

Hepatitis E virus replication does not require cyclophilins

1 **Hepatitis E virus genome replication is independent of cyclophilins A and B**

2 Frazer J.T. Buchanan, Shucheng Chen, Mark Harris, Morgan R. Herod*

3 School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre
4 for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK

5 * Corresponding author: m.r.herod@leeds.ac.uk.

6 The authors have no potential conflicts of interest.

7 **Short title:** Hepatitis E virus replication does not require cyclophilins

8 **Keywords:** HEV, replication complex, replicon, zoonosis, cyclosporine

9 **Abstract**

10 Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases
11 of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection,
12 however, mortality rates in some populations such as pregnant women can reach 30%. A
13 detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental
14 systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-
15 prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA
16 viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilin A (CypA)
17 and cyclophilin B (CypB) are the two most abundant human cyclophilins in hepatocytes and
18 are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance
19 of CypA and CypB for HEV genome replication using a sub-genomic replicon system. This
20 system removes the requirements for viral entry and packaging and therefore allows for the
21 sensitive measurement of viral genome replication in isolation. Using pharmacological
22 inhibition by cyclosporine A (CsA), known to suppress HCV replication, and silencing by
23 shRNA we find that CypA and CypB are not essential for replication of genotype 1 or 3 HEV
24 replication. However, we find that silencing of CypB reduces replication of genotype 1 HEV in
25 some cells, but not genotype 3. These data suggests HEV is atypical in its requirements for
26 cyclophilin for viral genome replication and that this phenomenon could be genotype specific.

Hepatitis E virus replication does not require cyclophilins

27 **Introduction**

28 Hepatitis E virus (HEV) is one of the leading etiological agents of acute hepatitis and is
29 responsible for more than 20 million cases annually. The virus is a member of the
30 *Orthohepevirus* genus within the *Hepeviridae* family. The genus is divided into 4 species
31 groups (A-D), which can infect a wide range of animals, including humans, and are classified
32 into 7 genotypes (G1-G7) [1, 2]. Genotype 1 and 2 viruses appear to be obligate human
33 pathogens that are transmitted between humans by the faecal-oral route, with the potential to
34 cause large outbreaks [2, 3]. Genotype 3 and 4 viruses have been isolated in several animal
35 species including humans and are of particular concern as they have been associated
36 primarily as a porcine zoonosis in higher and middle-income countries [4, 5]. Infection in
37 healthy individuals usually leads to acute hepatitis which has a low rate of mortality. However,
38 infection during pregnancy is of particular concern as mortality rates have been reported to be
39 up to 30% [6]. This higher risk of mortality has also been observed in immunocompromised
40 individuals. No specific regimen of treatment is used to treat infected individuals, with antivirals
41 such as ribavirin used in combination with supportive care [7].

42 HEV is a single-stranded positive-sense RNA virus with a genome length of approximately 7.2
43 kb. The genome contains three open reading frames (ORFs). ORF1 is translated to produce
44 the viral polyprotein that contains the protein domains required for viral RNA replication. The
45 second and third open reading frames, ORF2 and ORF3, are translated into the viral capsid
46 protein and a small membrane protein involved in virus release, respectively [7, 8]. A fourth
47 open reading frame, ORF4, has also been identified but only in genotype 1 viruses [9].
48 Replication of the viral genome is controlled by the ORF1 polyprotein, also known as pORF1.
49 Through sequence homology to related virus families such as the caliciviruses and
50 togaviruses, pORF1 has been predicted to contain at least six distinct protein domains. At the
51 N-terminus of the polyprotein is a methyltransferase (MeT) domain, which is followed by a
52 putative cysteine protease (PCP) domain. Spanning the centre of the polyprotein is a stretch
53 of high sequence diversity, termed the hyper variable region (HVR), and followed by the X
54 domain that is hypothesised to contain a macro domain. At the C-terminus of the polyprotein

Hepatitis E virus replication does not require cyclophilins

55 are the putative viral helicase (Hel) and RNA-dependant RNA-polymerase (RdRp). Based on
56 considerable sequence homology the function of the MeT, Hel and RdRp, domains are highly
57 probable and the MeT, Hel and X domains have been formally shown to have a biochemical
58 function [10, 11, 12, 13, 14]. However, some regions, such as the HVR have poor sequence
59 homology and no function has been suggested.

60 HEV is a hepatotropic virus with hepatocytes being the primary site of infection and pathology.

61 Small molecules that inhibit the replication of hepatotropic viruses such as hepatitis C virus
62 (HCV), have shown promise as therapies as well as tools for understanding fundamental virus
63 biology. The cyclophilins (Cyps) are a family of peptidyl prolyl isomerasases that aid in a number
64 of cellular processes such as protein folding, trafficking and innate immune signalling, and
65 have been identified as proteins that are co-opted by viruses to promote their replication.

66 Cyclophilin A (CypA) is the predominant human cyclophilin which has been documented to be
67 important for the replication of a number of viruses including SARS coronavirus, HIV and HCV
68 [15, 16]. In the case of HCV, CypA is bound by the viral non-structural protein NS5A, to directly
69 inhibit protein kinase R (PKR) and prevent interferon expression. HCV is thought to use this
70 mechanism to help in evasion of the innate immune system (Daijun et al., 2012, Fernandes et
71 al., 2010). Furthermore, inhibition of CypA with the selective CypA inhibitor cyclosporine A
72 (CsA) has been used medically to prevent organ transplant rejection [17]. Additionally, it has
73 been reported that cyclophilin B (CypB) is important for HCV replication [15].

74 The literature regarding the role of the Cyps in HEV infection is currently divided. Wu et al [18]
75 reported that CypA disruption did not impact the replication of HEV primary isolates in cell
76 culture. Contrary to this, Wang et al [19] reported that native functional CypA inhibits
77 replication of HEV in hepatocytes, and that inhibition of CypA with CsA actually promotes HEV
78 replication. Given the importance of CypA and CypB in the replication of other chronic
79 hepatotropic viruses, they represent possible pan-therapeutic targets. We therefore decided
80 to investigate thoroughly a potential role for these proteins in HEV replication. Using sub-
81 genomic replicons (SGR) of HEV, we compared the effect of CypA and CypB pharmacological
82 and genetic inactivation on viral genome replication. Using this approach our data suggests

Hepatitis E virus replication does not require cyclophilins

83 that CypA or CypB or not essential for genotype 1 or genotype 3 HEV replication. However,
84 silencing of CypB can reduce replication of genotype 1 HEV in some cell types. These data
85 suggest that in some cells CypB may have an auxiliary role in HEV replication.

Hepatitis E virus replication does not require cyclophilins

86 **Material and Methods**

87 **Cell lines and plasmids**

88 Huh7, Huh7.5 and HEK293T cells were maintained in Dulbecco's modified Eagle's medium
89 with glutamine (Sigma-Aldrich) supplemented with 10 % FCS, 1 x non-essential amino acids
90 (Gibco) 50 U / mL penicillin and 50 µg / mL streptomycin (Sigma-Aldrich).

91 A plasmid carrying the wild-type genotype 1 HEV replicon expressing GFP, pSK-E2-GFP, was
92 a kind gift from Dr Patrizia Farci and has been described previously [20]. This plasmid was
93 modified to replace the GFP open reading frame with nano-luciferase as previously described
94 [21] to produce pSK-E2-nLuc. Mutations within these plasmids were performed by standard
95 two-step overlapping PCR mutagenesis. Negative control replicons were generated
96 containing a double point mutation in the RdRp active site GDD motif (GNN) and has been
97 previously described [20]. Plasmid carrying wild-type genotype 3 HEV replicon expression
98 nano-luciferase, pUC-HEV83-2, was a kind gift from Dr Koji Ishii and has been described
99 previously [22, 23].

100 **Generation of silenced cell lines**

101 HEK293T cells were prepared for transfection in 10 cm dishes. Lentivirus production was
102 initiated via transfection of the following into HEK293T cells; 1 µg p8.9 (packaging plasmid) 1
103 µg pMDG (VSVg envelope plasmid) 1.5 µg pHIV-SIREN encoding shRNA (genome plasmid).
104 Supernatants were harvested at 48 h and 72 h post-transfection. Supernatants were filtered
105 (0.45 µm) and stored at -80°C.

106 Huh7 or Huh7.5 cells were plated at a density of 1 x 10⁵ cells / well in a 6-well plate. Cells were
107 then transduced with 1 mL / well of lentivirus supernatant in the presence of 8 µg / mL
108 polybrene to promote transduction. Selection with 2.5 µg / mL puromycin was introduced 72
109 h post-transduction. Passage of cells in puromycin selection media was continued to maintain
110 expression of shRNA.

111 ***In vitro* transcription**

112 pSK-E2-nLuc replicon plasmid was linearised with *Bgl*II and pUC-HEV83-2 replicon plasmid
113 was linearised with *Hind*III before being used to generate T7 *in vitro* transcribed RNA using

Hepatitis E virus replication does not require cyclophilins

114 the HiScribe T7 ARCA mRNA kit with tailing following manufacturer's instructions (Promega).
115 RNA was purified using an RNA clean and concentrate kit (Zymo Research) and the quality
116 was checked using a MOPS/formaldehyde agarose gel electrophoresis.

117 **Replication assays**

118 Replicon experiments were conducted as previously described (Herod et al., 2022). Briefly,
119 Huh7 or Huh7.5 cells were detached by trypsin, washed twice in ice-cold DEPC-treated PBS
120 and re-suspended at 1×10^7 cells / mL in DEPC-treated PBS. Subsequently 400 μ L of cells
121 was mixed with 2 μ g of RNA transcript, transferred to a 4 mm gap electroporation cuvette
122 (SLS) and pulsed at 260 V, 25 ms pulse length in a Bio-Rad Gene Pulser (Bio-Rad) on the
123 square wave setting. Electroporated cells were recovered into 4 mL media, seeded into
124 replicate 6-well tissue culture plates, and replication measured at 24 h intervals using the
125 Nano-Glo luciferase assay system (Promega). For cyclosporine A treatment the
126 electroporated cells were seeded into replicates of 24-well plates, allowed to adhere before
127 the media was replaced with fresh media containing cyclosporine (all Sigma-Aldrich), at the
128 indicated concentration.

129 **MTS assay**

130 The cell viability experiments were conducted by seeding cells into 96-well plates, allowing to
131 adhere for 24 h before addition of a serial dilution of inhibitor and measurement of cell viability
132 72 h later using the CellTiter AQueous One solution (Promega), following manufacturer's
133 instructions. Briefly, 20 μ L of reagent was added to each well before samples and appropriate
134 media only blanks were incubated for 45-60 mins at 37°C. Absorbance at 490 nm was
135 measured on an Infinite F50 (Tecan).

136 **Western blotting**

137 Cell lysates were centrifuged for 20 mins at 17,000g, supernatant removed to a separate tubes
138 and mixed with an equal volume of 2x Laemmli buffer (Sigma- Aldrich). Samples were heated
139 for 5 mins at 100°C and separated on a 10 % sodium dodecyl sulphate polyacrylamide gel.
140 Proteins were transferred onto Immobilon transfer membrane (Merck) using a BioRad Trans-
141 Blot turbo transfer system. Membranes were blocked in 10 % milk in tris-buffered saline

Hepatitis E virus replication does not require cyclophilins

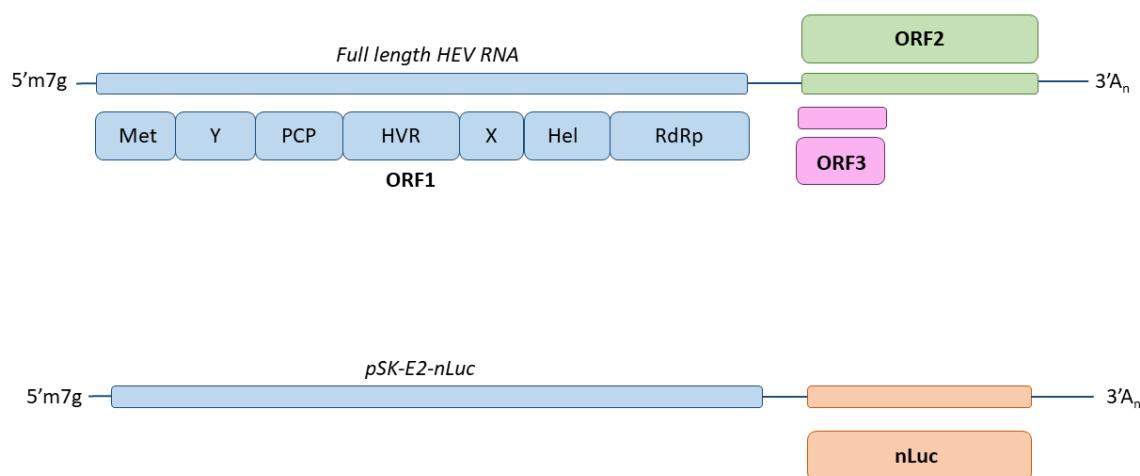
142 solution containing 0.1 % Tween (Fisher). Membranes were then incubated overnight at 4°C
143 with rabbit anti-CypA (1:1000) (Enzo) or anti-CypB (1:2000) (Abcam) antibody. Membranes
144 were washed three times prior to 1 h incubation with anti-rabbit horse radish peroxidase
145 conjugated secondary antibody. Membranes were washed three times and incubated in ECL
146 reagent (Thermo scientific) before exposure to CL-Xposure film (Thermo scientific), and
147 developed by Xograph (Fuji).

Hepatitis E virus replication does not require cyclophilins

148 **Results**

149 **Pharmacological inhibition of cyclophilin does not impact HEV genome replication**

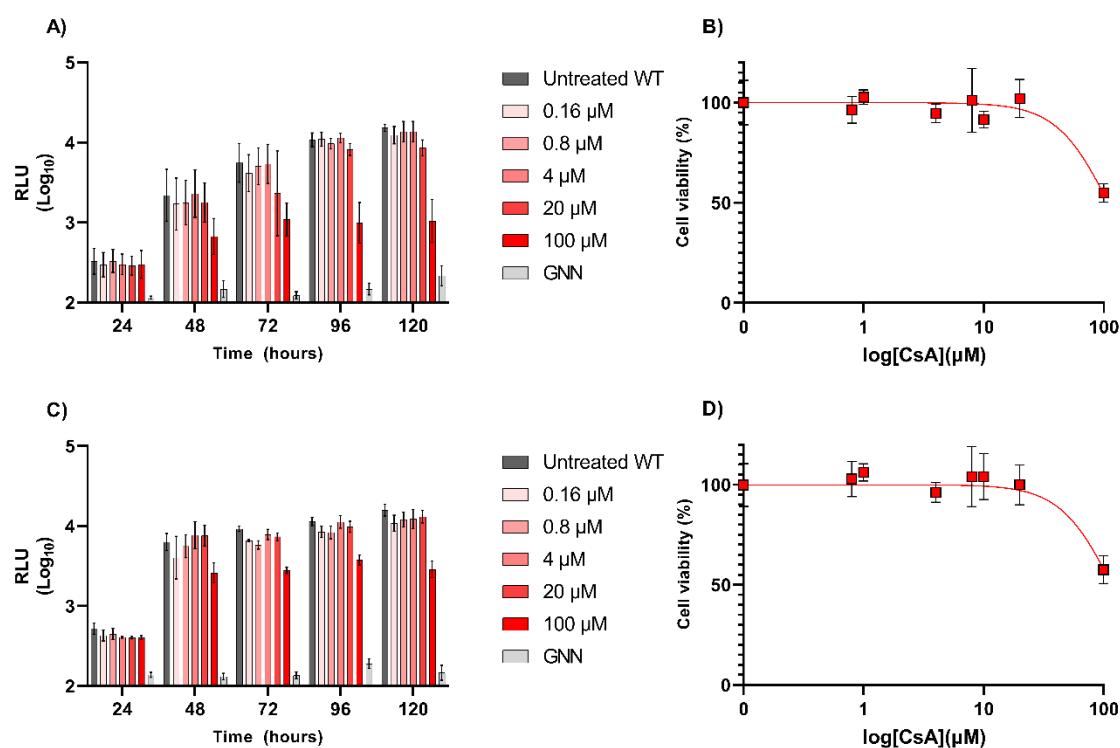
150 Previous work has established that functional CypA is necessary to support the replication of
151 several positive-sense RNA viruses, such as HCV [15, 16, 24]. However, the role for
152 cyclophilins in the replication of HEV remains disputed, in part due to the difficulty in
153 investigating separate parts of the viral replication cycle in isolation. To elucidate the effects
154 of Cyps on HEV genome replication we employed an HEV sub-genomic replicon (SGR) a self-
155 replicating RNA in which a portion of the viral structural proteins are replaced by a nano-
156 luciferase (nLuc) reporter gene (Figure 1). Measurement of nLuc activity allows for an indirect
157 measure of viral genome replication in the absence of virus entry or assembly. Cyclosporine
158 A (CsA) is a potent inhibitor of both cyclophilin A and cyclophilin B. It is a cyclic molecule
159 derived from the fungus *Tolypocladium inflatum* and complexes with cyclophilin to prevent
160 them carrying out catalytic peptidyl prolyl isomerisation as well as preventing interactions with
161 other cellular proteins [25, 26]. We therefore decided to start by investigating the sensitivity of
162 HEV replication to CsA.


163 Two human hepatocellular carcinoma lines that support HEV replication (Huh7 and the
164 derivative cell line Huh7.5, which contain a RIG-I mutation and support improved replication
165 of viruses such as HCV [27, 28]) were transfected with a genotype 1 HEV SGR RNA
166 (SKE2nLuc), which is derived from the Sar55 infectious clone sequence [20] (Figure 1).
167 Alongside this, cells were also transfected with an equivalent replication defective SGR
168 (SKE2nLuc-GNN), which contained two inactivating mutations in the active site of the viral
169 RNA polymerase. CsA was added to the growth medium 24 h after transfection at varying
170 concentrations (0 - 100 μ M), and replication assayed daily for 120 h post-transfection (Figure
171 2).

172 For the wild-type (WT) untreated SGR, nLuc activity increased approximately 100-fold over
173 the duration of the experiment. As anticipated, the replication defective replicon (GNN) only
174 demonstrated background levels of nLuc activity at every time point. In comparison to the
175 untreated WT SGR there was no marked difference in nLuc activity upon treatment of CsA up

Hepatitis E virus replication does not require cyclophilins

176 to a concentration of 20 μ M. In contrast, there was approximately a 11-fold decrease in nLuc
177 activity in cells treated with 100 μ M of CsA compared to untreated cells by day 5 post-
178 electroporation. The pattern of results remained consistent in Huh7 cells when compared to
179 Huh7.5 cells, suggesting both cell lines are able to support replication to a similar level. These
180 data suggest only the highest concentration of CsA used (100 μ M) reduced luciferase activity.
181 However, concentrations of CsA above 20 μ M are reported to be cytotoxic [29, 30]. To quantify
182 any difference between cytotoxicity and inhibition of replication we conducted comparative
183 cytotoxicity experiments. Huh7 and Huh7.5 cells were treated with a serial dilution of CsA and
184 cytotoxicity evaluated by MTS assay three days post-treatment (Figure 2). Cytotoxicity was
185 similar in both Huh7 and Huh7.5 cells with >75% viability at concentrations of 20 μ M and
186 under. However, at 100 μ M Huh7 and Huh7.5 cells showed average cell viability of ~56 %,
187 which is similar to the reduction in nLuc activity observed (Figure 2). Taken together these
188 data would suggest that CsA treatment does not reduce HEV replication at sub-cytotoxic
189 concentrations. We conclude from these data that pharmacological inhibition of cyclophilin
190 does not affect HEV replication.


Hepatitis E virus replication does not require cyclophilins

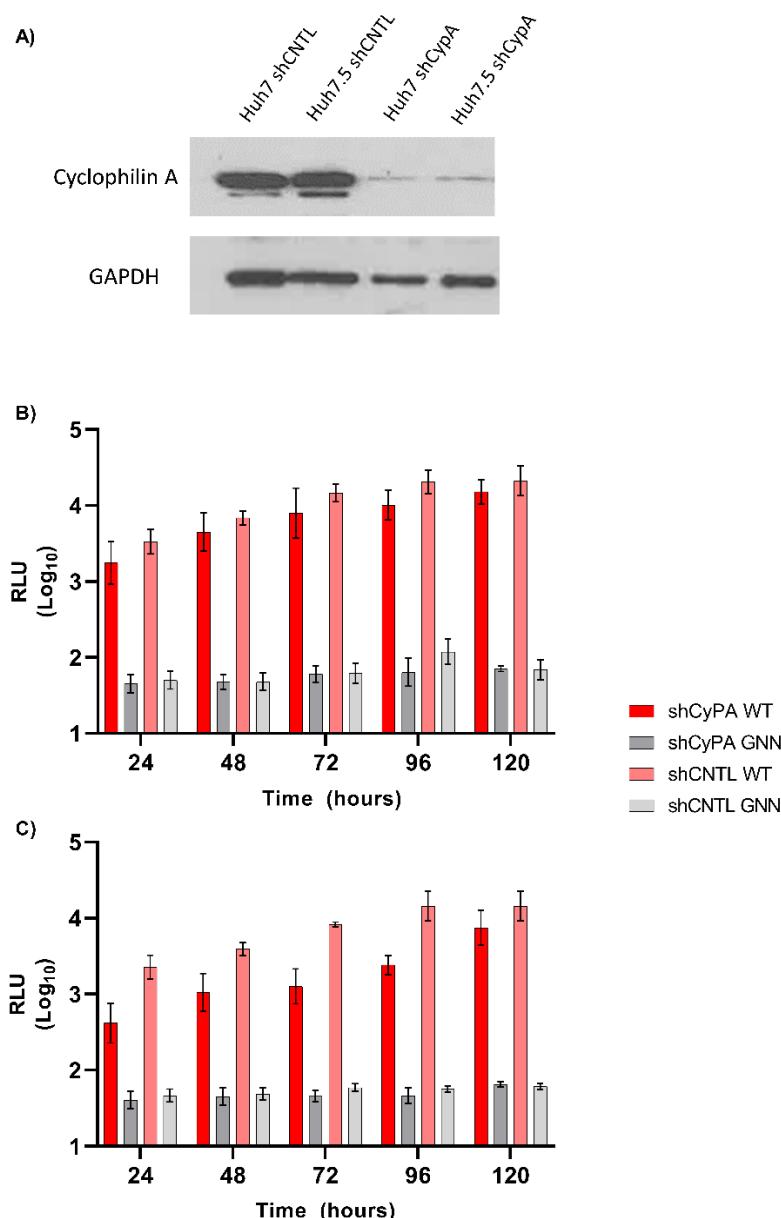
191

192 **Figure 1. HEV genome organisation vs replicon.** Schematic of the HEV genome showing
193 open reading frames 1-3 (ORF1-3). ORF1 is reported to contain a methyltransferase (Met), Y
194 domain (Y), putative cysteine protease (PCP), hyper variable region (HVR), macro domain
195 (X), helicase domain (Hel) and RNA dependent RNA polymerase (RdRp). ORF2 and ORF3
196 are both produced from a viral subgenomic RNA. Nano-luciferase replicon pSK-E2-nLuc was
197 created by replacing ORF2 and ORF3 with nano-luciferase (nLuc) to act as a reporter for
198 replication.

Hepatitis E virus replication does not require cyclophilins

199

200 **Figure 2. CsA dose response in HEV transfected hepatocytes. A)** Huh7 cells or **C)** Huh7.5
201 cells were electroporated with wild-type (WT) SKE2nLuc SGR or GNN SGR RNA prior to
202 addition of CsA at varying concentrations (0–100 μM) 24 h post-electroporation. Cells were
203 harvested at 24 h intervals for 120 h and luciferase activity determined. Data are presented
204 as mean luciferase activity as relative light units (RLU) (n= 3 +/- SEM). **B)** Huh7 or **C)** Huh7.5
205 were seeded into 96-well plates, allowed to adhere for 24 h before replicate wells were treated
206 with a serial dilution of cyclosporine (0 – 100 μM). Replicate wells were left untreated or treated
207 with DMSO solvent only as controls. 72 h after treatment cell viability of Huh7 cells was
208 calculated by MTS assay. Data presented as mean percentage cell viability, normalised to
209 untreated controls (n = 3 +/- SEM).


Hepatitis E virus replication does not require cyclophilins

210 **CypA is not essential for replication of HEV in Huh7 nor Huh7.5 cells**

211 Pharmacological inhibition of Cyps by CsA only suppressed HEV genome replication at
212 cytotoxic concentrations. In order to distinguish isomerase activity from other cellular functions
213 that could be involved in HEV replication, we adopted a genetic approach to silence CypA
214 expression by lentiviral delivery of shRNA in both Huh7 and Huh7.5 cells. We first confirmed
215 silencing of CypA expression by western blot, alongside scramble shRNA controls (Figure
216 3A). Both Huh7 and Huh7.5 shCypA silenced cell lines produced less CypA compared to the
217 scramble control.

218 Following validation of reduced CypA expression, the CypA silenced cell lines and scrambled
219 controls were transfected with the SKE2nLuc (WT) replicon RNA or SKE2nLuc-GNN (GNN)
220 control and nLuc activity measured over 120 h post-transfection (Figure 3B & C). Ablation of
221 CypA in Huh7 cells did not reduce replication with nLuc expression equivalent to the
222 scrambled control cell line at every time point of the experiments. There was a minor reduction
223 in replication by five days post-electroporation which was not significant. Silencing of CypA in
224 Huh7.5 cells led to a ~1.5-fold decrease in nLuc activity 120 h post-electroporation, however
225 this was not significant. There was no significant difference in nLuc expression between the
226 CypA silenced and scramble control cell lines at any other time points. For both experiments,
227 the GNN replicon only produced background levels of luciferase at all time points in both cell
228 types.

Hepatitis E virus replication does not require cyclophilins

229

230 **Figure 3. CypA is not essential for HEV replication in Huh7 or Huh7.5 cells. A)** Detection
231 of CypA expression by western blot in Huh7 and Huh7.5 silenced cell lines (shCypA) and
232 scramble controls (shRNA) with GAPDH used as a loading control. Stable clones of **B)** Huh7
233 or **C)** Huh7.5 cells silenced for CypA by shRNA (shCypA) or a scramble shRNA control
234 (shCNTL), were electroporated with the wild-type (WT) SKE2nLuc or non-replicating
235 SKE2nLuc-GNN control (GNN) RNA. Cells were harvested at 24 h intervals for 120 h and
236 luciferase activity determined. Data are presented as mean luciferase activity as relative light
237 units (RLU) ($n = 3 \pm \text{SEM}$).

Hepatitis E virus replication does not require cyclophilins

238 **CypB silencing limits HEV replication in Huh7 and Huh7.5 cells**

239 CypA is not the only cyclophilin that is known to be important for viral replication in host cells.

240 CypB has been found to be important for replication in other RNA viruses such as HCV and

241 Japanese Encephalitis virus [31, 32]. After establishing CypA had no essential role in HEV

242 RNA replication we turned our attention to CypB. In order to investigate a role for this protein

243 in HEV replication, we adopted the silencing technique described above. shRNA was used to

244 stably silence expression of CypB in Huh7 and Huh7.5 cells. As before we verified silencing

245 of cyclophilin B by western blot (Figure 4A). Scrambled shRNA sequence was also maintained

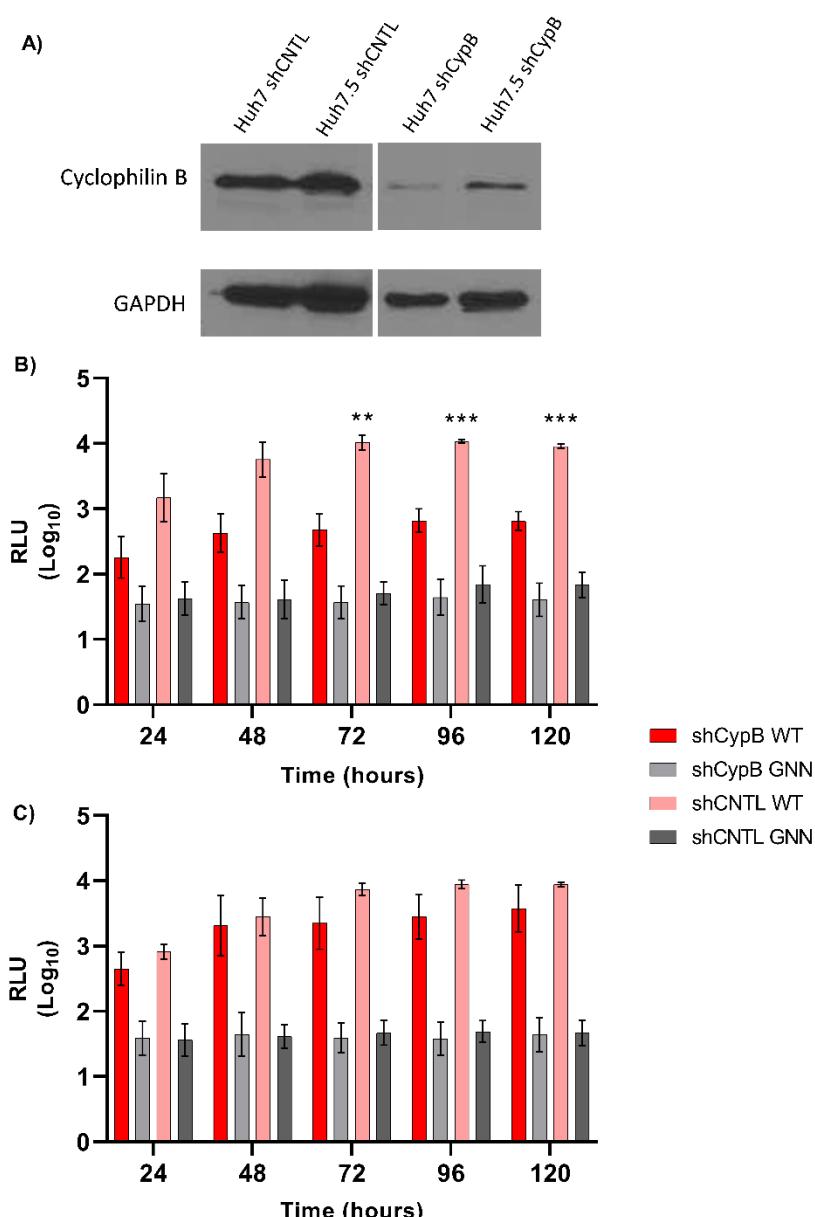
246 as a control for both cell types. The CypB silenced cell line and the previously described

247 scrambled control were transfected with the SKE2nLuc (WT) replicon or SKE2nLuc-GNN

248 (GNN) control and nLuc activity measured over 120 h post-transfection as before.

249 In contrast to CypA silencing (Figure 2), CypB silencing in Huh7 cells significantly reduced

250 HEV replication between 72 h to 120 h post-electroporation by approximately ~12-fold


251 compared to the scramble control. There was no significant different in HEV replication in

252 Huh7.5 cells ablated for CypB at any time points compared to the scrambled control. As

253 before, the GNN replicon only produced background levels of luciferase at all-time points in

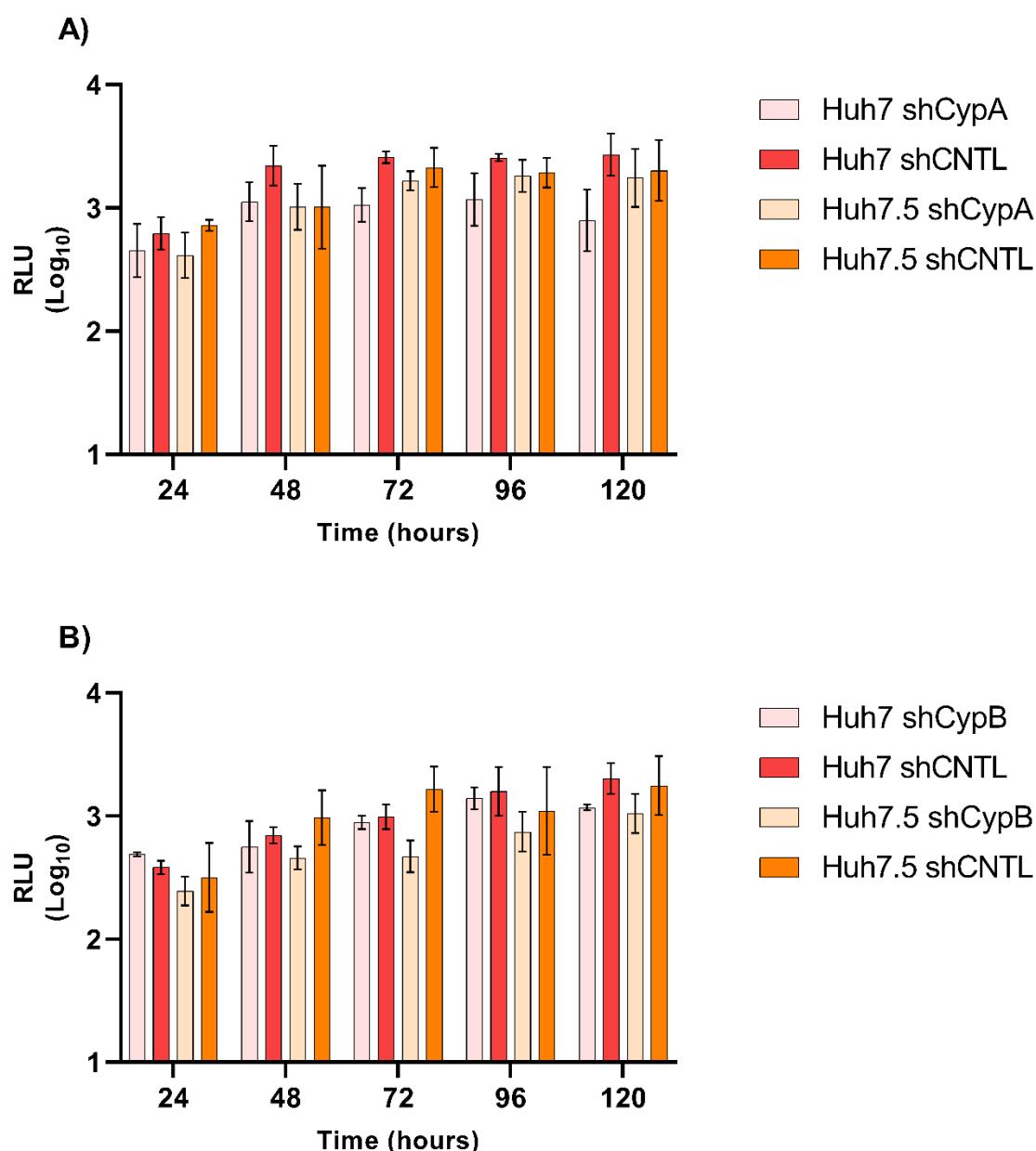
254 all cell types.

Hepatitis E virus replication does not require cyclophilins

255

256 **Figure 4. CypB is necessary for efficient HEV replication in Huh7 but not Huh7.5 cells.**

257 **A)** Detection of Cyclophilin B expression via western blot in Huh7 and Huh7.5 silenced cell
258 lines (shCypA) and scramble controls (shRNA) with GAPDH used as a loading control. Stable
259 clones of **B)** Huh7 or **C)** Huh7.5 cells silenced for CypB by shRNA (shCypB) or scramble
260 shRNA control (shCNTL), were electroporated with the wild-type (WT) SKE2nLuc RNA or non-
261 replicating SKE2nLuc-GNN control (GNN). Cells were harvested at 24 h intervals for 120 h
262 and luciferase activity determined. Data are presented as mean luciferase activity as relative
263 light units (RLU) (n=3 +/- SEM, *** p-value <0.001; * p-value <0.05).


Hepatitis E virus replication does not require cyclophilins

264 **Genotype specific differences in the requirement for CypA and CypB**

265 The effect of the Cyp proteins on HEV replication has yielded conflicting results, which could
266 potentially be the consequence of variances in the viral genotypes investigated. We noted that
267 Wu et al [18] found that treatment with CsA led to a decrease in total HEV RNA for genotypes
268 1 and 3 in their cell culture system. In contrast, Wang et al [19] found that ablation of CypA or
269 CypB increased total HEV RNA. It was therefore important to extend our investigations to
270 include other HEV genotypes of human importance such as genotype 3 viruses. Using the
271 CypA or CypB silenced cells (as described in Figures 3 and 4), we investigated the replication
272 of an nLuc containing G3 replicon (HEV-83-2-nLuc) derived from the G3-HEV-83-2-27
273 infectious clone sequence. All four cell lines together with the shRNA scrambled controls were
274 electroporated with the HEV-83-2-nLuc WT SGR and nLuc activity measured over 120 h post-
275 transfection.

276 CypA or CypB silencing in Huh7 cells reduced G3 replication by ~3-fold at 24 h to 120 h post-
277 electroporation, however this was reduction was not statistically significant compared to the
278 scramble control. There was no difference in replication in Huh7.5 cells ablated for CypA
279 (Figure 5). Likewise, CypB ablation in Huh7.5 cells led to small 2- to 4-fold reduction in
280 luciferase expression at days 72 h to 120 h post-electroporation but this was not statistically
281 significant. We conclude that CypA is not essential for efficient replication of G3 HEV in these
282 cells.

Hepatitis E virus replication does not require cyclophilins

283

284 **Figure 5. CypA is necessary for efficient HEV Gt-3 replication whilst CypB is not.** Stable
285 clones of **A)** Huh7 and Huh7.5 cells silenced for CypA by shRNA (shCypA), or scramble
286 control (shCNTL), were electroporated with the WT genotype 3 SGR HEV-83-2-nLuc. **B)** Huh7
287 and Huh7.5 cells were silenced for CypB (shCypB), or scrambled control (shCNTL), were
288 electroporated with the WT genotype 3 SGR HEV-83-2-nLuc. Cells were harvested at 24 h
289 intervals for 120 h and luciferase activity determined. Data are presented as mean luciferase
290 activity as relative light units (RLU) (n=3 +/- SEM).

Hepatitis E virus replication does not require cyclophilins

291 Discussion

292 The role of host cell factors in viral propagation is an important aspect of infection. The
293 cyclophilin have been identified as such factors, they can be co-opted by viruses to aid in the
294 completion of their replication cycles and formation of viral particles [15, 16].

295 HCV, a well-studied hepatotropic virus, relies on the CypA complex in order to evade PKR
296 mediated innate immune signalling during hepatocyte infection, favouring the formation of
297 membrane bound replication sites (the membranous web) via NS5A-mediated inhibition of
298 CypA. Additionally, CypB also complexes with the NS5B polymerase and contributes to
299 genome replication [33]. The tissue tropism of HEV is very similar to that of HCV, hepatocytes
300 being the primary replication site. Despite this, the importance of cyclophilin in HEV replication
301 remains disputed [18, 19].

302 Wu et al, [18] adopted the use of induced pluripotent stem cell-hepatocyte like cells (iPSC-
303 HLCs) to investigate cell culture and non-cell culture adapted strains of HEV. iPSC-HLCs
304 infected with non-cell culture adapted HEV genotypes 1-4 were treated with CsA. Total RNA
305 was measured as an indication of replication, and CsA did not have an effect on genotype 1.
306 These results agree with our findings, that CsA does not enhance nor impede genotype 1 HEV
307 replication. Interestingly they also found that p6 (a cell culture adapted isolate of genotype 3)
308 showed enhanced HEV replication under CsA treatment. The differences between adapted
309 and non-cell culture adapted strains of HEV informed our experimental design. Thus, we
310 chose two standard human hepatocellular carcinoma cell lines widely used in both HCV and
311 HEV research and two different HEV genotypes to bring consistency into the investigation of
312 the role of cyclophilin in HEV replication.

313 In contrast to both our study and Wu et al [18], Wang et al [19] found that CsA enhanced
314 replication of the HEV p6 isolate in Huh7 cells in a dose-dependent fashion. Our results also
315 contrast with those of Wang et al [19] as we found that ablation of CypA did not impact
316 genotype 1 HEV replication in hepatocytes. Additionally, we found that CypB ablation led to a
317 modest reduction in genotype 1 HEV replication which disputes the findings of Wang et al that
318 CypB ablation enhances HEV replication. To further clarify the role of the cyclophilin in HEV

Hepatitis E virus replication does not require cyclophilins

319 replication, we repeated our luciferase assays for genotype 3 HEV in CypA and CypB ablated
320 cells. These data demonstrated that neither CypA nor CypB impacted on genotype 3
321 replication.

322 The contrasting data reported in this study compared to the studies by Wu et al [18] and Wang
323 et al [19], could be attributed to several differences. Firstly, we considered that differences in
324 genotypes of virus used might explain the discrepancies. Wang et al used a genotype 3 based
325 SGR from a cell culture adapted HEV strain and Wu et al [18] used primary HEV isolated from
326 genotype 1. There is a possibility therefore that the dependence on CypA and or CypB is
327 genotype specific, which requires further investigation using SGRs and infectious virus system
328 in physiologically relevant contexts.

329 Several RNA viruses require functional CypA in order to complete their replication cycle.
330 However, this requirement is not universal as CypA is dispensable for Chikungunya RNA viral
331 replication [34]. Additionally, replication of hepatitis A virus (HAV) in Huh7 cells has been
332 reported to be independent of CypA [35]. These observations were validated
333 pharmacologically and genetically, like our data here. Potentially similar to these viruses we
334 speculate that HEV is able to counter innate immune responses within hepatocytes via
335 alternative pathways that do not rely on CypA. Since the cyclophilins operate primarily as
336 prolyl isomerases, it is possible that this function in HEV is served via other cellular cyclophilins
337 such as Cyclophilin D (CypD). Interestingly, HAV has been demonstrated to localise to the
338 mitochondria during hepatocyte cell culture infection, suggesting there could be a link between
339 a lack of CypA dependence and mitochondrial localisation, this is also the site of CypD
340 localisation [35].

341 In conclusion we suggest that, unlike HCV, HEV is not dependent on CypA to facilitate
342 replication in hepatocytes. We propose that CypB contributes to genotype 1 HEV replication
343 in hepatocytes but is not essential. These observations suggest that the exploitation of CypA
344 by HCV to suppress innate immune responses within hepatocytes, is not required by HEV and
345 that this virus may have other mechanisms to prevent elimination by the innate immune
346 responses at work within hepatocytes.

Hepatitis E virus replication does not require cyclophilins

347 **Conflicts of interest**

348 The authors declare that there are no conflicts of interest.

349 **Funding information**

350 This work was supported by MRC funding to MRH (MR/S007229/1). FJTB was funded by the
351 University of Leeds. SC was funded by the University of Leeds and the China Scholarship
352 Council.

353 **Author contributions**

354 FJTB, MRH, and MH designed the study and wrote the manuscript. FJTB conducted the
355 replication and survival assays. SC generated the silenced cell lines used in these
356 experiments. FJTB and MRH analysed the data. MRH and MH provided supervision.

357 **Acknowledgements**

358 We thank Patrizia Farci (National Institute of Allergy and Infectious Diseases, Bethesda) and
359 Koji Ishii (National Institute of Infectious Diseases, Tokyo) for the genotype 1 and genotype 3
360 HEV replicons, respectively.

361 **Materials & correspondence**

362 Correspondence and materials requests should be directed to MRH.

Hepatitis E virus replication does not require cyclophilins

363 **References**

364 [1] Rein, D., Stevens, G., Theaker, J., Wittenborn, J. and Wiersma, S. (2012) The global
365 burden of hepatitis E virus genotypes 1 and 2 in 2005. *Hepatology*, 55, pp.988-997.

366

367 [2] Syed, S., F., Zhao, Q., Umer, M., Alagawany, M., Ujjan, I.A., Soomro, F., Bangulzai, N.,
368 Baloch, A.H., El-Hack, M.A., Zhou, e-m., and Arain, M.A. (2018) Past, present and future of
369 hepatitis E virus infection: Zoonotic perspectives. *Microbial Pathogenesis*, 119, pp.103-108.

370

371 [3] Teshale, E., Grytdal, S., Howard, C., Barry, V., Kamili, S., Drobeniuc, J., Hill, V., Okware,
372 S., Hu, D. and Holmberg, S. (2010) Evidence of Person-to-Person Transmission of Hepatitis
373 E Virus during a Large Outbreak in Northern Uganda. *Clinical Infectious Diseases*, 50,
374 pp.1006-1010.

375

376 [4] Li, P., Ji, Y., Li, Y., Ma, Z., and Pan, Q. (2022). Estimating the global prevalence of hepatitis
377 E virus in swine and pork products. *One Health*, 14.

378

379 [5] Pallerla, S., Schembecker, S., Meyer, C., Linh, L., Johne, R., Wedemeyer, H., Bock, C.,
380 Kremsner, P., and Velavan, T. (2022) Hepatitis E virus genome detection in commercial pork
381 livers and pork meat products in Germany. *Journal of viral hepatitis*, 28, pp.196-204.

382

383 [6] Khuroo, M.S and Kamili, S. (2003) Aetiology, clinical course and outcome of sporadic viral
384 hepatitis in pregnancy, *Journal of Viral Hepatitis*, 10, pp. 61-69.

385

386 [7] LeDesma, R. Nimgaonkar, I. and Ploss, A. (2019) Hepatitis E Virus Replication. *Viruses*,
387 11, pp719.

388

389 [8] Montpellier, C. and Wychowski, C. (2018) Hepatitis E Virus Lifecycle and Identification of
390 3 Forms of the ORF2 Capsid Protein. *Gastroenterology*, 154, pp.211-223.

Hepatitis E virus replication does not require cyclophilins

391

392 [9] Nair, V., Anang, S., Subramani, C., Madhvi, A., Bakshi, K., Srivastava, A., Shalimar,

393 Nayak, B., Ranjith Kumar, C.T. and Surjit, M. (2016) Endoplasmic Reticulum Stress Induced

394 Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E

395 Virus. *PLOS Pathogens*, 12.

396

397 [10] Sehgal, D., Thomas, S., Chakraborty, M. and Jameel, S. (2006) Expression and

398 processing of the Hepatitis E virus ORF1 non-structural polyprotein. *Virology Journal* 3.

399

400 [11] Parvez, M.K. (2015) The hepatitis E virus ORF1 'X-domain' residues form a putative

401 macrodomain protein/Appr-1"-pase catalytic-site, critical for viral RNA replication. *Gene*, 566,

402 pp.47–53.

403

404 [12] Rehman, S., Kapur, N., Durgupal, H. and Panda, S.K (2008) Subcellular localisation of

405 hepatitis e virus (HEV) replicase, *Virology*, 370, pp.77-92.

406

407 [13] Hooda, P., Ishtikhar, M., Saraswat, S., Bhatia, P., Mishra, D., Trivedi, A., Kulandaivasamy,

408 R., Aggarwal, S., Munde, M., Ali, N., AlAsmari, A., Rauf, M., Inampudi, K. and Sehgal, D.

409 (2022) Biochemical and Biophysical Characterisation of the Hepatitis E Virus Guanine-7-

410 Methyltransferase. *Molecules*, 27, p.1505.

411 [14] Karpe, Y.A and Lole, S.K. (2010) RNA 5'-Triphosphatase Activity of the Hepatitis E

412 Virus Helicase Domain. *Journal of Virology*, 94, pp.9637-9641.

413

414 [15] Colpitts, C., Ridewood, S., Schneiderman, B., Warne, J., Tabata, K., Ng, C.,

415 Bartenschlager, R., Selwood, D. and Towers, G. (2020) Hepatitis C virus exploits cyclophilin

416 A to evade PKR. *eLife*, 9.

417

Hepatitis E virus replication does not require cyclophilins

418 [16] Daijun, Z., Qiang, M., Jintao, L. and Haiyang H. (2012) Cyclophilin A and viral infections,
419 *Biochemical and Biophysical Research Communications*, 424, pp. 647-650.

420

421 [17] Beauchesne, P., Chung, N., and Wasan, K. (2007) Cyclosporine A: A Review of Current
422 Oral and Intravenous Delivery Systems. *Drug Development And Industrial Pharmacy*, 33,
423 pp.211-220.

424

425 [18] Wu, X., Thi, V., L., D., Liu, P., Takacs, C., N., Xiang, K., Andrus, L., Gouttenoire, J.,
426 Moradpour, D. and Rice, C., M. (2018) Pan-Genotype Hepatitis E Virus Replication in Stem
427 Cell-Derived Hepatocellular Systems, *Gastroenterology*, 154, pp. 663-674.

428

429 [19] Wang, Y., Zhou, X., Debing, Y., Chen, K., Van Der Laan, L., J., W., Neyts, J., Janseen,
430 H., L., A., Meteselaar, H., J., Peppelenbosch, M., F., and Pan, Q. (2014) Calcineurin Inhibitors
431 Stimulate and Mycophenolic Acid Inhibits Replication of Hepatitis E Virus. *Gastroenterology*,
432 146, pp.1775-1783.

433

434 [20] Emerson, S., Nguyen, H., Graff, J., Stephany, D., Brockington, A. and Purcell, R. (2004)
435 In Vitro Replication of Hepatitis E Virus (HEV) Genomes and of an HEV Replicon Expressing
436 Green Fluorescent Protein. *Journal of Virology*, 78, pp.4838-4846.

437

438 [21] Herod, M.R., Ward, J.C., Tuplin, A., Stonehouse, N.J and McCormick, C.J. (2022)
439 Positive stranded RNA viruses differ in the constraints they place on the folding of their
440 negative strand. *RNA*, 28, pp.1359-1376.

441

442 [22] Shiota, T., Li, T-C., Yoshizati, S., Kato, T., Wakita, T. and Ishii, K. (2013) The Hepatitis
443 E Virus Capsid C-Terminal Region Is Essential for the Viral Life Cycle: Implication for Viral
444 Genome Encapsidation and Particle Stabilisation. *Journal of Virology*, 87, pp.6031-6036.

445

Hepatitis E virus replication does not require cyclophilins

446 [23] Szkolnicka, D., Pollan, A., Da Silva, N., Oechslin, N., Gouttenoire, J. and Moradpour, D.
447 (2019) Recombinant Hepatitis E Viruses Harbouring Tags in the ORF1 Protein. *Journal of*
448 *Virology*, 93.

449

450 [24] Fernandes, F., Ansari, I-U, H. and Striker, R. (2010) Cyclosporine Inhibits a Direct
451 Interaction between Cyclophilin and Hepatitis C NS5A. *PLOS ONE*, 5.

452

453 [25] Wang, P., and Heitman, J. (2005) The cyclophilin. *Genome Biology*, 6.

454

455 [26] Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J and Speicher, D.W. (1984)
456 Cyclophilin: A Specific Cytosolic Binding Protein for Cyclosporin A, *Science*, 226, pp. 544-547.

457

458 [27] Sumpter, R., Loo, Y., Foy, E., Li, K., Yoneyama, M., Fujita, T., Lemon, S. and Gale, M.
459 (2005) Regulating Intracellular Antiviral Defense and Permissiveness to Hepatitis C Virus
460 RNA Replication through a Cellular RNA Helicase, RIG-I. *Journal of Virology*, 79, pp.2689-
461 2699.

462

463 [28] Teimourpour, R., Mesgkat, Z., Gholoubi, A., Nomani, H. and Rostami, S. (2015) Viral
464 Load Analysis of Hepatitis C Virus in Huh7.5 Cell Culture System. *Jundishapur journal of*
465 *microbiology*, 8.

466

467 [29] Liu, J., Ye, L., Wang, X., Li, J., and Ho, W. (2010) Cyclosporin A inhibits hepatitis C
468 virus replication and restores interferon-alpha expression in hepatocytes. *Transplant*
469 *Infectious Disease*, 13, pp.24-32.

470

471 [30] Andrés, D., and Cascales, M. (2002) Novel mechanism of Vitamin E protection against
472 cyclosporine A cytotoxicity in cultured rat hepatocytes. *Biochemical Pharmacology*, 64,
473 pp.267-276.

Hepatitis E virus replication does not require cyclophilins

474

475 [31] Kambara, H., Tani, H., Mori, Y., Abe, T., Katoh, H., Fukuhara, T., Taguwa, S., Moriishi,
476 K. and Matsuura, Y. (2011) Involvement of cyclophilin B in the replication of Japanese
477 encephalitis virus. *Virology*, 412, pp.211-219.

478

479

480

481

482 [32] Morohashi, K., Sahara, H., Watashi, K., Iwabata, K., Sunoki, T., Kuramochi, K.,
483 Takakusagi, K., Miyashita, H., Sato, N., Tanabe, A., Shimotohno, K., Kobayashi, S.,
484 Sakaguchi, K. and Sugawara, F., 2011. Cyclosporin A Associated Helicase-Like Protein
485 Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin
486 B. *PLoS ONE*, 6(4), p.e18285.

487

488 [33] Watashi, K., Ishii, N., Hijkata, M., Ihoue, D., Murata, T., Miyanari, Y. and Shimotohno, K.
489 (2005) Cyclophilin B is a Functional Regulator of Hepatitis C Virus RNA Polymerase.
490 *Molecular Cell*, 19, pp.111-122.

491

492 [34] Scholte, F., Tas, A., Martina, B., Cordioli, P., Narayanan, K., Makino, S., Snijder, E. and
493 van Hemert, M. (2013) Characterization of Synthetic Chikungunya Viruses Based on the
494 Consensus Sequence of Recent E1-226V Isolates. *PLoS ONE*, 8.

495

496 [35] Esser-Nobis, K., Harak, C., Schult, P., Kusov, Y. and Lohmann, V. (2015) Novel
497 perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C
498 virus and hepatitis A virus RNA replication. *Hepatology*, 62, pp.397-408.

499

500

501

Hepatitis E virus replication does not require cyclophilins

502

503

504

505