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 36 

Abstract 37 

Social aggression is an innate behavior that can aid an organism in securing access to 38 

resources[1], or it can impair group function and survival in behavioral pathology[2-4]. Since 39 

many brain regions contribute to multiple social behaviors[5-7], expanded knowledge of how 40 

the brain distinguishes between social states would enable the development of interventions 41 

that suppress aggression, while leaving other social behaviors intact. Here we show that a 42 

murine aggressive internal state is encoded by a widespread network. This network is organized 43 

by prominent and synchronized theta (4-11Hz) and beta (14-30Hz) oscillations that relay 44 

through the prefrontal cortex, and couples to widespread cellular firing. Strikingly, network 45 

activity during social isolation encodes the trait aggressiveness of mice, and causal cellular 46 

manipulations known to impact aggression can bidirectionally regulate the network’s activity. 47 

Finally, we use closed-loop stimulation of prefrontal cortex and causal mediation analysis to 48 

establish that the network is a mediator of aggressive behavior. Thus, we define a widespread 49 

network that encodes an aggressive internal state within and across mice.  50 

Social behavior reflects the integration of sensory information with internal affective states. 51 

Many subcortical brain regions contribute to aggressive behavior in mammals including lateral 52 

septum (LSN) [8, 9], nucleus accumbens [2, 10], lateral habenula [11, 12], the ventrolateral 53 

portion of ventromedial hypothalamus [5, 13-17], and medial amygdala [3, 18]. Prefrontal 54 

cortex stimulation has been shown to mitigate aggressive behavior in both humans [19, 20] and 55 

rodents [21], implicating cortical regions in regulating aggression. Finally, sensory regions, such 56 

as those underlying olfaction, also contribute to aggression [22].  57 

To appropriately regulate aggressive behavior, the brain must integrate information across 58 

these and other cortical and subcortical regions. Moreover, since many of these regions also 59 

regulate non-aggressive social behaviors [5, 23], the brain must ultimately utilize information 60 

from overlapping regions to segregate aggression from other social behavioral states. Though 61 

efforts have revealed several cellular-level processes within one of these regions that 62 

contribute to this mechanism [13, 16, 24], the complementary network level process that 63 
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integrates information across regions to distinguish aggressive states from prosocial states 64 

remains unknown. Addressing this knowledge gap is of major importance as 1) mammals 65 

regularly select from a repertoire of social behaviors based on external sensory cues to ensure 66 

their survival [6, 25], and 2) a range of psychiatric disorders are broadly marked by a failure to 67 

appropriately match behavior with evolving social contexts [26]. 68 

We implanted mice with microwire electrodes across eleven brain regions implicated in 69 

regulating complex social behavior. We then recorded electrical activity from these brain 70 

regions, concurrently, as mice engaged in social encounters that induced aggressive attack 71 

behavior and non-attack social behavior. After confirming that statistical models based on 72 

single brain regions could independently differentiate attack behavior from non-attack social 73 

behaviors, we asked whether this code was also reflected at a network level, where 74 

millisecond-timescale information was integrated across all the 11 brain areas. For this analysis, 75 

we used a machine learning approach that models variations in natural patterns of activity 76 

within and between implanted brain regions across seconds of time (a timescale that we 77 

reasoned would allow us to capture socially-relevant internal states)[27]. Our approach also 78 

tuned the model to optimally encode attack vs. non-attack social behavior.  79 

We then applied multiple levels of validation of increasing generalization to our single-region 80 

and network-level models [28]. 1) We tested whether the models generalized to data collected 81 

from time periods that had not been used to train our model (i.e., hold out sessions). 2) We 82 

tested whether our models generalized to new animals, and 3) we tested an orthogonal 83 

behavioral context associated with aggression. Only the model that was based solely on activity 84 

from ventral hippocampus and the network model survived this third level of validation. 4) 85 

Next, we tested whether these two models encoded an aggressive state, more broadly, and not 86 

simply attack behavior. Only the network model encoded the social context of mice during 87 

periods immediately prior to or following aggressive and prosocial interactions. Moreover, 88 

network activity prior to and following attacks correlated with trait aggressiveness on a mouse-89 

by-mouse basis. 5) Finally, we subjected the network to two high levels of experimental 90 

validation, each based on causal cellular manipulations, that bidirectionally impact attack 91 

behavior. Specifically, we developed a close-loop optogenetic stimulation approach that 92 
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detected when the brain transitioned into an aggressive state, on a second-by-second basis, 93 

and stimulated the prefrontal cortex in a manner previously known to suppress attack behavior. 94 

We also employed a designer receptor exclusively activated by designer drug (DREADD)-based 95 

approach to selectively activate cells in ventral medial hypothalamus in a manner that has been 96 

shown to induce attack behavior. These manipulations bidirectionally impacted network 97 

activity. 6) As this latter manipulation was also performed in mice on a different genetic 98 

background, we further confirmed the generalizability of our network-level findings. Thus, we 99 

firmly establish a network-level architecture whereby the brain encodes an aggressive state in a 100 

manner that generalizes across context and individuals.  101 

Direct stimulation of prefrontal cortex broadly suppresses social behaviors  102 

We initially focused our efforts to selectively suppress aggressive behavior on modulating the 103 

medial prefrontal cortex (i.e., prelimbic and infralimbic cortex in mice), since this brain region 104 

had been implicated in social behaviors [29-31]. Prior work had shown that optogenetic 105 

stimulation of prefrontal cortex was sufficient to suppress attack behavior and increase non-106 

aggressive social behaviors in CD1 strain mice [21]. Further highlighting the translational 107 

potential of such an approach, clinical studies had shown that direct transcranial stimulation of 108 

prefrontal cortex decreased aggressive feelings in violent offenders [32], and in individuals with 109 

methamphetamine use disorder [33].  110 

We performed our optogenetic stimulation experiments during these social encounters using a 111 

protocol modeled after prior work, where blue light stimulation is used to activate 112 

channelrhodopsin 2 in the medial prefrontal cortex for the entirety of a social encounter 113 

(473nm, 5mW, 20Hz, 3ms pulse width, Fig. 1a) [21]. Control experiments were performed using 114 

yellow light stimulation (593.5nm, 5mW, 20Hz, 3ms pulse width), which does not activate 115 

channelrhodopsin 2[34, 35]. CD1 mice show periods of attack behavior, defined by biting, 116 

boxing (kicking/clawing), or tussling behavior, when a male C57BL6/J (C57) mouse is introduced 117 

into their home cage [36]. On the other hand, they exhibit periods of non-attack social 118 

interactions such as sniffing, grooming, or resting (placing nose or forepaws against the subject 119 

mouse, but not moving) when exposed to a female intruder [16]. Consistent with the prior 120 
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report, medial prefrontal cortex stimulation suppressed attack behavior towards C57 male mice 121 

and tended to increase non-attack social behavior [N=8; t7=3.43; P=0.0055, and t7=-2.35; 122 

P=0.051 using a two-tailed paired t-test, for attack and non-attack behavior, respectively, 123 

significance determined by a Benjamini-Hochberg false discovery rate (FDR) correction, Fig. 1a]. 124 

To ensure that this suppression of aggression was selective, we also tested mice in a second 125 

social paradigm in which they interacted with a female. Importantly, the CD1 mice do not show-126 

attack behavior during this social context. Here, we found that cortical stimulation decreased 127 

non-attack social behavior toward female intruders (t7=3.647, P=0.0041, using paired t-test, 128 

significance determined by FDR correction). Thus, medial prefrontal cortex stimulation was 129 

unable to selectively suppress attack behavior. Rather, stimulation suppressed multiple types of 130 

social behavior.  131 

Multiple brain regions fail to independently encode attack behavior across mice and contexts 132 

After failing to selectively suppress CD1 aggressive social behavioral by targeting the prefrontal 133 

cortex, we set out to probe for brain regions that may exhibit such selectivity. We implanted 134 

CD1 mice across multiple cortical and subcortical brain regions known to contribute to social 135 

behavior, including infralimbic cortex[21], orbitofrontal cortex[37], prelimbic cortex[21], lateral 136 

septum [8, 9], nucleus accumbens [2, 10], lateral habenula [11, 12], mediodorsal thalamus[38], 137 

ventromedial hypothalamus [5, 13-17], medial amygdala [3, 18], ventral hippocampus [39], and 138 

primary visual cortex.  139 

Following surgical recovery, we recorded neural activity while the CD1 mice freely interacted 140 

with an intact male C57 mouse and a female C57 mouse for 300 seconds each. We repeated 141 

these encounters over six sessions, yielding a total of 1800 seconds of neural data and behavior 142 

for each exposure (Fig. 1b, see also Supplemental Fig. S1). We recorded a subset of these CD1 143 

mice (N=9 of the 20 mice) as they interacted with a castrated male mouse intruder. Since CD1 144 

mice do not generally exhibit attack behavior towards castrated males [40], this encounter 145 

provided neurophysiology data during additional non-attack social behaviors that were 146 

unpaired with female sensory cues. We also acquired neural activity while the CD1 mice were 147 

isolated in their home cage.  148 
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We first verified that each of the implanted brain regions encoded social behavior using 149 

discriminative cross spectral factor analysis non-negative matrix factorization (dCSFA-NMF, see 150 

Fig. 1e) [41]. dCSFA-NMF utilizes supervised machine learning to generate a statistical model 151 

that is both descriptive [integrates brain local field potential (LFP) activity features across time] 152 

and predictive (discovers networks that distinguish between types of external behavior). LFPs 153 

reflect the activity of populations of neurons, and these signals can be consistently sampled 154 

across mice. The electrical functional connectome networks (Electome Networks) generated 155 

from dCSFA-NMF integrate LFP power (oscillatory amplitude across 1-56 Hz; a correlate of 156 

cellular and synaptic activity within brain regions), LFP synchrony (how two regions’ LFP 157 

frequencies synchronize across time; a correlate of brain circuit function), and LFP Granger 158 

synchrony (Granger causality testing; a correlate of directional transfer of information across a 159 

brain circuit). Furthermore, dCSFA-NMF generates electome network activity scores (an 160 

indicator of the strength of each network) at a temporal resolution sufficient to capture brain 161 

states underlying the external behavior under observation (in this instance, a resolution of one 162 

second). The electome networks are designed to learn patterns that explain interpretable 163 

correlates of neural activity whose expression relate to measured behavior, facilitating an 164 

overall interpretable model [28]. Any given brain region can belong to multiple electome 165 

networks, and each electome network may incorporate any number of brain regions. dCSFA-166 

NMF thus integrates spatially distinct brain regions and circuits into electome networks that 167 

encode behavior. 168 

To explore whether there was a generalized activity pattern within individual regions that 169 

encoded social behavior, we designed a series of dCSFA-NMF models based on LFP oscillatory 170 

power in frequencies from 1-56Hz. Each single-region model was trained using observations 171 

pooled from 20 CD1 mice to separate periods when mice were socially isolated from periods 172 

when they were engaged in social behavior (e.g., attack behavior towards the intact males and 173 

non-attack social behavior towards male and female mice). We trained our models with one 174 

supervised network to discover the patterns of LFP activity that encoded social behavior. We 175 

also trained three unsupervised networks to account for the remaining variance in neural 176 

activity that was not directly related to social behavior (see methods for justification of 177 
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hyperparameter selection). We tested the accuracy of the models in new CD1 mice recorded 178 

under all three conditions (N=9 mice). 179 

We observed high accuracy in decoding periods of isolation from social behavior, using the 180 

supervised network, for each implanted brain area (p<0.05 using Wilcoxon rank-sum, 181 

significance determined by FDR correction for 44 comparisons, Fig. 1c). Next, we designed a 182 

new series of models to separate one of the three social behavioral states from the other three 183 

(e.g., attack behavior toward intact males vs. non-attack interactions with female, intact male, 184 

and castrated male mice). These models were built using observations pooled from the same 185 

20 CD1 mice, and again based on LFP power.  We then tested the accuracy of the supervised 186 

networks in the models for the same nine hold-out mice. Thus, we trained and tested the 187 

model’s generalizability to decode each class of social behavior from the other three for each of 188 

the 11 implanted brain areas (i.e., 33 additional models). Using this approach, we found that 189 

five of the brain region-based statistical models decoded attack behavior versus non-attack 190 

social behavior: infralimbic cortex, lateral habenula, ventral hippocampus, medial amygdala, 191 

and medial dorsal thalamus. V1 successfully decoded the non-attack male interaction from the 192 

other social conditions as well (P<0.05 using one-tailed Wilcoxon rank-sum test, significance 193 

determined by FDR correction for 44 comparisons, see Fig. 1c). None of the other implanted 194 

brain regions showed this selectivity. Thus, five regions independently encoded attack behavior 195 

vs. non-attack social behavior in a manner that generalized across mice.  196 

Our broad goal was to identify a neural signature that could be used to suppress aggression 197 

while leaving other social behaviors intact. Thus, we tested whether the putative aggression 198 

codes we discovered for the five regions generalized to another context associated with 199 

aggression. Specifically, urine from other male mice has been found to elicit aggressive and 200 

dominance behavior in CD1 males [22, 42, 43]. As such, the most aggressive mice from the 201 

training and testing groups (N=8) were allowed to freely explore a clean inanimate object or an 202 

object covered in urine from another intact CD1 male mouse (seven sessions). We then tested 203 

whether each of the five regions’ putative aggression codes could distinguish periods where 204 

mice explored the clean objects from those where mice explored objects covered in urine. 205 

Though only ventral hippocampus model tended to decode behavior in this new context, none 206 
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of the brain regions showed statistically significant encoding at the mesoscale-level (LFP) 207 

following multiplicity correction (AUC=0.56±0.06, P=0.04 for ventral hippocampus, using one-208 

tailed Wilcoxon rank-sum test, significance determined by FDR correction for 5 comparisons, 209 

Fig. 1d).  210 

An aggressive state is encoded at the network-level  211 

After failing to robustly decode attack behavior using LFPs independently from any of the 11 212 

brain regions, we established that a brain network integrated information across all the 213 

implanted brain regions to encode an aggressive state. This network-level encoding mechanism 214 

generalized to multiple new contexts associated with aggression. Critically, the network also 215 

encoded attack behavior with a predictive efficacy that exceeded independent ventral 216 

hippocampus activity.  217 

For this analysis, we trained a new dCFSA-NMF model using data from all the implanted brain 218 

regions. This model utilized LFP power for each region, and the coherence and Granger 219 

directionality between them. The model utilized one supervised network that was trained to 220 

encode periods of attack-behavior (positive class) vs. social behavior in castrated male and 221 

female social context (negative class). We also included non-attack social behavior towards 222 

intact males in the negative class to discourage the network from simply learning non-223 

aggressive sensory cues specific to the intact male (i.e., supervision, electome network #1; see 224 

Fig. 1e). Based on our hyperparameter selection approach using the Bayesian Information 225 

Criteria (see methods and Supplemental Fig. S2), seven additional unsupervised networks were 226 

trained to account for the variance in neural activity that was not related to attack vs. non-227 

attack social behavior. We then validated our supervised network using the set of nine holdout 228 

CD1 mice from our single area coding test analysis. Again, none of these mice were used to 229 

train the electome networks. We found that the supervised network (network #1) successfully 230 

discriminated between attack behavior and non-attack social behavior in the test mice (N=9, 231 

Wilcoxon signed rank, p=0.0020, Fig. 1f). Incidentally, we also observed that one of the 232 

unsupervised networks (Network #6) showed strong encoding in the nine hold-out test mice 233 

(AUC=0.65±0.03, P<5×10
-5

 using Wilcoxon rank sum).  234 
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Attack behavior is indicative of an aggressive brain state. We also reasoned that it was possible 235 

for a mouse to be in an aggressive internal state, even though it was not actively exhibiting 236 

attack behavior. Since such a context was likely to be present immediately prior to or following 237 

attack behavior, we tested whether network activity pooled from the 3 seconds preceding and 238 

3 seconds following social behaviors encoded the distinct social conditions (Fig. 2a). Critically, 239 

these data windows were not used to train the network model since they did not contain attack 240 

or non-attack social behavior. Activity of the supervised network (network #1) was lower in the 241 

intervals surrounding attack behavior compared to non-attack social interactions with males or 242 

females (F3,67=28.6, P<0.0001 using Friedman’s test, followed by P<0.05 using Wilcoxon signed-243 

rank test, significance determined by FDR correction, Fig. 2b, top left). Strikingly, network #1 244 

activity during periods of isolation also negatively correlated with the time mice spent 245 

exhibiting attack behavior towards other males (R=-0.58; P=0.016 using Spearman's rank 246 

correlation, Fig. 2b, top right), encoding aggression on a mouse-by-mouse basis. Thus, electome 247 

network #1 [hereafter referred to as EN-Aggression Inhibition (EN-AggINH)] represented a 248 

network that putatively inhibited aggression when its activity was highest. In contrast to the 249 

models developed for each of the brain regions independently, EN-AggINH activity also 250 

encoded the exposure to male urine (N=8, Network Activity = 9.1±1.0 and 8.3±1.1 for clean and 251 

urine covered objects, respectively; P=0.012 using one tailed Wilcoxon signed-rank test; 252 

AUC=0.57±0.02, data not shown). Network #6 activity failed to generalize to this urine context 253 

(AUC=0.48±0.01, data not shown). Thus, only EN-AggINH generalized to this second aggression 254 

context.  255 

Next, we tested the model for ventral hippocampus since we observed a trend towards 256 

decoding attack behavior in the urine context. This model failed to encode the aggressive state. 257 

Specifically, activity from ventral hippocampus was statistically indistinguishable between 258 

periods surrounding attack behavior and non-attack social interactions with females and 259 

activity during social isolation (F3,67=7.9, P=0.047 using Friedman’s test; P=0.36 and 0.72, 260 

respectively, using Wilcoxon signed-rank test, significance determined by FDR correction, Fig. 261 

2b, bottom left). Moreover, there was no relationship between ventral hippocampal activity 262 
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during isolation and the innate aggressiveness of mice (P=0.60 using Spearman's rank, Fig. 2b, 263 

bottom right). Thus, only network activity encoded the aggressive internal state.  264 

EN-Aggression Inhibition activity couples to cellular firing  265 

EN-AggINH was composed of prominent theta frequency activity (4-11 Hz) in medial amygdala 266 

and beta frequency activity (14-30 Hz) in medial amygdala and prelimbic cortex (Fig. 3a-b). 267 

Prominent synchrony was also observed in the theta and beta frequency bands. Indeed, when 268 

we quantified directionality across these synchronized bands, we saw that activity flowed from 269 

orbital frontal cortex and primary visual cortex, relayed through medial dorsal thalamus, and 270 

infralimbic cortex, and flowed into medial amygdala and ventral hippocampus (Fig. 3c-d, and 271 

Supplemental Fig. S3).  272 

We verified that the activity of EN-AggINH truly reflects biological activity, by relating the 273 

electome network to neural firing, as in previous work [44]. To achieve this, we analyzed the 274 

correlation between cellular activity across the implanted brain regions and the activity of EN-275 

AggINH, as cell activity is an undisputed measure of biological function. We then used a 276 

permutation test to rigorously test our findings (Fig. 3e). Specifically, we shuffled cellular firing 277 

within social behavioral conditions, maintaining the relationship between cell firing and 278 

behavior. We then repeated this procedure 1000 times to generate a null distribution for which 279 

only 5% of cells would be expected to exhibit firing coupled to network activity. We found that 280 

~18% of cells showed firing that was coupled to the activity of EN-AggINH, far more than could 281 

be explained by chance (χ
2
=16.4, p= 0.00005). Specifically, of the 186 cells recorded, nine 282 

(4.8%) showed firing activity that was positively correlated with EN-AggINH and 25 (13.4%) 283 

showed activity that was negatively correlated (Fig. 3f). Thus, most cells that showed coupling 284 

to EN-AggINH were inhibited when network activity increased. These analyses confirmed that 285 

EN-AggINH activity reflects the dynamics of cellular activity across the brain.  286 

EN-Aggression Inhibition generalizes to new biological contexts related to aggression 287 

To further validate EN-AggINH, we established that activity in this network was modulated by 288 

orthogonal biological conditions that have been shown to induce or suppress aggressive 289 
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behavior in mice. In most cases, we performed this analysis in new animals, which is considered 290 

the gold standard of model validation in machine learning [45]. We transformed LFP data 291 

recorded from these new sessions into our original network model.    292 

For our first gold-standard validation experiment, we tested whether our network generalized 293 

to new mice on a different genetic background engaging in a new aggression context (Fig. 4a-b). 294 

Specifically, this approach also used a validated cellular manipulation that causally induces 295 

aggression under a behavioral condition that would otherwise not yield aggressive attack 296 

behavior (i.e., we used female social partners). We expressed an excitatory DREADD (AAV-hSyn-297 

DIO-hM3Dq) in the ESR1+ cells of ventromedial hypothalamus, since it has been shown that 298 

direct excitation of these cells induces aggressive behavior towards female mice [17, 46, 47]. 299 

Experiments were performed in the male F1 offspring of female CD1 strain mice crossed with 300 

ESR1-Cre male mice on a C57 strain background. Subsequently, we implanted the mice with 301 

recording electrodes to target the same brain regions as our initial experiment used to train the 302 

network model. Following recovery, we performed behavioral and neural recording when mice 303 

were exposed to a female mouse. The experimental mice were either treated with saline or 304 

CNO (Clozapine N-oxide, which activates the excitatory DREADD), in a pseudorandomized 305 

order, prior to the repeated testing sessions.  306 

As anticipated, treatment with CNO induced attack behavior towards the female mice (N=8; P= 307 

0.0039 for both attack latency and attack number using one-tailed Wilcoxon sign rank; Fig. 4c). 308 

When we probed neural activity across the entire exposure to the female intruder, we found 309 

that treatment with CNO also suppressed EN-AggINH activity (N=8, P=0.0039 using one-tailed 310 

Wilcoxon sign-rank; Fig. 4d). Thus, the network model generalized to a second aggression 311 

context induced by a cellular manipulation, and was robust to different genetic backgrounds. 312 

Critically, network activity was also lower during the time intervals surrounding attack/non-313 

attack social behavior for the CNO vs. saline treatment sessions (P=0.02 using one-tailed 314 

Wilcoxon sign-rank; Fig. 4d), again demonstrating that EN-AggINH encoded an aggressive state. 315 

Our observations also established that EN-AggINH does not simply encode sensory cues 316 

associated with male intruders, since the network responses observed in the CNO treated mice 317 

were induced by a female intruder.  318 
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EN-Aggression Inhibition mediates attack behavior 319 

We used mediation analysis to determine whether EN-AggINH activity putatively played a 320 

mechanistic role in suppressing attack behavior. Mediation analysis is a framework to 321 

determine whether the impact of a “treatment” (manipulation) on an outcome (attack 322 

behavior) is mediated by a change in an intermediate variable (EN-AggINH activity).  If so, the 323 

intermediate variable is viewed, at least in part, as a mechanistic route (a mediator) for how the 324 

treatment impacts the outcome. Three components were necessary to optimally implement 325 

test our mediation analysis models: a manipulation that causally modulated 1) attack behavior 326 

and 2) EN-AggINH activity, and 3) an approach to deliver the manipulation during levels of EN-327 

AggINH activity that would predict the emergence of attack behavior. We chose to build such 328 

an approach based on prefrontal cortex optogenetic stimulation, since we had previously found 329 

that such a manipulation causally suppressed attack behavior [21].  330 

Specifically, we set out to preferentially stimulate medial prefrontal cortex when EN-AggINH 331 

was naturally suppressed in the brain (signaling the onset of attack behavior). First, we built a 332 

closed-loop system that estimated the activity of EN-AggINH in real time (i.e., within 200ms, 333 

Fig. 5a). This approach employed a new network encoded solely based on power and coherence 334 

measures (i.e., a reduced network, Fig. 5b), because the processing time to calculate Granger 335 

directionality was prohibitive for real-time implementations. While this new network lacked the 336 

interpretive power of dCSFA-NMF, it enabled us to predict attack behavior in real time (Fig. 5c). 337 

In principle, when the activity of EN-AggINH fell below an established threshold (signaling the 338 

onset of attack behavior), our closed-loop approach would deliver a one-second light 339 

stimulation (5mW, 20Hz, 3ms pulse width) to prefrontal cortex. To verify that this real-time 340 

estimation system worked as designed, we tested whether light stimulation was triggered by a 341 

decrease in EN-AggINH activity. Indeed, network activity was significantly lower one second 342 

prior to stimulation than it was two seconds prior to stimulation, demonstrating that our 343 

approach successfully identified when the EN-AggINH activity decreased below the threshold 344 

that signaled the onset of aggression (N=9; P<0.005 for within-subject comparison of EN-345 

AggINH activity 1 vs. 2 seconds prior to yellow light stimulation using one-tailed signed-rank 346 

test, Fig. 5d). Importantly, we found that prefrontal cortex stimulation acutely increased EN-347 
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AggINH activity (N=9, P<0.01 for comparison of EN-AggINH activity one second after blue vs. 348 

yellow stimulation, using one-tailed signed-rank test, see Fig. 5d). Thus, our closed-loop 349 

stimulation approach satisfied two of the components needed to implement our mediation 350 

approach. Next, we tested whether increasing EN-AggINH activity via prefrontal cortex 351 

stimulation as the brain transitioned into a putative attack state would suppress aggressive 352 

behavior. We found our closed-loop stimulation approach significantly suppressed attack 353 

behavior (see Fig. 6a; N=9 mice that were not used to train the initial model; t8=6.1, P=0.0003, 354 

comparing blue vs. yellow light stimulation using two-tailed paired t-test for attack behavior, 355 

significance determined by FDR correction). Thus, our closed-loop manipulation suppressed 356 

attack behavior, satisfying the remaining component needed to implement our mediation 357 

analysis approach.  358 

We first used the classic Baron and Kenny approach [48] to determine whether EN-AggINH 359 

activity mediates the effect of neurostimulation on aggressive behavior.  According to this 360 

statistical approach, there is a mediated effect of network activity on behavior if three 361 

conditions are met: 1) stimulation modulates network activity, 2) network activity correlates 362 

with behavior, and 3) modeling the behavior from network activity and stimulation together is 363 

better than modeling behavior from stimulation alone. Indeed, we had identified a significant 364 

direct effect of stimulation on attack behavior (P<0.005, see Fig. 6a) and network activity 365 

(P<0.0005, Fig. 5d). To optimally match the conditions between the treatment and control 366 

cases, we used windows during the closed-loop stimulation procedure where the laser was 367 

triggered, and then compared blue laser stimulation (treatment) to yellow laser stimulation 368 

(control). Thus, the data points used for our mediation analysis predicted imminent or ongoing 369 

attack behavior, and network activity prior to the stimulation in both the control (yellow light) 370 

and treatment (blue light) case were similar. A statistical model of behavior using network 371 

activity and stimulation (see Fig. 5e, model 2) significantly outperformed the model using only 372 

stimulation (see Fig. 5e, model 1; nested logistic regression models, P<0.01, likelihood ratio 373 

test), satisfying the necessary conditions to show that EN-AggINH is a mediator. 374 

After establishing that EN-AggINH activity mediated the impact of PFC stimulation on behavior, 375 

we set out to evaluate the significance of the average causal mediation effect (ACME) and the 376 
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average direct effect (ADE) during the same stimulated closed-loop windows using causal 377 

mediation analysis [49]. ACME is the causal effect of stimulation on behavior due to the change 378 

in EN-AggINH activity (see. Fig 5e, model 3), and ADE is the causal effect on behavior from 379 

prefrontal cortex stimulation not explained by the change in EN-AggINH activity. We found that 380 

there was a significant ACME (P<0.01), but not a significant ADE (P=0.48). This analysis 381 

suggested that EN-AggINH activation is the primary mechanism whereby prefrontal cortex 382 

stimulation suppresses aggression.  383 

Next, we tested models where EN-AggINH activity functioned as a biomarker, rather than a 384 

mediator of attack behavior. In these models, the manipulation modifies another neural 385 

process, which in turn, simultaneously impacts attack behavior and EN-AggINH activity (Fig. 5g, 386 

model 5). First, we evaluated whether theta power in 11 different brain regions could serve as a 387 

mediator in lieu of EN-AggINH activity (Fig. 5f, model 4). We chose this frequency band since it 388 

was prominently featured in EN-AggINH and within the network we previously found to encode 389 

social appetitive behavior[7]. Across these 11 models, only orbitofrontal cortex had a significant 390 

average causal mediation effect (uncorrected p-value of 0.038, see Fig. 5f). Critically, this model 391 

did not survive a correction for multiple comparisons, and its ACME estimate was dwarfed by 392 

the size of the ACME estimate for EN-AggINH (the estimate for the EN-AggINH model was 393 

49.7% larger). This evidence suggests that EN-AggINH is a much better mediator than any of 394 

these other potential ‘biomarkers’ by themselves. 395 

After failing to identify any significant mediation effect of theta activity within each of the 396 

eleven brain regions, we tested whether including theta activity as an intermediary in our 397 

causal graph would disrupt EN-AggINH’s role as a mediator in attack behavior (Fig. 5g, model 5). 398 

Here, we corrected for the role of theta power in the model of how EN-AggINH changes as a 399 

function of stimulation, as well as correcting for theta power in forecasting attack behavior. As 400 

such, this framework dictates that EN-AggINH cannot mediate behavior that is already 401 

explained by changes in theta power in a specified region. When we ran eleven models, one 402 

model for each brain region, we found that EN-AggINH still significantly mediated attack 403 

behavior in all of them (P<0.05 for all models; see Fig. 5g, bottom). Thus, even after accounting 404 
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for these potential intermediate variables, our findings still supported EN-AggINH as a mediator 405 

of attack behavior.  406 

Validation of temporal activity and spatial spectral features of EN-AggINH  407 

We validated the temporal activity and spatial spectral features of EN-AggINH by establishing 408 

that they could be utilized to selectively suppress aggression. Specifically, after determining 409 

that our closed-loop manipulation suppressed aggression, we also quantified the impact of this 410 

stimulation protocol on non-aggressive interactions with other male and female mice. We 411 

found that closed-loop PFC stimulation increased non-attack behavior towards the intact C57 412 

males [N=9; t8=-2.3, P=0.049 comparing blue vs. yellow light stimulation using two-tailed paired 413 

t-test for attack behavior and non-attack behavior, significance determined by FDR correction, 414 

Fig. 6a). No differences in non-attack social behavior were observed during exposure to female 415 

mice (t8=0.74, P=0.48 using two-tailed paired t-test, significance determined by FDR correction, 416 

Fig. 6a). Thus, closed-loop PFC stimulation selectively reduced aggression.  417 

To verify that this selective modulation of aggression was due to synchronization of the light 418 

stimulation with endogenous EN-AggINH activity, and not simply due to the dynamic pattern of 419 

stimulation delivered using this method, we performed an additional control experiment where 420 

we used the stimulation patterns from our closed-loop experiments to drive stimulation in a 421 

new group of animals (e.g., randomly copying patterns from another mouses brain, analogous 422 

to a “sham” in neurofeedback experiments). Thus, for these sessions, prefrontal cortex 423 

stimulation occurred in a manner that mirrored our closed-loop stimulation experiments, 424 

except that stimulation was not fixed to endogenous EN-AggINH activity (i.e., open loop – 425 

nonsynchronous; Fig. 6b). Nonsynchronous stimulation failed to suppress aggressive behavior 426 

(F1,21=4.87, P =0.039 for light type × stimulation pattern effect for post-hoc analysis using a 427 

mixed effects model two-way ANOVA; t13=0.09, P=0.93 for nonsynchronous stimulation using 428 

paired t-test; see Fig. 6b), verifying that the suppression of attack behavior driven by closed-429 

loop stimulation was indeed due to delivery of stimulation timed to endogenous EN-AggINH 430 

activity. Incidentally, nonsynchronous stimulation had no impact on non-attack social behavior 431 

towards intact males or females (N=14; t13=1.79, P=0.097; and t13=0.54, P=0.60, for interaction 432 
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with males and females, respectively, comparing blue vs. yellow light stimulation using two-433 

tailed paired t-test). Thus, we validated the temporal activity component of EN-AggINH. 434 

After establishing that we could selectively reduce aggression by temporally targeting PFC 435 

based on the activity state of EN-AggINH, we tested whether we could reduce aggression by 436 

spatially targeting stimulation based on the sub-components of PFC output circuity that 437 

composed the network. We identified potential spatially specific targets by looking at the 438 

relative LFP spectral Granger directionality from prefrontal cortex that occurred in the 439 

aggressive internal state.  Our initial visualization of EN-AggINH was constrained to the absolute 440 

information flow at the strongest synchronies (Fig 3c-d). On the other hand, the relative 441 

measures provide a measure of which circuits decrease their information flow prior to and 442 

during attack behavior since EN-AggINH activity decreases during aggression (see Fig. 6c). In 443 

other words, the relative Granger directionality measures quantified information flow pathways 444 

that decreased the most during aggression. We focused our analysis on the Granger 445 

directionality between PFC [prelimbic (PL) and infralimbic cortex (IL)] to nucleus accumbens 446 

(PFC�NAc), medial amygdala (PFC�MeA) and lateral habenula (PFC�LHb), since EN-AggINH‘s 447 

relative LFP spectral energy was highest for PFC�NAc and PFC�MeA circuitry and lowest in 448 

the PFC�LHb circuit. Thus, a prominent decrease in information flow in PFC�NAc and 449 

PFC�MeA circuitry was associated with aggression, while no such change was observed in PFC-450 

LH activity. Critically, all three circuits consisted of monosynaptic projections, enabling direct 451 

targeting using optogenetics. We next quantified the relative spectral energy of these circuits at 452 

20Hz since stimulating PFC at this frequency was sufficient to suppress the aggressive internal 453 

state (Fig. 5d) and attack behavior (Fig. 1a). Given their representation in EN-AggINH, we 454 

reasoned that driving PFC�NAc or PFC�MeA activity at 20Hz should selectively suppress 455 

aggression, while driving PFC�LHb activity should not.   456 

We causally activated these three circuits at 20Hz and measured their impact on social 457 

behaviors. To selectively stimulate the terminals of PFC neurons in each target region (NAc, 458 

MeA, or LHb), we injected mice with a retrograde AAV-Cre (rAAV-Cre) virus in one target region 459 

and an AAV-DIO-channel rhodopsin-2 virus in PFC (N=8-9 per group). A stimulating fiber was 460 
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placed above the target region injected with rAAV-Cre. Social behavior was quantified during 461 

20Hz stimulation with yellow vs. blue light (5mW, 20Hz, 3ms pulse width).  462 

Blue light stimulation of PFC�NAc or PFC�MeA decreased aggression (t8=2.4, P=0.04; t7=5.9, 463 

P=0.001 for NAc and MeA stimulation, respectively for blue vs. yellow light using two tailed- 464 

paired t-test; N=8-9 mice per group, see Fig. 6d-e). This stimulation also increased non-attack 465 

social behavior towards the male C57 mice (t8=3.1, P=0.015; t7=3.8, P=0.007 for NAc and MeA 466 

stimulation, respectively). Neither of these stimulation protocols impacted social behavior 467 

towards female C57 mice (t8=1.2, P=0.27; t7=0.8, P=0.46 for NAc and MeA stimulation, 468 

respectively). On the other hand, PFC�LHb stimulation had no impact on aggression (t7=0.38, 469 

P=0.71; using two-tailed paired t-test, N=7 mice, see Fig. 6f), or non-attack social behavior 470 

towards C57 males (t7=0.24, P=0.82 using two-tailed paired t-test). Though this stimulation 471 

protocol tended to increase social interaction with C57 females, these results did not reach 472 

statistical significance (t7=2.2, P=0.06 using two-tailed paired t-test). These results 473 

demonstrated that directly stimulating the PFC subcircuits that normally showed the greatest 474 

decreases in aggression-related activity causally and selectively suppressed aggression. On the 475 

other hand, stimulating a PFC subcircuit with minimal activity changes during aggression had no 476 

impact on social behavior towards male mice. Thus, these findings validated the spatial spectral 477 

features of EN-AggINH. 478 

Discussion 479 

Here, we set out to discover the internal state that regulates whether an animal will exhibit 480 

aggressive or pro-social behavior. We reasoned that attack behaviors emerge from an 481 

aggressive internal brain state. Thus, we used machine learning to discover the mesoscale 482 

neural architecture of the brain when an animal exhibited attack vs. non attack social 483 

behaviors. Like other well-defined internal brain states, such as sleep, we found that the 484 

network distinguishing attack behavior incorporated state-dependent patterns of neural 485 

activity across every brain region we measured. For multiple regions, differences were 486 

observed in local oscillatory power, while others exhibited differences in oscillatory synchrony 487 

with a broader collection of regions. Each brain region showed selectivity in the frequencies of 488 
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oscillations that contributed to the network. For example, prelimbic cortex showed strong 489 

activity in the beta frequency range, while medial amygdala showed strong activity in the beta 490 

and theta frequency range. No brain region showed prominent activity contributions across all 491 

frequencies. We also observed differences in the activity profile of a primary sensory region, 492 

V1, which may reflect a change in encoding, or differences in visual sensory input observed 493 

during attack behavior. Critically, the brain state identified during attack behavior was better 494 

captured by the activity across all recorded brain regions as an integrated network, rather than 495 

the independent activity within each brain region.  496 

Though behavioral output has been classically utilized to infer the internal state of a brain, we 497 

reasoned that an internal brain state was also likely present during intervals immediately 498 

preceding and following behavioral output. Thus, we tested whether the aggression network 499 

showed distinct activity profiles in the time intervals surrounding attack and non-attack social 500 

behaviors. Indeed, network activity was lower during interval surrounding attack behavior. 501 

Strikingly, we also found that network activity when animals were isolated in their home cage 502 

encoded their trait aggression. Thus, the network did not simply encode behavioral output 503 

since it was observed separately from attack behavior. Rather, the network encoded an 504 

aggressive internal brain state.  505 

Interestingly, this aggressive brain state was encoded by decreased activity in the network. 506 

Given that we identified more cells that increased their firing rates as network activity 507 

decreased, the discovery of a network that decreases its activity during aggression does not 508 

indicate that overall brain activity is suppressed during aggressive states. Rather, these findings 509 

argue that the aggressive state is encoded by a network that decreases its activity relative to 510 

when mice are socially isolated or engaged in pro-social behavior. Indeed, our data suggested 511 

that several common regions/circuits were activated during aggressive and pro-social behavior. 512 

These common circuits need not be reflected in our network since our model was trained to 513 

differentiate attack vs. non-attack social behavior. Nevertheless, our discovery of a network 514 

that decreased its activity during aggression raises the intriguing hypothesis that the brain 515 

actively inhibits aggression during pro-social engagement. When activity in this inhibition 516 

network is suppressed, aggressive behavior emerges.  517 
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This interpretation is supported by our validation experiments where we directly activated 518 

ESR1+-Cre neurons in ventromedial hypothalamus. Our findings showed that direct activation 519 

of these cells induced the aggressive brain state (suppressed EN-AggINH activity). When mice 520 

treated with CNO were exposed to a stimulus that would generally produce non-attack social 521 

behavior (i.e., a female mouse), attack behavior emerged. Thus, the presence of the aggressive 522 

brain state changed the mapping between sensory input and behavior output. Similarly, direct 523 

stimulation of medial prefrontal cortex biased mice towards exhibiting non-attack social 524 

behavior when they were exposed to a stimulus that would generally induce attack behavior 525 

(i.e., a male intruder). Our findings showed that medial prefrontal cortex stimulation decreased 526 

the aggressive internal state (increased EN-AggINH network activity). Critically, our findings 527 

using mediation analysis argue that the brain state represented by EN-AggINH contributes to 528 

the mediation of medial prefrontal cortex stimulation to a suppression of attack behavior. 529 

Supporting this finding, our mediation analysis performed using data from the ESR1-Cre 530 

experiment showed that EN-AggINH also mediated the impact of CNO treatment (see 531 

Supplemental Fig. S5). Thus, EN-AggINH reflects the internal brain state that suppresses basal 532 

aggression.  533 

Here, we framed internal brain states as a collection of functions that transform sensory input 534 

into behavior. Indeed, we found that when EN-AggINH activity is suppressed, the brain 535 

transforms both male and female social sensory cues into attack behavior. It is also widely 536 

appreciated that sensory input can also cause the brain to transition from one internal state to 537 

another. For example, a loud sound can cause an animal to transition from sleeping to a hyper 538 

aroused internal state. Along this line, we found that exposure to male mice could promote an 539 

aggressive internal state in CD1 mice even prior to attack behavior, while exposure to a female 540 

mouse did not (under normal conditions). In this framework, one would also anticipate that 541 

many modulatory strategies that regulate attack behavior could mediate their effect by driving 542 

the brain out of the state represented by low EN-AggINH activity. Indeed, we predict that 543 

delivering a bright visual cue or a strong sensory cue (i.e., air puff) timed to decreases in EN-544 

AggINH activity could also potentially be used suppress attack behavior, since many circuits and 545 

sensory inputs likely converge onto the internal state represented by EN-AggINH. 546 
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Our closed-loop stimulation approach was developed using a neural-network based 547 

approximation technique for which the features were substantially constrained relative to 548 

dCSFA-NMF. Nevertheless, we found that the reduced encoder was sufficient to identify the 549 

precise time windows when the brain transitioned into aggression, as marked by a decrease in 550 

EN-AggINH activity. In the future, novel approaches may allow for further improvement in the 551 

precision of our real-time stimulation approach. For example, future work could exploit 552 

convolutional neural networks to bypass the feature extraction step. These neural network 553 

encoders could be altered to predict both aggressive and pro-social states, such as the 554 

generalized social appetitive network that we recently discovered [7]. By using both networks 555 

concurrently to actuate a closed-loop system, it may be possible to further suppress aggressive 556 

behavior relative to pro-social behavior. Indeed, our current findings also pointed to a network 557 

that exhibits increased activity during aggressive behavior (Electome Network #6, see Fig. 1f, 558 

and Supplemental Fig. S6). Though the network failed to encode the urine paradigm, it is 559 

possible that it contains activity that synergizes with EN-AggINH to encode aggressive social 560 

states more optimally. If future studies demonstrate this potential, imitation encoders for both 561 

Electome Network 6 and EN-AggINH could be integrated to further optimize closed-loop 562 

approaches to selectively suppress aggression.  563 

Multiple neuropsychiatric disorders including mood disorders, psychotic disorders, 564 

neurodevelopmental disorders, and neurodegenerative disorders are associated with deficits in 565 

regulating social behavior, including aggression. While multiple pharmacological approaches 566 

have been instituted to suppress aggressive behavior towards self and others, many of these 567 

strategies act by sedating the individual and can disrupt aspects of pro-social function. Our 568 

discovery of a brain network that encoded an aggressive state raises the potential for novel 569 

approaches to suppress aggressive behavior that spare pro-social behavior. Indeed, compared 570 

to a standard open-loop stimulation protocol (20Hz stimulation) which suppressed both attack 571 

and non-attack pro-social behavior, our closed-loop stimulation approach spared non-attack 572 

social behavior towards males or females.  Intriguingly, like other open-loop PFC stimulation 573 

studies [50, 51], our 20Hz stimulation protocol induced behavioral hyperactivity in experimental 574 

mice (see Supplemental Fig. S7). On the other hand, our closed-loop stimulation protocol did 575 
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not (see Supplemental Fig. S7). Thus, our findings also show that closed-loop stimulation may 576 

limit off-target behavioral effects that are induced by classic stimulation approaches.  577 

Overall, our findings establish a generalized network-level signature whereby the brain 578 

suppresses aggression via active inhibition. Moreover, they highlight the exciting potential for 579 

state-specific neuromodulation to regulate internal states.  580 
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Figure Legends 590 

Figure 1. A widespread network encodes attack behavior. a) Direct stimulation of prefrontal 591 

cortex suppresses social behavior. Schematic of optogenetic stimulation (left) and social 592 

encounters utilized for testing (middle). Prefrontal cortex stimulation suppressed attack 593 

behavior, increased non-attack social behavior towards male mice, and suppressed non-attack 594 

social behavior towards females (*P<0.05 for each comparison). b) Schematic for electrical 595 

recordings, showing targeted brain regions (left), and representative local field potentials 596 

(middle) recorded during repeated exposure to social contexts that produce attack and non-597 

attack social behavior (right). c) Framework to test individual brain regions’ encoding of social 598 

states (left). All implanted regions encoded social engagement; however, only five selectively 599 

encoded the attack behavior vs. non-attack behavior (right).  Pink shading indicates P<0.05 with 600 

FDR correction. d) Attack codes discovered from the five brain regions failed to encode 601 
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aggressive behavior induced by male urine (gray shading indicates P<0.05 prior to but not 602 

following FDR correction). e) Schematic of machine-learning model used to discover network 603 

encoding attack behavior (left). The inputs to the model included LFP activity from the 11 brain 604 

regions, the aggression class (+/-), and the social condition (IM-Intact male, CM-Castrated Male, 605 

F-Female) for each 1-second data window. f) Encoding across eight learned networks. The 606 

supervised network (purple, EN-AggINH) showed the strongest encoding. Data shown as mean 607 

± SEM. 608 

Figure 2. EN-Aggression Inhibition encodes an aggressive internal state. a) Neural activity was 609 

sampled while mice were socially isolated (blue) and during intervals preceding and following 610 

social behavior. b) Network activity during these intervals encoded attack behavior vs. male and 611 

female non-attack social behaviors, while ventral hippocampal activity did not (P<0.05 using 612 

Friedman’s test followed by Wilcoxon sign-rank test). During isolation (blue) Network activity, 613 

but not ventral hippocampus activity, encoded the subsequent total attack time of individual 614 

mice (P<0.05 using Spearman’s Rank Correlation).  615 

Figure 3. Dynamics and biological components of EN-Aggression Inhibition. a) Prominent 616 

oscillatory frequency bands composing EN-AggINH are highlighted for each brain region around 617 

the rim of the circle plot. Prominent synchrony measures are depicted by lines connecting brain 618 

regions through the center of the circle. The plot is shown at relative spectral energy of 0.4. 619 

Theta (4-11 Hz) and beta (14-30 Hz) frequency components are highlighted in blue and green, 620 

respectively. b) Example relative LFP spectral energy plots for three brain regions corresponding 621 

to the circular plot in A (See Supplemental Fig. S3-4 for full description of network features).  c) 622 

Granger offset measures were used to quantify directionality within EN-AggINH. Prominent 623 

directionality was observed across the theta and beta frequency bands (shown at spectral 624 

density threshold of 0.4 and a directionality offset of 0.3). Histograms quantify the number of 625 

leading and lagging interactions between brain regions. d) Schematic depicting directionality 626 

within EN-AggINH. e-f) EN-AggINH maps to cellular activity. e) Three cells from LHb, VMH, and 627 

MeA showing firing activity that is negatively correlated with EN-AggINH activity (red) and a 628 

VHip cell showing positively correlated firing (blue). f) EN-AggINH activity correlated with 629 

cellular firing across the brain across the brain. Single- and multi-units were used for analyses.  630 
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Figure 4. EN-Aggression Inhibition encodes distinct aggression contexts. a) Experimental 631 

approach for causally inducing aggression via direct activation of ESR1+ cells in ventromedial 632 

hypothalamus. b) Cellular activation induced attack behavior towards female mice (P<0.001 633 

using sign-rank test), c) decreased EN-AggINH activity during social interactions with female 634 

mice (P<0.01 using one-tailed Wilcoxon sign-rank test) and d) intervals surrounding these 635 

interactions (P<0.05 using Wilcoxon sign-rank test). 636 

Figure 5. EN-Aggression Inhibition activity is causally related to aggression. a) Schematic for 637 

closed-loop manipulation of EN-AggINH activity. b) Real-time estimation of aggression. Receiver 638 

operating characteristic depicting detection of aggressive behavior in a mouse using EN-AggINH 639 

activity vs. real-time reduced encoder is shown to the right. Dashed blue line corresponds to 640 

the established detection threshold. c) Detection of aggression using reduced encoder vs. EN-641 

AggINH across mice (N=9; P=0.43 using two-tailed paired Wilcoxon sign-rank). d) EN-AggINH 642 

activity relative to light stimulation during closed-loop manipulation. Network activity 643 

significantly decreased one second prior to yellow light stimulation (N=9, 
##

P<0.005 using one-644 

tailed sign rank test; note that activity was normalized for each mouse to the average network 645 

activity during isolation). Activity was also higher one second after stimulation with blue light 646 

vs. yellow light (
**

P<0.01 using one-tailed signed-rank test). e) Directed graph with the inferred 647 

modes of action derived from mediation analysis. There is a causal relationship from 648 

stimulation to behavior and from stimulation to EN-AggINH expression (model 1; P<0.01 using 649 

signed rank and paired t-tests). EN-AggINH is a mediator from stimulation to behavior (P<0.01 650 

using nested logistic regression models, likelihood ratio test; model 2), EN-AggINH activation is 651 

the primary mechanism whereby prefrontal cortex stimulation suppresses aggression (P<0.01 652 

using average causal mediation effect, model 3). f-g) Directed graph testing f) local theta power 653 

as the primary mechanism whereby prefrontal cortex stimulation suppresses aggression (model 654 

4) and g) EN-AggINH activation as the primary mechanism whereby prefrontal cortex 655 

stimulation suppresses aggression when local power is included as an intermediary (model 5). 656 

The uncorrected P values for each brain area in both models are shown below as -log(P).  657 

Figure 6. Validation of spatiotemporal features of EN-Aggression Inhibition. a) Portion of 658 

windows stimulated during social behaviors using a closed-loop approach (P=0.002 using one-659 
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tailed sign-rank test, left). Behavioral effects of closed-loop stimulation, right). b) Schematic for 660 

nonsynchronous control stimulation (left). Nonsynchronous stimulation does not impact 661 

aggressive or non-attack social behavior towards males or females. c) Granger Coherence for 662 

PFC-dependent subcircuits within EN-AggINH (shown as relative spectral energy, see also 663 

Supplemental Figure S4) d) Viral targeting strategy (left) and behavioral impact of PrL�NAc 664 

circuit stimulation (right). e) Viral targeting strategy (left) and behavioral impact of PrL�MeA 665 

circuit stimulation (right). f) Viral targeting strategy (left) and behavioral impact of PrL�LH 666 

circuit stimulation (right). **P<0.005, *P<0.05 using two tailed paired t-test. Order of blue and 667 

yellow light stimulation trials is show next to social condition diagrams. 668 
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All procedures were approved by the Duke University Institutional Animal Care and Use 684 

Committee in compliance with National Institute of Health (NIH) Guidelines for the Care and 685 

Use of Laboratory Animals. Mice were maintained on a reverse 12-hr light cycle with ad libitum 686 

access to food and water.  687 

Twenty-nine six-month retired breeder male CD1 strain mice (Charles River Laboratories, 688 

Wilmington, Massachusetts) were used to discover a network that encoded aggression, 689 

hereafter called EN-AggINH. Another fifty-five CD1 mice were used to probe the behavioral and 690 

network responses to optogenetic stimulation. Mice were singly housed with enrichment. 691 

ESR1-Cre mice on a C57/Bl6J background were provided by Scott Russo. These mice were 692 

crossed with CD1 females in the Bryan Vivarium at Duke University to obtain F1 offspring. Eight 693 

fourteen-week-old virgin ESR1-cre F1 male offspring were used to validate EN-AggINH. All F1 694 

offspring were group-housed 2-5 mice per cage until they received viral injections in the 695 

ventromedial hypothalamus at 7-8 weeks. After surgery, these mice were singly housed with 696 

enrichment. All partner mice (C57BL/6J: two to seven intact males, two to seven females, and 697 

two to seven castrated males per experimental mouse) were 7-14 weeks old. These mice were 698 

purchased from Jackson Laboratories (Bar Harbor, Maine). All stimulus mice were housed 5 per 699 

cage with enrichment. All behavioral testing and neurophysiological recordings occurred during 700 

the dark cycle. 701 

Castration of C57 male mice 702 

Eighteen male mice were anesthetized with 1% isoflurane. The scrotal sac was sanitized with 703 

betadine and 70% ethanol. The testes were then moved into the sac by gently palpating the 704 

lower abdomen. Next, an incision was made in the sac and the testes were extracted. After 705 

blood flow was cut off to the testes using a thread tourniquet, the testes were removed. The 706 

remaining fatty tissue was placed back into the scrotum, which was then sutured. Mice were 707 

allowed 10 days for recovery prior to experimental use. 708 

Electrode implantation surgery 709 

Mice were anesthetized with 1% isoflurane and placed in a stereotaxic device. Anchor screws 710 

were placed above the cerebellum, right parietal hemisphere, and anterior cranium. The 711 
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recording bundles designed to target prelimbic cortex, infralimbic cortex, medial amygdala, 712 

ventral hippocampus, primary visual cortex, mediodorsal thalamus, lateral habenula, lateral 713 

septum nucleus, nucleus accumbens, ventrolateral portion of the ventromedial hypothalamus, 714 

and orbitofrontal cortex were centered based on stereotaxic coordinates measured from 715 

bregma. [Orbitofrontal cortex: anterior/posterior (AP) 2.35mm, medial/lateral (ML) 1.0mm, 716 

dorsal/ventral (DV) from dura  -2.75mm; infralimbic cortex and prelimbic cortex: AP 1.8mm, ML 717 

0mm, DV -2.7mm from dura; medial amygdala: AP -1.25, ML 2.7mm, DV -4.3 from dura; lateral 718 

septum and nucleus accumbens: AP 1.0mm, ML 0mm, DV -4.0mm from dura; ventromedial 719 

hypothalamus, lateral habenula, and medial dorsal thalamus: AP -1.47mm, ML 0mm, DV -720 

5.4mm from dura; central hippocampus and primary motor cortex: AP -3.0mm, ML 2.6mm, DV -721 

3.0mm from dura]. We targeted infralimbic cortex and prelimbic cortex by building a 0.6mm DV 722 

stagger into the bundle. We targeted lateral septum and nucleus accumbens by building a 723 

0.3mm ML and 1.5mm DV stagger into the bundle. We targeted lateral habenula, medial dorsal 724 

thalamus, and ventral medial hypothalamus by building a 0.3mm ML, and 1.9mm and 2.5mm 725 

DV stagger into our electrode bundle microwires. We targeted primary motor cortex and 726 

ventral hippocampus using a 0.3mm ML and 2.5mm DV stagger in our electrode bundle 727 

microwires. For optogenetic stimulation experiments, the addition of a Mono Fiberoptic 728 

Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm [inner diameter], 125mm buffer 729 

[outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec) was built into the prefrontal 730 

cortex bundle. The tip of the fiber was secured 300mm above the tip of the IL microwire. Mice 731 

were allowed 10-15 days for recovery from surgery before behavioral testing. 732 

Viral surgery 733 

For optogenetic experiments targeting PFC soma [21], we used CD1 mice that showed an attack 734 

latency < 60s when exposed to an intact C57 male. Thirty-five CD1 mice were anesthetized with 735 

1% isoflurane and placed in a stereotaxic device. The mice were unilaterally injected with AAV2-736 

CamKII-ChR2-EYFP (purchased from the Duke Viral Vector Core, Durham, NC; courtesy of K. 737 

Deisseroth), based on stereotaxic coordinates from bregma (left Infralimbic cortex: AP 1.8mm, 738 

ML 0.3mm, DV -2.0mm from the brain). A total of 0.5mL of virus was infused at the injection 739 

site at a rate of 0.1mL/min over five minutes, and the needle was left in place for ten minutes 740 
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after injection. For the open-loop stimulation experiment, CD1 mice were implanted with an 741 

optic fiber (Mono Fiberoptic Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm 742 

[inner diameter], 125mm buffer [outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec)) 743 

0.3mm above the injection site immediately after viral syringe was removed. These mice were 744 

allowed 3 weeks for recovery prior to behavioral testing. For the closed-loop experiments, CD1 745 

mice were allowed 3 weeks for viral expression prior to implantation with an optrode. 746 

For the ESR1-Cre validation experiment, thirteen F1 offspring were bilaterally injected with 747 

AAV2-hSyn-DIO-GqDREADD (obtained from Addgene) based on stereotaxic coordinates 748 

measured from bregma (AP -1.5mm, ML ±0.7mm, DV -5.7mm from the dura). A total of 0.3mL 749 

of virus was infused bilaterally at a rate of 0.1mL/min, and the needle was left in place for five 750 

minutes after injection. Two weeks after viral infusion, F1 males were screened for aggressive 751 

behavior towards females. The F1 males received i.p. injections of CNO (1mg/kg) at the start of 752 

the screening session. Thirty-five minutes after injection, a novel C57 female was placed in the 753 

home cage for 5 minutes. Screening was repeated one week and two weeks later. Only F1 754 

males who attacked females for at least two of the three screening sessions (9/13 mice) were 755 

implanted with electrodes [17]. The eight mice that showed good surgical recovery were 756 

subjected to further experiments. 757 

For PFC projection-targeting experiments, we used forty-four male CD1 mice that showed an 758 

attack latency <60s and initiated attacks at least three times within three minutes when 759 

exposed to an C57 male mouse. These mice were unilaterally injected with AAV2-EF1a-DIO-760 

ChR2-eYFP (obtained from Addgene) in the left prefrontal cortex based on stereotaxic 761 

coordinates measured from bregma (AP 1.8mm, ML 0.3mm, DV -2.0mm from the dura), and 762 

AAVrg-EF1a-Cre-mCherry (obtained from Addgene) was injected in the downstream target 763 

region based on stereotaxic coordinates measured from bregma (NAc: AP 1.0mm, ML 0.9mm, 764 

DV -3.8mm from the dura; MeA: AP -1.25mm, ML 2.75mm, DV -4.3mm from the dura; or LHb: 765 

AP -1.6mm, ML 0.4mm, DV -2.2mm from the dura). A total of 0.3mL of virus was infused in the 766 

prefrontal cortex and 0.3mL of virus was infused in the downstream target region at a rate of 767 

0.1mL/min. The needle was left in place for five minutes after injection. Immediately after the 768 

viral syringe was removed from the downstream target region, mice were implanted with an 769 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2022.12.07.519272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519272
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

optic fiber (Mono Fiberoptic Cannula coupled to a 2.5mm metal ferrule (NA: 0.22, 100mm 770 

[inner diameter], 125mm buffer [outer diameter], MFC_100/125-0.22, Doric Lenses, Quebec)) 771 

0.3mm above the downstream target region injection site. Three weeks after viral 772 

infusion/optic fiber implantation, CD1 mice were screened for aggression. Thirty-three 773 

implanted mice that continued to show an attack latency <60s and initiated attacks at least 774 

three times within three minutes were used for testing effects of projection targeted 775 

stimulation on aggressive behavior. 776 

Histological analysis 777 

Histological analysis of implantation sites was performed at the conclusion of experiments to 778 

confirm recording sites and viral expression. Animals were perfused with 4% paraformaldehyde 779 

(PFA), and brains were harvested and stored for at least 96 hrs in PFA. Brains were 780 

cryoprotected with sucrose and frozen in OCT compound and stored at -80C. Brains were later 781 

sliced at 40µm. Brains from mice used to train and validate the network were stained using 782 

NeuroTrace fluorescent Nissl Stain (N21480, ThermoFisher Scientific, Waltham, MA) using 783 

standard protocol. Specifically, Nissl staining for brain tissue occurred on a shaker table at room 784 

temperature. Tissue was washed in PBST (0.1% Triton in phosphate-buffered saline solution) for 785 

10 minutes. It was then washed for five minutes in PBS twice. The tissue was then protected 786 

from light for the remainder of the protocol. The tissue was incubated in 1:300 Nissl diluted in 2 787 

mL PBS for 10 minutes. After the Nissl incubation, tissue was washed once in 0.1% PBST for 10 788 

minutes, then twice in PBS for 5 minutes. Brains from ESR1 mice and mice used for 20 Hz or 789 

closed-loop stimulation were mounted in Vectashield mounting medium containing DAPI (H-790 

1200-10, Vector Laboratories, Newark, CA). Images were obtained at 10x using an Olympus 791 

fluorescent microscope. Of the 297 total implantation sites in the training and testing set of 792 

mice, 17 were mistargeted (~5.7% error rate).  Of these mistargeted implants, 13 were within 793 

200µm of the targeted structure. Given our prior work demonstrating high LFP spectral 794 

coherence (in the 1-55Hz frequency range) across microwires separated by 250um, in both 795 

cortical and subcortical brain regions [44], we chose to retain these animals in our analysis. The 796 

other four mistargeted implants were within 350µm of the targeted structure. The most 797 
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reliably mistargeted site was ventral medial hypothalamus for which 4 animals were implanted 798 

within 200um of the target, and 2 animals were implanted within 350 µm of the target.   799 

Machine learning analysis typically benefits from larger data sets. Thus, we concluded that 800 

maintaining a higher number of data points likely outweighed the effect of a small number of 801 

mistargeted brain regions, particularly since our LFP measures were robust to the targeting 802 

inaccuracies we observed histologically. As such, we pooled data from all 20 implanted animals 803 

to learn our initial model. We employed a similar strategy for our validation analysis, where an 804 

animal was only removed from the validation set if there was clear histological confirmation of 805 

mistargeting >200µm for any of the recorded regions. Specifically, presuming accurate targeting 806 

with 94.3% certainty and targeting within 200um at a higher certainty, we included animals 807 

with missing or damaged histological slices in our analysis. However, if there was clear 808 

histological confirmation of mistargeting for any of the recorded regions (as was the case for 1 809 

mouse), the animal was removed from the validation testing. Critically, our validation 810 

procedure implies that the machine learning models were robust regardless of any slight 811 

imprecision in the animals we utilized for training.   812 

Neurophysiological data acquisition 813 

Mice were connected to a data acquisition system (Blackrock Microsystems, UT, USA) while 814 

anesthetized with 1% isoflurane. Mice were allowed 60 minutes in their home cage prior to 815 

behavioral and electrophysiological recordings. Local field potentials (LFPs) were bandpass 816 

filtered at 0.5-250Hz and stored at 1000Hz. An online noise cancellation algorithm was applied 817 

to reduce 60Hz artifact (Blackrock Microsystems, UT, USA). Neural spiking data was referenced 818 

online against a channel recording from the same brain area that did not exhibit a SNR>3:1. 819 

After recording, cells were sorted using an offline sorting algorithm (Plexon Inc., TX) to confirm 820 

the quality of the recorded cells. Only cell clusters well-isolated compared to background noise, 821 

defined as a Mahanalobis distance greater than 3 compared to the origin, were used for the 822 

unit-electome network correlation analysis. We used both single (well isolated clusters with 823 

ISI<1.5) and multi-units (well isolated clusters with ISI<1.5; N=186 total neurons) for our 824 

analysis as our objective was to determine whether electome network activity was reflective of 825 
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cellular activity. Neurophysiological recordings were referenced to a ground wire connected to 826 

anchor screws above the cerebellum and anterior cranium. 827 

Behavioral recordings and analysis for training/testing models 828 

The CD1 mice used for training and testing the electome model were first subjected to 829 

screening to assess their basal level of aggressiveness. Screening occurred once a day for three 830 

consecutive days prior to surgical implantation. Animals were screened in cohorts. For each 831 

screening session, an intact male C57 was placed in the CD1’s home cage for 5 minutes and the 832 

latency to first attack was recorded. To ensure that our network generalized broadly across CD1 833 

mice, we used a training and testing set for which ~50% of the mice showed high aggression 834 

during screening (i.e., latency to attack < 60s), and ~50% of the mice showed low to moderate 835 

aggression (i.e., latency to attack > 60s). Animals that showed no aggression during screening 836 

(16/45 mice) were excluded from further experiments.  837 

All screening/testing occurred within the home cage of mice except for the quantification of 838 

cortical stimulation-induced gross locomotor activity. These latter experiments were performed 839 

in a 44cm × 44cm × 35cm (L×W×H) open field arena. Subject mice (CD1 and ESR1 males) were 840 

acclimated to the recording tether for three days prior to the first recording session. Each 841 

acclimation session involved anesthetizing the mouse with 1% isoflurane, tethering the subject 842 

mouse, allowing 60 minutes to recover from isoflurane, then placing a male C57 in the home 843 

cage for 5 minutes. Mice were then anesthetized with isoflurane again and detached from the 844 

tether. The aggression level of experimental mice was determined based on average latency to 845 

attack partner mice during the second and third acclimation sessions.  846 

After screening, twenty-nine mice were implanted, and data was acquired across 1-6 behavioral 847 

testing/recording sessions following recovery. Sessions were separated by 5-7 days. Recordings 848 

for all social encounters were performed in the home cages of the CD1 mice. Each behavioral 849 

testing session began with 5 minutes of recording prior to introduction of the social stimulus. 850 

All mice were subjected to encounters with an intact C57 male mouse and a female C57 mouse. 851 

A subset of eighteen CD1 mice were also subjected to an encounter with a castrated male 852 

mouse, and another subset of eighteen mice were subjected to exposure to objects covered in 853 
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CD1 mouse urine. Object pairs included yellow duplex blocks, curved red duplex blocks, 854 

weighted 5 mL conicals, glassware tops, and objects assembled from black legos®. The CD1 855 

mice were exposed to a different pair of objects during each session. Order of exposure to 856 

stimulus mice and objects was shuffled for every session. Six of the CD1 mice were recorded 857 

under all four conditions. Data observations (1 second each) were pooled across eleven CD1 858 

mice for training the network model. Object pairs included yellow duplex blocks, curved red 859 

duplex blocks, weighted 5 mL conicals, glassware tops, and objects assembled from black 860 

legos®. The CD1 mice were exposed to a different pair of objects during each session. Order of 861 

exposure to stimulus mice and objects was shuffled for every session.  862 

For ESR1 male behavioral testing, eight mice were injected with either saline or CNO (1mg/kg, 863 

i.p.) after the five-minute baseline recording. Thirty-five minutes after this injection, mice were 864 

exposed to an intact male C57, a castrated male C57, and a female C57, presented in 865 

pseudorandom order. Mice were subjected to six total recording sessions (three in which they 866 

were treated with saline and three in which they were treated with CNO), again in 867 

pseudorandom order. Sessions were separated by 5 days to allow an adequate washout of 868 

CNO[52].  869 

Behavior was scored for each second as an “attack”, “non-attack social interaction”, or “non-870 

interaction”. One-second windows were identified as "aggressive" if the mouse was engaged in 871 

biting, boxing (kicking/clawing), or tussling behavior [36]. Windows were labeled as "non-attack 872 

social interaction" if the mouse had his nose or forepaws touching the stimulus mouse (intact 873 

male/female/castrated male) or object, but was not biting, boxing, or tussling. Examples of 874 

behaviors labeled "non-attack social behavior" included sniffing, grooming, or resting (placing 875 

nose or forepaws against the subject mouse, but not moving). If the stimulus mouse had 876 

his/her forepaws or nose on the CD1, but it was not reciprocated, this was labeled "non-877 

interaction". CD1 straight approach, sideways approach, and chasing of the stimulus mouse 878 

could result in attack (biting/kicking/tousling), non-attack social behavior (nose or paw touch), 879 

or withdrawal without any touch. Thus, while sideways approach and chasing are regularly 880 

labeled as "aggressive" in the literature [36, 53, 54], and straight approach is regularly labeled 881 

as "pro-social", these behaviors lacked consistent resolutions. Moreover, mice also 882 
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demonstrated these behaviors towards female and castrated mice (non-attack social context). 883 

One-second windows containing these behaviors were labeled "non-interaction". All other 884 

timepoints not labeled "attack" or "non-attack social" were also labeled "non-interaction". 885 

 These behavioral criteria were selected to include ethologically aggression-related behaviors 886 

and maximize the likelihood that the CD1 was aware of the presence of the stimulus mouse or 887 

object during the behavioral window, while remaining confident in the classification of "attack" 888 

and "non-attack social" window labels.  889 

While tail rattling is not an attack behavior like the other behaviors that were labeled as 890 

"attack", it was consistently only demonstrated by aggressive mice towards intact male mice. 891 

Moreover, tail rattling is well-recognized in the literature as an aggressive behavior. Thus, we 892 

included this behavior in the “attack” behavior category. In our subset of 20 mice used for 893 

training the network, tail rattling was observed 8 ± 4s out of the 135 ± 26s “attack” windows 894 

per mouse.  895 

The videos used to generate the labels for training and testing our machine learning model 896 

were hand-scored by a trained researcher. Videos from ESR1 mice and optogenetic stimulation 897 

were automatically tracked using DeepLabCut [55, 56]. This information was then used for 898 

creating behavioral classifiers in SimBA [57]. 899 

LFP preprocessing and signal artifact removal 900 

Each LFP signal was segmented into 1s non-overlapping windows. If there were multiple intact 901 

channels implanted in a region, they were averaged to produce a single signal. Windows with 902 

non-physiological noise were removed using an established automated heuristic [7]. Briefly, the 903 

envelope of the signal in each channel was estimated using the magnitude of the Hilbert 904 

transform. The Median Absolute Deviation (MAD) of the magnitude was then calculated on 905 

each channel of each recording. Signal was marked as non-physiological if the envelope 906 

exceeded a high threshold (5x MAD, which is roughly 4x the standard deviation for a normally 907 

distributed signal). Any data adjacent to non-physiological data that had an envelope value 908 

above a smaller threshold (0.167 MAD) was also considered non-physiological. All data marked 909 

in this way was ignored when averaging channels for each region. Any channels with standard 910 
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deviation less than 0.01 were removed as well. If no channels were usable for a given region 911 

within a window, that whole window was removed from the data.  This set of heuristics 912 

resulted in 34.7±5.1% of the data being excluded from analysis. After this, 60Hz line artifact was 913 

further removed using a series of Butterworth bandpass filters at 60Hz and harmonics up to 914 

240Hz with a stopband width of 5Hz and stopband attenuation of -60dB. Finally, the signal was 915 

downsampled to 500Hz. 916 

Estimation of LFP oscillatory power, cross-spectral coherence, and Granger directionality. 917 

Signal processing was performed using Matlab (The MathWorks, Inc. Natick MA). For LFP 918 

power, spectral power was estimated using Welch’s method using a 250-millisecond window 919 

and 125-millisecond steps. Windows were zero-padded to give a 1Hz resolution. Cross-spectral 920 

coherence was estimated pairwise between all regions using Welch’s method and magnitude-921 

squared coherence defined as  922 

������ �
|��	�����|

�

��	�������	�����
, 

where � and � are two regions and �������� and �������� are the power and cross spectra 923 

at a given frequency �, respectively. 924 

Spectral Granger Causality  features were estimated using the Multivariate Granger Causality 925 

(MVGC) MATLAB toolbox [58]. To get stable Granger Causality estimates, a 6
th

 order highpass 926 

Butterworth filter – with a stopband at 1Hz and a passband starting at 4 Hz – was applied to the 927 

data using the filtfilt function (MATLAB, The MathWorks, Inc. Natick MA). Granger Causality 928 

values for each window were estimated with a 20-order AR model at 1 Hz intervals to align with 929 

the power and coherence features. Granger features were processed identically to a previously 930 

reported approach [7]. Briefly, Granger features were exponentiated to approximately maintain 931 

the additivity assumption made implicitly by NMF models [7, 59] as, exp
��������, where 932 

������� is the Granger Causality at frequency � from region � to region �. The exponentiated 933 

feature is a ratio of total power to unexplained power. Exponentiated Granger feature values 934 

were truncated at 10 to prevent implausible values. 935 

Data for single-region and network-level machine learning analyses 936 
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We used 21460 seconds of data, pooled across the twenty mice, to train/validate our single 937 

region and network models. This included a total of 4680 seconds while mice were socially 938 

isolated in their home cage, 14890 seconds where CD1 mice exhibited non-attack social 939 

behavior (3542 seconds towards intact males, 9067 seconds towards females, and 2281 940 

seconds towards castrated), and 1890 seconds where mice exhibited attack behavior towards 941 

the intact males.  942 

Discriminative Cross-Spectral Factor Analysis – Nonnegative Matrix Factorization 943 

The network was trained to distinguish between behavioral windows when the CD1 mice 944 

showed aggressive behavior towards intact C57 males, and windows where they exhibited pro-945 

social behavior. These latter windows comprised pro-social interactions towards intact C57 946 

males, castrated C57 males, or C57 females. Here, we used data from twenty-nine mice to learn 947 

the final model, with a split of 20 and 7 for model training and internal validation.  948 

We used Discriminative Cross-Spectral Factor Analysis – Nonnegative Matrix Factorization 949 

(dCSFA-NMF) model [41]. This approach assumes each window of is an independent stationary 950 

observation and examines dynamics in brain activity only at the scale of windows. A one-second 951 

window was chosen to balance capturing fine-grained transient behavior with sufficient length 952 

to properly estimate spectral features [7]. Each window has associated spectral power, 953 

coherence, and Granger Causality features (in total � � 9,586 features), which is represented 954 

as �� � �� for the ��� window. Each window was associated with a behavioral label that 955 

identified which condition the CD1 mouse was subjected to during that window (intact male, 956 

castrated male, or female) and whether the CD1 mouse was engaged in aggressive or non-957 

aggressive behavior during that window, and the aggressive behavior was coded as �� � �0,1�.  958 

As a short description of the dCSFA-NMF model, the features are described as an additive 959 

positive sum of   non-nonnegative electrical functional connectome (electome) networks. This 960 

model is learned using a supervised autoencoder. The objective we use to learn the parameters 961 

is  962 

min
�,
,�

$ %&���
�� , '����; )�� * + %&��

�� , �����; )�� * - %&�������.
�

���
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Here, %&��� is the reconstruction loss of the features derived from electrophysiology, which for 963 

our work was an %� loss. Our predictive loss %&��
  is the cross-entropy loss commonly used for 964 

binary classification. Each of the   networks is represented in vector form and combined to 965 

make a matrix ' � .���. The electome network scores are given by the multi-output function 966 

���; )�: .� 0 .�, where ) represent the parameters of the function. In our model, the multi-967 

output function was an affine transformation of �� * 1 followed by a softplus rectification, 968 

defined as �&�2�34���� � log�1 * exp ��, thus ) � ��, 1�. Parameters � � .� represent the 969 

relationship between the electome networks and the behavior. A sparsity constraint is enforced 970 

so that � � 8��, 0, … ,0:, meaning that only a single electome is used to predict behavior, 971 

simplifying interpretation.  + is a weighting parameter used to control the relative importance 972 

of prediction. We chose a value that kept the two losses approximately equal during training, 973 

which corresponded to 1.  974 

Previous work has also found that the reconstruction loss can reduce overfitting and make the 975 

learned predictions more robust [60]. To further reduce overfitting of the predictive aspect of 976 

the encoder, we applied an elastic net loss [61] on the encoder %&���� with a weighting - and 977 

the ratio between the %� and %� losses set to .5. The value for - was set to a small value that 978 

had worked well previously. In this work, power features were also upweighted by a factor of 979 

10 to accommodate that there were many more Granger features and truncated at 6 to 980 

prevent outliers from dominating the predictions.  981 

These models and statistical analyses were implemented with Python 3.7 and Tensorflow 982 

version 2.4. Parameters were learned with stochastic gradient descent using the Nesterov 983 

accelerated ADAM optimizer [62]. Learning was performed for 30000 iterations, which was 984 

observed to be ample for parameter convergence. The learning rate and batch size were set to 985 

1e-3 and 100 respectively, values that have empirically performed well in similar applications.  986 

Predictive performance was evaluated in new mice not involved in learning the network. Given 987 

processed data from the new mice, network scores were estimated as an evaluation of the 988 

encoder learned during training of the dCSFA-NMF model. 989 

Hyper-parameter selection 990 
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The dCSFA-NMF procedure requires selection of several settings in the algorithm. Specifically, 991 

we must choose the number of electome networks  , the importance of the supervised task +, 992 

the relative importance of the power features, coherence features, and Granger features, and 993 

the parameterization of the mapping function  ����; )�. Besides  , these settings were chosen 994 

to match previously used values or follow heuristics. Specifically, in our prior work, we 995 

demonstrated that the inferred model is highly insensitive to λ [27]. Thus, we chose a λ value to 996 

give roughly equal weight to the predictive and generative tasks. Similarly, since the former 997 

task grows linearly with brain regions and the latter task grows quadratically, we chose to 998 

weight the power features to rough match the coherence features. Since the decoder is also 999 

linear, we chose a linear mapping function followed by a softplus to ensure non-negativity. This 1000 

approach served to limit complexity. 1001 

To choose the value of  , we evaluated the reconstruction error (Mean Squared Error) on the 1002 

seven internal validation mice, which evaluates how well the electome networks describe the 1003 

neural measurements.  As the goal for our analysis was to maintain high reconstruction and 1004 

effectively predict the behavior, an elbow analysis was used to choose the number of electome 1005 

networks   after which we observed minimal gains in explaining the data.   1006 

Specifically, our previous work has demonstrated that latent dimensionality is not an important 1007 

parameter in terms of predictive performance [27]. Thus, we trained one supervised network 1008 

for all the models tested in this study. We also trained multiple unsupervised networks for each 1009 

model to explain variance in brain activity that was not directly related to predictive 1010 

performance. Since our previous work had found that the supervised network has relatively low 1011 

variance, we used the Bayesian Information Criterion (BIC) to select the number of 1012 

unsupervised networks (latent factors �) to use in the final network model. The BIC is defined 1013 

as: 1014 

�;<��� � = log > ? 2 log
%A�, 

where = � � B � is the number of model parameters (� is the number of spectral features), > is 1015 

the number of samples, and %A � �
CDEA� is the likelihood of the observed data using the 1016 

estimated model parameters. This criterion balances the model fit quantified by %A with the 1017 
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complexity quantified by = log >. In this work, ? log
%A� is an %� loss, corresponding to a 1018 

Gaussian observational likelihood. The model parameter EA was estimated on 80% of the data 1019 

while model parameter %A was evaluated on a 20% holdout set to avoid overfitting. The BIC was 1020 

evaluated for all dimensionalities from 1-20 networks, and the lowest value was selected as the 1021 

best model. Since 7 unsupervised networks provided the best fit (a BIC of 5457701, see also 1022 

Supplemental Fig. S2), our final network model utilized a total of 8 networks, 1 supervised and 7 1023 

unsupervised, across all 11 regions. 1024 

For each single-region model, we trained 3 unsupervised networks and a single supervised 1025 

network. Here, we reduced the number of networks as compared to the full network model, 1026 

given the dramatic reduction in the number of covariates considered by the model. Critically, 1027 

our objective was to compare the predictive performance of the single-region models against 1028 

each other and the full network model. Since the predictive performance is driven by the 1029 

supervised network[27], the smaller latent dimensionality of the single region models had no 1030 

impact on our final conclusions.  1031 

Single-region decoding 1032 

To test the efficacy of any single brain region as a biomarker for aggression, we extracted 1033 

power at 1 Hz frequency bins over 1-56 Hz from each region. One-second windows were pooled 1034 

from the twenty CD1 mice and used to generate a series of dCSFA-NMF models for each of the 1035 

11 brain regions. The models were trained to distinguish behavioral windows of one social state 1036 

exhibited by CD1 mice, from windows of two other social states. These three social states 1037 

included 1) male-directed attack, 2) female non-attack social interactions, and 3) castrated male 1038 

non-attack social interactions. We also developed a model to distinguish 4) periods where CD1 1039 

mice were isolated in their home cage from any of the three social states. Each model was then 1040 

tested on data from a holdout set of nine mice. The Area under the receiver operating curve 1041 

(AUC) was calculated for each holdout mouse to determine the performance of the model. 1042 

False discovery rate was used to correct for multiple hypothesis testing. 1043 

Validating Model Dimensionality  1044 
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A frequent concern of latent variable models (including dCSFA-NMF) is the dependence of the 1045 

networks and encoder on the choice of latent dimensionality. To address this concern, we 1046 

performed a sensitivity analysis on the supervised network to determine the extent to which 1047 

the choice of this dimensionality influenced the learned aggression electome network and 1048 

encoder. In this sensitivity analysis, we estimated a dCSFA-NMF model allowing the number of 1049 

total networks to range from two to twenty. We then compared the similarity between each 1050 

learned encoder and decoder to our model with eight networks (the final model used in this 1051 

work). This was quantified using the cosine similarity, which measures the angle between two 1052 

networks (or encoders), ranging from -1 to 1. A value of 1 indicates perfect alignment (pointing 1053 

in the same direction), 0 is orthogonal, and -1 indicates that the vectors point in opposite 1054 

directions (Supplemental Figure S2).  1055 

We found that the supervised network maintained a strong consistency across most 1056 

dimensions, particularly between 5-10 networks, as shown by the cosine similarities being 1057 

greater than 0.95. The supervised encoders were virtually identical across all the models except 1058 

the one that utilized three networks. This model learned a network that was positively 1059 

associated with aggression.  1060 

To evaluate the robustness of the similarities across most of the supervised networks, we 1061 

created a null distribution of the similarities across randomly chosen generative networks. 1062 

These later similarities were substantially lower for both the network composition and the 1063 

encoder. This indicates that as far as the supervised electome and encoder are concerned, 1064 

latent dimensionality is not particularly influential on the resulting network, and by extension 1065 

the biological interpretation. 1066 

Decoder Information Content 1067 

The amount of information contained in the predictive model was quantified by the reduction 1068 

in uncertainty. The associated formula for this reduction in uncertainty, known as the Bernoulli 1069 

entropy, is 1-1*(p log_2(p) +(1-p)log_2(1-p)), where p is the accuracy of the model. At the 1070 

extremes, an accuracy of 0.5 (random guessing) removes no uncertainty, whereas an accuracy 1071 

of 1 or 0 completely eliminates uncertainty. 1072 
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Single-cell correlation to Electome Network activity 1073 

Data acquired during the third behavioral testing session was from the twenty implanted mice 1074 

were used for cellular analysis. We used Spearman correlation to quantify the relationship 1075 

between cellular firing windows and the activity of the electome network used to classify attack 1076 

behavior. We performed 1000 permutations of randomly shuffling 1 second windows within 1077 

each class for attack and non-attack social interactions with male, female and castrated C57 1078 

mice. This approach maintained the relationship between network activity and behavior and 1079 

the relationship between cell firing and behavior. We then calculated the Spearman correlation 1080 

between network activity and cell firing for each permutation. A cell was deemed positively 1081 

correlated if its unshuffled Spearman Rho was above 97.5% of the permutated distribution and 1082 

negatively correlated if it was below 2.5%. 1083 

Real-Time Encoder Approximation 1084 

Because Granger Causality features were too computationally demanding for real-time 1085 

calculation, we developed a ‘fast’ dCSFA-NMF model that relied only on power and coherence 1086 

features for estimation of aggressive state to use in the closed-loop stimulation experiments. 1087 

This ‘fast’ model was trained on the same data. The model was trained using regularized 1088 

regression to best predict the output of the full encoder. As such, this reduced encoder is also 1089 

an affine transformation followed by a SoftPlus activation with a smaller parameter set, 1090 

)� � ��� , 1��. This approximation explained a large component of the variance of the 1091 

supervised network score on the hold-out validation mice �. � 0.47, p-value <10
-16

). 1092 

Optogenetic stimulation 1093 

Mice were anesthetized with 1% isoflurane, then tethered to an optic patch cable placed over 1094 

the optic fiber cannula. For closed-loop experiments, nine mice were also connected to the 1095 

recording system. The mice were then allowed 60 minutes for recovery prior to session 1096 

recording. For the fiber-only optogenetic stimulation experiments, CD1 mice experienced two 1097 

stimulation sessions. For closed-loop optogenetic stimulation, CD1 mice experienced three 1098 

sessions of behavioral screening followed by two sessions of closed-loop stimulation. 1099 

Stimulation sessions were separated by 5-7 days between sessions. For behavioral screening, 1100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2022.12.07.519272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519272
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

CD1 mice were exposed to intact C57 males, females, and castrated male mice for 5 minutes 1101 

each. Screening sessions two and three were used to determine a reduced network threshold 1102 

at which 40% of aggressive behavioral windows could be detected. For each session, mice were 1103 

recorded for 3 minutes of baseline in their home cage, then during the three social encounters. 1104 

Mice were recorded in an open field for 5 minutes after each session. The order of the three 1105 

social encounters were shuffled for each session. During each condition, the CD1 mouse 1106 

received segments of alternating blue (473nm, Crystal Laser LC, Reno, NV. Model No. DL473-1107 

025-O) and yellow (593.5nm, OEM Laser Systems, Model No. MGL-F-593.5/80mW) light 1108 

stimulation, for two minutes each.  1109 

For open-loop stimulation targeting PFC soma, CD1 mice received light stimulation for the 1110 

entirety of the two-minute segment. For closed-loop, mice received stimulation for one second 1111 

when the reduced network score dropped below threshold.  1112 

For nonsynchronous stimulation, each of the fourteen CD1 mouse was psuedorandomly 1113 

matched to a different mouse that had been used for closed-loop stimulation. Each non-1114 

synchronous mouse was then subjected to the identical order of conditions and yellow and blue 1115 

light stimulation blocks as their individually matched closed-loop mouse. Light stimulation was 1116 

delivered using the pattern implemented for the closed-loop partner mouse.  1117 

For projection targeting stimulation testing, CD1 males were exposed to one testing session 1118 

composed of three six-minute blocks of light stimulation. The sequence of light stimulation was 1119 

a yellow light stimulation segment, a blue light stimulation segment, then a final segment of 1120 

yellow light stimulation. Within each six-minute stimulation block, an intact male C57 and a 1121 

female C57 were sequentially placed in the CD1 cage for three-minutes each. 1122 

Immediately prior to experiments, light levels were calibrated using a power meter (ThorLabs, 1123 

Model No. P0025297 and 11070530), and delivered using a Waveform generator (Agilent 1124 

Technologies, Model No. 33210A) for the open-loop experiment. For closed-loop and 1125 

nonsynchronous stimulation experiments, the laser was activated using analog output from the 1126 

Cerebus recording system.  1127 

 1128 
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Mediation Analysis 1129 

For the Baron and Kenny approach [48] to establish that EN-AggINH expression mediated the 1130 

behavioral effect of the neurostimulation, we first used two results previously described in the 1131 

methods to establish that there was an effect from the neurostimulation on network 1132 

expression and on behavior.  We next constrained the data used to the most relevant case, 1133 

which is on the closed-loop stimulation.  Specifically, we focused on windows of LFP data during 1134 

the closed-loop experiment when either the blue or yellow laser was activated to match the 1135 

cases between the treatment and control as closely as possible. As only blue light should 1136 

significantly manipulate neural activity, this is viewed as the treatment, and the yellow light is 1137 

set as the control. We followed the procedures outlined in “LFP preprocessing and signal 1138 

artifact removal” to preprocess the data and remove data with significant artifacts.  EN-AggINH 1139 

expression was calculated by projecting the data into the learned model.  The remaining data 1140 

was then fit into two logistic regression models to predict behavior using the statsmodel 1141 

package in python [63].  The first model used only the stimulation to predict behavior (behavior 1142 

~ const + stimulation), and the second model used stimulation and network expression to 1143 

predict behavior (behavior ~ const + network_expression + stimulation).  These two models 1144 

were compared by using a likelihood ratio test to evaluate whether the second model was 1145 

significantly better. 1146 

For the causal mediation analysis, we again need to roughly balance treatment and control 1147 

groups.  We used the same data as described above in the classic mediation analysis. We define 1148 

the treatment as blue versus yellow light stimulation, the mediator as EN-AggINH expression, 1149 

and the outcome as aggressive versus non-aggressive behavior. These data were then used in 1150 

the causal mediation analysis approach proposed by Kosuke, Keele, and Tingley [49] by using 1151 

the statsmodels package in python [63]. 1152 

 1153 

Statistics 1154 

GraphPad Prism and Matlab were used for statistical analyses of behavior and network activity. 1155 

Paired T-tests were used for comparing within-subject behavioral response to optogenetic 1156 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2022.12.07.519272doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519272
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

stimulation or CNO application and corrected for false discovery rate for multiple hypothesis 1157 

testing through the Benjamini-Hochberg procedure. One-tailed Wilcoxon signed-rank tests 1158 

were used to compare within-subject mean network score responses to optogenetic 1159 

stimulation, stimulus mouse exposure and interaction, and CNO injection. Data is presented as 1160 

mean ± standard error of measurement, throughout the paper, unless otherwise specified. 1161 

Code and data availability 1162 

This learning algorithm is publicly available code at https://github.com/carlson-1163 

lab/encodedSupervision. Data will be made available for replication purposes and pre-agreed 1164 

upon scientific extensions with a material transfer agreement.  1165 

 1166 
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