

1 **Characterization of adult human skeletal cells in different tissues reveals a CD90+CD34+ periosteal
2 stem cell population**

3

4

5 Ye Cao¹, Scott M. Bolam², Anna L. Boss³, Helen C. Murray⁴, Nicola Dalbeth⁵, Anna E.S. Brooks^{6,7}, Brya G.
6 Matthews^{1*}

7

8 ¹Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand

9 ²Department of Surgery, University of Auckland, Auckland, New Zealand

10 ³Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand

11 ⁴Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand

12 ⁵Department of Medicine, University of Auckland, Auckland, New Zealand

13 ⁶School of Biological Sciences, University of Auckland, Auckland, New Zealand

14 ⁷Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand

15

16 The authors do not have any competing interests to disclose.

17

18

19

20

21 Supported by: This work has been supported by the Health Research Council of New Zealand Sir Charles
22 Hercus Fellowship and the Maurice and Phyllis Paykel Trust.

23

24

25

26 Corresponding author:

27 Brya G Matthews, Department of Molecular Medicine and Pathology, University of Auckland, Private
28 Bag 92-019, Auckland 1142, New Zealand; brya.matthews@auckland.ac.nz

29

30

31 **Keywords:** Periosteum, skeletal stem cells, progenitor, mesenchymal stem cells, prospective isolation

32 **Abstract**

33 Skeletal stem and progenitor cells are critical for bone homeostasis and healing, but their identity and
34 diversity in humans are not well understood. In this study, we compared stromal populations in
35 matched tissues from the femoral head and neck of 21 human participants using spectral flow
36 cytometry of freshly isolated cells. High-level analysis indicated significant differences in marker
37 distribution between periosteum, articular cartilage, endosteum and bone marrow stromal populations,
38 and identified populations that were highly enriched or unique to specific tissues. Periosteum-enriched
39 markers included CD90 and CD34. Articular cartilage, which has very poor regenerative potential,
40 showed enrichment of multiple markers, including the PDPN+CD73+CD164+ population previously
41 reported to represent human skeletal stem cells. We further characterized periosteal populations by
42 combining CD90 with other strongly expressed markers. CD90+CD34+ cells sorted directly from
43 periosteum showed significant colony-forming unit fibroblasts (CFU-F) enrichment, rapid expansion, and
44 consistent multi-lineage differentiation of clonal populations. *In situ*, CD90+CD34+ cells include a
45 perivascular population in the outer layer of the periosteum and non-perivascular cells closer to the
46 bone surface. In conclusion, our study indicates considerable diversity in the stromal cell populations in
47 different tissue compartments within the adult human skeleton, and suggests that periosteal stem cells
48 reside within the CD90+CD34+ population.

49 **Introduction**

50 Tissue-resident skeletal stem and progenitor cells (SSPC) are critical for homeostasis and regeneration of
51 the skeleton. Bone marrow is considered a fundamental niche for stem cells, but the periosteum plays a
52 crucial role in bone healing. In contrast, articular cartilage has minimal tissue turnover and regeneration
53 capacity. Previous studies concluded that perivascular mesenchymal stem cells that contribute to
54 skeletal homeostasis are present in most tissues and have a common set of markers (1). However, more
55 recently it has been recognized that there is incredible diversity in stromal populations even within a
56 single tissue, and that different skeletal compartments probably have unique stem and progenitor cell
57 populations (2-7). Therefore, it is unlikely that a single hierarchy of cells contributes to skeletal growth,
58 homeostasis, and healing throughout the skeleton and markers for SSPC identification established using
59 fetal or juvenile tissue, or in cell culture, may not be directly applicable to adult settings.

60

61 In mice, numerous markers and marker combinations are proposed to identify SSPCs (8). Some identify
62 cells in the growth plate, a structure specifically involved in longitudinal growth that fuses in young adult
63 humans (9, 10). Others are selectively expressed in the periosteum and contribute to fracture healing,
64 while some markers, such as leptin receptor, do not appear until adulthood (4, 11-14). There is yet to be
65 consensus about which markers to use and in what settings to identify mouse SSPCs. In humans, data is
66 more limited as most studies select cells of interest based on adherence rather than using markers
67 expressed in vivo that allow prospective isolation and localization. Chan and colleagues have
68 characterized a fetal human skeletal stem cell (hSSC) population and various committed progenitor
69 populations based on cell surface markers including CD73, PDPN, CD164 and CD146 (15). These markers
70 and populations were initially identified and characterized in fetal growth plate tissue, then applied to
71 various other tissues, including adult bone marrow and articular cartilage (15, 16). Other studies have
72 used CD146, CD271, or PDGFR α and CD51 to isolate bone marrow populations with SSC properties (17-
73 21).

74

75 The periosteum is essential for fracture repair (22, 23). Functionally, the periosteum niche differs from
76 the bone marrow compartment in that it can form a callus containing both fibrocartilage and bone, but
77 it does not provide a hematopoietic niche (12, 24). Many groups, including ours, have shown that the
78 mouse periosteum contains high proportions of long-term skeletal stem cell populations with greater
79 clonogenicity than the bone marrow (4, 12, 25, 26). Human periosteum has been utilized in various in
80 vitro studies, but few have examined cell populations in freshly isolated periosteum. Debnath et al.

81 briefly reported a periosteal stem cell population and two downstream progenitor populations
82 identified in adult humans using analogous markers to what they identified in mice (10, 12).
83 To date, we have limited knowledge of SSPC populations in adult human tissue and how they compare
84 between different skeletal compartments. In this study, we evaluated adult hSSPC populations across
85 matched skeletal tissues, including periosteum, articular cartilage, and the bone marrow compartment,
86 including central bone marrow and endosteum. We demonstrate vast differences in stromal populations
87 in the different tissue compartments based on cell surface marker expression. In addition, we have
88 evaluated the expansion and differentiation potential of selected periosteal populations in vitro.

89 **Results**

90 **High-dimensional analysis reveals the heterogeneity of hSSPC populations in adult skeletal tissues**

91 We performed spectral flow cytometry analysis of four skeletal tissues isolated with a panel containing
92 16 markers proposed to separate skeletal populations (Table 1). Periosteum, macroscopically normal
93 articular cartilage, trabecular bone-associated cells (called endosteum) and bone marrow were isolated
94 from the femoral head of 21 patients undergoing hip arthroplasty due to osteoarthritis (Figure 1A, Table
95 2). FCS files for the full dataset can be found at FlowRepository ID FR-FCM-Z5U6. Figure 1B illustrates the
96 initial gating to generate skeletal lineage populations. We excluded hematopoietic, endothelial,
97 erythroid cells and granulocytes using lineage (Lin) markers CD45, CD31, CD235a and CD15. We
98 confirmed that all cells capable of forming fibroblastic colonies (CFU-F) resided within the Lin- fraction
99 (Figure 1-figure supplement 1A). To look for high-level differences in the Lin- populations of the four
100 tissues, we used the viSNE algorithm (27), followed by FlowSOM (28). We identified tissue-specific or
101 selective clusters with hierarchical clustering (Figure 1C, Figure 1-figure supplement 2). CD200^{hi}CD34^{hi}
102 cells were predominately present in the periosteum (77.3% of the total CD200^{hi}CD34^{hi}), as were CD90^{hi}
103 cells (54.8%). One cluster strongly overlapped with the hSSC population described by Chan (15), and
104 83.8% of this cluster was in the articular cartilage. The CD24+ clusters were specific to bone marrow
105 (80%) and endosteum (17%), while the CD105^{hi}CD164^{hi} cluster was almost exclusively present in the
106 bone marrow (98.1%).

107 **Table 2. Patient demographics**

Study	n	Sex	Age (Range)
Flow analysis	21	11F, 10M	65.3 (41-89)
Cell sorting	11	6F, 5M	68.7 (56-86)
Histology	3	2F, 1M	68.0 (53-77)

108
109 We compared the expression of individual markers within Lin- populations in different tissues (Figure 2).
110 None of the markers tested were specific to the Lin- population as they were detected in at least some
111 of the Lin+ subsets (Figure 2-figure supplement 1). The periosteum showed the highest expression of
112 CD90 (or THY1) and CD34, a stem cell marker in hematopoietic and endothelial cells (Figure 2A-C). Bone
113 marrow showed the highest expression of perivascular marker CD146, consistent with its presence on
114 sinusoidal walls, although it remained rare in all tissues (Figure 2D) (19). CD24, used to separate marrow
115 stromal populations in mice (29), was highly expressed in bone marrow and very rare in periosteum
116 (Figure 2D-E). In the endosteum, CD24+ cells had limited ability to form CFU-F (Figure 1-figure

117 supplement 1B), suggesting they primarily represent a mature marrow stromal population rather than
118 progenitor cells. Articular cartilage showed significant enrichment of many of the markers evaluated,
119 including CD164, PDGFR α , PDPN, and ALP, a mature osteoblast marker (Figure 2F-G). Patient gender did
120 not significantly affect the frequency of most markers analyzed with the exception of CD90 in
121 periosteum which showed higher frequency in males ($p=0.0074$, see Figure 2 – Source data 1).
122 Expression of some markers appeared to be affected by patient age, although only in selected tissues.
123 These included CD26 in bone marrow which tended to increase with age, age-related increases in ALP in
124 endosteum and periosteum, and CD24 in endosteum which decreased with age (Figure 2-figure
125 supplement 2).

126
127 We evaluated previously reported human skeletal stem cell stains in our dataset. The hSSC, as defined
128 by Chan et al. (15) (Lin-CD146-PDPN+CD164+CD73+), but not their proposed downstream progenitors,
129 appear as a cluster on our viSNE analysis (Figure 3A). hSSCs showed clear separation making gating
130 straightforward in most cartilage samples but not in other tissues (Figure 3B-C). The proportion of hSSC
131 was three times higher in the cartilage (7.8% of Lin-) compared with the periosteum (2.9%, Figure 3D).
132 hSSCs were very rare, or in some patients absent, in the endosteum (0.13%) and bone marrow (0.03%).
133 Osteoprogenitors (hOP, Lin-PDPN-CD146+) were most common in the bone marrow (5.4%), and rare in
134 other tissues (Figure 3E), which does not align with the known functionality of these tissues and the
135 extensive data indicating that osteoprogenitors reside near the bone surface (21, 30, 31). Bone, cartilage
136 and stromal progenitors (hBCSP, Lin-CD146+PDPN+) were rare in all tissues (<3%), while
137 chondroprogenitors (hCP) showed the highest frequency in cartilage (13.7%), followed by the
138 periosteum (7.6%, Figure 3F-G). None of the periosteal stem and progenitor populations hPSC (Lin-
139 CD90-CD105-CD200+), hPP1 (Lin-CD90-CD105-CD200-), and hPP2 (Lin-CD90-CD105+) proposed by
140 Debnath et al. (12) presented as a cluster on our viSNE plots except for in the bone marrow where hPSC
141 overlapped with the CD24+ cluster (Figure 3-figure supplement 1A). The hPSC population was present in
142 the periosteum, but rare in other tissues, but hPP1 was very common in all tissues (>65% of Lin-),
143 suggesting this set of markers may not be suitable for non-periosteal tissues (Figure 3-figure supplement
144 1).

145
146 **Enrichment of SSPCs using CD90**
147 We evaluated the growth and differentiation potential of various prospectively isolated cell populations
148 using in vitro assays (Figure 4A). Initially, we evaluated CFU-F formation in each tissue's total Lin-

149 populations. $1.7 \pm 0.16\%$ of Lin- periosteum cells formed CFU-F, around 5-fold higher than the CFU-F in
150 endosteal preparations ($0.34 \pm 0.23\%$, Figure 4B). Surprisingly, CFU-F frequency in articular cartilage,
151 $2.3 \pm 0.24\%$, tended to be higher than periosteum despite the inability of cartilage to heal; however,
152 cartilage CFU-F were consistently smaller and contained fewer cells than matched periosteum samples.
153 Bone marrow did not form CFU-F despite being plated at 10x higher density, consistent with previous
154 reports from humans and mice indicating that CFU-Fs and SSPCs primarily reside near the bone surface
155 (4, 15, 21, 31). Next, we attempted to enrich for periosteal CFU-F using markers highly expressed in the
156 periosteum with clear separation allowing straightforward and reproducible gating. We focused on
157 CD90 as this marker enriched for CFU-F capable of multi-lineage differentiation in our mouse studies (4).
158 A subset of CD90+ cells in endosteum and bone marrow were capable of CFU-F formation, while CD90-
159 cells were not (Figure 4-figure supplement 1A-D). In cartilage, CD90 did not enrich for CFU-F. Expanded
160 CD90+ colonies showed varied in vitro differentiation potential (Figure 4-figure supplement 1E-F). In the
161 periosteum, we split the Lin- population by combining CD90 with CD73, CD34 and CD26 (Figure 4C-E).
162 There is partial but not complete overlap in the expression of these markers (Figure 4-figure supplement
163 1G). The CD90+CD34+ population was the only one showing significant CFU-F enrichment compared to
164 total Lin-. We then further characterised individual clones from populations with consistent CFU-F
165 formation. Most colonies selected for passaging were capable of further expansion, but CD90+CD34+
166 cells expanded more rapidly than the other populations (Figure 4F-G). Most expanded colonies were
167 also capable of differentiation, but notably, 100% of the 11 CD90+CD34+ clones, as well as all 12 of
168 CD90+CD26+ clones (each derived from 3 patients) were capable of differentiating into osteoblasts,
169 adipocytes and chondrocytes under permissive conditions. CD90-CD73+ cells from 2/3 patients
170 underwent spontaneous adipogenesis prior to the addition of adipogenic medium while retaining
171 osteogenic and chondrogenic potential in most cases.

172

173 **Localization of CD90+CD34+ cells in the periosteum**

174 We localized the CD90+CD34+ populations *in situ* with immunostaining on femoral neck sections.
175 Consistent with the flow cytometry data, CD90+ cells were most abundant in the periosteum.
176 CD90+CD34+ cells were mainly located in the periosteum, but comprised at least two populations
177 (Figure 5A-C, H). Perivascular (lectin-adjacent) cells with robust CD90 staining were present in the outer
178 layer of the periosteum (Figure 5B). A second non-perivascular CD90+CD34+ population was evident in
179 the inner cambium region of the periosteum where periosteal stem cells are proposed to reside (Figure
180 5C). CD73+ immunostaining was rare in the periosteum in contrast to our flow data, and CD73+CD90+

181 cells were most abundant near the endosteal bone surface (Figure 5D-G, I). The CD90+CD34+ marker
182 combination, therefore, has utility using both flow cytometry and histology; however, additional
183 markers are needed to refine these cells to a more homogeneous population.

184

185

186 **Discussion**

187 Data generated with single-cell techniques indicate that there is a great deal of cellular diversity in
188 skeletal tissues. Using spectral cytometry of cell surface markers, we have demonstrated that the Lin-
189 skeletal populations resident in the periosteum, the bone marrow compartment and articular cartilage
190 are very different with some cell populations restricted to certain tissue types. Presumably, these
191 differences would be amplified further with higher-resolution techniques like single-cell RNAseq. While
192 the idea of universal markers or marker combinations is appealing, abundant evidence shows that
193 populations expressing similar markers sourced from different tissues have very different characteristics.
194 For example, CD146+ cells from various skeletal and non-skeletal tissues form CFU-F, but only bone
195 marrow-derived cells form ossicles containing marrow, while periosteal cells make ossicles without
196 marrow infiltration (5). Similarly, markers including CD271 and PDGFR α that enrich for bone marrow
197 CFU-F show very different abundance in fetal compared to adult bone marrow, and the combinations
198 that show the best enrichment of stem cell populations appear to vary in different developmental
199 stages (18, 20). Despite the clear differences between tissues, we saw limited influence of gender and
200 age on individual marker expression in our dataset. Notably, all patients in our study were over 40, and
201 almost all women would have been postmenopausal, so larger cohorts including younger patients would
202 be required to thoroughly address the effect of age on resident skeletal lineage populations.

203

204 Many studies on SSPCs use plastic adherence, or adherence to fibronectin-coated plates for
205 chondroprogenitors, but numerous studies have shown that the cell surface phenotype of various
206 mesenchymal progenitor populations is altered by attachment, in vitro culture conditions, and passaging
207 (32-37). Therefore, it is important to identify functionally different SSPCs and define their origins *in vivo*.
208 Consistent with recent studies in mice, our results demonstrate that hSSPCs are enriched in the adult
209 periosteum compared to the bone marrow and endosteal compartments (4, 12, 14, 25, 26). In line with
210 other studies, we found that CFU-Fs were very rare in total Lin- bone marrow, and sorting on the basis of
211 rare markers, CD90-based enrichment in this instance, was necessary to detect any colony formation (15,
212 21). In the periosteum, most cells capable of CFU-F formation were CD90+, and the CD90+CD34+
213 fraction was enriched 3.5-fold for CFU-F. These colonies also showed consistent expansion and multi-
214 lineage differentiation on a clonal basis, suggesting that periosteal stem cells reside within the
215 CD90+CD34+ fraction. This contrasts with the results reported by Debnath et al., where only CD90- cells
216 were considered to be periosteal stem and progenitors (12). Notably, there were CD90- cells capable of
217 CFU-F formation, particularly CD90-CD73+ cells. Some clones from this population also demonstrated

218 tri-lineage differentiation, but notably, many formed adipocytes spontaneously, which is surprising given
219 that *in vivo* the periosteum does not contain adipocytes. We have noted that mouse periosteal cultures
220 also form adipocytes readily, often more rapidly than bone marrow stromal cells, suggesting that the *in*
221 *vivo* periosteal environment may actively inhibit adipogenic differentiation (13, 38). Overall, the vast
222 majority of colonies chosen for clonal analysis in this study were capable of further expansion and some
223 form of differentiation, which contrasts with our mouse studies where periosteal CFU-F usually have
224 limited ability to expand *in vitro* without the addition of growth factors, in agreement with other studies
225 (15, 39). In mice, prospectively isolated CD90+ cells are described as committed osteoprogenitors rather
226 than stem cells, but most of this data was generated using cells from embryonic or early postnatal
227 donors, suggesting the functionality of CD90+ cells may be different in development compared to
228 adulthood (10, 40). Notably, CD90+CD34+ cells also comprise a clear population in synovial fibroblasts
229 and show multi-lineage differentiation potential, at least in bulk cultures (41, 42). While CD90+CD34+
230 cells are effectively enriched for cells with stem cell properties, at least *in vitro*, additional markers are
231 still required to separate the population further, particularly the perivascular population from the non-
232 perivascular subset resident in the cambium layer of the periosteum. The cambium layer is generally
233 proposed to contain the stem cell niche, and cells that contribute to fracture callus tissue formation are
234 usually close to the bone surface in resting periosteum, although it is difficult to identify the layers in
235 many parts of the mouse skeleton (12, 14, 43, 44). Further refinement of this population using
236 additional markers will be addressed in future studies.

237
238 Articular cartilage showed high expression of many putative SSPC markers tested, including high
239 expression of ALP chosen as a mature osteoblast marker. Previous studies have also reported strong
240 expression of selected markers, including CD73 and CD106 in articular cartilage, and two studies show
241 around 25% CD90+ cells, which is higher than in our study (10% of Lin-) (34, 45, 46). Collectively, these
242 data suggest that some progenitor markers are expressed in mature chondrocytes, although in some
243 cases, also chondroprogenitors (34). Our data suggest that CD73 and PDPN are expressed in a large
244 portion of chondrocytes. Surprisingly, cartilage showed high overall CFU-F formation with similar or
245 even higher levels than in periosteum. The size and morphology of colonies forming from articular
246 cartilage suggested a slower growth rate and potentially more limited expansion potential than
247 periosteal cells, although we have not examined this question systematically. Cartilage contained the
248 highest proportion of hSSCs, as defined by Chan et al., and bright staining for several markers used to
249 define hSSCs (15). Given that this stain was developed using growth plate tissue, it is perhaps not

250 surprising that it appears most suited to cartilage. Our data suggest that further validation of the hSSC
251 hierarchy is required in adult tissues.

252

253 The major limitation of this study is the use of tissue from femoral heads of osteoarthritis patients. This
254 limited the source of periosteum to the femoral neck, which has partial periosteal coverage and does
255 not produce fracture callus well (47). However, it did enable us to analyze a large cohort that included
256 both genders and source our cells from a consistent location. Future studies will be required to confirm
257 replication with different anatomical sources of periosteum. The cartilage used for these analyses was
258 macroscopically normal. While this means it experienced an osteoarthritic environment, there are clear
259 differences in various cellular phenotypes between chondrocytes obtained from macroscopically normal
260 and matched damaged cartilage, indicating they retain some features of healthy cartilage (48, 49). Some
261 potential SSPC markers retain similar distribution and frequency in osteoarthritis, while others change in
262 disease (34). Tissues adjacent to osteoarthritic joints, including the bone, are affected by osteoarthritis,
263 which could potentially affect the SSPC and stromal population frequencies, although the site of marrow
264 collection was some distance from the subchondral region that has overt changes. Finally, we restricted
265 our analysis of expansion and differentiation potential to in vitro assays, however we performed these
266 on a clonal basis which meant we observed a variety of differentiation potentials.

267

268 In conclusion, we have demonstrated that adult human periosteum is enriched for SSPCs compared to
269 the bone marrow compartment, but perhaps not articular cartilage despite its vastly superior
270 regenerative capacity. Our data suggest that these different tissue compartments have substantial
271 differences in the skeletal/stromal cell makeup and that different combinations of markers will be
272 required to identify SSPCs in periosteum, the bone marrow compartment, and articular cartilage. Our
273 results do not exclude the possibility of multiple separate stem cell pools with different functionality,
274 although it will be challenging to interrogate in vivo function in humans. Finally, we demonstrated that a
275 subset of CD90+CD34+ cells in the periosteum have characteristics of skeletal stem cells.

276

277 **Methods**

278 **Collection of adult human skeletal samples**

279 Collection and use of human tissue were approved by The New Zealand Northern A Health and Disability
280 Ethics Committee (NTX/05/06/058/AM15) and all participants provided written informed consent.
281 Femoral heads were collected from patients undergoing hip arthroplasty for osteoarthritis at Auckland
282 City Hospital, Auckland, New Zealand (Table 2). Specimens were kept in sterile saline at 4°C for no longer
283 than 6 h before dissection.

284

285 **Histology**

286 The cortical ring was sawed from the femoral neck and trimmed to approximately 1cm² before fixing
287 with 4% paraformaldehyde (Sigma, NZ) at 4°C for 5-7 days. Samples were then decalcified with 14%
288 ethylenediaminetetraacetic acid (EDTA) changed weekly for six months, dehydrated in 30% sucrose
289 overnight, and stored frozen until sectioning. The tissue was embedded in cryomatrix (ThermoFisher)
290 and 7µm cryosections were obtained on a cryostat (CryoStar, Leica Microsystems, Wetzlar, Germany)
291 with a tape transfer system (Section-lab, Hiroshima, Japan) as previously described (50). For
292 immunofluorescent staining, sections were permeabilized with 0.3% Triton X in PBS for 15min, followed
293 by 1h blocking in 5% bovine serum albumin (BSA) with 10% normal goat serum (NGS) in 0.1% Tween
294 20/PBS (PBST) at RT. After blocking, sections were incubated with a primary antibody cocktail (Table 3)
295 made up in 1% BSA/2%NGS/PBST (antibody diluent) at 4°C overnight. Where required, slides were
296 washed and secondaries were incubated for 1h at RT. All sections were counterstained with DAPI before
297 mounting with ProLong Diamond Antifade Reagent (ThermoFisher). For haematoxylin and eosin staining
298 followed the manufacturer's protocol (Section-lab). Slides were scanned using a Metafer4 Slide Scanning
299 Platform (MetaSystems, Altlussheim, Germany) at 10X. Image analysis was performed using image J (Fiji).
300 Regions of interest (ROIs) including the periosteal, bone, and endosteal/bone marrow regions were
301 drawn according to the adjacent brightfield images. Standardized thresholds were manually set for each
302 channel, and the fluorescent signal for each channel was measured in DAPI-positive nuclear regions
303 after nuclei were separated with the watershed algorithm. We calculated cells that were positive for
304 CD90, CD34, CD73, or lectin; double positive for CD90/CD34 or CD90/CD73; and triple positive for
305 CD90/CD34/lectin or CD90/CD73/lectin in different ROIs. One section/bone was analyzed.

306

307

308 **Table 3. Reagents used for immunostaining**

Antigen	Conjugate	Clone	Cat#	Manufacturer	Dilution
CD90	APC-Cy7	5E10	328131	Biolegend	1:50
CD34	PE/Dazzle 594	581	343534	Biolegend	1:25
CD73	-	AD2	344002	Biolegend	1:100
UEA-1 Lectin	Biotin		L8262	Sigma	1:500
Goat anti-mouse Alexa Fluor 594			A-11032	ThermoFisher	1:500
Streptavidin Alexa Fluor 488			S11223	ThermoFisher	1:500

309

310 **Cell isolation from skeletal tissues**

311 Periosteum, cartilage, endosteum, and bone marrow were isolated from the femoral head of the same
312 patient (Figure 1A). The periosteum was scraped off the cortical ring and minced. Macroscopically
313 undamaged articular cartilage was dissected and cut into approximately 2mm² pieces. Trabecular bone
314 was extracted from the femoral head and washed with cold PBS, the washes were collected as bone
315 marrow, and the cleaned trabecular bone was further washed and minced. All tissues except bone
316 marrow were incubated with 5mL/g tissue of 1mg/mL collagenase P (Cat: 11-213873001, Sigma-Aldrich)
317 in αMEM 10% fetal bovine serum (FBS), at 37°C, 100rpm overnight (<15h). Following digestion, cells
318 were filtered through a 70μm cell strainer (Falcon), washed with PBS, and the pellet was resuspended
319 and incubated with red blood cell lysis buffer (155mM NH₄Cl, 10mM KHCO₃, 0.1mM EDTA in H₂O) for
320 1min then washed and resuspended in staining medium (SM, 2% FBS, 1mM EDTA in PBS).

321

322 **Flow cytometry and cell sorting**

323 We used Panel One reported in Boss et al. (37) and similar panels used for the analysis of adipose tissue
324 as the backbone of our stain. The panel is shown in Table 1. For spectral flow cytometry, cells were
325 blocked with human TruStain FcR Blocking Reagent (Biolegend, USA) and True-Stain Monocyte Blocker
326 (Biolegend, USA) before staining with antibody cocktails with Brilliant Stain Buffer (BD Biosciences, US)
327 in SM. For cell sorting, cells were stained using antibody cocktails in SM. Dead cells were excluded using
328 DAPI (50ng/ml final concentration).

329

330 Spectral flow cytometry analysis was performed on a Cytek Northern Lights instrument with three lasers.
331 Each experiment included an unstained control using unlabeled freshly isolated periosteal cells for
332 background observation and establishing gates. Spectral unmixing was calculated with a standard
333 reference control library and freshly prepared unstained controls by SpectroFlo Software Package (Cytek

334 Biosciences, USA). To build the reference library, periosteal cells were stained with each antibody used
335 in the panel, but where the interested populations were dim or rare on the periosteum, other skeletal
336 cells or beads (Compensation Plus (7.5 μ m) Particles Sets, BD Biosciences) were used instead.

337

338 Cell sorting was performed on a BD FACS Aria II using panels that included antibodies listed in Table 4.
339 Cells were collected into 1.5mL sterile screw-cap tubes containing 500 μ L α MEM 20% FBS.

340

341 **Table 4. Additional antibodies for cell sorting**

Antigen	Conjugate	Clone	Cat #	Manufacturer	Dose (μ L/100 μ L)
CD235a	FITC	HI264	349104	Biolegend	2.5
CD31	FITC	WM59	303104	Biolegend	2.5
CD45	FITC	HI30	555482	BD Biosciences	10
CD26	PE	BA5b	302706	Biolegend	0.15
CD73	PE-Cy7	AD2	561258	BD Biosciences	2.5
CD90	APC-Cy7	5E10	328131	Biolegend	1
CD90	PE	5E10	561970	BD Biosciences	0.25

342

343 **Data analysis for spectral flow cytometry**

344 After unmixing, FCS files were exported and analyzed with FCS Express 7 and FlowJo v10.6.2 (BD
345 Biosciences). Debris, doublets, dead cells, and Lin+ cells were excluded with serial gating (Figure 1B).
346 High-dimensional analysis was performed on gated Lin- populations in Cytobank (Beckman Coulter). The
347 analyses were applied to the four equal sampled (325,000 events) concatenated Lin- populations. We
348 used the advanced t-Distributed Stochastic Neighbor Embedding (tSNE) algorithm, viSNE (3000
349 iterations) (27), followed by FlowSOM hierarchical clustering (28) with 15 clusters by the consensus
350 metaclustering method.

351

352 **In vitro cell culture**

353 Sorted cells were resuspended in α MEM 20% FBS and seeded at 20-50 cells/cm² for periosteum and
354 cartilage and 200-2000 cells/cm² for bone marrow and endosteum for CFU-F assays. Lin+ cells were
355 seeded at 2000-6000 cells/cm². Cells were cultured in a 37°C humidified incubator with 5-6% oxygen and
356 5% CO₂. Half and full medium changes were performed on day 4 and 7, respectively, and colonies were
357 either counted manually under a microscope at 4x or terminated for staining on days 9-10. For clonal
358 analysis of CFU-F, medium-large colonies with suitable separation and positioning were chosen for
359 passaging. Cloning rings were positioned, and cells detached with accutase (Cat: A1110501-01, Gibco,

360 ThermoFisher Scientific). Each colony was transferred to one well of a 12-well plate and cultured in
361 αMEM 10% FBS until 80-90% confluence. Medium was changed twice weekly. Wells were terminated if
362 they did not reach confluence by day 14. Confluent wells were detached with accutase, resuspended in
363 αMEM 10% FBS, and then split into 3 wells for differentiation in 24-well plates. 70% of the cells were
364 seeded for chondrogenesis as a 25µl spot; 15% for osteogenesis as a 20µl spot; and 15% for
365 adipogenesis in 500µl. After 2h, wells with spots were topped up with 500µL αMEM 10% FBS. For
366 chondrogenic differentiation, the day after seeding medium was changed into serum-free DMEM high
367 glucose containing 50µg/ml ascorbic acid, 100nM dexamethasone, 1X sodium pyruvate, 1X ITS+1,
368 40µg/mL L-proline, and 10ng/ml TGF-β3, and the plates were incubated at 5-6% oxygen for 9 days (13).
369 For osteogenic differentiation, the medium was changed to αMEM 5% FBS, 50µg/mL ascorbic acid-2-
370 phosphate, 5mM β-glycerophosphate, 10nM dexamethasone the day after seeding, then cultured in
371 normoxic conditions for 21 days. For adipogenesis, cells were cultured until confluence (3-5 days) then
372 changed to DMEM/F12 10% FBS, 10µM insulin, 200µM indomethacin, and 1µM dexamethasone for 21
373 days (51).

374

375 Cells were washed with PBS and fixed in 10% formalin for 5 min prior to any stain. CFU-F plates that did
376 not undergo differentiation, or expanded clones that did not reach confluence were stained with 0.05%
377 crystal violet. For osteogenesis, cells were incubated with 1.25% silver nitrate for 30 min. For
378 adipogenesis assessment, cells were washed with 60% isopropanol then stained with 0.21% Oil Red O in
379 60% isopropanol for 30 min. Chondrogenesis was observed with alcian blue staining. Fixed cells were
380 washed twice with 3% acetic acid (pH 1.0) and stained overnight with 1% alcian blue 8GX (in 3% acetic
381 acid, pH 1.0). All the excess stains were aspirated after staining. For von Kossa and ORO staining, cells
382 were washed three times with water and air dried. For alcian blue staining, cells were rinsed briefly with
383 3% acetic acid (pH 1.0) followed by 3% acetic acid (pH 2.5), and air dried. Plates were imaged using a
384 Nikon TE2000E inverted fluorescence microscope (Nikon, Japan) at 4x.

385

386 **Statistics**

387 For the spectral flow cytometry study, we empirically selected a sample size of 20 with even sex
388 distribution as data suitable for power calculations was not available. The actual number was increased
389 to 21 due to sample availability. For the detailed analysis within the smaller or rare populations in the
390 flow data, samples with less than 100 events were excluded. Statistical analysis was performed in
391 GraphPad Prism. For the CFU-F data where matched samples were used, paired tests were performed.

392 Details of statistical analysis, including exact n values, are listed in figures or figure legends. Each graph is
393 presented as the mean \pm standard error of the mean (SEM) unless otherwise stated. p<0.05 was
394 considered statistically significant unless otherwise stated.

395

396 **Acknowledgements**

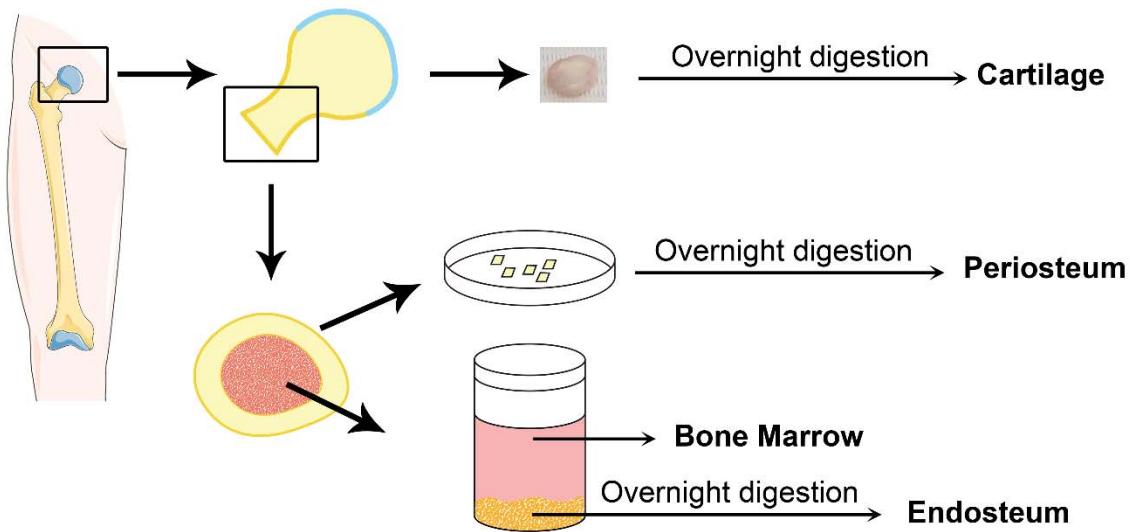
397 We thank the donors for donating their hips, Hula Polima, the surgeons, and the theatre staff for
398 collecting tissues and coordinating their transfer to the university. We thank Marcus Ground for
399 assisting with generating selected figures using Biorender. We thank Thaize Chrometon for assisting with
400 flow cytometry data collection. This work has been supported by the Health Research Council of New
401 Zealand Sir Charles Hercus Fellowship and the Maurice and Phyllis Paykel Trust project grant to BGM. YC
402 is supported by a University of Auckland Doctoral Scholarship.

403 **Table 1. Spectral flow cytometry panel**

Antigen	Fluorophore	Clone	Cat #	Manufacturer	Dose ¹	Expression ²	Reference ³
ALP	BV650	B4-78	742712	BD Biosciences	0.6	Osteoblasts	(52)
CD105	BV750	266	747107	BD Biosciences	0.6	Endothelial cells, stromal cells	(12, 53)
CD106 (VCAM1)	BV421	STA	305815	Biolegend	0.6	Inflamed endothelium, macrophages	(54)
CD133	BB700	W6B3C1	747638	BD Biosciences	0.6	Cancer stem cells	(55)
CD141	BB515	1A4	565084	BD Biosciences	1.25	Dendritic cells, blood and lymphoid tissues,	(56, 57)
CD146 (MCAM)	BV605	P1H12	361024	Biolegend	0.3	MSCs, pericytes, endothelial cells	(1, 17, 19)
CD164	PE	67D2	130-126-518	Miltenyi Biotec	1.25	HSC, SSC	(15, 58)
CD200	APCFire750	OX-104	329224	Biolegend	0.6	BMSCs, periosteal progenitors	(12)
CD24	BV711	ML5	311135	Biolegend	0.6	B cells, T cells, cancer stem cells	(59, 60)
CD26 (DDP4)	PE-Cy5	BA5b	302708	Biolegend	0.15	Placental myofibroblasts	(37, 61)
CD271 (NGFR)	PE-CF594	C40-1457	563452	BD Biosciences	0.6	Neural crest-derived cells, MSCs	(17, 62)
CD34	PerCP	581	343520	Biolegend	2.5	Various stem cells	(32, 35)
CD51	APC	APC	304415	Biolegend	0.6	Broad stromal expression	(18)
CD73	BV785	AD2	344028	Biolegend	0.3	MSCs, endothelial cells	(15, 53)
CD90 (Thy1)	Alexa Fluor 700	5E10	328120	Biolegend	0.6	MSCs, HSCs, cancer stem cells, fibroblasts, pericytes	(53)
PDGFR α	PE-Cy7	16A1	323507	Biolegend	0.6	Mesenchymal cells	(18)
PDPN	PerCP-eFluor 710	NZ-1.3	46-9381	eBioscience	2.5	Stromal cells, lymphatic endothelium	(15, 63)
Lineage Markers							
CD235a	Pacific Blue	HI264	349107	Biolegend	0.3	Erythroblasts/cytes	
CD15	Pacific Blue	W6D3	323022	Biolegend	0.6	Granulocytes	
CD45	Krome Orange	J33	B36294	Beckman Coulter	0.6	Pan-haematopoietic marker	
CD31 (PECAM1)	BV480	WM59	566195	BD Biosciences	0.6	Endothelial cells	

405 1. Antibody dose in μ l/tube. Staining carried out in 100 μ l volume

406 2. Selected cell types where expression is commonly reported


407 3. Previous use for separating skeletal or mesenchymal populations

408 ALP, alkaline phosphatase; HSC, hematopoietic stem cells; MSC, mesenchymal stem cells; SSC, skeletal stem cells

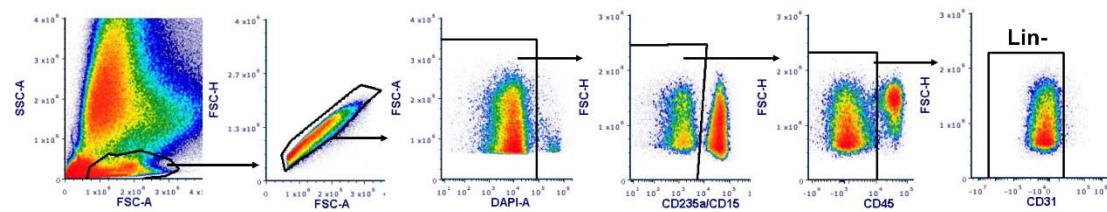
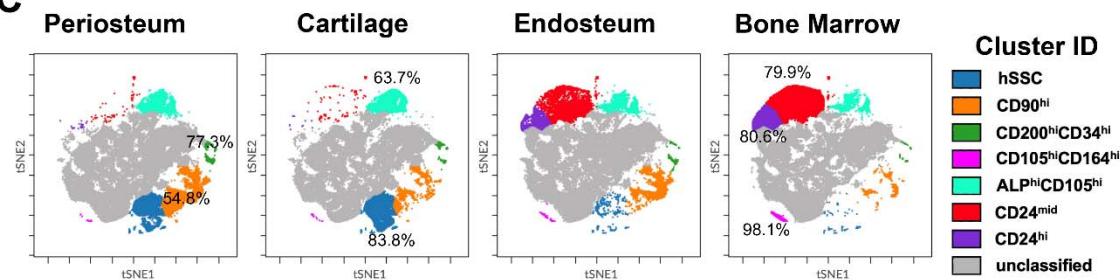

409

Figure 1


A

B

C

410

Figure 1. High level flow cytometry of skeletal tissues

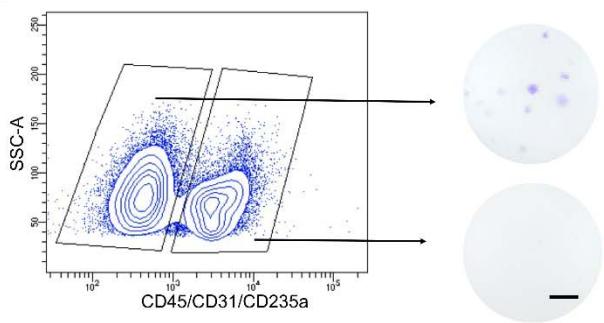
(A) Skeletal tissue dissection and cell isolation protocol. (B) Gating strategy to identify lineage negative (Lin-) skeletal cells. (C) High-level analysis was performed using tSNE and FlowSOM. tSNE was run with equal sampling (325,000 events) of the concatenated Lin- populations for each tissue. FlowSOM clusters with clear differences between tissues, along with markers that define them are shown. The percentages indicate the proportion of events in that cluster within the indicated tissue.

411

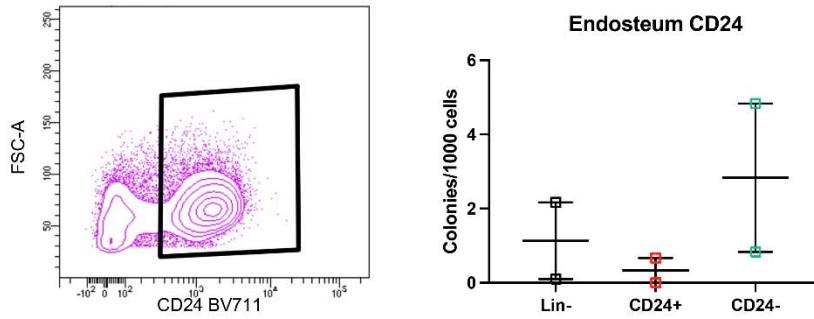
412

413

414


415

416

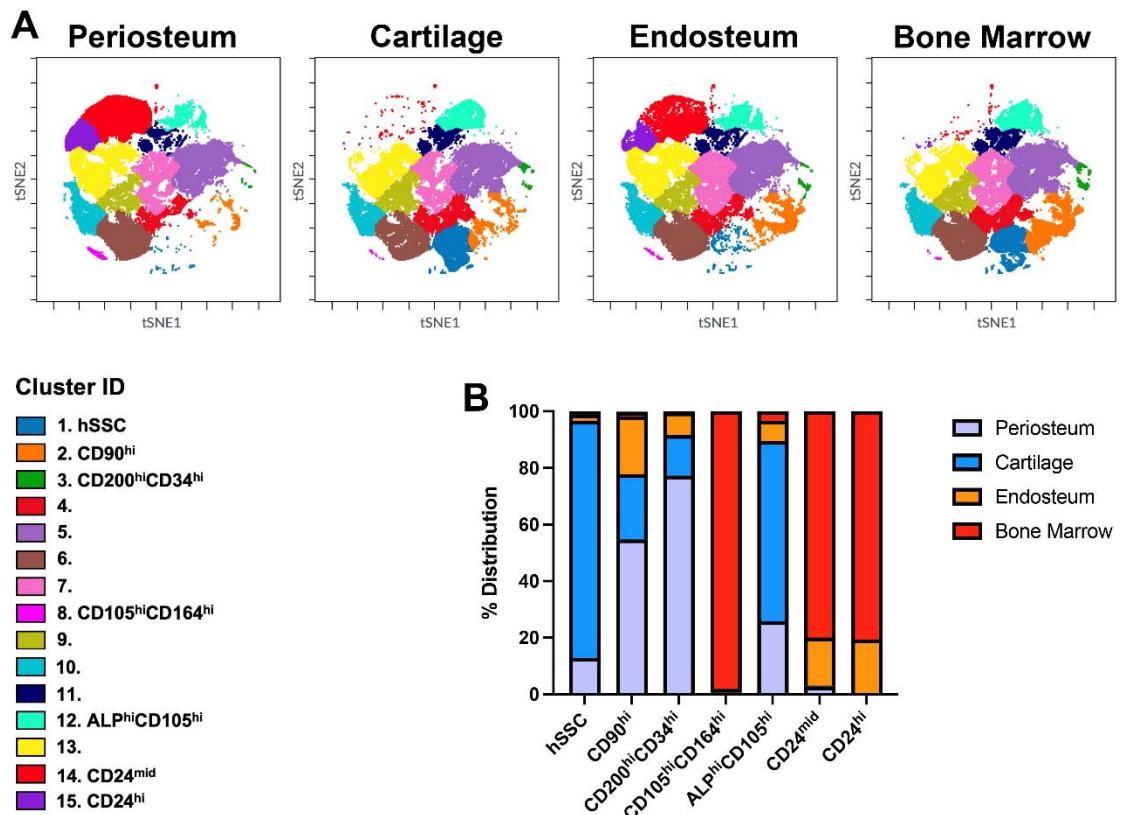

417

418 **Figure 1-figure supplement 1**

A

B

419


420 **Figure 1-figure supplement 1. Colony forming potential of selected populations**

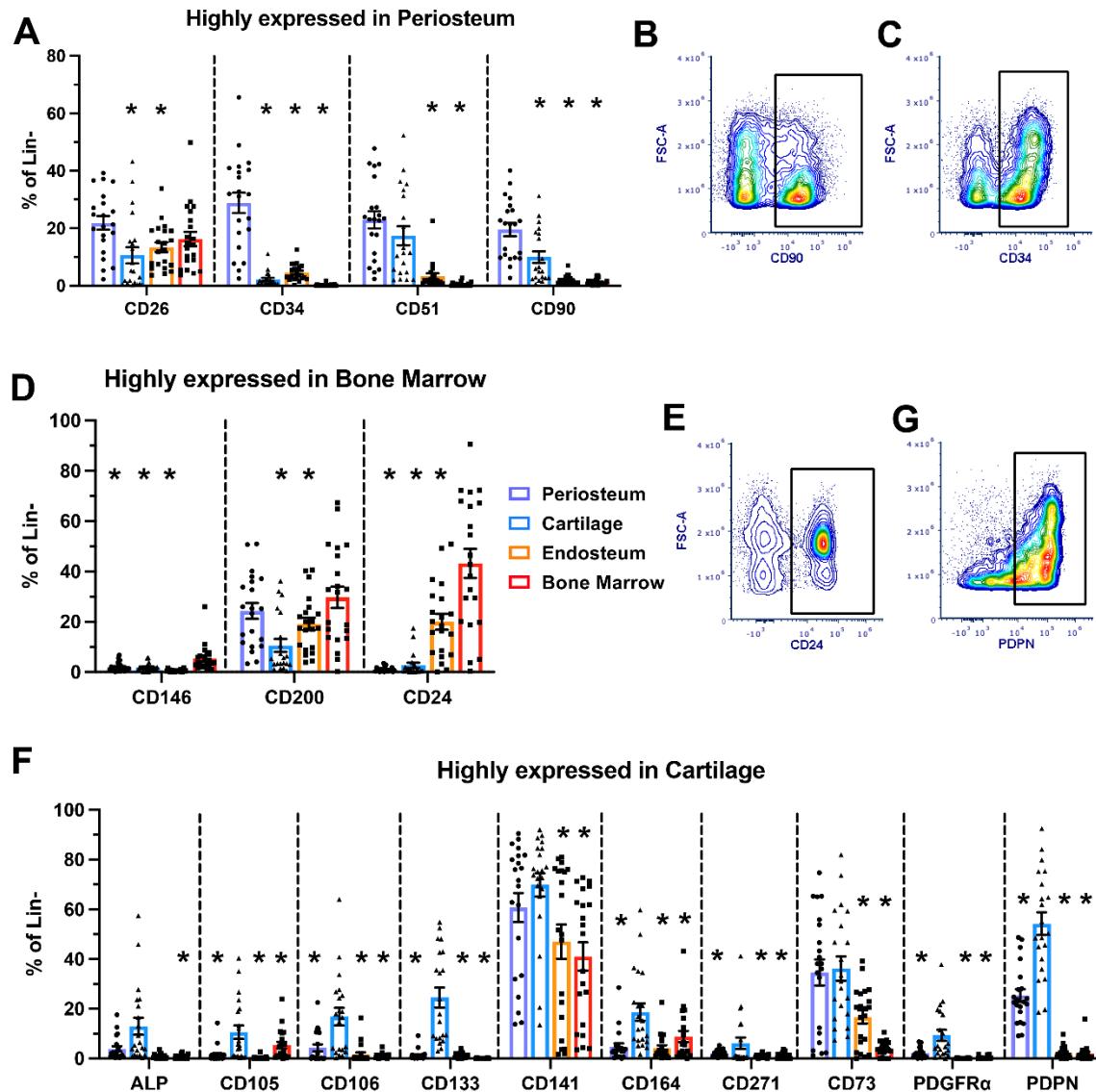
421 (A) Density plot showing sorted periosteal lineage -/+ populations and their colony-forming ability
422 confirmed with crystal violet. Representative of n=9. Scale bar = 0.5cm. (B) Density plot showing sorted
423 CD24+ population and colony-forming unit fibroblast (CFU-F) frequency in endosteal cells, n=2.

424

425

426 **Figure 1-figure supplement 2**

427

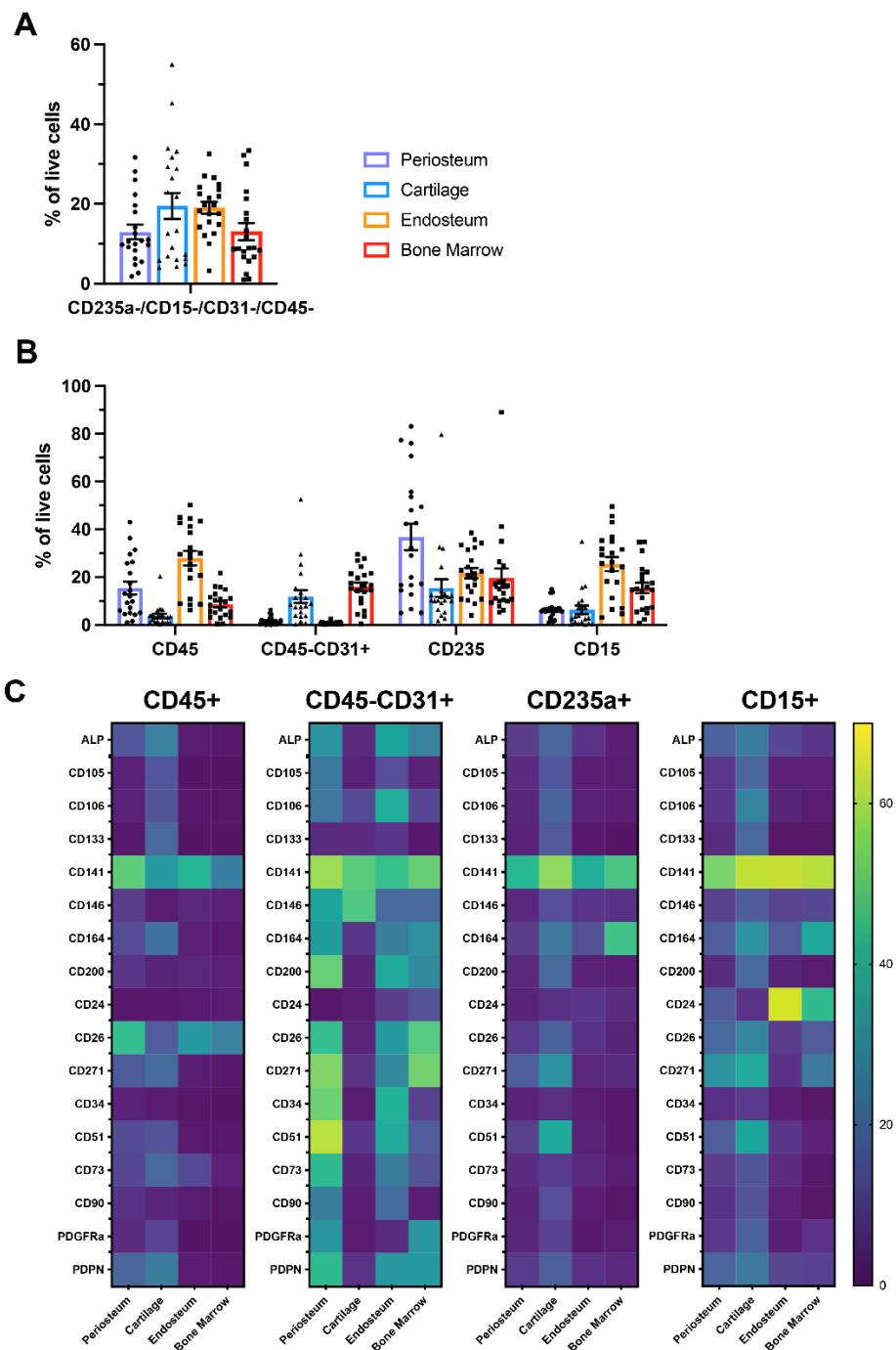

428 **Figure 1-figure supplement 2. Full FlowSOM 15-cluster analysis of skeletal cells**

429 (A) FlowSOM-defined clusters overlaid onto viSNE plots. Clusters with clear markers identified in Figure
430 1C are labelled, as are unclassified clusters. (B) Distribution of identified clusters in periosteum, cartilage,
431 endosteum, and bone marrow. Note that equal numbers of events were initially included for each tissue.

432

433

434 **Figure 2**

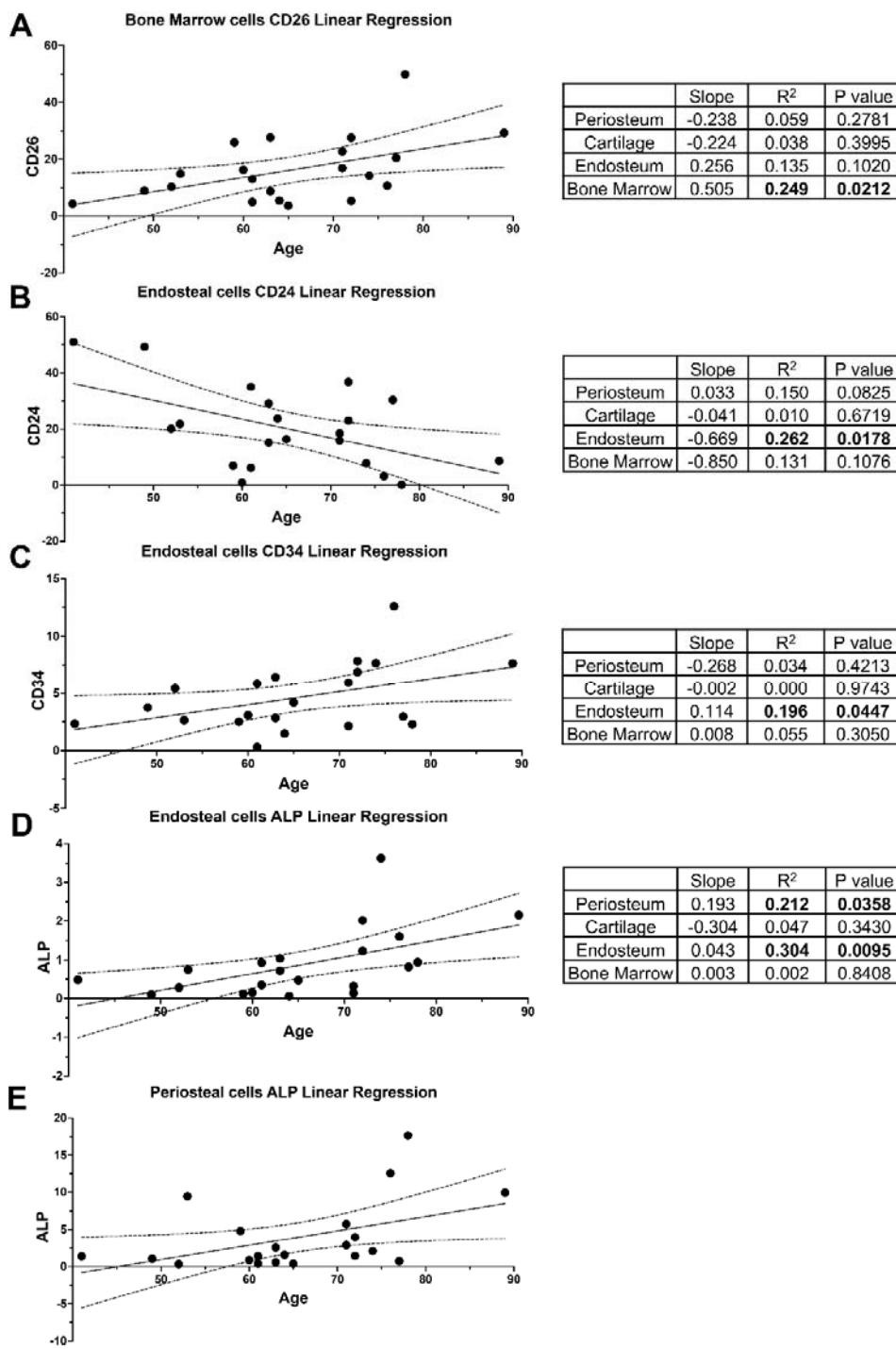

435

436 **Figure 2. Marker expression varies in different skeletal compartments.**

437 Expression of individual markers in the lineage negative (Lin-) populations isolated from different tissues
438 using a multi-colour flow panel. (A) Markers that are highly expressed in the periosteum, see D for legend
439 for all graphs. Representative density plot of CD90 (B) and CD34 (C) in the periosteum. (D) Markers that
440 are highly expressed in the bone marrow. Representative density plot of CD24 (E) in the bone marrow.
441 (F) Markers that are highly expressed in the cartilage. Representative density plot of PDPN (G) in the
442 cartilage. n=21. *p<0.05 compared to the tissue indicated in the graph title, one-way ANOVA with
443 Dunnett's post hoc test.

444

445 **Figure 2-figure supplement 1**

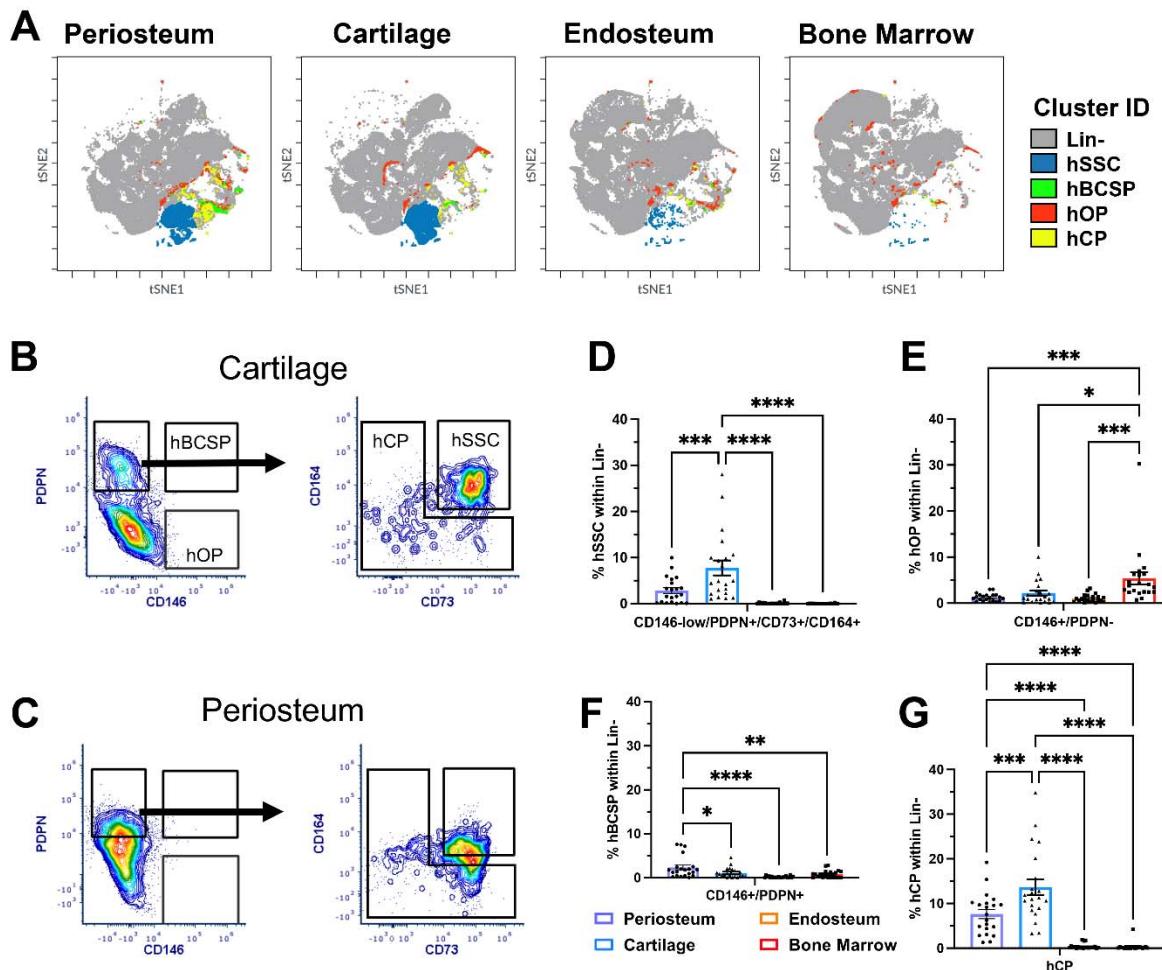


446

447 **Figure 2-figure supplement 1. Expression of proposed skeletal stem and progenitor markers in**
448 **non-skeletal lineages**

449 (A) Proportion of lineage positive (Lin+) populations in samples analyzed using the 21-color panel. (B)
450 Proportion of CD45+ (hematopoietic), CD45-CD31+ (endothelial), CD235a+ (erythroid), and CD15+
451 (granulocyte) populations of each tissue. (C) Heatmap of markers expressed on the different Lin+
452 populations of each tissue indicating average % positive cells for each marker across the 21 patient
453 samples, data are shown as means.

454 **Figure 2-figure supplement 2**



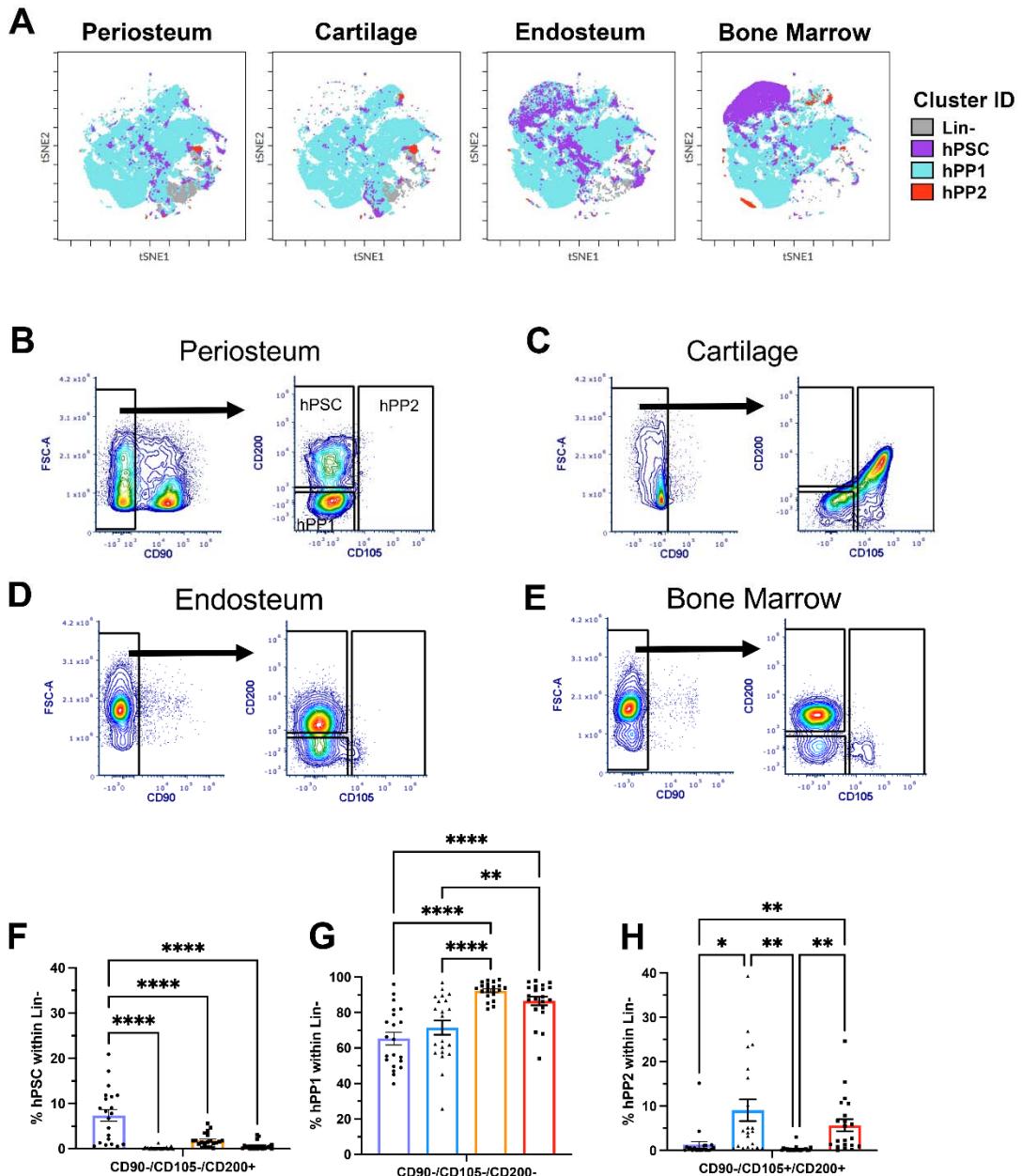
455

456 **Figure 2-figure supplement 2. Markers that were affected by age**

457 Simple linear regression analysis of each individual marker with age were performed for individual
 458 tissues. Correlations where the slope was significantly non-zero are shown. Data are shown with 95%
 459 confidence bands of the best-fit line, n=21. The slope, R², and p-value for all tissues for each marker
 460 shown are indicated in the tables on the right.

461 **Figure 3**

462


463 **Figure 3. Distribution of hSSC and downstream populations in adult tissues**

464 (A) Skeletal stem cell (hSSC), bone cartilage stromal progenitor (hBCSP), osteoprogenitor (hOP), and
465 chondroprogenitor (hCP) populations described in (15) overlaid onto viSNE plots of the four tissues
466 analyzed. Gating to identify these populations in (B) cartilage, and (C) periosteum. Frequency of (D) hSSC,
467 (E) hOP, (F) hBCSP, and (G) hCP in Lin- fractions of periosteum, cartilage, endosteum, and bone marrow
468 samples, n=21. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Turkey's post hoc
469 test.

470

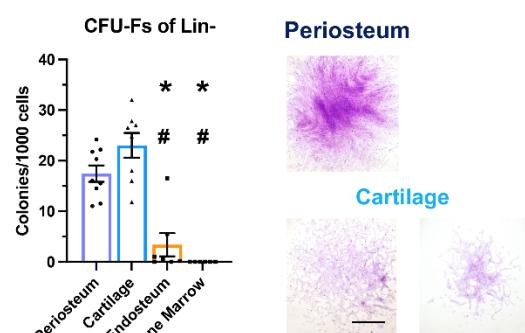
471

472 Figure 3-figure supplement 1

473

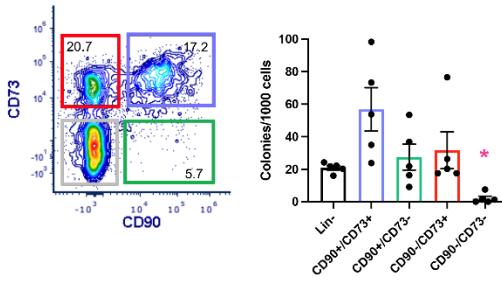
474 **Figure 3-figure supplement 1. Human periosteal stem cell stain in different adult tissues**

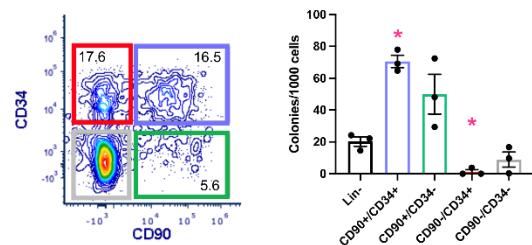
475 (A) Periosteal stem cell (hPSC), periosteal progenitor 1 (hPP1), and periosteal progenitor 2 (hPP2)
 476 populations described in (12) overlaid onto viSNE plots of different tissues. (B-E) Gating to identify hPSCs,
 477 hPP1, and hPP2 in (B) periosteum, (C) cartilage (D), endosteum, and (E) bone marrow. (F-H) Frequency
 478 of (F) hPSC, (G) hPP1, and (H) hPP2 on Lin- fractions of periosteum, cartilage, endosteum, and bone
 479 marrow samples, n=21. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Turkey's
 480 post hoc test.


481

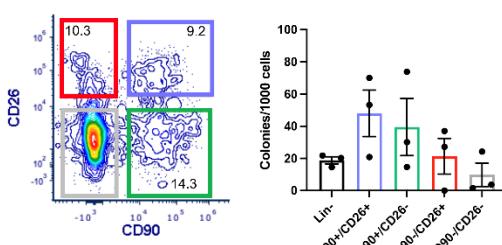
482 **Figure 4**

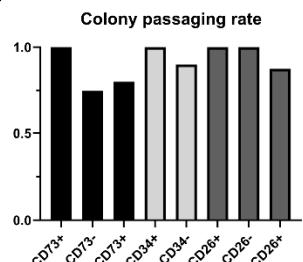
A

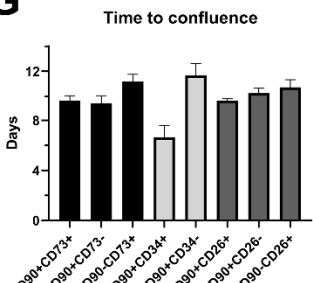

B

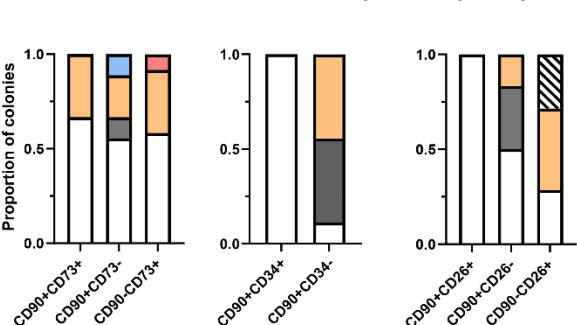
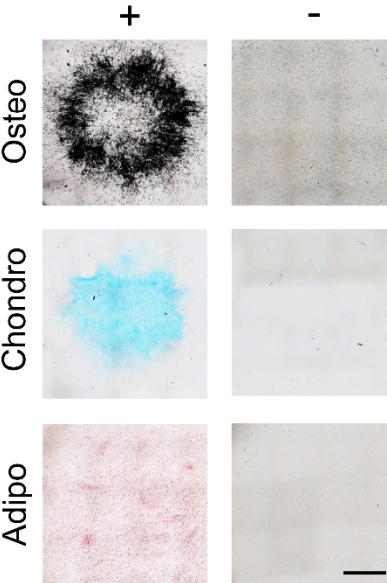

Periosteum

Cartilage


C


D


E



F

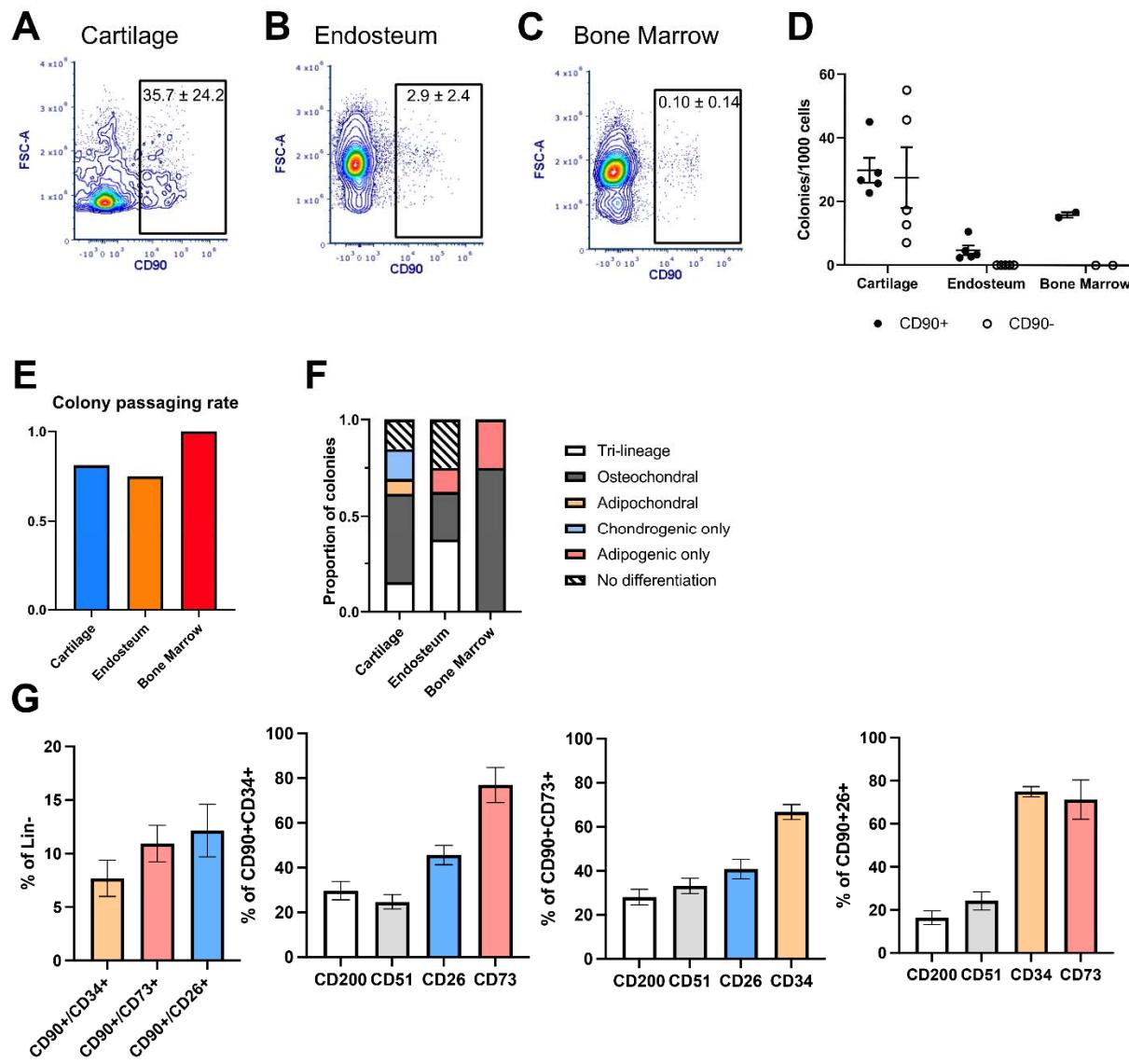
G

H

483

484

Figure 4. In vitro characterization of potential skeletal stem cell populations

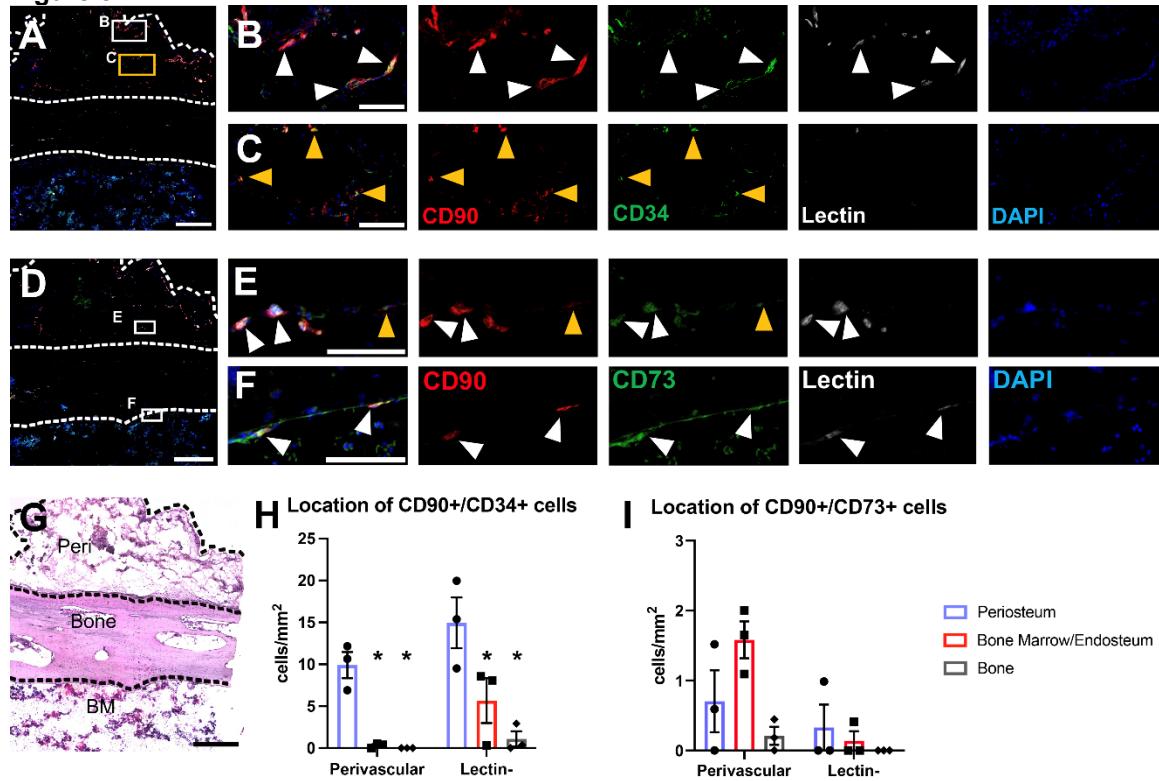

(A) Experimental design for single colony functional analysis experiments (created with BioRender). (B) Colony-forming unit fibroblast (CFU-F) frequency in lineage negative (Lin-) skeletal cells from different

485

486

487 tissues, n=6-9. Representative colonies stained with crystal violet are shown, scale bar = 500 μ m. CFU-F
488 frequency in periosteal (C) CD90/CD73 subpopulations, n=5, (D) CD90/CD34 subpopulations, n=3, and
489 (E) CD90/CD26 subpopulations, n=3. (F) The proportion of single colonies from each population reaching
490 confluence within 14 days, 3-4 colonies were picked from each population per sample, n=2-4
491 donors/population. (G) Time for the picked colonies to reach confluence. (H) Examples of positive and
492 negative staining for von Kossa (osteо), alcian blue (chondro), and oil red O (adipo) in individual
493 expanded colonies, scale bar = 0.25cm. (I) Differentiation potential of expanded colonies when grown
494 under permissive conditions. (B) *p<0.05 compared to periosteum, #p<0.05 compared to cartilage, one-
495 way ANOVA with Turkey's post hoc test. (C-E) *p<0.05 compared to Lin-, one-way repeated measures
496 ANOVA with Dunnett's post hoc test.
497

498 **Figure 4-figure supplement 1**


499

500 **Figure 4-figure supplement 1. Growth and differentiation potential of CD90+ cells from cartilage,**
501 **endosteum and bone marrow**

502 Representative density plot of CD90 expression in the (A) cartilage, (B) endosteum, and (C) bone marrow,
503 the percentages indicate the proportion of events \pm standard deviation from sorting experiments, n=2-5.
504 (D) Comparison of colony-forming unit fibroblast (CFU-F) frequency in CD90- and CD90+ populations. (E)
505 Passaging rate of the single colonies from CD90+, four colonies are picked from each tissue, n=1-5. (F)
506 Differentiation potential of expanded CD90+ colonies. (G) Expression of selected markers within the
507 indicated CD90+ subpopulations in the periosteum that were evaluated ex vivo in Figure 4, n=16-18.

508

Figure 5

535 **References**

- 536 1. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for
537 mesenchymal stem cells in multiple human organs. *Cell Stem Cell.* 2008;3(3):301-13. S1934-
538 5909(08)00337-8 [pii]
539 10.1016/j.stem.2008.07.003
- 540 2. Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, et al. Single cell transcriptomics identifies a
541 unique adipose lineage cell population that regulates bone marrow environment. *Elife.* 2020;9:e54695.
542 10.7554/elife.54695
- 543 3. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone
544 marrow microenvironment at single-cell resolution. *Nature.* 2019;569(7755):222-8. 10.1038/s41586-
545 019-1104-8
- 546 4. Matthews BG, Novak S, Sbrana FV, Funnell JL, Cao Y, Buckels EJ, et al. Heterogeneity of murine
547 periosteum progenitors involved in fracture healing. *Elife.* 2021;10:e58534. 10.7554/elife.58534
- 548 5. Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, et al. No identical
549 "mesenchymal stem cells" at different times and sites: Human committed progenitors of distinct origin
550 and differentiation potential are incorporated as adventitial cells in microvessels. *Stem Cell Reports.*
551 2016;6(6):897-913. <https://doi.org/10.1016/j.stemcr.2016.05.011>
- 552 6. Ono N, Balani DH, Kronenberg HM. Stem and progenitor cells in skeletal development. In: Olsen
553 BR, editor. *Current Topics in Developmental Biology.* Vol. 133, 2019. p. 1-24.
- 554 7. Ambrosi TH, Sinha R, Steininger HM, Hoover MY, Murphy MP, Koepke LS, et al. Distinct skeletal
555 stem cell types orchestrate long bone skeletogenesis. *Elife.* 2021;10:e66063. 10.7554/elife.66063
- 556 8. Cao Y, Buckels EJ, Matthews BG. Markers for identification of postnatal skeletal stem cells in
557 vivo. *Curr Osteoporos Rep.* 2020;18(6):655-65. 10.1007/s11914-020-00622-2
- 558 9. Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, et al. Resting zone of
559 the growth plate houses a unique class of skeletal stem cells. *Nature.* 2018;563(7730):254-8.
560 10.1038/s41586-018-0662-5
- 561 10. Chan Charles KF, Seo Eun Y, Chen James Y, Lo D, McArdle A, Sinha R, et al. Identification and
562 specification of the mouse skeletal stem cell. *Cell.* 2015;160(1-2):285-98.
<http://dx.doi.org/10.1016/j.cell.2014.12.002>
- 564 11. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal
565 stromal cells represent the main source of bone formed by adult bone marrow. *Cell Stem Cell.*
566 2014;15(2):154-68. 10.1016/j.stem.2014.06.008
- 567 12. Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, et al. Discovery of a periosteal
568 stem cell mediating intramembranous bone formation. *Nature.* 2018;562(7725):133-9. 10.1038/s41586-
569 018-0554-8
- 570 13. Matthews BG, Grcevic D, Wang L, Hagiwara Y, Roguljic H, Joshi P, et al. Analysis of alphaSMA-
571 labeled progenitor cell commitment identifies Notch signaling as an important pathway in fracture
572 healing. *Journal of Bone and Mineral Research.* 2014;29(5):1283-94. 10.1002/jbmr.2140
- 573 14. Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, et al. Identification of functionally distinct
574 Mx1+alphaSMA+ periosteal skeletal stem cells. *Cell Stem Cell.* 2019;25(6):784-96.
575 10.1016/j.stem.2019.11.003
- 576 15. Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identification of the human
577 skeletal stem cell. *Cell.* 2018;175(1):43-56. 10.1016/j.cell.2018.07.029
- 578 16. Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, et al. Articular cartilage
579 regeneration by activated skeletal stem cells. *Nat Med.* 2020;26(10):1583-92. 10.1038/s41591-020-
580 1013-2

581 17. Tormin A, Li O, Brune JC, Walsh S, Schutz B, Ehinger M, et al. CD146 expression on primary
582 nonhematopoietic bone marrow stem cells is correlated with in situ localization. *Blood*.
583 2011;117(19):5067-77. 10.1182/blood-2010-08-304287

584 18. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFR alpha and CD51
585 mark human Nestin(+) sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell
586 expansion. *Journal of Experimental Medicine*. 2013;210(7):1351-67. 10.1084/jem.20122252

587 19. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing
588 osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. *Cell*.
589 2007;131(2):324-36. 10.1016/j.cell.2007.08.025

590 20. Li H, Ghazanfari R, Zacharaki D, Ditzel N, Isern J, Ekblom M, et al. Low/negative expression of
591 PDGFR- α identifies the candidate primary mesenchymal stromal cells in adult human bone marrow.
592 *Stem Cell Reports*. 2014;3(6):965-74. 10.1016/j.stemcr.2014.09.018

593 21. Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, et al. LNGFR(+)THY-
594 1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. *Stem Cell
595 Reports*. 2013;1(2):152-65. 10.1016/j.stemcr.2013.06.001

596 22. Chang H, Tate MLK. The periosteum: Tapping into a reservoir of clinically useful progenitor cells.
597 *Stem Cells Translational Medicine*. 2012;1(6):480-91. 10.5966/sctm.2011-0056

598 23. Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal
599 regeneration: The stem cell that lies beneath. *Bone*. 2015;70:10-8.

600 24. Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone
601 regeneration. *Journal of Bone and Mineral Research*. 2009;24(2):274-82. 10.1359/jbmr.081003

602 25. Tournaire G, Stegen S, Giacomini G, Stockmans I, Moermans K, Carmeliet G, et al. Nestin-GFP
603 transgene labels skeletal progenitors in the periosteum. *Bone*. 2020;133:115259.
604 10.1016/j.bone.2020.115259

605 26. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, et al.
606 Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin.
607 *Nat Commun*. 2018;9(1):773. 10.1038/s41467-018-03124-z

608 27. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. viSNE enables
609 visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. *Nat
610 Biotechnol*. 2013;31(6):545-52. 10.1038/nbt.2594

611 28. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al.
612 FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. *Cytometry
613 Part A : the journal of the International Society for Analytical Cytology*. 2015;87(7):636-45.
614 10.1002/CYTO.A.22625

615 29. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in
616 the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone
617 regeneration. *Cell Stem Cell*. 2017;20(6):771-84. 10.1016/j.stem.2017.02.009

618 30. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, et al. Prospective identification,
619 isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow.
620 *Journal of Experimental Medicine*. 2009;206(11):2483-96. 10.1084/jem.20091046

621 31. Siclari VA, Zhu J, Akiyama K, Liu F, Zhang X, Chandra A, et al. Mesenchymal progenitors residing
622 close to the bone surface are functionally distinct from those in the central bone marrow. *Bone*.
623 2013;53(2):575-86. 10.1016/j.bone.2012.12.013

624 32. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage
625 potential of adult human mesenchymal stem cells. *Science*. 1999;284(5411):143-7.

626 33. Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, Mainil-Varlet P. Immunophenotypic
627 analysis of human articular chondrocytes: Changes in surface markers associated with cell expansion in
628 monolayer culture. *Journal of Cellular Physiology*. 2005;202(3):731-42. 10.1002/jcp.20164

629 34. Grogan SP, Miyaki S, Asahara H, D'Lima DD, Lotz MK. Mesenchymal progenitor cell markers in
630 human articular cartilage: normal distribution and changes in osteoarthritis. *Arthritis Research &*
631 *Therapy.* 2009;11(3):R85. 10.1186/ar2719

632 35. Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone
633 marrow. *Blood.* 1991;78(11):2848-53. 10.1182/BLOOD.V78.11.2848.2848

634 36. Boss AL, Brooks AES, Chamley LW, James JL. Influence of culture media on the derivation and
635 phenotype of fetal-derived placental mesenchymal stem/stromal cells across gestation. *Placenta.*
636 2020;101:66-74. 10.1016/j.placenta.2020.09.002

637 37. Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AE. Full spectrum flow cytometry
638 reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture,
639 providing insight into the origins of placental mesenchymal stromal cells. *eLife.* 2022;11:e76622.
640 10.7554/elife.76622

641 38. van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, et al. Engineering
642 vascularized bone: Osteogenic and proangiogenic potential of murine periosteal cells. *Stem Cells.*
643 2012;30(11):2460-71. 10.1002/stem.1210

644 39. Van Gastel N, Stegen S, Stockmans I, Moermans K, Schrooten J, Graf D, et al. Expansion of
645 murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral
646 ossification program mediated by bone morphogenetic protein 2. *Stem Cells.* 2014;32(9):2407-18.

647 40. Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K, et al. Endochondral ossification is
648 required for hematopoietic stem-cell niche formation. *Nature.* 2009;457(7228):490-4.
649 10.1038/nature07547

650 41. Mizoguchi F, Slowikowski K, Wei K, Marshall JL, Rao DA, Chang SK, et al. Functionally distinct
651 disease-associated fibroblast subsets in rheumatoid arthritis. *Nature Communications.* 2018;9(1):789.
652 10.1038/s41467-018-02892-y

653 42. Noda S, Hosoya T, Komiya Y, Tagawa Y, Endo K, Komori K, et al. CD34+THY1+ synovial fibroblast
654 subset in arthritic joints has high osteoblastic and chondrogenic potentials in vitro. *Arthritis Research
655 and Therapy.* 2022;24(1):45. 10.1186/s13075-022-02736-7

656 43. Matthews BG, Wee NKY, Widjaja VN, Price JS, Kalajzic I, Windahl SH. AlphaSMA osteoprogenitor
657 cells contribute to the increase in osteoblast numbers in response to mechanical loading. *Calcif Tissue
658 Int.* 2020;106(2):208-17. 10.1007/s00223-019-00624-y

659 44. Wang L, Tower RJ, Chandra A, Yao L, Tong W, Xiong Z, et al. Periosteal mesenchymal progenitor
660 dysfunction and extraskeletally-derived fibrosis contribute to atrophic fracture nonunion. *J Bone Miner
661 Res.* 2019;34(3):520-32. 10.1002/jbmr.3626

662 45. Vinod E, Kachroo U, Amirtham SM, Ramasamy B, Sathishkumar S. Comparative analysis of fresh
663 chondrocytes, cultured chondrocytes and chondroprogenitors derived from human articular cartilage.
664 *Acta Histochemica.* 2020;122(1):151462. 10.1016/j.acthis.2019.151462

665 46. Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of
666 mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface
667 markers. *Arthritis research & therapy.* 2004;6(5):R422-32.

668 47. Allen MR, Burr DB. Human femoral neck has less cellular periosteum, and more mineralized
669 periosteum, than femoral diaphyseal bone. *Bone.* 2005;36(2):311-6. 10.1016/j.bone.2004.10.013

670 48. Rong J, Pool B, Zhu M, Munro J, Cornish J, McCarthy GM, et al. Basic calcium phosphate crystals
671 induce osteoarthritis-associated changes in phenotype markers in primary human chondrocytes by a
672 Calcium/Calmodulin Kinase 2-dependent mechanism. *Calcif Tissue Int.* 2019;104(3):331-43.
673 10.1007/s00223-018-0494-1

674 49. Snelling S, Rout R, Davidson R, Clark I, Carr A, Hulley PA, et al. A gene expression study of normal
675 and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. *Osteoarthritis
676 and Cartilage.* 2014;22(2):334-43. 10.1016/j.joca.2013.12.009

677 50. Dyment NA, Jiang X, Chen L, Hong S-H, Adams DJ, Ackert-Bicknell C, et al. High-throughput,
678 multi-image cryohistology of mineralized tissues. *Journal of Visualized Experiments*. 2016(115):e54468.
679 10.3791/54468

680 51. Eom J, Feisst V, Ranjard L, Loomes K, Damani T, Jackson-Patel V, et al. Visualization and
681 Quantification of Mesenchymal Cell Adipogenic Differentiation Potential with a Lineage Specific Marker.
682 *J Vis Exp*. 2018(133):e57153. 10.3791/57153

683 52. Gong Y, Yang J, Li X, Zhou C, Chen Y, Wang Z, et al. A systematic dissection of human primary
684 osteoblasts in vivo at single-cell resolution. *Aging*. 2021;13(16):20629-50. 10.18632/aging.203452

685 53. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem
686 versus stromal cells: International Society for Cell & Gene Therapy (ISCT(R)) Mesenchymal Stromal Cell
687 committee position statement on nomenclature. *Cytotherapy*. 2019;21(10):1019-24.
688 10.1016/j.jcyt.2019.08.002

689 54. Yang ZX, Han Z-B, Ji YR, Wang YW, Liang L, Chi Y, et al. CD106 identifies a subpopulation of
690 mesenchymal stem cells with unique immunomodulatory properties. *Plos One*. 2013;8(3):e59354.
691 10.1371/journal.pone.0059354

692 55. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal Stem
693 Cells Derived from CD133-Positive Cells in Mobilized Peripheral Blood and Cord Blood: Proliferation,
694 Oct4 Expression, and Plasticity. *Stem Cells*. 2005;23(8):1105-12. 10.1634/stemcells.2004-0330

695 56. Amati E, Perbellini O, Rotta G, Bernardi M, Chieregato K, Sella S, et al. High-throughput
696 immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal
697 cells reveals common and differentially expressed markers: identification of angiotensin-converting
698 enzyme (CD143) as a marker differentially expr. *Stem Cell Research & Therapy*. 2018;9(1).
699 10.1186/s13287-017-0755-3

700 57. Brooks AES, Iminitoff M, Williams E, Damani T, Jackson-Patel V, Fan V, et al. Ex vivo human
701 adipose tissue derived mesenchymal stromal cells (ASC) are a heterogeneous population that
702 demonstrate rapid culture-induced changes. *Frontiers in Pharmacology*. 2020;10:1695.
703 10.3389/FPHAR.2019.01695/BIBTEX

704 58. Watt SM, Bühring H-J, Simmons PJ, Zannettino AWC. The stem cell revolution: on the role of
705 CD164 as a human stem cell marker. *npj Regenerative Medicine*. 2021;6(1). 10.1038/s41536-021-00143-
706 1

707 59. Fang X, Zheng P, Tang J, Liu Y. CD24: from A to Z. *Cellular & Molecular Immunology*.
708 2010;7(2):100-3. 10.1038/cmi.2009.119

709 60. Schäck LM, Buettner M, Wirth A, Neunaber C, Krettek C, Hoffmann A, et al. Expression of CD24
710 in human bone marrow-derived mesenchymal stromal cells is regulated by TGF β 3 and induces a
711 myofibroblast-like genotype. *Stem Cells International*. 2016;2016:1-13. 10.1155/2016/1319578

712 61. Psaroudis RT, Singh U, Lora M, Jeon P, Boursiquot A, Stochaj U, et al. CD26 is a senescence
713 marker associated with reduced immunopotency of human adipose tissue-derived multipotent
714 mesenchymal stromal cells. *Stem Cell Research & Therapy*. 2022;13(1). 10.1186/s13287-022-
715 03026-4

716 62. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Isolation of bone marrow
717 mesenchymal stem cells by anti-nerve growth factor receptor antibodies. *Experimental Hematology*.
718 2002;30(7):783-91. 10.1016/s0301-472x(02)00812-3

719 63. Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune
720 system, and cancer. *Front Immunol*. 2012;3:283. 10.3389/fimmu.2012.00283

721