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ABSTRACT: 
The signed value and unsigned salience of reward prediction errors (RPEs) are critical to 
understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex 
(dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but 
conflicting evidence for both signed and unsigned activity has led to competing proposals for the 
nature of RPE representations in these brain areas. Recently, the distributional RL theory (dRL) 
has been used to explain RPE coding diversity in the rodent midbrain by proposing that 
dopaminergic neurons have differential sensitivity to positive and negative RPEs. Here, we use 
intracranially recorded high frequency activity (HFA) to show that this asymmetric scaling 
strategy captures RPE coding diversity in human dMPFC and INS. We found neural populations 
responding to valence-specific positive and negative RPEs, as well as unsigned RPE salience, 
which are spatially interleaved within each region. Furthermore, directional connectivity 
estimates suggest a leading role of INS in communicating positive and unsigned RPEs to 
dMPFC. These findings support asymmetric scaling across distinct but intermingled neural 
populations as a core principle in RPE coding, expand the scope of dRL, and reconcile 
longstanding theoretical debates on the role of dMPFC and INS in RL and cognitive control. 
 
INTRODUCTION 
 

Adaptive behavior requires predicting the stimuli or actions associated with 
valuable outcomes. Surprising violations of these predictions (i.e., reward prediction 
errors, or RPEs) are used to learn and update such associations1. The scalar value of 
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RPEs has both signed valence (better or worse than expected?), which reinforces either 
approach or avoidance behavior, as well as unsigned salience (absolute magnitude, or 
total surprise) that drives motivation, arousal, and motor preparation2. Dorsomedial 
prefrontal cortex (dMPFC) and the insula (INS) are two key brain regions that respond 
to both RPE valence and salience3,4. These areas have strong anatomical and 
functional connections and together form the salience network (also referred to as 
cingulo-opercular control network), which is involved in performance monitoring and 
integrating feedback to adjust cognitive control5–9. However, conflicting reports linking 
dMPFC and INS activity to a diverse range of signed and unsigned RPE signals have 
fueled long standing theoretical debates about their role in reward learning and 
cognitive control.  

Theories of salience network function have focused primarily on explaining 
dMPFC activity and can be classified into three families. In one family, theories posit 
dMPFC encodes positive and negative RPEs together as a “common currency” value or 
utility signal to inform action selection10–13. A second family suggests dMPFC is 
specialized for processing negative RPEs to coordinate responses to threats and 
pain14–16. A family of alternative theories argue that dMPFC primarily responds to 
various unsigned salience signals, either to adjust cognitive control17,18, orient towards 
novel or surprising stimuli19, or track uncertainty in the environment related to 
exploration and foraging20.  

One barrier to addressing these competing theories is that many studies assume 
positive and negative RPEs are represented together on a symmetric, linear scale 
relative to a single mean expected value. This classical reinforcement learning (RL) 
model is partly inspired by foundational observations of dopaminergic neurons that 
increase their firing rate to positive RPEs and decrease it to negative RPEs21,22. 
However, recent single unit studies in animals have demonstrated that different 
subpopulations of midbrain dopaminergic neurons separately code for positive RPEs, 
negative RPEs, and unsigned RPE salience23–27. Therefore, alternative computational 
models are required to account for the unexplained RPE coding diversity in 
dopaminergic neurons and reconcile theoretical debates on dMPFC and salience 
network function.   

The distributional RL theory (dRL) has offered an explanation for the diversity in 
neural RPE signals in subcortical dopaminergic neurons in rodents28. dRL posits each 
neuron represents a different expected value with varying levels of optimism and 
pessimism, such that the full distribution of possible outcomes is encoded by the 
population. This is achieved by allowing neurons to have valence-specific learning 
rates, so that they are differentially sensitive to positive and negative reward outcomes. 
This feature, known as asymmetric scaling, captures the heterogeneity of reward and 
punishment signals in subcortical dopaminergic neurons in rodents and has improved 
performance of deep RL models28–30. However, whether asymmetric scaling underlies 
signed and unsigned RPE coding in the human cortex is unclear. 
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Another challenge for assessing theories of neural RPE coding is that non-
human primate studies indicate populations of single units tracking positive and 
negative RPEs are intermingled within dMPFC11,31–33. These populations can represent 
information with heterogeneous coding schemes using both increases and decreases of 
activity34,35, which can confound valence-specific responses. Common analysis 
strategies in human cognitive neuroscience average activity within a region and are thus 
not well suited for resolving overlapping circuits with opposite valence coding and/or 
directionality of activity changes, particularly for data with lower spatial resolution such 
as scalp electroencephalography (EEG).  

Intracranial EEG (iEEG) recordings with high spatiotemporal resolution overcome 
some of the limitations of non-invasive human methods. A recent human iEEG study 
reported an anatomical dissociation between positive and negative RPE processing 
across regions associated with value-based decision making, including a bias for 
negative RPEs in anterior INS36. However, this study did not record from dMPFC and 
focused on region-level analyses that may obscure the different contributions of 
overlapping circuits within each region.  

A final important challenge in elucidating dMPFC function is to understand the 
flow of information in the salience network. Traditionally, dMPFC has been regarded as 
a control hub where information about task performance, conflict and reward is 
computed. However, similar representations of signed and unsigned RPE variables are 
also reported in the relatively less studied INS37–41, and recent evidence suggests that 
the INS may lead information transfer to dMPFC42–44. Experimental designs and 
computational models that dissociate signed (positive and/or negative) and unsigned 
RPEs are required to elucidate the role of the INS in RPE processing and 
communication. 

Here, we bridge these gaps between species, recording modalities, analysis 
methods, and computational models by testing whether the asymmetric scaling principle 
inspired by dRL can dissociate signed positive and negative, as well as unsigned RPE 
responses in local populations of human dMPFC and INS. We recorded iEEG data from 
10 epilepsy patients with combined coverage in dMPFC and INS while they performed a 
target time task that used difficulty to manipulate expected outcomes and provide the 
critical dissociation of RPE valence and salience45–47. Using high-frequency  activity 
(HFA) power as a marker of local population dynamics48–51, we compared the 
performance of three different linear mixed models in explaining single-trial dMPFC and 
INS responses to positive, negative, and neutral feedback during the task. We 
contrasted a signed model with linear RPE value as a classical RL predictor; an 
unsigned model with RPE salience (i.e., absolute RPE magnitude) as a surprise-
related predictor; and an asymmetric model in which absolute negative and positive 
RPE magnitude were entered as separate predictors. In the asymmetric model, different 
regression slopes for positive and negative predictors would indicate asymmetric 
scaling of RPEs. 
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We found that the asymmetric model explained RPE signals in dMPFC and INS 
better than traditional signed and unsigned models. Furthermore, individual electrode 
sites showed differential responsiveness to positive and negative RPEs, such that 
spatially intermingled neuronal populations separately encoded positive RPEs, negative 
RPEs, and unsigned RPE salience. Signed RPE value coding was relatively rare, 
arguing against theories claiming dMPFC primarily represents RPEs in a symmetric, 
linear scheme. Moreover, in disagreement with classical RL and dRL, a substantial 
portion of channel sites increased activity to negative RPE and decreased it to positive 
RPE. This “inverted” coding scheme invites future work to expand the scope of dRL. 
Finally, directed connectivity measures suggested positive and unsigned RPE 
information was primarily transmitted from INS to dMPFC, while negative and signed 
RPEs showed limited connectivity modulations. These results resolve competing 
theories of dMPFC function by demonstrating that asymmetric scaling enables both 
valence-specific and unsigned RPE salience signals that coexist within overlapping 
dMPFC and INS circuits, while also suggesting that INS plays a leading role in positive 
and unsigned RPE processing within the salience network.   
 
RESULTS: 
            We collected behavioral data from 10 patients while recording from implanted 
SEEG and ECoG electrodes in dMPFC (primarily mid-cingulate cortex with some 
supplementary motor complex and anterior cingulate sites), and INS (Fig. 1a; see Table 
1 for patient demographics, electrode coverage, and behavior). These patients 
performed a Target Time task that dissociates valenced RPE value and non-valenced 
RPE magnitude by using task difficulty manipulations to modulate reward expectations 
in an interval timing paradigm (Fig. 1b). Error tolerance was adjusted after each trial by 
two staircase algorithms to clamp accuracy at 74.4 ± 6.9% and 19.5 ± 2.6% (mean ± 
SD) in easy and hard blocks, respectively. This design dissociates outcome valence 
and probability by manipulating whether wins or losses are surprising, allowing 
separation of valenced and non-valenced RPE features. Four patients performed a 
version of the task that delivered neutral outcomes with no RT feedback on 12% of trials 
as an additional source of surprise. 
  
Behavioral modeling: 
            In order to quantify valenced and non-valenced RPE features, we used 
computational modeling of individual patient behavior to derive single-trial estimates of 
expected value, RPE value, and RPE magnitude. For each patient, we used logistic 
regression to predict binary win/loss outcomes across the entire session using error 
tolerance (Fig. 1c). This model yields patient-specific win probabilities for a given 
tolerance, which was linearly scaled to the reward function (1, 0, or -1 for winning, 
neutral, or losing outcomes) to quantify expected value for every trial. Single-trial RPE 
values were computed by subtracting the expected value from the outcome value, and 
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RPE magnitudes were defined as the absolute value of RPEs. Notably, different reward 
expectations across easy and hard conditions shift the RPE valence of neutral 
outcomes to negative in easy blocks and positive in hard blocks (see model predictions 
in Fig. 1d). 
 

 
 
Figure 1: Task design, behavioral modeling, and iEEG recording sites. (a) Reconstruction of iEEG 
recording sites in dMPFC (top) and INS (bottom) across all participants plotted on a standardized group 
brain after mirroring all channels to the right hemisphere for dMPFC and left hemisphere for INS. 
(b) Participants pressed a button to estimate the time when lights finished moving around a circle. The 
gray target zone cue displayed error tolerance around the 1 s target interval. Audiovisual feedback is 
indicated by the tolerance cue turning green for wins and red for losses. A black tick mark displayed RT 
feedback. For 4 patients, blue neutral feedback was given with no RT marker on 12% of randomly 
selected trials. (c) Tolerance and outcome data for an example participant. Larger markers show block 
level accuracy; smaller markers show binary single trial outcomes. Model fit using logistic regression 
provides single trial estimates of win probability, which is converted to expected value. (d) Predictions for 
RL model predictors. Error bars indicate standard deviation between participants. 
 
Positive and negative RPE are encoded in a separate, valence-specific manner. 

To determine whether neurons encode RPE value, RPE magnitude, or a 
distribution of positive and negative RPEs, we assessed how well different sets of RL 
variables predicted the neural data. Towards this aim, we extracted and normalized high 
frequency band activity (HFA) power from 70-150 Hz at each electrode in dMPFC and 
INS as a proxy for local population activity (Fig. 2a)48,51. Single-trial HFA power was 
averaged in 50 ms windows sliding by 25 ms from 0 to 600 ms after feedback onset, 
and these averaged HFA power values were predicted by the different RL variables 
using linear mixed-effects models across channels and subjects per region and window. 
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The resulting fixed-effects model coefficients for each window provide a time series 
depicting the evolution of the different predictors for a given region. 
  

 
  
Figure 2: Positive and negative RPE are encoded in a separate, valence-specific manner. (a) Top: Single-
trial HFA power at an example channel in the INS is plotted time-locked to feedback (markers at feedback 
indicate condition). Bottom: Condition averaged HFA power (error bars represent standard error of the 
mean). (b) Model performance comparison between the three sets of RL variables using Akaike 
Information Criterion (AIC) for each HFA power time window.  Lower values indicate better performance. 
(c) Region-level, fixed-effects coefficients from linear mixed-effects models predicting single-trial HFA 
power with three different sets of RL variables: Signed RPE (expected value + RPE value), unsigned RPE 
(expected value + RPE salience), and asymmetric RPE (expected value + positive RPE + negative RPE). 
HFA power was averaged in 50 ms sliding windows (step size of 25 ms). Significant model coefficients 
(qFDR < 0.05) are plotted in bold. Error bars correspond to 95% confidence intervals. 
 

For both regions, the asymmetric RPE model predicted HFA power best, 
followed by RPE salience and then RPE value (Fig. 2b). Model coefficients (Fig. 2c) 
indicate RPE value was significantly above zero only in INS, while RPE salience was 
significantly above zero in both regions. This suggests HFA power increases with larger 
RPE values and magnitudes. However, the asymmetric model coefficients indicated that 
positive RPE and negative RPE are encoded differently. Positive RPE is significantly 
associated with an increase in HFA power in both regions, peaking around 275 ms in 
INS and 300 ms in dMPFC after feedback onset. In contrast, the negative RPE effect, 
although qualitatively similar, was weaker in both regions and non-significant in INS. 
The fact that the asymmetric model performs best indicates that RPE value and RPE 
magnitude alone cannot explain HFA activity and that neuronal populations exhibit 
asymmetric coding of negative and positive RPEs. 
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Diverse responsiveness of neuronal populations to negative and positive RPE  
 

To understand how different RPE features are coded by neuronal populations in 
each region, we classified channels with significant responses to positive and/or 
negative RPEs into four categories (Fig. 3a)32: 1) positive RPE (increasing/decreasing 
HFA power with positive RPE magnitude and no significant response to negative 
RPEs); 2) negative RPE (increasing/decreasing HFA power with negative RPE 
magnitude and no significant response to positive RPEs);  3) signed RPE (increasing 
HFA with positive RPE and decreasing HFA power with negative RPE, or vice versa); 
and 4) unsigned RPE (increasing/decreasing HFA power with both positive and 
negative RPE magnitude). Note that, for each category, RPE can be encoded with both 
decreases and increases in HFA, which poses a challenge to both classical RL and 
dRL. In both these theories, positive RPEs are represented in activity increases, 
whereas negative RPEs are represented in decreases (henceforth called “regular 
coding”). This means that classical and dRL account for only three of the eight possible 
coding strategies shown in Fig. 3a. Other strategies, such as unsigned RPE coding and 
cases in which neurons decrease their firing to positive RPE and increase it to negative 
RPE (henceforth called “inverted coding”) are not incorporated in these theories. In the 
following, we evaluate the extent to which different coding strategies arising from 
asymmetric scaling are present in the salience network.    

In both regions, the most frequent response profile encoded unsigned RPE (i.e. 
RPE salience), with a median of 20.00% (IQR = 15.62-42.5) of channels in INS and 
21.88% (IQR = 11.11-31.25) of channels in dMPFC (Fig. 3b). A significant proportion of 
channels encoded positive RPE only, with a median of 20.00% (IQR = 11.88-26.44) in 
INS and 18.75% (IQR = 12.5-33.33) in dMPFC. A lower proportion encoded negative 
RPE only (MDN = 0.00%, IQR = 0.00-18.5 in INS and MDN = 8.68%, IQR = 0.00-12.5 in 
dMPFC), and a minority of channels encoded signed RPE (i.e., RPE value; MDN = 7.69%, 
IQR = 0.00-14.37 in INS and MDN = 0.00%, IQR = 0.00-12.5 in dMPFC). When pooling 
all subjects together, there were 24  (23%) purely positive RPE channels, 10 (9%) purely 
negative RPE channels, 10 (9%) signed RPE channels and 26 (25%) unsigned RPE 
channels among the 106 sites in dMPFC. Similarly, there were 13 (20%) purely positive 
RPE channels, 7 (11%) purely negative RPE channels, 6 (9%) signed RPE channels and 
19 (30%) unsigned RPE channels among the 64 sites in INS. We did not find  significant 
differences in category proportions between regions (all qFDR > .49), suggesting similar 
coding schemes in INS and dMPFC (Fig. 3c). However, there were significant differences 
between categories in the proportion of responsive channels when averaged across 
regions, 𝜒2(3) = 10.5, p = .01. Post-hoc, pairwise comparisons revealed lower proportions 
for signed RPE compared to positive RPE (qFDR = .047), and compared to unsigned RPE 
only before FDR correction (p = .042). No other significant differences were found 
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between categories (all qFDR > .30). All categories were spatially interleaved, indicating 
mixed coding of RPE features across the cortical surface of both regions (Fig. 3d). 

 

 
 
 

Figure 3: Diverse responsiveness of neuronal populations to negative and positive RPE. (a) Schematic of 
the different responsiveness profiles of local neuronal populations (top), classified into four categories: 
Positive (p) RPE (red), negative (n) RPE (blue), unsigned (u) RPE (green), and signed (s) RPE (gold) 
(see main text for details). For each category, the coding strategy could be regular (i.e., 
increasing/decreasing HFA power with increasing positive/negative RPE magnitude) or inverted (i.e., 
decreasing/increasing HFA power with increasing positive/negative RPE magnitude). uRPE populations 
are labeled by whether they increase or decrease activity regardless of valence. Note that classical RL 
(gold shade) and distributional RL (purple shade) only account for regular sRPE, pRPE, and nRPE 
responsiveness. In contrast, unsigned RPEs (i.e. RPE salience) and inverted coding strategies (gray 
shade) emerge from asymmetric scaling but are not incorporated in current theories. Populations 
responding to the four categories (colored stars) can be projected on a positive vs. negative RPE plane 
(bottom). Note how pRPE and nRPE units spread along the x and y axes, while uRPE and sRPE units 
spread along the diagonal and off-diagonal. (b) Positive and negative RPE peak coefficients for 
responsive channels belonging to each of the four categories, projected on the two-dimensional RPE 
plane. (c) Proportion of channels per participant and ROI falling within each category. Box plots depict 
median and interquartile range. (d) Anatomical location of responsive channels colored per category 
(Top: dMPFC, bottom: INS). All channels were mirrored to the right hemisphere for dMPFC and left 
hemisphere for INS. 

 
Next, we evaluated the extent to which different channels exhibited inverted 

coding strategies as defined above.  We found that 23/37 (62.2%) of positive RPE 
channels and 9/16 (56.3%) of signed RPE channels decreased their activity with 
increasing positive RPE magnitude, while 10/17 (58.8%) of negative RPE channels 
increased their activity with increasing negative RPE magnitude. Similarly, 22/45 
(48.9%) of unsigned RPE channels decreased activity with both positive and negative 
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RPE magnitude. This indicates that key variables such as RPE salience and value can 
be represented by populations of neurons that separately code for negative and positive 
RPE using both increases and decreases in activity, resulting in inverted coding 
schemes with respect to classical RL and dRL. 
 
RPE variables predominantly modulate directed connectivity from INS to dMPFC 
 

Given previous reports indicating that INS might lead information transfer in the 
network, we next asked how different RPE variables were communicated between 
regions by estimating directed functional connectivity between INS and dMPFC. Using 
cross-correlation, we calculated, for each participant, how well activity in each channel 
of one region predicted the activity of each channel in the other region, at different time 
lags. We found that, at the region level, positive and negative RPE magnitude increased 
correlation between INS and dMPFC channels with a peak lag of 75 ms, meaning that 
INS activity predicted dMPFC activity best at a 75 ms delay (Fig. 4a).  

To investigate communication of RPE variables, we classified between-region 
channel pairs into the same four categories used for HFA analyses. In this case, 
channel pairs that significantly decreased or increased their correlation as a function of 
negative and/or positive RPE were classified according to their peak coefficient value.  
We found significant differences between categories in the proportions of channel pairs 
𝜒2(3) = 9.28, p = .03 (Fig. 4b), with a majority responding to unsigned RPE (MDN = 
17.19%, IQR = 0.00 - 23.77) followed by purely positive RPE (MDN = 12.00%, IQR = 
7.12 - 20.05). Fewer pairs responded to purely negative RPE (MDN = 2.08%, IQR = 
0.00 - 7.78) and a minority responded to signed RPE (MDN = 0.00%, IQR = 0.00 - 
1.18). Pairwise contrasts between categories revealed significant differences between 
pRPE and sRPE after FDR correction (qFDR = .047), and between sRPE and both uRPE 
(p = .047) and nRPE (p = .031) before correction. This pattern of results is similar to that 
found in HFA analyses.   
 To investigate whether the direction of communication was different across RPE 
features, we next tested for differences in peak lags between RPE categories. We found 
that lags were predominantly positive, with uRPE having the longest median peak lag 
(MDN = 150 ms, IQR = 50 - 200) for positive RPE coefficients, followed by pRPE (MDN 
= 80 ms, IQR = -50 - 180) and then sRPE (MDN = -30 ms, IQR = -290 - 280). For 
negative RPE coefficients, uRPE had again the longest median peak lag (MDN = 150 
ms, IQR = 80 - 230 ms) followed by nRPE (MDN = 30 ms, IQR = -180 - 230) and then 
sRPE (MDN = -180 ms, IQR = -240 - -80). This suggests that information predominantly 
flowed from INS to dMPFC (Figure 4c). However, we found significant differences in 
peak lags among categories for negative (𝜒2(3) = 31.48, p < .001) but not positive  
(𝜒2(3) = 5.33, p = .15) RPE coefficients. These differences were mainly driven by sRPE 
(qFDR = .004) and nRPE (qFDR = .003) lags being significantly more negative than uRPE 
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lags. These results suggest potential bidirectional communication for these categories 
such that sRPE and nRPE may have also been communicated from dMPFC to INS.  

In contrast to region-level results, where lagged correlations increased with 
positive and negative RPE magnitude, there was a significant portion of individual pairs 
whose correlation showed an inverted coding scheme as defined above. We observed 
70/121 (58%) of pRPE pairs and 10/13 (77%) of sRPE pairs decreased their correlation 
with increasing positive RPE magnitude, while 10/24 (42%) of nRPE pairs increased 
their correlation with increasing negative RPE magnitude. Similarly, 72/167 (43%) of 
uRPE pairs decreased their correlation with both positive and negative RPE magnitude.  
As in single channel responsiveness, this finding emphasizes the utility of decreases in 
HFA as a means to encode information. Finally, channel pairs involved in RPE 
communication between INS and dMPFC were also spatially interleaved, which agrees 
with the aforementioned mixed coding scheme for RPEs in neuronal populations (Fig 
4c).  
 
 

 
Figure 4. RPE features predominantly modulate directed connectivity from INS to dMPFC. a) Region-
level, fixed-effects coefficients depicting the effect of expected value (E. Val.), positive (p) RPE, and 
negative (n) RPE on the correlation between INS and dMPFC activity at different time lags. Positive lags 
indicate INS activity precedes dMPFC activity, whereas negative lags indicate dMPFC activity precedes 
INS activity. Significant model coefficients (qFDR < 0.05) are plotted in bold. Error bars correspond to 95% 
confidence intervals. b) Negative RPE and positive RPE peak coefficients grouped by category: Positive 
(p) RPE (red), negative (n) RPE (blue), unsigned (u) RPE (green) and signed (s) RPE (gold). c) Peak 
coefficients and the respective peak time lags, grouped by category. Significantly responsive channel 
pairs are displayed in color. Marginal distributions of peak time lags and coefficients are plotted on x and 
y axes, respectively. The anatomical location of significant channel pairs is shown for each category, 
separately for the two directions of communication. Channel positions have been projected to the right/left 
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hemisphere for dMPFC and the left/right hemisphere for INS in the case of positive/negative RPE 
coefficients.  
  
DISCUSSION: 

The valence and salience of RPEs are critical components of reinforcement 
learning and cognitive control. However, it is unclear how dMPFC and INS networks 
represent these variables to facilitate behavioral adaptation. Using HFA power as a proxy 
for local population activity, we show that a model utilizing asymmetric positive and 
negative RPE coding explained feedback-related activity in dMPFC and INS better than 
models including only RPE value or RPE salience. While positive RPE signals were 
robustly encoded in both regions, negative RPE signals were less prominent and only 
significant in dMPFC, suggesting a bias towards positive reward outcomes in these areas. 
Moreover, neuronal populations at individual channel sites exhibited distinct 
responsiveness profiles, allowing flexible encoding of RPE value and salience with both 
increases and decreases in activity. A plurality of channels responded to RPE salience 
(25% in dMPFC, 30% in INS) and purely positive RPEs (23% in dMPFC, 20% in INS). A 
lower proportion of sites encoded negative RPEs (9% in dMPFC, 11% in INS), and few 
encoded signed RPE (9% in dMPFC, 9% in INS). This indicates that non-linear, 
heterogeneous representations of reward information are the dominant coding scheme in 
dMPFC and INS. Finally, directed connectivity measures indicated channel pairs were 
primarily modulated by positive RPEs and RPE salience, and that communication for 
these variables flows predominantly from INS to dMPFC. Collectively, these results 
demonstrate that neuronal populations respond differently to positive and negative RPEs, 
enabling RPE coding diversity in human dMPFC and INS. Below, we discuss how these 
findings inform theoretical debates in reward learning and cognitive control and their 
conceptual and methodological implications for principles of neural coding. 
 Our findings that a model with valence-specific RPEs better explains dMPFC and 
INS activity has several implications for theories of neural coding and function in the 
salience network. First, they align with and expand upon recent advances in 
computational and systems neuroscience by showing that asymmetric scaling principles 
underlying dRL models better explain heterogeneous responses to reward and 
punishment. To date, dRL has mainly been applied to explain the diverse response 
profiles of single units in subcortical dopaminergic circuits of rodents28,29. Our findings 
provide novel evidence that neuronal populations in the human cortex exhibit asymmetric 
coding, one of the core principles behind dRL. 

Our analyses also revealed that reward and salience information were represented 
with both increases and decreases of HFA activity and connectivity. Distinguishing these 
opponent coding schemes is important to avoid confounding interpretations of signed 
RPE value, which may have contributed to conflicting findings in previous studies46. 
However, current dRL models operationalize positive/negative RPEs as 
increases/decreases in neuronal activity, respectively28. This implies that dRL does not 
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capture RPE salience effects or inverted coding schemes, which were prominent in our 
human cortical data and have also been reported in dopaminergic midbrain 
neurons23,27,52. Our findings highlight the need to devise biologically consistent 
implementations of asymmetric scaling and reward coding within the dRL framework. 

Importantly, we leveraged the flexible coding scheme allowed by asymmetric 
scaling to categorize combinations of positive and negative coefficients corresponding to 
the key RPE value and salience variables underlying central theories of dMPFC function. 
We found that a plurality of individual sites within and connectivity pairs between dMPFC 
and INS responded to the salience of RPEs, including many of the strongest responses. 
This observation supports the proposed central role of dMPFC and INS network in coding 
salience to enable adjustments of cognitive control5–7,9,17,19,53. In contrast to signed RPE 
theories of dMPFC function10–13, valenced RPE information was rarely encoded in either 
neural activity or connectivity responses in a manner consistent with signed RPE value. 
Notably, our findings are compatible with accounts suggesting dMPFC integrates the 
positive, negative, and salience RPE variables required to update cognitive control, since 
separate representations of this information can still be flexibly read out by downstream 
regions to support adjustments in approach, avoidance, or motivation. However, our data 
suggest that most neural populations in dMPFC and INS do not represent these variables 
together as a combined “common currency” value signal with symmetric but opposite 
coding of positive and negative RPEs. This finding is consistent with recent proposals 
that neural representations of value are better understood as related to attention, action 
plans, vigor, or other choice-related variables54–56. 

Another important result from our single-channel analyses is that diverse 
populations coding for different RPE variables are spatially interleaved within each region. 
This observation revealed a more nuanced picture than region-level analyses, which can 
obscure local heterogeneity within regions. Reconciling population- and region-level 
results may explain seemingly contradictory evidence supporting different theories of 
dMPFC function, particularly between single unit studies in systems neuroscience and 
experiments using functional magnetic resonance imaging or EEG in cognitive 
neuroscience, which typically average over intermingled populations. Indeed, our 
population-level results align with nonhuman primate studies that identified single units 
sensitive to valence-specific and unsigned salience RPEs within dMPFC11,31,32, 
suggesting these circuits are anatomically nonseparable33. In contrast, a recent human 
iEEG study reported an anatomical dissociation between positive and negative RPE 
processing36. However, this study reported region-level effects, leaving the diversity in 
local population coding of RPE salience and valence unexplored. This emphasizes the 
need to disentangle spatially intermingled circuits performing different computations 
within a given region, which is characteristic of previous human iEEG findings in language 
and attention57,58. Furthermore, we found that the proportions of channel sites coding RPE 
salience, RPE value, and positive and negative RPEs were equivalent in dMPFC and 
INS. This result supports the view that neural computations underlying reward learning, 
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value-based decision making, and cognitive control unfold in parallel across distributed 
circuits54,59–61. 

Our results also indicate that population activity within and connectivity between 
dMPFC and INS have stronger representations for positive than negative RPEs. This is 
particularly striking given that our task employs an implicit win-stay/lose-switch strategy, 
indicating that this bias towards positive RPE coding was observed despite the fact that 
no adjustments to cognitive control or behavioral responses are required after positive 
feedback in our task. This finding fits with evidence from nonhuman primate single unit 
studies11,32,35 and some human iEEG results62. However, a variety of conflicting evidence 
from other prior studies argues dMPFC and INS show a bias for processing negative 
valence16,36,40,63. In particular, Gueguen et al. 2021 report a bias for negative RPEs in 
HFA responses in anterior INS36. One methodological source of this discrepancy could 
be that not all prior studies controlled for salience, as many of the individual and pairs of 
channels that responded to negative RPEs in our analyses were revealed to code for 
salience once we accounted for their response to positive RPEs. Alternatively, differences 
in analyses (e.g., region- versus population-level) or task design, such as the use of 
positive versus negative punishment (i.e., delivering aversive stimuli versus omitting 
positive rewards) or interactions between effort and reward64, could contribute to these 
different results. 

Another potential factor influencing the proportion of positive, negative, and 
salience responses is where our specific recording sites are located relative to functional 
gradients within dMPFC and INS. For example, the strong representations of salience in 
our results is likely influenced by the majority of our recording sites falling in mid-cingulate 
and insular cortices overlapping with the salience network, which is associated with 
control and performance monitoring9,53,65,66. In contrast, single units recorded from more 
anterior regions of MPFC in non-human primates show reduced salience coding and 
mostly responded to positive and negative RPEs32. This difference in the relative strength 
of signed and unsigned RPE coding is potentially because anterior cingulate cortex is a 
distinct subregion of MPFC more closely linked to limbic circuits involved in learning, 
comparing, and choosing values than action control20,66–69. Similarly, our results showed 
some negative RPE coding in the INS that aligns with previous studies reporting a bias 
towards negative RPEs in the anterior portion of this region4,36,63,70,71. However, our 
spatial sampling of the INS—which was determined solely based on clinical needs of the 
patient—revealed a bias towards positive RPE representations in mid- and posterior INS. 
Interestingly, this potential shift in sensitivity from negative to positive bias across the 
anterior-posterior axis fits with observations from rodent research of a hedonic “hot spot” 
in the INS where stimulation induces “liking”, which is found posterior to a hedonic “cold 
spot” in more anterior INS72,73. Overall, our converging results from both individual 
channels and between-region connectivity indicate that dMPFC and INS are 
predominantly modulated by positive RPEs and RPE salience. 
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Lastly, the results of our directed connectivity analyses revealed INS-to-dMPFC 
communication for positive RPEs and RPE salience processing, which provides direct 
evidence for hypotheses that the INS plays a leading role in the salience network42,74,75. 
Our findings build upon two recent human iEEG studies showing INS-to-dMPFC 
connectivity for salience43,44. However, these studies used tasks that did not dissociate 
the valence and salience of feedback. Here, we demonstrate that INS-to-dMPFC directed 
connectivity predominantly conveys both salience and positive RPE information. Thus, in 
addition to facilitating salience processing between these two control regions, INS-to-
dMPFC communication of positive RPEs may reflect integration of affective information 
from ventral reward systems including the INS into action processing in dorsal control 
systems including mid-cingulate cortex76,77. Unfortunately, too few channel pairs were 
significantly modulated to draw firm conclusions about the directionality of negative RPE 
and RPE value communication. These results confirm and expand the role for INS as a 
general source for multiple RPE variables processed in dMPFC, thereby emphasizing the 
need for the field to shift from an excessive focus on dMPFC towards including the INS 
in empirical research and theory building. 

In conclusion, our results demonstrate that incorporating asymmetric scaling 
principles inspired by dRL can capture positive, negative, and salience RPE coding in 
human dMPFC and INS. Moreover, individual channel analysis strategies similar to those 
used in non-human systems neuroscience revealed that these populations are 
interleaved in anatomically overlapping circuits within dMPFC and INS. Importantly, we 
found that accounting for valence-specific RPE coding using both increases and 
decreases in activity established that few sites or channel pairs were modulated by signed 
RPE, arguing against hypotheses that these regions integrate reward and punishment 
into a common value signal. Instead, our results support a combination of valence-specific 
and unsigned salience theories of dMPFC and INS function. Finally, our directed 
connectivity results emphasize the leading role of the INS in both positive and unsigned 
RPE processing. Overall, these findings bridge region-level analyses common in human 
neuroscience with population-level analyses in animal models to support and expand dRL 
principles and reconcile long standing theoretical debates regarding neural coding of 
RPEs in dMPFC and INS.   

 
ACKNOWLEDGEMENTS 
We thank the participants for their invaluable efforts and I. Griffith for help piloting the 
paradigm. This work was supported by NINDS R37NS21135 (RTK), CONTE Center PO 
MH109429 (RTK), Brain Initiative U19NS107609-03  and U01NS108916 (RTK, JJL), 
NSF GRFP (CWH), and the Independent Research Fund, Denmark (DQM).  
 
CITATION DIVERSITY STATEMENT 
Recent work in several fields of science has identified a bias in citation practices such 
that papers from women and other minority scholars are under-cited relative to the 
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number of such papers in the field. Here we sought to proactively consider choosing 
references that reflect the diversity of the field in thought, form of contribution, gender, 
race, ethnicity, and other factors. First, we obtained the predicted gender of the first and 
last author of each reference by using databases that store the probability of a first 
name being carried by a woman. By this measure and excluding self-citations to the first 
and last authors of our current paper, our references contain 6.33% 
woman(first)/woman(last), 14.85% man/woman, 20.25% woman/man, and 58.56% 
man/man. This method is limited in that a) names, pronouns, and social media profiles 
used to construct the databases may not, in every case, be indicative of gender identity 
and b) it cannot account for intersex, non-binary, or transgender people. Second, we 
obtained predicted racial/ethnic category of the first and last author of each reference by 
databases that store the probability of a first and last name being carried by an author of 
color. By this measure (and excluding self-citations), our references contain 13.51% 
author of color (first)/author of color(last), 12.84% white author/author of color, 16.03% 
author of color/white author, and 57.61% white author/white author. This method is 
limited in that a) names and Florida Voter Data to make the predictions may not be 
indicative of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-
race authors, or those who may face differential biases due to the ambiguous 
racialization or ethnicization of their names. We look forward to future work that could 
help us to better understand how to support equitable practices in science. 
 
 
METHODS 
 
Participants 
 
Data was collected from ten patients undergoing neurosurgical treatment for medically 
refractory epilepsy (mean ± SD [range]: 35.2 ± 13.1 [21-57] years old; 1 woman; see 
Table 1 for patient demographics and electrode coverage). Patients were implanted with 
stereotactic (SEEG) or subdural grid or strip (ECoG) electrodes, and electrode 
placement and medical decisions were determined solely by the clinical needs of the 
patient. Patients were observed in the hospital for approximately a week, and those 
willing to participate performed the Target Time behavioral task during breaks in their 
clinical treatment. Informed consent was obtained according to experimental protocols 
approved by the University of California, Berkeley, University of California, Irvine, and 
California Pacific Medical Center Committees on Human Research. Patients had normal 
IQ (>85) and spoke fluent English. 
  
Table 1: Patient demographics, electrode coverage, and behavior. 
For Button colum, “Kb” indicates responses were collected using the space bar on the 
built-in laptop keyboard, while “RTBox” indicates a USB button box was used. *For IR87, 
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three runs used the RTbox device, while the keyboard was used to capture responses on 
the fourth run. 

SBJ Age 
(years) 

Sex Task 
Version 

Button Number of 
Electrodes 

Number of 
Trials 

Accuracy (%) 

dMPF
C 

Insula Easy Hard Easy Hard 

S01 24 M 1.8.7 Kb 16 0 299 297 81.6 23.9 

S02 23 M 1.8.2 Kb 16 13 140 138 67.9 18.8 

S03 27 M 1.8.7 Kb 18 3 132 149 75.0 20.1 

S04 28 M 1.8.7 Kb 17 6 145 149 62.8 21.5 

S05 57 M 1.8.7 Kb 5 5 147 147 70.1 19.7 

S06 47 M 1.8.8 Kb 8 6 141 133 77.3 21.8 

S07 21 F 2.4.5 RTBox 9 8 144 143 68.3 20.0 

S08 41 M 2.4.5 Kb 8 10 145 143 75.6 15.9 

S09 52 M 2.4.7 RTBox* 8 8 444 446 83.9 15.6 

S10 32 M 2.4.8 RTBox 1 5 286 282 81.2 17.4 

  
Target Time Behavioral Task: 
The Target Time interval timing task was written in PsychoPy78 (v1.85.3) and consisted 
of four blocks (two easy and two hard) of 75 trials each (see Fig 1A for task schematic). 
Two patients completed the task twice, and one patient completed the task three times. 
The order of block difficulty was fixed as either two easy followed by two hard or 
alternating from easy to hard (Table 2). Following central fixation and a randomly 
chosen inter-trial interval ranging from 0.2 to 1.2 s (see Table 2), trials began with 
presentation of a visual motion cue at a constant speed to arrive at a target at the one-
second temporal interval. Participants estimated the interval via button press using the 
space bar on a keyboard or an RTBox (v5/6) response device 79. In the first version of 
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the task (n = 6), the motion cue was upwards in a straight line towards a bullseye target, 
and in a second version (n = 4), the motion cue was counter-clockwise starting and 
ending at the bottom of a ring of dots on which a gray target zone was centered. The 
size of the bullseye and the width of a gray target zone indicated the tolerance for 
successful responses. Veridical win/loss feedback was presented from 1.8 s to either 
2.6 or 2.8 s (Table 2) and composed of (1) the tolerance cue turning green/red, (2) cash 
register/descending tones auditory cues, and (3) a black tick mark denoting the 
response time (RT) on the ring. Participants received ±100 points for wins/losses. 
Tolerance was bounded at ± 15-200 or 15-400 ms (Table 2), and separate staircase 
algorithms for easy and hard blocks adjusted tolerance by -3/+12 and -12/+3 ms 
following wins/losses, respectively. Participants learned the interval in five initial training 
trials in which visual motion completed the full linear track or circle. For all subsequent 
trials, dot motion halted after 400 ms to prevent visuo-motor integration, forcing 
participants to rely on external feedback. Training concluded with 15 easy and 15 hard 
trials to initialize both staircase algorithms to individual performance levels. For the 
second task version, main task blocks introduced neutral outcomes on a random 12% of 
trials that consisted of blue target zone feedback, a novel oddball auditory stimulus, no 
RT marker, and no score change. 
  
Table 2: Target Time paradigm parameters. 
For Block Order, E refers to easy blocks and H refers to hard blocks. 

Task 
Version 

Motion Cue Inter-Trial 
Intervals (s) 

Block Order Error 
Tolerance 
Limits (s) 

Neutral 
Outcomes 

1.8.2 Linear 0.5, 0.85, 1.2  EEHH 0.2, 0.015 No 

1.8.7 Linear 0.2, 0.4, 0.7, 
1.0 

EEHH 0.2, 0.015 No 

1.8.8 Linear 0.2, 0.4, 0.7, 
1.0 

EEHH 0.2, 0.015 No 

2.4.5 Circular 0.2, 0.4, 0.7, 
1.0 

EEHH 0.2, 0.015 Yes 

2.4.7 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes 
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2.4.8 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes 

  
Behavioral modeling: 
 
            The relationship between the tolerance around the target interval and expected 
value was fit to individual participant behavior using logistic regression. Specifically, 
tolerance was used to predict binary win/loss outcomes across trials using the MATLAB 
function glmfit with a binomial distribution and logit linking function. Trials with neutral 
outcomes were excluded because they were delivered randomly and thus not reflective 
of performance. The probability of winning (𝑝!"#) for each participant was computed as:  
 	

𝑝!"# =
1

1 + 𝑒$(&!'&"()
 

(Equation 1) 
  
where 𝛽* is the intercept and 𝛽+ is the slope from the logistic regression, and t is the 
tolerance on a given trial. Expected value was derived by linearly scaling the probability 
of winning to the reward function ranging from -1 to 1. RPE value was then computed by 
subtracting expected value from the actual reward value, and RPE magnitude was 
computed as the absolute value of RPE value. See Figure 1c for model predictions by 
condition. 
  
iEEG data collection, localization, and preprocessing: 
 
The data were recorded at either the University of California Irvine Medical Center (n = 
9), USA or California Pacific Medical Center (n = 1), USA. Patients at Irvine were 
implanted with stereo-EEG (SEEG) electrodes with 5 mm spacing, and the patient at 
CPMC was implanted with strips of electrocorticography (ECoG) electrodes with 1 cm 
spacing. At both sites, electrophysiology and analog photodiode event channels were 
recorded using a 256-channel Nihon Kohden Neurofax EEG-1200 recording system and 
sampled at 500 (n = 3), 1000 (n = 3), or 5000 Hz (n = 4). For five patients, analog 
photodiode channels and a subset of iEEG channels were recorded in a separate 
Neuralynx ATLAS recording system at Irvine at 4000 (n = 1) or 8000 Hz (n = 4). For 
these cases, photodiode events were then aligned to the iEEG data acquired in parallel 
via the Nihon Kohden clinical amplifier via cross-correlation of shared iEEG channels. 
Pre-operative T1 MRI and post-implantation CT scans were collected as part of 
standard clinical care, and recording sites were reconstructed in native patient space by 
aligning these scans via rigid-body co-registration according to the procedure described 
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in Stolk et al. 80. Anatomical locations of electrodes were determined by manual 
inspection in native patient space under supervision of a neurologist. Electrode 
positions were then normalized to group space by warping the patient MRI to a standard 
MNI 152 template brain using volume-based registration in SPM 12 as implemented in 
Fieldtrip 80. Group-level electrode positions are plotted in MNI coordinates relative to the 
cortical surface of the fsaverage brain template from FreeSurfer 81. 
 
Data cleaning, preprocessing, and analyses were conducted using the Fieldtrip toolbox 
82 and custom Python and MATLAB code. Raw iEEG traces were manually inspected 
by a neurologist for epileptic spiking and spread, as well as artifacts (e.g., machine 
noise, signal drift, amplifier saturation, etc.). Data in regions or epochs with epileptiform 
or artifactual activity were excluded from further analyses. Preprocessing included 
resampling data to 1000 Hz (for datasets recorded at sampling frequencies > 1000 Hz), 
bandpass filtered using a Butterworth filter from 0.5-300 Hz, re-referenced (bipolar to 
adjacent electrodes for SEEG data; common average reference across all channels for 
ECoG data), and bandstop filtered at 60, 120, 180, 240, and 300 Hz (Butterworth filter 
with 2 Hz bandwidth) to remove line noise and harmonics. Continuous data were then 
visually inspected to ensure all epochs with artifacts or spread from epileptic activity 
were removed. Finally, trials were rejected for task interruptions and behavioral outliers 
(RTs missing, < 0.5 s, > 1.5 s, or > 3 standard deviations from that patient’s mean), 
resulting in 274-890 trials per patient (mean ± S.D.: 405.0 ± 210.6). 
  
High frequency broadband power extraction and modeling: 
 
            Time series data were filtered to high frequency band activity (HFA) ranges 
known to correlate with local multi-unit activity 48,50,51. Specifically, data were segmented 
from -0.25 to 1.2 s relative to feedback onset, and multitaper time-frequency 
transformations with 50 ms windows were used to extract power from sub-bands 
ranging from 70 to 150 Hz in 10 Hz steps. These HFA power values were then log 
transformed to account for their log-normal distribution 83 in preparation for linear 
modeling. To normalize these power values against baseline activity, permutation 
distributions were created for each channel by taking the mean and standard deviation 
of baseline power values from -0.25 to -0.05 s relative to stimulus onset from 500 
iterations of sampling trials with replacement. Feedback-lock power values were then z-
scored using the average mean and standard deviation values from those permutation 
distributions of pre-stimulus baseline power values. This process avoids normalizing 
HFA power to pre-feedback data which may contain post-response activity and is robust 
to noisy outlier trials that can skew the baseline data. Finally, sub-bands were averaged 
together to create a single HFA power time series. 
            A sliding window approach was then used to average normalized single-trial 
HFA power values in 50 ms windows stepping by 25 ms from 0 to 0.6 s post-feedback. 
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Mixed-effects models with subject and channel as nested random effects were then 
used to predict single-trial HFA power data for each time window and brain region.  
Using AIC as a performance metric, we compared three different RL models, all 
containing expected value and a unique set of RPE estimates as predictors: The 
signed RPE model included valenced RPE magnitude estimates (i.e. RPE value); the 
unsigned RPE model included absolute RPE magnitude estimates (i.e. salience); and 
the asymmetric RPE model included separate predictors for positive and negative RPE 
magnitude estimates. Note that the asymmetric RPE model is mathematically 
equivalent to a model in which both RPE value and salience are introduced as 
predictors. That is, RPE value and salience emerge as a linear combination of positive 
and negative RPE. The asymmetric model was added to operationalize our hypothesis 
and improve interpretability. Furthermore, in previous work we have shown that 
separating positive and negative RPE magnitude helps to disentangle event-related 
components that are heavily mixed in scalp EEG data 47.   
 
Confidence intervals and two-sided p-values for both fixed (i.e., region level) and 
random (i.e., subject / channel specific) effects coefficients were obtained from the 
standard error estimates for each time window. p-values of region-level fixed effects 
were corrected for multiple comparisons across time using the false discovery rate 
(FDR) methods of Benjamini & Hochberg 84 for each channel. Corrected p-values are 
referred to as qFDR throughout the manuscript. p-values of channel-specific random 
effects were left uncorrected, since the regularizing properties of mixed-effects models 
result in conservative coefficient estimates that protect against false positives and 
overfitting. Channels were considered to be significantly predicted by a model regressor 
if any HFA power window had a model coefficient with p < 0.05. 
 
Estimation and inference on channel responsiveness categories 
  
We classified the channels into four categories according to their responsiveness. First, 
we selected positive RPE channels as those significantly predicted by positive RPE 
estimates only. Similarly, negative RPE channels were those significantly predicted by 
negative RPE only. A third category, signed RPE, was composed of channels that 
responded by significantly increasing their activity with positive RPE, while significantly 
decreasing activity with negative RPE, or vice versa. Finally, we defined unsigned RPE 
channels as those that either increased or decreased their activity in response to both 
positive and negative RPE magnitude. Because responsiveness changed over time, in 
a handful of cases a channel could be classified in both the signed and unsigned RPE 
categories. In those instances, we classified the channel according to the sign of their 
peak significant coefficients.  
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To evaluate differences between regions and channel categories, we calculated the 
proportions of all channels belonging to each category for each subject and region. One 
subject was excluded from this analysis as they had no electrodes in INS. At the group 
level, we used Wilcoxon signed-rank tests to compare channel proportions between 
regions for each category separately. The resulting p-values were FDR corrected 
across the four between-region tests. After confirming no significant differences 
between regions for any category, we averaged proportions across regions and tested 
for differences between categories with a Kruskal-Wallis test followed by post-hoc, 
FDR-corrected pairwise comparisons with Wilcoxon signed-rank tests.   
 
Estimation of directed connectivity between INS and dMPFC 
 
We estimated the directed functional connectivity between dMPFC and INS using time-
lagged cross-correlation of HFA power time series between all channels in one region 
and all channels in the other region for each subject. Lags ranged from -400 to 400 ms 
in 25 ms steps. In our case, positive lags indicate activity in INS precedes activity in 
dMPFC whereas negative lags indicate dMPFC activity precedes INS activity. Zero lag 
indicates no delay between regions. 
 
The resulting correlation-coefficient time-lag series were then predicted by the 
asymmetric RPE model including expected value, positive RPE magnitude and negative 
RPE magnitude as regressors. For each time lag, a mixed-effects model was estimated 
including subject and channel pair as nested random effects. p-values for (region level) 
fixed effects and (channel-pair level) random effects were obtained based on standard 
error estimates. For fixed effects, p-values were FDR corrected across time-lags for 
each predictor separately. For random effects, p-values were left uncorrected due to the 
regularizing properties of mixed-effects models. 
 
For each channel pair and region, we extracted the time lags at which positive and 
negative RPE magnitude best predicted directed connectivity by finding the peak of the 
absolute correlation coefficients. We classified channel pairs into the same four 
categories (pRPE, nRPE, sRPE, uRPE) used for HFA analyses, according to their 
modulation by negative RPE and / or positive RPE, as indicated above. To evaluate 
differences in category proportions, we calculated the percentage of all channel pairs 
belonging to each category for each subject. We tested for differences between 
categories with a Kruskal-Wallis test followed by post-hoc, FDR-corrected pairwise 
comparisons with Wilcoxon rank-sum tests. The same statistical procedure was 
followed to test for differences in peak lags between categories.   
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