

1 **Discovering Haematoma-Stimulated Circuits for Secondary Brain Injury after**

2 **Intraventricular Haemorrhage by Spatial Transcriptome Analysis**

3 Le Zhang, PhD^{1, 2, *}, Jiayidaer Badai, MS^{1, *}, Guan Wang, PhD^{1, 2}, Xufang Ru, MS^{3, 4},

4 Wenkai Song, MS¹, Yujie You, MS¹, Jiaojiao He, BS¹, Suna Huang, MS⁴, Hua Feng,

5 MD, PhD⁴, Runsheng Chen, PhD^{1, 5, #}, Yi Zhao, PhD^{1, 6, #}, Yujie Chen, MD, PhD^{3, 4, #}

6 1. College of Computer Science, Sichuan University, Chengdu, China

7 2. Innovation Center of Nursing Research, West China Hospital, Sichuan University,

8 Chengdu, China

9 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian

10 Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

11 4. Department of Neurosurgery, Southwest Hospital, Army Medical University,

12 Chongqing, China.

13 5. Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy

14 of Sciences, Beijing, China

15 6. Research Center for Ubiquitous Computing Systems, Institute of Computing

16 Technology, Chinese Academy of Sciences, Beijing, China

17 *Both authors contributed equally to this work.

18 #Corresponding Authors:

19 **Runsheng Chen, PhD**

20 E-mail: crs@ibp.ac.cn

21 ORCID: [0000-0001-6049-8347](https://orcid.org/0000-0001-6049-8347)

1 Tel: (86) 010-64888543; Fax: (86)010-64871293

2 Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of

3 Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District,

4 Beijing, 100101, China

5 **Yi Zhao, PhD**

6 E-mail: biozy@ict.ac.cn

7 ORCID: [0000-0001-6046-8420](https://orcid.org/0000-0001-6046-8420)

8 Research Center for Ubiquitous Computing Systems, Key Laboratory of Intelligent

9 Information Processing, Institute of Computing Technology, Chinese Academy of

10 Sciences, 6 Kexueyuan South Road, Haidian District, 100190, Beijing, P.R.China

11 **Yujie Chen, MD, PhD**

12 E-mail: chenyj@tmmu.edu.cn; yujiechen6886@foxmail.com

13 ORCID: [0000-0002-9905-9138](https://orcid.org/0000-0002-9905-9138)

14 Tel: (86)023-68754925, Fax: (86)023-68765922

15 Department of Neurosurgery and State Key Laboratory of Trauma, Burn and

16 Combined Injury, Southwest Hospital, Third Military Medical University (Army

17 Medical University). 29 Gaotanyan Street, Shapingba District, Chongqing, 400038,

18 China.

19

20

1 **Abstract**

2 Central nervous system (CNS) diseases, such as neurodegenerative disorders and
3 brain diseases caused by acute injuries, are important yet challenging to study due to
4 disease lesions' locations and other complexities. Utilizing the powerful spatial
5 transcriptome analysis together with novel algorithms we developed for the study, we
6 report here for the first time a 3D trajectory map of gene expression changes in the
7 brain following acute neural injury using a mouse model of intraventricular
8 haemorrhage (IVH). IVH is a common and representative complication after various
9 acute brain injuries with severe mortality and mobility implications. Our data
10 identified three main 3D global pseudospace-time trajectory bundles which represent
11 the main neural circuits from the lateral ventricle to the hippocampus and primary
12 cortex induced by experimental intraventricular haematoma stimulation. Further
13 analysis indicated a rapid response in the primary cortex, as well as a direct and
14 integrated effect on the hippocampus after IVH. These results are informative in
15 understanding the pathophysiological changes, including the spatial and temporal
16 patterns of gene expression changes, in IVH patients after acute brain injuries and
17 strategizing more effective clinical management regimens. The bioinformatics
18 strategies will also be useful for the study of other CNS diseases .

19 **Keywords:** Intraventricular haemorrhage; Neural circuits; Spatial transcriptome
20 sequencing; Bioinformatics analysis

21

1 **Main**

2 **1. Introduction**

3 Intraventricular haemorrhage (IVH) refers to bleeding occurring inside the
4 ventricles of the brain or haematoma breaking from the periventricular brain
5 parenchyma, which is usually secondary to traumatic brain injury, subarachnoid
6 haemorrhage, or spontaneous intracerebral haemorrhage. IVH is one of the common
7 complications after various acute brain injuries¹⁻³, leading to severe mortality and
8 mobility, with great burdens on economics and society. To date, the gold standard for
9 the treatment of IVH is haematoma removal and hydrocephalus prevention⁴ due to the
10 pathophysiological mechanisms of relieving mass effects and elevated intracranial
11 pressure towards the lateral walls of ventricles³, as well as obstructions and
12 inflammatory responses from blood metabolic stimulations⁵. However, a recently
13 completed large-scale randomized clinical trial (CLEAR III, Trial No. NCT00784134)
14 employing alteplase to effectively clear intraventricular haematoma did not
15 demonstrate adequate neurobehavioral benefits for IVH patients⁶. With the
16 development of neurosurgery and neurocritical care, the direct mortality from IVH
17 has gradually decreased, leaving us to understand and alleviate the neurological
18 dysfunction after IVH for better outcomes of these patients. Nevertheless, the
19 pathophysiology of how these haematoma stimulations in ventricles cause
20 neurological dysfunction remains unknown.

21 For this reason, this study investigated the pathophysiological mechanism and
22 related intervention strategies for secondary neurological dysfunction after IVH by

1 developing a bioinformatics analysis workflow based on spatial transcriptome
2 sequencing^{7,8}. First, by constructing 3D pseudospace-time trajectories⁹, we identified
3 the cell subtypes generated after IVH and their potential cell types. Then, we explored
4 and validated the important pathophysiological mechanisms for these cell subtypes by
5 carrying out cell–cell communication strength⁹ and pathway analyses¹⁰⁻¹⁴.

6 In summary, our study not only identified the brain regions affected by secondary
7 neurological dysfunction after IVH¹⁵⁻¹⁷ from a 3D perspective but it also has the
8 potential for us to construct corresponding intervention strategies for acute traumatic
9 brain trauma at the molecular and cellular levels in the distant future.

10

11 **2. Results**

12 **2.1 Developing a spatial transcriptome sequencing-based bioinformatics analysis**

13 **workflow to investigate IVH**

14 In order to comprehensively dissect the complex gene expression changes
15 following acute brain injury, using the powerful spatial transcriptomics technology
16 and IVH as an example here, we first developed a spatial transcriptomics
17 sequencing-based bioinformatic analysis workflow (Figure 1).

18 First, given the difficulty in performing the analysis using human patient samples,
19 we constructed an IVH model (Figure 1a) in mice by injecting autologous blood into
20 the lateral ventricle (for technical details please refer to Experimental Procedures).

21 Spatial transcriptomics sequencing^{7,8} and the SME clustering algorithm⁹ were
22 subsequently used to analyze frozen sections of IVH mouse brain to obtain the

1 annotation atlas of cell type clusters (Figure 1b and Visium spatial transcriptome
2 sequencing of Methods section) and to construct 3D global pseudospace-time
3 trajectories (Figure 1c) and transition gene sets. More extensive cell subtype
4 characterizations were performed on the three 3D global pseudospace-time trajectories
5 identified and at different times (Figure 1d). We further explored the molecular-level
6 changes of these cell subtypes (Figure 1e) by using a newly-developed cell-cell
7 interaction intensity density algorithm and interrogated the biological characteristics of
8 these cell subtypes using pathway analysis (Figure 1f).

9

10 **2.2 3D global pseudospace-time trajectory reconstruction for mouse brain tissue
11 after lateral ventricle haemorrhage**

12 Initially, we took 19 original frozen sections of the brains of 5 mice with IVH as
13 the input. After carrying out spatial transcriptome sequencing^{7,8}, we obtained H&E
14 (haematoxylin and eosin) staining slices and examined spatial gene expression (Figure
15 2a, SR1. Figure 1 and SR1. Table 1).

16 Next, we employed the SME algorithm⁹ to normalize and cluster the cell types
17 with similar gene expression (Figure 2b and SR1. Figure 2) by inputting SR1. Figure
18 1 and SR1. Table 1.

19 After that, we obtained the annotation atlas of cell type clusters (Figure 2c) in
20 different brain regions by comparing the clustering results with the anatomical brain
21 regions on the Allen Brain Reference Atlas map¹⁸, which describes the whole
22 transcriptional signal in the brains of mice after IVH (SR1. Figure 3).

1 Then, we employed the stLearn algorithm⁹ to obtain the planar diffusion
2 pseudotime plots and the planar global pseudospace-time trajectories (Figure 2d and
3 SR2. Figure 1 &2) by inputting SR1. Figure 3.

4 Last, we employed our developed 3D global pseudospace-time trajectory
5 reconstruction algorithm (SM. Tables 2 & 3) to obtain 3D global pseudospace-time
6 trajectories (Figure 2e, 2f and 2g) by inputting SR2. Figures 1 & 2.

7 In addition to consciousness disturbance, it has been commonly observed that
8 short-term motor dysfunction and long-term cognitive disorders occur after a single
9 intraventricular haemorrhage. Table 1 classifies 3D global pseudospace-time
10 trajectories(Figure 2e ,2f and 2g)into three major trajectory bundles after haematoma
11 stimulation based on their pivotal effect and their representative value for the neural
12 circuits of motor dysfunction and cognitive disorder.

13 Here, trajectory bundles I and II are described in SR2. Figure 3 b, e, h and SR2.
14 Figure 3 c, f, i for different times, which extend from the lateral ventricle to the
15 hippocampus. Trajectory bundle III is described by SR2. Figure 3 d, g, j for different
16 times, which extend from the lateral ventricle to primary cortex.

17 The following analysis of trajectory bundle III explores how haematoma
18 stimulation in the lateral ventricle affects the cortex and causes motor dysfunction,
19 while that of trajectory bundles I and II illustrates direct pathophysiological
20 mechanisms of cognitive dysfunction after IVH, with unique neural circuits for
21 haematoma stimulation in the lateral ventricle.

22

1 2.3 The trajectory-based transition gene set for 3D global pseudospace-time 2 trajectories

3 Initially, we employed the Spearman correlation analysis of stLearn^{9,19-26} to
4 obtain the top 30 planar upregulated/downregulated transition genes (Figure 3a and
5 SR3. Table 1) for each planar subtrajectory by inputting the planar global
6 pseudospace-time trajectory (SR2. Figure 2).

7 Among the three major global pseudospace-time trajectory bundles (Table 1), we
8 chose frequently appearing trajectories from each trajectory bundle at different time
9 for further analysis, which are VL→fxs→CA1→DG from trajectory bundle I, TH→CA1
10 →DG from trajectory bundle II and VL→I→(V,VIa,VIb) from trajectory bundle III.

11 VL→fxs→CA1→DG from trajectory bundle I could be the representative
12 mechanism of how haematoma stimulation in the lateral ventricle directly induces
13 hippocampal activities and cognitive dysfunction.

14 TH→CA1→DG from trajectory bundle II could transmit multiple signals from
15 the lateral ventricle and integrate them via the hypothalamus to the hippocampus,
16 which might be a relatively long-term effect of haematoma stimulation.

17 The changes in VL→I→(V,VIa,VIb) from trajectory bundle III might reflect the
18 acute and direct effect of haematoma stimulation on primary cortex.

19 Next, we carried out a union operation for the top 30 planar
20 upregulated/downregulated transition genes for the same subtrajectory in different
21 plane slices at the same time to obtain the top 30 3D upregulated/downregulated
22 transition genes (Figure 3b and SR3. Table 2) for each 3D subtrajectory by inputting

1 SR3. Table 1. When we performed a union operation for the top 30 planar
2 upregulated/downregulated transition genes, if different plane slices had the same
3 gene with a different sign (upregulated or downregulated), we chose the gene whose
4 absolute value was the greatest.

5 Here, we use Figure 3c, 3d and 3e as examples to describe the top 30 3D
6 upregulated/downregulated transition genes for each subtrajectory in VL→fxs→CA1
7 →DG from trajectory bundle I, TH→CA1→DG from trajectory bundle II, and VL→I→
8 (V,VIa,VIb) from trajectory bundle III.

9

10 **2.4 Cell subtype analysis**

11 As discussed in section 2.3, we chose VL→fxs→CA1→DG from trajectory
12 bundle I, TH→CA1→DG from trajectory bundle II and VL→I→(V,VIa,VIb) from
13 trajectory bundle III for further analysis.

14 Initially, we employed our developed algorithm (SM. Tables 4 & 5) to identify a
15 cell subtype on the selected trajectory at different times (Figure 4a and SR4. Table 1)
16 by inputting the top 30 upregulated/downregulated 3D transition genes for each 3D
17 subtrajectory (SR3. Table 2), the marker gene sets of which are listed in Figure 4b and
18 SR4. Table 2. This process is detailed in cell subtype identification of Methods
19 section.

20 Then, we built up a similarity algorithm (SM. Tables 4 & 6) to describe the
21 similarity between cell subtypes on the same trajectory at different times (SR4. Table
22 3) by inputting the marker gene sets (SR4. Table 2). This process is detailed in

1 similarity algorithm for cell subtypes of Methods section.

2 Figure 4c shows that the cell subtype similarity between 3rd day and 7th day is
3 small for each selected trajectory. Additionally, the cell subtype similarity between
4 sham and 3th day are both small, but the cell subtype similarity between sham and 7th
5 day are both great for $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$ and $VL \rightarrow I \rightarrow (V, VIa, VIb)$.

6 These findings indicate a pattern in which not only are the cell subtypes similar
7 for $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$, $TH \rightarrow CA1 \rightarrow DG$ and $VL \rightarrow I \rightarrow (V, VIa, VIb)$ after
8 IVH, but also these cell subtypes are different from the cell subtypes of the sham
9 group with only the acupuncture effect.

10 It is noted that we do not have a cell subtype for the 1st day or the sham group for
11 $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$ and $TH \rightarrow CA1 \rightarrow DG$, respectively. Additionally, Figure 4c
12 and SR4. Table 3 show that the pattern is not so obvious for $VL \rightarrow I \rightarrow (V, VIa, VIb)$.

13 Last, we found cell types (SR4. Table 4) from a commonly used public
14 single-cell sequencing database (CellMeSH²⁷) that are similar to our identified cell
15 subtypes (SR4. Table 1) by using search for similar cell types by CellMeSH of
16 Methods section. Additionally, Figure 4d and SR4. Table 5 describe the cell types that
17 are most like our identified cell subtypes at different times on the same trajectory.

18

19 **2.5 Cell-cell communication strength analysis**

20 Initially, we employed the CellTalkDB database²⁸ to locate ligand receptors by
21 inputting the upregulated and downregulated transition gene sets (SR3. Table 2).
22 Figure 5a and SR5. Table 1 show the upregulated/downregulated transition

1 ligand–receptor (LR_n) sets.

2 Next, we employed stLearn⁹ to analyse their interaction intensity by using SR5.

3 Table 1 as the input. Figure 5b and SR5. Table 2 show the interaction intensity values

4 $Zscore_i^{LR_n}$ for the upregulated/downregulated transition ligand–receptor (LR_n) sets.

5 Then, we obtained the discrete interaction intensity $ZT_i^{LR_n}$ (Figure 5c and SR5. Table

6 3) and the average $Density^{LR_n}$ for each ligand receptor of the cell subtypes (Figure

7 5d and SR5. Table 4) by using Cell-cell communication analysis of Methods section.

8 Figure 5d shows that the $Density$ of $CellT_{VL \rightarrow fxs \rightarrow CA1 \rightarrow DG}^{time}$ increased from

9 $CellT_{VL \rightarrow fxs \rightarrow CA1 \rightarrow DG}^{Sham}$ to $CellT_{VL \rightarrow fxs \rightarrow CA1 \rightarrow DG}^{3d}$ and decreased from

10 $CellT_{VL \rightarrow fxs \rightarrow CA1 \rightarrow DG}^{3d}$ to $CellT_{VL \rightarrow fxs \rightarrow CA1 \rightarrow DG}^{7d}$; the $Density$ of $CellT_{TH \rightarrow CA1 \rightarrow DG}^{time}$

11 increased from $CellT_{TH \rightarrow CA1 \rightarrow DG}^{1d}$ to $CellT_{TH \rightarrow CA1 \rightarrow DG}^{3d}$ but decreased from

12 $CellT_{TH \rightarrow CA1 \rightarrow DG}^{3d}$ to $CellT_{TH \rightarrow CA1 \rightarrow DG}^{7d}$; and the $Density$ of $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{time}$

13 decreased from $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{sham}$ to $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{1d}$ and from

14 $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{1d}$ to $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{3d}$ but increased from

15 $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{3d}$ to $CellT_{VL \rightarrow I \rightarrow (V, VIa, VIb)}^{7d}$.

16 Last, the Kruskal-Wallis test²⁹ (SR5. Table 5) demonstrates that the density is

17 significantly different among these cell subtypes on $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$,

18 $TH \rightarrow CA1 \rightarrow DG$ and $VL \rightarrow I \rightarrow (V, VIa, VIb)$.

19 Therefore, we hypothesized that the cell-cell communication strength would

20 greatly change on the 3rd day after IVH and return to the normal state on the 7th day.

21

22 2.6 Pathway analysis

1 First, we employed CellMeSH²⁷ to identify the genes associated with similar
2 cell types (Figure 6a and SR6. Table 1) by inputting their similar cell types (SR4.
3 Table 5).

4 After that, using SR6. Table 1 and marker genes of our identified cell subtypes (SR4.
5 Table 2) as the input, we employed Metascape¹⁰ to carry out pathway analysis for
6 each of them. Figure 6b shows mutual pathway sets for our identified cell subtypes
7 $P_{A_{Trajectory_n}}$ (SR6. Table 2 and SR6. Figure 1) and similar cell types
8 $P_{B_{Trajectory_n}}$ (SR6. Table 3 and SR6. Figure 2).

9 Figure 6c and SR6. Table 4 show the mutual pathway set $P_{inter_{Trajectory_n}}$
10 between our identified cell subtypes $P_{A_{Trajectory_n}}$ and similar cell types
11 $P_{B_{Trajectory_n}}$, the process of which is detailed in signalling pathway analysis of
12 Methods section.

13 Fig. 6d shows that our identified cell subtypes and their similar cell types on
14 $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$, $TH \rightarrow CA1 \rightarrow DG$ and $VL \rightarrow I \rightarrow (V, VIa, VIb)$ have 11,
15 9 and 9 mutual pathways, respectively. Since they have mutual pathways (SR6. Table
16 4), and the proportion of these mutual pathways remains stable for each trajectory, we
17 hypothesized that our identified cell subtypes and their similar cell types found at the
18 cell level from CellMeSH²⁷ should be the same at the molecular level.

19

20 **3. Discussion**

21 In the present study, we employed an intraventricular haemorrhage mouse model
22 with haematoma in the lateral ventricle as primary stimulation for the ipsilateral

1 hemisphere. Then, we developed spatial transcriptome sequencing-based
2 bioinformatic algorithms to investigate the 3D spatial brain regions affected by the
3 primary stimulation of haematoma in the ipsilateral ventricle after IVH (Figure 1).
4 Based on this, we have the following important findings: (1) we found three 3D
5 global pseudospace-time trajectories (Figure 2); (2) we not only identified the cell
6 subtypes on these trajectories at different times after IVH (Figure 3) but we also
7 revealed a similar pattern for these cell types on each 3D global pseudospace-time
8 trajectory (Figure 4); (3) we observed that the cell-cell communication strength
9 greatly changes after IVH and returns to the normal state later by analysing the
10 cell-cell communication strength (Figure 5); and (4) our identified cell subtypes and
11 their similar cell types found from the single-cell sequencing database (CellMeSH²⁷)
12 should be similar as each other at the molecular level (Figure 6).

13 As SM. Figure 1 indicates, 25 μ l of autologous blood was injected into the
14 contralateral ventricle to establish the IVH model used in this study, which exhibited
15 obvious haematoma drainage across the interventricular foramen and deposition in the
16 ipsilateral ventricle but without direct damage to the ependyma barrier in the
17 ventricles. We believe this volume of haematoma is the ideal model to investigate the
18 secondary neurological dysfunction derived by haematoma stimulation after IVH. The
19 3D global pseudospace-time trajectories (Figure 2. e, f and g) indicated that
20 haematoma stimulation in the lateral ventricle mainly affected the ipsilateral cortex
21 and hippocampus. For the ipsilateral cortex, recent brain functional connectivity
22 analysis indicated that IVH in infants born moderately preterm and later preterm was

1 associated with the frontoparietal operculum and orbitofrontal cortex, which are
2 related to language and cognition during development³⁰. In addition, low-grade IVH
3 after germinal matrix haemorrhage in preterm neonates was reported to cause lower
4 cerebral blood flow in posterior cortical and subcortical grey matter regions³¹, all
5 within the trajectory bundle III directly from the lateral ventricle to the ipsilateral
6 cortex, suggesting regional vulnerability of these brain structures. However,
7 intraventricular extension after intracerebral haemorrhage might not be associated
8 with dysphagia, even with a space-occupying effect and midline shift³². As illustrated
9 in Figure 4c and SR4. Table 3, we revealed a pattern in which not only are the cell
10 subtypes after IVH similar for $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$, $TH \rightarrow CA1 \rightarrow DG$ and
11 $VL \rightarrow I \rightarrow (V, VIa, VIb)$, but also these cell subtypes are different from the cell
12 subtypes of the sham group (with only the acupuncture effect). However, SR4. Table
13 3 demonstrates that the pattern is not as obvious for $VL \rightarrow I \rightarrow (V, VIa, VIb)$
14 compared to $VL \rightarrow fxs \rightarrow CA1 \rightarrow DG$ and $TH \rightarrow CA1 \rightarrow DG$. We explain this
15 phenomenon as follows: (1) motor dysfunction usually occurs in most clinical patients
16 with isolated intraventricular haemorrhage; (2) our data show that lateral ventricle
17 stimulation has only a transient effect on the ipsilateral cortex.

18 However, since most patients with intraventricular haemorrhage are in a supine
19 resting state after onset, there is no clinical evidence to accurately describe the
20 severity of motor dysfunction in its acute phase, and the effects of stimulation largely
21 returned to normal levels after 7 days of intracerebral haemorrhage.

22 Relative to the limited evidence of haematoma stimulation in the lateral ventricle

1 for the cortex, we also illustrated two major 3D global pseudospace-time trajectory
2 bundles for the hippocampus. Trajectory bundle I (SR2. Figure 3 b, e, h) is a direct
3 neuronal circuit from the lateral ventricle to the hippocampus, which in our
4 understanding is closely associated with white matter lesions after intraventricular
5 extension in spontaneous intracerebral haemorrhage patients³³. Trajectory bundle II
6 (SR2. Figure 3 c, f, i) is a novel integrated signalling circuit from the hypothalamus to
7 the hippocampus that flexibly modulates long-term potentiation³⁴ and selected
8 components of cognition³⁵. In addition, corpus callosum injury is also reported to
9 strongly correlate with the severity of IVH³⁶ and serves as a prognostic factor for poor
10 outcomes after brain trauma. Consistent with our previous rodent experiment,
11 perihaematomal tissue injury and neurocognitive deficits are reported in intracerebral
12 haemorrhage with ventricular extension³⁷, and blood metabolites such as iron³⁸,
13 oxyhemoglobin³⁹ and thrombin^{39,40}, are well considered in this pathophysiological
14 process. Combined with the negative results of the CLEAR III trial, our data in Figure
15 4c indicate that blood metabolism rapidly stimulates the direct neuronal circuit from
16 the lateral ventricle to the hippocampus, and clearing the blood clots in the ventricle
17 might not successfully remove these stimulations in the cerebrospinal fluid.
18 Subsequent secondary brain injury due to haematoma stimulation in the ventricles
19 might be a promising target and therapeutic strategy for IVH patients. Figure 4d and
20 SR4. Table 5 illustrate the most affected or motivated cell types by our identified cell
21 subtypes (Figure 4b and SR4. Table 2), which could vividly refer to the potential
22 pathophysiological changes in these main trajectories/neural circuits after IVH.

1 For VL→fxs→CA1→DG from trajectory bundle I, which might be tightly
2 associated with white matter lesions, as we discussed above, the most motivated cell
3 type is oligodendroglia, consistent with it being widely understood as the main
4 participant in white matter and cognitive functions. Further pathway analysis
5 indicated intense metabolic changes and synaptic activity, as well as gliogenesis and
6 neural cell death in this trajectory. The cell-cell communication strength analysis
7 found a stimulation after IVH which significantly turned into inhibition, as shown in
8 Figure 5d. During the post-IVH period, these 11 mutual pathways (Figure 6d) reflect
9 the core pathophysiological changes, which might be potential clues and therapeutic
10 targets for further preclinical study.

11 Additionally, in TH→CA1→DG from trajectory bundle II, it seems that neuronal
12 cells are the main participants, and cell population proliferation is the highest
13 changing pathway, which is supported by a recent study⁴¹ that hypothalamic circuits
14 could modulate adult hippocampal neurogenesis for memory regulation.

15 However, the pathway analysis in VL→I→(V,VIa,VIb) from trajectory bundle III
16 indicates an acute response to hypoxia and oxidative stress, which is consistent with
17 the significant inhibition in cell-cell communication strength on this trajectory on the
18 3rd day after IVH(Figure 5d). Nevertheless, the communication strength recovered to
19 a normal level on the 7th day after IVH, which might be an explanation for the
20 short-term motor dysfunction of IVH patients for clinical attention in the future.

21 Our proposed bioinformatics analysis workflow has the following innovations
22 and limitations. First, we developed a 3D global pseudospace-time trajectory

1 reconstruction algorithm, which can not only investigate the genetic changes in 3D
2 global pseudospace-time trajectories but also identify cell subtypes on these
3 trajectories at different times. However, due to the limited slices and the conflict
4 between planner trajectories, this algorithm cannot obtain high accuracy.

5 Second, since our proposed similarity algorithm considers the up/down
6 regulation for marker genes of cell subtypes, we can accurately compute the similarity
7 between cell subtypes at different times on the same trajectory. However, since spatial
8 transcriptome data only provide discrete up/downregulation data, the accuracy of our
9 similarity algorithm is limited.

10 Third, our proposed cell-cell communication intensity density algorithm can
11 uniformly measure cell-cell communication intensity for multiple spatial
12 transcriptome slices at different times for each ligand paired with cell subtype
13 compared to a previous method⁹ that analysed cell-cell communication intensity for a
14 single slice. However, since we do not have an automatic algorithm to match cell
15 subtype ligand receptors in the CellTalkDB database²⁸, it is time-consuming for us to
16 process such cell subtypes that have many paired ligands.

17 In conclusion, we innovated a bioinformatics algorithm to discover three main
18 3D global pseudospace-time trajectory bundles representing the main neural circuits
19 from the lateral ventricle to the hippocampus and primary cortex induced by
20 experimental intraventricular haematoma stimulation. Further analysis indicated a
21 rapid response in the primary cortex, as well as a direct and integrated effect on the
22 hippocampus after IVH. To the best of our knowledge, this is the first study to

1 investigate secondary brain injury after IVH by using spatial transcriptome
2 sequencing and bioinformatics analysis. These data could provide more helpful
3 information for elucidating the pathophysiological mechanism of IVH in patients after
4 acute brain injury, as well as the analysis of algorithm strategies for similar studies in
5 the future.

6

7 **Acknowledgements**

8 This work was supported by the State Key Laboratory of Trauma, Burn and
9 Combined Injury [No. SKLYQ202002 to Yujie Chen], National Key Research and
10 Development Program of China [Nos. 2021YFF1201200 and 2018ZX10201002 to Le
11 Zhang], National Natural Science Foundation of China [No. 82030036 to Hua Feng],
12 Sichuan Science and Technology Program [No. 2022YFS0048 to Le Zhang].

13

14 **Author contributions**

15 Le Zhang and Yujie Chen conceptualized and designed experiments and
16 supervised the research. Xufang Ru, Suna Huang and Yujie Chen performed animal
17 experiments. Le Zhang, Jiayidaer Badai, Guan Wang, Wenkai Song, Yujie You,
18 Jiaojiao He and Yujie Chen acquired and analyzed the data. Le Zhang, Jiayidaer Badai,
19 Guan Wang, Wenkai Song, Hua Feng, Runsheng Chen, Yi Zhao, and Yujie Chen
20 interpreted the data. Le Zhang, Jiayidaer Badai, Wenkai Song, Yi Zhao and Yujie
21 Chen drafted the manuscript. All authors have read and approved the current version
22 of the manuscript.

1

2 **Competing interest declaration**

3 The authors declare no competing interest.

4

5 **Data availability**

6 All data generated or analysed during this study are included in this manuscript
7 and its supplementary information files. The raw sequence data reported in this paper
8 have been deposited at Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>,
9 No. GSE214349).

10

11 **Methods**

12 **1. Experimental setup**

13 Five wild-type C57/BL6 male mice (weighing 25 ± 5 g, 8 weeks old,
14 Experimental Animal Center of Third Military Medical University, Chongqing, China)
15 were used in this study. These mice were housed in a temperature-controlled room
16 under specific-pathogen-free conditions and a standard 12-h light/dark cycle, with ad
17 libitum access to food and water. All experiments were reported in compliance with
18 the Animal Research: Reporting in vivo Experiments (ARRIVE) guidelines. The
19 experimental protocols were approved by the Laboratory Animal Welfare and Ethics
20 Committee of Third Military Medical University (AMUWEC2020762) and performed
21 according to the Guide for the Care and Use of Laboratory Animals.

22 An intraventricular haemorrhage model was established according to previously

1 described methods with modified coordinates. Briefly, mice in each group were
2 deeply anaesthetized by intraperitoneal injection of 2 mg ketamine and 0.4 mg
3 xylazine in 0.9% saline. A feedback-controlled heating pad was used to maintain body
4 temperature at 37.0 °C. A small cranial burr hole was drilled, and a 32-gauge needle
5 was inserted stereotactically into the right lateral ventricle (coordinates: 1.0 mm lateral ,
6 0.24 mm posterior, and 2.5 mm ventral to bregma) to establish the intraventricular
7 haemorrhage model under stereotactic guidance. Then, 25 µl of autologous blood was
8 injected at a rate of 5 µl/min using a microinfusion pump (Harvard Apparatus,
9 Holliston, MA). The burr hole was sealed with bone wax, and the skin incision was
10 closed with sutures after the needle was removed. Sham-operated mice underwent the
11 same surgery without blood injection. The brains of the mice were harvested at
12 different time points after IVH after deep anaesthesia for further study.

13

14 **2. Visium spatial transcriptome sequencing**

15 We collected wild-type C57/BL6 mouse brains, which were classified into the
16 no-surgery group (control), the needle-puncture group without blood injection (sham),
17 and the needle-puncture group with blood injection at 1st, 3rd and 7th day. Then, these
18 brains were frozen on dry ice in OCT.

19 Frozen brains were then sectioned coronally at 10 µm on a cryostat and mounted
20 on 10x Genomics Visium spatial transcriptome slides. The tissue locations of the
21 library patches started from the emergence of the lateral ventricle with 20 µm
22 intervals and a 10 µm margin of error (SM. Table 1).

1 For morphological analysis and spatial alignment of sequencing data, sections
2 were fixed in methanol at -20 °C for 30 min before H&E staining. Additionally, all
3 fractions were measured using a bioanalyzer (Agilent 2100) meeting the RNA
4 integrity number RIN>=7.

5 After brightfield imaging, we permeabilized 19 brain slices, the permeabilization
6 time of which is listed in SM. Table 1. After tissue permeabilization, we captured
7 poly-A mRNA at each point in the capture region and added spatial barcodes and
8 unique molecular identities into reads for library construction.

9 Our library detection instrument employs a DNF-915 kit and QPCR for
10 quantification. After the library was qualified, we performed PE150 paired-end
11 sequencing using the Illumina NovaSeq 6000 S4 sequencing platform with
12 50,000-100,000 reads per locus (spot).

13 Finally, genomes and images were aligned by mouse reference genome
14 mm10-3.0.0 and SpaceRanger (v1.1.0), respectively. The data were analysed and
15 normalized by using Seurat (v3.1.2) and SCTtransform, respectively.

16

17 **3. Cell subtype analysis**

18 **3.1 Cell subtype identification**

19 We used the top 30 upregulated/downregulated 3D transition genes for each 3D
20 subtrajectory (SR3. Table 2) as input. Then, we employed our developed algorithm
21 (SM. Tables 4 & 5) to identify a cell subtype corresponding to the selected trajectory
22 at different times (SR4. Table 1).

1 **3.2 Similarity algorithm for cell subtypes**

2 We used the marker gene sets of cell subtypes corresponding to the selected
3 trajectory at different times (SR4. Table 2) as input. Then, we employed a similarity
4 algorithm for cell subtypes (SM. Tables 4 & 6) to describe the similarity between cell
5 subtypes at different times on the same trajectory (SR4. Table 3).

6 **3.3 Search for similar cell types by CellMeSH**

7 Here, we used marker genes of the cell subtypes as input. Then, we found the top
8 5 similar cell types for each cell subtype by using CellMeSH²⁷. Next, we performed a
9 union operation for these top five similar cell types.

10

11 **4. Cell-cell communication analysis**

12 We use $Zscore_i^{LR_n}$ (SR5. Table 2) for each ligand-receptor (LR_n) of cell
13 subtypes and $Zscore_i^{LR_n}$ for all the brain regions as the input. Then, we employed
14 the cell-cell communication strength (Density) algorithm (SM. Tables 7 & 8) to obtain
15 the discrete interaction intensity $ZT_i^{LR_n}$ after conversion of the continuous interaction
16 intensity $Zscore_i^{LR_n}$ and the sum of the interaction intensity $ZT_i^{LR_n}$ of N points in
17 the corresponding position $ZTTotal$ (SR5. Table 3), and the average $Density^{LR_n}$
18 for each ligand receptor of the cell subtypes (SR5. Table 4).

19

20 **5. Signalling pathway analysis**

21 We used mutual pathway sets for our identified cell subtypes $P_A_{Trajectory_n}$
22 ($n = 1 \dots N$) (SR6. Table 2) and similar cell types $P_B_{Trajectory_n}$ ($n = 1 \dots N$)

1 (SR6. Table 3) as the input. Then, we employed the similarity algorithm for mutual
2 pathway sets (SM. Tables 9 & 10) to obtain the mutual pathway set
3 ($P_{inter_{Trajectory_n}}$) (SR6. Table 4) and the similarity ($Similarity_{Trajectory_n}^{P_{A,B}}$)
4 between $P_{A_{Trajectory_n}}$ and $P_{B_{Trajectory_n}}$ ($n = 1 \dots N$) (SR6. Figure 3).

1 References

2 1 Yuh, E. L. *et al.* Pathological Computed Tomography Features Associated
3 With Adverse Outcomes After Mild Traumatic Brain Injury: A TRACK-TBI
4 Study With External Validation in CENTER-TBI. *JAMA Neurol* **78**, 1137-1148,
5 doi:10.1001/jamaneurol.2021.2120 (2021).

6 2 Ban, V. S. *et al.* Prediction of Outcomes for Ruptured Aneurysm Surgery.
7 *Stroke* **50**, 595-601, doi:10.1161/STROKEAHA.118.023771 (2019).

8 3 Yogendrakumar, V. *et al.* New and expanding ventricular hemorrhage predicts
9 poor outcome in acute intracerebral hemorrhage. *Neurology* **93**, e879-e888,
10 doi:10.1212/wnl.0000000000008007 (2019).

11 4 Hemphill, J. C., 3rd *et al.* Guidelines for the Management of Spontaneous
12 Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the
13 American Heart Association/American Stroke Association. *Stroke* **46**,
14 2032-2060, doi:10.1161/str.0000000000000069 (2015).

15 5 Karimy, J. K. *et al.* Inflammation-dependent cerebrospinal fluid
16 hypersecretion by the choroid plexus epithelium in posthemorrhagic
17 hydrocephalus. *Nat Med* **23**, 997-1003, doi:10.1038/nm.4361 (2017).

18 6 Hanley, D. F. *et al.* Thrombolytic removal of intraventricular haemorrhage in
19 treatment of severe stroke: results of the randomised, multicentre, multiregion,
20 placebo-controlled CLEAR III trial. *Lancet (London, England)* **389**, 603-611,
21 doi:10.1016/s0140-6736(16)32410-2 (2017).

22 7 Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue

1 sections by spatial transcriptomics. *Science (New York, N.Y.)* **353**, 78-82,
2 doi:10.1126/science.aaf2403 (2016).

3 8 Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture
4 using spatial transcriptomics. *Nature* **596**, 211-220,
5 doi:10.1038/s41586-021-03634-9 (2021).

6 9 Hu, J. *et al.* Statistical and machine learning methods for spatially resolved
7 transcriptomics with histology. *Computational and structural biotechnology
8 journal* **19**, 3829-3841, doi:10.1016/j.csbj.2021.06.052 (2021).

9 10 Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the
10 analysis of systems-level datasets. *Nat Commun* **10**, 1523,
11 doi:10.1038/s41467-019-09234-6 (2019).

12 11 Zhang, L., Dai, Z., Yu, J. & Xiao, M. CpG-island-based annotation and
13 analysis of human housekeeping genes. *Brief Bioinform* **22**, 515-525,
14 doi:10.1093/bib/bbz134 (2021).

15 12 Zhang, L. *et al.* Revealing dynamic regulations and the related key proteins of
16 myeloma-initiating cells by integrating experimental data into a systems
17 biological model. *Bioinformatics* **37**, 1554-1561,
18 doi:10.1093/bioinformatics/btz542 (2021).

19 13 Zhang, L., Xiao, M., Zhou, J. & Yu, J. Lineage-associated underrepresented
20 permutations (LAUPs) of mammalian genomic sequences based on a
21 Jellyfish-based LAUPs analysis application (JBLA). *Bioinformatics* **34**,
22 3624-3630, doi:10.1093/bioinformatics/bty392 (2018).

1 14 Zhang, L. *et al.* MCDB: A comprehensive curated mitotic catastrophe database
2 for retrieval, protein sequence alignment, and target prediction. *Acta Pharm
3 Sin B* **11**, 3092-3104, doi:10.1016/j.apsb.2021.05.032 (2021).

4 15 Lei, W., Zeng, H., Feng, H., Ru, X. & Zhang, L. Development of an Early
5 Prediction Model for Subarachnoid Hemorrhage With Genetic and Signaling
6 Pathway Analysis. *Frontiers in Genetics* **11**, doi:10.3389/fgene.2020.00391
7 (2020).

8 16 Zhang, L. *et al.* Computed tomography angiography-based analysis of
9 high-risk intracerebral haemorrhage patients by employing a mathematical
10 model. *BMC Bioinformatics* **20**, 193, doi:10.1186/s12859-019-2741-5 (2019).

11 17 Zhang, L., Tao, W., Feng, H. & Chen, Y. Transcriptional and Genomic Targets
12 of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke. *Stem
13 Cells Int* **2017**, 2412890, doi:10.1155/2017/2412890 (2017).

14 18 *Allen Reference Atlas – Mouse Brain [brain atlas]*, <atlas.brain-map.org> (

15 19 Liu, G. D., Li, Y. C., Zhang, W. & Zhang, L. A Brief Review of Artificial
16 Intelligence Applications and Algorithms for Psychiatric Disorders.
17 *Engineering-Prc* **6**, 462-467, doi:10.1016/j.eng.2019.06.008 (2020).

18 20 Song, H. *et al.* Denoising of MR and CT images using cascaded
19 multi-supervision convolutional neural networks with progressive training.
20 *Neurocomputing* **469**, 354-365, doi:10.1016/j.neucom.2020.10.118 (2022).

21 21 You, Y. *et al.* Artificial intelligence in cancer target identification and drug
22 discovery. *Signal Transduction and Targeted Therapy* **7**,

1 doi:10.1038/s41392-022-00994-0 (2022).

2 22 Zhang, L., Bai, W., Yuan, N. & Du, Z. Comprehensively benchmarking

3 applications for detecting copy number variation. *PLoS Comput Biol* **15**,

4 e1007069, doi:10.1371/journal.pcbi.1007069 (2019).

5 23 Zhang, L. *et al.* Investigation of mechanism of bone regeneration in a porous

6 biodegradable calcium phosphate (CaP) scaffold by a combination of a

7 multi-scale agent-based model and experimental optimization/validation.

8 *Nanoscale* **8**, 14877-14887, doi:10.1039/c6nr01637e (2016).

9 24 Zhang, L. & Zhang, S. Using game theory to investigate the epigenetic control

10 mechanisms of embryo development: Comment on: "Epigenetic game theory:

11 How to compute the epigenetic control of maternal-to-zygotic transition" by

12 Qian Wang *et al.* *Phys Life Rev* **20**, 140-142, doi:10.1016/j.plrev.2017.01.007

13 (2017).

14 25 Zhang, L. *et al.* Bioinformatic analysis of chromatin organization and biased

15 expression of duplicated genes between two poplars with a common

16 whole-genome duplication. *Hortic Res* **8**, 62,

17 doi:10.1038/s41438-021-00494-2 (2021).

18 26 Zhang, L. *et al.* Building Up a Robust Risk Mathematical Platform to Predict

19 Colorectal Cancer. *Complexity* **2017**, 1-14, doi:10.1155/2017/8917258 (2017).

20 27 Mao, S., Zhang, Y., Seelig, G. & Kannan, S. CellMeSH: Probabilistic

21 Cell-Type Identification Using Indexed Literature. *Bioinformatics* **38**,

22 1393-1402, doi:10.1093/bioinformatics/btab834 (2021).

1 28 Shao, X. *et al.* CellTalkDB: a manually curated database of ligand-receptor
2 interactions in humans and mice. *Brief Bioinform* **22**, doi:10.1093/bib/bbaa269
3 (2021).

4 29 Fan, C., Zhang, D. & Zhang, C. H. On sample size of the kruskal-wallis test
5 with application to a mouse peritoneal cavity study. *Biometrics* **67**, 213-224,
6 doi:10.1111/j.1541-0420.2010.01407.x (2011).

7 30 Argyropoulou, M. I. *et al.* Structural and functional brain connectivity in
8 moderate-late preterm infants with low-grade intraventricular hemorrhage.
9 *Neuroradiology* **64**, 197-204, doi:10.1007/s00234-021-02770-3 (2022).

10 31 Tortora, D. *et al.* Regional impairment of cortical and deep gray matter
11 perfusion in preterm neonates with low-grade germinal matrix-intraventricular
12 hemorrhage: an ASL study. *Neuroradiology* **62**, 1689-1699,
13 doi:10.1007/s00234-020-02514-9 (2020).

14 32 Hess, F., Foerch, C., Keil, F., Seiler, A. & Lapa, S. Association of Lesion
15 Pattern and Dysphagia in Acute Intracerebral Hemorrhage. *Stroke* **52**,
16 2921-2929, doi:10.1161/strokeaha.120.032615 (2021).

17 33 Kim, B. J. *et al.* Extents of white matter lesions and increased intraventricular
18 extension of intracerebral hemorrhage. *Crit Care Med* **41**, 1325-1331,
19 doi:10.1097/CCM.0b013e31827c05e9 (2013).

20 34 Ajibola, M. I., Wu, J. W., Abdulmajeed, W. I. & Lien, C. C. Hypothalamic
21 Glutamate/GABA Cotransmission Modulates Hippocampal Circuits and
22 Supports Long-Term Potentiation. *J Neurosci* **41**, 8181-8196,

1 doi:10.1523/JNEUROSCI.0410-21.2021 (2021).

2 35 Chen, S. *et al.* A hypothalamic novelty signal modulates hippocampal memory.

3 *Nature* **586**, 270-274, doi:10.1038/s41586-020-2771-1 (2020).

4 36 Matsukawa, H. *et al.* Intraventricular hemorrhage on computed tomography

5 and corpus callosum injury on magnetic resonance imaging in patients with

6 isolated blunt traumatic brain injury. *J Neurosurg* **117**, 334-339,

7 doi:10.3171/2012.5.JNS112318 (2012).

8 37 Chen, Q. *et al.* Chronic hydrocephalus and perihematomal tissue injury

9 developed in a rat model of intracerebral hemorrhage with ventricular

10 extension. *Transl Stroke Res* **6**, 125-132, doi:10.1007/s12975-014-0367-5

11 (2015).

12 38 Chen, Q. *et al.* Intracerebral Hematoma Contributes to Hydrocephalus After

13 Intraventricular Hemorrhage via Aggravating Iron Accumulation. *Stroke* **46**,

14 2902-2908, doi:10.1161/strokeaha.115.009713 (2015).

15 39 Liu, D. Z. *et al.* Inhibition of SRC family kinases protects hippocampal

16 neurons and improves cognitive function after traumatic brain injury. *J*

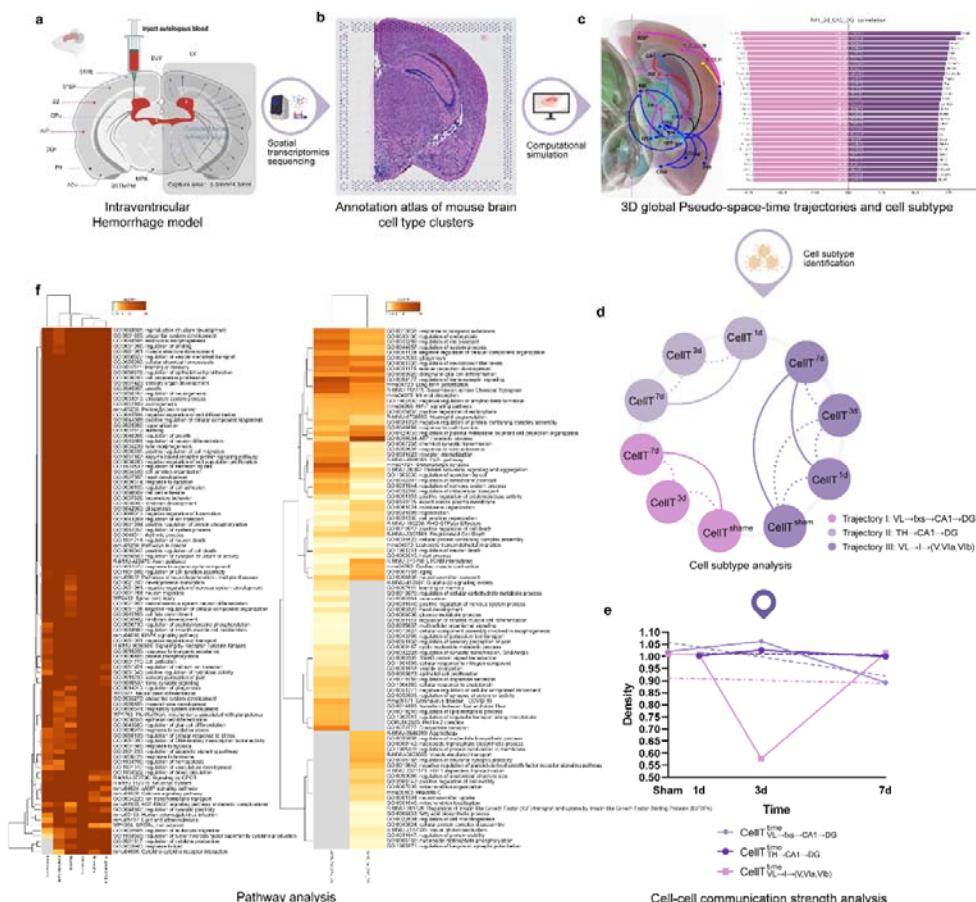
17 *Neurotrauma* **31**, 1268-1276, doi:10.1089/neu.2013.3250 (2014).

18 40 Liu, D. Z. *et al.* Inhibition of Src family kinases improves cognitive function

19 after intraventricular hemorrhage or intraventricular thrombin. *Journal of*

20 *cerebral blood flow and metabolism : official journal of the International*

21 *Society of Cerebral Blood Flow and Metabolism* **37**, 2359-2367,

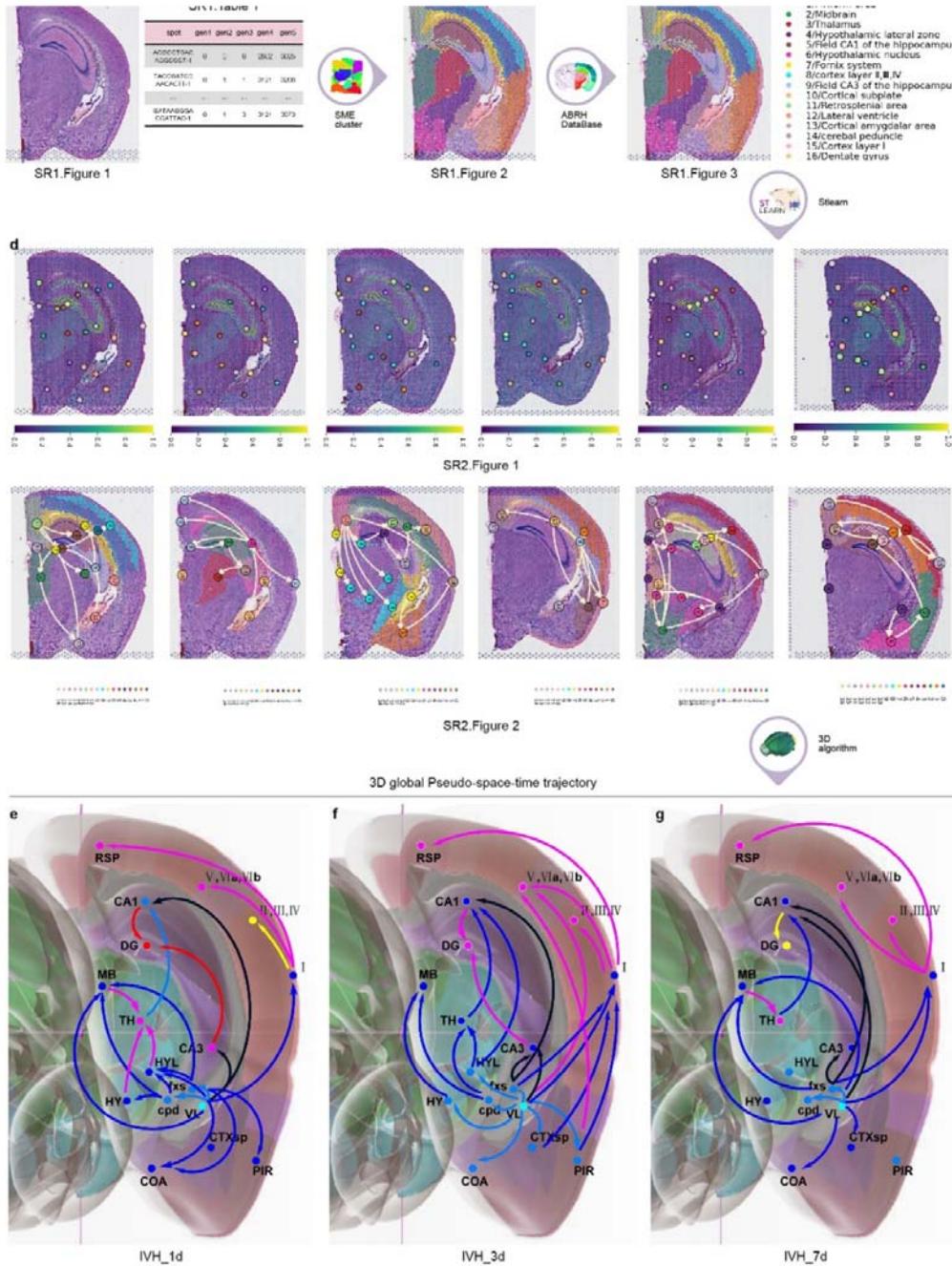

22 doi:10.1177/0271678x16666291 (2017).

1 41 Li, Y. D. *et al.* Hypothalamic modulation of adult hippocampal neurogenesis
2 in mice confers activity-dependent regulation of memory and anxiety-like
3 behavior. *Nat Neurosci* **25**, 630-645, doi:10.1038/s41593-022-01065-x (2022).

4

5 Figures and Tables

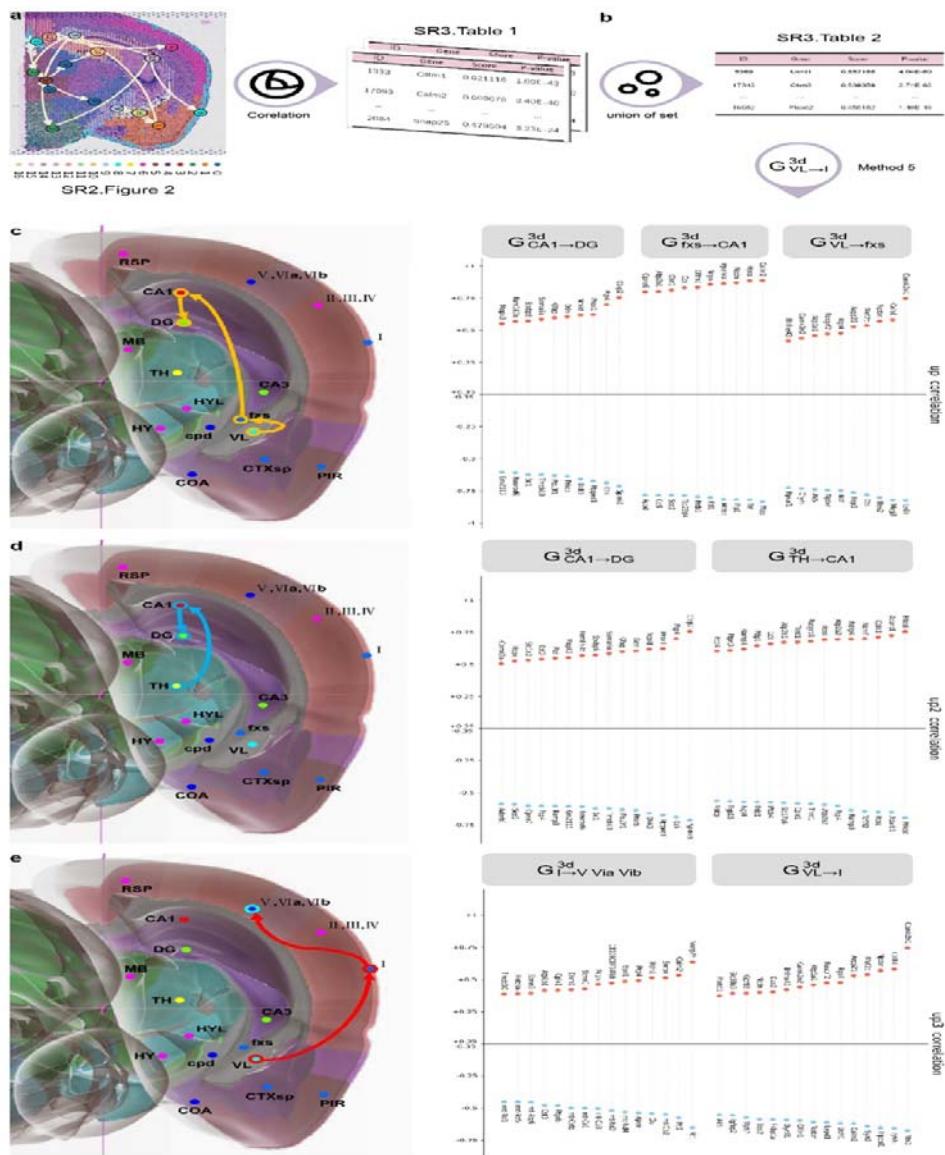
6 Figure 1: The workflow of the study.



7

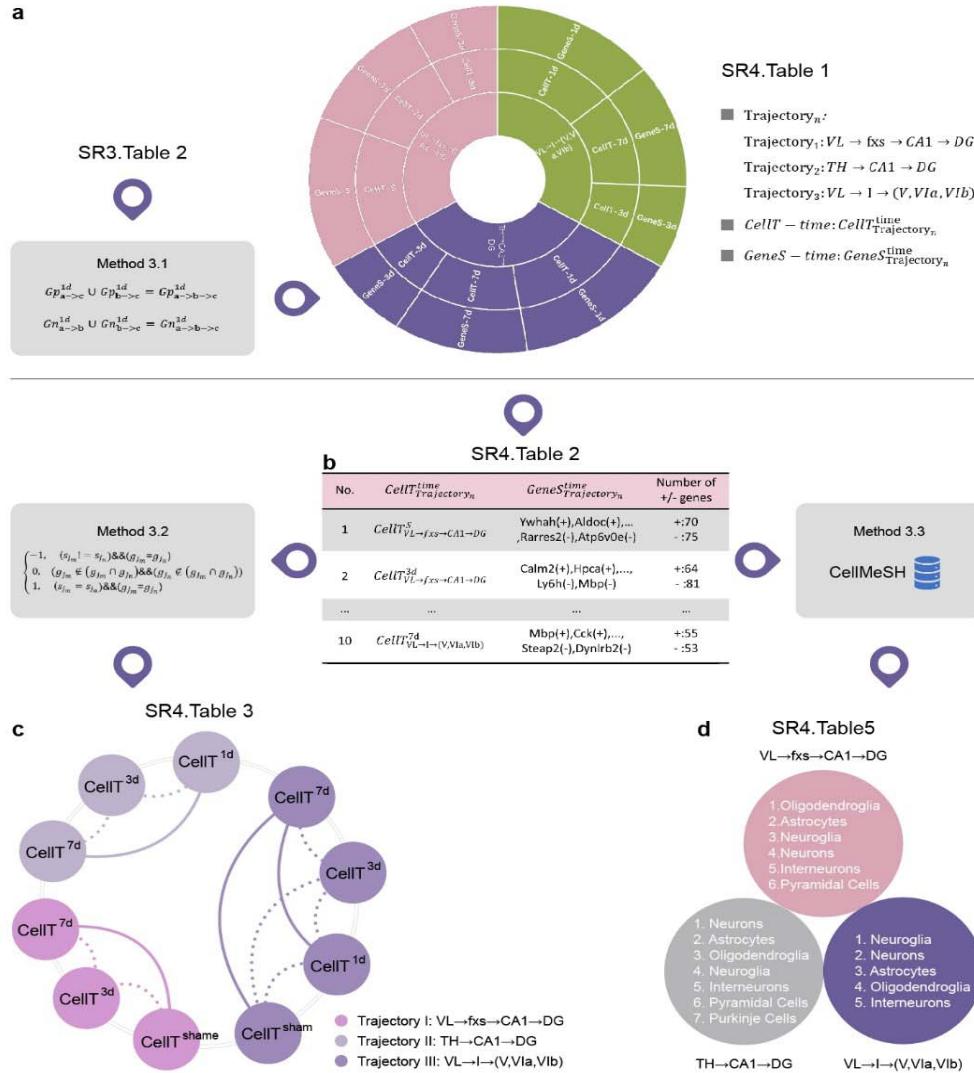
8 **a**, Secondary intraventricular haemorrhage experiment. **b**, Annotation atlas of mouse
9 brain cell type clusters. **c**, 3D global pseudospace-time trajectories and the transition
10 gene sets. **d**, Cell subtype analysis. **e**, Cell-cell communication strength analysis. **f**,

1 Pathway analysis.


1 **Figure 2: The process to obtain the 3D global pseudospace-time trajectory after**
 2 **IVH.**

3
 4 **a**, H&E (haematoxylin and eosin stain) slices and spatial gene expression. **b**,
 5 Normalization and clustering of the cell types with similar gene expression. **c**,

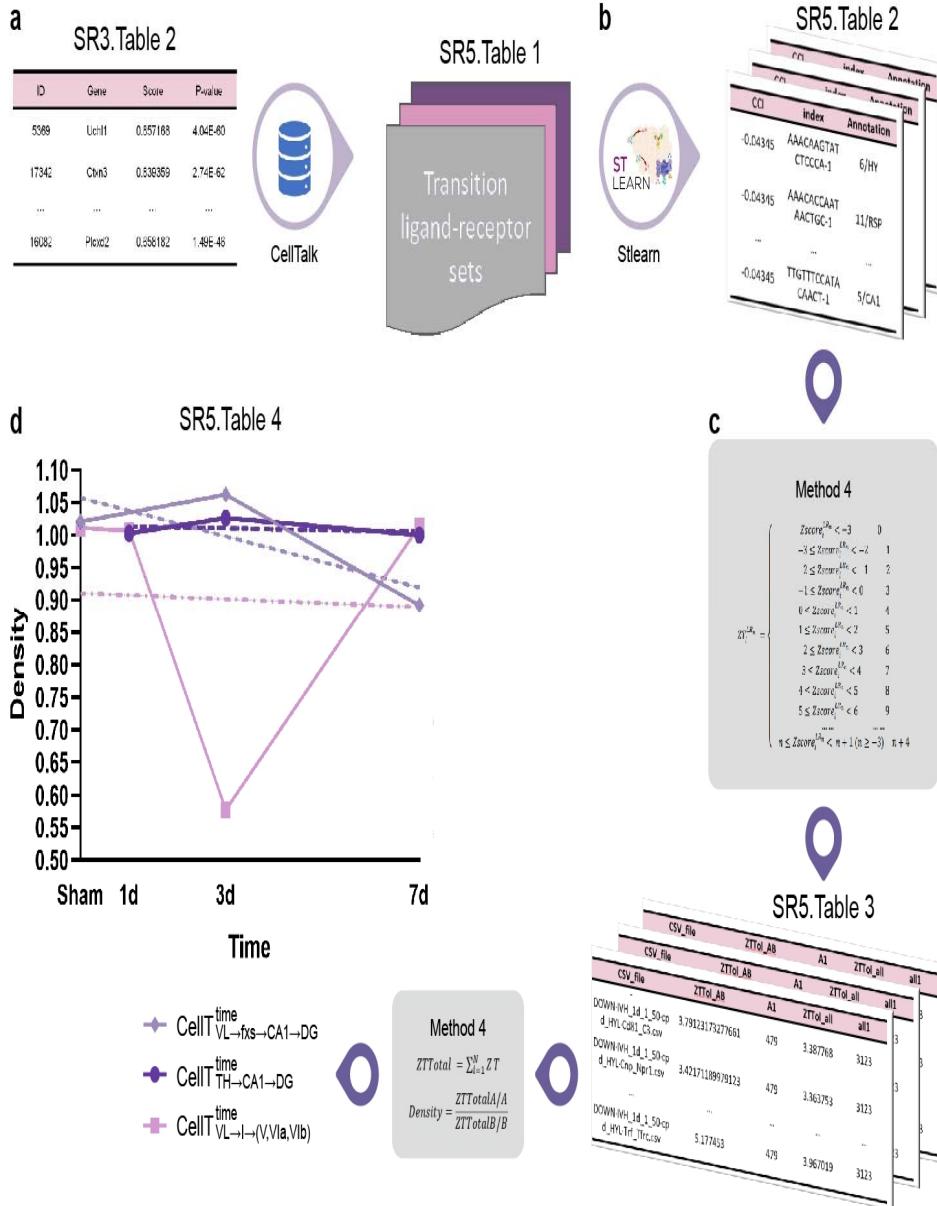
1 Annotation atlas of cell type clusters. **d**, Planar diffusion pseudotime plots and planar
2 global pseudospace-time trajectories. **e**, The 3D global pseudospace-time trajectories
3 after IVH on the 1st day. **f**, The 3D global pseudospace-time trajectories after IVH on
4 the 3rd day. **g**, The 3D global pseudospace-time trajectories after IVH on the 7th day.


1 **Figure 3: The process to obtain trajectory-based transition gene sets for 3D**
 2 **global pseudospace-time trajectories.**

3 **a**, The top 30 planar upregulated/downregulated transition genes for each planar
 4 subtrajectory. **b**, The top 30 3D upregulated/downregulated transition genes for each
 5 3D subtrajectory. **c**, The top 30 3D trajectory-based transition gene set of VL→fxs→
 6 CA1→DG. **d**, The top 30 3D trajectory-based transition gene set of TH→CA1→DG. **e**,

1 The top 30 3D trajectory-based transition gene set of VL \rightarrow I \rightarrow (V,VIa,VIb).

1 Figure 4: Cell subtype analysis.

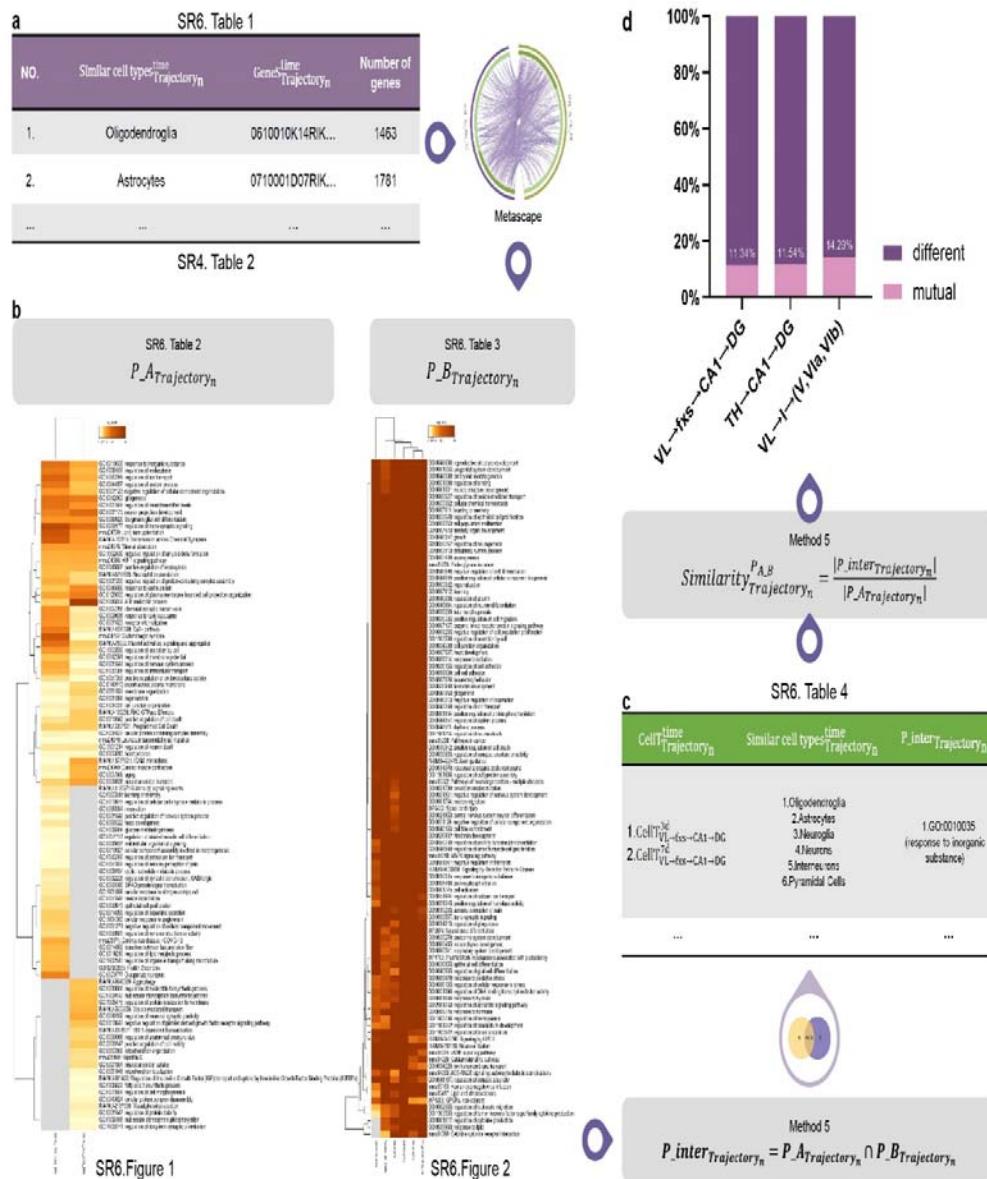


2

3 **a**, The cell subtypes corresponding to the selected trajectory at different times. **b**, The
4 marker gene sets of cell subtypes corresponding to the selected trajectory at different
5 times (SR4. Table 2). **c**, Similarity analysis of cell subtypes between different times
6 on the same trajectory (SR4. Table 3). Among them, the thick line represents a high
7 similarity between two time points, and the thin line represents a low similarity
8 between two time points. **d**, The cell types shared by our identified cell subtypes at

1 different times on the same trajectory (SR4. Table 5).

2 **Figure 5: Cell-cell communication strength analysis.**



3 **a**, The transition ligand-receptor sets. **b**, The interaction intensity value $Zscore_i^{LRn}$. **c**,

4 The discrete interaction intensity ZT_i^{LRn} . **d**, The cell-cell communication strength

1 (*Density*).

1 Figure 6: Pathway analysis.

2 **a**, The marker genes of the similar cell type. **b**, The mutual pathway sets for our identified cell subtypes $P_{A_{\text{Trajectory}_n}}$ and similar cell types $P_{B_{\text{Trajectory}_n}}$. **c**, The mutual pathway set $P_{\text{inter}_{\text{Trajectory}_n}}$ between our identified cell subtypes $P_{A_{\text{Trajectory}_n}}$ and similar cell types $P_{B_{\text{Trajectory}_n}}$. **d**, The similarity between

1 $P_A_{\text{trajectory}_n}$ and $P_B_{\text{trajectory}_n}$.

1 **Table 1** Three major trajectory bundles from the lateral ventricle to the hippocampus
2 and primary cortex after haematoma stimulation.

Trajectory bundles	Trajectories	Description
I	1.VL → CA1 → DG 2.VL → CA3 → DG 3.VL → fxs → CA1 → DG 4.VL → fxs → CA3 → DG 5.VL → fxs → CA3	Direct from lateral ventricle to hippocampus.
II	1.VL → COA 2.VL → fxs → COA 3.VL → MB → TH → CA1 → DG 4.VL → cpd → HY → TH → CA1 → DG 5.VL → cpd → MB → TH → CA1 → DG 6.VL → cpd → HYL → TH → CA1 → DG 7.VL → fxs → HYL → TH → CA1 → DG 8.VL → HYL → TH → CA1 → DG 9.VL → fxs → MB → TH → CA1 → DG 10.VL → HY → MB 11.VL → cpd → MB 12.VL → cpd → TH → CA1 → DG 13.VL → HYL → CA1 → DG	Dispersed signals from the lateral ventricle integrated by the hypothalamus to the hippocampus.

14. VL → fxs

15. VL → cpd → MB → TH → CA1 → DG

III

1. VL → I → (II, III, IV) Direct from lateral ventricle to
2. VL → I → (V, VIa, VIb) ipsilateral cortex.
3. VL → I → RSP
4. VL → fxs → PIR
5. VL → CTXsp → I → (II, III, IV)
6. VL → CTXsp → I → (V, VIa, VIb)
7. VL → CTXsp → I → RSP
8. VL → PIR → I → (II, III, IV)
9. VL → PIR → I → (V, VIa, VIb)
10. VL → PIR → I → RSP
11. VL → fxs → I → (II, III, IV)
12. VL → fxs → I → (V, VIa, VIb)
13. VL → fxs → I → RSP
14. VL → (V, VIa, VIb)
15. VL → PIR → (V, VIa, VIb)
16. VL → CTXsp
