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Abstract

Social aggression is an innate behavior that can aid an organism in securing access to
resources[1], or it can impair group function and survival in behavioral pathology[2-4]. Since
many brain regions contribute to multiple social behaviors[5-7], expanded knowledge of how
the brain distinguishes between social states would enable the development of interventions
that suppress aggression, while leaving other social behaviors intact. Here we show that a
murine aggressive internal state is encoded by a widespread network. This network is organized
by prominent and synchronized theta (4-11Hz) and beta (14-30Hz) oscillations that relay
through the prefrontal cortex, and couples to widespread cellular firing. Strikingly, network
activity during social isolation encodes the trait aggressiveness of mice, and causal cellular
manipulations known to impact aggression can bidirectionally regulate the network’s activity.
Finally, we use closed-loop stimulation of prefrontal cortex and causal mediation analysis to
establish that the network is a mediator of aggressive behavior. Thus, we define a widespread

network that encodes an aggressive internal state within and across mice.

Social behavior reflects the integration of sensory information with internal affective states.
Many subcortical brain regions contribute to aggressive behavior in mammals including lateral
septum (LSN) [8, 9], nucleus accumbens [2, 10], lateral habenula [11, 12], the ventrolateral
portion of ventromedial hypothalamus [5, 13-17], and medial amygdala [3, 18]. Prefrontal
cortex stimulation has been shown to mitigate aggressive behavior in both humans [19, 20] and
rodents [21], implicating cortical regions in regulating aggression. Finally, sensory regions, such

as those underlying olfaction, also contribute to aggression [22].

To appropriately regulate aggressive behavior, the brain must integrate information across
these and other cortical and subcortical regions. Moreover, since many of these regions also
regulate non-aggressive social behaviors [5, 23], the brain must ultimately utilize information
from overlapping regions to segregate aggression from other social behavioral states. Though
efforts have revealed several cellular-level processes within one of these regions that

contribute to this mechanism [13, 16, 24], the complementary network level process that
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integrates information across regions to distinguish aggressive states from prosocial states
remains unknown. Addressing this knowledge gap is of major importance as 1) mammals
regularly select from a repertoire of social behaviors based on external sensory cues to ensure
their survival [6, 25], and 2) a range of psychiatric disorders are broadly marked by a failure to

appropriately match behavior with evolving social contexts [26].

We implanted mice with microwire electrodes across eleven brain regions implicated in
regulating complex social behavior. We then recorded electrical activity from these brain
regions, concurrently, as mice engaged in social encounters that induced aggressive attack
behavior and non-attack social behavior. After confirming that statistical models based on
single brain regions could independently differentiate attack behavior from non-attack social
behaviors, we asked whether this code was also reflected at a network level, where
millisecond-timescale information was integrated across all the 11 brain areas. For this analysis,
we used a machine learning approach that models variations in natural patterns of activity
within and between implanted brain regions across seconds of time (a timescale that we
reasoned would allow us to capture socially-relevant internal states)[27]. Our approach also

tuned the model to optimally encode attack vs. non-attack social behavior.

We then applied multiple levels of validation of increasing generalization to our single-region
and network-level models [28]. 1) We tested whether the models generalized to data collected
from time periods that had not been used to train our model (i.e., hold out sessions). 2) We
tested whether our models generalized to new animals, and 3) we tested an orthogonal
behavioral context associated with aggression. Only the model that was based solely on activity
from ventral hippocampus and the network model survived this third level of validation. 4)
Next, we tested whether these two models encoded an aggressive state, more broadly, and not
simply attack behavior. Only the network model encoded the social context of mice during
periods immediately prior to or following aggressive and prosocial interactions. Moreover,
network activity prior to and following attacks correlated with trait aggressiveness on a mouse-
by-mouse basis. 5) Finally, we subjected the network to two high levels of experimental
validation, each based on causal cellular manipulations, that bidirectionally impact attack

behavior. Specifically, we developed a close-loop optogenetic stimulation approach that
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93  detected when the brain transitioned into an aggressive state, on a second-by-second basis,

94  and stimulated the prefrontal cortex in a manner previously known to suppress attack behavior.

95  We also employed a designer receptor exclusively activated by designer drug (DREADD)-based

96 approach to selectively activate cells in ventral medial hypothalamus in a manner that has been

97  shown to induce attack behavior. These manipulations bidirectionally impacted network

98 activity. 6) As this latter manipulation was also performed in mice on a different genetic

99  background, we further confirmed the generalizability of our network-level findings. Thus, we
100 firmly establish a network-level architecture whereby the brain encodes an aggressive state in a

101  manner that generalizes across context and individuals.

102 Direct stimulation of prefrontal cortex broadly suppresses social behaviors

103  We initially focused our efforts to selectively suppress aggressive behavior on modulating the
104  medial prefrontal cortex (i.e., prelimbic and infralimbic cortex in mice), since this brain region
105  had been implicated in social behaviors [29-31]. Prior work had shown that optogenetic

106  stimulation of prefrontal cortex was sufficient to suppress attack behavior and increase non-
107  aggressive social behaviors in CD1 strain mice [21]. Further highlighting the translational

108  potential of such an approach, clinical studies had shown that direct transcranial stimulation of
109  prefrontal cortex decreased aggressive feelings in violent offenders [32], and in individuals with

110  methamphetamine use disorder [33].

111 We performed our optogenetic stimulation experiments during these social encounters using a
112  protocol modeled after prior work, where blue light stimulation is used to activate

113 channelrhodopsin 2 in the medial prefrontal cortex for the entirety of a social encounter

114  (473nm, 5mW, 20Hz, 3ms pulse width, Fig. 1a) [21]. Control experiments were performed using
115  vyellow light stimulation (593.5nm, 5mW, 20Hz, 3ms pulse width), which does not activate

116  channelrhodopsin 2[34, 35]. CD1 mice show periods of attack behavior, defined by biting,

117  boxing (kicking/clawing), or tussling behavior, when a male C57BL6/J (C57) mouse is introduced
118 into their home cage [36]. On the other hand, they exhibit periods of non-attack social

119  interactions such as sniffing, grooming, or resting (placing nose or forepaws against the subject

120 mouse, but not moving) when exposed to a female intruder [16]. Consistent with the prior
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121 report, medial prefrontal cortex stimulation suppressed attack behavior towards C57 male mice
122  and tended to increase non-attack social behavior [N=8; t;=3.43; P=0.0055, and t;=-2.35;

123 P=0.051 using a two-tailed paired t-test, for attack and non-attack behavior, respectively,

124  significance determined by a Benjamini-Hochberg false discovery rate (FDR) correction, Fig. 1a].
125  To ensure that this suppression of aggression was selective, we also tested mice in a second

126  social paradigm in which they interacted with a female. Importantly, the CD1 mice do not show-
127  attack behavior during this social context. Here, we found that cortical stimulation decreased
128  non-attack social behavior toward female intruders (t;=3.647, P=0.0041, using paired t-test,

129  significance determined by FDR correction). Thus, medial prefrontal cortex stimulation was

130  unable to selectively suppress attack behavior. Rather, stimulation suppressed multiple types of

131  social behavior.

132 Multiple brain regions fail to independently encode attack behavior across mice and contexts

133  After failing to selectively suppress CD1 aggressive social behavioral by targeting the prefrontal
134  cortex, we set out to probe for brain regions that may exhibit such selectivity. We implanted
135  CD1 mice across multiple cortical and subcortical brain regions known to contribute to social
136  behavior, including infralimbic cortex[21], orbitofrontal cortex[37], prelimbic cortex[21], lateral
137  septum [8, 9], nucleus accumbens [2, 10], lateral habenula [11, 12], mediodorsal thalamus[38],
138  ventromedial hypothalamus [5, 13-17], medial amygdala [3, 18], ventral hippocampus [39], and

139  primary visual cortex.

140  Following surgical recovery, we recorded neural activity while the CD1 mice freely interacted
141  with an intact male C57 mouse and a female C57 mouse for 300 seconds each. We repeated
142  these encounters over six sessions, yielding a total of 1800 seconds of neural data and behavior
143  for each exposure (Fig. 1b, see also Supplemental Fig. S1). We recorded a subset of these CD1
144  mice (N=9 of the 20 mice) as they interacted with a castrated male mouse intruder. Since CD1
145  mice do not generally exhibit attack behavior towards castrated males [40], this encounter

146  provided neurophysiology data during additional non-attack social behaviors that were

147  unpaired with female sensory cues. We also acquired neural activity while the CD1 mice were

148 isolated in their home cage.
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149  We first verified that each of the implanted brain regions encoded social behavior using

150  discriminative cross spectral factor analysis non-negative matrix factorization (dCSFA-NMF, see
151  Fig. 1e) [41]. dCSFA-NMF utilizes supervised machine learning to generate a statistical model
152  thatis both descriptive [integrates brain local field potential (LFP) activity features across time]
153  and predictive (discovers networks that distinguish between types of external behavior). LFPs
154  reflect the activity of populations of neurons, and these signals can be consistently sampled
155  across mice. The electrical functional connectome networks (Electome Networks) generated
156  from dCSFA-NMF integrate LFP power (oscillatory amplitude across 1-56 Hz; a correlate of

157  cellular and synaptic activity within brain regions), LFP synchrony (how two regions’ LFP

158  frequencies synchronize across time; a correlate of brain circuit function), and LFP Granger

159  synchrony (Granger causality testing; a correlate of directional transfer of information across a
160  brain circuit). Furthermore, dCSFA-NMF generates electome network activity scores (an

161 indicator of the strength of each network) at a temporal resolution sufficient to capture brain
162  states underlying the external behavior under observation (in this instance, a resolution of one
163  second). The electome networks are designed to learn patterns that explain interpretable

164  correlates of neural activity whose expression relate to measured behavior, facilitating an

165  overall interpretable model [28]. Any given brain region can belong to multiple electome

166  networks, and each electome network may incorporate any number of brain regions. dCSFA-
167  NMF thus integrates spatially distinct brain regions and circuits into electome networks that

168 encode behavior.

169  To explore whether there was a generalized activity pattern within individual regions that

170  encoded social behavior, we designed a series of dCSFA-NMF models based on LFP oscillatory
171  power in frequencies from 1-56Hz. Each single-region model was trained using observations
172 pooled from 20 CD1 mice to separate periods when mice were socially isolated from periods
173  when they were engaged in social behavior (e.g., attack behavior towards the intact males and
174  non-attack social behavior towards male and female mice). We trained our models with one
175  supervised network to discover the patterns of LFP activity that encoded social behavior. We
176  also trained three unsupervised networks to account for the remaining variance in neural

177  activity that was not directly related to social behavior (see methods for justification of
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178  hyperparameter selection). We tested the accuracy of the models in new CD1 mice recorded

179  under all three conditions (N=9 mice).

180  We observed high accuracy in decoding periods of isolation from social behavior, using the

181  supervised network, for each implanted brain area (p<0.05 using Wilcoxon rank-sum,

182  significance determined by FDR correction for 44 comparisons, Fig. 1c). Next, we designed a
183  new series of models to separate one of the three social behavioral states from the other three
184  (e.g., attack behavior toward intact males vs. non-attack interactions with female, intact male,
185  and castrated male mice). These models were built using observations pooled from the same
186 20 CD1 mice, and again based on LFP power. We then tested the accuracy of the supervised
187  networks in the models for the same nine hold-out mice. Thus, we trained and tested the

188  model’s generalizability to decode each class of social behavior from the other three for each of
189  the 11 implanted brain areas (i.e., 33 additional models). Using this approach, we found that
190 five of the brain region-based statistical models decoded attack behavior versus non-attack

191  social behavior: infralimbic cortex, lateral habenula, ventral hippocampus, medial amygdala,
192  and medial dorsal thalamus. V1 successfully decoded the non-attack male interaction from the
193  other social conditions as well (P<0.05 using one-tailed Wilcoxon rank-sum test, significance
194  determined by FDR correction for 44 comparisons, see Fig. 1c). None of the other implanted
195  brain regions showed this selectivity. Thus, five regions independently encoded attack behavior

196  vs. non-attack social behavior in a manner that generalized across mice.

197  Our broad goal was to identify a neural signature that could be used to suppress aggression
198  while leaving other social behaviors intact. Thus, we tested whether the putative aggression
199 codes we discovered for the five regions generalized to another context associated with

200  aggression. Specifically, urine from other male mice has been found to elicit aggressive and
201  dominance behavior in CD1 males [22, 42, 43]. As such, the most aggressive mice from the

202  training and testing groups (N=8) were allowed to freely explore a clean inanimate object or an
203  object covered in urine from another intact CD1 male mouse (seven sessions). We then tested
204  whether each of the five regions’ putative aggression codes could distinguish periods where
205  mice explored the clean objects from those where mice explored objects covered in urine.

206  Though only ventral hippocampus model tended to decode behavior in this new context, none
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207  of the brain regions showed statistically significant encoding at the mesoscale-level (LFP)
208  following multiplicity correction (AUC=0.56£0.06, P=0.04 for ventral hippocampus, using one-
209  tailed Wilcoxon rank-sum test, significance determined by FDR correction for 5 comparisons,

210  Fig. 1d).

211  An aggressive state is encoded at the network-level

212 After failing to robustly decode attack behavior using LFPs independently from any of the 11
213 brain regions, we established that a brain network integrated information across all the

214  implanted brain regions to encode an aggressive state. This network-level encoding mechanism
215  generalized to multiple new contexts associated with aggression. Critically, the network also
216  encoded attack behavior with a predictive efficacy that exceeded independent ventral

217  hippocampus activity.

218  For this analysis, we trained a new dCFSA-NMF model using data from all the implanted brain
219  regions. This model utilized LFP power for each region, and the coherence and Granger

220  directionality between them. The model utilized one supervised network that was trained to
221  encode periods of attack-behavior (positive class) vs. social behavior in castrated male and

222  female social context (negative class). We also included non-attack social behavior towards
223 intact males in the negative class to discourage the network from simply learning non-

224  aggressive sensory cues specific to the intact male (i.e., supervision, electome network #1; see
225  Fig. 1e). Based on our hyperparameter selection approach using the Bayesian Information

226  Criteria (see methods and Supplemental Fig. S2), seven additional unsupervised networks were
227  trained to account for the variance in neural activity that was not related to attack vs. non-

228  attack social behavior. We then validated our supervised network using the set of nine holdout
229  CD1 mice from our single area coding test analysis. Again, none of these mice were used to
230  train the electome networks. We found that the supervised network (network #1) successfully
231 discriminated between attack behavior and non-attack social behavior in the test mice (N=9,
232 Wilcoxon signed rank, p=0.0020, Fig. 1f). Incidentally, we also observed that one of the

233 unsupervised networks (Network #6) showed strong encoding in the nine hold-out test mice

234  (AUC=0.65%0.03, P<5x107 using Wilcoxon rank sum).
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235  Attack behavior is indicative of an aggressive brain state. We also reasoned that it was possible
236 for a mouse to be in an aggressive internal state, even though it was not actively exhibiting

237  attack behavior. Since such a context was likely to be present immediately prior to or following
238  attack behavior, we tested whether network activity pooled from the 3 seconds preceding and
239 3 seconds following social behaviors encoded the distinct social conditions (Fig. 2a). Critically,
240  these data windows were not used to train the network model since they did not contain attack
241  or non-attack social behavior. Activity of the supervised network (network #1) was lower in the
242 intervals surrounding attack behavior compared to non-attack social interactions with males or
243 females (F3,6,=28.6, P<0.0001 using Friedman’s test, followed by P<0.05 using Wilcoxon signed-
244 rank test, significance determined by FDR correction, Fig. 2b, top left). Strikingly, network #1
245  activity during periods of isolation also negatively correlated with the time mice spent

246 exhibiting attack behavior towards other males (R=-0.58; P=0.016 using Spearman's rank

247  correlation, Fig. 2b, top right), encoding aggression on a mouse-by-mouse basis. Thus, electome
248  network #1 [hereafter referred to as EN-Aggression Inhibition (EN-AggINH)] represented a

249  network that putatively inhibited aggression when its activity was highest. In contrast to the
250 models developed for each of the brain regions independently, EN-AggINH activity also

251  encoded the exposure to male urine (N=8, Network Activity = 9.1+1.0 and 8.3x1.1 for clean and
252 urine covered objects, respectively; P=0.012 using one tailed Wilcoxon signed-rank test;

253  AUC=0.57+0.02, data not shown). Network #6 activity failed to generalize to this urine context
254  (AUC=0.4810.01, data not shown). Thus, only EN-AggINH generalized to this second aggression

255 context.

256  Next, we tested the model for ventral hippocampus since we observed a trend towards

257  decoding attack behavior in the urine context. This model failed to encode the aggressive state.
258  Specifically, activity from ventral hippocampus was statistically indistinguishable between

259  periods surrounding attack behavior and non-attack social interactions with females and

260  activity during social isolation (F367=7.9, P=0.047 using Friedman’s test; P=0.36 and 0.72,

261  respectively, using Wilcoxon signed-rank test, significance determined by FDR correction, Fig.

262  2b, bottom left). Moreover, there was no relationship between ventral hippocampal activity
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263  duringisolation and the innate aggressiveness of mice (P=0.60 using Spearman's rank, Fig. 2b,

264  bottom right). Thus, only network activity encoded the aggressive internal state.

265 EN-Aggression Inhibition activity couples to cellular firing

266 EN-AggINH was composed of prominent theta frequency activity (4-11 Hz) in medial amygdala
267 and beta frequency activity (14-30 Hz) in medial amygdala and prelimbic cortex (Fig. 3a-b).

268  Prominent synchrony was also observed in the theta and beta frequency bands. Indeed, when
269  we quantified directionality across these synchronized bands, we saw that activity flowed from
270  orbital frontal cortex and primary visual cortex, relayed through medial dorsal thalamus, and
271  infralimbic cortex, and flowed into medial amygdala and ventral hippocampus (Fig. 3c-d, and

272 Supplemental Fig. S3).

273  We verified that the activity of EN-AggINH truly reflects biological activity, by relating the

274  electome network to neural firing, as in previous work [44]. To achieve this, we analyzed the
275  correlation between cellular activity across the implanted brain regions and the activity of EN-
276 AggINH, as cell activity is an undisputed measure of biological function. We then used a

277  permutation test to rigorously test our findings (Fig. 3e). Specifically, we shuffled cellular firing
278  within social behavioral conditions, maintaining the relationship between cell firing and

279  behavior. We then repeated this procedure 1000 times to generate a null distribution for which
280  only 5% of cells would be expected to exhibit firing coupled to network activity. We found that
281  ~18% of cells showed firing that was coupled to the activity of EN-AggINH, far more than could
282  be explained by chance (X2:16.4, p=0.00005). Specifically, of the 186 cells recorded, nine

283  (4.8%) showed firing activity that was positively correlated with EN-Agg/INH and 25 (13.4%)
284  showed activity that was negatively correlated (Fig. 3f). Thus, most cells that showed coupling
285  to EN-AggINH were inhibited when network activity increased. These analyses confirmed that

286  EN-AggINH activity reflects the dynamics of cellular activity across the brain.

287 EN-Agqgression Inhibition generalizes to new biological contexts related to aggression

288  To further validate EN-AggINH, we established that activity in this network was modulated by

289  orthogonal biological conditions that have been shown to induce or suppress aggressive

10
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290  behavior in mice. In most cases, we performed this analysis in new animals, which is considered
291  the gold standard of model validation in machine learning [45]. We transformed LFP data

292  recorded from these new sessions into our original network model.

293  For our first gold-standard validation experiment, we tested whether our network generalized
294  to new mice on a different genetic background engaging in a new aggression context (Fig. 4a-b).
295  Specifically, this approach also used a validated cellular manipulation that causally induces

296  aggression under a behavioral condition that would otherwise not yield aggressive attack

297  behavior (i.e., we used female social partners). We expressed an excitatory DREADD (AAV-hSyn-
298  DIO-hM3Dq) in the ESR1+ cells of ventromedial hypothalamus, since it has been shown that

299  direct excitation of these cells induces aggressive behavior towards female mice [17, 46, 47].
300 Experiments were performed in the male F1 offspring of female CD1 strain mice crossed with
301 ESR1-Cre male mice on a C57 strain background. Subsequently, we implanted the mice with

302 recording electrodes to target the same brain regions as our initial experiment used to train the
303 network model. Following recovery, we performed behavioral and neural recording when mice
304 were exposed to a female mouse. The experimental mice were either treated with saline or

305 CNO (Clozapine N-oxide, which activates the excitatory DREADD), in a pseudorandomized

306  order, prior to the repeated testing sessions.

307  As anticipated, treatment with CNO induced attack behavior towards the female mice (N=8; P=
308 0.0039 for both attack latency and attack number using one-tailed Wilcoxon sign rank; Fig. 4c).
309 When we probed neural activity across the entire exposure to the female intruder, we found
310 that treatment with CNO also suppressed EN-AggINH activity (N=8, P=0.0039 using one-tailed
311  Wilcoxon sign-rank; Fig. 4d). Thus, the network model generalized to a second aggression

312  context induced by a cellular manipulation, and was robust to different genetic backgrounds.
313  Critically, network activity was also lower during the time intervals surrounding attack/non-
314  attack social behavior for the CNO vs. saline treatment sessions (P=0.02 using one-tailed

315  Wilcoxon sign-rank; Fig. 4d), again demonstrating that EN-Agg/INH encoded an aggressive state.
316  Our observations also established that EN-Agg/INH does not simply encode sensory cues

317  associated with male intruders, since the network responses observed in the CNO treated mice

318  were induced by a female intruder.

11
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319  EN-Aqgression Inhibition mediates attack behavior

320 We used mediation analysis to determine whether EN-AggINH activity putatively played a

321  mechanistic role in suppressing attack behavior. Mediation analysis is a framework to

322  determine whether the impact of a “treatment” (manipulation) on an outcome (attack

323  behavior) is mediated by a change in an intermediate variable (EN-AggINH activity). If so, the
324  intermediate variable is viewed, at least in part, as a mechanistic route (a mediator) for how the
325 treatment impacts the outcome. Three components were necessary to optimally implement
326  test our mediation analysis models: a manipulation that causally modulated 1) attack behavior
327 and 2) EN-AggINH activity, and 3) an approach to deliver the manipulation during levels of EN-
328  AggINH activity that would predict the emergence of attack behavior. We chose to build such
329 anapproach based on prefrontal cortex optogenetic stimulation, since we had previously found

330 that such a manipulation causally suppressed attack behavior [21].

331  Specifically, we set out to preferentially stimulate medial prefrontal cortex when EN-Agg/INH
332  was naturally suppressed in the brain (signaling the onset of attack behavior). First, we built a
333  closed-loop system that estimated the activity of EN-AggINH in real time (i.e., within 200ms,
334  Fig. 5a). This approach employed a new network encoded solely based on power and coherence
335 measures (i.e., a reduced network, Fig. 5b), because the processing time to calculate Granger
336 directionality was prohibitive for real-time implementations. While this new network lacked the
337  interpretive power of dCSFA-NMF, it enabled us to predict attack behavior in real time (Fig. 5c).
338 In principle, when the activity of EN-Agg/NH fell below an established threshold (signaling the
339  onset of attack behavior), our closed-loop approach would deliver a one-second light

340  stimulation (5mW, 20Hz, 3ms pulse width) to prefrontal cortex. To verify that this real-time

341  estimation system worked as designed, we tested whether light stimulation was triggered by a
342  decrease in EN-AggINH activity. Indeed, network activity was significantly lower one second

343  prior to stimulation than it was two seconds prior to stimulation, demonstrating that our

344  approach successfully identified when the EN-AggINH activity decreased below the threshold
345 that signaled the onset of aggression (N=9; P<0.005 for within-subject comparison of EN-

346  AggINH activity 1 vs. 2 seconds prior to yellow light stimulation using one-tailed signed-rank

347  test, Fig. 5d). Importantly, we found that prefrontal cortex stimulation acutely increased EN-
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348  AggINH activity (N=9, P<0.01 for comparison of EN-Agg/NH activity one second after blue vs.
349  vyellow stimulation, using one-tailed signed-rank test, see Fig. 5d). Thus, our closed-loop

350 stimulation approach satisfied two of the components needed to implement our mediation
351  approach. Next, we tested whether increasing EN-AggINH activity via prefrontal cortex

352  stimulation as the brain transitioned into a putative attack state would suppress aggressive
353  behavior. We found our closed-loop stimulation approach significantly suppressed attack

354  behavior (see Fig. 6a; N=9 mice that were not used to train the initial model; ts=6.1, P=0.0003,
355  comparing blue vs. yellow light stimulation using two-tailed paired t-test for attack behavior,
356  significance determined by FDR correction). Thus, our closed-loop manipulation suppressed
357  attack behavior, satisfying the remaining component needed to implement our mediation

358  analysis approach.

359  We first used the classic Baron and Kenny approach [48] to determine whether EN-AggINH
360 activity mediates the effect of neurostimulation on aggressive behavior. According to this

361  statistical approach, there is a mediated effect of network activity on behavior if three

362  conditions are met: 1) stimulation modulates network activity, 2) network activity correlates
363  with behavior, and 3) modeling the behavior from network activity and stimulation together is
364  better than modeling behavior from stimulation alone. Indeed, we had identified a significant
365  direct effect of stimulation on attack behavior (P<0.005, see Fig. 6a) and network activity

366  (P<0.0005, Fig. 5d). To optimally match the conditions between the treatment and control

367 cases, we used windows during the closed-loop stimulation procedure where the laser was
368  triggered, and then compared blue laser stimulation (treatment) to yellow laser stimulation
369  (control). Thus, the data points used for our mediation analysis predicted imminent or ongoing
370  attack behavior, and network activity prior to the stimulation in both the control (yellow light)
371  and treatment (blue light) case were similar. A statistical model of behavior using network

372  activity and stimulation (see Fig. 5e, model 2) significantly outperformed the model using only
373  stimulation (see Fig. 5e, model 1; nested logistic regression models, P<0.01, likelihood ratio

374  test), satisfying the necessary conditions to show that EN-AggINH is a mediator.

375  After establishing that EN-Agg/NH activity mediated the impact of PFC stimulation on behavior,

376  we set out to evaluate the significance of the average causal mediation effect (ACME) and the
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377  average direct effect (ADE) during the same stimulated closed-loop windows using causal

378  mediation analysis [49]. ACME is the causal effect of stimulation on behavior due to the change
379  in EN-AggINH activity (see. Fig 5e, model 3), and ADE is the causal effect on behavior from

380  prefrontal cortex stimulation not explained by the change in EN-AggINH activity. We found that
381  there was a significant ACME (P<0.01), but not a significant ADE (P=0.48). This analysis

382  suggested that EN-AggINH activation is the primary mechanism whereby prefrontal cortex

383  stimulation suppresses aggression.

384  Next, we tested models where EN-AggINH activity functioned as a biomarker, rather than a

385  mediator of attack behavior. In these models, the manipulation modifies another neural

386  process, which in turn, simultaneously impacts attack behavior and EN-Agg/NH activity (Fig. 5g,
387 model 5). First, we evaluated whether theta power in 11 different brain regions could serve as a
388  mediator in lieu of EN-AggINH activity (Fig. 5f, model 4). We chose this frequency band since it
389  was prominently featured in EN-Agg/NH and within the network we previously found to encode
390 social appetitive behavior[7]. Across these 11 models, only orbitofrontal cortex had a significant
391  average causal mediation effect (uncorrected p-value of 0.038, see Fig. 5f). Critically, this model
392  did not survive a correction for multiple comparisons, and its ACME estimate was dwarfed by
393  the size of the ACME estimate for EN-AggINH (the estimate for the EN-AggINH model was

394  49.7% larger). This evidence suggests that EN-AggINH is a much better mediator than any of

395 these other potential ‘biomarkers’ by themselves.

396  After failing to identify any significant mediation effect of theta activity within each of the

397 eleven brain regions, we tested whether including theta activity as an intermediary in our

398  causal graph would disrupt EN-AggINH’s role as a mediator in attack behavior (Fig. 5g, model 5).
399  Here, we corrected for the role of theta power in the model of how EN-AggINH changes as a
400 function of stimulation, as well as correcting for theta power in forecasting attack behavior. As
401  such, this framework dictates that EN-AggINH cannot mediate behavior that is already

402  explained by changes in theta power in a specified region. When we ran eleven models, one
403  model for each brain region, we found that EN-AggINH still significantly mediated attack

404  behavior in all of them (P<0.05 for all models; see Fig. 5g, bottom). Thus, even after accounting
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405  for these potential intermediate variables, our findings still supported EN-Agg/INH as a mediator

406  of attack behavior.

407  Validation of temporal activity and spatial spectral features of EN-AgqINH

408  We validated the temporal activity and spatial spectral features of EN-Agg/NH by establishing
409 that they could be utilized to selectively suppress aggression. Specifically, after determining
410  that our closed-loop manipulation suppressed aggression, we also quantified the impact of this
411  stimulation protocol on non-aggressive interactions with other male and female mice. We

412  found that closed-loop PFC stimulation increased non-attack behavior towards the intact C57
413  males [N=9; tg=-2.3, P=0.049 comparing blue vs. yellow light stimulation using two-tailed paired
414  t-test for attack behavior and non-attack behavior, significance determined by FDR correction,
415  Fig. 6a). No differences in non-attack social behavior were observed during exposure to female
416  mice (tg=0.74, P=0.48 using two-tailed paired t-test, significance determined by FDR correction,

417  Fig. 6a). Thus, closed-loop PFC stimulation selectively reduced aggression.

418  To verify that this selective modulation of aggression was due to synchronization of the light
419  stimulation with endogenous EN-AggINH activity, and not simply due to the dynamic pattern of
420  stimulation delivered using this method, we performed an additional control experiment where
421  we used the stimulation patterns from our closed-loop experiments to drive stimulation in a
422  new group of animals (e.g., randomly copying patterns from another mouses brain, analogous
423  toa “sham” in neurofeedback experiments). Thus, for these sessions, prefrontal cortex

424 stimulation occurred in a manner that mirrored our closed-loop stimulation experiments,

425  except that stimulation was not fixed to endogenous EN-AggINH activity (i.e., open loop —

426 nonsynchronous; Fig. 6b). Nonsynchronous stimulation failed to suppress aggressive behavior
427  (F121=4.87, P =0.039 for light type x stimulation pattern effect for post-hoc analysis using a

428  mixed effects model two-way ANOVA; t,3=0.09, P=0.93 for nonsynchronous stimulation using
429  paired t-test; see Fig. 6b), verifying that the suppression of attack behavior driven by closed-
430 loop stimulation was indeed due to delivery of stimulation timed to endogenous EN-Agg/INH
431  activity. Incidentally, nonsynchronous stimulation had no impact on non-attack social behavior

432  towards intact males or females (N=14; t13=1.79, P=0.097; and t13=0.54, P=0.60, for interaction
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433  with males and females, respectively, comparing blue vs. yellow light stimulation using two-

434  tailed paired t-test). Thus, we validated the temporal activity component of EN-AggINH.

435  After establishing that we could selectively reduce aggression by temporally targeting PFC

436  based on the activity state of EN-AggINH, we tested whether we could reduce aggression by
437  spatially targeting stimulation based on the sub-components of PFC output circuity that

438  composed the network. We identified potential spatially specific targets by looking at the

439 relative LFP spectral Granger directionality from prefrontal cortex that occurred in the

440  aggressive internal state. Our initial visualization of EN-Agg/INH was constrained to the absolute
441  information flow at the strongest synchronies (Fig 3c-d). On the other hand, the relative

442  measures provide a measure of which circuits decrease their information flow prior to and

443  during attack behavior since EN-AggINH activity decreases during aggression (see Fig. 6¢). In
444  other words, the relative Granger directionality measures quantified information flow pathways
445  that decreased the most during aggression. We focused our analysis on the Granger

446  directionality between PFC [prelimbic (PL) and infralimbic cortex (IL)] to nucleus accumbens

447  (PFC>NAc), medial amygdala (PFC—>MeA) and lateral habenula (PFC—> LHb), since EN-AggINH's
448  relative LFP spectral energy was highest for PFC> NAc and PFC—> MeA circuitry and lowest in
449  the PFC—>LHb circuit. Thus, a prominent decrease in information flow in PFC> NAc and

450  PFC—>MeA circuitry was associated with aggression, while no such change was observed in PFC-
451  LH activity. Critically, all three circuits consisted of monosynaptic projections, enabling direct
452  targeting using optogenetics. We next quantified the relative spectral energy of these circuits at
453  20Hz since stimulating PFC at this frequency was sufficient to suppress the aggressive internal
454  state (Fig. 5d) and attack behavior (Fig. 1a). Given their representation in EN-AggINH, we

455  reasoned that driving PFC>NAc or PFC—> MeA activity at 20Hz should selectively suppress

456  aggression, while driving PFC—> LHb activity should not.

457  We causally activated these three circuits at 20Hz and measured their impact on social
458  behaviors. To selectively stimulate the terminals of PFC neurons in each target region (NAc,
459  MeA, or LHb), we injected mice with a retrograde AAV-Cre (rAAV-Cre) virus in one target region

460  and an AAV-DIO-channel rhodopsin-2 virus in PFC (N=8-9 per group). A stimulating fiber was
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461  placed above the target region injected with rAAV-Cre. Social behavior was quantified during

462  20Hz stimulation with yellow vs. blue light (5mW, 20Hz, 3ms pulse width).

463  Blue light stimulation of PFC—>NAc or PFC—>MeA decreased aggression (tg=2.4, P=0.04; t,=5.9,
464  P=0.001 for NAc and MeA stimulation, respectively for blue vs. yellow light using two tailed-
465  paired t-test; N=8-9 mice per group, see Fig. 6d-e). This stimulation also increased non-attack
466  social behavior towards the male C57 mice (tg=3.1, P=0.015; t;=3.8, P=0.007 for NAc and MeA
467  stimulation, respectively). Neither of these stimulation protocols impacted social behavior

468  towards female C57 mice (tg=1.2, P=0.27; t,=0.8, P=0.46 for NAc and MeA stimulation,

469  respectively). On the other hand, PFC—> LHb stimulation had no impact on aggression (t;=0.38,
470  P=0.71; using two-tailed paired t-test, N=7 mice, see Fig. 6f), or non-attack social behavior

471  towards C57 males (t;=0.24, P=0.82 using two-tailed paired t-test). Though this stimulation

472  protocol tended to increase social interaction with C57 females, these results did not reach

473  statistical significance (t;=2.2, P=0.06 using two-tailed paired t-test). These results

474  demonstrated that directly stimulating the PFC subcircuits that normally showed the greatest
475  decreases in aggression-related activity causally and selectively suppressed aggression. On the
476  other hand, stimulating a PFC subcircuit with minimal activity changes during aggression had no
477  impact on social behavior towards male mice. Thus, these findings validated the spatial spectral

478  features of EN-AggINH.
479  Discussion

480 Here, we set out to discover the internal state that regulates whether an animal will exhibit
481  aggressive or pro-social behavior. We reasoned that attack behaviors emerge from an

482  aggressive internal brain state. Thus, we used machine learning to discover the mesoscale

483  neural architecture of the brain when an animal exhibited attack vs. non attack social

484  behaviors. Like other well-defined internal brain states, such as sleep, we found that the

485  network distinguishing attack behavior incorporated state-dependent patterns of neural

486  activity across every brain region we measured. For multiple regions, differences were

487  observed in local oscillatory power, while others exhibited differences in oscillatory synchrony

488  with a broader collection of regions. Each brain region showed selectivity in the frequencies of
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489  oscillations that contributed to the network. For example, prelimbic cortex showed strong

490  activity in the beta frequency range, while medial amygdala showed strong activity in the beta
491  and theta frequency range. No brain region showed prominent activity contributions across all
492  frequencies. We also observed differences in the activity profile of a primary sensory region,
493 V1, which may reflect a change in encoding, or differences in visual sensory input observed
494  during attack behavior. Critically, the brain state identified during attack behavior was better
495  captured by the activity across all recorded brain regions as an integrated network, rather than

496  the independent activity within each brain region.

497  Though behavioral output has been classically utilized to infer the internal state of a brain, we
498  reasoned that an internal brain state was also likely present during intervals immediately

499  preceding and following behavioral output. Thus, we tested whether the aggression network
500 showed distinct activity profiles in the time intervals surrounding attack and non-attack social
501  behaviors. Indeed, network activity was lower during interval surrounding attack behavior.
502  Strikingly, we also found that network activity when animals were isolated in their home cage
503 encoded their trait aggression. Thus, the network did not simply encode behavioral output
504 since it was observed separately from attack behavior. Rather, the network encoded an

505  aggressive internal brain state.

506 Interestingly, this aggressive brain state was encoded by decreased activity in the network.

507  Given that we identified more cells that increased their firing rates as network activity

508 decreased, the discovery of a network that decreases its activity during aggression does not
509 indicate that overall brain activity is suppressed during aggressive states. Rather, these findings
510 argue that the aggressive state is encoded by a network that decreases its activity relative to
511  when mice are socially isolated or engaged in pro-social behavior. Indeed, our data suggested
512  that several common regions/circuits were activated during aggressive and pro-social behavior.
513  These common circuits need not be reflected in our network since our model was trained to
514  differentiate attack vs. non-attack social behavior. Nevertheless, our discovery of a network
515 that decreased its activity during aggression raises the intriguing hypothesis that the brain

516  actively inhibits aggression during pro-social engagement. When activity in this inhibition

517  network is suppressed, aggressive behavior emerges.
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518 This interpretation is supported by our validation experiments where we directly activated

519  ESR1+-Cre neurons in ventromedial hypothalamus. Our findings showed that direct activation
520 of these cells induced the aggressive brain state (suppressed EN-AggINH activity). When mice
521  treated with CNO were exposed to a stimulus that would generally produce non-attack social
522  behavior (i.e., a female mouse), attack behavior emerged. Thus, the presence of the aggressive
523  brain state changed the mapping between sensory input and behavior output. Similarly, direct
524  stimulation of medial prefrontal cortex biased mice towards exhibiting non-attack social

525  behavior when they were exposed to a stimulus that would generally induce attack behavior
526  (i.e., a male intruder). Our findings showed that medial prefrontal cortex stimulation decreased
527  the aggressive internal state (increased EN-AggINH network activity). Critically, our findings
528  using mediation analysis argue that the brain state represented by EN-AggINH contributes to
529  the mediation of medial prefrontal cortex stimulation to a suppression of attack behavior.

530  Supporting this finding, our mediation analysis performed using data from the ESR1-Cre

531  experiment showed that EN-AggINH also mediated the impact of CNO treatment (see

532  Supplemental Fig. S5). Thus, EN-AggINH reflects the internal brain state that suppresses basal

533  aggression.

534  Here, we framed internal brain states as a collection of functions that transform sensory input
535 into behavior. Indeed, we found that when EN-AggINH activity is suppressed, the brain

536 transforms both male and female social sensory cues into attack behavior. It is also widely

537  appreciated that sensory input can also cause the brain to transition from one internal state to
538 another. For example, a loud sound can cause an animal to transition from sleeping to a hyper
539  aroused internal state. Along this line, we found that exposure to male mice could promote an
540  aggressive internal state in CD1 mice even prior to attack behavior, while exposure to a female
541  mouse did not (under normal conditions). In this framework, one would also anticipate that
542  many modulatory strategies that regulate attack behavior could mediate their effect by driving
543  the brain out of the state represented by low EN-AggINH activity. Indeed, we predict that

544  delivering a bright visual cue or a strong sensory cue (i.e., air puff) timed to decreases in EN-
545  AggINH activity could also potentially be used suppress attack behavior, since many circuits and

546  sensory inputs likely converge onto the internal state represented by EN-AggINH.
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547  Our closed-loop stimulation approach was developed using a neural-network based

548  approximation technique for which the features were substantially constrained relative to

549  dCSFA-NMF. Nevertheless, we found that the reduced encoder was sufficient to identify the
550 precise time windows when the brain transitioned into aggression, as marked by a decrease in
551  EN-AggINH activity. In the future, novel approaches may allow for further improvement in the
552  precision of our real-time stimulation approach. For example, future work could exploit

553  convolutional neural networks to bypass the feature extraction step. These neural network
554  encoders could be altered to predict both aggressive and pro-social states, such as the

555  generalized social appetitive network that we recently discovered [7]. By using both networks
556  concurrently to actuate a closed-loop system, it may be possible to further suppress aggressive
557  behavior relative to pro-social behavior. Indeed, our current findings also pointed to a network
558 that exhibits increased activity during aggressive behavior (Electome Network #6, see Fig. 1f,
559  and Supplemental Fig. S6). Though the network failed to encode the urine paradigm, it is

560  possible that it contains activity that synergizes with EN-AggINH to encode aggressive social
561  states more optimally. If future studies demonstrate this potential, imitation encoders for both
562  Electome Network 6 and EN-AggINH could be integrated to further optimize closed-loop

563  approaches to selectively suppress aggression.

564  Multiple neuropsychiatric disorders including mood disorders, psychotic disorders,

565 neurodevelopmental disorders, and neurodegenerative disorders are associated with deficits in
566  regulating social behavior, including aggression. While multiple pharmacological approaches
567 have been instituted to suppress aggressive behavior towards self and others, many of these
568  strategies act by sedating the individual and can disrupt aspects of pro-social function. Our

569  discovery of a brain network that encoded an aggressive state raises the potential for novel

570  approaches to suppress aggressive behavior that spare pro-social behavior. Indeed, compared
571  to astandard open-loop stimulation protocol (20Hz stimulation) which suppressed both attack
572  and non-attack pro-social behavior, our closed-loop stimulation approach spared non-attack
573  social behavior towards males or females. Intriguingly, like other open-loop PFC stimulation
574  studies [50, 51], our 20Hz stimulation protocol induced behavioral hyperactivity in experimental

575  mice (see Supplemental Fig. S7). On the other hand, our closed-loop stimulation protocol did
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576  not (see Supplemental Fig. S7). Thus, our findings also show that closed-loop stimulation may

577 limit off-target behavioral effects that are induced by classic stimulation approaches.

578  Overall, our findings establish a generalized network-level signature whereby the brain
579  suppresses aggression via active inhibition. Moreover, they highlight the exciting potential for

580  state-specific neuromodulation to regulate internal states.
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590 Figure Legends

591  Figure 1. A widespread network encodes attack behavior. a) Direct stimulation of prefrontal
592  cortex suppresses social behavior. Schematic of optogenetic stimulation (left) and social

593  encounters utilized for testing (middle). Prefrontal cortex stimulation suppressed attack

594  behavior, increased non-attack social behavior towards male mice, and suppressed non-attack
595  social behavior towards females (*P<0.05 for each comparison). b) Schematic for electrical

596 recordings, showing targeted brain regions (left), and representative local field potentials

597 (middle) recorded during repeated exposure to social contexts that produce attack and non-
598 attack social behavior (right). ) Framework to test individual brain regions’ encoding of social
599  states (left). All implanted regions encoded social engagement; however, only five selectively
600 encoded the attack behavior vs. non-attack behavior (right). Pink shading indicates P<0.05 with

601  FDR correction. d) Attack codes discovered from the five brain regions failed to encode
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602  aggressive behavior induced by male urine (gray shading indicates P<0.05 prior to but not

603  following FDR correction). e) Schematic of machine-learning model used to discover network
604  encoding attack behavior (left). The inputs to the model included LFP activity from the 11 brain
605  regions, the aggression class (+/-), and the social condition (IM-Intact male, CM-Castrated Male,
606  F-Female) for each 1-second data window. f) Encoding across eight learned networks. The

607  supervised network (purple, EN-AggINH) showed the strongest encoding. Data shown as mean

608 = SEM.

609  Figure 2. EN-Aggression Inhibition encodes an aggressive internal state. a) Neural activity was
610 sampled while mice were socially isolated (blue) and during intervals preceding and following
611  social behavior. b) Network activity during these intervals encoded attack behavior vs. male and
612  female non-attack social behaviors, while ventral hippocampal activity did not (P<0.05 using
613  Friedman’s test followed by Wilcoxon sign-rank test). During isolation (blue) Network activity,
614  but not ventral hippocampus activity, encoded the subsequent total attack time of individual

615  mice (P<0.05 using Spearman’s Rank Correlation).

616  Figure 3. Dynamics and biological components of EN-Aggression Inhibition. a) Prominent

617  oscillatory frequency bands composing EN-AggINH are highlighted for each brain region around
618  the rim of the circle plot. Prominent synchrony measures are depicted by lines connecting brain
619  regions through the center of the circle. The plot is shown at relative spectral energy of 0.4.

620 Theta (4-11 Hz) and beta (14-30 Hz) frequency components are highlighted in blue and green,
621  respectively. b) Example relative LFP spectral energy plots for three brain regions corresponding
622  to the circular plot in A (See Supplemental Fig. S3-4 for full description of network features). c)
623  Granger offset measures were used to quantify directionality within EN-Agg/NH. Prominent
624  directionality was observed across the theta and beta frequency bands (shown at spectral

625  density threshold of 0.4 and a directionality offset of 0.3). Histograms quantify the number of
626 leading and lagging interactions between brain regions. d) Schematic depicting directionality
627  within EN-AggINH. e-f) EN-AggINH maps to cellular activity. e) Three cells from LHb, VMH, and
628  MeA showing firing activity that is negatively correlated with EN-AggINH activity (red) and a
629  VHip cell showing positively correlated firing (blue). f) EN-AggINH activity correlated with

630  cellular firing across the brain across the brain. Single- and multi-units were used for analyses.
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631  Figure 4. EN-Aggression Inhibition encodes distinct aggression contexts. a) Experimental
632  approach for causally inducing aggression via direct activation of ESR1+ cells in ventromedial
633  hypothalamus. b) Cellular activation induced attack behavior towards female mice (P<0.001
634  using sign-rank test), c) decreased EN-Agg/NH activity during social interactions with female
635  mice (P<0.01 using one-tailed Wilcoxon sign-rank test) and d) intervals surrounding these

636  interactions (P<0.05 using Wilcoxon sign-rank test).

637  Figure 5. EN-Aggression Inhibition activity is causally related to aggression. a) Schematic for
638  closed-loop manipulation of EN-Agg/NH activity. b) Real-time estimation of aggression. Receiver
639  operating characteristic depicting detection of aggressive behavior in a mouse using EN-Agg/INH
640  activity vs. real-time reduced encoder is shown to the right. Dashed blue line corresponds to
641  the established detection threshold. c) Detection of aggression using reduced encoder vs. EN-
642  AggINH across mice (N=9; P=0.43 using two-tailed paired Wilcoxon sign-rank). d) EN-AggINH
643  activity relative to light stimulation during closed-loop manipulation. Network activity

644  significantly decreased one second prior to yellow light stimulation (N=9, *Pp<0.005 using one-
645 tailed sign rank test; note that activity was normalized for each mouse to the average network
646  activity during isolation). Activity was also higher one second after stimulation with blue light
647  vs. yellow light (**P<0.01 using one-tailed signed-rank test). e) Directed graph with the inferred
648  modes of action derived from mediation analysis. There is a causal relationship from

649  stimulation to behavior and from stimulation to EN-Agg/NH expression (model 1; P<0.01 using
650  signed rank and paired t-tests). EN-Agg/INH is a mediator from stimulation to behavior (P<0.01
651  using nested logistic regression models, likelihood ratio test; model 2), EN-AggINH activation is
652  the primary mechanism whereby prefrontal cortex stimulation suppresses aggression (P<0.01
653  using average causal mediation effect, model 3). f-g) Directed graph testing f) local theta power
654  asthe primary mechanism whereby prefrontal cortex stimulation suppresses aggression (model
655  4)and g) EN-AggINH activation as the primary mechanism whereby prefrontal cortex

656  stimulation suppresses aggression when local power is included as an intermediary (model 5).

657  The uncorrected P values for each brain area in both models are shown below as -log(P).

658  Figure 6. Validation of spatiotemporal features of EN-Aggression Inhibition. a) Portion of

659  windows stimulated during social behaviors using a closed-loop approach (P=0.002 using one-
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660 tailed sign-rank test, left). Behavioral effects of closed-loop stimulation, right). b) Schematic for
661  nonsynchronous control stimulation (left). Nonsynchronous stimulation does not impact

662  aggressive or non-attack social behavior towards males or females. c) Granger Coherence for
663  PFC-dependent subcircuits within EN-Agg/NH (shown as relative spectral energy, see also

664  Supplemental Figure S4) d) Viral targeting strategy (left) and behavioral impact of PrL—> NAc
665  circuit stimulation (right). e) Viral targeting strategy (left) and behavioral impact of PrL> MeA
666  circuit stimulation (right). f) Viral targeting strategy (left) and behavioral impact of PrL=>LH

667  circuit stimulation (right). **P<0.005, *P<0.05 using two tailed paired t-test. Order of blue and

668  yellow light stimulation trials is show next to social condition diagrams.
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684  All procedures were approved by the Duke University Institutional Animal Care and Use
685  Committee in compliance with National Institute of Health (NIH) Guidelines for the Care and
686  Use of Laboratory Animals. Mice were maintained on a reverse 12-hr light cycle with ad libitum

687  access to food and water.

688  Twenty-nine six-month retired breeder male CD1 strain mice (Charles River Laboratories,

689  Wilmington, Massachusetts) were used to discover a network that encoded aggression,

690  hereafter called EN-AggINH. Another fifty-five CD1 mice were used to probe the behavioral and
691  network responses to optogenetic stimulation. Mice were singly housed with enrichment.

692  ESR1-Cre mice on a C57/BIl6J background were provided by Scott Russo. These mice were

693  crossed with CD1 females in the Bryan Vivarium at Duke University to obtain F1 offspring. Eight
694  fourteen-week-old virgin ESR1-cre F1 male offspring were used to validate EN-Agg/INH. All F1
695  offspring were group-housed 2-5 mice per cage until they received viral injections in the

696  ventromedial hypothalamus at 7-8 weeks. After surgery, these mice were singly housed with
697  enrichment. All partner mice (C57BL/6J: two to seven intact males, two to seven females, and
698  two to seven castrated males per experimental mouse) were 7-14 weeks old. These mice were
699  purchased from Jackson Laboratories (Bar Harbor, Maine). All stimulus mice were housed 5 per
700  cage with enrichment. All behavioral testing and neurophysiological recordings occurred during

701  the dark cycle.

702  Castration of C57 male mice

703  Eighteen male mice were anesthetized with 1% isoflurane. The scrotal sac was sanitized with
704  betadine and 70% ethanol. The testes were then moved into the sac by gently palpating the
705 lower abdomen. Next, an incision was made in the sac and the testes were extracted. After
706 blood flow was cut off to the testes using a thread tourniquet, the testes were removed. The
707  remaining fatty tissue was placed back into the scrotum, which was then sutured. Mice were

708  allowed 10 days for recovery prior to experimental use.

709 Electrode implantation surgery

710  Mice were anesthetized with 1% isoflurane and placed in a stereotaxic device. Anchor screws

711  were placed above the cerebellum, right parietal hemisphere, and anterior cranium. The
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712 recording bundles designed to target prelimbic cortex, infralimbic cortex, medial amygdala,

713 ventral hippocampus, primary visual cortex, mediodorsal thalamus, lateral habenula, lateral
714  septum nucleus, nucleus accumbens, ventrolateral portion of the ventromedial hypothalamus,
715  and orbitofrontal cortex were centered based on stereotaxic coordinates measured from

716  bregma. [Orbitofrontal cortex: anterior/posterior (AP) 2.35mm, medial/lateral (ML) 1.0mm,

717  dorsal/ventral (DV) from dura -2.75mm; infralimbic cortex and prelimbic cortex: AP 1.8mm, ML
718  Omm, DV -2.7mm from dura; medial amygdala: AP -1.25, ML 2.7mm, DV -4.3 from dura; lateral
719  septum and nucleus accumbens: AP 1.0mm, ML Omm, DV -4.0mm from dura; ventromedial

720  hypothalamus, lateral habenula, and medial dorsal thalamus: AP -1.47mm, ML Omm, DV -

721 5.4mm from dura; central hippocampus and primary motor cortex: AP -3.0mm, ML 2.6mm, DV -
722  3.0mm from dura]. We targeted infralimbic cortex and prelimbic cortex by building a 0.6mm DV
723 stagger into the bundle. We targeted lateral septum and nucleus accumbens by building a

724  0.3mm ML and 1.5mm DV stagger into the bundle. We targeted lateral habenula, medial dorsal
725  thalamus, and ventral medial hypothalamus by building a 0.3mm ML, and 1.9mm and 2.5mm
726 DV stagger into our electrode bundle microwires. We targeted primary motor cortex and

727  ventral hippocampus using a 0.3mm ML and 2.5mm DV stagger in our electrode bundle

728  microwires. For optogenetic stimulation experiments, the addition of a Mono Fiberoptic

729  Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm [inner diameter], 125mm buffer
730  [outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec) was built into the prefrontal

731 cortex bundle. The tip of the fiber was secured 300mm above the tip of the IL microwire. Mice

732 were allowed 10-15 days for recovery from surgery before behavioral testing.

733 Viral surgery

734  For optogenetic experiments targeting PFC soma [21], we used CD1 mice that showed an attack
735  latency < 60s when exposed to an intact C57 male. Thirty-five CD1 mice were anesthetized with
736 1% isoflurane and placed in a stereotaxic device. The mice were unilaterally injected with AAV2-
737  CamKII-ChR2-EYFP (purchased from the Duke Viral Vector Core, Durham, NC; courtesy of K.

738  Deisseroth), based on stereotaxic coordinates from bregma (left Infralimbic cortex: AP 1.8mm,
739 ML O.3mm, DV -2.0mm from the brain). A total of 0.5mL of virus was infused at the injection

740  site at a rate of 0.1mL/min over five minutes, and the needle was left in place for ten minutes
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741  after injection. For the open-loop stimulation experiment, CD1 mice were implanted with an
742 optic fiber (Mono Fiberoptic Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm

743 [inner diameter], 125mm buffer [outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec))
744  0.3mm above the injection site immediately after viral syringe was removed. These mice were
745  allowed 3 weeks for recovery prior to behavioral testing. For the closed-loop experiments, CD1

746 mice were allowed 3 weeks for viral expression prior to implantation with an optrode.

747  For the ESR1-Cre validation experiment, thirteen F1 offspring were bilaterally injected with

748  AAV2-hSyn-DIO-GqDREADD (obtained from Addgene) based on stereotaxic coordinates

749  measured from bregma (AP -1.5mm, ML £0.7mm, DV -5.7mm from the dura). A total of 0.3mL
750  of virus was infused bilaterally at a rate of 0.1mL/min, and the needle was left in place for five
751  minutes after injection. Two weeks after viral infusion, F1 males were screened for aggressive
752  behavior towards females. The F1 males received i.p. injections of CNO (1mg/kg) at the start of
753  the screening session. Thirty-five minutes after injection, a novel C57 female was placed in the
754  home cage for 5 minutes. Screening was repeated one week and two weeks later. Only F1

755  males who attacked females for at least two of the three screening sessions (9/13 mice) were
756  implanted with electrodes [17]. The eight mice that showed good surgical recovery were

757  subjected to further experiments.

758  For PFC projection-targeting experiments, we used forty-four male CD1 mice that showed an
759  attack latency <60s and initiated attacks at least three times within three minutes when

760  exposed to an C57 male mouse. These mice were unilaterally injected with AAV2-EF1a-DIO-
761  ChR2-eYFP (obtained from Addgene) in the left prefrontal cortex based on stereotaxic

762  coordinates measured from bregma (AP 1.8mm, ML 0.3mm, DV -2.0mm from the dura), and
763  AAVrg-EFla-Cre-mCherry (obtained from Addgene) was injected in the downstream target
764  region based on stereotaxic coordinates measured from bregma (NAc: AP 1.0mm, ML 0.9mm,
765 DV -3.8mm from the dura; MeA: AP -1.25mm, ML 2.75mm, DV -4.3mm from the dura; or LHb:
766 AP -1.6mm, ML 0.4mm, DV -2.2mm from the dura). A total of 0.3mL of virus was infused in the
767  prefrontal cortex and 0.3mL of virus was infused in the downstream target region at a rate of
768  0.1mL/min. The needle was left in place for five minutes after injection. Immediately after the

769  viral syringe was removed from the downstream target region, mice were implanted with an
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770  optic fiber (Mono Fiberoptic Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm
771 [inner diameter], 125mm buffer [outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec))
772 0.3mm above the downstream target region injection site. Three weeks after viral

773 infusion/optic fiber implantation, CD1 mice were screened for aggression. Thirty-three

774  implanted mice that continued to show an attack latency <60s and initiated attacks at least
775  three times within three minutes were used for testing effects of projection targeted

776  stimulation on aggressive behavior.

777 Histological analysis

778  Histological analysis of implantation sites was performed at the conclusion of experiments to
779  confirm recording sites and viral expression. Animals were perfused with 4% paraformaldehyde
780  (PFA), and brains were harvested and stored for at least 96 hrs in PFA. Brains were

781  cryoprotected with sucrose and frozen in OCT compound and stored at -80C. Brains were later
782  sliced at 40um. Brains from mice used to train and validate the network were stained using

783  NeuroTrace fluorescent Nissl Stain (N21480, ThermoFisher Scientific, Waltham, MA) using

784  standard protocol. Specifically, Nissl staining for brain tissue occurred on a shaker table at room
785  temperature. Tissue was washed in PBST (0.1% Triton in phosphate-buffered saline solution) for
786 10 minutes. It was then washed for five minutes in PBS twice. The tissue was then protected
787  from light for the remainder of the protocol. The tissue was incubated in 1:300 Nissl diluted in 2
788  mL PBS for 10 minutes. After the Nissl incubation, tissue was washed once in 0.1% PBST for 10
789 minutes, then twice in PBS for 5 minutes. Brains from ESR1 mice and mice used for 20 Hz or

790 closed-loop stimulation were mounted in Vectashield mounting medium containing DAPI (H-
791  1200-10, Vector Laboratories, Newark, CA). Images were obtained at 10x using an Olympus

792  fluorescent microscope. Of the 297 total implantation sites in the training and testing set of

793  mice, 17 were mistargeted (~5.7% error rate). Of these mistargeted implants, 13 were within
794  200um of the targeted structure. Given our prior work demonstrating high LFP spectral

795  coherence (in the 1-55Hz frequency range) across microwires separated by 250um, in both

796  cortical and subcortical brain regions [44], we chose to retain these animals in our analysis. The

797  other four mistargeted implants were within 350um of the targeted structure. The most
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798 reliably mistargeted site was ventral medial hypothalamus for which 4 animals were implanted

799  within 200um of the target, and 2 animals were implanted within 350 um of the target.

800  Machine learning analysis typically benefits from larger data sets. Thus, we concluded that

801  maintaining a higher number of data points likely outweighed the effect of a small number of
802  mistargeted brain regions, particularly since our LFP measures were robust to the targeting
803  inaccuracies we observed histologically. As such, we pooled data from all 20 implanted animals
804  tolearn ourinitial model. We employed a similar strategy for our validation analysis, where an
805 animal was only removed from the validation set if there was clear histological confirmation of
806  mistargeting >200um for any of the recorded regions. Specifically, presuming accurate targeting
807  with 94.3% certainty and targeting within 200um at a higher certainty, we included animals
808  with missing or damaged histological slices in our analysis. However, if there was clear

809 histological confirmation of mistargeting for any of the recorded regions (as was the case for 1
810 mouse), the animal was removed from the validation testing. Critically, our validation

811  procedure implies that the machine learning models were robust regardless of any slight

812  imprecision in the animals we utilized for training.

813 Neurophysiological data acquisition

814  Mice were connected to a data acquisition system (Blackrock Microsystems, UT, USA) while
815  anesthetized with 1% isoflurane. Mice were allowed 60 minutes in their home cage prior to
816  behavioral and electrophysiological recordings. Local field potentials (LFPs) were bandpass

817 filtered at 0.5-250Hz and stored at 1000Hz. An online noise cancellation algorithm was applied
818  to reduce 60Hz artifact (Blackrock Microsystems, UT, USA). Neural spiking data was referenced
819  online against a channel recording from the same brain area that did not exhibit a SNR>3:1.
820  After recording, cells were sorted using an offline sorting algorithm (Plexon Inc., TX) to confirm
821  the quality of the recorded cells. Only cell clusters well-isolated compared to background noise,
822  defined as a Mahanalobis distance greater than 3 compared to the origin, were used for the
823  unit-electome network correlation analysis. We used both single (well isolated clusters with
824  ISI<1.5) and multi-units (well isolated clusters with ISI<1.5; N=186 total neurons) for our

825  analysis as our objective was to determine whether electome network activity was reflective of
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826  cellular activity. Neurophysiological recordings were referenced to a ground wire connected to

827  anchor screws above the cerebellum and anterior cranium.

828 Behavioral recordings and analysis for training/testing models

829  The CD1 mice used for training and testing the electome model were first subjected to

830  screening to assess their basal level of aggressiveness. Screening occurred once a day for three
831  consecutive days prior to surgical implantation. Animals were screened in cohorts. For each

832  screening session, an intact male C57 was placed in the CD1’s home cage for 5 minutes and the
833 latency to first attack was recorded. To ensure that our network generalized broadly across CD1
834  mice, we used a training and testing set for which ~50% of the mice showed high aggression
835  during screening (i.e., latency to attack < 60s), and ~50% of the mice showed low to moderate
836  aggression (i.e., latency to attack > 60s). Animals that showed no aggression during screening

837  (16/45 mice) were excluded from further experiments.

838  All screening/testing occurred within the home cage of mice except for the quantification of
839  cortical stimulation-induced gross locomotor activity. These latter experiments were performed
840 ina44cm x 44cm x 35cm (LxWxH) open field arena. Subject mice (CD1 and ESR1 males) were
841  acclimated to the recording tether for three days prior to the first recording session. Each

842  acclimation session involved anesthetizing the mouse with 1% isoflurane, tethering the subject
843  mouse, allowing 60 minutes to recover from isoflurane, then placing a male C57 in the home
844  cage for 5 minutes. Mice were then anesthetized with isoflurane again and detached from the
845  tether. The aggression level of experimental mice was determined based on average latency to

846  attack partner mice during the second and third acclimation sessions.

847  After screening, twenty-nine mice were implanted, and data was acquired across 1-6 behavioral
848  testing/recording sessions following recovery. Sessions were separated by 5-7 days. Recordings
849  for all social encounters were performed in the home cages of the CD1 mice. Each behavioral
850  testing session began with 5 minutes of recording prior to introduction of the social stimulus.
851  All mice were subjected to encounters with an intact C57 male mouse and a female C57 mouse.
852  Asubset of eighteen CD1 mice were also subjected to an encounter with a castrated male

853  mouse, and another subset of eighteen mice were subjected to exposure to objects covered in
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CD1 mouse urine. Object pairs included yellow duplex blocks, curved red duplex blocks,
weighted 5 mL conicals, glassware tops, and objects assembled from black legos®. The CD1
mice were exposed to a different pair of objects during each session. Order of exposure to
stimulus mice and objects was shuffled for every session. Six of the CD1 mice were recorded
under all four conditions. Data observations (1 second each) were pooled across eleven CD1
mice for training the network model. Object pairs included yellow duplex blocks, curved red
duplex blocks, weighted 5 mL conicals, glassware tops, and objects assembled from black
legos®. The CD1 mice were exposed to a different pair of objects during each session. Order of
exposure to stimulus mice and objects was shuffled for every session.

For ESR1 male behavioral testing, eight mice were injected with either saline or CNO (1mg/kg,
i.p.) after the five-minute baseline recording. Thirty-five minutes after this injection, mice were
exposed to an intact male C57, a castrated male C57, and a female C57, presented in
pseudorandom order. Mice were subjected to six total recording sessions (three in which they
were treated with saline and three in which they were treated with CNO), again in
pseudorandom order. Sessions were separated by 5 days to allow an adequate washout of

CNO[52].

Behavior was scored for each second as an “attack”, “non-attack social interaction”, or “non-
interaction”. One-second windows were identified as "aggressive" if the mouse was engaged in
biting, boxing (kicking/clawing), or tussling behavior [36]. Windows were labeled as "non-attack
social interaction"” if the mouse had his nose or forepaws touching the stimulus mouse (intact
male/female/castrated male) or object, but was not biting, boxing, or tussling. Examples of
behaviors labeled "non-attack social behavior" included sniffing, grooming, or resting (placing
nose or forepaws against the subject mouse, but not moving). If the stimulus mouse had
his/her forepaws or nose on the CD1, but it was not reciprocated, this was labeled "non-
interaction". CD1 straight approach, sideways approach, and chasing of the stimulus mouse
could result in attack (biting/kicking/tousling), non-attack social behavior (nose or paw touch),
or withdrawal without any touch. Thus, while sideways approach and chasing are regularly
labeled as "aggressive" in the literature [36, 53, 54], and straight approach is regularly labeled

as "pro-social”, these behaviors lacked consistent resolutions. Moreover, mice also
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883  demonstrated these behaviors towards female and castrated mice (non-attack social context).
884  One-second windows containing these behaviors were labeled "non-interaction". All other

885  timepoints not labeled "attack" or "non-attack social” were also labeled "non-interaction".

886 These behavioral criteria were selected to include ethologically aggression-related behaviors
887  and maximize the likelihood that the CD1 was aware of the presence of the stimulus mouse or
888  object during the behavioral window, while remaining confident in the classification of "attack"

889  and "non-attack social" window labels.

890  While tail rattling is not an attack behavior like the other behaviors that were labeled as

891  "attack", it was consistently only demonstrated by aggressive mice towards intact male mice.
892  Moreover, tail rattling is well-recognized in the literature as an aggressive behavior. Thus, we
893 included this behavior in the “attack” behavior category. In our subset of 20 mice used for
894  training the network, tail rattling was observed 8 + 4s out of the 135 * 26s “attack” windows

895  per mouse.

896  The videos used to generate the labels for training and testing our machine learning model
897  were hand-scored by a trained researcher. Videos from ESR1 mice and optogenetic stimulation
898  were automatically tracked using DeepLabCut [55, 56]. This information was then used for

899  creating behavioral classifiers in SimBA [57].

900 LFP preprocessing and signal artifact removal

901  Each LFP signal was segmented into 1s non-overlapping windows. If there were multiple intact
902 channels implanted in a region, they were averaged to produce a single signal. Windows with
903 non-physiological noise were removed using an established automated heuristic [7]. Briefly, the
904 envelope of the signal in each channel was estimated using the magnitude of the Hilbert

905 transform. The Median Absolute Deviation (MAD) of the magnitude was then calculated on

906 each channel of each recording. Signal was marked as non-physiological if the envelope

907 exceeded a high threshold (5x MAD, which is roughly 4x the standard deviation for a normally
908  distributed signal). Any data adjacent to non-physiological data that had an envelope value

909 above a smaller threshold (0.167 MAD) was also considered non-physiological. All data marked

910 in this way was ignored when averaging channels for each region. Any channels with standard
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911  deviation less than 0.01 were removed as well. If no channels were usable for a given region
912  within a window, that whole window was removed from the data. This set of heuristics

913  resulted in 34.715.1% of the data being excluded from analysis. After this, 60Hz line artifact was
914  further removed using a series of Butterworth bandpass filters at 60Hz and harmonics up to

915  240Hz with a stopband width of 5Hz and stopband attenuation of -60dB. Finally, the signal was
916  downsampled to 500Hz.

917 Estimation of LFP oscillatory power, cross-spectral coherence, and Granger directionality.

918  Signal processing was performed using Matlab (The MathWorks, Inc. Natick MA). For LFP

919  power, spectral power was estimated using Welch’s method using a 250-millisecond window
920 and 125-millisecond steps. Windows were zero-padded to give a 1Hz resolution. Cross-spectral
921  coherence was estimated pairwise between all regions using Welch’s method and magnitude-
922  squared coherence defined as

|Psdp(w)|?
Psdy,(w)Psdgg(w)

Crp(w) =

923  where A and B are two regions and Psd,,(w) and Psd g (w) are the power and cross spectra

924  ata given frequency w, respectively.

925  Spectral Granger Causality features were estimated using the Multivariate Granger Causality
926  (MVGC) MATLAB toolbox [58]. To get stable Granger Causality estimates, a 6" order highpass
927  Butterworth filter — with a stopband at 1Hz and a passband starting at 4 Hz — was applied to the
928  data using the filtfilt function (MATLAB, The MathWorks, Inc. Natick MA). Granger Causality

929  values for each window were estimated with a 20-order AR model at 1 Hz intervals to align with
930 the power and coherence features. Granger features were processed identically to a previously
931  reported approach [7]. Briefly, Granger features were exponentiated to approximately maintain
932  the additivity assumption made implicitly by NMF models [7, 59] as, exp(quB (a))), where

933  f,_p(w) is the Granger Causality at frequency w from region A to region B. The exponentiated
934  feature is a ratio of total power to unexplained power. Exponentiated Granger feature values

935  were truncated at 10 to prevent implausible values.

936 Data for single-region and network-level machine learning analyses
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937  We used 21460 seconds of data, pooled across the twenty mice, to train/validate our single
938  region and network models. This included a total of 4680 seconds while mice were socially
939 isolated in their home cage, 14890 seconds where CD1 mice exhibited non-attack social

940  behavior (3542 seconds towards intact males, 9067 seconds towards females, and 2281

941  seconds towards castrated), and 1890 seconds where mice exhibited attack behavior towards

942  the intact males.

943 Discriminative Cross-Spectral Factor Analysis — Nonnegative Matrix Factorization

944  The network was trained to distinguish between behavioral windows when the CD1 mice

945  showed aggressive behavior towards intact C57 males, and windows where they exhibited pro-
946  social behavior. These latter windows comprised pro-social interactions towards intact C57

947  males, castrated C57 males, or C57 females. Here, we used data from twenty-nine mice to learn

948 the final model, with a split of 20 and 7 for model training and internal validation.

949  We used Discriminative Cross-Spectral Factor Analysis — Nonnegative Matrix Factorization

950 (dCSFA-NMF) model [41]. This approach assumes each window of is an independent stationary
951  observation and examines dynamics in brain activity only at the scale of windows. A one-second
952  window was chosen to balance capturing fine-grained transient behavior with sufficient length
953  to properly estimate spectral features [7]. Each window has associated spectral power,

954  coherence, and Granger Causality features (in total p = 9,586 features), which is represented
955  asx; € RP for the i*" window. Each window was associated with a behavioral label that

956 identified which condition the CD1 mouse was subjected to during that window (intact male,
957  castrated male, or female) and whether the CD1 mouse was engaged in aggressive or non-

958  aggressive behavior during that window, and the aggressive behavior was coded as y; € {0,1}.

959  As a short description of the dCSFA-NMF model, the features are described as an additive
960  positive sum of K non-nonnegative electrical functional connectome (electome) networks. This
961 modelis learned using a supervised autoencoder. The objective we use to learn the parameters

962 s

N
min > Lossy (3, W/ i @) + 4 Lossy (v, df Gis #)) + u Lossi (A).
i=1
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963  Here, Lossy is the reconstruction loss of the features derived from electrophysiology, which for
964  our work was an L, loss. Our predictive loss Lossy is the cross-entropy loss commonly used for
965  binary classification. Each of the K networks is represented in vector form and combined to
966  make a matrix W € RP*K, The electome network scores are given by the multi-output function
967  f(x;®): R? - R¥X, where ¢ represent the parameters of the function. In our model, the multi-
968  output function was an affine transformation of Ax + b followed by a softplus rectification,

969  defined as softplus(x) = log(1 + exp x), thus ¢ = {4, b}. Parameters d € R represent the
970 relationship between the electome networks and the behavior. A sparsity constraint is enforced
971 sothatd = [d,,0,...,0], meaning that only a single electome is used to predict behavior,

972  simplifying interpretation. A is a weighting parameter used to control the relative importance
973  of prediction. We chose a value that kept the two losses approximately equal during training,

974  which corresponded to 1.

975  Previous work has also found that the reconstruction loss can reduce overfitting and make the
976 learned predictions more robust [60]. To further reduce overfitting of the predictive aspect of
977  the encoder, we applied an elastic net loss [61] on the encoder Lossgy with a weighting i and
978  the ratio between the L; and L, losses set to .5. The value for u was set to a small value that
979  had worked well previously. In this work, power features were also upweighted by a factor of
980 10 to accommodate that there were many more Granger features and truncated at 6 to

981  prevent outliers from dominating the predictions.

982  These models and statistical analyses were implemented with Python 3.7 and Tensorflow

983  version 2.4. Parameters were learned with stochastic gradient descent using the Nesterov

984  accelerated ADAM optimizer [62]. Learning was performed for 30000 iterations, which was
985 observed to be ample for parameter convergence. The learning rate and batch size were set to

986  le-3 and 100 respectively, values that have empirically performed well in similar applications.

987  Predictive performance was evaluated in new mice not involved in learning the network. Given
988  processed data from the new mice, network scores were estimated as an evaluation of the

989  encoder learned during training of the dCSFA-NMF model.

990 Hyper-parameter selection
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991  The dCSFA-NMF procedure requires selection of several settings in the algorithm. Specifically,
992  we must choose the number of electome networks K, the importance of the supervised task A,
993  the relative importance of the power features, coherence features, and Granger features, and
994  the parameterization of the mapping function f(x;; ¢). Besides K, these settings were chosen
995  to match previously used values or follow heuristics. Specifically, in our prior work, we
996 demonstrated that the inferred model is highly insensitive to A [27]. Thus, we chose a A value to
997  give roughly equal weight to the predictive and generative tasks. Similarly, since the former
998 task grows linearly with brain regions and the latter task grows quadratically, we chose to
999  weight the power features to rough match the coherence features. Since the decoder is also
1000 linear, we chose a linear mapping function followed by a softplus to ensure non-negativity. This

1001  approach served to limit complexity.

1002  To choose the value of K, we evaluated the reconstruction error (Mean Squared Error) on the
1003  seven internal validation mice, which evaluates how well the electome networks describe the
1004  neural measurements. As the goal for our analysis was to maintain high reconstruction and
1005 effectively predict the behavior, an elbow analysis was used to choose the number of electome
1006  networks K after which we observed minimal gains in explaining the data.

1007  Specifically, our previous work has demonstrated that latent dimensionality is not an important
1008  parameter in terms of predictive performance [27]. Thus, we trained one supervised network
1009 for all the models tested in this study. We also trained multiple unsupervised networks for each
1010  model to explain variance in brain activity that was not directly related to predictive

1011  performance. Since our previous work had found that the supervised network has relatively low
1012  variance, we used the Bayesian Information Criterion (BIC) to select the number of

1013  unsupervised networks (latent factors d) to use in the final network model. The BIC is defined

1014  as:
BIC(d) = klogN — 2log(L),

1015  where k = p - d is the number of model parameters (p is the number of spectral features), N is
1016  the number of samples, and L = p(X|9) is the likelihood of the observed data using the

1017  estimated model parameters. This criterion balances the model fit quantified by L with the
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1018  complexity quantified by k log N. In this work, —log(L) is an L, loss, corresponding to a

1019  Gaussian observational likelihood. The model parameter 8 was estimated on 80% of the data
1020  while model parameter L was evaluated on a 20% holdout set to avoid overfitting. The BIC was
1021  evaluated for all dimensionalities from 1-20 networks, and the lowest value was selected as the
1022  best model. Since 7 unsupervised networks provided the best fit (a BIC of 5457701, see also
1023  Supplemental Fig. S2), our final network model utilized a total of 8 networks, 1 supervised and 7

1024  unsupervised, across all 11 regions.

1025  For each single-region model, we trained 3 unsupervised networks and a single supervised
1026  network. Here, we reduced the number of networks as compared to the full network model,
1027  given the dramatic reduction in the number of covariates considered by the model. Critically,
1028  our objective was to compare the predictive performance of the single-region models against
1029  each other and the full network model. Since the predictive performance is driven by the
1030  supervised network[27], the smaller latent dimensionality of the single region models had no

1031  impact on our final conclusions.

1032  Single-region decoding

1033  To test the efficacy of any single brain region as a biomarker for aggression, we extracted

1034  power at 1 Hz frequency bins over 1-56 Hz from each region. One-second windows were pooled
1035  from the twenty CD1 mice and used to generate a series of dCSFA-NMF models for each of the
1036 11 brain regions. The models were trained to distinguish behavioral windows of one social state
1037  exhibited by CD1 mice, from windows of two other social states. These three social states

1038 included 1) male-directed attack, 2) female non-attack social interactions, and 3) castrated male
1039  non-attack social interactions. We also developed a model to distinguish 4) periods where CD1
1040  mice were isolated in their home cage from any of the three social states. Each model was then
1041  tested on data from a holdout set of nine mice. The Area under the receiver operating curve
1042  (AUC) was calculated for each holdout mouse to determine the performance of the model.

1043  False discovery rate was used to correct for multiple hypothesis testing.

1044 Validating Model Dimensionality
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A frequent concern of latent variable models (including dCSFA-NMF) is the dependence of the
networks and encoder on the choice of latent dimensionality. To address this concern, we
performed a sensitivity analysis on the supervised network to determine the extent to which
the choice of this dimensionality influenced the learned aggression electome network and
encoder. In this sensitivity analysis, we estimated a dCSFA-NMF model allowing the number of
total networks to range from two to twenty. We then compared the similarity between each
learned encoder and decoder to our model with eight networks (the final model used in this
work). This was quantified using the cosine similarity, which measures the angle between two
networks (or encoders), ranging from -1 to 1. A value of 1 indicates perfect alignment (pointing
in the same direction), 0 is orthogonal, and -1 indicates that the vectors point in opposite

directions (Supplemental Figure S2).

We found that the supervised network maintained a strong consistency across most
dimensions, particularly between 5-10 networks, as shown by the cosine similarities being
greater than 0.95. The supervised encoders were virtually identical across all the models except
the one that utilized three networks. This model learned a network that was positively

associated with aggression.

To evaluate the robustness of the similarities across most of the supervised networks, we
created a null distribution of the similarities across randomly chosen generative networks.
These later similarities were substantially lower for both the network composition and the
encoder. This indicates that as far as the supervised electome and encoder are concerned,
latent dimensionality is not particularly influential on the resulting network, and by extension

the biological interpretation.

Decoder Information Content

The amount of information contained in the predictive model was quantified by the reduction
in uncertainty. The associated formula for this reduction in uncertainty, known as the Bernoulli
entropy, is 1-1*(p log_2(p) +(1-p)log_2(1-p)), where p is the accuracy of the model. At the
extremes, an accuracy of 0.5 (random guessing) removes no uncertainty, whereas an accuracy

of 1 or 0 completely eliminates uncertainty.
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1073  Single-cell correlation to Electome Network activity

1074  Data acquired during the third behavioral testing session was from the twenty implanted mice
1075  were used for cellular analysis. We used Spearman correlation to quantify the relationship

1076  between cellular firing windows and the activity of the electome network used to classify attack
1077  behavior. We performed 1000 permutations of randomly shuffling 1 second windows within
1078  each class for attack and non-attack social interactions with male, female and castrated C57
1079  mice. This approach maintained the relationship between network activity and behavior and
1080 the relationship between cell firing and behavior. We then calculated the Spearman correlation
1081  between network activity and cell firing for each permutation. A cell was deemed positively
1082  correlated if its unshuffled Spearman Rho was above 97.5% of the permutated distribution and

1083  negatively correlated if it was below 2.5%.

1084 Real-Time Encoder Approximation

1085  Because Granger Causality features were too computationally demanding for real-time

1086  calculation, we developed a ‘fast’ dCSFA-NMF model that relied only on power and coherence
1087  features for estimation of aggressive state to use in the closed-loop stimulation experiments.
1088  This ‘fast’ model was trained on the same data. The model was trained using regularized

1089  regression to best predict the output of the full encoder. As such, this reduced encoder is also
1090  an affine transformation followed by a SoftPlus activation with a smaller parameter set,

1091 ¢, = {A,, b,}. This approximation explained a large component of the variance of the

1092  supervised network score on the hold-out validation mice (R = 0.47, p-value <10™°).

1093 Optogenetic stimulation

1094  Mice were anesthetized with 1% isoflurane, then tethered to an optic patch cable placed over
1095 the optic fiber cannula. For closed-loop experiments, nine mice were also connected to the
1096  recording system. The mice were then allowed 60 minutes for recovery prior to session

1097  recording. For the fiber-only optogenetic stimulation experiments, CD1 mice experienced two
1098  stimulation sessions. For closed-loop optogenetic stimulation, CD1 mice experienced three
1099  sessions of behavioral screening followed by two sessions of closed-loop stimulation.

1100  Stimulation sessions were separated by 5-7 days between sessions. For behavioral screening,
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1101  CD1 mice were exposed to intact C57 males, females, and castrated male mice for 5 minutes
1102  each. Screening sessions two and three were used to determine a reduced network threshold
1103  at which 40% of aggressive behavioral windows could be detected. For each session, mice were
1104  recorded for 3 minutes of baseline in their home cage, then during the three social encounters.
1105  Mice were recorded in an open field for 5 minutes after each session. The order of the three
1106  social encounters were shuffled for each session. During each condition, the CD1 mouse

1107  received segments of alternating blue (473nm, Crystal Laser LC, Reno, NV. Model No. DL473-
1108  025-0) and yellow (593.5nm, OEM Laser Systems, Model No. MGL-F-593.5/80mW) light

1109  stimulation, for two minutes each.

1110  For open-loop stimulation targeting PFC soma, CD1 mice received light stimulation for the
1111 entirety of the two-minute segment. For closed-loop, mice received stimulation for one second

1112  when the reduced network score dropped below threshold.

1113  For nonsynchronous stimulation, each of the fourteen CD1 mouse was psuedorandomly

1114  matched to a different mouse that had been used for closed-loop stimulation. Each non-

1115  synchronous mouse was then subjected to the identical order of conditions and yellow and blue
1116  light stimulation blocks as their individually matched closed-loop mouse. Light stimulation was

1117  delivered using the pattern implemented for the closed-loop partner mouse.

1118  For projection targeting stimulation testing, CD1 males were exposed to one testing session
1119  composed of three six-minute blocks of light stimulation. The sequence of light stimulation was
1120  a yellow light stimulation segment, a blue light stimulation segment, then a final segment of
1121 vyellow light stimulation. Within each six-minute stimulation block, an intact male C57 and a

1122 female C57 were sequentially placed in the CD1 cage for three-minutes each.

1123  Immediately prior to experiments, light levels were calibrated using a power meter (ThorLabs,
1124  Model No. P0025297 and 11070530), and delivered using a Waveform generator (Agilent

1125  Technologies, Model No. 33210A) for the open-loop experiment. For closed-loop and

1126  nonsynchronous stimulation experiments, the laser was activated using analog output from the

1127  Cerebus recording system.

1128
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1129 Mediation Analysis

1130  For the Baron and Kenny approach [48] to establish that EN-AggINH expression mediated the
1131 behavioral effect of the neurostimulation, we first used two results previously described in the
1132  methods to establish that there was an effect from the neurostimulation on network

1133 expression and on behavior. We next constrained the data used to the most relevant case,
1134  which is on the closed-loop stimulation. Specifically, we focused on windows of LFP data during
1135  the closed-loop experiment when either the blue or yellow laser was activated to match the
1136  cases between the treatment and control as closely as possible. As only blue light should

1137  significantly manipulate neural activity, this is viewed as the treatment, and the yellow light is
1138  set as the control. We followed the procedures outlined in “LFP preprocessing and signal

III

1139  artifact removal” to preprocess the data and remove data with significant artifacts. EN-Agg/INH
1140  expression was calculated by projecting the data into the learned model. The remaining data
1141 was then fit into two logistic regression models to predict behavior using the statsmodel

1142  package in python [63]. The first model used only the stimulation to predict behavior (behavior
1143  ~ const + stimulation), and the second model used stimulation and network expression to

1144  predict behavior (behavior ~ const + network_expression + stimulation). These two models

1145  were compared by using a likelihood ratio test to evaluate whether the second model was

1146  significantly better.

1147  For the causal mediation analysis, we again need to roughly balance treatment and control
1148  groups. We used the same data as described above in the classic mediation analysis. We define
1149  the treatment as blue versus yellow light stimulation, the mediator as EN-Agg/NH expression,
1150  and the outcome as aggressive versus non-aggressive behavior. These data were then used in
1151  the causal mediation analysis approach proposed by Kosuke, Keele, and Tingley [49] by using

1152  the statsmodels package in python [63].
1153
1154  Statistics

1155  GraphPad Prism and Matlab were used for statistical analyses of behavior and network activity.

1156  Paired T-tests were used for comparing within-subject behavioral response to optogenetic
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1157  stimulation or CNO application and corrected for false discovery rate for multiple hypothesis
1158  testing through the Benjamini-Hochberg procedure. One-tailed Wilcoxon signed-rank tests
1159  were used to compare within-subject mean network score responses to optogenetic

1160  stimulation, stimulus mouse exposure and interaction, and CNO injection. Data is presented as

1161  mean = standard error of measurement, throughout the paper, unless otherwise specified.

1162  Code and data availability

1163  This learning algorithm is publicly available code at https://github.com/carlson-

1164  lab/encodedSupervision. Data will be made available for replication purposes and pre-agreed

1165  upon scientific extensions with a material transfer agreement.

1166
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