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Abstract

Clustering is widely used in bioinformatics and many other fields, with applications
from exploratory analysis to prediction. Many types of data have associated uncertainty or
measurement error, but this is rarely used to inform the clustering.

We present Dirichlet Process Mixtures with Uncertainty (DPMUnc), an extension of a
Bayesian nonparametric clustering algorithm which makes use of the uncertainty associated
with data points. We show that DPMUnc out-performs existing methods on simulated data.
We cluster immune-mediated diseases (IMD) using GWAS summary statistics, which have
uncertainty linked with the sample size of the study. DPMUnc separates autoimmune from
autoinflammatory diseases and isolates other subgroups such as adult-onset arthritis.

We additionally consider how DPMUnc can be used to cluster gene expression datasets
that have been summarised using gene signatures. We first introduce a novel procedure for
generating a summary of a gene signature on a dataset different to the one where it was
discovered. Since the genes in the gene signature are unlikely to be as strongly correlated as
in the original dataset, it is important to quantify the variance of the gene signature for each
individual. We summarise three public gene expression datasets containing patients with a
range of IMD, using three relevant gene signatures. We find association between disease and
the clusters returned by DPMUnc, with clustering structure replicated across the datasets.

The significance of this work is two-fold. Firstly, we demonstrate that when data has
associated uncertainty, this uncertainty should be used to inform clustering and we present
a method which does this, DPMUnc. Secondly, we present a procedure for using gene
signatures in datasets other than where they were originally defined. We show the value of
this procedure by summarising gene expression data from patients with immune-mediated

diseases using relevant gene signatures, and clustering these patients using DPMUnc.

Author Summary

Identifying groups of items that are similar to each other, a process called clustering, has a range
of applications. For example, if patients split into two distinct groups this suggests that a disease

may have subtypes which should be treated differently. Real data often has measurement error
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associated with it, but this error is frequently discarded by clustering methods. We propose
a clustering method which makes use of the measurement error and use it to cluster diseases
linked to the immune system.

Gene expression datasets measure the activity level of all ~20,000 genes in the human
genome. We propose a procedure for summarising gene expression data using gene signatures,
lists of genes produced by highly focused studies. For example, a study might list the genes
which increase activity after exposure to a particular virus. The genes in the gene signature may
not be as tightly correlated in a new dataset, and so our procedure measures the strength of the
gene signature in the new dataset, effectively defining measurement error for the summary. We
summarise gene expression datasets related to the immune system using relevant gene signatures

and find that our method groups patients with the same disease.

Introduction

Grouping items by similarity has a variety of applications in bioinformatics. For example,
clustering samples according to any molecular measures may help to identify subgroups of
disease 2. In gene expression data, clustering the genes may be useful for inferring gene function
using guilt by association and inferring regulatory relationships®. Clustering can also be used to
cluster diseases themselves. For example, immune-mediated diseases (IMD) have been shown to

have a shared genetic basis such that IMD can be clustered according to those shared patterns®®.

6.7 and mclust®, assume that the observations

Commonly used methods, such as k-means
being clustered are observed without error, or that any errors are identically distributed. In
reality we often have not just data points themselves but also a measure of uncertainty about
each observation which has the potential to improve clustering accuracy if exploited. Within the
clustering approaches, the Bayesian methods offer some advantages, in their ability to convey
uncertainty about the cluster centers and variances as well as the overall clustering, and to
simultaneously infer the number of clusters, K. Here, we propose Dirichlet Process Mixtures
with Uncertainty (DPMUnc) which adapts Bayesian clustering to the setting where the data
points have associated uncertainty.

We show that accounting for uncertainty can alter the clustering solution returned and
demonstrate its performance on a range of simulated datasets and real applications. First,
we consider clustering IMD using GWAS summary statistics, a problem where the uncertainty
associated with each observation generally varies systematically with study sample size. Second,
we cluster patients with IMD using gene expression data which can help identify subtypes of
disease or predict response to treatment?. However, clustering on all ~20,000 genes can be
computationally expensive, and may group patients by disease-irrelevant structure, such as sex
or age. Investigations of gene expression in relation to disease or biological processes sometimes
produce a gene signature, a list of genes with a shared pattern of gene expression which is
relevant to the disease or process. We propose a summary measure of a gene signature, which
captures average signature expression and its variance, and show that DPMUnc allows patients

to be clustered according to one or more signatures.
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Results

DPMUnc model

Our approach follows previous work?, extended to include both the observations z;, i =1...n
and their respective uncertainty estimates af. We model these x; as noisy observations of some
latent variables z;: z; ~ N (zi,aiz). The latent variables themselves are modelled as coming
from a Dirichlet Process Gaussian Mixture Model (DPGMM). We follow the approach of!?,
which takes the infinite limit of a Gaussian Mixture Model and can be shown to be equivalent
to using Dirichlet Processes directly %!,

In a finite Gaussian Mixture Model the points are generated from K clusters, where points

within each cluster are i.i.d. Gaussian variables with some mean pj, and variance pi:
2
zilei = k ~ N (p, px)

where the indicator variables ¢; show which cluster a variable belongs to. We give these indicator
variables a standard categorical distribution with the weights for each category 7 having a

Dirichlet prior:
p(e; = k) =mg; m1,...,mK ~ Dirichlet(a/K, ..., a/K)

where ZkK:1 T = 1.

Finally, we define priors

a ~ Gamma(ag, bo)

s p% ~ Normal-Inverse Gamma(po, ko, o, 5o)

where ag = 3,bg = 4, po is the empirical mean of the observed data and «ag, 8y, ko are hy-
perparameters that should be adjusted according to the spread of the data and the expected
cluster structure. Some further discussion of how these values may be chosen is given in the
Supplementary Information.

The joint density factorises as follows:
p(C,m,Z,ﬂ',u,p, Oé) :p(¢) (C|7‘l’ 7T|Oé Hp JI1|O'Z,ZZ ZZ|¢C7,) (1)

as represented in Figure 1. We now let K tend to infinity, yielding a Gaussian Mixture Model
with no constraint on the number of clusters which is equivalent to a Dirichlet Process Gaussian
Mixture Model 1011

We use a Gibbs sampling algorithm to sample from the posterior p(c|x, o2) according to the
conditional probability distributions as set out in Supplementary Information and as described
in Supplementary Figure SO.

To more directly compare the effect of adjusting for the uncertainty of the points, we also

run DPMUnc with adjusted versions of the datasets where the observations themselves were
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Fig. 1: Plate diagram of Gaussian Mixture Model. When K — oo this is the Dirichlet Process
Gaussian Mixture Model that is the basis of our model. In the plate diagram, each rectangle
(plate) corresponds to a group of variables, and the text at the bottom of each plate shows
how many copies of that plate are required for the full model. Circles indicate random vari-
ables, which are shaded if the random variable is observed. The variables without circles are
hyperparameters for the model.

untouched, but the uncertainty estimates were shrunk to 0. Thus the rest of the DPMUnc
works as normal, but the latent variables are essentially fixed to be equal to the observed data
points throughout and so the only difference compared to DPMUnc is that no adjustment for
uncertainty takes place. We call this version of the method DPMZeroUnc.

Simulated study

We first used simulated data to explore the effects of differing levels of uncertainty associated
with each observation and noise around each cluster location on DPMUnc. Detailed discus-
sion of two illustrative examples is presented in the Supplementary Information. Briefly, we
found that including estimates of uncertainty tended to produce solutions with smaller cluster
variances, and with cluster means corresponding to a weighted mean of observations, in which
observations with lower uncertainty were given greater weight, rather than unweighted means
when uncertainty was ignored.

Using the larger simulations, DPMUnc outperformed its comparators kmeans and mclust
by a small margin when observation noise and cluster variance were small, which increased

with increasing cluster variance or observation noise (Figure 2). The methods differed most in
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their ability to infer K. When the true K = 3, DPMUnc and DPMZeroUnc tended to select
K =3 or K =4, whilst kmeans and, to a greater extent, mclust, tended to merge clusters and
underestimate K, often selecting K = 1 as cluster noise increased (Supplementary Figure S7).

As a Bayesian method, DPMUnc not only provides a clustering of the data, but can quantify
the uncertainty about the clustering. This can be captured using the posterior similarity matrix
(PSM) whose entry PSM; ; is the proportion of samples from the MCMC sampling in which
observation i and observation j were placed in the same cluster 2.

We assessed how well-calibrated the posterior similarity scores were, by binning PSM values
into deciles, and examining the proportion of trait pairs in each bin that were truly in the
same cluster. We found the two were generally similar, suggesting that DPMUnc was relatively

well-calibrated (Supplementary Figure S8).

Clustering immune-mediated diseases using GWAS summary statistics

Methodology has been developed to summarise genetic associations shared by multiple diseases
using multi-dimensional polygenic scores, such as the summary of IMD by 13 such scores!3.
The paper also calculated these 13-dimensional scores for 1,230 independent GWAS datasets.
We ran DPMUnc on 45 traits from these published data that showed significant differences to
controls according to the original study (Figure 3). GWAS summary statistics include both an
estimate of the strength of association and the uncertainty associated with that estimate. The
uncertainty is propagated through to the scores, which is influenced heavily by sample size so
each trait has similar uncertainty across all the scores, while uncertainty varies between traits
(Figure 3).

Six clusters were identified, summarised as classic autoimmune diseases and most arthitides
(A), a null cluster with observations lying close to zero or with sufficiently high uncertainty that
they might truly lie near zero (B), classic autoinflammatory diseases and coeliac disease (C),
multiple sclerosis (D), adult onset arthritis (E), and eosophilic granulomatisos granulomatosis
with polyangiitis (EGPA) (F).

The posterior similarity matrix in Figure S10 shows relatively high confidence in the clusters.
In particular, even with the uncertainty associated with the location of the rare disease EGPA,
the two EGPA subtypes form their own cluster in a high percentage of the samples, perhaps
reflecting their extreme location on PC13 which was shown to be related to eosinophils'?. In
contrast, whilst coeliac disease is clustered with other inflammatory bowel conditions (Crohn’s
disease and Ulcerative Colitis), it is much less confidently placed in this cluster than the other
traits, perhaps reflecting that it is generally considered an autoimmune disease.

Multiple sclerosis (MS) is the only disease to cluster alone, which perhaps reflects that MS is
unusual in having both autoinflammatory and autoimmune features'*, although the PSM does
show both neuromyelitis optica (NMO) IgG~ and systemic JIA have some non-zero probability
of clustering with MS.
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Fig. 2: Accuracy on simulated datasets. The first row of plots has the lowest noise N around the
cluster mean, and the bottom row has the highest noise. Increasing uncertainty, corresponding
to greater difference between latent data and the observed data is shown on the x-axis. The
accuracy of the clustering is given by the Adjusted Rand Index (ARI) between the true clustering
and the inferred clustering. Higher values of ARI are better.
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Fig. 3: Clusters inferred by DPMUnc, DPMZeroUnc and mclust alongside the polygenic GWAS
scores and the associated uncertainty. The clusters of DPMZeroUnc and mclust have been
coloured to best match the colours of DPMUnc. The dendrogram on the left is formed by ap-
plying hierarchical clustering on the posterior similarity matrix from DPMUnc, using complete-
linkage.
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‘ Ferreira'® Lyons?® Chaussabel
Healthy controls (HC) 88 25 12
Systemic lupus erythematosus (SLE) 25 13 103
Juvenile idiopathic arthritis (JIA) 47
Melanoma (MEL) 39
Transplant (RET) 37
Type 1 diabetes (T1D) | 64 20
Vasculitis 30
Microscopic Polyangiitis (VWP) 8
Wegener’s Granulomatosis (VMG) 22
Infection 40
Infection (E. Coli) (EColi) 22
Infection (S. Aureus) (SAureus) 18
Total | 177 68 293

Table 1: Sample counts in each gene expression dataset. Counts for a subtype of a disease are
in italics.

Clustering patients by gene expression signatures

Gene expression signatures have been linked to several immune-mediated diseases, and we iden-

tified three such signatures from recent literature:
Signk  contains genes enriched for expression in NK cells and has been associated with T1D 15

SigipNn  contains genes in the type I interferon pathway, commonly found to show increased

expression in SLE patients!6

Sigcps genes associated with CD8 T cell exhaustion, which have been shown to predict

prognosis in inflammatory bowel disease'"18

We attempted to cluster patients with a range of IMD in three gene expression datasets 61920

(Table 1). For each individual, we summarised expression levels of each signature with a mean
level and its associated uncertainty, as described in Methods. For some signatures, we antic-
ipated association with specific diseases (such as the interferon signature and SLE) whilst for
others we had less clear prior hypotheses. Whilst we did not expect every signature or every
clustering to associate with disease, because any clusters found might reflect disease activity,
sex or ethnicity, we considered that clusterings which discriminated between diseases would be
meaningful, and so assessed the association of each clustering with disease using Fisher’s exact
test.

We first used DPMUnc to cluster datasets by individual signatures, and found clusters in
each dataset which showed association with disease in the majority of cases (7/9). All datasets
identified a “high” cluster for Sigipxy which contained a majority of SLE cases. Clustering by
Sigops also found a “high” cluster which contained a majority of T1D cases in both datasets
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(Ferreira and Lyons). For Signk, the Ferreira dataset identified a low cluster containing pri-
marily T1D cases, as expected given the published associated of this signature with T1D'®
but whilst evidence for differential clustering by disease was found in Chaussabel, there was no
enrichment of T1D in the “low” cluster. This difference may reflect time since diagnosis - T1D
cases in Ferreira were predominantly newly diagnosed, while the samples in the original study
that identified the signature were from children before and around the time of seroconversion.
Only limited details are given about the Chaussabel T1D samples!?, but since by definition
T1D cases are only newly diagnosed for a short period of time, it is likely these were longer
standing cases. Thus this signature may represent an active disease process that resolves in
long standing T1D cases.

We then clustered the Ferreira and Chaussabel datasets, which had shown association with
each signature, across all three signatures simultaneously. We found that in the case of Ferreira,
the multiple-signature clustering discriminated more powerfully between diseases than any in-
dividual signature clustering (Figure 5). However, in the case of Chaussabel, while the SLE
group remained identifiable with high Sigrpn values, the T1D cluster that had been identified

in Sigcpg clustering alone, was folded into the main cluster with the healthy controls.

Discussion

Taking uncertainty into account can have an impact on clustering. We illustrated with simulated
data how the cluster mean inferred by DPMUnc is closer to the points that have lower uncer-
tainty, whereas methods like mclust and k-means place the cluster mean close to the empirical
mean of all the points, and also how DPMUnc shifts the latent data points towards the inferred
cluster mean, which results in a smaller cluster variance. In a more complicated dataset this
could have knock-on consequences, perhaps excluding more distant points from joining the clus-
ter, or splitting one cluster into two. On a range of simulated datasets, DPMUnc out-performed
existing methods and the posterior similarity values were shown to be relatively well calibrated,
so that if two points have posterior similarity of p, this roughly translates to probability p that
they are in the same cluster in the true clustering.

Our clustering of diseases by the engineered GWAS features recapitulated known divisions
and relationships in the immune-mediated diseases. It also suggests further uses for clustering
with uncertainty, such as clustering individuals using sets of polygenic risk scores, where the
uncertainty in the PRS coefficients could be exploited rather than ignored.

Gene signatures may be defined on one dataset with ideal experimental conditions, such as
a timecourse study of the effect of interferon-3. To then use them on a new dataset with more
complex structure, such as a dataset with patients with a mix of immune-mediated diseases,
typically requires some form of dimension reduction such as WGCNA or PCA used on the new

6 or using all genes'® with the hope that

dataset, either using just those genes from the signature
one WGCNA module or variable in PCA will coincide with the signature. Our proposed method
of summarising a gene expression across a signature extends the possible uses of signatures, and

since the signature may be weaker on a dataset with more complex structure, it is crucial to take
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Fig. 4: Clustering of samples in 3 gene expression datasets (rows) according to 3 gene signatures
(columns). (a-c) Ferreira (d-f) Chaussabel (g-i) Lyons. In each panel, the left plot shows the
observed data, and the right plot shows the fraction of individuals assigned to each cluster. The
p value shown relates to the null hypothesis that cluster membership is independent of disease.
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the variability of the signature into account, which DPMUnc allows. In particular, it allows us
to cluster patients simultaneously according to multiple signatures. In the case of the Ferreira
dataset, this led to a clearer separation of the two disease and control groups, emphasizing the
potential utility of considering multiple signatures, which provide multiple views of the same
data.

Methods

Inference from DPMUnc
Simulations

We simulated a variety of datasets with different characteristics to explore the behaviour of
DPMUnc in comparison to other methods when the ”truth” was known.

The simulated datasets each consist of thirty points spread across three clusters, and broadly
follow the model used by DPMUnc outlined above. The simulation process includes two param-
eters which are varied between simulations: U controls the magnitude of observation uncertainty
and N controls the level of noise around the cluster means, i.e. the levels of observational and

biological variation respectively. The process for simulating data is:

1. Cluster means are the points pu; = (10,0), pe = (0,10), pus = (o, @) where a = 101+2—‘/g 2

14 was chosen so that the cluster means are equidistant.

2. Points were independently and uniformly assigned to clusters i.e. ¢; big Uniform{1, 2, 3}
fori=1,...,30.

3. Latent observations were simulated around the cluster mean, with variance N ie. z; |
C; :k‘NN(Mk,N)

&

ii

4. Uncertainty for the points was simulated using 0? "< T'(k = 1/2,0 = 2U).

5. Observed data points were simulated about the latent points: z; ~ N (zi, 01-2)

We simulated for 100 different seeds each combination of U = 5,7,10,13 and N = 4,9, 12, 16.
A grid of simulated datasets is shown in Figure S6 showing the range of the datasets.
We ran DPMUnc and DPMZeroUnc with 10 thousand iterations, saving only every 10th

iteration to avoid autocorrelation and discarding the first half of the iterations as burn-in.

Prior for cluster parameters

We used the prior hyperparameters ag = 2, kg = 0.5. po is set to be the empirical mean of all
the data. 5y is set to be 0.2 multiplied by the variance of the variable, thus scaling 5y by the
variance of the variable. In datasets with multiple variables, we use the mean of the variances to
scale By. If a dataset had variables on vastly different scales, this would not be an appropriate

choice of prior but all the datasets in this paper have variables on comparable scales.
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Comparing to other methods

We used simulated data to examine the performance of DPMUnc. Simulated data provides
access to the true latent observations and so we could use the clustering ability on the latent data
as a guide to the best performance possible by DPMUnc: no matter how good the adjustment
made for uncertainty of the points is, DPMUnc cannot be expected to do better than its
performance on the true latent data. We also used two widely used clustering methods as
benchmarks, using the adjusted rand index (ARI)?! to quantify the accuracy.

mclust® is a Gaussian Mixture Model (GMM) which does not account for uncertainty and
which requires K to be specified. We chose K by optimising the Bayesian Information Criterion.

6:7 can be shown to be equivalent to a GMM with spherical clusters. The R package

k-means
cluster?? provides a function clusGap which calculates a goodness of clustering measure called
the gap statistic?®, which measures within-cluster similarity. We use this measure to choose the
optimal value of k, the number of clusters.

We also ran DPMUnc with adjusted versions of the datasets where the uncertainty estimates
were shrunk to 0. Thus the latent variables are essentially fixed to be equal to the observed

data points throughout. We call this version of the method DPMZeroUnc.

GWAS summary statistics features

We downloaded Table S10 from'® and kept the 186 traits which differed significantly from
a control dataset (FDR< 0.01), and focused on disease traits. To avoid near duplicates, we
retained only one set of results from UK Biobank (UKBB) by excluding the GeneAtlas analysis,
and retaining the Neale analyses which had a greater representation of rarer immune traits,
leaving us with 45 traits in our final dataset.

We ran DPMUnc and DPMZeroUnc with 100 million iterations, saving only every 1000th

iteration to avoid autocorrelation and discarding the first half of the iterations as burn-in.

Gene expression signatures
The genes representing each signature were identified as follows
Signk  consists of 87 genes (Supplementary File S6 from '%).

Sigipn  consists of 56 genes identified through differential expression analysis using interferon
stimulation of PBMCs and marked as discriminatory in SLE according to Supplementary
Table 216,

Sigcps consists of 12 genes from module 8 and module 9 in'? Supplemental Table 1 which
showed reduced expression with log fold change < —3 only in exhausted CD8 T cells. The
signature was defined in mice and we used BioMart to convert from murine (GRCm39)
genes to human (GRCh38.p13) genes?*25,

The selected signature genes are listed in full in Table S1.
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MCMC summarisation approach

Whilst DPMUnc and DPMZeroUnc provide samples from a posterior distribution, it is useful
to find a single summary clustering for downstream analyses. We first calculate the posterior
similarity matrix (PSM). Each entry PSM; ; is the proportion of posterior samples in which
observation ¢ and observation j were placed in the same cluster. Secondly, we calculate the
clustering of the PSM that optimises the posterior expected adjusted rand index (PEAR) with
the true clustering (maxpear'?), i.e. the clustering that seems the most compatible with the
true clustering. This requires a search strategy to explore the space of possible clusters, and we
use all possible clusters found via complete hierarchical clustering, using 1 — PSM as a distance

matrix, using the mcclust and mecclust.ext packages in R.

Preprocessing gene expression data

We first used a variance stabilising transformation?® vsn2 to minimise the relationship between
average gene expression and the variance of gene expression (Figure S4). We then used median
absolute deviation (MAD) scale normalization to make the distribution of expression values
similar between genes, dividing all values for gene g by the MAD of the control samples for
gene g. For each sample, we then summarised using the mean and variance of the normalised
expression value, with the summary measures taken across all genes in a signature.

We ran DPMUnc and DPMZeroUnc with 20 million iterations, saving only every 500th

iteration to avoid autocorrelation and discarding the first half of the iterations as burn-in.
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main, as follows:
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e Lyons from https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-145
e Chaussabel from https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11907
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We make the implementation of DPMUnc, and the code to generate the analyses in this

manuscript, available in github repositories:
e DPMUnc software https://github.com/nichollskc/DPMUnc
e DPMUnc simulation study https://github.com/nichollskc/DPMUnc_simulations
e GWAS dataset analysis https://github.com/nichollskc/DPMUnc_GWAS

e Gene expression dataset analysis https://github.com/nichollskc/clusteringPublicGeneExpr
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