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Abstract

The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allow re-
searchers to investigate different cell states. The effective integration of multiple large-cohort
studies promises biological insights into cells under different conditions that individual studies
cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of
atlas-scale multi-sample multi-condition single-cell studies. We have generalised scMerge2 to
enable the merging of millions of cells from single-cell studies generated by various single-cell
technologies. Using a large COVID-19 data collection with over five million cells from 1000+ in-
dividuals, we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-seq data
integration from multiple cohorts and reveals signatures derived from cell-type expression that

are more accurate in discriminating disease progression. Further, we demonstrate that scMerge2
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can remove dataset variability in CyTOF, imaging mass cytometry and CITE-seq experiments,

demonstrating its applicability to a broad spectrum of single-cell profiling technologies.

Introduction

Technological advances of large-scale single-cell profiling of genes and proteins, such as single-
cell RNA-seq (scRNA-seq) [1], Cytometry by Time-Of-Flight (CyTOF) [2] and imaging mass
cytometry [3] have exploded in recent years and enabled unprecedented insight into the identity
and function of individual cells. This has enabled the discovery of cell-type-specific knowledge
and has transformed our understanding of biological systems. This myriad of single-cell data
has prompted the recent creation of data atlases that collate single-cell omics data from multi-
ple studies. Examples of large-scale atlases containing over two millions cells are the Human
Cell Atlas which aims to map every cell type in the human body [4]; atlas of gene expression
and chromatin accessibility of 4 million human fetal cells across 15 organs [5, 6]; the Human
Tumor Atlas Network [7] and DISCO [8], which provides integrated human single-cell omics
data across 107 tissues/cell lines/organoids and 158 diseases. These atlases serve as valuable

references for the exploration of healthy and diseased cells.

As single-cell technologies advance, there are an increasing number of studies around the
globe that perform multi-condition and multi-sample large-cohort single-cell profiling to exam-
ine persisting questions associated with human health. These datasets enable researchers to delve
into biological insights of cells under multiple treatment conditions across multiple individuals.
For example, to investigate the cell-type-specific cellular mechanism underlying COVID-19 dis-
ease severity [9] and to predict treatment response to cancer [10]. Such data and studies are
expected to rise in the coming years [11] in the continuing quest to improve human health. This
expected increase necessitates the effective access and joint interpretation of multiple datasets to

unleash the power of meta-analysis at single-cell resolution.

Last year, benchmarking studies [12] began to investigate atlas-scale integration. Luecken
and colleagues investigated 16 popular data integration technologies on 13 data integration tasks
with up to 1 million cells. While significant progress has been achieved in batch correction and
data integration over the years (including our research), the increasing scale of cohort sizes and

the number of related studies for integration has introduced additional scalability challenges. The
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new challenge for atlas-scale integration is to have a scalable algorithm that can handle a large
number of studies, consisting a large collection samples (thousands) and millions of cells. With
the exception of Seurat [13], SAUCIE [14] and Scanorama [15], several of these rapid procedures
(deepMNN [16], BBKNN [17], Harmony [18] , scVI [19], scANVI [20] and DESC [21]) focus
on extracting the joint embedding and do not return adjusted gene expression matrices. With the
growing need for sample level analysis, the lack of adjusted expression matrices restricts the util-
isation of such integrative results and diminishes their potency and generalizability. As a result,
the next generation of atlas-scale integration algorithms should be capable of integrating a large
number of studies and producing consensus cell type maps as well as adjusted expression matrix
for further downstream analysis. In particular, these methods need to overcome the computa-
tional challenge of integrating over a million cells and create adjusted gene expression matrix for

all genes for downstream analysis.

To this end, we present scMerge2, a scalable, high-capacity algorithm that allows data inte-
gration of atlas-scale multi-sample multi-condition single-cell studies. We achieve this through
three key innovations in (i) hierarchical integration to capture both local and global variation be-
tween studies; (i1) pseudo-bulk construction to ensure computational scalability; and (iii) pseudo-
replication inside each condition to capture signals from multiple conditions. Our new scMerge?2
algorithm is able to integrate many millions of cells from single-cell studies generated from
various single-cell technologies, including scRNA-seq, CyTOF, and imaging mass cytometry.
Leveraging pseudo-bulk to perform factor analysis of stably expressed genes and pseudorepli-
cates, scMerge? is able to integrate five million cells from a large COVID-19 data collection with
over 1000 samples from 20 studies globally within a day. We further demonstrate that the integra-
tion using scMerge2 improves the performance of discriminating distinct cell states in COVID-19

patients with varying degrees of severity and facilitates diverse single-cell downstream analyses.

Results

scMerge?2 effectively integrates single-cell multi-sample, multi-condition data.

scMerge2 provides a scalable data integration method for the rapid growth of multi-sample,
multi-condition single-cell studies. This new extension of scMerge is specifically designed to

address unwanted intra- and inter-dataset variation that can overshadow true biological signals
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between conditions. In our previous study, we introduced scMerge, a novel algorithm that inte-
grates multiple single-cell RNA-seq data by factor analysis of stably expressed genes and pseudo-
replicates across datasets and enhances biological discovery, including inferring cell development
trajectories [22]. The integration approach supports diverse integration settings, enabling cross-
batch, cross-dataset, and cross-species discoveries. In particular, the semi-supervised aspect of
scMerge allows incorporation of prior knowledge facilitated by experimental design.

With the rapid emergence of multi-sample multi-condition single-cell studies and the in-
creased number of datasets for integration, our proposed scMerge2 addresses challenges asso-
ciated with scalability of cells and studies as well as producing analytically ready data (i.e. ad-
justed expression matrix). This is achieved via three key innovations as illustrated in Fig. 1.
First, hierarchical integration is used to capture both local and global variation. This is a clear
contrast to the conventional data integration that involves estimating unwanted variation across
all datasets as a whole. When integrating across a large collection (over 10) of datasets with
different pairwise differences, sequential integration better captures the difference in pairwise
variations. Second, pseudo-bulk construction is used to reduce computing load, allowing for the
analysis of datasets containing millions of cells. Third, pseduo-replication inside each condition
is built, allowing for the modelling of numerous conditions. Details of these components are
included in Methods. In essence, scMerge2 takes gene expression matrices from a collection
of datasets and integrates them in a hierarchical manner. The final output of scMerge2 is a sin-
gle adjusted expression matrix with all input data matrices merged and ready for downstream

analysis.

scMerge2 outperforms existing integration methods in detecting differential

expression.

We demonstrate the performance of scMerge2 in removing multi-level unwanted variation of
multiple scRNA-seq datasets from three aspects. Firstly, to illustrate the effectiveness of the hier-
archical integration strategy, we applied scMerge?2 to a 200k subset of cells from two COVID-19
studies (Liu and Stephenson) that contain three cohorts/batches within each dataset. We com-
pared the performance of two different scMerge2 settings: scMerge2-h, where we performed
intra-study correction before inter-study correction; and scMerge2, where we integrated two
datasets (6 batches) in one go. We find that integrating the two studies in a hierarchical man-

ner improves the performance of data integration, especially in terms of revealing the cell type
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signals (Fig. 2a-b). Compared to the other data integration methods (Seurat, SeuratRPCA,
fastMNN, Liger and Harmony), both settings of scMerge2 (scMerge2-h and scMerge2) have
overall better performance in achieving the balance of batch effect removal and biological signal
preservation, based on the five evaluation metrics that quantify the data integration performance

(Fig. 2a-b).

Next, we investigate the performance of the adjusted matrix in identifying genes that are dif-
ferentially expressed between two conditions (termed as differential state (DS) analysis by [23])
through a simulation study. We generated synthetic single-cell datasets with two batches and
multiple samples from two conditions using a simulation framework that extended from scDe-
sign3 model [24], with known ground truth DS genes (Supp Fig. S1-S2) (See Methods). Cell-
type-specific DS analysis was performed using the limma-trend algorithm [25] on the sample-
wise aggregated data by taking the mean of the log-transformed or adjusted data. By simulating
data with different log fold change (1.1 ~ 2) and proportions of DS genes (5% and 10%), we
find that scMerge2 substantially outperforms the other two data integration methods that also
return adjusted matrices in detecting DS genes (Fig. 2¢ and Supp Fig. S3). scMerge2 has much
lower FDR than fastMNN and Seurat, and higher TPR compared to the unadjusted data (Supp
Fig. S4-S5), illustrating that scMerge2 outputs an adjusted matrix with less unwanted variation

for single-cell downstream analysis.

Finally, we illustrate the robustness of scMerge2 by varying the key tuning parameters of the
algorithm, including the number of unwanted variation factors, the number of pseudo-bulk, the
ways of pseudo-bulk construction and the number of nearest neighbours. As shown in Fig. 2d
and Supp Fig. S6, despite varying the settings in the algorithm, scMerge2 has consistently better
performance than the other methods. Together, these results demonstrate the effectiveness and

utility of scMerge2 in data integration of scRNA-seq data.

scMerge? is scalable to integrate five millions COVID-19 PMBC cells.

To demonstrate the scalability of scMerge2 in integrating multi-sample multi-condition single-
cell data, we performed scMerge2 on a COVID-19 data collection of consisting of ~ 5m cells
from 1298 samples (963 individuals) PBMC samples from 20 studies worldwide (See Methods).

We considered the cell type annotation refined by scClassify as pseudo-replicates information.
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We also used a hierarchical integration strategy, where we first performed integration of different
cohorts within one study respectively (e.g. Ren, Stephenson, Liu and Schulte-Schrepping) and
also two studies with distinguished sequencing depth, followed by the integration of 13 studies
with small number of cells (hierarchical integration strategy shown in Supp Fig. S7). We then in-
tegrated all the data in the next step. An inspection of UMAP visualisations shows that scMerge?2
effectively integrates the 20 studies, while preserving the multi-level cell type information (Fig.
3a, Supp Fig. S8). A UMAP plot faceted by dataset further illustrates the successful removal of
dataset induced unwanted variation (Supp Fig. S9). The quantitative evaluation metrics further
confirm this observation, where we find that scMerge2 reduces the technical variation caused by
dataset, protocol and technology, resulting in improved cell type identification (Fig. 3b, Supp
Fig. S10).

To further illustrate the utility of scMerge2, we demonstrate that it improves the prediction of
disease severity in the COVID-19 dataset using cell-type-specific expression. Comparing to the
original raw log-normalised data, identifying cell types with scMerge?2 substantially improves the
prediction accuracy rate of disease severity for all cell types that have more than 1% abundance
in the data, with a 3.2% increase in accuracy on average (Fig. 3¢ and Supp Fig. S11). Notably,
we find that CD14 Monocytes have the highest discriminative power for disease severity among

all cell types, and scMerge2 is able to further improve the accuracy rate from 81.3% to 83.6%.

scMerge2 enables differential cell state detection for multi-conditions data.

We next illustrate how the adjusted expression matrix output from scMerge?2 facilitates several
downstream analysis of single-cell multi-condition multi-sample studies, including differential
abundance analysis and differential expression analysis. As a case study, we focus on the analysis
of identification and characterisation of cell states that are distinguished between the moderate
and severe patients using COVID-19 data collection. We first calculated the differential abun-
dance score for each cell to quantify the difference between the moderate and severe patients
using DASeq [26]. As shown in Fig. 4a-b, we are able to identify regions on the UMAP plots
that are associated with the disease severity. As expected, when mapping these regions to cell
types, we find that neutrophils have the highest proportion of cells that are associated with se-

vere disease outcome as their accumulation marks the critical illness of COVID-19 patients [27]
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(Supp Fig. S12).

Next, we investigate the cell-type-specific underlying biological process pathways that are
associated with the disease severity and time for each cell type. We performed the differential
expression analysis on the cell-type specific pseudo-bulk by considering both disease severity and
days from onset of symptoms as covariates, followed by gene set enrichment analysis (GSEA).
The pathways enriched with disease severity include hallmark TNF« signaling and hallmark in-
flammatory response (Fig. 4c¢) and are upregulated in severe patients in most of the cell types,
while GO IL6 positive production and Hallmark MTORCT1 signalling are upregulated in moder-
ate patients. Notably, we observe that a few pathways reveal distinct enrichment patterns between
different cell types, including GO response to type-1 IFN. We find that for CD14 Monocytes (Fig.
4c-d), the type-I IFN signatures is negatively associated disease severity and also decrease over
time, consistent with the previous findings [28] (Fig. 4d). While other cell types such as CD4
CM and CD4 Naive have an enrichment of type-I IFN in severe patients, this enrichment is also
decreased over time. Together, these analysis demonstrate that the integration of multiple stud-
ies using scMerge2 enables a variety of data analysis approaches that address a wide range of

biological questions.

scMerge2 is versatile to other single-cell platforms.

One of the key strengths of scMerge? is its generalizability to data from multiple biotechnology
platforms. We illustrate that scMerge2 is generalizable to other single cell modalities including
spatially resolved modality and multi-modalities. We start by illustrating that our algorithm is di-
rectly applicable to other single-cell single-modal data, using two mass cytometry time-of-flight
(CyTOF) datasets as an example. The two datasets (COMBAT (CyTOF) and Geanon (CyTOF))
contain more than 11 million cells in total collected from healthy controls, COVID-19 and sepsis
patients, with 18 immune cell populations and activation states. The UMAP plots constructed
after integration (Fig. Sa) reveal that the two datasets are successfully integrated compared to
the raw data. Notably, we find that Granulocytes (Neutrophils and Eosinophils), cell types that
are only present in Geanon (CyTOF) but not COMBAT (CyTOF), are represented as a discrete
and distinct cluster, suggesting that scMerge?2 is able to reveal the unique cell types existing only
in specific batches. An inspection of the cell-type-specific marker expression distribution further

confirms the effective dataset effect removal (Fig. Sb and Supp Fig. S13).
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Next, we show that scMerge2 enables normalisation of spatially resolved single-cell data for
better cell type identification with specific cluster markers. We applied scMerge2 to a COVID-
19 Imaging Mass Cytometry (IMC) dataset [29], followed by clustering using FlowSOM [30],
with the number of clusters set equal to the manually annotated cell types in the original study.
We find that compared to the original data, the scMerge2 adjusted matrix provides better clus-
tering results that are more consistent with the manual cell type annotation (Fig. Sc), with ARI
increasing from 0.13 to 0.58. These clusters are also marked by more specific enrichment of
protein markers (Fig. 5d). For example, scMerge?2 is able to reveal a cluster of T cells that
uniquely expressed CD8a but not CD4 and a cluster that expressed of CD4 but not CD8a. Sim-
ilarly, scMerge2 identifies the B cell cluster that has high expression in CD20, while clustering
directly on the unadjusted matrix results in several clusters with qualitatively similar enrichment

of markers, lacking the ability to identify distinguished cell types (Fig. Se).

Lastly, we demonstrate scMerge2 can efficiently remove the unwanted variation of multi-
modal data, such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-
seq) data that concurrently measure RNA and cell-surface proteins of the same cell. In this case,
we can remove the unwanted variation for each of the two modalities separately using scMerge?2.
We first examined the quality of data integration using two CITE-seq datasets with six batches
and 87 common surface proteins measured (The same data used in Fig. 2a-b). We find that
scMerge?2 utilising the hierarchical merging strategies achieves a better balance between batch
effect removal and cell type signal preservation than most of the other methods, with comparable
performance with Harmony (Supp Fig. S14). Similar to the findings in scRNA-seq, using
surface protein expression adjusted by scMerge2 improves the severity prediction, compared
to the raw data (Supp Fig. S15). With the adjusted expression matrix of each modality, one can
perform any multi-modal integration approach to obtain the joint latent space and visualisation
of cells with batch effect removal [13, 31, 32]. As an example, we used ]-UMAP that generates
joint visualisation of the adjusted multi-modal data [32], which further confirms the effective

integration of the six batches from the two CITE-seq datasets (Fig. 5f).
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Discussion

We have presented scMerge2, a scalable approach for integrating data from large-scale multi-
sample multi-condition single-cell studies. This was achieved via the use of three essential in-
novations with hierarchical integration, pseudo-bulk building to minimise processing demand,
and pseudo-replication that accounts for circumstances with phenotypes. Our algorithm enabled
the atlas-scale integration of 20 global COVID-19 studies with around 5 million cells from 963
donors, 1298 samples. We illustrated that scMerge2 data integration enabled the detection of
distinct cell states in COVID-19 patients of variable severity. Finally, scMerge2 merged millions
of cells from a number of single-cell technologies, including as CITE-seq, CyTOF, and image

mass cytometry.

The type of output extracted from atlas-scale data integration has an important impact on
the analytical question of interest. To date, there are three standard types of output from re-
cent atlas-scale data integration (defined as over millions of cells). These are (i) an adjusted
gene expression matrix, (ii) a low-dimensional projection of the data, known in machine learning
as “embeddings”; and (iii) a unified graph representation. Various methodological approaches
may provide one or more of these types of outputs. In general, there are a number of existing
approaches that use modern deep learning-based algorithms to achieve fast, atlas-scale integra-
tion. Given that single-cell data are ultra sparse high-dimensional datasets, “embeddings” are a
natural output since they are effective for joint data visualisation and reduce memory load. How-
ever, an embedding output by itself increases interpretability challenges since a low-dimensional
representation does not naturally lend itself to the development of interpretable features such
as cell-cell interactions or pathway information, which is crucial for downstream case-control
studies or multi-treatment analysis. One step towards achieving a balance between generating
adjusted expression matrices and appropriate memory usage is to enable selective adjusted out-
put. For example, scMerge2 enables the extraction of a subset of genes (such as the top n highly
variable genes) of the adjusted matrix for all 5 million cells in the COVID-19 data sets as well
as outputting the adjusted matrix by batches, allowing users to effectively balance computational

burden with specific downstream analytical strategies.

The order of integration is an important factor in hierarchical merging, which can be knowledge-

guided or data-guided. Our current method is based on a data-guided order, in which we integrate
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batches within one study or studies with similar size first. In contrast, a priori information such
as sequencing platforms or cell extraction techniques can be used in knowledge-guided order
of integration. Noted that the hierarchical data integration design can be broadly classified into
two strategies [33], balanced trees and concatenating approaches. The balanced tree approach
integrates between pairs of datasets at different levels of the tree, and the procedure is continued
until all data is merged. The concatenating approach sequentially integrates datasets, therefore
for n data sets, this will need n — 1 steps of integration. Previous studies have found that nor-
malisation results are very similar between the two types of integration tree structures [33]. The
key difference between the approach is computational burden with the concatenating approach
being more computational intensive. Currently, the scMerge2 approach is closer to the balance

approaches allowing for many datasets to be added simultaneously at each level.

We demonstrated that our curation and effective integration of the COVID-19 gene expres-
sion data with over 1000 individual samples facilitates flexible downstream meta-analysis, offer-
ing the opportunity to examine particular sub-populations that cannot be adequately addressed
with individual datasets. Scientists, for example, may investigate the molecular differences un-
derlying mild and severe outcomes for a given age group (e.g., middle-aged individuals between
41 - 50). Such analyses are difficult to perform in individual studies due to the limited sample

sizes. This challenge can be overcome by merging several datasets.

Recent technological advancements substantially extend beyond scRNA-seq, enabling other
data modalities (e.g. DNA, proteins) to be profiled in individual cells providing a more com-
prehensive molecular view of the cellular regulation. For the datasets with multi-modal profiles
measured for the same cell (paired data), such as CITE-seq and ASAP-seq, scMerge2 can be
applied to integrate data from different batches by either considering each each modality as a
separated matrix, or concatenating the data into a single matrix. Currently, the integration il-
lustrated in this paper was done within each modality. In the future, we can incorporate the
multi-modal information to better identify the pseudo-replicates of the paired data as well as

utilise the higher-order relationship of features to improve the integration performance.

In summary, scMerge?2 enables atlas-scale integrative analysis of large collections of single-
cell data. As the availability of public multi-sample multi-conditional single-cell studies con-

tinues to surge, scMerge2 demonstrates its ability to integrate over 5 million cells for further

10


https://doi.org/10.1101/2022.12.08.519588
http://creativecommons.org/licenses/by-nc-nd/4.0/

304

305

306

307

308

309

310

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.08.519588; this version posted December 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

downstream analysis, thereby enabling effective downstream meta-analysis. Notability, when
compared to the raw log-normalised data from the outset, we demonstrated that scMerge?2 offers
a significant improvement in the prediction accuracy rate across all of the main cell types. The
merge of large collections of scRNA-seq datasets from several cohorts further enables identifi-
cation of distinct cell states in COVID-19 patients whose symptoms are of varying degrees of
severity. Finally, scMerge2 has the ability to combine the data from millions of cells obtained

from a variety of single-cell technologies, such as CITE-seq, CyTOF, and image mass cytometry.
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Methods

scMerge2
Single-cell grouping within one batch

Following the same principals as scMerge, the new scMerge2 approach begins by grouping the
cells that share similar biological signals within each dataset or batch. We can approach this in
two ways: one way is to perform unsupervised clustering; the other way is using results from

supervised cell type classification.

* Clustering-based grouping: This is performed by default when no cell type label is used as
input. Firstly, the top 2000 highly variables genes (HVG) are selected using getTopHVGs
in the scran R Package, using batch information as block information. For data like CyTOF
and ADT from CITE-seq data, this step will be skipped and all features will be used in the
next step. Next, within each batch, instead of using k-means clustering as in the previ-
ous version, we construct a shared nearest neighbour graph on the gene expression of the
HVGs, with a default number of neighbours of 10, followed by louvain clustering. This
therefore relieves the need of predefining the number of clusters that is required in our

previous version.

» Reference-based grouping: This refers to the use of supervised cell type classification to
predict or annotate the cell types using one or more reference datasets. This ensures the
cell-type annotations are consistent among datasets. Cell type classification algorithms
(e.g. scClassify [34] and SingleR [35]) can also be used and the reference dataset can be
external datasets with similar cell types to the data to be integrated. This approach unifies
cell type annotation across all datasets and eliminates the need for clustering and cell type
annotation after data integration. It is noted that this approach is used in the COVID-19

case study to integrate the data collection of 20 datasets.

Pseudo-bulk construction

With the cell type grouping of each batch determined, scMerge2 next constructs multiple pseudo-
bulk within each cell type. The pseudo-bulk construction significantly reduces the computational

time in two main steps of the original version of scMerge [22]: identification of pseudo-replicates
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s and RUVIII model estimation. scMerge2 provides two approaches to calculate cell-type-specific

a0 pseudo-bulk for each batch:

341 * when count data are not available for all datasets, for each cell type grouping, we randomly
342 assign the cells into & subsets and take the gene-wise average of each subset as one pseudo-
343 bulk. This therefore results with £ pseudo-bulk for one cell type grouping.

344 * when counts data are available for all data, we can perform a similar pool-and-divide strat-
345 egy that is proposed in RUVIII-NB [36]. Here, we can have two strategies in pooling the
346 cells: (1) assign the cells based on library size; (2) randomly assign the cells into k subsets.
347 Then we gene-wisely take the sum of the counts for each subset and generate the counts
348 data following a negative binomial distribution. While the pseudobulk matrix generated by
349 this strategy is able to maintain the gene mean-variance relationship [36], we find that this
350 approach does not improve the quality of data integration in scMerge2 (Supp Fig. S6).

st Noted that k is set as 30 by default for cell type group with more than k£ number of cells, and
352 pseudo-bulk are not constructed for cell types with less than £ cells, i.e., all the cells from these

ss3  cell types will be retain for the next steps of scMerge2.

s« Pseudo-replicates identification across batches in scMerge2

355 Replicates are considered as the samples with similar biological variation across batches. Con-
36 struction of pseudo-replicates is one of the key steps in scMerge which later are utilised to es-
357 timate the unwanted variation from the data. In scMerge, we proposed a five-step procedure to
sss  1dentify pseudo-replicates by clustering on a mutual nearest cluster (MNC) graph, where each
sse  node of the MNC graph indicates a group of cells in a batch. scMerge?2 follows similar steps as

se0 the previous version, but with two major improvements:

361 * The pseudo-replicates identification is based on the pseudo-bulk matrix to reduce the com-
362 putational time;

363 * For data with multiple conditions (or other observed biological factors), scMerge2 allows
364 the MNC graph to be constructed within each condition to preserve the biological variation.
365 Note that this strategy can only be used when the batches to be merged have at least one
366 common condition and can only be performed in the condition with multiple batches.

13
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37 Estimation of RUVIII model using pseudo-bulk

ss The underlying model of scMerge2 is the fastRUVIII model that takes the gene-wise standard-
sse 1zed gene expression matrix that is log-transformed and cosine normalised as input. Let Z,
a0 be the standardized data, where ¢ = 1,...,C, with C indicates the number of cells from all
a71 batches/datasets in total; g = 1, ..., G, with GG indicates the number of genes. Following the same

a7 annotation in scMerge, we formulate Z¢ . using RUVIII model as

Zoxa = XoxpBpxa + Weskurxa + €oxas

a7z where X denotes the matrix of observed factors of interest; p denotes the number of factors
a4 of interest; W denotes the matrix of unobserved factors of unwanted variation; « denotes the
ars  coefficient of WW; k denotes the number of unwanted factors, which is unknown (set as 20 by
are  default for scRNA-seq data, and 10 for ADT from CITE-seq data and CyTOF data); e denotes the
a7 random error. Following the RUVIII model estimation proposed in [37, 22], the model removes

a7s  the unwanted variation from Z¢ . In summary, it follows the three steps:

379 » Step i: estimate « via the first k right singular vectors of Singular Value Decomposition
380 (SVD) on Ry, Z, where Ry; = 1—M(MT M)~ M7, with the replicate matrix M € RE*V,
381 N indicates the number of types of pseudo-replicates;

32 o Step ii: estimate W by Weyr = Z.al(a,a7)7Y, where &, € RF*Cs indicates the the
383 submatrix of o, which columns include only the genes that belongs to single-cell stably
384 expressed genes (SEG) with number of genes as G5 (SEG selection and evaluation can be
385 found in [38]);

386 » Step iii: adjust the matrix by subtracting the estimated unwanted variation component:
387 Zoxg = Zoxa — Woxnbixa-

ss SVD is a computationally intensive algorithm, especially for large matrices like single-cell data.
s We argue that for Step 1, we do not need the full single-cell data to estimate «. Instead, we can
a0 subsample the data or construct cell-type-specific pseudo-bulk which are informative enough
s91  to approximate the full single-cell matrix to reduce the computational burden in estimation of
sz . Let Zg, <« denote the the “sketch” of the full single-cell matrix derived from pseudo-bulk
303 construction step, where the column denotes the number of the genes, with the same dimension

ase  as the full data Z; the row now indicates the number of pseudo-bulk, with dimension C},. We then
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construct pseudo-replicates based on the pseudo-bulk matrix Z, to obtain the replicate matrix
M, € RC%*No (See Section Pseudo-replicates identification across batches in scMerge2 for more
details). We estimate a° using the first k right singular vectors of SVD on Ry, Z,. By treating
&’ as the approximation of &, we then next bring back the full single-cell matrix Z to estimate

W and adjusted Z following the same Steps 2-3 above.

Hierarchical merging

When we integrate data from different studies, the unwanted variation can come from multiple
levels, such as batch effect of samples within each study but also between studies. In this case,
a hierarchical integration strategy would be useful to first adjust intra-study unwanted variation
effect, and then perform the inter-study data integration. On the other hand, when we integrate a
large number of studies, such as the COVID-19 data collection in this paper, starting from cor-
recting the data of a smaller set of studies can be a more efficient way to estimate the parameters
of the model to harmonise the data [33].

scMerge?2 allows users to input a hierarchical tree strategy to perform the data adjustment in
a multi-level manner. The data adjusted on the current level will be used as input on the next
level. For the COVID-19 200k data collection, we first integrated the the 3 batches within each
dataset before integrating the two datasets. For the COVID-19 scRNA-seq data collection, we
first performed the adjustment on four datasets that have multiple cohorts (Ren, Stephenson, Liu
and Schulte-Schrepping) to correct the intra-study unwated variation (where the cohort label is
used as batch label) as well as between the two datasets that have very different sequencing depth
(Arunachalam and Wilk). Next, we performed the adjustment of the 13 datasets with less than
200,000 cells. We finally integrated all the 20 studies together, where the study label is used as
batch label.

Data collection and preprocessing
COVID-19 scRNA-seq data collection

We collected 20 public COVID-19 PBMC and whole blood scRNA-seq datasets (Supplementary
Table 1). The raw count matrix of each dataset is size-factor standardized and log-transformed
using logNormCount function from scater [39] R package. To unify the cell types from differ-
ent studies, we performed scClassify to reannotate the cell types based on a 3-level hierarchical

cell type tree [34], using three distinct reference datasets that were either generated from whole
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blood (Wilk) or generated by CITE-seq protocol that contains multi-level annotations (Liu and

Stephenson).

COVID-19 200k CITE-Seq data collection (COVID-19 200k)

To benchmark scMerge2 with other methods, we subset 200k cells from the two COVID-19 stud-
ies (Liu and Stephenson) as a benchmarking dataset that with 17446 genes, 87 proteins and 184
samples from 3 conditions (Healthy, Mild/Moderate, Severe/Critical) to assess the concordance
performance of the adjusted gene expression matrix after data integration. Both of these two
studies have three batches within the studies, which allows us to evaluate the hierarchical merg-
ing strategy in scMerge?2 (i.e., scMerge2-h), where we first integrated the three batches within
each batch, with kgyy = 10 (kryy denotes the number of unwanted variation) and then performed
the integration across two datasets, with kgryy = 10.

The raw antibody derived tag (ADT) counts matrix of each dataset is size-factor standardized
and log-transformed using the logNormCount function from scater [39]. In scMerge2, we used

all features as negative controls and used kryy = 3 in both levels in scMerge2-h.

COVID-19 60k data collection (COVID-19 60k)

To evaluate the robustness of the parameters in scMerge2, we further created a smaller subset
of data, which is derived from selecting the cells from moderate/mild patients of the Stephenson
data from the COVID-19 200k data. The selected subset has 66967 cells from 58 samples and

17446 genes where the aim is to integrate three different batches in the Stephenson data.

COVID-19 CyTOF data collection

Two public COVID-19 PBMC CyTOF datasets (Supplementary Table 1) were downloaded
from FlowRepository with ID FR-FCM-Z2XA for Geanon data [40] (4,747,543 cells from 21
samples) and zenodo https://doi.org/10.5281/zenodo. 6120249 for data from gran-
ulocyte depleted whole blood in COMBAT study [41] (7,118,158 cells from 160 samples), which
both contain the expression matrix and cell type annotations. To combine the two studies, we
manually unified antibody names and the cell type annotations to 18 cell types. The expres-

sion matrices were then used as input for scMerge2. Noted that we used all features as negative

controls in scMerge?2.
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COVID-19 IMC data collection

The COVID-19 IMC dataset generated by [29] aims to assess the pathology of lungs across
Covid-19 disease progression. The dataset, including cell intensities and metadata, was ob-
tained from the repository https://zenodo.org/record/41394434#.Yw_gk 9LMKXI
provided in the publication and contained 237 images generated from 23 samples across 43 mark-
ers. In the original manuscript [29], the cell types were annotated by first clustering using the
Leiden algorithm and then manually curated into 17 meta-clusters based on marker expression,

phenotype, and proximity to lung structures.

Evaluation
Part I - Simulation

Simulation framework. We adopted a simulation framework to generate single-cell multi-condition

and multi-sample data with batch effect based on scDesign3 [24]. This framework is able to sim-
ulate single-cell count data that preserve the gene-wise correlation structure. Similar to many
other simulators, scDesign3 required a a real training scRNA-seq data to estimate the required
parameters. Here, we have taken a subset of Stephenson data that contains four cell types (B cell,
CD14 Monocytes, CD4 T and CD8 T) and 23 samples from two conditions (Healthy and Severe)
as training data. From each sample, we randomly subsampled 400 cells. Only genes that were
in the top 2000 highly variable genes and expressed in more than 2% of the cells were included.
We further excluded any genes that were originally considered as differential expressed (with
adjusted p-value < 0.2). This resulted in the training data with 9200 cells and 1196 genes from

23 samples. Our simulation framework includes three main steps.

Step 1: Construct a null dataset with no differentially expressed genes by first permuting the
condition labels in the training data. We then estimate both cell-type and sample variation in
the data using the function fit_marginal() in scDesign3 that fits the marginal distribution of each
gene using a negative binomial distribution with the mu formula ~cell type + sample
ID + condition and the sigma formula ~1. Then we used a vine copula to estimate the

gene correlation from the real training data.

Step 2: Introduce the batch effect to the simulated data. Assuming all genes are affected by
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ss3  the batch variation, we drew a vector with length equal to the number of genes from a log-normal
484 distribution with mean log(2) and standard deviation 0.43 as batch effect on the mean of the gene
ass distribution. The direction of the batch effect is randomly assigned to each gene.

486

487 Step 3: Introduce the ground truth differential state genes to the simulated data. For each
a8 cell type, we randomly select p% of genes to be differentially expressed between two conditions
a9 (p = 5,10 in our study). The log fold changes (logFC) vector is simulated from a log-normal
a0 distribution, with the mean ¢, and the standard deviation o;y.. In our evaluation setting, we
s01 consider a range of logFC values from j5. = 1.1 to 2 in 0.1 increment and o;;. = 0.43. The
a2 direction of the regulation is randomly assigned to each DS genes using a binomial distribution
s93  with probability 0.5.

404

495 Lastly, with the fold change of both batch effect and condition effect combined with the
a6 parameters estimated in Step I, the simulated single-cell data is generated from the negative bi-
a7 nomial distribution using strategies implemented in simu_new() of scDesign3. For each value of
a8 logFC, we simulated 18,400 cells (23 samples, each sample with 800 cells), with 5% or 10%
s99 differential states genes within each cell types.

500

st Evaluation metrics and settings - Differential states analysis. To assess the impact of data inte-

so2 gration on downstream analytics, we considered the performance of the differential states anal-
s03 ysis results on the simulated data. Our evaluation is based on three metrics; false discovery rate
s« (FDR), true positive rate (TPR) and F1 scores. For each log-transformed simulated matrix with
sos dimension G x C', with S samples and 7" cell types, we took the gene-wise average of each sample
sos within each cell type, resulting in a G x .S matrix for each cell type. We then performed a differ-
so7 ential state analysis using the limma-trend algorithm [25] on the cell-type specific sample-wise

so8  aggregated data using the default parameters.

soo  Part II - Real data comparison

sio  Evaluation setting for sScRNA-seq and CITE-seq data collection.

511 1. Signal to noise ratio: We used ARI and ASW (see evaluation metrics below) to evaluate
512 the concordance of clustering results with respect to the cell type labels and the datasets.
513 A desirable data integration method will show a high concordance between the clustering
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result and known cell type information (signal refers to cell types) and a low concordance

between the clustering results and known datasets information (noise refers to batch effect).

2. Severity prediction: We aggregated cell-type-specific average expression of each sample to
a gene by sample matrix for each cell type. We then used each cell-type specific matrix to
predict the sample condition (Healthy, Mild/Moderate and Severe/Critical) using support
vector machine (SVM) with radial basis function kernel. The prediction performance was
evaluated using repeated 5-fold cross validation with 20 repeats. We evaluate the prediction

performance using F} score.

3. Visualisation plot: For scRNA-seq data, we used Uniform Manifold Approximation and
Projection (UMAP) to visualise and evaluate the results of the adjusted expression matrix.
For CITE-seq case study, we used j-UMAP to jointly visualise the two modalities [32],
where we first performed PCA within each modality, and then j-UMAP was performed to

obtain the joint UMAP embeddings of the two modalities.

Evaluation on IMC data collection. We applied scMerge2 to perform data integration of the 23

samples. This is achieve by first filtering and selecting the data using the 38 markers specified in
the original publication [29] and removing all undefined cell types (i.e. cells having cell type an-
notation as “nan”). Next, considering sample labels as batch information, we applied scMerge2
with settings Aruv = 2, KpseudoBuik = 3, Kcelype = 20, using all markers as negative control genes
and highly variable genes. Thirdly, unsupervised clustering was performed on both the unnor-
malised and scMerge2 normalised datasets using the FlowSOM [30] algorithm with 17 clusters.
The Adjusted Rand Index (ARI) was used to compared the concordance between this unsuper-
vised clustering with the manually curated cell types in the original manuscript [29]. The results
are visualised using heatmaps showing the average marker abundance in the cell types. Average
marker abundance were generated after scaling the marker expression by computing the ratio of

the mean of each marker and its standard deviation.

Sensitivity analysis of scMerge2. We examined the robustness of the following parameters in

scMerge2: the number of pseudobulk constructed; the number of neighbours in SNN graph;
the pseudobulk construction strategy and the number of unwanted variation. We performed our
sensitivity analysis on the COVID-19 60k data on a number of settings for each of the four

parameters as below:
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* Number of pseudobulk constructed within each group: 10, 20, 30, 40 and 50

* Number of neighbours in SNN graph: 5, 10, 15, 20, 25 and 30

* Ways of pseudobulk construction: Default, Pool-Divide, Pool-Divide (Random)
e Number of factors of unwanted variation to be removed: 10, 15, 20, 25 and 30

For each setting, we repeat the analysis 10 times with a different seed and assess the concordance
performance of the signal to noise ratio using ASW and ARI as evaluation metrics as describe in
the Section Evaluation metrics. We compared against benchmarking methods described in the

Section Benchmarking methods.

Evaluation metrics

We used three metrics to assess the performance of data integration results from different meth-

ods. Details of the evaluation metrics are described as follows:

* Adjusted Rand Index (ARI) - Clustering analysis: We used ARI to quantify the concordance
of the clustering results with respect to the cell type (ARI (cell type)) and batch labels
(ARI (batch)). The clustering results for all methods were derived from first building
a shared nearest neighbour from the batch corrected embeddings with a default number
of neighbours of 10, followed by louvain clustering. For scMerge2, the batch corrected

embeddings were derived from the top 20 PCs of the adjusted gene expression matrix.

» Average silhouette width (ASW) - Embedding visualisation: We calculated the average of
silhouette coefficients for each cell (ASW) by considering two different groupings: cell
type (ASW (cell type)) and batch label (ASW (batch)), based on the Euclidean distance

obtained from the UMAP embeddings generated from the batch corrected embeddings.

e PCA scores: We calculated the coefficient of determination (R?) for a linear regression
model that fitted each of the first 20 principal component with technical variation labels,
such as batch, technology and protocol labels. We then calculated the product of the vari-
ance explained by each principal component and the corresponding R2. The final PCA
score was calculated by summing across the products, which quantify how much the PCs

explained the unwanted technical variation.
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Benchmarking methods

We benchmarked the performance of scMerge2 against five other methods that are designed
for data integration of scCRNA-seq datasets in terms of the batch corrected embeddings in the
COVID-19 200k data. Detailed settings used in each method are as follows:

(i) Seurat. Applying Seurat with canonical correlation analysis set as the reduction method.
Version 4.1.1. of the Seurat[42] R package was used. We first identified the variable features
within each batch using FindVariableFeatures() and then selected the integration features using
SelectIntegrationFeatures(). The integration anchors were then identified using FindlIntegratio-
nAnchors() with reduction set as “cca”, followed by IntegrateData() to obtain the integrated data.

(ii) SeuratRPCA. Similar to Seurat (CCA), within each batch, we first found the variable
features, with an addition PCA step performed. After integration features were selected, Find-
IntegrationAnchors() was performed with reduction set as “rpca”. Lastly, IntegrateData() was
performed to obtain the integrated data.

(iii) fastMINN. This is a fast version of the mutual nearest neighbors (MNN) method [43]. R
package batchelor v1.12.3 was used. We ran fastMNN() with default parameters to derived both
the batch corrected embeddings and adjusted expression matrix.

(iv) Liger. R package rliger v1.0.0 [44] was used. Online integrative nonnegative ma-
trix factorization was performed to obtain the batch corrected embedding following the tutorial
(https://github.com/welch-lab/liger/blob/master/vignettes/online_
iNMF_tutorial.html), where we first ran selectGenes() to select the features, scaleNotCen-
ter() to scale the features, and online_iNMF() with miniBatch_size = 5000 and max.epochs = 5.

(v) Harmony. R package Harmony v0.1.0 [18] was used. The PCA space returned by run-
PCA() of R package scater was used as input, and then HarmonyMatrix() was performed with

do_pca = FALSE to retain the batch corrected embedding.

COVID-19 downstream analysis
Differential abundance analysis on the cells from mild/moderate and severe/critical samples

Differential abundance (DA) analysis was performed on the cells from mild/moderate and se-
vere/critical samples using DA-seq [26]. The top 30 PCs derived from the adjusted expression
data were used as input for the algorithm to calculate the DA scores. A range of k values from 50

to 500 was used for the calculation of DA score vector with kKNN. We define salient differential
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abundance (DA) cells as cells with absolute abundance scores greater than 0.8.

Differential states analysis of DA cells

For all DA cells, we aggregated cell-type-specific abundance scores (or values) of each sample
to a gene by sample matrix for each cell type. Next, we model the aggregated cell-type-specific
abundance values across using a linear model with severity and the days since symptom onset
as covariates. We account for sample level variability using the limma-trend implementation in
the R package limma [25]. We then ranked the genes based on the test statistics. The preranked
based gene set enrichment analysis (GSEA) of the selected pathways that are related COVID-
19 disease mechanism [28] (as listed in Fig. 4c) is measured using the fgsea function in the
R package fgsea v1.22.0 [45]. Significant pathways are defined with adjusted p-value less than
0.05.
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Data availability

All data used in this study are included in Supplementary Data 1. All analysis was done in R

version 4.1.2.

Code availability

The code to run scMerge?2 is part of the scMerge package (Github: https://github.com/SydneyBioX/scMerge)

and is available under the GPL-3 license.
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Figure 2: (a) Scatter plots of evaluation metrics of data integration of a 200k cells subset of two
COVID-19 studies (Liu and Stephenson) for scMerge2, scMerge2-h (data merged in a hierarchi-
cal manner), Seurat, Seurat (RPCA), Harmony, fastMNN, Liger and Raw: Adjusted rand index
(ARI) (left panel), where x-axis indicates 1 minus batch ARI and y-axis indicates cell type ARI;
Average silhouette width (ASW), where the x-axis is 1 minus batch ASW and y-axis is the cell
type ASW (right panel). (b) Dot plots indicate the ranking of the data integration methods in
terms of five different evaluation metrics. The size of the dot indicates the scaled scores, which
are obtained from the min-max scaling of the original values. The overall ranking is ranked
based on the average ranking of the five evaluation metrics. (c) F1-score of the differential state
(DS) results of two selected cell types (CD14 and CD4) (row) of simulated data, with 10% DS
genes within each cell type, for scMerge2, Seurat, fastMNN and raw, varying simulated log fold
change (logFC) of DS genes (x-axis) and different threshold of adjusted p-value (column). (d)
Scatter plots of evaluation metrics of robustness analysis when varying the number of pseudob-
ulk constructed within each cell type of each batch, where the x-axis is 1 minus batch ASW and

y-axis is the cell type ASW.
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Figure 3: (a) UMAP of integration of COVID-19 data collection by scMerge2, colored by cell
type (left) and studies (right). (b) Evaluation metrics of PCA scores using dataset, protocol and
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score indicates better unwanted technical variation removal. (c) Prediction results of disease
severity using cell type-specific aggregated expression calculated from raw logcounts (blue) and

scMerge2 normalised results (red).
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Figure 4: (a-b) UMAP plot of integrated COVID-19 data coloured by (a) differential abundance

(DA) probability scores calculated by DA-seq between the moderate and severe patients, where

higher scores indicated the cells are more related to severe states; (b) DA region associated with

disease severity identified by DA-seq. (c) Enrichment scores of selected pathways for cell-type-

specific differential expressed genes distinguished the severity, where a higher score indicates a

higher enrichment associated with severe states. The size of the dot indicates the -log10 adjusted

p-value, where black circles indicate statistical significance (adjusted p-value < 0.05); and the

colour indicates the normalised enrichment scores of the pathways. (d) Scatter plots showing per-

sample gene set signatures (Type-1 IFN) calculated from the scMerge2 normalised data along the

days since symptom onset, coloured by disease severity of the patient. CD14 Monocytes, CD4

CM and CD4 Naive are shown as examples.
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Figure 5: (a) UMAP plots of CyTOF data colored by dataset (left) and cell type (right), for orig-
inal (first row) and scMerge2 (second row). The red circles highlight the cell types (Neutrophils
and Eosinophils) that are unique to Geanon (CyTOF). (b) Density plot of selected markers in spe-
cific cell types (CD4 in CD4 T cells), using original expression (first row) and scMerge?2 adjusted
expression (second row). Within a specific cell type, the distribution of the cell type markers are
expected to be similar between two datasets. (c) Heatmaps indicate the clustering results and
their fractions of concordance with the original cell type annotation given in [29] for Original
(first row) and scMerge2 (second row). Clearer diagonal structure illustrates better concordance.
(d) Heatmaps indicate the average marker expression, calculated from cells aggregated by clus-
ters for Original (first row) and scMerge?2 (second row). More specific markers for each column
and row indicates more distinguished clusters being identified. (e) Scatter plot indicates the av-
erage marker expression for each cluster, calculated using Original data (first row) and scMerge?2
adjusted data (second row), for two pairs of protein markers: CD4 vs CDS (first column); and
CD4 vs CD20 (second column). Low concordance between the two markers is expected to reveal
cluster with specific markers. (f) J-UMAP plot of integrated CITE-seq data colored by dataset
(left) and cell type (middle) and severity (right)3.3
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Supplementary Figure S1: UMAP plots of an example of simulated data (logFC = 1.2, DS% =

5%), coloured by batch, sample id, cell type and condition.
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Supplementary Figure S2: MA plots of the real and simulated data, where x-axis is the aver-

age of gene expression and y-axis is the difference of the gene expression between two condi-

tion: (a) Real data; (b) Simulated data using mu formula ~cell type, estimated from data

with one condition; (c) Simulated data using mu formula ~cell type + sample ID +

condition, estimated from data from two conditions but with condition label permuted. The

red dots indicates the simulated ground truth DS genes. The simulation strategy (c) exhibits a

more similar pattern with the real data, which therefore is used in this study.
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Supplementary Figure S3: Fl-score of the differential state (DS) results of four cell types (B
cell, CD14, CD4 and CDS) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS
genes (4th - 6th column) within each cell type, for scMerge?2, Seurat, fastMNN and raw, varying

simulated log fold change (IogFC) of DS genes (x-axis) and different threshold of adjusted p-

value (column).
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Supplementary Figure S4: FDR of the differential state (DS) results of four cell types (B cell,
CD14, CD4 and CD8) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS genes
(4th - 6th column) within each cell type, for scMerge2, Seurat, fastMNN and raw, varying sim-
ulated log fold change (1ogFC) of DS genes (x-axis) and different threshold of adjusted p-value

(column).
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Supplementary Figure S5: TPR of the differential state (DS) results of four cell types (B cell,
CD14, CD4 and CD8) (row) of simulated data, with 5% (1st - 3rd column) and 10% DS genes
(4th - 6th column) within each cell type, for scMerge2, Seurat, fastMNN and raw, varying sim-
ulated log fold change (logFC) of DS genes (x-axis) and different threshold of adjusted p-value

(column).
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Supplementary Figure S6: Robustness analysis of the tuning parameters of scMerge2 using
COVID-19 60k data: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus
batch ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where x-axis
indicates 1 minus batch ASW and y-axis indicates cell type ASW (right panel), when varying (a)
the number of pseudobulk constructed (10, 20, 30 (default), 40, 50); (b) the number of k used in
SNN graph (5, 10 (default), 15, 20, 25, 30); (c) different methods to construct pseudobulk. (d)
Number of unwatned variation factors (5, 10, 15, 20 (default), 25, 30).
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Supplementary Figure S10: Boxplots of evaluation metrics of COVID-19 scRNA-seq data col-
lection for scMerge2-h (data merged in a hierarchical manner) and Raw, where the first row
indicates the results of adjusted rand index (ARI): 1 minus batch ARI (left) and cell type ARI
(right); the second row indicates the results of Average silhouette width (ASW): 1 minus batch
ASW (left) and cell type ASW (right). For all of the four metrics, higher value indicates better
performance. Since the size of this data collection is large, we subsampled 1% of the cells to

calculate the metrics, and repeated this procedure 10 times.
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Supplementary Figure S11: Prediction results of disease severity using cell type-specific ag-
gregated expression calculated from raw logcounts (blue) and scMerge2 adjusted results (red),

evaluated by class-specific F1 scores.
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data are shown).
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Supplementary Figure S14: CITE-seq data example: (a) Scatter plots of evaluation metrics of
ADT data integration of a 200k cells subset of two COVID-19 studies (Liu and Stephenson) for
scMerge2, scMerge2-h (data merged in a hierarchical manner), Seurat, Seurat (RPCA), Harmony,
fastMNN, Liger and Raw: Adjusted rand index (ARI) (left panel), where x-axis indicates 1 minus
batch ARI and y-axis indicates cell type ARI; Average silhouette width (ASW), where x-axis
indicates 1 minus batch ASW and y-axis indicates cell type ASW (right panel). (b) Dot plots
indicates the ranking of the data integration methods in terms of 5 different evaluation metrics.
The size of the dot indicates the scaled scores, which are obtained from the min-max scaling
of the original values. The overall ranking is ranked based on the average ranking of the five

evaluation metrics.
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Supplementary Figure S15: CITE-seq data example: Prediction results of disease severity using
cell type-specific aggregated expression calculated from raw logcounts (blue) and scMerge?2 nor-

malised results (red), using (a-b) ADT expression and (c-d) RNA expression.
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