proteome we explored the change in the
541 proxiome of Rubisco at both low and high CO₂ and with and without phase separation.
542 Surprisingly most proteins appear to be present in the pyrenoid under both low and high CO₂
543 conditions indicating that the core proteome of the pyrenoid is relatively stable. However, a
544 subset involved in starch metabolism are predominantly enriched under low CO₂ when starch
545 needs to be remodeled to form a CO₂ leakage barrier. By using the *epyc1* mutant we explored
546 how labeling by RBCS2-TurboID changed upon Rubisco condensation into the pyrenoid. Most
547 pyrenoid matrix proxiome components were enriched by Rubisco condensation indicating that
548 they are brought into closer proximity upon pyrenoid formation. A subset however showed
549 very little change suggesting that they may already be interacting with Rubisco independent
550 of pyrenoid assembly. For both the high vs low CO₂ and WT vs *epyc1* comparisons it should
551 be noted that the 4 hour incubation time of labeled strains could have led to translational
552 changes resulting in compounding data between absolute protein amount and partitioning into
553 the pyrenoid. In addition, the partial dissolution of the pyrenoid during high CO₂ also results in
554 a higher proportion of RBCS2-TurboID in the dilute phase. This in turn potentially increases
555 labeling of proteins which have yet partitioned into the pyrenoid. In the future shorter labeling
556 times could help further refine the pyrenoid proteome under varying conditions.

557

558 Proximity labeling has been underutilized for understanding phase separated proteomes that
559 are highly dynamic and thus are challenging to purify (Hubstenberger et al., 2017). The
560 presence and exchange of bait proteins between the condensed phase and dilute phase might
561 result in reduced specificity of RBCS2/EPYC1 -TurboID over time and labeling outside of the
562 condensate. To counteract this, we found that the use of abundant soluble controls that are
563 excluded from the pyrenoid enabled a highly refined pyrenoid matrix proteome to be
564 determined. Future experiments using proximity labeling, specifically to determine the
565 proteomes of biomolecular condensates, should include carefully chosen controls.

566

567 To make TurboID easily accessible for other labs using *Chlamydomonas* we based our cloning
568 on the MoClo golden gate cloning framework that enables TurboID to be used with a broad

569 range of parts (Crozet et al., 2018) and easily fused to proteins that are already within this
570 framework. To enable easy adoption of this powerful method all developed vectors and lines
571 are deposited at the *Chlamydomonas* Resource Centre.

572

573 **Methods**

574 **Construction of APEX2/Turbold expression vector in Chlamydomonas**

575 Construction of APEX2/Turbold-expression cassettes in *Chlamydomonas* is designed using
576 the modular cloning system *Chlamydomonas* MoClo toolkit (Crozet et al., 2018). Golden Gate
577 compatible syntaxes were added to synthesized parts encoding the APEX2/Turbold enzyme
578 and target genes (RBCS2/EPYC1), or via PCR using CC-4533 genomic DNA for RPE1/PRK1.
579 Due to the low complexity and high repeat nature of EPYC1, the EPYC1 coding sequence
580 was synthesized in 4 parts as a Level -1 construct, while RBCS2 was synthesized as two parts
581 to avoid a detected sequence repeat. The APEX2 and Turbold tags (Branon et al., 2018;
582 Ganapathy et al., 2018) were codon optimized for *Chlamydomonas* (Nakamura et al., 2000)
583 with the RBCS2i2 (Cre02.g120150) and LHCMB1i2 (Cre01.g066917) introns inserted at
584 approximately 500 bp increments to improve protein expression (Baier et al., 2018). The
585 enzyme tags were similarly synthesized as Level -1 parts. Together, the Level -1 and PCR
586 amplified target gene, APEX2/Turbold tag and a small flexible linker (GSGSTSGSGS) were
587 assembled to a Level 0 product occupying the B3-B4 MoClo position using the pUAP1
588 backbone such that the target genes are expressed with the enzyme tag at its C-terminal that
589 is bridged by a small flexible linker. The Level 1 cassette was then assembled using the target
590 gene-Turbold/APEX2 fusion part, the PSAD Promoter/Terminator pair and either a C-terminal
591 tandem HA/Flag tag epitope for labeling experiments or a mCherry tag for localization. The
592 resultant Level 2 expression module consists of target gene-Turbold fusion cassette and an
593 antibiotic resistance cassette for selection. To enable accessible use of Turbold-based
594 proximity labeling in the golden gate cloning pipeline, the identical Turbold coding sequence
595 with the flexible linker was also cloned into a Level 0 part occupying the B4 MoClo position.
596 Sequences for all developed vectors are in Supplemental Data Set 1. All vectors and strains
597 will be deposited at the *Chlamydomonas* Resource Centre prior to publication.

598 **Chlamydomonas growth and transformation**

599 *Chlamydomonas* cultures were maintained on Tris-phosphate acetate (TAP) medium with
600 revised Hunter's trace element (Kropat et al., 2011) unless mentioned otherwise. Assembled
601 plasmids were linearised with I-SceI (for fluorescent tagging plasmids) or Bsal (for proximity
602 labeling plasmids) and transformed into *Chlamydomonas* via electroporation according to
603 (Mackinder et al., 2017).

604 **Protein extraction and Immunoblotting**

605 For immunoblotting, photoautotrophically grown cells at mid-log phase were harvested by
606 centrifugation x17,900g for 5 minutes at 4°C. Cell pellets were resuspended in lysis buffer (25
607 mM Tris-HCl pH7.4, 500 mM NaCl, 1 mM DTT, 5 mM MgCl₂, 0.1 mM PMSF, 1x EDTA-free
608 protease inhibitor (Roche), 0.1% SDS, 0.5% Deoxycholic Acid, 1% Triton-X100) before snap-
609 freezing in liquid nitrogen. The cell suspensions were lysed by 5 freeze/thaw cycles.
610 Supernatants were used as protein extract after centrifugation x17,900g for 10 minutes at 4°C
611 and then stored at -70°C. For immunoblotting, boiled protein samples were resolved by SDS-
612 PAGE and transferred to a PVDF membrane via a semi-dry transfer. Membrane was blocked
613 with 3% BSA in Tris Buffered Saline with 0.1% Tween 20 (TBST) and probed with antibodies
614 accordingly. Antibodies are diluted in TBST as follows: Streptavidin Dylight-488 conjugate
615 (1:4000, Fisher scientific #21832); anti-HA (1:1000, Fisher scientific 26183); anti-Flag (1:1000,
616 Sigma #F1804); anti-Tubulin (1:2000, Sigma #T6074).

617 **Biotin Labeling and Streptavidin-affinity purification**

618 All three TurboID-labeling experiments were performed similarly. The starter culture of
619 TurboID expression lines and wildtype were grown to mid-log phase in TAP medium. They
620 were used to inoculate 400 mL of Tris-Phosphate (TP) medium that was supplied with air-level
621 CO₂ (0.04% CO₂) or elevated CO₂ (3% CO₂) if indicated. Cells were harvested by
622 centrifugation x1,500g for 5 minutes at room temperature. They were then resuspended in
623 fresh TP medium in a 6-well cell culture plate to an OD₇₅₀ of 2.5. 100 mM Biotin stock in DMSO
624 was added to the cell suspension to a final concentration of 2.5 mM to initiate the labeling
625 reaction. The biotin labeling was allowed to proceed for 1-8 hours in the pilot experiment or
626 for 4 hours in the later experiments on an orbital shaker. Biotin labeled cells were harvested
627 by centrifugation x21,300g, 2 minutes at 4°C after rinsing 3 times with ice-cold TP medium.
628 Cell pellets were snap-frozen in liquid nitrogen and stored at -70°C until Streptavidin affinity
629 purification.

630 For APEX2 labeling, the RBCS2-APEX2 expression cells were grown and harvested to an
631 OD₇₅₀ of 2.5 as mentioned above. Biotin-phenol at a final concentration of 2.5 mM was added
632 to the harvested cell suspension from a 250 mM Biotin-Phenol stock in DMSO. Biotin-Phenol
633 incubation was performed for 2 hours on an orbital shaker. The H₂O₂ activator at 2 mM
634 concentration was spiked into the suspension to initiate the biotin labeling for 2 minutes.
635 Reaction was then quenched by resuspending cell suspension in an ice cold quencher solution
636 (10 mM sodium ascorbate, 5 mM Trolox and 10 mM sodium azide in PBS, pH 7.4) and pelleted
637 by centrifugation x21,300g for 1 minute at 4°C and stored at -70°C until Streptavidin affinity
638 purification.

639 Protein extraction was carried out as described above. Prior to streptavidin affinity pulldown
640 free biotin was removed from protein samples using a Zeba™ Spin Desalting column (#89891,
641 ThermoFisher). To determine their protein concentration, a small aliquot (50 μ L) of the desalted
642 proteins were diluted by 10 fold in water and their abundance was measured via Pierce BCA
643 protein assay kit (#23225, ThermoFisher) as per manufacturer's instructions. For Streptavidin
644 affinity purification, a total of 1.75 mg of protein was used with 50 μ L of Pierce™ Streptavidin
645 Magnetic Beads (88816; ThermoFisher) equilibrated with lysis buffer. The bead suspension
646 was incubated at 4°C overnight on a rotor wheel. Beads were then washed twice with lysis
647 buffer for 5 minutes; once with 1 M KCl for 2 minutes; once with 0.1 M NaCO₃ for 1 minute;
648 once with 4 M Urea in 50 mM TEAB (Triethylammonium bicarbonate, pH 8.5) for 1 minute;
649 once with 6 M Urea in 50 mM TEAB for 1 minute and twice with 50 mM TEAB buffer for 5
650 minutes. Washed beads were frozen at -70°C until submitted for mass spectrometry.

651 **LC-MS/MS and analysis of APEX2 and TurboID pilot studies**

652 *APEX2 digestion:* For the APEX2 experiments, Streptavidin beads were eluted by boiling with
653 a 2x Laemmli loading buffer (Biorad, 161-0737) supplemented with 20 mM DTT and 2 mM
654 Biotin. The eluate was then ran on a 4-15% Tris-Glycine gel (Biorad, #4561084) for 30 minutes
655 on 50V. Gel slices were then fixed according to (Mackinder et al., 2017). In-gel tryptic
656 digestion was performed after reduction with 10 mM dithioerythritol and 50 mM S-
657 carbamidomethylation with iodoacetamide. Gel pieces were washed two times with aqueous
658 50% (v:v) acetonitrile containing 25 mM ammonium bicarbonate, then once with acetonitrile
659 and dried in a vacuum concentrator for 20 min. A 500 ng aliquot of sequencing-grade trypsin
660 (Promega) was added prior to incubation at 37°C for 16 h.

661 *TurboID Digestion:* For the TurboID pilot experiment, on-bead digestion was performed after
662 reduction with 10 mM tris(2-carboxyethyl)phosphine and alkylation with 10 mM Iodoacetamide
663 in 50 mM triethylammonium bicarbonate TEAB containing 0.01% ProteaseMAX surfactant
664 (Promega). A 500 ng aliquot of sequencing-grade trypsin (Promega) was added prior to
665 incubation at 37°C for 16 h.

666 *LC-MS Acquisition APEX2 and TurboID:* Resulting peptides were re-suspended in aqueous
667 0.1% trifluoroacetic acid (v/v) then loaded onto an mClass nanoflow UPLC system (Waters)
668 equipped with a nanoEaze M/Z Symmetry 100 Å C₁₈, 5 μ m trap column (180 μ m x 20 mm,
669 Waters) and a PepMap, 2 μ m, 100 Å, C₁₈ EasyNano nanocapillary column (75 mm x 500 mm,
670 Thermo). The trap wash solvent was aqueous 0.05% (v:v) trifluoroacetic acid and the trapping
671 flow rate was 15 μ L/min. The trap was washed for 5 min before switching flow to the capillary
672 column. Separation used gradient elution of two solvents: solvent A, aqueous 0.1% (v:v)

673 formic acid; solvent B, acetonitrile containing 0.1% (v:v) formic acid. The flow rate for the
674 capillary column was 300 nL/min and the column temperature was 40°C. The linear multi-step
675 gradient profile was: 3-10% B over 7 mins, 10-35% B over 80 mins, 35-99% B over 10 mins
676 and then proceeded to wash with 99% solvent B for 8 min. The column was returned to initial
677 conditions and re-equilibrated for 15 min before subsequent injections. The nanoLC system
678 was interfaced with an Orbitrap Fusion Tribrid mass spectrometer (Thermo) with an EasyNano
679 ionization source (Thermo). Positive ESI-MS and MS² spectra were acquired using Xcalibur
680 software (version 4.0, Thermo). Instrument source settings were: ion spray voltage, 1,900 V;
681 sweep gas, 0 Arb; ion transfer tube temperature; 275°C. MS¹ spectra were acquired in the
682 Orbitrap with: 120,000 resolution, scan range: *m/z* 375-1,500; AGC target, 4e⁵; max fill time,
683 100 ms. Data dependent acquisition was performed in top speed mode using a 1 s cycle,
684 selecting the most intense precursors with charge states >1. Easy-IC was used for internal
685 calibration. Dynamic exclusion was performed for 50 s post precursor selection and a
686 minimum threshold for fragmentation was set at 5e³. MS² spectra were acquired in the linear
687 ion trap with: scan rate, turbo; quadrupole isolation, 1.6 *m/z*; activation type, HCD; activation
688 energy: 32%; AGC target, 5e³; first mass, 110 *m/z*; max fill time, 100 ms. Acquisitions were
689 arranged by Xcalibur to inject ions for all available parallelizable time.

690 *Spectral Counting APEX2*: Peak lists in Thermo .raw format were converted to .mgf using
691 MSConvert (version 3.0, ProteoWizard) before submitting to database searching against
692 19,716 *Chlamydomonas* protein sequences appended with common proteomic contaminants.
693 Mascot Daemon (version 2.6.0, Matrix Science) was used to submit the search to a locally-
694 running copy of the Mascot program (Matrix Science Ltd., version 2.7.0). Mascot was
695 searched with a fragment ion mass tolerance of 0.50 Da and a parent ion tolerance of 3.0
696 PPM. O-124 of pyrrolysine, j-16 of leucine/isoleucine indecision and carbamidomethyl of
697 cysteine were specified in Mascot as fixed modifications. Oxidation of methionine was
698 specified in Mascot as a variable modification. Scaffold (version Scaffold_5.2.0, Proteome
699 Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein
700 identifications. Peptide identifications were accepted if they could be established at greater
701 than 84.0% probability to achieve an FDR less than 1.0% by the Percolator posterior error
702 probability calculation. Protein identifications were accepted if they could be established at
703 greater than 6.0% probability to achieve an FDR less than 1.0% and contained at least 2
704 identified peptides. Quantitative value of total spectra was used to calculate the Log₂ Fold
705 change between RBCS2-APEX2 and WT samples, and the Student's T-test derived P-value
706 was -log₁₀ transformed before presented.

707 *Precursor Intensity-based Relative Quantification TurboID pilot:* Peak lists in .raw format were
708 imported into Progenesis QI (Version 2.2., Waters) and LC-MS runs aligned to the common
709 sample pool. Precursor ion intensities were normalised against total intensity for each
710 acquisition. A combined peak list was exported in .mgf format for database searching against
711 19,716 *Chlamydomonas* protein sequences appended with common proteomic contaminants.
712 Mascot Daemon (version 2.6.0, Matrix Science) was used to submit the search to a locally-
713 running copy of the Mascot program (Matrix Science Ltd., version 2.7.0). Search criteria
714 specified: Enzyme, trypsin; Max missed cleavages, 1; Fixed modifications, Carbamidomethyl
715 (C); Variable modifications, Oxidation (M);, Peptide tolerance, 3 ppm; MS/MS tolerance, 0.5
716 Da; Instrument, ESI-TRAP. Peptide identifications were passed through the percolator
717 algorithm to achieve a 1% false discovery rate assessed against a reverse database and
718 individual matches filtered to require minimum expect score of 0.05. The Mascot .XML result
719 file was imported into Progenesis QI and peptide identifications associated with precursor
720 peak areas and matched between runs. Relative protein abundance was calculated using
721 precursor ion areas from non-conflicting unique peptides. Accepted protein quantifications
722 were set to require a minimum of two unique peptide sequences. Missing values were then
723 replaced by the minimal value detected from each bait. The fold change in RBCS2-TurboID
724 vs WT comparison was calculated on the sum of relative protein abundance at all time points
725 and were Log_2 transformed. Statistical testing was performed in Progenesis QI from ArcSinh
726 normalized peptide abundances and the ANOVA-derived p-values was $-\log_{10}$ transformed and
727 presented.

728 **LC-MS/MS and analysis of TMT labeled TurboID experiments**

729 *TurboID digestion and TMT labeling:* For the TurboID experiments in Figure 3 and 4, on-bead
730 digestion was performed after reduction with 10 mM tris(2-carboxyethyl)phosphine and
731 alkylation with 50 mM methyl methanethiosulfonatein in 50 mM triethylammonium bicarbonate
732 TEAB. A 500 ng aliquot of sequencing-grade trypsin (Promega) was added prior to incubation
733 at 37°C for 16 h. Post digestion the peptide containing supernatants were removed from the
734 beads for TMT labeling. Peptides were labeled with TMTPro 16-plex reagents (Thermo) as
735 detailed in the manufacturer's protocol. Post labeling samples were combined and dried in a
736 vacuum concentrator before reconstituting in 100 ml H₂O.

737 *LC-MS Acquisition of TMT labeled TurboID experiment:* Peptides were fractionated by high
738 pH reversed phase C₁₈ HPLC. Samples were loaded onto an Agilent 1260 II HPLC system
739 equipped with a Waters XBridge 3.5 μ m, C₁₈ column (2.1 mm x 150 mm, Thermo). Separation
740 used gradient elution of two solvents: solvent A, aqueous 0.1% (v:v) ammonium hydroxide;
741 solvent B, acetonitrile containing 0.1% (v:v) ammonium hydroxide. The flow rate for the

742 capillary column was 200 mL/min and the column temperature was 40°C. The linear multi-
743 step gradient profile for the elution was: 5-35% B over 20 mins, 35-80% B over 5 mins, the
744 gradient was followed by washing with 80% solvent B for 5 min before returning to initial
745 conditions and re-equilibrating for 7 min prior to subsequent injections. Eluant was collected
746 at 1 min intervals into LoBind Eppendorf tubes. Peptide elution was monitored by UV
747 absorbance at 215 and 280 nm. Fractions were pooled across the UV elution profile to give
748 12 fractions for LC-MS/MS acquisition. Peptide fractions were dried in a vacuum concentrator
749 before reconstituting in 20 ml aqueous 0.1% (v:v) trifluoroacetic acid (TFA).

750 TMT labeled peptides fractions were loaded onto an mClass nanoflow UPLC system (Waters)
751 equipped with a nanoEaze M/Z Symmetry 100 Å C₁₈, 5 µm trap column (180 µm x 20 mm,
752 Waters) and a PepMap, 2 µm, 100 Å, C₁₈ EasyNano nanocapillary column (75 mm x 500 mm,
753 Thermo). The trap wash solvent was aqueous 0.05% (v:v) trifluoroacetic acid and the trapping
754 flow rate was 15 µL/min. The trap was washed for 5 min before switching flow to the capillary
755 column. Separation used gradient elution of two solvents: solvent A, aqueous 0.1% (v:v)
756 formic acid; solvent B, acetonitrile containing 0.1% (v:v) formic acid. The flow rate for the
757 capillary column was 330 nL/min and the column temperature was 40°C. The linear multi-step
758 gradient profile was: 2.5-10% B over 10 mins, 10-35% B over 75 mins, 35-99% B over 15 mins
759 and then proceeded to wash with 99% solvent B for 5 min. The column was returned to initial
760 conditions and re-equilibrated for 15 min before subsequent injections. The nanoLC system
761 was interfaced to an Orbitrap Fusion hybrid mass spectrometer (Thermo) with an EasyNano
762 ionization source (Thermo). Positive ESI-MS, MS² and MS³ spectra were acquired using
763 Xcalibur software (version 4.0, Thermo). Instrument source settings were: ion spray voltage,
764 2,100 V; sweep gas, 0 Arb; ion transfer tube temperature; 275°C. MS¹ spectra were acquired
765 in the Orbitrap with: 120,000 resolution, scan range: *m/z* 380-1,500; AGC target, 2e⁵; max fill
766 time, 50 ms. Data dependent acquisition was performed in top speed mode using a 4 s cycle,
767 selecting the most intense precursors with charge states 2-6. Dynamic exclusion was
768 performed for 50 s post precursor selection and a minimum threshold for fragmentation was
769 set at 3e⁴. MS² spectra were acquired in the linear ion trap with: scan rate, turbo; quadrupole
770 isolation, 1.2 *m/z*; activation type, CID; activation energy: 35%; AGC target, 1e⁴; first mass,
771 120 *m/z*; max fill time, 35 ms. MS³ spectra were acquired in multi notch synchronous precursor
772 mode (SPS³), selecting the 5 most intense MS² fragment ions between 400-1,000 *m/z*. SPS³
773 spectra were measured in the Orbitrap mass analyser using: 50,000 resolution, quadrupole
774 isolation, 1 *m/z*; activation type, HCD; collision energy, 65%; scan range: *m/z* 110-500; AGC
775 target, 4e⁵; max fill time, 10 ms. Acquisitions were arranged by Xcalibur to inject ions for all
776 available parallelizable time.

777 *Protein identification and TMT label intensity quantification:* Peak lists in .raw format were
778 imported into PEAKS StudioX Pro (Version 10.6 Bioinformatics Solutions Inc.) for peak
779 picking, database searching and relative quantification. MS2 peak lists were searched against
780 19,716 *Chlamydomonas* protein sequences appended with common proteomic contaminants.
781 Search criteria specified: Enzyme, trypsin; Max missed cleavages, 1; Fixed modifications,
782 TMT16plex (K and N-term peptide); Variable modifications, Oxidation (M); Peptide tolerance,
783 3 ppm; MS/MS tolerance, 0.5 Da; Instrument, ESI-TRAP. Peptide identifications were filtered
784 to achieve a 1% peptide spectral match false discovery rate as assessed empirically against
785 a reversed database search. Protein identifications were further filtered to require a minimum
786 of two unique peptides per protein. TMT reporter ion intensities acting as markers of relative
787 inter-sample peptide abundance were extracted from MS³ spectra for quantitative comparison.
788 Protein level quantification significance used ANOVA for multi-way comparison and the
789 PEAKSQ significance test for binary comparisons. In both cases the null hypothesis was that
790 individual protein abundance was equal between groups. Normalization of label intensity was
791 then carried out using the global ratio derived from total intensity of all labels. The Fold
792 changes between comparison groupings were calculated based on their normalized TMT
793 reporter ion intensities. Proteins which were not detected in all replicates for an individual bait
794 were removed from calculation. Missing values were then replaced by the minimal value
795 detected from each bait. Significance was determined via PEAKSQ test represented as -
796 Log₁₀P value.

797 **Recombineering cloning for localisation**

798 Cloning of fluorescent protein tagged constructs was performed as previously described
799 (Emrich-Mills et al., 2021). Briefly, homology arms to target genes at the 5' of the native
800 promoter and 3'UTR were added to destination vectors via PCR. Homology arms of
801 Cre13.g573250 were cloned into the pLM162-mScarlet-I backbone. Homology arms of
802 Cre16.g663150, Cre06.g271850, Cre03.g172700, Cre17.g720450, Cre09.g394510,
803 Cre03.g158050 and Cre02.g093650 were cloned into the pLM099-Venus backbone. Amplified
804 backbones were transformed by electroporation into *E. coli* containing a Bacterial artificial
805 chromosome and RecA vector which drives the recombination event. Resulting plasmids were
806 selected on LB-agar plates containing Kanamycin and junctions confirmed by sequencing.

807 **Imaging of fluorescently tagged lines**

808 For imaging of fluorescently tagged lines, photoautotrophically grown cells were immobilized
809 on 1.5% low melting point agarose in TP-medium. Indirect immunofluorescence of RBCS2-
810 APEX2 was performed according to (Uniacke et al., 2011) with the following modifications:
811 Cells were fixed with 3.7% formaldehyde solution in PBS for 30 minutes at room temperature.

812 Anti-Flag antibody (F1804; Sigma-Aldrich) at 1:1000 dilution in PBS supplemented with 1%
813 BSA was used as primary antibody. Anti-Mouse Alexa Fluor plus 555 (A32727; Invitrogen)
814 was used as the secondary antibody at 1:1000 dilution. Labeled cells were then kept in the
815 dark prior to imaging. Images were taken using a Zeiss LSM880 microscope with the Airyscan
816 module or a Zeiss Elyra7 Lattice SIM. Excitation and emission filters of fluorophore and
817 chlorophyll autofluorescence were set as follows: mVenus (Excitation: 514 nm, Emission: 520-
818 550 nm); Chlorophyll (Excitation: 633, Emission: 610-650 nm); mCherry/mScarlet-I/Alexa
819 Fluor plus 555 (Excitation: 561 nm, Emission: 580-600 nm).

820 **Amplex-red assay**

821 Amplex™ UltraRed assay for RBCS2-APEX2 peroxidase activity was carried out according to
822 the manufacturer's manual. Briefly, Amplex-red reagent (Fisher scientific; Invitrogen™
823 Amplex™ UltraRed Reagent #10737474) was dissolved in DMSO to a 10 mM stock. RBCS2-
824 APEX2 and the untagged WT were grown photoautotrophically and split into triplicates. Cells
825 were then chilled on ice for 5 minutes before resuspending in 200µL of reaction buffer (50 M
826 Amplex Red, 2 mM H₂O₂ in PBS pH 7.4). The reaction was carried on ice for 15 minutes.
827 Resorufin fluorescence measurement was performed using a Clariostar Plus Microplate
828 reader using the following excitation and emission settings: Resorufin (Excitation: 535-555
829 nm; Emission: 580-620 nm); Chlorophyll autofluorescence (Excitation: 610-630 nm; Emission:
830 660-695 nm).

831 **Acknowledgements**

832 C.S.L was supported by the Bill and Melinda Gates Foundation (Investment ID 53197). The
833 project was supported by a United Kingdom Research and Innovation Future Leaders
834 Fellowship to L.C.M.M (MR/T020679/1), Biotechnology and Biological Sciences Research
835 Council Grants (BB/T017589/1, BB/S015337/1, BB/R001014/1, BB/X003035/1) and
836 Engineering and Physical Research Council Grant (EP/W024063/1). P.G was supported by
837 the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
838 number 456013262. The York Centre of Excellence in Mass Spectrometry was created thanks
839 to a major capital investment through Science City York, supported by Yorkshire Forward with
840 funds from the Northern Way Initiative, and subsequent support from EPSRC (EP/K039660/1;
841 EP/M028127/1). The authors would like to thank the University of York Biosciences
842 Technology Facility for confocal microscopy access and support and Masa Onishi for
843 constructive discussions during the establishment of Turbold.

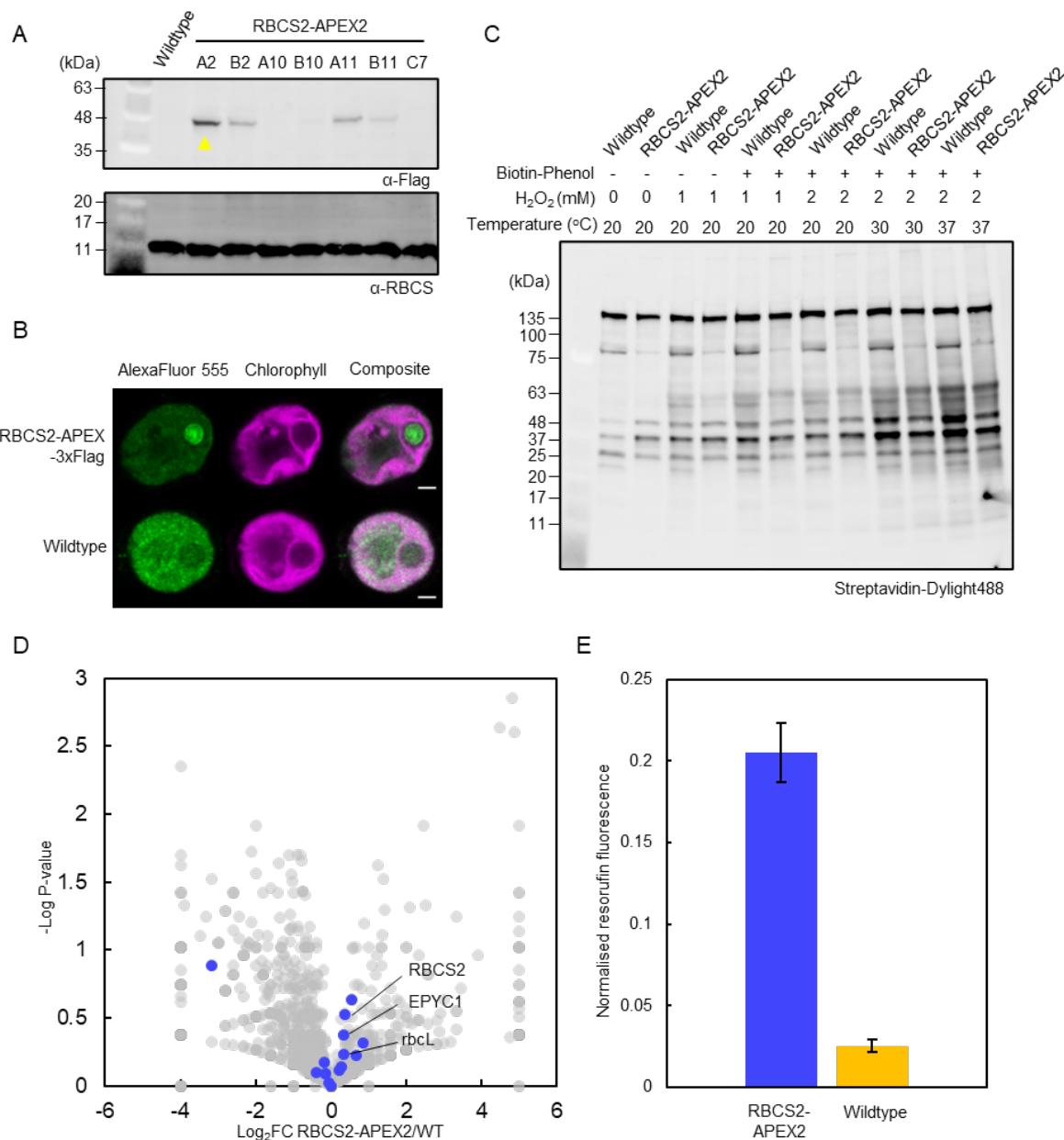
844 **Author Contributions**

845 L.C.M.M. guided and supervised the project; C.S.L. designed and performed the biotin labeling
846 experiments; A.D. performed LC-MS/MS analysis; C.S.L. and P.G. performed the fluorescent
847 protein tagging and confocal imaging. C.S.L. and L.C.M.M. analyzed the data and wrote the
848 manuscript with contributions from P.G., G.H.T. and A.D.; All authors discussed the results
849 and commented on the manuscript.

850 **References**

- 851 **Adler, L., Díaz-Ramos, A., Mao, Y., Pukacz, K.R., Fei, C., and McCormick, A.J. (2022).**
852 New horizons for building pyrenoid-based CO₂-concentrating mechanisms in plants to
853 improve yields. *Plant Physiol.* **190**: 1609–1627.
- 854 **Arias, C., Obudulu, O., Zhao, X., Ansolia, P., Zhang, X., Paul, S., Bygdell, J.,**
855 **Pirmoradian, M., Zubarev, R.A., Samuelsson, G., Wingsle, G., and Bajhaiya, A.K.**
856 (2020). Nuclear proteome analysis of Chlamydomonas with response to CO₂ limitation.
857 *Algal Research* **46**: 101765.
- 858 **Atkinson, N., Mao, Y., Chan, K.X., and McCormick, A.J. (2020).** Condensation of Rubisco
859 into a proto-pyrenoid in higher plant chloroplasts. *Nat. Commun.* **11**: 6303.
- 860 **Baier, T., Wichmann, J., Kruse, O., and Lauersen, K.J. (2018).** Intron-containing algal
861 transgenes mediate efficient recombinant gene expression in the green microalga
862 *Chlamydomonas reinhardtii*. *Nucleic Acids Res.* **46**: 6909–6919.
- 863 **Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017).** Biomolecular
864 condensates: organizers of cellular biochemistry. *Nat. Rev. Mol. Cell Biol.* **18**: 285–298.
- 865 **Barrett, J., Gorr, P., and Mackinder, L.C.M. (2021).** Pyrenoids: CO₂-fixing phase separated
866 liquid organelles. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research* **1868**:
867 118949.
- 868 **Boël, G., Smith, P.C., Ning, W., Englander, M.T., Chen, B., Hashem, Y., Testa, A.J.,**
869 **Fischer, J.J., Wieden, H.-J., Frank, J., Gonzalez, R.L., Jr, and Hunt, J.F. (2014).** The
870 ABC-F protein EttA gates ribosome entry into the translation elongation cycle. *Nat.*
871 *Struct. Mol. Biol.* **21**: 143–151.
- 872 **Bonomi, F., Pagani, S., and Cerletti, P. (1977).** Insertion of sulfide into ferredoxins
873 catalyzed by rhodanese. *FEBS Lett.* **84**: 149–152.
- 874 **Borkhsenious, O.N., Mason, C.B., and Moroney, J.V. (1998).** The intracellular localization
875 of ribulose-1,5-bisphosphate Carboxylase/Oxygenase in *chlamydomonas reinhardtii*.
876 *Plant Physiol.* **116**: 1585–1591.
- 877 **Boyd, E.S., Thomas, K.M., Dai, Y., Boyd, J.M., and Outten, F.W. (2014).** Interplay
878 between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.
879 *Biochemistry* **53**: 5834–5847.
- 880 **Bracha, D., Walls, M.T., and Brangwynne, C.P. (2019).** Probing and engineering liquid-
881 phase organelles. *Nat. Biotechnol.* **37**: 1435–1445.
- 882 **Branon, T.C., Bosch, J.A., Sanchez, A.D., Udeshi, N.D., Svinkina, T., Carr, S.A.,**
883 **Feldman, J.L., Perrimon, N., and Ting, A.Y. (2018).** Efficient proximity labeling in living
884 cells and organisms with TurboID. *Nat. Biotechnol.* **36**: 880–887.
- 885 **Brueggeman, A.J., Gangadharaiyah, D.S., Cserhati, M.F., Casero, D., Weeks, D.P., and**
886 **Ladunga, I. (2012).** Activation of the carbon concentrating mechanism by CO₂
887 deprivation coincides with massive transcriptional restructuring in *Chlamydomonas*
888 *reinhardtii*. *Plant Cell* **24**: 1860–1875.
- 889 **Chng, S.-S., Dutton, R.J., Denoncin, K., Vertommen, D., Collet, J.-F., Kadokura, H., and**
890 **Beckwith, J. (2012).** Overexpression of the rhodanese PspE, a single cysteine-
891 containing protein, restores disulphide bond formation to an *Escherichia coli* strain

- 892 lacking DsbA. *Mol. Microbiol.* **85**: 996–1006.
- 893 **Choi, J.-M., Holehouse, A.S., and Pappu, R.V.** (2020). Physical Principles Underlying the
894 Complex Biology of Intracellular Phase Transitions. *Annu. Rev. Biophys.* **49**: 107–133.
- 895 **Christopher, J.A. et al.** (2021). Subcellular proteomics. *Nat Rev Methods Primers* **1**.
- 896 **Cox, J. and Mann, M.** (2008). MaxQuant enables high peptide identification rates,
897 individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
898 *Nat. Biotechnol.* **26**: 1367–1372.
- 899 **Crozet, P. et al.** (2018). Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling
900 Synthetic Biology in the Microalga *Chlamydomonas reinhardtii*. *ACS Synth. Biol.* **7**:
901 2074–2086.
- 902 **Dahlgren, K.K., Gates, C., Lee, T., and Cameron, J.C.** (2021). Proximity-based proteomics
903 reveals the thylakoid lumen proteome in the cyanobacterium *Synechococcus* sp. PCC
904 7002. *Photosynth. Res.* **147**: 177–195.
- 905 **Emrich-Mills, T.Z., Yates, G., Barrett, J., Girr, P., Grouneva, I., Lau, C.S., Walker, C.E.,
906 Kwok, T.K., Davey, J.W., Johnson, M.P., and Mackinder, L.C.M.** (2021). A
907 recombineering pipeline to clone large and complex genes in *Chlamydomonas*. *Plant
908 Cell* **33**: 1161–1181.
- 909 **Engel, B.D., Schaffer, M., Kuhn Cuellar, L., Villa, E., Plitzko, J.M., and Baumeister, W.**
910 (2015). Native architecture of the *Chlamydomonas* chloroplast revealed by *in situ* cryo-
911 electron tomography. *Elife* **4**.
- 912 **Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S.S., Pellegrini, M., Ladunga, I.,
913 Liu, P., and Spalding, M.H.** (2012). Transcriptome-wide changes in *Chlamydomonas
914 reinhardtii* gene expression regulated by carbon dioxide and the CO₂-concentrating
915 mechanism regulator CIA5/CCM1. *Plant Cell* **24**: 1876–1893.
- 916 **Fei, C., Wilson, A.T., Mangan, N.M., Wingreen, N.S., and Jonikas, M.C.** (2022). Modelling
917 the pyrenoid-based CO₂-concentrating mechanism provides insights into its operating
918 principles and a roadmap for its engineering into crops. *Nat Plants* **8**: 583–595.
- 919 **Freeman Rosenzweig, E.S. et al.** (2017). The Eukaryotic CO₂-Concentrating Organelle Is
920 Liquid-like and Exhibits Dynamic Reorganization. *Cell* **171**: 148–162.e19.
- 921 **Ganapathy, U.S., Bai, L., Wei, L., Eckartt, K.A., Lett, C.M., Previti, M.L., Carrico, I.S.,
922 and Seeliger, J.C.** (2018). Compartment-Specific Labeling of Bacterial Periplasmic
923 Proteins by Peroxidase-Mediated Biotinylation. *ACS Infect Dis* **4**: 918–925.
- 924 **Gargouri, M., Park, J.-J., Holguin, F.O., Kim, M.-J., Wang, H., Deshpande, R.R.,
925 Shachar-Hill, Y., Hicks, L.M., and Gang, D.R.** (2015). Identification of regulatory
926 network hubs that control lipid metabolism in *Chlamydomonas reinhardtii*. *J. Exp. Bot.*
927 **66**: 4551–4566.
- 928 **Han, J., Pluhackova, K., and Böckmann, R.A.** (2017). The Multifaceted Role of SNARE
929 Proteins in Membrane Fusion. *Front. Physiol.* **8**: 5.
- 930 **Han, S., Li, J., and Ting, A.Y.** (2018). Proximity labeling: spatially resolved proteomic
931 mapping for neurobiology. *Curr. Opin. Neurobiol.* **50**: 17–23.
- 932 **Harvey, S.H., Krien, M.J.E., and O'Connell, M.J.** (2002). Structural maintenance of
933 chromosomes (SMC) proteins, a family of conserved ATPases. *Genome Biol.* **3**:

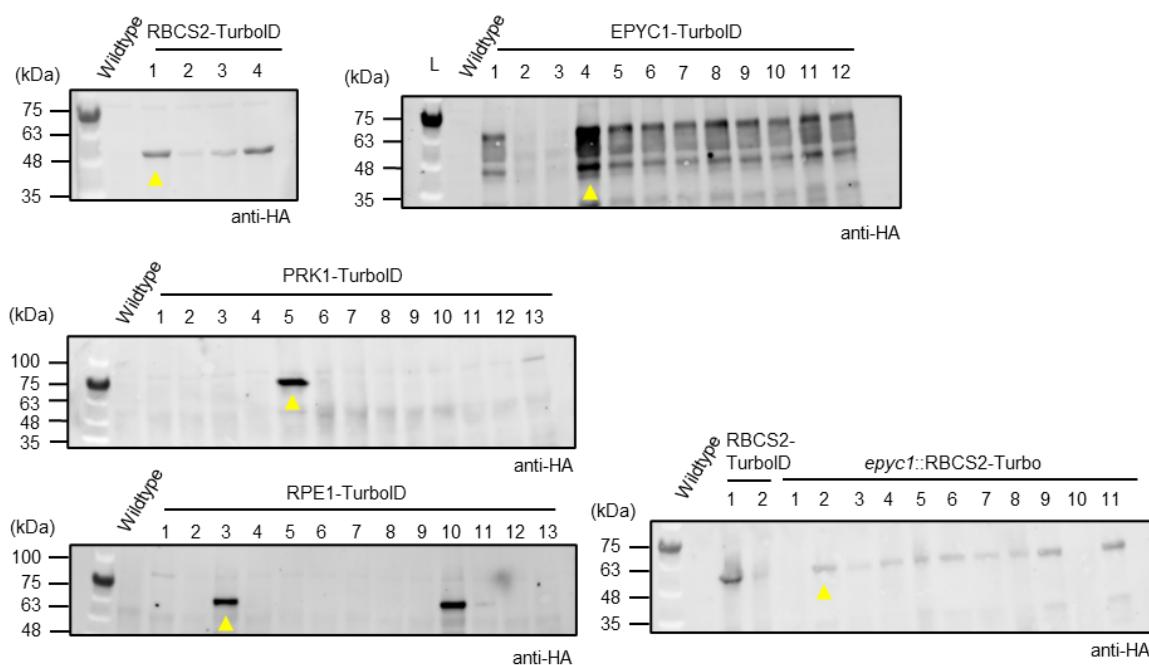

- 934 REVIEWS3003.
- 935 **He, S. et al.** (2020). The structural basis of Rubisco phase separation in the pyrenoid. *Nat*
936 *Plants* **6**: 1480–1490.
- 937 **Hubstenberger, A. et al.** (2017). P-Body Purification Reveals the Condensation of
938 Repressed mRNA Regulons. *Mol. Cell* **68**: 144–157.e5.
- 939 **Hwang, J. and Espenshade, P.J.** (2016). Proximity-dependent biotin labelling in yeast
940 using the engineered ascorbate peroxidase APEX2. *Biochem. J* **473**: 2463–2469.
- 941 **Hyman, A.A., Weber, C.A., and Jülicher, F.** (2014). Liquid-liquid phase separation in
942 biology. *Annu. Rev. Cell Dev. Biol.* **30**: 39–58.
- 943 **Itakura, A.K. et al.** (2019). A Rubisco-binding protein is required for normal pyrenoid
944 number and starch sheath morphology in *Chlamydomonas reinhardtii*. *Proc. Natl. Acad.*
945 *Sci. U. S. A.* **116**: 18445–18454.
- 946 **Jumper, J. et al.** (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*
947 **596**: 583–589.
- 948 **Kim, D.I., Birendra, K.C., Zhu, W., Motamedchaboki, K., Doye, V., and Roux, K.J.**
949 (2014). Probing nuclear pore complex architecture with proximity-dependent
950 biotinylation. *Proc. Natl. Acad. Sci. U. S. A.* **111**: E2453–61.
- 951 **Kim, D.I., Jensen, S.C., Noble, K.A., Kc, B., Roux, K.H., Motamedchaboki, K., and**
952 **Roux, K.J.** (2016). An improved smaller biotin ligase for BiOID proximity labeling. *Mol.*
953 *Biol. Cell* **27**: 1188–1196.
- 954 **Kreis, E., König, K., Sommer, F., Schroda, M.** TurboID reveals the interaction
955 networks of CGE1, VIPP1, and VIPP2 in *Chlamydomonas reinhardtii*. Submitted in
956 parallel to *The Plant Cell*.
- 957 **Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M.,**
958 **Merchant, S.S., and Malasarn, D.** (2011). A revised mineral nutrient supplement
959 increases biomass and growth rate in *Chlamydomonas reinhardtii*. *Plant J.* **66**: 770–780.
- 960 **Kuchitsu, K., Tsuzuki, M., and Miyachi, S.** (1988). Changes of Starch Localization within
961 the Chloroplast Induced by Changes in CO₂ Concentration during Growth of
962 *Chlamydomonas reinhardtii*: Independent Regulation of Pyrenoid Starch and Stroma
963 Starch. *Plant Cell Physiol.* **29**: 1269–1278.
- 964 **Küken, A., Sommer, F., Yaneva-Roder, L., Mackinder, L.C., Höhne, M., Geimer, S.,**
965 **Jonikas, M.C., Schroda, M., Stitt, M., Nikoloski, Z., and Mettler-Altmann, T.** (2018).
966 Effects of microcompartmentation on flux distribution and metabolic pools in
967 *Chlamydomonas reinhardtii* chloroplasts. *Elife* **7**.
- 968 **Lam, S.S., Martell, J.D., Kamer, K.J., Deerinck, T.J., Ellisman, M.H., Mootha, V.K., and**
969 **Ting, A.Y.** (2015). Directed evolution of APEX2 for electron microscopy and proximity
970 labeling. *Nat. Methods* **12**: 51–54.
- 971 **Li-Beisson, Y., Beisson, F., and Riekhof, W.** (2015). Metabolism of acyl-lipids in
972 *Chlamydomonas reinhardtii*. *Plant J.* **82**: 504–522.
- 973 **Li, X. et al.** (2019). A genome-wide algal mutant library and functional screen identifies
974 genes required for eukaryotic photosynthesis. *Nat. Genet.* **51**: 627–635.

- 975 **Li, X., Zhang, R., Patena, W., Gang, S.S., Blum, S.R., Ivanova, N., Yue, R., Robertson, J.M., Lefebvre, P.A., Fitz-Gibbon, S.T., Grossman, A.R., and Jonikas, M.C.** (2016).
976 An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological
977 Processes in *Chlamydomonas reinhardtii*. *Plant Cell* **28**: 367–387.
- 979 **Li, Y., Tian, C., Liu, K., Zhou, Y., Yang, J., and Zou, P.** (2020). A Clickable APEX Probe
980 for Proximity-Dependent Proteomic Profiling in Yeast. *Cell Chem Biol* **27**: 858–865.e8.
- 981 **Long, S.P., Burgess, S., and Causton, I.** (2019). Redesigning crop photosynthesis.
982 Sustaining Global Food Security: The Nexus of Science and Policy **128**.
- 983 **Mackinder, L.C.M. et al.** (2016). A repeat protein links Rubisco to form the eukaryotic
984 carbon-concentrating organelle. *Proc. Natl. Acad. Sci. U. S. A.* **113**: 5958–5963.
- 985 **Mackinder, L.C.M.** (2018). The *Chlamydomonas* CO₂ -concentrating mechanism and its
986 potential for engineering photosynthesis in plants. *New Phytol.* **217**: 54–61.
- 987 **Mackinder, L.C.M., Chen, C., Leib, R.D., Patena, W., Blum, S.R., Rodman, M., Ramundo, S., Adams, C.M., and Jonikas, M.C.** (2017). A Spatial Interactome Reveals
988 the Protein Organization of the Algal CO₂-Concentrating Mechanism. *Cell* **171**: 133–
989 147.e14.
- 991 **Mair, A. and Bergmann, D.C.** (2022). Advances in enzyme-mediated proximity labeling and
992 its potential for plant research. *Plant Physiol.* **188**: 756–768.
- 993 **Mair, A., Xu, S.-L., Branion, T.C., Ting, A.Y., and Bergmann, D.C.** (2019). Proximity
994 labeling of protein complexes and cell-type-specific organellar proteomes in *Arabidopsis*
995 enabled by TurboloD. *Elife* **8**.
- 996 **Meyer, M.T., Genkov, T., Skepper, J.N., Jouhet, J., Mitchell, M.C., Spreitzer, R.J., and Griffiths, H.** (2012). Rubisco small-subunit α -helices control pyrenoid formation in
997 *Chlamydomonas*. *Proc. Natl. Acad. Sci. U. S. A.* **109**: 19474–19479.
- 999 **Meyer, M.T., Itakura, A.K., Patena, W., Wang, L., He, S., Emrich-Mills, T., Lau, C.S., Yates, G., Mackinder, L.C.M., and Jonikas, M.C.** (2020). Assembly of the algal CO₂-
1000 fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif. *Science Advances*:
1001 2020.08.16.252858.
- 1003 **Nakamura, Y., Gojobori, T., and Ikemura, T.** (2000). Codon usage tabulated from
1004 international DNA sequence databases: status for the year 2000. *Nucleic Acids Res.* **28**:
1005 292.
- 1006 **Neofotis, P. et al.** (2021). The induction of pyrenoid synthesis by hyperoxia and its
1007 implications for the natural diversity of photosynthetic responses in *Chlamydomonas*.
1008 *Elife* **10**.
- 1009 **Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A.** (2013). Yield Trends Are Insufficient
1010 to Double Global Crop Production by 2050. *PLoS One* **8**: e66428.
- 1011 **Rhee, H.-W., Zou, P., Udeshi, N.D., Martell, J.D., Mootha, V.K., Carr, S.A., and Ting, A.Y.**
1012 (2013). Proteomic mapping of mitochondria in living cells via spatially restricted
1013 enzymatic tagging. *Science* **339**: 1328–1331.
- 1014 **Roux, K.J., Kim, D.I., Raida, M., and Burke, B.** (2012). A promiscuous biotin ligase fusion
1015 protein identifies proximal and interacting proteins in mammalian cells. *J. Cell Biol.* **196**:
1016 801–810.

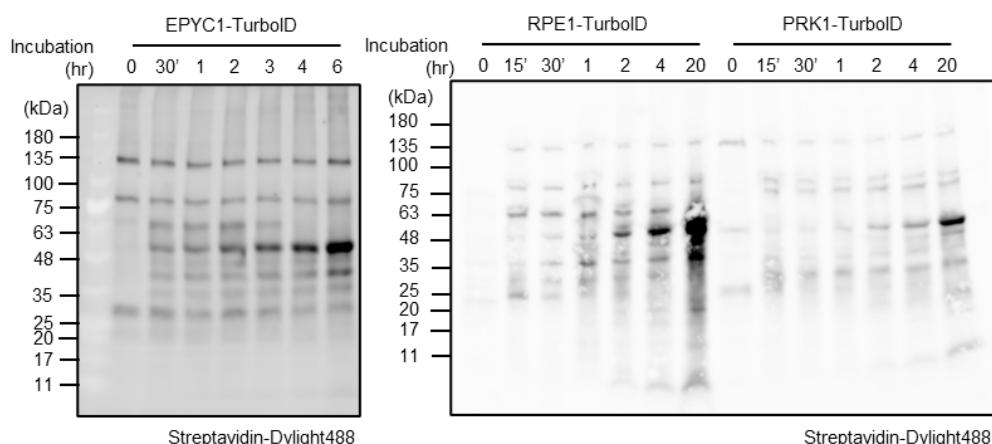
- 1017 **Rydz, L., Wróbel, M., and Jurkowska, H.** (2021). Sulfur Administration in Fe-S Cluster
1018 Homeostasis. *Antioxidants (Basel)* **10**.
- 1019 **Sun, Y., Valente-Paterno, M., Bakhtiari, S., Law, C., Zhan, Y., and Zerges, W.** (2019).
1020 Photosystem Biogenesis Is Localized to the Translation Zone in the Chloroplast of
1021 Chlamydomonas. *Plant Cell* **31**: 3057–3072.
- 1022 **Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugière, S., Hippler, M.,
1023 Ferro, M., Bruley, C., Peltier, G., Vallon, O., and Cournac, L.** (2012). PredAlgo: a new
1024 subcellular localization prediction tool dedicated to green algae. *Mol. Biol. Evol.* **29**:
1025 3625–3639.
- 1026 **Toyokawa, C., Yamano, T., and Fukuzawa, H.** (2020). Pyrenoid Starch Sheath Is Required
1027 for LCIB Localization and the CO₂-Concentrating Mechanism in Green Algae. *Plant
1028 Physiol.* **182**: 1883–1893.
- 1029 **Turkina, M.V., Blanco-Rivero, A., Vainonen, J.P., Vener, A.V., and Villarejo, A.** (2006).
1030 CO₂ limitation induces specific redox-dependent protein phosphorylation in
1031 Chlamydomonas reinhardtii. *Proteomics* **6**: 2693–2704.
- 1032 **Turnšek, J., Brunson, J.K., Viedma, M.D.P.M., Deerinck, T.J., Horák, A., Oborník, M.,
1033 Bielinski, V.A., and Allen, A.E.** (2021). Proximity proteomics in a marine diatom
1034 reveals a putative cell surface-to-chloroplast iron trafficking pathway. *Elife* **10**.
- 1035 **Uniacke, J., Colón-Ramos, D., and Zerges, W.** (2011). FISH and immunofluorescence
1036 staining in Chlamydomonas. *Methods Mol. Biol.* **714**: 15–29.
- 1037 **Uniacke, J. and Zerges, W.** (2008). Stress induces the assembly of RNA granules in the
1038 chloroplast of Chlamydomonas reinhardtii. *J. Cell Biol.* **182**: 641–646.
- 1039 **UniProt Consortium** (2021). UniProt: the universal protein knowledgebase in 2021. *Nucleic
1040 Acids Res.* **49**: D480–D489.
- 1041 **Wang, Q., Chen, Z., Zhang, X., Xin, Y., Xia, Y., Xun, L., and Liu, H.** (2021). Rhodanese
1042 Rdl2 produces reactive sulfur species to protect mitochondria from reactive oxygen
1043 species. *Free Radic. Biol. Med.* **177**: 287–298.
- 1044 **Wang, Y., Stessman, D.J., and Spalding, M.H.** (2015). The CO₂ concentrating mechanism
1045 and photosynthetic carbon assimilation in limiting CO₂ : how Chlamydomonas works
1046 against the gradient. *Plant J.* **82**: 429–448.
- 1047 **Wunder, T., Cheng, S.L.H., Lai, S.-K., Li, H.-Y., and Mueller-Cajar, O.** (2018). The phase
1048 separation underlying the pyrenoid-based microalgal Rubisco supercharger. *Nat.
1049 Commun.* **9**: 5076.
- 1050 **Wurzinger, B., Stael, S., Leonardelli, M., Perolo, C., Melzer, M., Chaturvedi, P., Afjehi-
1051 Sadat, L., Weckwerth, W., Teige, M.** Proximity labelling allows to study novel factors in
1052 chloroplast development. Submitted in parallel to *The Plant Cell*.
- 1053 **Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S.-I., Takahashi, Y., and Fukuzawa, H.**
1054 (2010). Light and low-CO₂-dependent LCIB-LCIC complex localization in the chloroplast
1055 supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. *Plant Cell
1056 Physiol.* **51**: 1453–1468.
- 1057 **Youn, J.-Y. et al.** (2018). High-Density Proximity Mapping Reveals the Subcellular
1058 Organization of mRNA-Associated Granules and Bodies. *Mol. Cell* **69**: 517–532.e11.

- 1059 **Zhang, Y., Song, G., Lal, N.K., Nagalakshmi, U., Li, Y., Zheng, W., Huang, P.-J., Branon,**
1060 **T.C., Ting, A.Y., Walley, J.W., and Dinesh-Kumar, S.P.** (2019). TurboID-based
1061 proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated
1062 immunity. *Nat. Commun.* **10**: 3252.
- 1063 **Zhan, Y. et al.** (2018). Pyrenoid functions revealed by proteomics in *Chlamydomonas*
1064 *reinhardtii*. *PLoS One* **13**: e0185039.
- 1065 **Zhan, Y., Dhaliwal, J.S., Adjibade, P., Uniacke, J., Mazroui, R., and Zerges, W.** (2015).
1066 Localized control of oxidized RNA. *J. Cell Sci.* **128**: 4210–4219.
- 1067 **Zhou, Y. and Zou, P.** (2021). The evolving capabilities of enzyme-mediated proximity
1068 labeling. *Curr. Opin. Chem. Biol.* **60**: 30–38.
- 1069

1070 **Supplementary Figures**

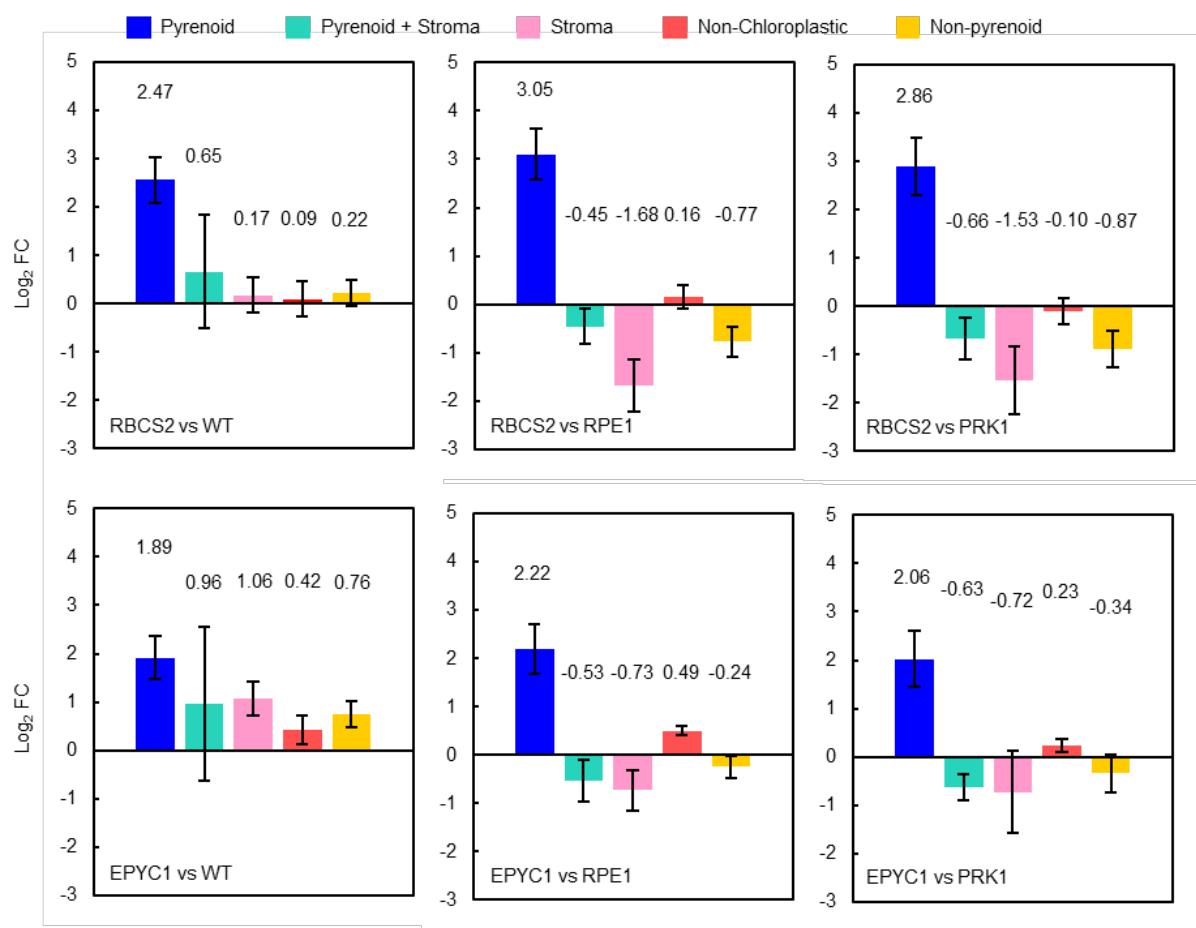

1071

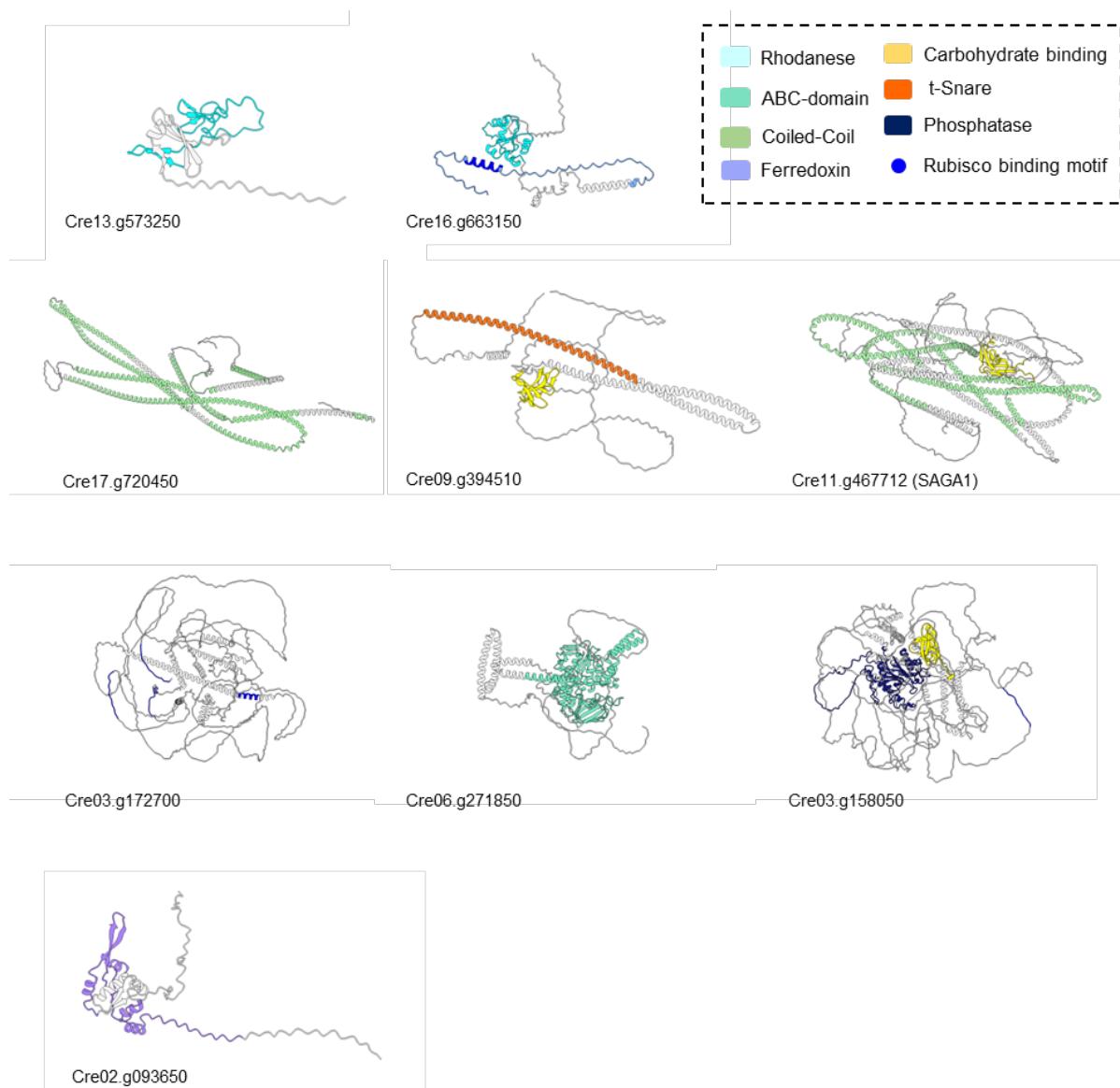
1072 Supplemental Figure 1. APEX2 does not efficiently label pyrenoid proteins in *Chlamydomonas*
1073 plastid. **A**, expression of RBCS2-APEX2 in *Chlamydomonas* CC-4533 was verified with
1074 immunoblotting the whole cell lysate with anti-HA. Anti-RBCS was used as loading control.
1075 Yellow arrow denotes the strain chosen for later labeling experiments. **B**, Localization of the
1076 RBCS2-APEX2 fusion protein was determined by immunofluorescence using anti-3xFlag.
1077 Green and Magenta signals denote the AlexaFluor555 and chlorophyll fluorescence
1078 respectively. Scale bar: 2 μm. **C**, Labeling efficiency of RBCS2-APEX2 was tested by
1079 incubating expressing cell lines with Biotin-phenol substrate at 2.5 mM for 2 hours. H₂O₂
1080 activator was added at different concentrations (0 - 2 mM) and activation was carried out at a


1081 range of temperature (20 - 37°C). Biotin labeling was visualized by immunoblotting whole cell
1082 lysate against Streptavidin. **D**, Volcano plot representing the Log₂ Fold Change of spectra
1083 count from RBCS2-APEX2 compared to untagged WT. Grey and dark blue dots represent
1084 detected proteins and known pyrenoid proteins respectively. Significance was determined via
1085 T-test. Proteins detected only in WT are set to -4 Log₂ FC and proteins only detected in
1086 RBCS2-APEX2 are set to 5 Log₂ FC. **E**, Amplex-red Assay was carried out to determine the
1087 peroxidase activity of RBCS2-APEX2 expressing lines. Untagged background and expressing
1088 cells were incubated with Amplex-red reagent and activated with H₂O₂ at 1 mM, the resorufin
1089 fluorescence emission from (Excitation: 535 - 555 nm; Emission: 580 - 620 nm) was
1090 normalized against chlorophyll autofluorescence (Excitation: 610-630 nm; Emission: 660-695
1091 nm) (n=6).

1092

A


B



1093

1094 Supplemental Figure 2. Screening strains for TurboID expression and activity. **A**,
1095 *Chlamydomonas* cells transformed with TurboID-tag plasmids were grown in TAP medium.
1096 Expression was assessed via Immunoblotting the whole cell lysate of picked strains with anti-
1097 HA antibody. Yellow arrows denote the strains used in labeling experiments in Figures 2, 3
1098 and 5. **B**, Labeling activity of the various TurboID-tagged lines were assessed by incubating
1099 them in 2.5 mM biotin for a range of incubation time (0-20 hours).

1100

1109

1110 Supplemental Figure 4. AlphaFold modeled structures for the uncharacterized proteins
1111 localized in this study. Structure models were obtained from Uniparc archive (UniProt
1112 Consortium, 2021), or if unavailable submitted manually for AlphaFold modeling (Jumper et
1113 al., 2021). For those manual submissions, modeling used the full preset db, with a max
1114 templating date of 2022-11-22. 5 models were completed and the number 1 ranked model
1115 based on pLDDT score is presented. Color scheme of predicted structures is listed which
1116 follows that of Figure 4B.

1117