

1 **Short Report**

2

3 **Discovery and biological evaluation of a potent small molecule CRM1 inhibitor**
4 **for its selective ablation of extranodal NK/T cell lymphoma**

5

6 He Liu^{1, #}, Meishuo Liu^{1, #}, Xibao Tian^{1, #}, Haina Wang^{1, #}, Jiujiiao Gao^{1, #}, Hanrui Li¹,
7 Zhehuan Zhao², Yu Liu², Caigang Liu^{3, *}, Xuan Chen^{1, 2}, Yongliang Yang^{1, *}

8

9 ¹*School of Bioengineering, Dalian University of Technology, Dalian, 116023, China;*

10 ²*School of Software, Dalian University of Technology, Dalian, 116023, China;*

11 ³*Department of Oncology, Shengjing Hospital of China Medical University, Shenyang,
12 110004, China*

13

14

15 [#]These authors contributed equally to the work.

16 ^{*}To whom correspondence may be addressed:

17 **Yongliang Yang**, E-mail: everbright99@foxmail.com; (lead contact)

18 **Caigang Liu**, E-mail: angel-s205@163.com

19

20 **Abstract**

21 **Background**

22 The overactivation of NF- κ B signaling is a key hallmark for the pathogenesis of
23 extranodal natural killer/T cell lymphoma (ENKTL), a very aggressive subtype of
24 non-Hodgkin's lymphoma yet with rather limited control strategies. Previously, we
25 found that the dysregulated exportin-1 (also known as CRM1) is mainly responsible

26 for tumor cells to evade apoptosis and promote tumor-associated pathways such as
27 NF-κB signaling.

28 ***Methods***

29 Herein we reported the discovery and biological evaluation of a potent small molecule
30 CRM1 inhibitor, LFS-1107. We validated that CRM1 is a major cellular target of
31 LFS-1107 by biolayer interferometry assay (BLI) and the knockdown of CRM1
32 conferred tumor cells with resistance to LFS-1107.

33 ***Results***

34 We found that LFS-1107 can strongly suppresses the growth of ENKTL cells at
35 low-range nanomolar concentration yet with minimal effects on human platelets and
36 healthy peripheral blood mononuclear cells. Treatment of ENKTL cells with
37 LFS-1107 resulted in the nuclear retention of $IkB\alpha$ and consequent strong suppression
38 of NF-κB transcriptional activities, NF-κB target genes downregulation and
39 attenuated tumor cell growth and proliferation. Furthermore, LFS-1107 exhibited
40 potent activities when administered to immunodeficient mice engrafted with human
41 ENKTL cells.

42 ***Conclusions***

43 Therefore, LFS-1107 holds great promise for the treatment of ENKTL and may
44 warrant translation for use in clinical trials.

45 ***Funding***

46 Y. Yang's laboratory was supported by the National Natural Science Foundation of
47 China (Grant: 81874301), the Fundamental Research Funds for Central University
48 (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in
49 Command' in Liaoning Province (Personal Target Discovery for Metabolic Diseases).

50 **Key words:** CRM1; ENKTL; sulforaphene; NF-κB; drug discovery

51 **Introduction**

52 ENKTL represents as a rare yet highly aggressive subtype of non-Hodgkin's
53 lymphoma (NHL)¹ with rather poor prognosis and short median survival time².

54 Previously, we and colleagues uncovered that the overactivation of NF-κB signaling
55 and its downstream cytokines is a key hallmark for the pathogenesis of ENKTL³.

56 Nevertheless, to date, targeted therapy towards ENKTL is still lacking and new
57 therapeutic strategies are urgently needed to combat this rare yet deadly tumor⁴.

58 Exportin-1, also known as CRM1, has been implicated in the aggressive behavior of
59 various malignancies by nuclear exporting critical tumor suppressor proteins and
60 transcription factors⁵. Moreover, CRM1 has been found to be highly upregulated in a

61 panel of tumor types⁶. Indeed, it is believed that tumor cells strive to evade powerful
62 negative regulation of apoptosis and cell proliferation through CRM1-mediated
63 nuclear export machinery. Previously, we reported that a natural and covalent CRM1
64 inhibitor sulforaphene and its synthetic analogues^{7, 8}, can selectively kill a panel of
65 tumor cells. Here, we presented the development and evaluation of a novel

66 sulforaphene analogue as a potent CRM1 inhibitor with superior antitumor activities
67 towards ENKTL while sparing human platelets.

68 **Results & Discussion**

69 In this work, we want to find aromatic fragments that can be installed with
70 sulforaphene parent structure as CRM1 inhibitors with strong potency. Briefly, we
71 adopted the deep reinforcement learning molecular *de novo* design model developed
72 by Olivecrona *et al.*⁹ to facilitate the discovery of novel aromatic fragments. This
73 model prioritizes those structures with modest similarity to the molecules in the
74 positive dataset of known CRM1 inhibitors rather than very close analogues. We
75 obtained an initial output of 3,000 moiety structures and the top 50 candidate moieties
76 generated from this step were used as seed structures to search for
77 commercial-available aromatic fragments (similarity ~ 97%). Next, we selected and
78 purchased 10 commercial-accessible aromatic fragments (**Figure 1A**) which were
79 experimentally tested via biolayer interferometry assay (BLI). Among the ten
80 experimentally tested fragments, tetrazole moieties (S5 and S8 fragment) obtained the
81 second highest binding constant with CRM1 via BLI assay experiments (**Figure 1C**
82 and **Figure 1 - Figure supplement 1**). Yet, given that tetrazole fragments are more
83 synthetic accessible as compared to the fragment with the highest binding constant
84 (S4 moiety in **Figure 1A**, benzo[d]oxazol-2-yl)-N, N-dimethylaniline), the tetrazole
85 moiety was chosen to install with sulforaphene parent structure. Subsequently, we
86 prepared a synthetic analogue of sulforaphene with the tetrazole aromatic moiety,

87 named as LFS-1107 (**Figure 1B**), which was further evaluated through cell lines and
88 *in vivo* animal models.

89 First, we sought to evaluate the binding specificity of LFS-1107 with CRM1 as
90 compared to other possible protein targets with reactive cysteine in the binding pocket
91 through the Octet® K2 biolayer interferometry assay (BLI). Here, we chose I κ B α and
92 Keap1 as two control probes to compare because both of them are reactive for
93 covalent compounds and thereby frequently used for testing selectivity. Our BLI
94 results revealed that LFS-1107 binds strongly with CRM1 (K_d ~1.25E-11 M, **Figure**
95 **1D**) as compared to KPT-330 (K_d ~5.29E-09 M), a known CRM1 inhibitor approved
96 by FDA. In contrast, LFS-1107 doesn't bind with either two control probes I κ B α or
97 Keap1 in BLI assay experiments (**Figure 1 - Figure supplement 2**). Furthermore, the
98 results revealed that LFS-1107 is a reversible CRM1 inhibitor with clear dissociation
99 process which may implicate a low toxicity profile. This is consistent with the results
100 of our previous studies that sulforaphene synthetic analogues are reversible CRM1
101 inhibitors. Moreover, we used GSH/GSSG detection assay kit to show that the
102 GSH:GSSG ratio keeps constant upon the treatment of LFS-1107 and therefore we
103 ruled out the possibility that LFS-1107 is a general redox modulator (**Figure 2B**).
104 Collectively, our results revealed that CRM1 is a major cellular target of LFS-1107
105 and responsible for its cellular activities.

106 Next, we assessed LFS-1107 for its activity and specificity in human ENKTL cell
107 lines. Our data show that LFS-1107 achieves IC₅₀ value of 26 nM in SNK6 cell line

108 and 36 nM in HANK-1 cell line (**Figure 2A**). To further study the selectivity of
109 LFS-1107 towards ENKTL cells, we evaluated the toxicity of LFS-1107 in normal
110 PBMCs isolated from peripheral blood of healthy donors (**Figure 2C**). Interestingly,
111 LFS-1107 barely showed any toxicity at concentration of 4 μ M and the toxicity
112 towards normal human PBMC is minimal even at a high dose of 9 μ M. This implicates
113 that LFS-1107 can selectively eliminate ENKTL cells while sparing normal human
114 PBMC with good safety profile. Moreover, drug-induced toxicity towards platelets
115 (also called as thrombocytopenia) is a common side effect in clinical trials for cancer
116 therapeutics. We assessed the toxicity effects of LFS-1107 towards platelets and we
117 found that LFS-1107 barely exhibits any effects on human platelets even at very high
118 concentrations of 500 μ M (**Figure 2D**).

119 Subsequently, we want to investigate whether LFS-1107 could inhibit
120 CRM1-mediated nuclear export of I κ B α and reduce constitutive NF- κ B activity in
121 ENKTL cells. First, we demonstrated that LFS-1107 could suppress the expression of
122 CRM1 in a dose-dependent manner (**Figure 2E**). We revealed that the cellular
123 activities by LFS-1107 was significantly abrogated when CRM1 was knocked down
124 by siCRM1, implicating that CRM1 is a main target responsible for the cellular
125 activities of LFS-1107 (**Figure 2F**). Our immunofluorescent results by confocal
126 microscopy revealed that LFS-1107 can lead to nuclear accumulation of I κ B α after 3h
127 treatment in a dose dependent manner (**Figure 2G-H**). Next, we employed Western
128 blot to further confirm nuclear localization of I κ B α upon the treatment of LFS-1107

129 (Figure 2J). The results ascertained that I κ B α was trapped in the nucleus as the
130 protein level of nuclear I κ B α was significantly upregulated after LFS-1107 treatment
131 (Figure 2J). Moreover, it is well known that the constitutive activity of NF- κ B/p65
132 was accompanied by the increased production of a few proinflammatory cytokines.
133 Consequently, we found the expression of proinflammatory and proliferative proteins
134 p65, COX-2, c-Myc and Survivin were downregulated in a dose dependent manner
135 after treatment with LFS-1107 (Figure 2I). Furthermore, when SNK6 cells were
136 treated with LFS-1107, we observed a significant reduction of the proinflammatory
137 cytokines including TNF- α , IFN- γ , NF- κ B/p65, IL-1 α , IL-1 β , IL-6, IL-8, and MCP-1
138 as measured by ELISA assay (Figure 2K). These results suggested that the inhibition
139 of CRM1 by LFS-1107 could lead to the downregulation of NF- κ B transcriptional
140 activity, proinflammatory cytokines and oncogenic signatures of ENKTL.

141 Lastly, we established a xenograft mouse model to test our findings by injecting
142 SNK6 cells intraperitoneally into NCG mice. We found that LFS-1107 treatment
143 (10mg/kg/week) was able to extend mouse survival (Figure 3A-B) and eliminate
144 tumor cells considerably as evidenced by flow cytometric analysis (Figure 3C-D-E),
145 demonstrating the efficacy of LFS-1107 in controlling ENKTL. Moreover,
146 remarkably, mice injected with LFS-1107 reduced splenomegaly and restored spleen
147 weight and spleen volume as compared with the normal group (Figure 3F-G) with a
148 better overall survival rate. Noteworthy, splenomegaly is a conventional symptom for
149 extranodal natural NK/T cell lymphoma patients¹⁰. Hence, our results implicate that

150 LFS-1107 can ameliorate the symptoms of ENKTL and might be a potentially
151 promising compound for ENKTL treatment.

152 **Conclusions**

153 In summary, we report the discovery and biological evaluation of a synthetic
154 sulforaphene analogue as potent CRM1 inhibitor towards the treatment of ENKTL.
155 We demonstrated that treatment of LFS-1107 holds great promise as an effective
156 remedy for ENKTL, acting through the nuclear retention of IkB_α and subsequent
157 attenuation of NF- κ B signaling. Our study may represent a novel route for eliminating
158 ENKTL tumor cells with a distinct mode of actions.

159

160 **Acknowledgments**

161 Y. Yang's laboratory was supported by the National Natural Science Foundation of
162 China (Grant: 81874301), the Fundamental Research Funds for Central University
163 (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in
164 Command' in Liaoning Province (Personal Target Discovery for Metabolic Diseases).

165 **Conflict of interest statement**

166 **None declared.**

167

168 **Materials and methods**

169 **The purity of the compound**

170 Compound LFS-1107 was ascertained by ^1H NMR, LC-MS and HPLC analysis ($\geq 95\%$
171 purity). The organic synthesis was conducted following standard procedures. All the
172 chemicals and solvents were purchased from Sigma.

173 **Cell lines, cell cultures and antibodies**

174 Human lymphoma cell lines SNK6 and HANK-1 were purchased from ATCC. SNK6
175 and HANK-1 cell lines were maintained in RPMI 1640 medium supplemented with
176 10% FBS and 293T cell line in DMEM medium with 10% FBS. RPMI 1640 medium,
177 DMEM medium and FBS (fetal bovine serum) were purchased from Hyclone
178 (Thermo Scientific). Antibodies against Survivin (ab76424) was obtained from
179 Abcam. Other antibodies were purchased from Cell Signaling Technology:
180 anti- β -actin (#3700), anti-Cox2 (#4842), anti-p65 (#8424), anti-C-Myc (#13987) and
181 anti-I κ B α (#4814). Alexa 488-conjugated goat anti-rabbit antibody and Alexa
182 594-conjugated goat anti-mouse antibody were obtained from Invitrogen Life
183 Technology (Invitrogen, CA, USA).

184 **Deep reinforcement learning model**

185 In the present study, we adopted the deep reinforcement learning based molecular *de*
186 *novo* design method developed by Olivecrona etc. from AstraZeneca. In brief, the
187 deep reinforcement learning model consists of two main modules, the Design module
188 (D) and the Evaluate module (E). The Design module (D) is used to produce novel

189 chemical structures whereas the Evaluate module (E) is used to assess the feasibility
190 and properties of the novel structures by assigning a numerical award or penalty to
191 each new structure. The model employs the simple representation of chemical
192 structures by the simplified molecular-input line-entry system (SMILES) strings in
193 both the Design module (D) and the Evaluate module (E). The Design module was
194 first pre-trained with about ~2 million structures from the PubChem database to learn
195 basic rules of organic chemistry that define SMILES strings within the context of
196 Recurrent neural network (RNN). To check the validity of the approach, we used the
197 module to generate about 0.2 million compounds which were assessed by the
198 structure checker ChemAxon and 97% of the generated structures were chemical
199 sensible structures. Finally, the deep reinforcement learning based molecular design
200 model was able to design ~3,000 chemical structures from which we chose the top 50
201 candidate moieties for further consideration. In this work, we want to find novel
202 fragments that can be installed with sulforaphene parent structure as CRM1 inhibitors.
203 Indeed, our model prioritizes those structures with modest similarity to the molecules
204 in the positive dataset rather than very close analogues. We used the values of
205 molecule descriptors and root mean square deviation (RMSD) calculated as the
206 reward function in the reinforcement learning stage in the model. We obtained an
207 initial output of 3,000 structures, which were then automatically filtered to remove
208 molecules bearing structure alerts. The model prioritizes the synthetic feasibility of a
209 small-molecule compound, and the distinctiveness of the compound from other

210 molecules in the literatures and in the patent space. The top 50 candidate moieties
211 generated from the previous step were used as seed structures to search for
212 commercial-available aromatic fragments (similarity ~ 97%). Lastly, we purchased 10
213 commercial-available aromatic fragments which were experimentally tested via
214 biolayer interferometry assay (BLI).

215 **Bio-layer interferometry (BLI) assay**

216 The Octet® K2 system (Molecular Device, ForteBIO, USA) is suitable for the
217 characterization of protein-protein or protein-ligand binding kinetics and binding
218 affinity. The assay consists of the following steps: 1. Protein and BLI sensor
219 preparation. The recombinant protein CRM1 (50 µg/mL) was biotinylated in the
220 presence of biotin at room temperature (RT) for 1 h. Then, the excess biotin was
221 removed through spin desalting columns. The recombinant CRM1 protein was then
222 immobilized on super streptavidin sensors (ForteBIO, USA). The sensors were then
223 blocked, washed, and moved into wells containing various concentrations of the test
224 compounds in kinetic buffer (ForteBIO); 2. BLI experimental process. Automated
225 detection was performed using an Octet® K2 (Molecular Devices ForteBIO, USA).
226 Buffer was added to a 96-well plate, and the plate was transferred to the K2
227 instrument for analysis by running serially at 25°C with a shaking speed of 1000 rpm.
228 Baseline readings were obtained in buffer (120 s), associations in wells containing
229 compound (180 s), and dissociation in buffer (180 s). The signals from the following
230 buffer were detected over time. First, each of these concentrations was applied to four

231 sets of experiments: (a) CRM1-immobilized sensor in drug-containing kinetics buffer;
232 (b) Blanked-sensor in drug-containing kinetics buffer; (c) CRM1-immobilized sensor
233 in PBS-kinetics buffer; and (d) Blanked-sensor in PBS-kinetics buffer. The final value
234 was calculated using the equation: (a-c)-(b-d). This method removes interference
235 from the sensor and drug-containing buffers. The binding signals were identified and
236 the results were analyzed using the Octet[®] HT V10.0 software.

237 **Cell viability assay**

238 Cell viability assays were performed as previously described. Human lymphoma cell
239 lines SNK6 and HANK-1 were seeded into 96-well plates and treated with LFS-1107
240 in concentrations of 0-800 nM for 72 h. Cell viability was evaluated using the
241 WST-8-based Cell Counting kit-8 (Beyotime), which was added to the wells and
242 incubated for 3 h. The absorbance of wells at 450 nm (reference wavelength 610 nm)
243 was measured with a microplate reader (Infinite F50, Tecan).

244 **Cytotoxicity assay**

245 The Research Ethics Committee (REC) of Dalian University of Technology approved
246 conduct of *ex vivo* assays with donated human cells. Normal human peripheral blood
247 mononuclear cells (PBMCs) were obtained from blood samples collected from
248 healthy volunteers. Approval was obtained from The Second Affiliated Hospital of
249 Dalian Medical University institutional review board for these studies. Peripheral
250 blood mononuclear cells were isolated by density gradient centrifugation over

251 Histopaque-1077 (Sigma Diagnostics, St. Louis, MO, USA) at 400g for 30 min.
252 Isolated mononuclear cells were washed and assayed for total number and viability
253 using Trypan blue exclusion. PBMCs were suspended at 8×10^5 /mL and incubated in
254 RPMI 1640 medium containing 10% FBS in 24-well plates. Platelets suspended in
255 plasma were collected by apheresis from volunteer donors after obtaining written
256 consent (The Second Affiliated Hospital of Dalian Medical University). After dilution
257 1:10 in Tyrode's buffer, platelets were incubated for 24h at 37°C with graduated
258 concentrations of test compounds (LFS-1107 or KPT-330) dissolved in DMSO. The
259 EC₅₀ values was calculated using GraphPad Prism software.

260 **Western blot**

261 The cytoplasmic and nucleic protein were extracted separately using the protein
262 extraction kit (Boster) according to the manufacture's introduction. Protein (30-45 μ g)
263 was fractionated on a 10%-15% acrylamide denaturing gel and transferred onto a
264 PVDF membrane. The membrane was blocked with 5% nonfat dry milk in TBST for
265 1 h at room temperature and washed in TBST three times, five minutes each time. The
266 membrane was then incubated with primary antibodies at 1:500 to 1:1000 dilutions
267 overnight at 4 °C. After washing with TBST for 15 min, the membrane was incubated
268 with horseradish peroxidase (HRP) -conjugated secondary antibody at a 1:5000
269 dilutions for 1 h at room temperature. After further washing in TBST, the proteins
270 were detected by enhanced chemiluminescence on X-ray film with ECL Western
271 blotting detection kit (Thermo Fisher Scientific).

272 **Nuclear export assays and confocal fluorescence microscopy**

273 293T cells were seeded onto glass bottom cell culture dish at a density of 3,000-5,000
274 cells in 1000 μ L complete media. After incubation at 37 °C, 5% CO₂ for 24 h, cells
275 were treated with CRM1 inhibitors for 3h. Small molecule compounds (KPT-330 and
276 LFS-1107) were serially diluted 1:2 starting from 1 μ M in RPMI 1640 medium
277 supplemented with 10% FBS. Following the indicated treatments, cells were fixed for
278 20 minutes with 4% paraformaldehyde in PBS. Next, cell membranes were
279 permeabilized by 0.3% Triton X-100 in PBS for 20 minutes. After blocking with 5%
280 bovine serum albumin (BSA) in PBS for 1 h at 37°C, cells were treated with I κ B α
281 antibodies in blocking buffer for 24h at 4°C. Anti-mouse Alexa 594 were used as
282 secondary antibodies. Cell nuclei were stained with DAPI for 20 minutes. After
283 washing, photomicrographic images were recorded with confocal laser scanning
284 microscope Fluoview FV10i. For cell counts, at least 200 cells exhibiting nuclear,
285 nuclear and cytoplasmic, or cytoplasmic staining were counted from three separate
286 images. Percentages of N(Nuclear), N/C(Nuclear/Cytoplasmic) and C(Cytoplasmic)
287 cells were calculated and standard deviations were determined.

288 **ELISA Assay**

289 Cell culture media were collected and centrifuged at for 20 min at 1000g at 4°C to
290 remove cell debris. The concentrations of serum cytokines were assayed by the
291 ELISA kit (Elabscience Biotechnology Co., Ltd) according to the manufacturer's
292 instructions. Three experimental replicates were performed for each sample.

293 **RNA Interference experiment**

294 The siRNA targets were as follows: CRM1-siRNA-1
295 (5'-CCAGCAAAGAAUGGCUCAATT-3'),
296 CRM1-siRNA-2(5'-GGAAGAUUCUUCAGGAATT-3'),
297 CRM1-siRNA-3(5'-CCAGGAGACAGCUAUUUUTT-3'), and the control target
298 was 5'-UUCUCCGAACGUGUCACGUTT-3', all of which were obtained from
299 Future Biotherapeutics. 293T cells were seeded in 96-well plates at a density of 5,000
300 cells per cell in DMEM medium with 10%FBS the day before transfection. 293T cells
301 were transfected with control siRNA or CRM1-siRNA according to the
302 manufacturer's instructions. The transfected cells were then collected for experiments
303 48h after transfection. .

304 **GSH/GSSG ratio detection**

305 SNK6 cells were seeded onto four plates at a density of 100,000 cells/well in 3 mL
306 complete media.

307 After incubation at 37 °C, 5% CO₂ for 24 h, cells were treated with LFS-1107 for
308 48h. Compound LFS-1107 was serially diluted 1:2 starting from 10mM in RPMI
309 1640 medium supplemented with 10% FBS. Following the indicated treatments, cells
310 were tested by GSH and GSSG Assay Kit (Beyotime) ,which can detect the content of
311 GSH and GSSG in the sample separately. We then calculated the GSH:GSSG ratio of
312 each sample. The results were displayed by GraphPad Prism.

313 ***In vivo* efficacy studies**

314 NOD/SCID mice were purchased from the Nanjing Biomedical Research Institute of
315 Nanjing University (NBRI). The mice were randomly divided into three groups (n =
316 6–13 per group, day 0). In brief, SNK6 cells were intravenous injected into SCID
317 mice and the growth of ENKTL cells was monitored every week for two consecutive
318 weeks until the intrasplenic accumulation and proliferation of ENKTL cells.
319 Subsequently, LFS-1107 was intraperitoneal injected to this ENKTL disease model
320 per week (dose: 10mg/kg). In some experiments, SNK6 cells were pretreated with
321 LFS-1107 (1μmol/L) or DMSO for 48hrs. Cells were then harvested and resuspended
322 and the cell number was counted using a MuseTM cell analyzer. Animal studies in the
323 present work have been conducted in accordance with the ethical standards and the
324 Declaration of Helsinki. The investigation has been approved by the animal care and
325 use committee of our institution.

326 **Flow cytometry analysis.**

327 Monocytes collected from mouse tissue were stained with FITC anti-human CD45
328 antibody and PE anti-mouse CD45 antibody. Isotype control antibody was used as a
329 negative control. The Cytomics FC500 flow cytometry (Beckman, USA) was used for
330 analysis.

331 **Statistical analysis**

332 All continuous variables were compared using one-way ANOVA, followed by
333 Dunnett's test or Tukey's test for multiple comparisons whereas error bars in all
334 figures represent the SEM. * P < 0.05, **P < 0.01, ***P < 0.001. Survival curves
335 were compared using the log-rank test with GraphPad software.

336 **Declaration of Ethnics**

337 The protocol for the animal experiments was approved by the Institutional Review
338 Board (IRB) of Dalian University of Technology (approval number: 2018-023). All
339 the animal experiments were strictly followed ethnical rules under the guidance of
340 Declaration of Helsinki.

341

342

343

344

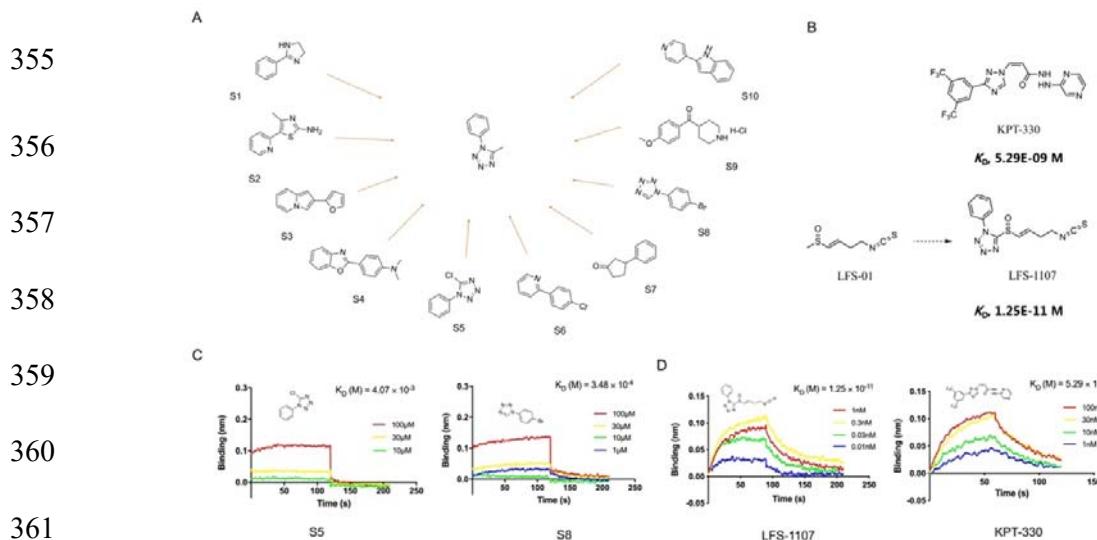
345

346

347

348

349


350

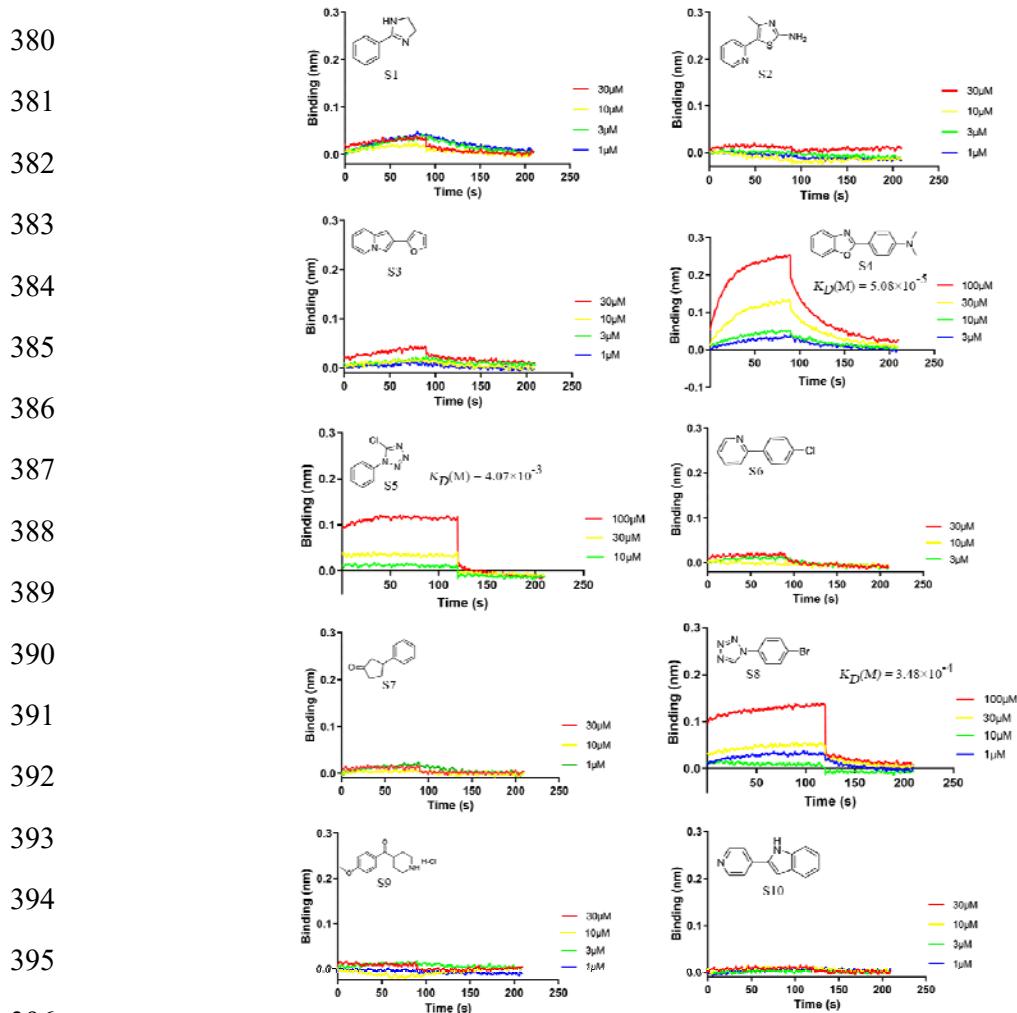
351

352

353 **Figures**

354

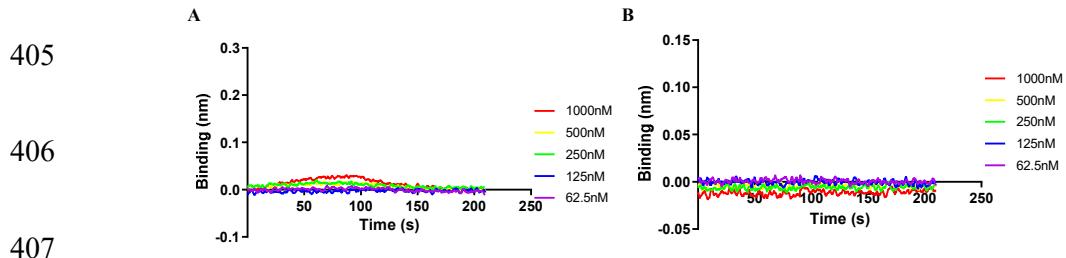
Figure 1. The discovery of sulforaphene synthetic analogue LFS-1107. **A.** The identification of ten commercial-accessible aromatic fragments aided by deep reinforcement learning model; **B.** Synthesis of LFS-1107 via the installation of aromatic tetrazole moiety selected from the previous step to the sulforaphene parent structure; **C.** Assessment of protein-ligand binding kinetics and binding affinity of tetrazole aromatic fragments via Bio-layer interferometry (BLI) assay; **D.** Binding affinity of LFS-1107 and KPT-330 determined via BLI assay: LFS-1107, $K_D \sim 1.25 \times 10^{-11}$ M; KPT-330: $K_D \sim 5.29 \times 10^{-9}$ M.


Figure 1-source data 1 The chemical structure of ten commercial-accessible aromatic fragments.

374 **Figure 1-source data 2** The synthesis of compound LFS-1107.

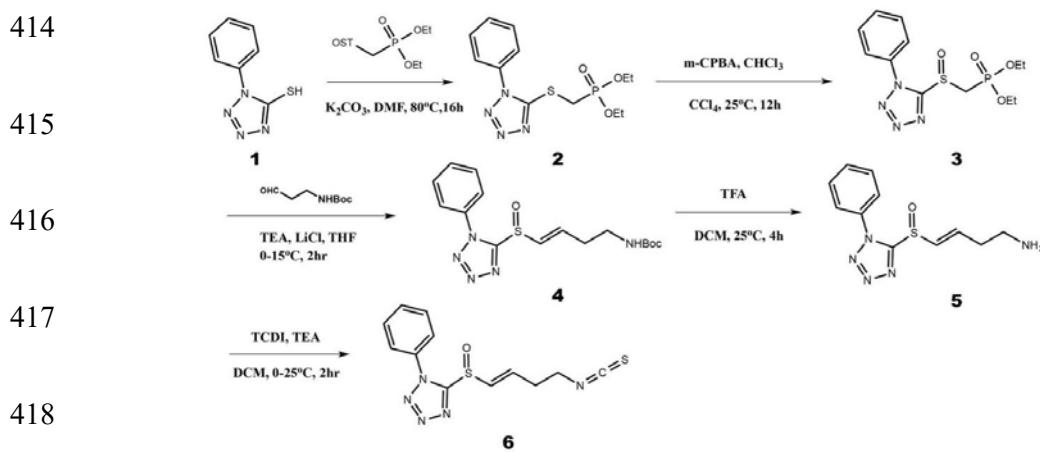
375 **Figure 1-source data 3** The data of affinities and binding kinetics of CRM1 to S5
376 and S8.

377 **Figure 1-source data 4** The data of affinities and binding kinetics of CRM1 to
378 LFS-1107 and KPT-330.


379

401 **Figure 1 - Figure supplement 1 - source data** The data of affinities and binding
402 kinetics of CRM1 to ten commercial-accessible aromatic fragments.

403


404

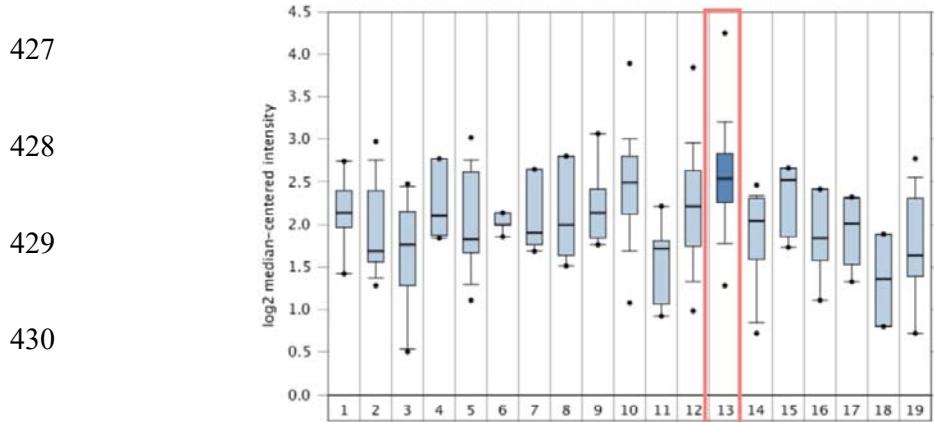
408 **Figure 1 - Figure supplement 2.** The BLI results of two control proteins Keap1 (A)
409 and I κ B α (B). No binding affinities were detected for the two control proteins during
410 BIL assay with compound LFS-1107.

411 **Figure 1 - Figure supplement 2 - source data** The data of affinities and binding
412 kinetics of Keap1 and I κ B α to LFS-1107.

413

420 **Figure 1 - Figure supplement 3.** Organic synthesis scheme of compound LFS-1107.

421 **Figure 1 - Figure supplement 3 - source data** Organic synthesis scheme of
422 compound LFS-1107.


423

424

425

426

Over-expression Gene Rank: 1832 (in top 10%)
Reporter: 235927_at
P-value: 5.69E-6
t-Test: 4.888
Fold Change: 1.409

438 **Figure 1 - Figure supplement 4.** Expression of CRM1 mRNA in different tumor
439 types. It shows that CRM1 was significantly elevated in patients with Lymphoma.

440 **Figure 1 - Figure supplement 4 -source data** The expression of CRM1 mRNA in
441 different tumor types.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458 **Figure 2. LFS-1107 strongly suppresses the growth of ENKTL cells acting**
459 **through the nuclear retention of IκB α and subsequent attenuation of NF-κB**
460 **signaling. A. Suppression of different human NK/T cell lymphoma cells; B.**
461 **GSH/GSSG ratio detection upon the treatment of LFS-1107; C. The effect of**
462 **LFS-1107 on normal PBMC cell lines; D. The viability of platelets treated with**
463 **LFS-1107; E. Western blot result of the CRM1 with β-actin as loading control; F.**

464 The cellular activities of LFS-1107 on siCRM1-293T and the wild-type 293T cell line
465 with different concentrations of treatment for 48h; **G.** Nuclear retention of I κ B α by
466 confocal microscopy; **H.** Quantification of the nuclear IKB- α ratio by fluorescence
467 intensity per cell; **I.** Representative western blots of p65, Cox-2, c-Myc and Survivin;
468 **J.** Western blots showing the protein level of I κ B α in nucleus and cytoplasm; **K.**
469 ELISA detection of cytokine production after treated with LFS-1107.

470 **Figure 2-source data 1** Inhibition of the cell growth of SNK6 and Hank-1 cells by
471 LFS-1107.

472 **Figure 2-source data 2** GSH/GSSG ratio detection upon the treatment of LFS-1107

473 **Figure 2-source data 3** Suppression of the cell growth of PBMC cells by LFS-1107.

474 **Figure 2-source data 4** Suppression of the cell growth of platelets by LFS-1107.

475 **Figure 2-source data 5** Immunoblot of CRM1 expression after LFS-1107 treatment.

476 **Figure 2-source data 6** The cellular activities of LFS-1107 on siCRM1-293T and the
477 wild-type 293T cell line.

478 **Figure 2-source data 7** Nuclear accumulation of I κ B α induced by treatment with
479 LFS-1107 for 3 hours.

480 **Figure 2-source data 8** Quantification of the nuclear I κ B α ratio by fluorescence
481 intensity per cell.

482 **Figure 2-source data 9** Immunoblot of expression p65, Cox-2, c-Myc and Survivin
483 after LFS-1107 treatment.

484 **Figure 2-source data 10** Immunoblot of I κ B α in nucleus and cytoplasm expression
485 after LFS-1107.

486 **Figure 2-source data 11** ELISA detection of TNF- α , IFN-1 γ , p65, IL-1 α , IL-1 β , IL-6,
487 IL-8 and MCP-1 after treated with LFS-1107.

488

489

490

491

492

493

494

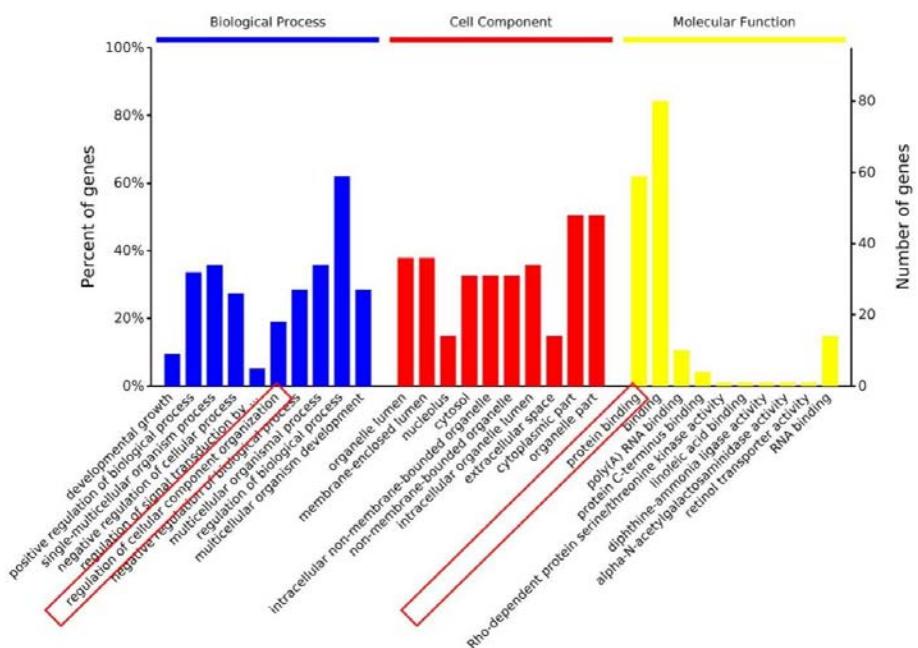
495

496

497

498

499


500

501

502 **Figure 2 - Figure supplement 1.** Proteomics analysis of SNK6 cells (control vs.
503 LFS-1107 treatment) indicates that CRM1 was downregulated upon LFS-1107
504 treatment (FC~1.3). Moreover, the Gene Ontology (GO) analysis suggests that
505 Biological Process (regulation of cellular component organization) and Molecular
506 Function (protein binding) related to CRM1 were modulated upon the treatment of
507 LFS-1107.

508

509 **Figure 2 – Figure supplement 1 - source data** Proteomics analysis of SNK6 cells.

510

511

512

513

514

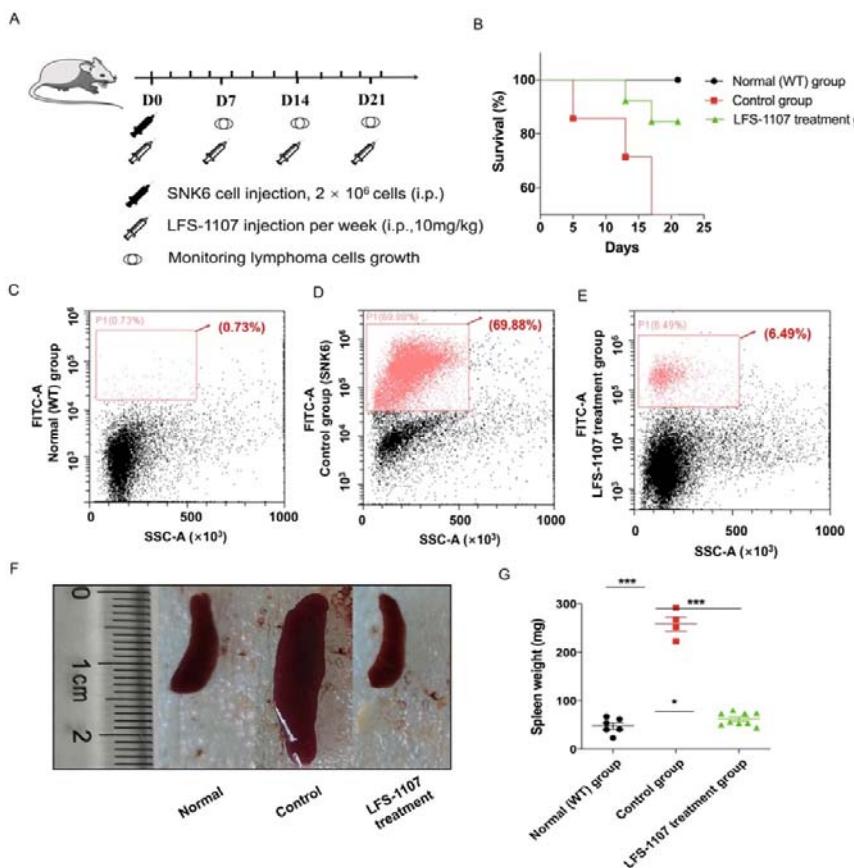
515

516

517

518

519


520

521

522

523

524

525 **Figure 3. LFS-1107 can ameliorate the symptoms of ENKTL in xenograft mouse**
526 **model. A.** Scheme of the xenograft mouse model. SNK6 cells were injected i.v. in
527 female NOD SCID mice, and mice were injected per week with LFS-1107; **B.**
528 Survival rate of different animal groups; **C-E.** Flow cytometry of human ENKTL cell
529 lines in mouse bone marrow with the use of FITC anti-human CD45 antibody (P1, red)

530 or no primary antibody control (black); F-G. The symptoms of splenomegaly in each
531 group of euthanized mice. From left to right: normal group, control ENKTL xenograft
532 model group(splenomegaly), LFS-1107 treatment group (10 mg/kg).

533

534

535 **Figure 3 - source data 1** The process for the in the xenograft mouse model study.

536 **Figure 3 - source data 2** Survival rate of normal group, control group and LFS-1107
537 treatment group.

538 **Figure 3 - source data 3** Flow cytometry of human ENKTL cell lines in mouse bone
539 marrow.

540 **Figure 3 - source data 4** The symptoms of splenomegaly in normal group, control
541 group and LFS-1107 treatment group mice

542 **Figure 3 - source data 5** The spleen weight of normal group, control group and
543 LFS-1107 treatment group mice.

544

545

546

547

548

549

550

551

552

553

554

555

556 **References**

557

- 558 1. Yamaguchi M, Suzuki R, Oguchi M. Advances in the treatment of extranodal
559 NK/T-cell lymphoma, nasal type. *Blood* **131**, 2528-2540 (2018).
- 560
- 561 2. Suzuki R, *et al.* Prognostic factors for mature natural killer (NK) cell
562 neoplasms: aggressive NK cell leukemia and extranodal NK cell lymphoma,
563 nasal type. *Ann Oncol* **21**, 1032-1040 (2010).
- 564
- 565 3. Wen H, *et al.* Recurrent ECSIT mutation encoding V140A triggers
566 hyperinflammation and promotes hemophagocytic syndrome in extranodal
567 NK/T cell lymphoma. *Nat Med* **24**, 154-164 (2018).
- 568
- 569 4. Jiang L, *et al.* Exome sequencing identifies somatic mutations of DDX3X in
570 natural killer/T-cell lymphoma. *Nat Genet* **47**, 1061-1066 (2015).
- 571
- 572 5. Dong X, *et al.* Structural basis for leucine-rich nuclear export signal
573 recognition by CRM1. *Nature* **458**, 1136-1141 (2009).
- 574
- 575 6. Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug
576 resistance in cancer. *Biochem Pharmacol* **83**, 1021-1032 (2012).
- 577
- 578 7. Wang H, *et al.* Traditional herbal medicine-derived sulforaphene promotes
579 mitophagic cell death in lymphoma cells through CRM1-mediated
580 p62/SQSTM1 accumulation and AMPK activation. *Chem Biol Interact* **281**,
581 11-23 (2018).
- 582

583 8. Tian X, *et al.* Small-Molecule Antagonist Targeting Exportin-1 via Rational
584 Structure-Based Discovery. *J Med Chem* **63**, 3881-3895 (2020).

585

586 9. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design
587 through deep reinforcement learning. *J Cheminform* **9**, 48 (2017).

588

589 10. Tse E, Kwong YL. The diagnosis and management of NK/T-cell lymphomas.
590 *J Hematol Oncol* **10**, 85 (2017).

591

592

Supporting Information (4 pages)

Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma

He Liu^{1, #}, Meishuo Liu^{1, #}, Xibao Tian^{1, #}, Haina Wang^{1, #}, Juijiao Gao^{1, #}, Hanrui Li¹, Zhehuan Zhao², Yu Liu², Caigang Liu^{3, *}, Xuan Chen^{1, 2}, Yongliang Yang^{1, *}

¹*School of Bioengineering, Dalian University of Technology, Dalian, 116023, China;*

²*School of Software, Dalian University of Technology, Dalian, 116023, China;*

³*Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China*

Key Words:

*To whom correspondence may be addressed:

Yongliang Yang, E-mail: everbright99@foxmail.com; (lead contact)

Caigang Liu, E-mail: angel-s205@163.com

List of Contents

1. Deep reinforcement learning model for molecular de-novo design
2. Organic synthesis
3. References

1. Deep reinforcement learning model for molecular de-novo design

In the present work, we used the deep reinforcement learning based molecular de novo design method developed by Olivecrona etc. from AstraZeneca ^[1]. Briefly, we want to enable the Design module to generate aromatic fragments which can be installed next to the sulfoxide moiety in the parent structure of sulforaphene, yielding compounds with excellent inhibitory activities towards CRM1. In this scenario, the Design module was improved using reinforcement architecture as follows, D_{Init} denotes the initialized Design module. D_{Agent} denote the improved Design module that can generate desired SMILES strings.

Given a generated SMILES string $S = a^1, a^2, \dots, a^T$, the product of the probabilities for D_{Init} and D_{Agent} are calculated by $P(S)_{Init} = \prod_{t=1}^T D_{Init}(a^t | a^{t-1}, a^{t-2}, \dots, a^1)$ and $P(S)_{Agent} = \prod_{t=1}^T D_{Agent}(a^t | a^{t-1}, a^{t-2}, \dots, a^1)$. Herein, the reward function can be defined using equation (1) as below, where $E(S)$ is the Evaluate module that evaluate how well the generated SMILES strings meet the required properties (structural similarity with known CRM1 inhibitors measured by Tanimoto coefficient) and α is the scalar coefficient. The Evaluate module will return high scores when the generated SMILES strings obtain desired properties, and vice versa.

$$L_\theta(S) = [(logP(S)_{Init} + \alpha E(S)) - logP(S)_{Agent}]^2 \quad (1)$$

Finally, the deep reinforcement learning based molecular design model was able to design ~3,000 chemical structures from which we chose the top 50 candidate moieties for further consideration.

2. Organic synthesis

The NMR spectra of small molecule compounds were recorded on Bruker Avance 400 MHz for ^1H NMR and 100 MHz for ^{13}C NMR. The LCMS were taken on a quadrupole Mass Spectrometer on Shimadzu LCMS 2010 (Column: sepax ODS 50×2.0 mm, 5um) or Agilent 1200 HPLC, 1956 MSD (Column: Shim-pack XR-ODS 30×3.0 , 2.2um) operating in ES (+) ionization mode. Chromatographic purifications were by flash chromatography using 100~200 mesh silica gel. Anhydrous solvents were pre-treated with 3A MS column before used. All commercially available reagents were used as received unless otherwise stated.

3. References

1. Olivecrona M, Blaschke T, Engkvist O *et al.* Molecular de-novo design through deep reinforcement learning. *J Cheminform* **2017**; 9(1): 48.
2. Abeykoon JP, *et al.* Salicylates enhance CRM1 inhibitor antitumor activity by induction of S-phase arrest and impairment of DNA-damage repair. *Blood* **2021**; 137: 513-523.
3. Kim SJ, *et al.* Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. *Blood* **2020**; 136: 2754-2763.