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Abstract 8 

Interactions between coinfecting pathogens have the potential to alter the course of infection 9 

and can act as a source of phenotypic variation in susceptibility between hosts. This 10 

phenotypic variation may influence the evolution of host-pathogen interactions within host 11 

species and interfere with patterns in the outcomes of infection across host species. Here, 12 

we examine experimental coinfections of two Cripaviruses – Cricket Paralysis Virus (CrPV), 13 

and Drosophila C Virus (DCV) – across a panel of 25 Drosophila melanogaster inbred lines 14 

and 47 Drosophilidae host species. We find that interactions between these viruses alter 15 

viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of 16 

DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we 17 

find little evidence of a host genetic basis for these effects. Across host species, we find no 18 

evidence of systematic changes in susceptibility during coinfection, with no interaction 19 

between DCV and CrPV detected in the majority of host species. These results suggest that 20 

phenotypic variation in coinfection interactions within host species can occur independently 21 

of natural host genetic variation in susceptibility, and that patterns of susceptibility across 22 

host species to single infections can be robust to the added complexity of coinfection. 23 
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Introduction 30 

Coinfections – simultaneous infections of a host with multiple pathogen lineages or species – 31 

are ubiquitous in nature, and represent the real-world context in which many infections occur 32 

[1–3]. Interactions between pathogens during coinfection can alter the virulence experienced 33 

by the host, and the loads and transmission rates of one or both pathogens [4–9]. At a 34 

population level, these interactions can lead to changes in infectious disease dynamics 35 

[10,11], such as the exclusion of novel viruses from host populations with other established 36 

pathogens [12,13], or fluctuations in the epidemic spread of one virus depending on the 37 

prevalence of other viruses [14,15]. These changes can ultimately alter the selective 38 

pressures imposed on hosts and pathogens, and coinfections have been proposed as a 39 

mechanism for the maintenance of genetic diversity in pathogen populations; as the fitness 40 

of pathogen genotypes may fluctuate not only in red queen dynamics with the host but also 41 

with coinfection prevalence and a pathogen’s competitive ability across coinfection scenarios 42 

[16]. Despite this, coinfections remain a largely understudied source of phenotypic variation 43 

during infection, and further investigation of their influence on the outcome of infection in 44 

different hosts and host species is needed. 45 

 46 

Within coinfected hosts, pathogens can interact directly, such as through the production of 47 

toxins or modulation of the opposing pathogen’s gene expression [17,18], or indirectly 48 

through the production of common goods, competition for host resources, and interactions 49 

with host gene expression and immunity [19–24]. For example, in HIV-virus coinfections – a 50 

mechanistically well studied set of interactions due to their suspected involvement in AIDS 51 

progression [25]  – several viruses have been shown to alter susceptibility to HIV infection by 52 

changing the expression of cell surface receptors CD4 and CCR5 [26,27]. In the case of 53 

human cytomegalovirus (HCMV), which upregulates CCR5 expression and increases HIV 54 

viral loads in coinfected tissues, HIV can reciprocally induce the expression of 55 

transmembrane proteins that promote HCMV infection [28,29]. Conversely, measles virus 56 

coinfections can inhibit HIV-1 replication due to measles-related activation of 57 

proinflammatory cytokines [30]. As such, the presence of coinfecting viruses may enhance 58 

or interfere with the ability of a virus to effectively establish an infection in a host, with these 59 

interactions often mediated by host components. 60 

 61 
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Despite the known role of host components in many coinfections, the extent to which host 62 

genetic variation in these components can influence the strength of interactions between 63 

pathogens – and so the ability of hosts to evolve directly to selective pressures imposed by 64 

coinfection – is unknown. Evidence suggesting a role of host genetics in the outcomes of 65 

coinfections is limited; however, several studies in plants have shown that pathogen 66 

community composition, coinfection prevalence, and disease severity during coinfection can 67 

vary non-randomly between host genotypes [31–33]. Coinfections can also be influenced by 68 

host dietary choices and the quantity of nutrients available in the host [34,35] – both of which 69 

are heritable traits [36,37] – which suggests that host genetic variation may influence 70 

coinfection outcomes. Broadly, we may expect host genetic variation to lead to changes in 71 

the strength of interaction between coinfecting pathogens when the interaction occurs 72 

through modulation of a host component (e.g., immune pathways or resource competition), 73 

or when host genetic variation influences the pathogen load of one or both pathogens.  74 

 75 

Variation in the outcomes of coinfection across host species has also received relatively little 76 

attention, with most comparative cross-species studies focusing either on single infections in 77 

controlled experimental systems [38–45] or looking for broad patterns in infections across 78 

large datasets of natural systems where coinfection status is unknown [46–52]. These 79 

studies have shown that the evolutionary relationships between host species can explain a 80 

large proportion of the variation in infection traits. For example, virulence tends to increase 81 

[45–47], and onward transmission and pathogen load decrease [39,46], with greater 82 

evolutionary distance between donor and recipient hosts. Irrespective of distance to the 83 

donor host, closely related species also tend to share similar levels of susceptibility to novel 84 

pathogens [39–41]. Phylogenetic models such as these form part of the growing field of 85 

zoonotic risk prediction, the aim of which is to provide accurate, actionable predictions of 86 

host-virus interactions to inform public health measures [53]. The accuracy of current models 87 

may be improved by identifying and incorporating additional sources of variation in the 88 

outcome of cross-species transmission [54]. Coinfection status, detectable through 89 

metagenomic screening [55], may be a beneficial inclusion in such models, provided the 90 

strength and/or direction of coinfection interactions are known (or inferable). 91 

 92 

Here, we investigate the influence of coinfection on virus susceptibility within and across 93 

host species, using panels of Drosophila hosts and experimental infections with two 94 
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Cripaviruses: Cricket Paralysis Virus (CrPV) and Drosophila C Virus (DCV). Viral loads were 95 

measured during single and coinfection conditions across 25 inbred lines of Drosophila 96 

melanogaster and 47 Drosophilidae species. By analysing both viral loads and the change in 97 

viral loads from single to coinfection, we quantify the host genetic and phylogenetic 98 

components of susceptibility to each virus, and investigate whether these host components 99 

also influence the strength and direction of coinfection interactions in this system. 100 

 101 

Both DCV and CrPV are well studied pathogens in Drosophila melanogaster and multiple 102 

similarities exist in their interactions with their hosts that could lead to interactions during 103 

coinfection. Both viruses are targeted by the antiviral RNAi pathway during infection of D. 104 

melanogaster [56,57], and activate the IMD immune signalling pathway, inducing non-105 

specific antiviral gene expression [58–60]. Each encodes an inhibitor of antiviral RNAi, which 106 

act on different components of the pathway; the DCV inhibitor binds and sequesters viral 107 

RNA to prevent its cleavage by the antiviral RNAi endonuclease Dicer-2, and also disrupts 108 

formation of the RNA-induced silencing complex (RISC) [61,62]; the CrPV inhibitor binds the 109 

RISC protein Argonaute-2, causing suppression of RISC viral RNA cleavage [62]. Infections 110 

with DCV have also been shown to induce nutritional stress in infected hosts, due to 111 

intestinal obstruction and accumulation of food in the fly crop, although CrPV infection 112 

results in no such phenotype [63]. DCV and CrPV may therefore be capable of interacting 113 

indirectly during coinfection through multiple routes: by suppression of antiviral RNAi, 114 

transactivation of host antiviral gene expression, or competition for limited host resources. 115 

 116 

Susceptibility to DCV infection has a strong host genetic component [64], with 117 

polymorphisms in two major-effect genes (pastrel and Ubc-E2H) explaining a large 118 

proportion of the variation in DCV susceptibility [64–67]. Both genes have also been 119 

implicated in CrPV susceptibility during knockdown experiments [67]. DCV and CrPV both 120 

vary widely in their ability to persist and replicate across different Drosophilidae host species, 121 

with the host phylogeny explaining a large proportion of the variation in viral load during 122 

single infection [40,41]. A role of host genetics during coinfection may therefore manifest 123 

either as a change in the genetic/phylogenetic components of susceptibility to each 124 

individual virus, or as a genetic/phylogenetic component directly influencing the strength of 125 

interaction between these viruses, both of which we investigate here. 126 

 127 
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Materials & Methods 128 

Fly stocks 129 

Stocks of DGRP flies were kindly provided by Jon Day and Francis Jiggins [64]. In total, 25 130 

DGRP lines were used (for details see Supplementary Table 1), with 15 lines containing the 131 

resistant “G” allele of the A2469G pastrel SNP and 10 containing the susceptible “A” allele 132 

[65]. Pastrel allele status was confirmed via conventional PCR using SNP genotyping 133 

primers from [65] (Supplementary Table 2). Laboratory stocks of 47 Drosophilidae host 134 

species were used to provide the across-species host panel (Supplementary Table 3), as in 135 

previous studies [40,41]. 136 

 137 

All flies were maintained in multi-generation stock bottles (Fisherbrand) at 22°C, 70% 138 

relative humidity in a 12-hour light-dark cycle. Each stock bottle contained 50ml of one of 139 

four varieties of Drosophila media (https://doi.org/10.6084/m9.figshare.21590724.v1) which 140 

were chosen to optimise rearing conditions for parental flies. All fly lines and species were 141 

confirmed to be negative for infection with CrPV and DCV prior to experiments by 142 

quantitative reverse-transcription PCR (qRT-PCR, described below). To limit the effects of 143 

variation in larval density on the condition of DGRP lines, experimental flies were reared in 144 

vials with finite numbers of larvae, achieved by transferring groups of five 7 day old mated 145 

females to fresh vials each day for 3 days, with daily pools of offspring from these vials 146 

collected for experiments. Due to large differences in fecundity, larval density controls were 147 

not practical for the across-species host panel. 148 

 149 

Inferring the Drosophilidae host phylogeny 150 

The method used to infer the host phylogeny has been described in detail elsewhere [40]. 151 

Briefly, publicly available sequences of the 28S, Adh, Amyrel, COI, COII, RpL32, and SOD 152 

genes were collected from Genbank (see https://doi.org/10.6084/m9.figshare.13079366.v1 153 

for a full breakdown of genes and accessions by species). Gene sequences were aligned in 154 

Geneious version 9.1.8 (https://www.geneious.com) using a progressive pairwise global 155 

alignment algorithm with free end gaps and a 70% similarity IUB cost matrix. Gap open 156 

penalties, gap extension penalties, and refinement iterations were kept as default. 157 

 158 
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Phylogenetic reconstruction was performed using BEAST version 1.10.4 [68], as the 159 

subsequent phylogenetic mixed model (described below) requires a tree with the same root-160 

tip distances for all taxa. Genes were partitioned into separate ribosomal (28S), 161 

mitochondrial (COI, COII), and nuclear (Adh, Amyrel, RpL32, SOD) groups. The 162 

mitochondrial and nuclear groups were further partitioned into groups for codon position 1+2 163 

and codon position 3, with unlinked substitution rates and base frequencies across codon 164 

positions. Each group was fitted to separate relaxed uncorrelated lognormal molecular clock 165 

models using random starting trees and four-category gamma-distributed HKY substitution 166 

models. The BEAST analysis was run twice, with 1 billion Markov chain Monte Carlo 167 

(MCMC) generations sampled every 100,000 iterations, using a birth-death process tree-168 

shape prior. Model trace files were evaluated for chain convergence, sampling, and 169 

autocorrelation using Tracer version 1.7.1 [69]. A maximum clade credibility tree was 170 

inferred from the posterior sample with a 10% burn-in. The reconstructed tree was visualised 171 

using ggtree version 2.0.4 [70]. 172 

 173 

Virus isolates 174 

Virus stocks were kindly provided by Julien Martinez (DCV) [71], and Valérie Dorey and 175 

Maria Carla Saleh (CrPV) [61]. The DCV isolate used here (DCV-C) was isolated from lab 176 

stocks established by wild capture in Charolles, France [72], and the CrPV isolate was 177 

collected from Teleogryllus commodus in Victoria, Australia [73]. Virus stocks were checked 178 

for contamination with CrPV (DCV) and DCV (CrPV) by qRT-PCR and diluted in Ringers 179 

solution [74] to equalise the relative concentrations of viral RNA. Before inoculation, virus 180 

aliquots were either mixed 1:1 with Ringers (single infection inoculum) or 1:1 with an aliquot 181 

of the other virus (coinfection inoculum). This was done to keep the individual doses of each 182 

virus consistent between infection conditions. 183 

 184 

Inoculation 185 

Before inoculation, 0-1 day old male flies were transferred to vials containing cornmeal 186 

media. These flies were then transferred to fresh media every 2 days for a week (age 7-8 187 

days), at which point they were inoculated. Vials contained between 7 and 20 flies (mean = 188 

12.7), and were kept at 22°C, 70% relative humidity in a 12-hour light-dark cycle throughout 189 

the experiments. Male flies were used to avoid any effect of sex or mating status, which has 190 
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been shown to influence the susceptibility of female flies to other pathogens [75–77]. Flies 191 

were inoculated under CO2 anaesthesia via septic pin prick with 12.5µm diameter stainless 192 

steel needles (Fine Science Tools, CA, USA). These needles were bent approximately 193 

250µm from the end to provide a depth stop and dipped in virus inoculum before being 194 

pricked into the pleural suture of anaesthetised flies. Inoculation by this method bypasses 195 

the gut immune barrier but avoids differences in inoculation dose due to variation in feeding 196 

rate, and infections using this route largely follow the same course as oral infections but with 197 

less stochasticity [78]. 198 

 199 

Measuring change in viral load 200 

To provide a measure of viral load during single and coinfection, inoculated flies were snap 201 

frozen in liquid nitrogen at 2 days (± 2 hours) post-inoculation. Additional samples were 202 

collected for each species in the Drosophilidae host panel immediately after inoculation, 203 

which were used to account for differences in housekeeping gene expression across host 204 

species during CT normalisation (see below). Total RNA was extracted from flies 205 

homogenized in Trizol (Invitrogen) using chloroform-isopropanol extraction, and reverse 206 

transcribed using GoScript reverse transcriptase (Promega) with random hexamer primers. 207 

qRT-PCR was carried out on 1:2 diluted cDNA on an Applied Biosystems StepOnePlus 208 

system using a Sensifast Hi-Rox SYBR kit (Bioline). Cycle conditions were as follows: initial 209 

denaturation at 95°C for 120 seconds, then 40 cycles of 95°C for 5 seconds and 60°C for 30 210 

seconds. The primer pairs used for virus qRT-PCR assays were: (DCV) forward, 5’-211 

GACACTGCCTTTGATTAG-3’; reverse, 5’-CCCTCTGGGAACTAAATG-3’; (CrPV) forward, 212 

5’-TTGGCGTGGTAGTATGCGTAT-3’; reverse, 5’-TGTTCCGTCCTGCGTCTC. RPL32 213 

housekeeping gene primers were used for normalisation and varied by species 214 

(Supplementary Table 4-5). For each biological sample, two technical replicate qRT-PCR 215 

reactions were performed for each amplicon (viral and RPL32). 216 

 217 

Between-plate variation in CT values was estimated and corrected using linear models with 218 

plate ID and biological replicate ID as fixed-effects [79,80]. For DGRP lines, mean viral CT 219 

values from technical replicate pairs were normalised to RPL32 and converted to relative 220 

viral load using the ∆∆CT method, where ∆CT = CT:Virus – CT:RPL32 and ∆∆CT = 40 – ∆CT. To 221 

account for potential differences in RPL32 expression between species, change in viral load 222 

in the Drosophilidae species experiment was calculated as fold-change in viral load from 223 
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inoculation to 2 days post-infection using the ∆∆CT method, where ∆CT = CT:Virus – CT:RPL32 224 

and ∆∆CT = ∆CT:day0 – ∆CT:day2. Amplification of the correct products was verified by melt 225 

curve analysis. Repeated failure to amplify product, the presence of melt curve 226 

contaminants, or departures from the melt curve peaks of positive samples (±1.5°C for viral 227 

amplicons; ±3°C for RPL32) were used as exclusion criteria for biological replicates. For a 228 

full breakdown of the replicates per experiment for each combination of fly line/species and 229 

infection condition see Supplementary Table 6. 230 

 231 

Analysis of coinfection within and across species 232 

Genetic variation in the outcome of single and coinfection across DGRP lines was analysed 233 

using methods previously described by Magwire et al. [64]. Briefly, multivariate generalised 234 

linear mixed models (GLMMs) were fitted using the R package MCMCglmm [81], with either 235 

the viral loads of each virus under each infection condition, or the change in viral load during 236 

coinfection (coinfection viral load - single infection viral load) as the response variable. The 237 

structures of these models were as follows: 238 

 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙 =  𝛽𝛽1:𝑐𝑐 + 𝜇𝜇𝑙𝑙:𝑐𝑐 + 𝜇𝜇𝑏𝑏:𝑐𝑐 + 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙  (1) 

 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙 =  𝛽𝛽1:𝑣𝑣 + 𝜇𝜇𝑙𝑙:𝑣𝑣 + 𝜇𝜇𝑏𝑏:𝑣𝑣 + 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 (2) 

 239 

In model (1), ylic is the viral load for the combination of virus and infection condition c (CrPV 240 

single infection, CrPV coinfection, DCV single infection, DCV coinfection) in the ith biological 241 

replicate of DGRP line l. The fixed effect β1 represents the intercepts for each combination, 242 

the random effect µl represents the deviation of each DGRP line from the overall mean viral 243 

load for each combination (equivalent to the between-line variance), and elic represents the 244 

residual error. A small but significant effect of experiment block was found in initial models, 245 

driven by ~10 fold differences in DCV viral loads of the third experimental block. To account 246 

for this, random effects of block by infection condition (μb:c, μb:v) were added to both models. 247 

The structure of model (2) remains the same, but with the change in viral load during 248 

coinfection for each virus as the response variable, and yliv representing the change in viral 249 

load for the ith biological replicate of virus v and DGRP line l. Pastrel allele status 250 

(susceptible “A”, resistant “G”) was included in additional models as a fixed effect (β2:lp). 251 

 252 
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Phylogenetic GLMMs were used to investigate the effects of host evolutionary relatedness 253 

on viral load during single and coinfection, and to calculate interspecific correlations between 254 

different infection conditions across host species. Multivariate models were fitted with the 255 

viral loads of each virus under each infection condition as the response variable. The 256 

structure of these models were as follows: 257 

 𝑦𝑦ℎ𝑖𝑖𝑖𝑖 =  𝛽𝛽1:𝑐𝑐 + 𝜇𝜇𝑝𝑝:ℎ𝑐𝑐 + 𝜇𝜇𝑠𝑠:ℎ𝑐𝑐 + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖 (3) 

 𝑦𝑦ℎ𝑖𝑖𝑖𝑖 =  𝛽𝛽1:𝑐𝑐 + 𝜇𝜇𝑝𝑝:ℎ𝑐𝑐 + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖 (4) 

 258 

In these models, yhic is the change in viral load for the combination of virus and infection 259 

condition c (CrPV single infection, CrPV coinfection, DCV single infection, or DCV 260 

coinfection) in the ith biological replicate of host species h. The fixed effect β1 represents the 261 

intercepts for each combination, the random effect μp represents the effects of the host 262 

phylogeny assuming a Brownian motion model of evolution, and e represents the model 263 

residuals. Model (3) also includes a species-specific random effect that is independent of the 264 

host phylogeny (μs:hc). This explicitly estimates the non-phylogenetic component of between-265 

species variance and allows the proportion of variance explained by the host phylogeny to 266 

be calculated. μs:hc was removed from model (4) as model (3) struggled to separate the 267 

phylogenetic and species-specific traits for some infection conditions. Wing size, measured 268 

as the length of the IV longitudinal vein from the tip of the proximal segment to the join of the 269 

distal segment with vein V [82], provided a proxy for body size [83] and was included in a 270 

further model as a fixed effect (wingsizeβ2:hc). This was done to ensure that any phylogenetic 271 

signal in body size did not explain the differences seen in viral load between species [84]. 272 

 273 

To investigate the effect of host evolutionary relatedness on the change in viral load from 274 

single to coinfection, additional models were run with the change in viral load during 275 

coinfection (coinfection viral load - single infection viral load) on viral load as the response 276 

variable: 277 

 𝑦𝑦ℎ𝑖𝑖𝑖𝑖 =  𝛽𝛽1:𝑣𝑣 + 𝜇𝜇𝑝𝑝:ℎ𝑣𝑣 + 𝜇𝜇𝑠𝑠:ℎ𝑣𝑣 + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖 (5) 

 𝑦𝑦ℎ𝑖𝑖𝑖𝑖 =  𝛽𝛽1:𝑣𝑣 + 𝜇𝜇𝑝𝑝:ℎ𝑣𝑣 + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖 (6) 

 278 
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In these models, yhiv is the change in viral load for the ith biological replicate of virus v and 279 

host species h. The explanatory structure otherwise remains the same as models (3-4). 280 

 281 

Within models (1-6), the random effects and residuals were assumed to follow a multivariate 282 

normal distribution and a centred mean of 0. Models (1-2) were fitted with a covariance 283 

structure Vt ⊗ l for the between line variances, and Ve ⊗ I for the residuals, with ⊗ 284 

representing the Kronecker product, and I representing an identity matrix. V represents 4 x 4 285 

covariance matrices for model (1) and 2 x 2 covariance matrices for model (2) which 286 

describe the between-line variances and covariances in viral load for each infection condition 287 

and virus. Models (3-6) were fitted with a covariance structure of Vp ⊗ A for the phylogenetic 288 

effects, Vs ⊗ I for species-specific effects, and Ve ⊗ I for residuals. A represents the host 289 

phylogenetic relatedness matrix, I an identity matrix, and V represents 4 × 4 covariance 290 

matrices for models (3-4), or 2 x 2 covariance matrices for models (5-6), describing the 291 

between-species variances and covariances of changes in viral load for each combination of 292 

virus and infection condition. As each biological replicate was only tested with one 293 

combination of virus and infection condition, the covariances of Ve cannot be estimated and 294 

were set to 0 for all models. 295 

 296 

Models were run for 13 million MCMC iterations, sampled every 5000 iterations with a burn-297 

in of 3 million iterations. Parameter expanded priors were placed on the covariance matrices, 298 

resulting in multivariate F distributions with marginal variance distributions scaled by 1000. 299 

Inverse-gamma priors were placed on the residual variances, with a shape and scale equal 300 

to 0.002. To ensure the model outputs were robust to changes in prior distribution, models 301 

were also fitted with flat and inverse-Wishart priors, which gave qualitatively similar results. 302 

All parameter estimates reported from models (1-6) are means of the posterior density, and 303 

95% credible intervals (CIs) are the 95% highest posterior density intervals which are 304 

reported in brackets following the estimates in the results. 305 

 306 

The covariance matrices of models (1) and (2) were used to calculate the heritabilities (h2), 307 

and covariates of additive genetic and environmental variation (CVA and CVE respectively) of 308 

viral load and the effects of coinfection within host species. Heritability was calculated as 309 

ℎ2 = 𝑉𝑉𝐴𝐴
𝑉𝑉𝐴𝐴 + 𝑉𝑉𝐸𝐸

 , where VA represents the additive genetic variance and VE the environmental 310 
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variance of each trait [85]. As DGRP lines are homozygous, VA can be calculated as half the 311 

between-line variance, assuming purely additive genetic variation [64]. VE was set as the 312 

residual variance of each model, which contains both non-additive genetic and 313 

environmental effects on viral load and any measurement errors. Genetic correlations 314 

between infection conditions were calculated from the model (1) and (2) vl matrices as 315 
𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥,𝑦𝑦

�𝑣𝑣𝑣𝑣𝑣𝑣𝑥𝑥×𝑣𝑣𝑣𝑣𝑣𝑣𝑦𝑦
 and slopes of each relationship as 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥,𝑦𝑦

𝑣𝑣𝑣𝑣𝑣𝑣𝑥𝑥
. 316 

 317 

The proportion of the between species variance that can be explained by the phylogeny was 318 

calculated from models (3) and (5) using the equation 𝑉𝑉𝑝𝑝
𝑉𝑉𝑝𝑝 + 𝑉𝑉𝑠𝑠

, where vp and vs represent the 319 

phylogenetic and species-specific components of between-species variance respectively 320 

[84], and are equivalent to phylogenetic heritability or Pagel's lambda [86,87]. The 321 

repeatability of viral load measurements was calculated from models (4) and (6) as 𝑉𝑉𝑝𝑝
𝑉𝑉𝑝𝑝 + 𝑉𝑉𝑒𝑒

, 322 

where ve is the residual variance of the model [88]. Interspecific correlations in viral load 323 

between single and coinfection were calculated from model (4) vp matrix as 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥,𝑦𝑦

�𝑣𝑣𝑣𝑣𝑣𝑣𝑥𝑥× 𝑣𝑣𝑣𝑣𝑣𝑣𝑦𝑦
. 324 

 325 

Data Availability 326 

Data and R scripts for all included statistical models can be found at 327 

https://doi.org/10.6084/m9.figshare.21657503.v1. 328 

 329 

Results 330 

Coinfection causes changes in DCV and CrPV viral load across D. melanogaster genotypes 331 

To investigate variation in the outcome of coinfection within host species, we injected a total 332 

of 8,618 flies from 25 lines of the Drosophila Genetic Reference Panel with one of three virus 333 

inoculums: DCV, CrPV, and DCV + CrPV, and measured the outcome of infection as the 334 

viral load of each virus at 2 days post-inoculation using qRT-PCR (Fig. 1). Point estimates of 335 

the mean viral load across lines suggest that DCV viral load increases ~3-fold during 336 

coinfection with CrPV, and CrPV viral load decreases ~2.5-fold during coinfection with DCV, 337 

although credible intervals of these estimates overlapped (Table 1). When models were 338 

fitted on the change in viral load (coinfection - single infection), in effect treating viral loads 339 
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within experiment blocks as paired data, similar and significant effects of coinfection across 340 

lines were detected (Table 1). Several lines showed notably large changes during 341 

coinfection: two DGRP lines showed ~10 fold decreases in CrPV viral load, and three lines 342 

showed ~40-150 fold increases in DCV viral load. Removing these lines from model (2) 343 

reduced the mean changes in viral load during coinfection to a ~2 fold increase for DCV and 344 

a ~2 fold decrease for CrPV, but the effects of coinfection on both viruses remained 345 

significant. 346 

 347 
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Figure 1: Viral loads of CrPV and DCV across DGRP lines during single and coinfection. Bar 348 
heights show the mean viral load or changes in viral load (coinfection - single infection) at 2 dpi on a 349 
log10 scale, with error bars showing the standard error of the mean. Blue bars represent single 350 
infection viral loads, or changes in viral load where single infection viral loads were greater than 351 
coinfection viral loads. Red bars represent coinfection viral loads, or changes in viral load where 352 
coinfection viral loads were greater than single infection viral loads. DGRP lines are arranged on the 353 
x-axis in order of susceptibility to CrPV during single infection. 354 

 355 

No evidence of a host genetic component to the outcome of coinfection 356 

To estimate the influence of host genetic variation on the viral loads measured during single 357 

and coinfection, GLMMs were fitted to allow the phenotypic variation in viral loads to be 358 

partitioned into genetic and environmental components. Point estimates of the heritability of 359 

DCV viral load (0.25-0.30) were higher than for CrPV (0.13), and this difference was driven 360 

by changes in the genetic component of variation (Supplementary Table 7): CrPV CVA = 361 

0.08, (0.05, 0.11), DCV CVA = 0.16, (0.12, 0.20). This is consistent with previous studies 362 

which also found the genetic component of variation in susceptibility of D. melanogaster to 363 

single infections with DCV (a natural pathogen) is higher than for CrPV (a novel pathogen) 364 

[64]. However, we found little evidence that heritability of DCV or CrPV viral loads change in 365 

relation to coinfection, with the credible intervals of h2 estimates for single and coinfection 366 

viral loads overlapping for both viruses (Table 1). Additionally, no host genetic component 367 

was found for the change in viral load during coinfection (Table 1, Supplementary Table 8). 368 

Together, this suggests that variation in the strength of coinfection interactions between 369 

these viruses was independent of host genetic variation, and that coinfection status does not 370 

appear to alter the host genetic component of susceptibility to either virus. 371 

 372 

Correspondingly, strong positive correlations between single and coinfection viral loads were 373 

found for both DCV: r = 0.94 (0.84, 1.00), and CrPV: r = 0.90 (0.73, 1.00), with little evidence 374 

of genotype-by-coinfection interactions. Strong positive correlations were also seen between 375 

the two viruses, such that DGRP lines more susceptible to DCV were often also more 376 

susceptible to CrPV (Fig 2). Together, this suggests that susceptibility to DCV and CrPV 377 

share similar genetic architectures within D. melanogaster, with host genetic variation 378 

affecting DCV viral load similarly affecting CrPV viral load, again irrespective of coinfection 379 

status. 380 

 381 

 382 
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Table 1: Estimates of the phenotypic mean, environmental variance (VE), additive genetic 383 
variance (VA), and heritability (h2) of viral load and the change in viral load during coinfection 384 
across DGRP lines for CrPV and DCV during single infection and coinfection. Values for “single 385 
infection” and “coinfection” conditions were taken from model (1), which was fitted on log10-386 
transformed fold-changes in viral load, while values for “change” were taken from model (2), which 387 
was fitted on log10-transformed ∆ fold-changes in viral load (coinfection - single infection). 388 
Virus Condition Mean Ve VA h2 
CrPV Single Infection 4.68 (4.02, 5.34) 0.94 (0.79, 1.09) 0.14 (0.05, 0.25) 0.13 (0.05, 0.22) 

 Coinfection 4.28 (3.60, 4.96) 0.74 (0.61, 0.86) 0.12 (0.04, 0.20) 0.13 (0.06, 0.22) 

 Change -0.27 (-0.37, -0.18) 0.23 (0.15, 0.27) 0.00 (0.00, 0.02) 0.02 (0.00, 0.09) 

DCV Single Infection 6.17 (5.29, 6.98) 2.08 (1.75, 2.46) 1.00 (0.47, 1.65) 0.32 (0.20, 0.46) 

 Coinfection 6.62 (5.82, 7.40) 1.80 (1.49, 2.09) 0.71 (0.33, 1.18) 0.28 (0.16, 0.40) 

 Change 0.33 (0.18, 0.47) 0.21 (0.15, 0.27) 0.03 (0.00, 0.06) 0.11 (0.00, 0.23) 

 389 
 390 
 391 
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 392 

Figure 2: Genetic correlations in viral load between single and coinfections of CrPV and DCV. 393 
Correlations in viral load between CrPV during single and coinfection (A); DCV during single and 394 
coinfection (B); CrPV and DCV during single infection (C); and CrPV and DCV during coinfection (D). 395 
Individual points represent the mean viral load at 2 dpi for each DGRP line on a log10 scale, with trend 396 
lines added from a univariate least-squares linear model for illustrative purposes. Genetic correlations 397 
(r), regression slopes (β), and 95% CIs have been taken from the output of model (1). 398 

 399 

 400 

Viral load remains a repeatable trait across host species during coinfection 401 

To investigate how coinfection may alter susceptibility across host species, we performed 402 

similar experimental single and coinfections across 47 Drosophilidae host species. A total of 403 
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13,596 flies were inoculated, and the change in viral load after two days of infection was 404 

measured by qRT-PCR (Fig 3). Neither virus showed evidence of changes in their overall 405 

mean viral loads or variance across host species between single and coinfection (Table 2). 406 

Power analysis based on the effects of coinfection found in D. melanogaster (Fig. 1, 407 

Supplementary Methods) showed that the level of replication in this experiment was 408 

adequate to detect systematic ~2-fold changes in viral load across host species. As such, 409 

this result suggests there is no evidence for large additive effects of coinfection that are 410 

consistent across host species. Instead, most host species showed no discernible 411 

differences in viral loads during coinfection, with notable exceptions including D. obscura 412 

(both viruses decreased in viral load by ~600 fold), D. suzukii (DCV unchanged but CrPV 413 

decreased by ~25 fold), Zaprionus tuberculatus (CrPV unchanged but DCV decreased by 414 

~50 fold), and D. virilis (CrPV unchanged but DCV increased by ~40 fold). 415 

 416 

Phylogenetic GLMMs were fitted to the data to determine the proportion of variation in viral 417 

load explained by the host phylogeny (Table 2). The host phylogeny explained a large 418 

proportion of the variation in viral load for CrPV during single infection: 0.88 (0.69, 1), and 419 

coinfection: 0.82 (0.59, 1), with no credible difference between these two estimates. 420 

Estimates of the variation in DCV viral load explained by phylogeny were low: 0.1-0.13 with 421 

wide credible intervals due to model (3) struggling to separate phylogenetic and non-422 

phylogenetic effects for DCV. The repeatability of viral load across host species was high for 423 

both viruses during single infection, CrPV: 0.86 (0.78, 0.93), DCV: 0.94 (0.90, 0.97) and 424 

coinfection, CrPV: 0.76 (0.64, 0.87), DCV: 0.89 (0.82, 0.94), with the between-species 425 

phylogenetic component explaining a high proportion of the variation in viral load with little 426 

within-species variation or measurement error. Although point estimates of these parameters 427 

were all consistent with a slight decrease in phylogenetic signal during coinfection, the effect 428 

size was small, and we did not detect credible differences in phylogenetic signal between 429 

single and coinfection. 430 
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Figure 3: Viral loads of CrPV and DCV across host species during single and coinfection. Bar 432 
heights show the mean viral load or changes in viral load (coinfection – single infection) by 2 dpi on a 433 
log10 scale, with error bars showing the standard error of the mean. Blue bars represent single 434 
infection viral loads, or changes in viral load where single infection viral loads were greater than 435 
coinfection. Red bars represent coinfection viral loads, or changes in viral load where coinfection viral 436 
loads were greater than single infection. The phylogeny of Drosophilidae hosts is presented at the 437 
bottom, with the scale bar showing nucleotide substitutions per site, and the axis showing the 438 
approximate age since divergence in millions of years (mya) based on estimates from [89]. 439 

 440 
 441 
Table 2: Estimates of overall mean, across-species variance, repeatability, and the proportion 442 
of variance explained by the host phylogeny for viral load and the change in viral load during 443 
coinfection. Values for mean viral load, across species variance, and repeatability for the “single 444 
infection” and “coinfection” conditions were taken from model (4), which was fitted on log10-445 
transformed fold-changes in viral load, while these values for “change” during coinfection were taken 446 
from model (6), which was fitted on log10-transformed ∆ fold-changes in viral load (coinfection - single 447 
infection). The proportion of variance explained by phylogeny was taken from model (3) for the “single 448 
infection” and “coinfection” conditions, and model (5) for “change” during coinfection. 449 
Virus Condition Mean Across-species 

variance 
Repeatability Variance explained 

by phylogeny 
CrPV Single Infection 3.44 (1.88, 4.99) 3.63 (1.86, 5.75) 0.86 (0.78, 0.93) 0.88 (0.69, 1) 

 Coinfection 3.30 (2.21, 4.38) 2.93 (1.36, 4.75) 0.76 (0.64, 0.87) 0.82 (0.59, 1) 

 Change -0.13 (-0.49, 0.19) 0.17 (0, 0.46) 0.11 (0, 0.27) 0.57 (0, 1) 

DCV Single Infection 4.75 (2.09, 7.49) 9.85 (5.20, 15.46) 0.94 (0.90, 0.97) 0.13 (0, 0.43) 

 Coinfection 4.57 (1.82, 7.26) 10.40 (4.87, 16.44 0.89 (0.82, 0.94) 0.10 (0, 0.27) 

 Change -0.12 (-1.08, 0.86) 0.92 (0, 1.84) 0.36 (0.08, 0.62) 0.49 (0, 0.99) 

 450 

Viral load is strongly correlated between single and coinfection across host species 451 

Interspecific correlations in viral load between single and coinfection were calculated for 452 

each virus from the variance-covariance matrix of model (4). We found strong positive 453 

correlations in viral loads between single and coinfection for DCV: r = 0.95 (0.89, 0.99) (Fig 454 

4A) and CrPV: r = 0.94 (0.86, 0.99) (Fig 4B), with the regression slopes of each indicating a 455 

near 1:1 relationship: DCV: β = 0.98 (0.77, 1.22), CrPV: β = 0.85 (0.66, 1.05), and limited 456 

evidence of host species by coinfection interactions. The strength of the interspecific 457 

correlation in viral load between DCV and CrPV (Fig. 4C, D) also did not differ between 458 

single: r = 0.59 (0.31, 0.82), and coinfection: r = 0.67 (0.43, 0.88) and was consistent with 459 

previous estimates: r = 0.59 (0.26, 0.87) [41]. 460 

 461 
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 462 

Figure 4: Interspecific correlations in viral load between single and coinfections of CrPV and 463 
DCV. Correlations in viral load between CrPV during single and coinfection (A); DCV during single 464 
and coinfection (B); CrPV and DCV during single infection (C); and CrPV and DCV during coinfection 465 
(D). Individual points represent the mean viral load at 2 dpi for each Drosophilidae host species on a 466 
log10 scale, with trend lines added from a univariate least-squares linear model for illustrative 467 
purposes. Interspecific correlations (r), regression slopes (β), and 95% CIs have been taken from the 468 
output of model (4). 469 

 470 

 471 

 472 

 473 
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Little evidence of phylogenetic signal in the strength of coinfection interaction 474 

As the viral loads of DCV and CrPV show a strong phylogenetic signal across host species, 475 

we also tested if there was phylogenetic signal across hosts in the change in viral load from 476 

single to coinfection (Table 2). Fitting phylogenetic mixed models to these data revealed little 477 

support for any phylogenetic signal in the change in viral load during coinfection, with low 478 

estimates of repeatability for DCV: 0.36 (0.08, 0.62) and no credible difference from zero for 479 

repeatability of CrPV or the variance explained by phylogeny for either virus. 480 

 481 

Discussion 482 

Here, we measured variation in the outcome of coinfections within and across host species, 483 

using a Drosophila experimental system and two Cripaviruses: DCV and CrPV. We found 484 

effects of coinfection on viral load across genotypes of D. melanogaster, with DCV 485 

increasing ~3 fold and CrPV decreasing ~2 fold during coinfection. Consistent with previous 486 

studies, we found that host genetic variation explained a large proportion of variation in 487 

susceptibility to single infections [64], but little evidence was found for a change in this 488 

genetic component of susceptibility in the presence of a coinfecting virus, or for a host 489 

genetic component to the strength of interaction between these viruses. Across host 490 

species, we found no evidence of consistent coinfection interactions between these viruses 491 

and no change in the phylogenetic patterns of susceptibility to each virus during coinfection, 492 

although coinfection interactions were apparent in a subset of host species. Strong positive 493 

correlations between single and coinfection viral loads, and between DCV and CrPV both 494 

within and across host species suggest that similar genetic architectures are underlying 495 

susceptibility to these viruses, and that susceptibility is largely independent of coinfection 496 

status. 497 

 498 

Exploitative coinfection interactions – where one pathogen benefits from coinfection to the 499 

detriment of the other – have been described in intestinal parasites of wood mice and wild 500 

rabbits [90,91], and in mixed-genotype Pseudomonas infections in plants [92]. The 501 

mechanisms underlying exploitative coinfection interactions are unknown but may be due to 502 

differences in the relative importance of specific interactions between pathogens and the 503 

host in overall susceptibility. Within D. melanogaster, our data suggest that the strength of 504 

interaction between DCV and CrPV is not virus density-dependent, as more susceptible host 505 
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genotypes did not experience increased changes in viral load with coinfection compared to 506 

more resistant genotypes. This suggests that the coinfection interaction within D. 507 

melanogaster is unlikely to be caused by resource competition between DCV and CrPV, as 508 

susceptible hosts experienced >100-fold higher viral loads for both DCV and CrPV 509 

compared to more resistant hosts with no evidence of limited virus replication. DCV may 510 

instead be benefiting from increased suppression of antiviral RNAi due to expression of the 511 

CrPV immune inhibitor [62], while CrPV is hindered by the activation of other mechanisms of 512 

host immunity by DCV. However, complex direct virus-virus interactions have been 513 

described in multiple coinfections, and it is possible that DCV and CrPV are directly 514 

influencing each other’s expression or virion surface composition [93,94]. 515 

 516 

Across host species, the changes in viral load during coinfection were highly variable and 517 

show no consistent interaction between DCV and CrPV. Coupled with the fact we did not 518 

detect effects of genetic variation within host species or evolutionary relatedness across host 519 

species in the change in viral load during coinfection, our results suggest that natural levels 520 

of variation in host genetics have little impact on the strength of interaction between these 521 

viruses during coinfection. This contrasts with coinfection studies in other systems, which 522 

describe variation between host genotypes in pathogen community composition, coinfection 523 

prevalence, and disease severity during coinfection [31–33]. Mathematical models 524 

investigating stochasticity during coinfection have suggested that otherwise identical 525 

coinfections can have directionally different outcomes [95], and so it may be that any 526 

influences of host evolutionary relatedness and genotype are being masked by high 527 

stochasticity in the outcome of coinfection in this system. Alternatively, variation in the 528 

strength of coinfection interaction between host genotypes may be influenced by a small 529 

number of major-effect loci that are not dispersed phylogenetically, which these experiments 530 

were not designed to detect. 531 

 532 

As inferential and epidemiological models of cross-species infections grow in complexity, 533 

they will continue to incorporate more non-genomic data which is known to influence the 534 

outcome of infection (e.g., [96]). Our findings suggest that coinfection will not be a necessary 535 

inclusion in models of every host-pathogen system, as the ability of the host phylogeny to 536 

explain variation in viral load across host species was largely unaffected during coinfection in 537 

this case. Despite this, coinfection is known to cause changes in infection traits in many 538 
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systems [4–9,97–109], with consequences for pathogen spread and establishment in natural 539 

populations [10–15]. Few studies exist that describe pathogens that do not interact during 540 

coinfection [110] (although this may represent publication bias), and so the frequency of 541 

consequential coinfection interactions in nature is as yet unknown . It remains unclear if 542 

interactions between pathogens can be consistently predicted a priori from single infection 543 

data [111,112], or from pathogen and host genomic data [113]. In cases of direct interaction 544 

between pathogens, such as the binding and activation of endogenous HIV by herpes 545 

simplex virus proteins [93], differing outcomes in coinfection may be predictable through 546 

conventional tools for inferring protein-protein and protein-nucleotide binding [114,115]. 547 

However, where pathogens interact indirectly, such as through immune modulation or 548 

resource availability, it may be necessary to understand the extent of variation in these host 549 

factors that is required to influence the outcome of infection before inferring interactions 550 

between coinfecting pathogens. 551 

 552 

Here, we have tested for variation in the outcome of coinfection within and across host 553 

species, and our findings suggest that host genetics may not influence coinfection 554 

interactions in all host-pathogen systems. This approach can now be expanded to a more 555 

diverse range of coinfecting pathogens, to look for effects of host genetic variation during 556 

other pathogen-pathogen interactions, to better understand the potential determinants of the 557 

outcome of coinfection interactions, and how these interactions may affect the evolution of 558 

host susceptibility. 559 

 560 
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