

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

1 **From Multi-Allele Fish to Non-Standard
2 Environments, How ZFIN Assigns Phenotypes,
3 Human Disease Models, and Gene Expression
4 Annotations to Genes**

5

6 Yvonne M. Bradford^{1*}, Ceri E. Van Slyke¹, Douglas G. Howe¹, David Fashena¹, Ken Frazer¹, Ryan
7 Martin¹, Holly Paddock¹, Christian Pich¹, Sridhar Ramachandran¹, Leyla Ruzicka¹, Amy Singer¹,
8 Ryan Taylor¹, Wei-Chia Tseng¹, Monte Westerfield¹

9 ¹The Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA

10 * To whom correspondence should be addressed: Yvonne M. Bradford ybradford@zfin.org

11

12

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

13 Abstract

14 *Danio rerio* is a model organism used to investigate vertebrate development.
15 Manipulation of the zebrafish genome and resultant gene products by mutation or
16 targeted knockdown has made the zebrafish a good system for investigating gene
17 function, providing a resource to investigate genetic contributors to phenotype and
18 human disease. Phenotypic outcomes can be the result of gene mutation, targeted
19 knockdown of gene products, manipulation of experimental conditions, or any
20 combination thereof. Zebrafish have been used in various genetic and chemical screens
21 to identify genetic and environmental contributors to phenotype and disease outcomes.
22 The Zebrafish Information Network (ZFIN) is the central repository for genetic, genomic,
23 and phenotypic data that result from research using *Danio rerio*. Here we describe how
24 ZFIN annotates phenotype, expression, and disease model data across various
25 experimental designs, how we computationally determine wild-type gene expression,
26 the phenotypic gene, and how these results allow us to propagate gene expression,
27 phenotype, and disease model data to the correct gene, or gene related entity.

28

29 Introduction

30 Understanding gene and protein function can provide insight to elucidate the intricate
31 cellular mechanisms that are responsible for the development, growth, pathology, and
32 senescence of organisms. Observing the results of gene mutation is the cornerstone of
33 elucidating and understanding gene function. The zebrafish, *Danio rerio*, has been used
34 in forward and reverse genetic screens to study gene function and understand the
35 mechanisms of vertebrate development (Haffter *et al.* 1996)(Driever *et al.* 1996)(Moens
36 *et al.* 2008)(Golling *et al.* 2002)(Varshney *et al.* 2013). The results of gene function
37 studies in zebrafish are relevant to understanding human gene function due to the
38 conservation of gene sequences and functions between zebrafish and humans (Howe
39 *et al.* 2013a)(Postlethwait *et al.* 2000). Due to similarities between zebrafish and human
40 organ functions and physiology, zebrafish have been used to model human diseases
41 that affect the cardiovascular (Smith *et al.* 2009) (Liu *et al.* 2019), nervous (Chapman *et*
42 *al.* 2013) (Hin *et al.* 2020), visual (Zhang *et al.* 2016), muscular (Majczenko *et al.* 2012)
43 (Widrick *et al.* 2016), and many other systems. In addition to understanding gene
44 function and disease modeling, zebrafish are increasingly used for toxicology and drug
45 discovery studies, as well as research that explores the effects of genotype and
46 environment on phenotype and disease (Zon and Peterson 2005) (Kaufman *et al.* 2009)
47 (Cassar *et al.* 2019) (Williams *et al.* 2014)(Wheeler *et al.* 2019)

48 The Zebrafish Information Network, ZFIN, is the database resource for zebrafish
49 research that annotates, curates, and makes data available from zebrafish research that
50 spans genetic perturbations, chemically induced phenotypes, and human disease
51 models, as well as gene expression (Sprague *et al.* 2008)(Ruzicka *et al.* 2015)(Howe *et*
52 *al.* 2017). ZFIN curates gene expression, phenotype, and human disease model data by

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

53 annotating the genotypes, experimental conditions, anatomical structures, phenotype
54 statements, and disease models reported in zebrafish research publications (Sprague *et*
55 *al.* 2006)(Howe *et al.* 2013b)(Bradford *et al.* 2017). These annotations can include
56 genotypes with one or many alleles and experimental conditions that range from
57 standard conditions to manipulation of temperature, diet, chemical, or other diverse
58 conditions. Due to the breadth of data that represent combinations of genotype and
59 environment that produce a phenotypic outcome or human disease model, it can be
60 challenging to determine whether a particular allele or environment is causative. To
61 understand gene function and clarify how gene dysfunction contributes to disease, it is
62 necessary to separate genetic phenotypes from those caused by the environment. ZFIN
63 has developed a data model and algorithms that distinguish the genotype and
64 environment components of an annotation to parse genetic and environmental
65 contributors to phenotypes, using the results to infer which genes are causative of a
66 phenotype. Here we discuss the ZFIN annotation components and computational logic
67 used to infer wild-type gene expression, gene-phenotype and gene-human disease
68 relationships and the ZFIN webpages and download files where the data are available.

69

70 ZFIN Annotation Components

71 There are three main components to ZFIN gene expression, phenotype, and human
72 disease model annotations: 1) the genotype of the fish including gene knockdown
73 reagents used (Fish), 2) the experimental conditions applied, and 3) an ontological
74 representation of the results.

75 Fish

76 Zebrafish are an effective vertebrate model organism to understand gene function
77 through gene mutation. Mutant gene loci are curated as alleles of genes and are part of
78 a genotype together with the background strain when that information is provided.
79 Zebrafish are also amenable to transgene insertion to knock out genes, insert mutant
80 genes, or over-express genes to manipulate gene function (Amsterdam *et al.* 2004)
81 (Kimelman *et al.* 2017) (Clark *et al.* 2011). ZFIN creates transgenic allele records for
82 transgene insertions, and these alleles are represented in the genotype when
83 applicable. Site specific mutagenesis using CRISPRs and TALENs is also used in
84 zebrafish to screen for candidate genes (Jao *et al.* 2013) (Zu *et al.* 2013). Zebrafish
85 crisprants, F0 founder zebrafish created using CRISPRs, are also used to phenocopy
86 loss of function mutants (Bek *et al.* 2021). In addition, gene function can be investigated
87 in zebrafish using morpholinos, which knockdown the gene by targeting RNA, effectively
88 silencing the gene product (Nasevicius and Ekker 2000) (Ekker and Larson 2001). ZFIN
89 groups Morpholinos, CRISPRs, TALENs in a class called Sequence Targeting
90 Reagents (STR) due to the sequence specific nature of these reagents. Both alleles and
91 STRs have relationships to the genes they knockout or target. Because there are many
92 ways in which gene function can be investigated in zebrafish, a flexible data model is

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

93 needed to determine causative genes. To understand all of the genes that are affected
94 due to either mutation or knockdown, ZFIN uses a data model that groups the genotype
95 and applied STR in an object called Fish. The Fish represents the genotype and any
96 STRs that have been used for gene knockdown.

97 Experimental Conditions

98 Zebrafish are used in a wide array of experimental contexts. To represent the
99 experiments reported in research publications, the conditions applied are curated using
100 ontology terms from the Zebrafish Experimental Conditions Ontology (ZECO) (Bradford
101 *et al.* 2016) along with terms for the Zebrafish Anatomy Ontology (ZFA) (Van Slyke *et*
102 *al.* 2014), Chemical Entities of Biological Interest (ChEBI) (Hastings *et al.* 2016), and
103 NCBI Taxon (Federhen 2012). The ZECO ontology contains the main types of
104 conditions with high-level nodes that include standard conditions for zebrafish
105 husbandry as described in The Zebrafish Book (Westerfield 2000), control conditions
106 (such as vehicle injections), biological treatment (such as exposure to bacteria),
107 chemical treatment, diet alterations, housing conditions, *in vitro* culture, surgical
108 manipulation, lighting conditions, temperature exposure, radiation exposure, and water
109 quality. ZECO terms from the biological treatment branch are combined with NCBI
110 Taxon terms to annotate conditions where another organism is added to the
111 environment or when the zebrafish are raised in germ-free environments. The chemical
112 treatment branch of ZECO is combined with chemicals from the ChEBI ontology to
113 annotate the chemical that was used in the experiment. The surgical manipulation
114 branch is combined with terms from the ZFA ontology to denote the anatomical
115 structures that underwent ablation, resections, or other surgical manipulations. For
116 instances when a cellular component, such as an axon, is ablated, GO-CC terms are
117 used along with ZFA terms.

118

119 Ontological Representation of Results

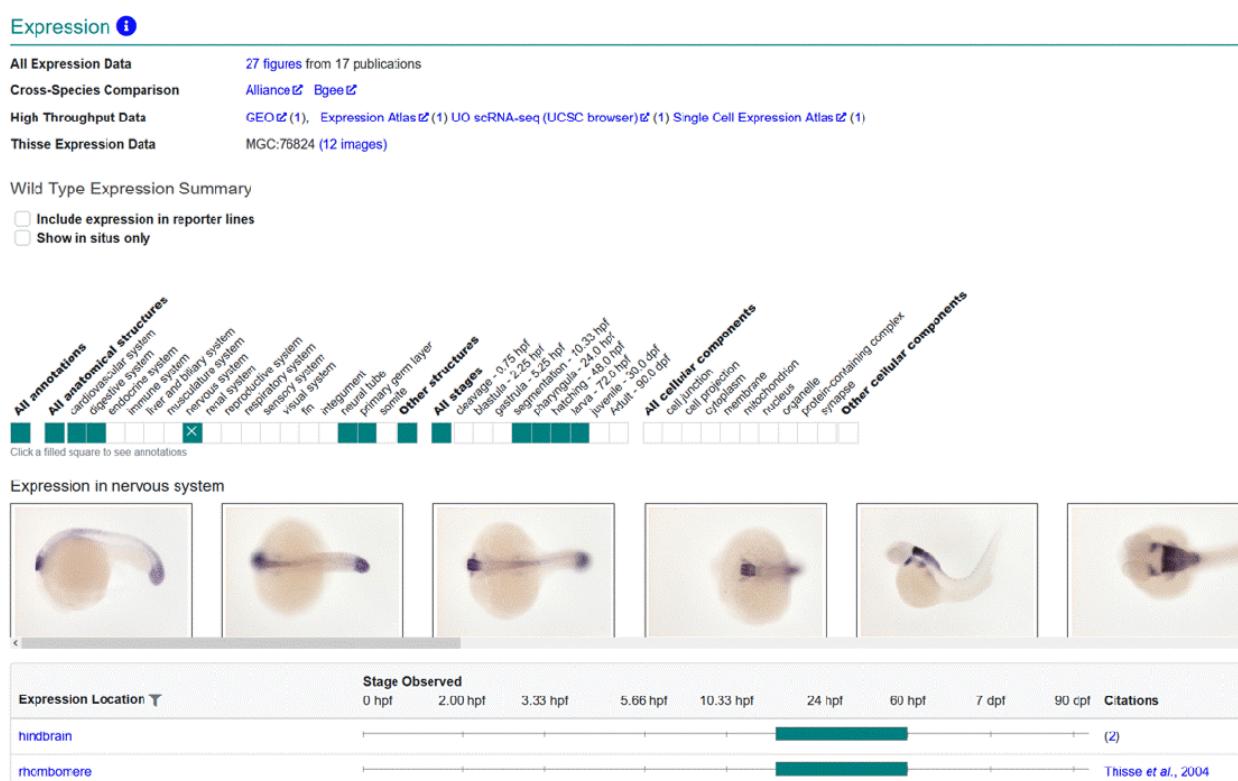
120 ZFIN uses multiple ontologies to annotate gene expression, phenotype, human disease
121 model, and gene function results. Disease, expression, and phenotype annotations
122 include the Fish and experimental conditions. To complete disease annotations, terms
123 from the Disease Ontology (DO) (Schriml *et al.* 2019) are added. To describe the
124 location of the expression or phenotype annotation, terms from the ZFA, the Zebrafish
125 Stage Ontology (ZFS) (Van Slyke *et al.* 2014), Gene Ontology Cellular Compartment
126 (GO-CC)(Ashburner *et al.* 2000)(Carbon *et al.* 2019), Spatial Ontology (BSPO) (Dahdul
127 *et al.* 2014), and ChEBI are used. Expression annotations include the gene that is
128 expressed as well as the assay type using terms from the Measurement Method
129 Ontology (MMO)(Smith *et al.* 2013). Phenotypes pertaining to the biological process or
130 molecular function of a gene use GO Molecular Function (GO-MF) or GO Biological
131 Process (GO_BP) terms in the annotation. All phenotype annotations use terms from
132 the Phenotype and Trait Ontology (PATO) (Gkoutos *et al.* 2005). Gene function is
133 annotated with the gene symbol and gene function terms from the Gene Ontology (GO)

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

134 (Ashburner *et al.* 2000)(Carbon *et al.* 2019) as well as evidence terms from the
135 Evidence and Conclusion Ontology (ECO)(Nadendla *et al.* 2022). All ZFIN annotations
136 reference the publication that reported the results.

137 In summary, ZFIN gene expression, phenotype, and disease model annotations are
138 multipartite including the genotype and applied knockdown reagents as Fish, the
139 experimental conditions, and the ontological representation of the results. See Table 1a-
140 c for examples of gene expression, phenotype, and human disease model annotations.

141 Database Logic for Gene Expression, Gene-Phenotype, Gene- 142 Disease Associations


143 As described in the previous section, each data type provides different information used
144 to construct an annotation. To be able to understand the function of a single gene, it is
145 necessary to isolate the environmental factors from the genetic interactions within an
146 annotation and ensure correct attribution of the experimental outcome to a single gene,
147 if appropriate. To facilitate the correct representation of data sets and data displays,
148 ZFIN has established query logic or algorithms to parse the details of existing
149 annotations and display on the gene page those data that show where a gene is
150 normally expressed and the phenotypic results of mutation or knockdown of that specific
151 gene.

152 Wild-Type Gene Expression

153 Understanding the wild-type expression profile of genes is essential to understand what
154 systems and structures a gene contributes to developmentally and is necessary as a
155 comparator when evaluating gene expression in mutant or gene-knockdown zebrafish.
156 ZFIN curators annotate gene expression in both wild-type and mutant backgrounds as
157 well as what experimental conditions are present. To determine wild-type gene
158 expression, algorithms are designed to identify gene expression in Fish that have wild-
159 type backgrounds, no mutant alleles, in standard or control conditions. Gene expression
160 results that meet these criteria are displayed on the gene page (Figure 1) and are
161 provided in the 'Expression data for wild-type fish' download file available on the
162 downloads page (<https://zfin.org/downloads>). Mutant or non-wild-type zebrafish gene
163 expression can be found on the Fish page, via the search interface, in the download file
164 'ZFIN Genes with Expression Assay Records', and on STR pages. The STR page
165 displays expression in Fish only where a single STR is used in a wild-type background
166 (Figure 4).

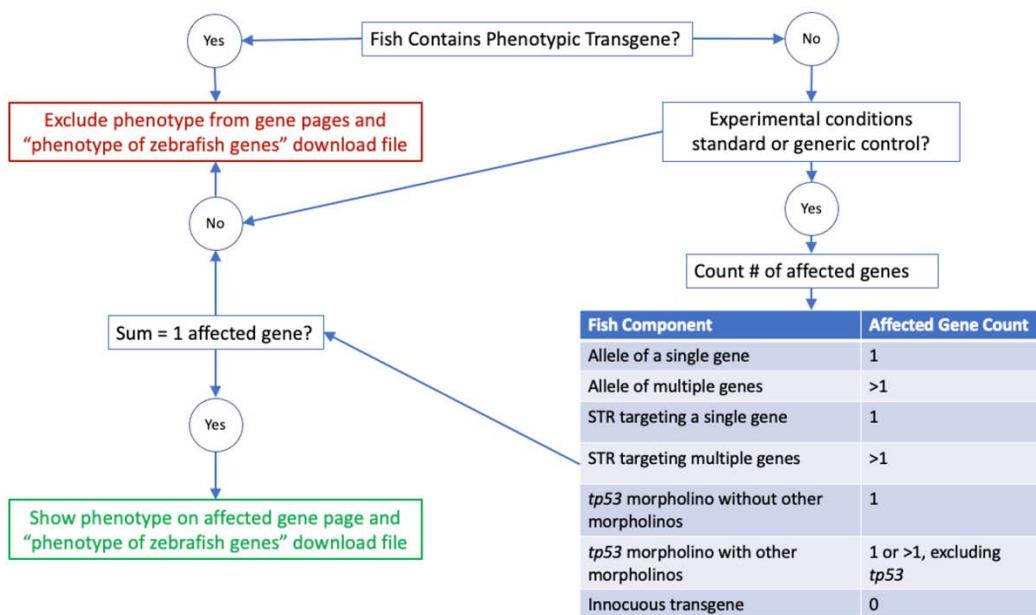
167

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

168

169 Figure 1. Gene page gene expression. Gene expression displayed on the gene page is limited
170 to gene expression results in wild-type backgrounds. The Wild-Type Expression Summary
171 displays a graphical ribbon that denotes the anatomical systems and stages that have gene
172 expression annotations. The table lists the anatomical terms, stages and citations.

173 Affected Gene for Phenotype and Disease Model


174 To determine the function of a gene, it is instructive to look at the phenotypic outcomes
175 of mutant and gene-knockdown zebrafish. Phenotype can encompass many levels of
176 observation from morphologic changes at the level of the whole organism to changes in
177 gene expression and protein location within a cell. To draw conclusions about what
178 functions a gene has in the cell or organism, it is necessary to ensure that the
179 phenotypes attributed to the gene are solely caused by changes to that gene. ZFIN has
180 developed algorithms to determine the total number of altered or affected genes in a
181 Fish, which is used to determine the causative gene. The number of affected genes is
182 determined by counting distinct genes associated with alleles and STRs that are
183 associated with a Fish. When the affected gene count equals one and the experimental
184 conditions are standard/generic control, the phenotype or disease association is inferred
185 or calculated to be caused by the gene associated to the Fish either by is_allele
186 relationship or by STR target relationship. There are various ways to arrive at gene
187 count = 1. As illustrated in Figure 2, Fish can have one affected gene but can be more
188 or less complex in their genetic makeup. For example, a Fish with a single allele with
189 one affected gene, a Fish with multiple alleles where all alleles affect the same gene, a
190 wild-type Fish injected with one or more STRs targeting one gene, and a non-

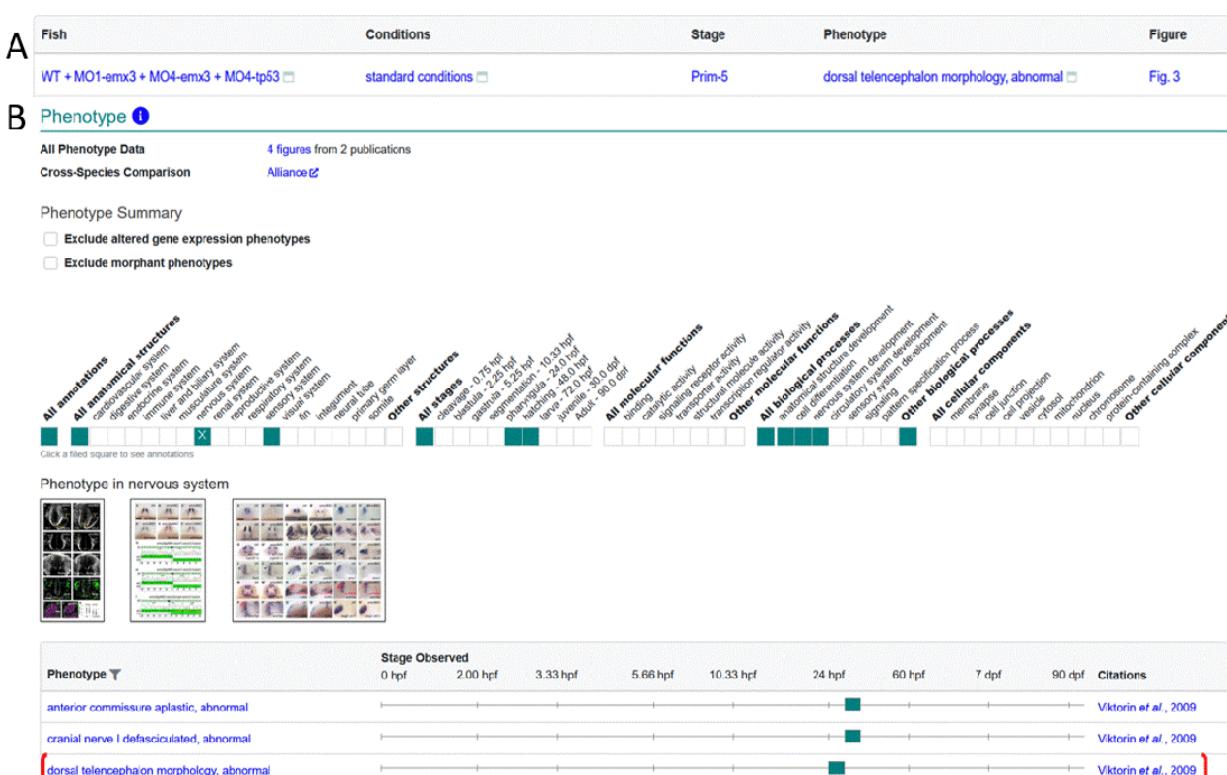
How ZFIN Assigns Phenotypes, Disease, Expression to Genes

191 phenotypic transgenic line injected with one or more STRs that target one gene all have
192 only a single affected gene.

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

A

B


Fish	Affected Genes	Affected Gene Count	Affected Gene
			Description
WT + MO1-tm33	tm33	1	wild type fish with one STR targeting a single gene
<i>casr</i> ^{b190/+} ; <i>casr</i> ^{b198/+}	casr	1	a trans-heterozygous Fish with two alleles affecting a single gene
WT + MO1-tm33 + MO2-tm33	tm33	1	wild type fish with multiple STRs targeting a single gene
hu5333Tg; y1Tg + MO1-tm33 + MO2-tm33	tm33	1	two innocuous transgenes with multiple STRs targeting a single gene
WT + MO4- <i>tp53</i>	<i>tp53</i>	1	wild type fish with a morpholino targeting <i>tp53</i>
WT + MO1-tm33 + MO1- <i>tp53</i>	tm33	1	wild type fish with one morpholino targeting a single gene plus a <i>tp53</i> morpholino
WT + MO1-smad5 + MO1-smad9	smad5,smad9	2	wild type fish with two morpholinos targeting two different genes
WT + MO1-emx3 + MO4-emx3 + MO4- <i>tp53</i>	emx3	1	wild type fish with two morpholinos targeting a single gene plus a <i>tp53</i> morpholino
AB + MO2-drl,dril.1,dril.2	drl, dril.1, dril.2	3	AB fish with single morpholino which targets three related genes
zdf11Tg + MO2-che1 + MO4- <i>tp53</i>	che1	1	innocuous transgene with MO targeting a single gene and a <i>tp53</i> MO
<i>aanat1</i> ^{ct823/ct823}	<i>aanat1</i>	1	one allele affecting a single gene
<i>aanat1</i> ^{ct823/ct823} ; <i>aanat2</i> ^{ct801/ct801}	<i>aanat1</i> , <i>aanat2</i>	2	two alleles affecting two different genes
<i>plcg1</i> ^{t26480/t26480} ; y1Tg	<i>plcg1</i>	1	one allele affecting a single gene with an innocuous transgene present
Df(Chr07:ccne,eng2a,shha)b240/b240	ccne, eng2a, shha	3	a single deficiency affecting three genes

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

194 Figure 2. Logic for determining how many genes are affected in a Fish and whether or not
195 associated phenotype data can be shown on a gene page. A) A logic flow diagram describing
196 the algorithm used to determine how many genes are affected in a Fish and whether phenotype
197 data can be shown on a gene page. B) A table of examples of Fish that result in variable
198 numbers of affected genes.

199

200 We have recently added rules to the algorithm that do not count *tp53* as an affected
201 gene in Fish where morpholinos against *tp53* were used in addition to other non-*tp53*
202 morpholinos. This rule accommodates the way zebrafish researchers use morpholinos
203 against *tp53* to deal with non-specific effects of morpholinos (Robu *et al.* 2007).
204 Previously, a Fish that had two morpholinos, one of which was against *tp53*, would be
205 considered to have two affected genes and the phenotype would be excluded from
206 gene pages. The algorithm now ignores *tp53* morpholinos in the Fish and the resulting
207 group of morpholinos is used to obtain the affected gene count, with data propagated to
208 the gene page when the gene count equals one (Figure 3).

209

210 Figure 3. Display of MO-*tp53* Fish data on Gene page. A) Phenotype data for Fish WT+MO1-
211 emx3+MO4-emx3+MO4-*tp53* in standard conditions as reported in Viktorin *et al.* 2009. B) The
212 phenotype summary section on the *emx3* gene page has a ribbon that denotes systems,
213 stages, biological processes and cellular components that have annotations, with individual
214 annotations displayed in the table. Thumbnail images are displayed when available. Phenotype
215 corresponding to Fish in A is denoted by red bracket.

216

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

217 In addition to counting the number of affected genes the algorithms account for
218 transgenic lines, both those that are treated as wild-type equivalents by the research
219 community and those used to alter the expression of a gene. ZFIN annotates transgenic
220 genomic features (alleles) as phenotypic or innocuous based on the transgenic
221 construct associated with them. The phenotypic relationship is used with constructs that
222 drive expression of either an endogenous zebrafish gene or a gene from another
223 species (Table 2). These constructs are expected to produce protein products that can
224 have a phenotypic effect. The innocuous relationship is used with constructs that drive
225 the expression of fluorescent proteins, or are unable to transcribe a protein product
226 unless inserted near a native promoter, such as gene trap constructs. Information on
227 the innocuous or phenotypic relationship between a genomic feature and a construct is
228 available in the 'Innocuous/Phenotypic Construct Details' download file. Fish containing
229 genomic features that have a phenotypic relationship to a construct are excluded by
230 affected gene count algorithms because phenotype and disease annotations using such
231 Fish cannot be attributed to a single gene. Fish that have genomic features with an
232 innocuous relationship to a construct are counted as wild-type equivalents by the
233 affected gene count algorithms. The resulting data allow us to determine
234 computationally the affected gene count. In addition to gene count and innocuous or
235 transgenic genomic features, the experimental conditions are also taken into account
236 when determining whether the phenotype or disease model data can be attributed to a
237 gene. When the experimental conditions are standard or generic control and the
238 affected gene count is one, the resulting phenotype or disease association is inferred to
239 be caused by the one affected gene. These data are then propagated to the gene page,
240 gene related entity pages, and download files.

241 Similar rules are employed for determining whether phenotype is caused by an STR or
242 may be the result of a combination of genetic affectors. On the STR page, phenotype in
243 Fish with only a single STR targeting a single gene in a wild-type or non-phenotypic
244 transgenic background is displayed in the section where the label starts with
245 "Phenotype resulting from" followed by the STR name (Figure 4). For more complex
246 Fish or when the STR has multiple targets, the phenotypes are displayed in a section
247 labeled "Phenotype of all Fish created by or utilizing" followed by the STR name(s).

248
249

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

Expression

Gene expression in Wild Types + MO1-vcana

Expressed Gene	Anatomy	Figures
<i>cldn5</i>	atrioventricular canal	Fig. 2 from Lee et al., 2015 Fig. 8 from Chen et al., 2012
<i>anrnr5</i>	atrioventricular canal	Fig. 2 from Lee et al., 2015

1 - 2 of 2

▼ Show all

Phenotype	Fish	Figures
blood protein decreased amount, abnormal	ht500tg + MO1-vcana	Fig. 4 from Müller-Delle et al., 2016
endocardial cushion morphology, abnormal	AB + MO1-vcana	Fig. 8 from Chen et al., 2012
pericardium edematous, abnormal	ht500tg + MO1-vcana	Fig. 4 from Müller-Delle et al., 2016
pronephric glomerulus lacks parts or has fewer parts of type glomerular basement membrane glomerular endothelium fenestra, abnormal	AB + MO1-vcana	Fig. 6 from Müller-Delle et al., 2016
pronephric podocyte decreased length, abnormal	AB + MO1-vcana	Fig. 6 from Müller-Delle et al., 2016

1 - 6 of 6

▼ Show all

Phenotype of all Fish created by or utilizing MO1-vcana

Phenotype	Fish	Conditions	Figures
endocardial cushion morphology, abnormal	AB + MO1-vcana	standard conditions	Fig. 8 from Chen et al., 2012
pronephric glomerulus lacks parts or has fewer parts of type glomerular basement membrane glomerular endothelium fenestra, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Delle et al., 2016
pronephric podocyte decreased length, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Delle et al., 2016
pronephric podocyte increased width, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Delle et al., 2016
atrioventricular canal shh10 expression absent, abnormal	WT + MO1-vcana	chemical treatment: amiodarone	Fig. 2 from Lee et al., 2015

1 - 5 of 5

▼ Show all

250
251
252
253
254
255
256
257

Figure 4. STR page. Expression display is limited to fish with a wild-type background under standard or control conditions. Phenotype display is divided into two sections, the first labeled “Phenotype resulting from MO1-vcana” contains phenotype only in wild-type or innocuous transgenic fish with standard conditions. Phenotype in more complex fish or under non standard conditions as well as the phenotype from the previous section is displayed in the section labeled “Phenotype of all Fish created by or utilizing MO1-vcana”.

258

Conclusion

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

The development, growth and senescence of organisms is the result of an elegant orchestra of gene expression, protein function, pathology, and the environment. Understanding gene and protein function is essential knowledge that provides insight into the cellular mechanisms of developmental and disease processes. Gene function has traditionally been elucidated using gene mutation and targeted gene knockdown. Genetic and experimental condition manipulation, either singly or in combination, produces phenotypic outcomes. Zebrafish have been used in forward and reverse genetic screens to study gene function, model human disease, understand toxicology, and discover drugs. ZFIN curates genetic, genomic, phenotypic, and disease model data that result from zebrafish research. The algorithms used by ZFIN support the identification of wild-type expression patterns, genes that are causative for phenotypes, and disease models from data collected in a wide variety of genetic backgrounds and experimental conditions. The resulting data are presented on the gene, STR, and disease pages as well as in specialized download files. The aggregation of these data on discrete pages and download files allows users to quickly synthesize data about gene function, phenotypic outcomes and disease models without having to compile

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

275 manually the research from many genotypes, gene knockdowns, and experimental
276 conditions.
277

278 Funding

279 National Human Genome Research Institute at the US National Institutes of Health [U41
280 HG002659 (ZFIN) and U24 HG010859 (Alliance of Genome Resources)].

281

282

283

284 Table 1a. Gene Expression annotations

285

Gene	Fish	Experimental Condition	Stage	Expression	Reference
<i>pax2a</i>	AB	Standard conditions [ZECO:0000103]	Pharyngula:Prim-25 [ZFS:0000031]	Optic furrow [ZFA:0005491]	ZDB-PUB-180407-9; PMID: 29625437
<i>pax2a</i>	<i>aldh1a</i> ^{i26/i26}	Standard conditions [ZECO:0000103]	Segmentation:10-13 somites [ZFS:0000025]	Lateral plate mesoderm [ZFA:0000121]	ZDB-PUB-011002-4; PMID: 11688558
<i>pax2a</i>	<i>cyp26a1</i> ^{rw716/rw716}	Chemical treatment: all-trans-retinoic acid [ZECO:0000111], [CHEBI:15367]	Segmentation: 1-4 somites [ZFS:0000023]	Midbrain hindbrain boundary neural keel [ZFA:0007045]	ZDB-PUB-061227-41; PMID: 17164423
<i>pax2a</i>	AB+MO6-pax8+MO7-pax8	Standard conditions [ZECO:0000103]	Segmentations: 5-9 somites [ZFS:0000024]	Epibranchial field [ZFA:0007061]	ZDB-PUB-110119-6; PMID: 21215261

286

287

288 Table 1b. Phenotype annotations

289

Fish	Experimental Conditions	Stage	Phenotype	Reference
<i>sox9a</i> ^{tw37/tw37}	Standard conditions [ZECO:0000103]	Larval:Day 5 [ZFS:0000037]	Ceratohyal cartilage decreased size, abnormal [ZFA:0001400], [PATO:0000587]	ZDB-PUB-970210-30; PMID: 9007254
hu11688Tg+MO1-tnnt2a(TL)	Chemical treatment by environment:	Larval:Protruding-mouth [ZFS:0000035]	Heart contraction increased rate, abnormal	ZDB-PUB-181004-5; PMID: 30279735

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

	isoprenaline [ZECO:0000238], [CHEBI:64317]		[GO:0060047], [PATO:0000912]	
AB+CRISPR1- cyp1b1+CRISPR2- cyp1b1	Standard Conditions [ZECO:0000103]	Larval:Day 6 [ZFS:0000038]	Ventral mandibular arch immature, abnormal [ZFA:0001273], [PATO:0001501]	ZDB-PUB-210703-31; PMID: 34208498
x17Tg	Heat shock [ZECO:0000166]	Larval:Protruding- mouth [ZFS:0000035]	Posterior macula mislocalised, abnormal [ZFA:0000558], [PATO:0000628]	ZDB-PUB-190426-5; PMID: 31022185

290
291
292

Table 1c. Human disease model annotations

Fish	Experimental Conditions	Human Disease	Reference
<i>rps19^{zf556/zf5556}</i>	Standard conditions [ZECO:0000103]	Diamond-Blackfan anemia [DOID:1339]	ZDB-PUB-140728-17; PMID: 25058426
WT+MO1-rpl11	Standard conditions [ZECO:0000103]	Diamond-Blackfan anemia [DOID:1339]	ZDB-PUB-151021-8; PMID: 26484089
WT	Chemical treatment: pentetrazol [ZECO:0000111], [CHEBI:34910]	Epilepsy [DOID:1826]	ZDB-PUB-160311-7; PMID: 26961169
AB	Fungal treatment by injection: <i>Candida</i> <i>albicans</i> [ZECO:0000232], [NCBITaxon:5476]	Candidiasis [DOID:1508]	ZDB-PUB-200119-2; PMID: 31952292

293
294
295
296
297
298
299
300
301

302 Table 2. Innocuous and phenotypic constructs

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

Genomic Feature	relationship	Construct	Construct description
rw021Tg	Contains innocuous sequence feature	Tg(atoh7:GFP)	Promoter for <i>atoh7</i> drives expression of GFP
ncu102Tg	Contains innocuous sequence feature	Tg(hsp70l:cyfip2_C179R-EGFP)	Promoter for <i>hsp70l</i> drives mutant <i>cyfip2</i> that produces protein change of C to R at position 179
ua3162Tg	Contains phenotypic sequence feature	Tg(open1sw1:nrl)	Promoter for <i>open1sw1</i> drives expression of <i>nrl</i>
ns103Tg	Contains phenotypic sequence feature	Tg(rag2:Hsa.ALDH1A2)	Promoter for <i>rag2</i> drives expression of Human gene ALD1A2 expression

303

304

305

306

307

308 References

309 Amsterdam A., R. M. Nissen, Z. Sun, E. C. Swindell, S. Farrington, *et al.*, 2004 Identification of 315 genes
310 essential for early zebrafish development. *Proc. Natl. Acad. Sci. U. S. A.* 101: 12792–12797.
311 <https://doi.org/10.1073/PNAS.0403929101>

312 Ashburner M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, *et al.*, 2000 Gene ontology: Tool for the
313 unification of biology. *Nat. Genet.* 25: 25–29.

314 Bek J. W., C. Shochat, A. De Clercq, H. De Saffel, A. Boel, *et al.*, 2021 Lrp5 Mutant and Crispant Zebrafish

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

315 Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based
316 Functional Screening of Osteoporosis Candidate Genes. *J. Bone Miner. Res.* 36: 1749–1764.
317 <https://doi.org/10.1002/JBMR.4327>

318 Bradford Y. M., C. E. Van Slyke, S. Toro, and S. Ramachandran, 2016 The zebrafish experimental
319 conditions ontology: Systemizing experimental descriptions in ZFIN, in *CEUR Workshop
320 Proceedings*,.

321 Bradford Y. M., S. Toro, S. Ramachandran, L. Ruzicka, D. G. Howe, *et al.*, 2017 Zebrafish models of
322 human disease: Gaining insight into human disease at ZFIN. *ILAR J.* 58: 4–16.
323 <https://doi.org/10.1093/ilar/ilw040>

324 Carbon S., E. Douglass, N. Dunn, B. Good, N. L. Harris, *et al.*, 2019 The Gene Ontology Resource: 20 years
325 and still GOing strong. *Nucleic Acids Res.* 47: D330–D338. <https://doi.org/10.1093/nar/gky1055>

326 Cassar S., I. Adatto, J. L. Freeman, J. T. Gamse, aki Iturria, *et al.*, 2019 Use of Zebrafish in Drug Discovery
327 Toxicology. <https://doi.org/10.1021/acs.chemrestox.9b00335>

328 Chapman A. L., E. J. Bennett, T. M. Ramesh, K. J. De Vos, and A. J. Grierson, 2013 Axonal Transport
329 Defects in a Mitofusin 2 Loss of Function Model of Charcot-Marie-Tooth Disease in Zebrafish. *PLoS
330 One* 8. <https://doi.org/10.1371/JOURNAL.PONE.0067276>

331 Clark B. S., M. Winter, A. R. Cohen, and B. A. Link, 2011 Generation of Rab-based transgenic lines for in
332 vivo studies of endosome biology in zebrafish. *Dev. Dyn.* 240: 2452–2465.
333 <https://doi.org/10.1002/DVDY.22758>

334 Dahdul W. M., H. Cui, P. M. Mabee, C. J. Mungall, D. Osumi-Sutherland, *et al.*, 2014 Nose to tail, roots to
335 shoots: Spatial descriptors for phenotypic diversity in the Biological Spatial Ontology. *J. Biomed.
336 Semantics* 5: 1–13. <https://doi.org/10.1186/2041-1480-5-34>

337 Driever W., L. Solnica-Krezel, A. F. Schier, S. C. F. Neuhauss, J. Malicki, *et al.*, 1996 A genetic screen for
338 mutations affecting embryogenesis in zebrafish. *Development* 123: 37–46.
339 <https://doi.org/10.1242/DEV.123.1.37>

340 Ekker S. C., and J. D. Larson, 2001 Morphant technology in model developmental systems. *Genesis* 30:
341 89–93. <https://doi.org/10.1002/GENE.1038>

342 Federhen S., 2012 The NCBI Taxonomy database. *Nucleic Acids Res.* 40: D136–D143.
343 <https://doi.org/10.1093/NAR/GKR1178>

344 Gkoutos G. V., E. C. J. Green, A. M. Mallon, J. M. Hancock, and D. Davidson, 2005 Using ontologies to
345 describe mouse phenotypes. *Genome Biol.* 6. <https://doi.org/10.1186/gb-2004-6-1-r8>

346 Golling G., A. Amsterdam, Z. Sun, M. Antonelli, E. Maldonado, *et al.*, 2002 Insertional mutagenesis in
347 zebrafish rapidly identifies genes essential for early vertebrate development. *Nat. Genet.* 2002 312
348 31: 135–140. <https://doi.org/10.1038/ng896>

349 Haffter P., M. Granato, M. Brand, M. C. Mullins, M. Hammerschmidt, *et al.*, 1996 The identification of
350 genes with unique and essential functions in the development of the zebrafish, *Danio rerio*.
351 *Development* 123: 1–36. <https://doi.org/10.1242/DEV.123.1.1>

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

352 Hastings J., G. Owen, A. Dekker, M. Ennis, N. Kale, *et al.*, 2016 ChEBI in 2016: Improved services and an
353 expanding collection of metabolites. *Nucleic Acids Res.* 44: D1214–D1219.
354 <https://doi.org/10.1093/nar/gkv1031>

355 Hin N., M. Newman, J. Kaslin, A. M. Douek, A. Lumsden, *et al.*, 2020 Accelerated brain aging towards
356 transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2. *PLoS One*
357 15. <https://doi.org/10.1371/JOURNAL.PONE.0227258>

358 Howe K., M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, *et al.*, 2013a The zebrafish reference
359 genome sequence and its relationship to the human genome. *Nature*.
360 <https://doi.org/10.1038/nature12111>

361 Howe D. G., Y. M. Bradford, T. Conlin, A. E. Eagle, D. Fashena, *et al.*, 2013b ZFIN, the Zebrafish Model
362 Organism Database: increased support for mutants and transgenics. *Nucleic Acids Res.* 41: D854–
363 60. <https://doi.org/10.1093/nar/gks938>

364 Howe D. G. D. G., Y. M. Y. M. Bradford, A. Eagle, D. Fashena, K. Frazer, *et al.*, 2017 The Zebrafish Model
365 Organism Database: new support for human disease models, mutation details, gene expression
366 phenotypes and searching. *Nucleic Acids Res.* 45: D758–D768.
367 <https://doi.org/10.1093/nar/gkw1116>

368 Jao L. E., S. R. Wente, and W. Chen, 2013 Efficient multiplex biallelic zebrafish genome editing using a
369 CRISPR nuclease system. *Proc. Natl. Acad. Sci. U. S. A.* 110: 13904–13909.
370 <https://doi.org/10.1073/PNAS.1308335110/-/DCSUPPLEMENTAL>

371 Kaufman C. K., R. M. White, and L. Zon, 2009 Chemical Genetic Screening in the Zebrafish Embryo. *Nat.*
372 *Protoc.* 4: 1422. <https://doi.org/10.1038/NPROT.2009.144>

373 Kimelman D., N. L. Smith, J. K. H. Lai, and D. Y. R. Stainier, 2017 Regulation of posterior body and
374 epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1. *Elife* 6.
375 <https://doi.org/10.7554/ELIFE.31065>

376 Liu L., F. Fei, R. Zhang, F. Wu, Q. Yang, *et al.*, 2019 Combinatorial genetic replenishments in myocardial
377 and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. *Biol. Open* 8.
378 <https://doi.org/10.1242/BIO.046474>

379 Majczenko K., A. E. Davidson, S. Camelo-Piragua, P. B. Agrawal, R. A. Manfready, *et al.*, 2012 Dominant
380 mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical
381 cores. *Am. J. Hum. Genet.* 91: 365–371. <https://doi.org/10.1016/J.AJHG.2012.06.012>

382 Moens C. B., T. M. Donn, E. R. Wolf-Saxon, and T. P. Ma, 2008 Reverse genetics in zebrafish by TILLING.
383 *Briefings Funct. Genomics Proteomics* 7: 454. <https://doi.org/10.1093/BFGP/ELN046>

384 Nadendla S., R. Jackson, J. Munro, F. Quaglia, B. Mészáros, *et al.*, 2022 ECO: the Evidence and Conclusion
385 Ontology, an update for 2022. *Nucleic Acids Res.* 50: D1515–D1521.
386 <https://doi.org/10.1093/NAR/GKAB1025>

387 Nasevicius A., and S. C. Ekker, 2000 Effective targeted gene “knockdown” in zebrafish. *Nat. Genet.* 26:
388 216–20. <https://doi.org/10.1038/79951>

389 Postlethwait J. H., I. G. Woods, P. Ngo-Hazelett, Y. L. Yan, P. D. Kelly, *et al.*, 2000 Zebrafish Comparative

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

390 Genomics and the Origins of Vertebrate Chromosomes. *Genome Res.* 10: 1890–1902.
391 <https://doi.org/10.1101/GR.164800>

392 Robu M. E., J. D. Larson, A. Nasevicius, S. Beiraghi, C. Brenner, *et al.*, 2007 p53 activation by knockdown
393 technologies. *PLoS Genet.* 3: 787–801. <https://doi.org/10.1371/JOURNAL.PGEN.0030078>

394 Ruzicka L., Y. M. Bradford, K. Frazer, D. G. Howe, H. Paddock, *et al.*, 2015 ZFIN, The zebrafish model
395 organism database: Updates and new directions. *Genesis* 53. <https://doi.org/10.1002/dvg.22868>

396 Schriml L. M., E. Mitraka, J. Munro, B. Tauber, M. Schor, *et al.*, 2019 Human Disease Ontology 2018
397 update: Classification, content and workflow expansion. *Nucleic Acids Res.* 47: D955–D962.
398 <https://doi.org/10.1093/nar/gky1032>

399 Slyke C. E. C. E. Van, Y. M. Y. M. Bradford, M. Westerfield, and M. A. M. A. Haendel, 2014 The zebrafish
400 anatomy and stage ontologies: representing the anatomy and development of *Danio rerio*. *J.*
401 *Biomed. Semant.* 5: 12. <https://doi.org/10.1186/2041-1480-5-12>

402 Smith K. A., I. C. Joziasse, S. Chocron, M. Van Dinther, V. Guryev, *et al.*, 2009 Dominant-negative alk2
403 allele associates with congenital heart defects. *Circulation* 119: 3062–3069.
404 <https://doi.org/10.1161/CIRCULATIONAHA.108.843714/FORMAT/EPUB>

405 Smith J. R., C. A. Park, R. Nigam, S. J. F. Laulederkind, G. T. Hayman, *et al.*, 2013 The clinical
406 measurement, measurement method and experimental condition ontologies: expansion,
407 improvements and new applications. *J. Biomed. Semantics* 4. <https://doi.org/10.1186/2041-1480-4-26>

409 Sprague J., L. Bayraktaroglu, D. Clements, T. Conlin, D. Fashena, *et al.*, 2006 The Zebrafish Information
410 Network: the zebrafish model organism database. *Nucleic Acids Res.* 34: 581–585.
411 <https://doi.org/10.1093/nar/gkj086>

412 Sprague J., L. Bayraktaroglu, Y. Bradford, T. Conlin, N. Dunn, *et al.*, 2008 The Zebrafish Information
413 Network: the zebrafish model organism database provides expanded support for genotypes and
414 phenotypes. *Nucleic Acids Res.* 36: D768-72. <https://doi.org/10.1093/nar/gkm956>

415 Varshney G. K., J. Lu, D. E. Gildea, H. Huang, W. Pei, *et al.*, 2013 A large-scale zebrafish gene knockout
416 resource for the genome-wide study of gene function. *Genome Res.* 23: 727–735.
417 <https://doi.org/10.1101/GR.151464.112>

418 Viktorin G., C. Chiuchitu, M. Rissler, Z. M. Varga, and M. Westerfield, 2009 *Emx3* is required for the
419 differentiation of dorsal telencephalic neurons. *Dev. Dyn.* 238: 1984–1998.
420 <https://doi.org/10.1002/DVDY.22031>

421 Westerfield M., 2000 *The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio)*.
422 University of Oregon Press, Eugene, OR.

423 Wheeler M. A., M. Jaronen, R. Covacu, S. E. J. Zandee, G. Scalisi, *et al.*, 2019 Environmental Control of
424 Astrocyte Pathogenic Activities in CNS Inflammation. *Cell* 176: 581-596.e18.
425 <https://doi.org/10.1016/J.CELL.2018.12.012>

426 Widrick J. J., M. S. Alexander, B. Sanchez, D. E. Gibbs, G. Kawahara, *et al.*, 2016 Muscle dysfunction in a
427 zebrafish model of Duchenne muscular dystrophy. *Physiol. Genomics* 48: 850–860.

How ZFIN Assigns Phenotypes, Disease, Expression to Genes

428 <https://doi.org/10.1152/PHYSIOLGENOMICS.00088.2016>

429 Williams T. D., L. Mirbahai, and J. K. Chipman, 2014 The toxicological application of transcriptomics and
430 epigenomics in zebrafish and other teleosts. *Brief. Funct. Genomics* 13: 157–171.
431 <https://doi.org/10.1093/BFGP/ELT053>

432 Zhang J., C. Wang, Y. Shen, N. Chen, L. Wang, *et al.*, 2016 A mutation in ADIPOR1 causes nonsyndromic
433 autosomal dominant retinitis pigmentosa. *Hum Genet* 135: 1375–1387.
434 <https://doi.org/10.1007/s00439-016-1730-2>

435 Zon L. I., and R. T. Peterson, 2005 In vivo drug discovery in the zebrafish. *Nat. Rev. Drug Discov.* 2005 41
436 4: 35–44. <https://doi.org/10.1038/nrd1606>

437 Zu Y., X. Tong, Z. Wang, D. Liu, R. Pan, *et al.*, 2013 TALEN-mediated precise genome modification by
438 homologous recombination in zebrafish. *Nat. Methods* 2013 104 10: 329–331.
439 <https://doi.org/10.1038/nmeth.2374>

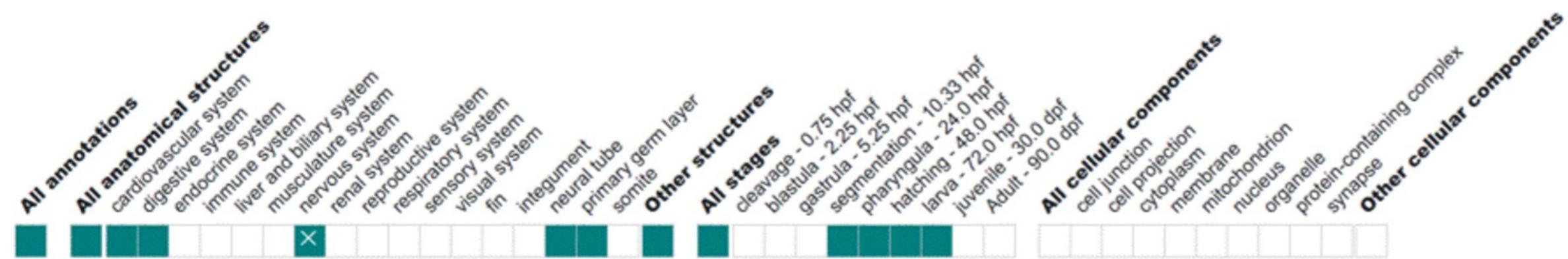
440

All Expression Data

27 figures from 17 publications

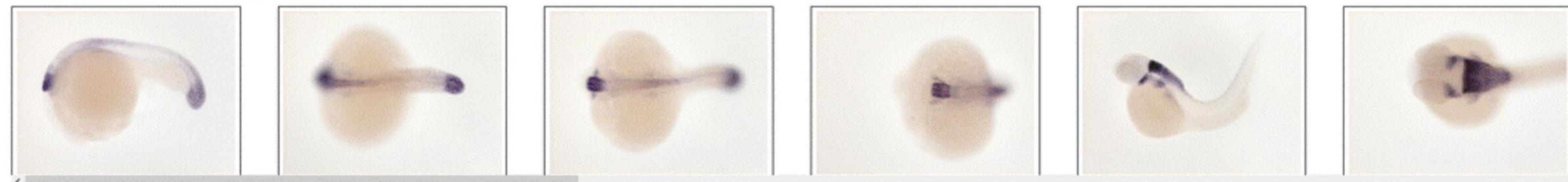
Cross-Species Comparison

Alliance Bgee


High Throughput Data

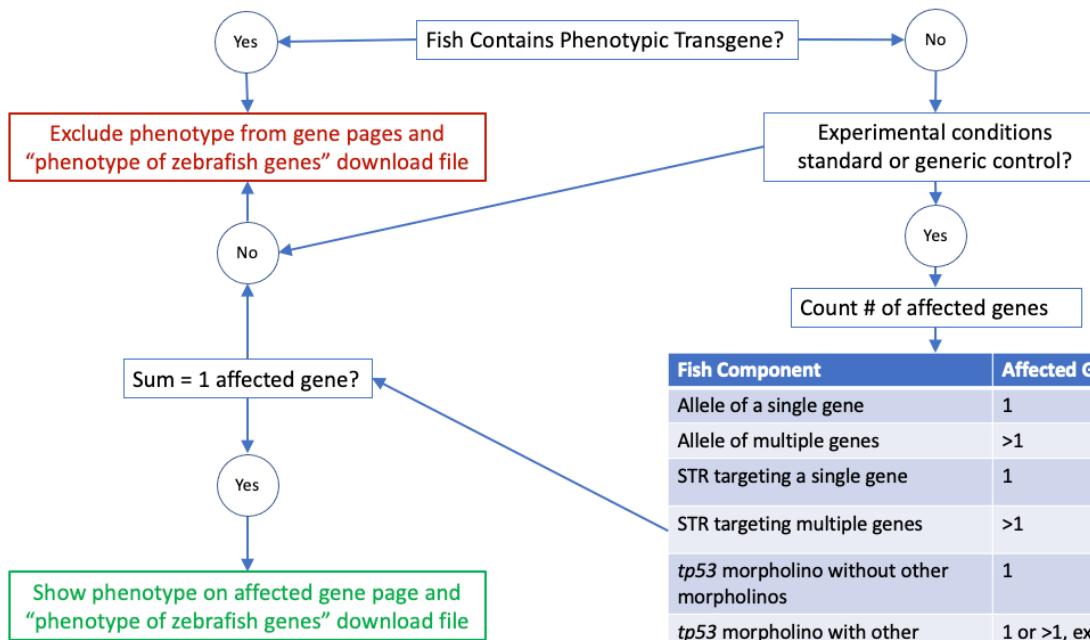
GEO (1), Expression Atlas (1) UO scRNA-seq (UCSC browser) (1) Single Cell Expression Atlas (1)

Thisse Expression Data


MGC:76824 (12 images)

Wild Type Expression Summary

 Include expression in reporter lines Show in situ only


Click a filled square to see annotations

Expression in nervous system

Expression Location	Stage Observed								Citations
	0 hpf	2.00 hpf	3.33 hpf	5.66 hpf	10.33 hpf	24 hpf	60 hpf	7 dpf	
hindbrain									(2)
rhombomere									Thisse et al., 2004

A

Fish Component	Affected Gene Count
Allele of a single gene	1
Allele of multiple genes	>1
STR targeting a single gene	1
STR targeting multiple genes	>1
<i>tp53</i> morpholino without other morpholinos	1
<i>tp53</i> morpholino with other morpholinos	1 or >1, excluding <i>tp53</i>
Innocuous transgene	0

B

Fish	Affected Gene		
	Affected Genes	Count	Description
WT + MO1-tm33	tm33	1	wild type fish with one STR targeting a single gene
casr ^{P190/+} ;casr ^{P198/+}	casr	1	a trans-heterozygous Fish with two alleles affecting a single gene
WT + MO1-tm33 + MO2-tm33	tm33	1	wild type fish with multiple STRs targeting a single gene
hu5333Tg; y1Tg + MO1-tm33 + MO2-tm33	tm33	1	two innocuous transgenes with multiple STRs targeting a single gene
WT + MO4-tp53	tp53	1	wild type fish with a morpholino targeting tp53
WT + MO1-tm33 + MO1-tp53	tm33	1	wild type fish with one morpholino targeting a single gene plus a tp53 morpholino
WT + MO1-smad5 + MO1-smad9	smad5,smad9	2	wild type fish with two morpholinos targeting two different genes
WT + MO1-emx3 + MO4-emx3 + MO4-tp53	emx3	1	wild type fish with two morpholinos targeting a single gene plus a tp53 morpholino
AB + MO2-drl,drll.1,drll.2	drl, drll.1, drll.2	3	AB fish with single morpholino which targets three related genes
zdf11Tg + MO2-chek1 + MO4-tp53	chek1	1	innocuous transgene with MO targeting a single gene and a tp53 MO
aanat1 ^{ct823/ct823}	aanat1	1	one allele affecting a single gene
aanat1 ^{ct823/ct823} ; aanat2 ^{ct801/ct801}	aanat1, aanat2	2	two alleles affecting two different genes
plcg1 ^{t26480/t26480} ; y1Tg	plcg1	1	one allele affecting a single gene with an innocuous transgene present
Df(Chr07:ccne,eng2a,shha)b240/b240	ccne, eng2a, shha	3	a single deficiency affecting three genes

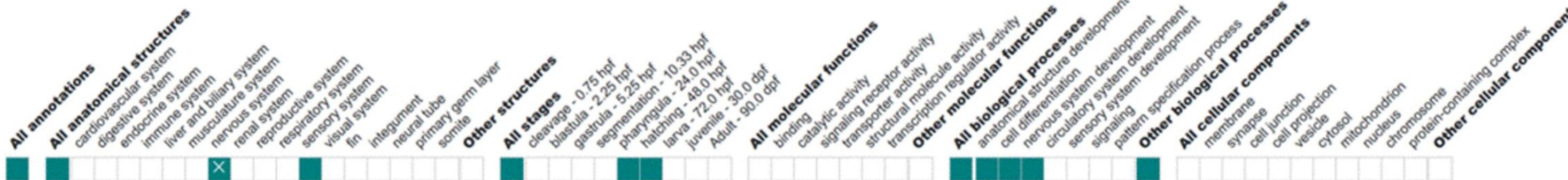
A

Fish	Conditions	Stage	Phenotype	Figure
WT + MO1-emx3 + MO4-emx3 + MO4-tp53	standard conditions	Prim-5	dorsal telencephalon morphology, abnormal	Fig. 3

B

Phenotype

All Phenotype Data


4 figures from 2 publications

Cross-Species Comparison

Alliance

Phenotype Summary

Exclude altered gene expression phenotypes
 Exclude morphant phenotypes

Phenotype in nervous system

Phenotype	Stage Observed								Citations	
	0 hpf	2.00 hpf	3.33 hpf	5.66 hpf	10.33 hpf	24 hpf	60 hpf	7 dpf	90 dpf	
anterior commissure aplastic, abnormal							█			Viktorin et al., 2009
cranial nerve I defasciculated, abnormal						█				Viktorin et al., 2009
dorsal telencephalon morphology, abnormal						█				Viktorin et al., 2009

Expression

Gene expression in Wild Types + MO1-vcana

Expressed Gene	Anatomy	Figures
cdh5	atrioventricular canal	Fig. 2 from Lee et al., 2015 Fig. 8 from Chen et al., 2012
snai1b	atrioventricular canal	Fig. 2 from Lee et al., 2015

1 - 2 of 2
bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.05.519159>; this version posted December 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Phenotype

Phenotype resulting from MO1-vcana

Phenotype	Fish	Figures
blood protein decreased amount, abnormal	Iri500Tg + MO1-vcana	Fig. 4 from Müller-Deile et al., 2016
endocardial cushion morphology, abnormal	AB + MO1-vcana	Fig. 8 from Chen et al., 2012
pericardium edematous, abnormal	Iri500Tg + MO1-vcana	Fig. 4 from Müller-Deile et al., 2016
pronephric glomerulus lacks parts or has fewer parts of type glomerular basement membrane glomerular endothelium fenestra, abnormal	AB + MO1-vcana	Fig. 6 from Müller-Deile et al., 2016
pronephric podocyte decreased length, abnormal	AB + MO1-vcana	Fig. 6 from Müller-Deile et al., 2016

1 - 5 of 6

▼ Show all

Phenotype of all Fish created by or utilizing MO1-vcana

Phenotype	Fish	Conditions	Figures
endocardial cushion morphology, abnormal	AB + MO1-vcana	standard conditions	Fig. 8 from Chen et al., 2012
pronephric glomerulus lacks parts or has fewer parts of type glomerular basement membrane glomerular endothelium fenestra, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Deile et al., 2016
pronephric podocyte decreased length, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Deile et al., 2016
pronephric podocyte increased width, abnormal	AB + MO1-vcana	standard conditions	Fig. 6 from Müller-Deile et al., 2016
atrioventricular canal snai1b expression absent, abnormal	WT + MO1-vcana	chemical treatment: amiodarone	Fig. 2 from Lee et al., 2015

1 - 5 of 8

▼ Show all