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Abstract 20 

Common variants affecting mRNA splicing are typically identified though splicing 21 

quantitative trait locus (sQTL) mapping and have been shown to be enriched for GWAS signals 22 

by a similar degree to eQTLs. However, the specific splicing changes induced by these variants 23 

have been difficult to characterize, making it more complicated to analyze the effect size and 24 

direction of sQTLs, and to determine downstream splicing effects on protein structure. 25 

In this study, we catalogue sQTLs using exon percent spliced in (PSI) scores as a 26 

quantitative phenotype. PSI is an interpretable metric for identifying exon skipping events and 27 

has some advantages over other methods for quantifying splicing from short read RNA 28 

sequencing. In our set of sQTL variants, we find evidence of selective effects based on splicing 29 

effect size and effect direction, as well as exon symmetry. Additionally, we utilize AlphaFold2 to 30 

predict changes in protein structure associated with sQTLs overlapping GWAS traits, 31 

highlighting a potential new use-case for this technology for interpreting genetic effects on traits 32 

and disorders.  33 

  34 
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Introduction 35 

Alternative splicing is a fundamental cellular process which greatly increases the diversity of 36 

transcript isoforms across tissues and cell types in eukaryotes. It is estimated that the human 37 

transcriptome has a 10 fold increase in the number of alternatively spliced transcripts, compared 38 

to approximately 20,000 protein-coding genes,1 of which almost all undergo alternative 39 

splicing2,3. From an evolutionary perspective, splicing changes have driven phenotypic 40 

differences between closely related vertebrates in a relatively short amount of time, highlighting 41 

its importance in gene function4. Furthermore, mRNA splicing patterns can be influenced by 42 

genetic variation across individuals and populations, as repeatedly demonstrated by studies that 43 

link common variants to splicing changes through the mapping of splicing quantitative trait loci 44 

(sQTLs).5–9  45 

While most studies use RNA sequencing data to capture splicing events, they critically 46 

differ in the computational methods used to quantify splicing. Measuring alternative splicing 47 

through short read RNA-seq data is non-trivial, and always requires some level of compromise 48 

depending on the goals of the study. Oftentimes, a study aims to catalog as many splicing events 49 

as possible to increase power to detect splicing QTLs and characterize the types of genetic 50 

variants that affect splicing. These methods often consider different types of events, such as exon 51 

skipping and 3’/5’ end usage simultaneously, which reduces the overall interpretability of the 52 

splicing signal but may provide insights into mechanisms of individual splicing events7,8,10. In 53 

other studies, splicing is quantified by inferring levels of full transcripts11–13. While this approach 54 

produces a biologically relevant splicing readout regarding downstream transcriptome effects, it 55 

is limited by isoform annotation and quantification, which is challenging from short-read RNA-56 

seq data.  57 
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 Splicing QTLs are known to colocalize with GWAS signals and potentially explain a 58 

considerable proportion of heritability of complex diseases.14–16 Changes in splicing that 59 

associate with traits are likely mostly driven by differences in amino acid sequences that affect 60 

the function of downstream protein products17–20. These changes can be systematically mapped 61 

to functional domains by utilizing large databases of resolved protein structures like UniProt21, 62 

where multiple isoforms splicing isoforms are curated for about 5,000 genes. This resource can 63 

help reveal the types of splicing events that may be most relevant for trait colocalization.  64 

Most recently, through the development of AlphaFold222, estimating the protein structure of 65 

splicing isoforms where an experimentally resolved structure is unavailable has become 66 

substantially easier and more reliable. Now, one can simply provide an amino acid sequence 67 

from two splice-isoforms, and interpret what parts of the protein are affected and to what 68 

degree23–25. This is especially relevant where alternate usage of rare isoforms may play a role in 69 

trait or disease risk. To date, no study has deeply probed how changes in splicing driven by 70 

genetic variation impact the function of proteins, which could reveal the causal mechanism 71 

underlying trait associations.  72 

 In this project, we map splicing QTLs in the GTEx resource26 using an interpretable 73 

splicing phenotype that measures exon skipping events from RNA-seq split read counts. While 74 

we detect fewer sQTLs than some of the alternative approaches26, our sQTLs are more optimized 75 

for downstream interpretation of splicing effects and for analyzing properties of genetically 76 

controlled exons. Additionally, by mapping changes in exon inclusion, we can more easily probe 77 

how protein structure is affected by these alterations, both by interpreting resolved protein 78 

structures and by predicting new structures with and without an alternatively spliced exon. 79 

Throughout our study, we demonstrate how this approach can reveal relevant biology, and how 80 
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contemporary protein structure prediction further contextualizes the importance of genetically 81 

regulated splicing.  82 

Results 83 

A simple splicing phenotype improves interpretability of splicing QTLs 84 

To begin, we cataloged splicing QTLs in protein coding genes using splicing quantified with the 85 

Percent Spliced In (PSI or ψ) metric on an exon-by-exon basis as a molecular phenotype. We 86 

used bulk RNA-sequencing data across 18 tissues and whole genome sequencing was from the 87 

Genotype-Tissue Expression Project Version 8 (GTEx v8). We  applied the methods for sQTL 88 

mapping from GTEx26, but with splicing quantified with the PSI phenotype (See methods for 89 

details). PSI directly captures exon skipping events, but makes no inference about whole isoform 90 

usage or complex splicing, which is advantageous for our downstream application. This set of 91 

variant-exon pairs are hence referred to as ψQTLs, with variants and target exons referred to as 92 

sVariants and sExons respectively. Across tissues, limiting to one sExon per gene, we identified 93 

between 698 and 2,021 genes with a significant ψQTL (Figure 1B), with the number of 94 

significant genes correlating with the number of samples available per tissue, as is typical in 95 

QTL studies9,26–28 (p = 0.0177, Adjusted R2 = 0.2604, Figure S1A). In total, we cataloged fewer 96 

ψQTL per tissue than in the GTEx26 main analysis, which uses the Leafcutter cluster phenotype 97 

to quantify splicing and map QTLs in the same dataset (Figure S1F). While Leafcutter8 identifies 98 

more splicing events and finds more sQTLs, it presents an interpretability challenge. It is often 99 

difficult to identify which exon a Leafcutter cluster corresponds to, and effect directions are 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.05.518915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

sometimes unclear. While ψQTLs are less powerful in a statistical sense, the method clearly 101 

links splicing events to exons, genes and effect directions.  102 

We obtained a final set of ψQTLs for downstream analyses by collapsing ψQTLs across 103 

tissues, considering the tissue where the ψQTL had the highest effect size (ΔPSI) when it 104 

appeared in multiple tissues, and removing genes where the 3’ or 5’ terminal exon was the top 105 

exon. This filter focused our analyses on exon skipping events. In total, we obtained a set of 106 

4,835 genes with a significant ψQTL. In comparison to other variably spliced exons from genes 107 

that lacked a ψQTL, sExons were slightly shorter in bp (Mean bp: 141 and 137 respectively, 108 

Mann-Whitney U-test p = 0.022, Figure S1B). Additionally, among ψQTLs, sExons were more 109 

likely to fall in the later part of the transcript (χ2 Uniformity test p < 2e-16, Figure S1C), also 110 

when compared to the same set of variably spliced exons in genes with no ψQTL (Mann-111 

Whitney U-test p = 0.00115, Figure S2). This is consistent with the observation that splicing 112 

QTLs tend to be more active post-transcriptionally18.  113 

Another advantage of our approach is that ψQTL analysis allows for direct evaluation of 114 

exon symmetry. Symmetry refers to whether an exon has a length in base pairs that is divisible 115 

by 3, and therefore encodes a complete reading frame. We hypothesize that ψQTLs induce 116 

changes in exon inclusion that have a relatively low impact on fitness, since sVariants by 117 

definition are common in the population. Non-symmetric exons almost always induce a 118 

frameshift when they are alternatively spliced,29,30 so we predict that ψQTLs will be enriched for 119 

symmetric exons. We found that indeed, among sExons, 41.20% were symmetric compared to 120 

38.77% of all non-terminal exons annotated in gencode v26 (Figure 1C, Fisher’s Exact Test p = 121 

6.64x10-4), providing evidence that common splice-regulatory variants are less likely to severely 122 

impact gene function. 123 
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We next asked if ψQTLs are more likely to act by splicing out typically highly included 124 

exons, or splicing in typically lowly included exons. We found that across all sVariants, the 125 

major allele more often corresponded to higher exon inclusion, and that ψQTL derived alleles 126 

more commonly trigger exon skipping (Figure 1D,E, Binomial p = 3.21 ⨉ 10-13). Interestingly, 127 

we found that these derived alleles were also less common in the population, indicating potential 128 

selective pressure against loss of an exon in transcripts (Figure 1F). This effect was more 129 

pronounced when limiting to higher effect size ψQTLs (Figure S1D). While molecular QTLs are 130 

typically thought of as having little impact on fitness due to their wide distribution in the 131 

population, these results indicate that ψQTL may undergo purifying selection driven by 132 

downstream molecular effects.  133 

Though not the main focus of this analysis, we annotated the sVariants themselves using 134 

VEP31 to ask if derived alleles triggering exon skipping are more likely to fall in exonic, intronic, 135 

or intergenic space with respect to their target gene. We found no significant differences in this 136 

regard, with approximately equal proportions of variants falling in each annotation category 137 

(Figure S1E).  138 
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 139 

Figure 1: Properties of genetically regulated exon splicing, as revealed by ψQTL analysis. A) 140 

Overview of the analysis approach. Using bulk RNA-seq data from GTEx V8, we mapped splicing 141 

quantitative trait loci using individual exon PSI as a molecular phenotype. This allowed us to define a 142 

‘high inclusion’ and ‘low inclusion’ allele, as well as define whether the ψQTL derived allele results in 143 

higher or lower exon inclusion in the final transcript. B) Number of mapped ψQTLs per GTEx tissue. We 144 

chose these 18 tissues based on their coverage of protein coding genes in GTEx. C) Percentage of 145 

symmetric exons in sExons and all exons annotated in gencode v26. We found that sExons are more 146 

likely to be symmetric, indicating that ψQTLs are less likely to induce large functional changes in target 147 

proteins. D) Distribution of high-inclusion ψQTL allele frequencies across 4,835 genes. We found that 148 

alleles which correspond to high exon inclusion are more common in the GTEx V8 dataset. E) Counts of 149 

derived allele effect directions. It was more common for ψQTL derived alleles to decrease target exon 150 

PSI. F) Distribution of derived allele frequencies between ψQTLs where the derived allele increases vs. 151 

decreases PSI. Here we limited to ψQTLs where the ΔPSI score is greater than 0.035, but this difference 152 

increases at more stringent cutoffs (see supplemental figure 1D) 153 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.05.518915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

ψQTLs share signals between GWAS loci and eQTLs.  154 

Next, we sought to investigate if higher interpretability of ψQTLs could potentially build 155 

mechanistic insight of genome wide association study (GWAS) hits and expression QTLs.  156 

 First, we performed colocalization analysis32 of ψQTLs mapped across 18 GTEx tissues 157 

against curated sets of GWAS summary statistics for 87 traits 33 (See Methods for details). 158 

Colocalization is a statistical framework to determine a posterior probability that two genetic 159 

association studies share an underlying causal variant. Out of 82,729 splicing events with a 160 

ψQTL, we found that 942 (1.13%) colocalized with at least one GWAS trait, corresponding to 161 

338 genes out of 4,725 ψQTLs (7.15%). At least one colocalizing ψQTL in at least one tissue 162 

was found for 70 out of 87 tested traits, some replicating across multiple tissues (Supplemental 163 

Figure 3). These percentages are slightly higher than previous reports of sQTL trait 164 

colocalization (5% of genes in Barbeira et al.33), suggesting that ψQTLs may be prioritizing 165 

more biologically relevant splicing signals. Among genes with a colocalization event, we found 166 

no significant association with exon symmetry or derived allele effect directions, in comparison 167 

to other genes with a ψQTL but no colocalization (Figure 2B). However, we recognize that 168 

colocalization analysis is often conservative33, and we are likely missing some splicing-trait 169 

associations that we may be underpowered to detect given the size of the dataset and the number 170 

of GWAS summary statistics available.  171 

 While it is known that eQTLs and sQTLs generally have little overlap between causal 172 

variants9,12,26, we aimed to assess if ψQTLs could reveal the mechanisms of cases where an 173 

overlap is found. One model for why this may occur is that a ψQTL triggering splicing of a non-174 

symmetric exon induces nonsense mediated decay30, thereby resulting in a reduction of transcript 175 

levels which is then manifested as an eQTL. To test this hypothesis, we performed fine mapping 176 
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of ψQTLs using susie34 to prioritize potential causal variants and check for overlaps with eQTLs 177 

(Methods). Across genes and tissues, we found that ψQTLs had 1.49 credible sets per gene on 178 

average, with each credible set containing a mean of 2.19 variants. We then overlapped these 179 

credible sets with those of GTEx eQTLs on a tissue by tissue basis. While the signal was weak, 180 

we found a consistent pattern of ψQTLs with non-symmetric sExons more likely to overlap with 181 

eQTLs, in comparison to symmetric exons (Figure 2C). This highlights the possibility that 182 

genetic effects on common splicing of non-symmetric exons that disrupt open reading frames 183 

could be another mechanism for genetic effects on gene expression.  184 

 185 

Figure 2: ψQTL-GWAS colocalizations and shared causal variants with eQTLs 186 

A) ψQTL-GWAS posterior distributions for power vs. colocalization, for the top colocalization event for 187 

each ψQTL gene. A cluster appears in the upper right corner, which we use as a cutoff to define trait 188 

colocalization events (blue). Contingency tables represent the number of genes with or without a 189 
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colocalization event, and where the total exon length is symmetric or nonsymmetric and where the ψQTL 190 

derived allele increases or decreases exon inclusion. Using Fisher’s exact test, neither comparison reaches 191 

statistical significance. B) Log(Odds Ratio) for enrichment of non-symmetric sExons with ψQTLs that 192 

share causal variant credible sets with eQTLs, on a tissue by tissue basis. Light blue colors indicate a 193 

nominally significant enrichment (Fisher’s exact test p < .05 The barplot reports the number of genes with 194 

shared eQTL and ψQTL credible set in each tissue.  195 

The effects of genetically controlled splicing on protein structure 196 

Another advantage of our ψQTL method is that it allows for straightforward mapping of mRNA 197 

splicing changes onto downstream protein structure. Since PSI is interpretable in this way, we 198 

sought to ask if exons influenced by regulatory variants have any distinguishing properties with 199 

respect to their corresponding protein domains, compared to variable exons with no significant 200 

genetic splicing regulators. We hypothesized that sExons would be depleted for highly structured 201 

protein domains since these would likely have a larger impact on protein function which might 202 

be under purifying selection. Utilizing protein structure databases, as well as the more 203 

sophisticated protein structure prediction tool Alphafold2, we built a holistic approach to probe 204 

these questions.  205 

To begin we mapped 4,566 non-terminal sExon nucleic acid sequences onto human 206 

protein amino acid sequences extracted from the MANE database35 (see Methods for details). 207 

MANE isoforms represent the most commonly used protein isoforms across many public 208 

datasets, which are often the most clinically relevant with respect to variant interpretation25. 209 

MANE was chosen as a reference because it includes maps of nucleic acid to amino acid 210 

sequences for each gene, thus eliminating potential ambiguity in choosing the correct open 211 

reading frame. Across sExons, 2,824 (61.85%) were represented in their respective gene’s 212 

MANE isoform.  Notably, we found that exons with higher median PSI in GTEx were more 213 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.05.518915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

likely to be included in MANE (Supplemental Figure 3), likely because low PSI exons are 214 

typically not a part of the most common gene isoform. We also extracted amino acid sequences 215 

from 2,708 constitutive exons and 2,071 variable exons from genes with no significant ψQTL. 216 

Next, these pools of exons were divided and compared accordingly, to evaluate their 217 

associations with various protein features: constitutive and variable exons, variable exons with 218 

high (>0.5) and low (<0.5) median PSI, sExons and exons without a significant ψQTL, and 219 

sExons that colocalize and do not colocalize with a GWAS trait. Across each pair of exon sets, 220 

amino acid sequences were annotated with multiple features describing the structuredness, 221 

solubility, length, and function of the corresponding protein domain (Table 1). The means 222 

between features were then compared using the non-parametric Mann-Whitney U-test (Figure 3).  223 

We first focused on pLDDT and RSA scores that in combination could serve as a proxy 224 

for an exon being at the interior or exterior of the protein 3 dimensional structure22,36. Overall, 225 

we observed that high PSI exons in general had higher per exon pLDDT scores (p<2⨉10-16) and 226 

lower per exon RSA (p<2⨉10-16). This indicates, unsurprisingly, that high PSI exons are 227 

enriched in well-structured core regions of their protein’s 3D structure. Interestingly, we 228 

observed that asparagines, which are indicative of protein phosphorylation sites and functional 229 

relevance, were depleted in high PSI exons compared to low PSI exons (p=0.023). We also 230 

observed depletion of asparagines in sExons when compared to variably spliced exons not 231 

regulated by any ψQTL. sExons are also depleted for cysteines (p=0.0023) which could indicate 232 

that alternatively spliced exons are less important for the overall protein 3D structure.  233 

Finally we focused on sExon targets of ψQTLs that colocalize with one of the 87 GWAS 234 

traits discussed in the previous section, to assess if exons whose genetically controlled splicing is 235 

involved in a trait share any discernible characteristics. The analysis revealed that these sExons 236 
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overall appear to be less structured (p=6.1e-3 and p=0.034 for RSA and pLDDT scores 237 

respectively). Additionally, colocalizing exons were enriched for asparagines and depleted for 238 

cysteines (p=0.023 and p=0.071 respectively), which could indicate that GWAS-relevant sExons 239 

are more likely to carry phosphorylation chemical modifications (since asparagines are 240 

frequently the residues to be phosphorylated) than those not without GWAS indication.  241 

For further functional annotation of sExons, we analyzed the binary features including 242 

involvement in the transmembrane domain, exon symmetry, and numerous domain and motif 243 

annotations from the UniProt21. While no significant differences were observed in most 244 

comparisons, high PSI exons were depleted for being involved in transmembrane domains and 245 

enriched in carrying overall domain annotation signal (p<2⨉10-16 for both). This is consistent 246 

with prior observations of higher per exon pLDDT score and lower RSA for those exons, per the 247 

previous results. The difficulty of detecting signals may be at least partially due to the 248 

incompleteness of functional domain databases, with only 2,067 out of 4,835 (42.8%) of tested 249 

exons having any functional domain annotation. While some proteins are well-studied and 250 

annotated, the majority are still uncurated.  251 

  252 
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Table 1: Description of features used to describe protein domains of interest 253 

Feature Description and Significance 

RSA 

The relative solvent accessible surface area (rASA) of a residue is a degree of 

residue solvent exposure. RSA < 25 is considered to be buried in the protein, 

otherwise, it is considered to be exposed. For each sExon, we report the first 

quantile of RSA across all residues, which describes the overall accessible 

area of the exon. 

pLDDT 

Predicted local distance test. This is a per-residue metric output by 

AlphaFold2, which represents the model's confidence in its prediction of 

protein structure at that residue. A lower pLDDT score indicates an 

intrinsically unstructured protein domain, and vice versa. For each sExon, we 

report the third quartile of pLDDT scores across all residues, which describes 

the overall structuredness of this domain. 

% Asparagine 

Residues 

Percent of asparagines in the aligned sExon sequence. This metric is used 

because asparagines are important sites for protein phosphorylation. It could 

indicate functional importance of the domain of interest. 

% Cysteine 

Residues 

Percent of cysteines in the aligned sExon sequence.  This metric is used 

because cysteines shape the overall 3D structure by forming disulfide 

bridges. 

Length 

Length of amino acid sequence aligned to the MANE Ensembl database 

sequences. Alternative splicing of longer exons could potentially have a 

higher impact on protein function. 

Presence of 

Functional 

Domain 

Percent of sExons that carry any functional domain signal. Those signals 

include a wide range of amino acid sequence motifs and chemical 

modifications as well as cellular localisation signals extracted from the 

UniProt database. This metric could indicate the overall importance of 

sExons for proteins' function. 

 254 
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 255 

Figure 3: Comparisons of encoded protein domain features among variably and constitutively 256 

spliced exons.  257 

Five continuous features (see Table 1) of exons are tested across four comparisons. For each comparison, 258 

the violin representing the group with the higher median value for each feature is shaded. P-values are 259 

calculated using Mann-Whitney U-tests. Comparisons that did not reach statistical significance are plotted 260 

in grey.  261 

 262 
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Genetically controlled protein structural changes in GWAS trait 263 

colocalization 264 

Next, we sought to evaluate if specific changes in protein structure were attributed to 265 

ψQTLs with strong GWAS trait colocalization signals. To do so, we predicted the structure of 266 

146 proteins for both spliced-in and spliced-out sExon isoforms with ColabFold37, quantifying 267 

which regions of the protein are affected by alternate exon usage and to what degree. The chosen 268 

exons have a ψQTL that colocalizes with a GWAS trait, are non-terminal, and both isoforms’ 269 

length is less than ~1200 amino acids, due to the current limitations of ColabFold. Overall, we 270 

observed a wide range of structural rearrangements, from minor deletions of unstructured regions 271 

to the exclusion of whole structured domains. To summarize observed perturbations across 272 

genes, Euclidean distances were calculated between predicted alignment error (PAE)22 score 273 

matrices for each pair of structures. Cases where splicing causes major rearrangements on the 274 

structural level are expected to have a higher Euclidean distance between the two isoforms. In 275 

general, we found that a wide range of structural changes was driven by alternative splicing 276 

associated with GWAS traits (Figure 4). We find that this Euclidean distance between pairs of 277 

isoforms correlates weakly with the gene’s LOEUF score (ρ=0.205, p=0.013, Supplemental 278 

Figure 5), indicating that more constrained genes with respect to loss of function variant 279 

intolerance are also less tolerant to large structural changes. As a measure of goodness of 280 

structural alignment, root mean square distance (RMSD) was calculated between spliced-in and 281 

out isoforms as well (Supplemental Figure 4A). This indicates the quality of alignment by 282 

showing the mean distance (in Å) between corresponding residues in structurally aligned 283 

proteins. RMSD could serve as a proxy for topological rearrangement on the 3D level. In 284 

contrast, the Euclidean distance between PAE matrices indicates how well domains between 285 
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structures are preserved, and in general correlated poorly with the Euclidean distance score 286 

(Supplemental Figure 4B).  All 146 predicted structures are available to download as 287 

supplementary data. 288 

 289 

 290 

Figure 4: Distribution of Euclidean distances between predicted alignment error (PAE) matrices 291 

among GWAS colocalized ψQTLs . A higher Euclidean distance indicates more structural difference 292 

between the spliced in and spliced out isoform. Seven notable examples are showcased, with the spliced 293 

in and spliced out isoforms overlaid. The tan structure is the spliced in, and green structure is the spliced-294 

out isoform. The red region of the protein represents the sExon. Each protein is labeled by its gene and 295 

the GWAS trait it is associated with.  296 

 297 

Finally, we focus on three notable examples of predicted protein structure changes associated 298 

with GWAS hits, which highlight the utility of our approach.  299 
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We first investigated structural perturbations of SP140 caused by the splicing of exon 13 300 

(Figure 5A). It is associated to chr2:230245867:C:T (rs28445040), which is also colocalized with 301 

a Crohn’s disease GWAS. This result was first reported in Zhao et. al38, and we replicated their 302 

findings using entirely different datasets. (In Zhao et. al, exon 7 is the significant exon defined 303 

by Ensembl v65. This maps to exon 13 in gencode v26, which we use here.) The sExon is 304 

aligned to amino acids 223 to 247 of MANE transcript of SP140. No structural annotation is 305 

available for this part of the protein, as currently available experimental structures only cover 306 

positions 687-862 (pdb accession: 6g8r). Structural changes predicted by AlphaFold2 between 2 307 

isoforms are minor and are in an intrinsically disordered region of the protein that is supported 308 

by a relatively small euclidean distance (1.73) although RMSD is quite high (16.9). Our 309 

predictive approach corroborates exon 13 lying within an unstructured region, and that its 310 

alternative splicing does not affect the protein core. No known post-translational modifications 311 

or protein-protein interaction annotations in structural databases overlap with the peptide.  312 

Next, we present another case of a ψQTL with a significant GWAS colocalization event: 313 

chr11:584591:A:G (rs35865896) associated with splicing of exon 4 in IRF7, a key transcription 314 

factor of the immune system. The QTL is significant in 12 out of the 18 tested tissues. This 315 

association implies that higher usage of an isoform that skips exon 4 is associated with decreased 316 

risk of lupus erythematosus39 (Figure 5B). The exon aligns to positions 158-226 in the canonical 317 

transcript from MANE, and we observed modest structural changes (Euclidean distance 2.46) 318 

between the canonical and spliced-out predicted structures (RMSD=17.4). After aligning the two 319 

structures, we found that the whole C-terminal domain of IRF7 is mirrored. However, the overall 320 

organization of the domain is preserved. Notably, cleavage sites of 2 viral proteases 3C 321 

(positions 167-168  and 189-190 for EV68 and EV71 respectively) are present in the sExon40. In 322 
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addition, 2 residues of the alternatively spliced exon are involved in DNA binding (amino acids 323 

187 and 189)41. It could potentially be of interest to investigate the effect of splicing on the DNA 324 

binding abilities of IRF7 with respect to lupus risk and progression, as suggested by this finding. 325 

Finally, we focus on alternative splicing at exon 16 of HMGCR, which is part of a 326 

cholesterol metabolism pathway (Fig 5C). We cataloged chr5:75355259:A:G (rs3846662) as the 327 

top sVariant, which strongly colocalizes with a GWAS for high cholesterol levels. We observed 328 

a substantial Euclidean distance between the 2 predicted structures (3.14 compared to the median 329 

of 2.64 across all other comparisons). While, according to the PAE matrix, the spliced-in isoform 330 

contains 2 major clusters (domains), the middle part of the C-terminal domain in the spliced-out 331 

isoform is predicted to break into 2 domains. According to the prediction followed by structural 332 

alignment (RMSD = 6.13), splicing of exon 16 that corresponds to amino acids 522-574 in the 333 

MANE Ensembl protein database isoform causes mirroring of a part of the protein between 334 

amino acids 368 and 511, and separation to a new structural unit in the spliced-out isoform. 335 

Follow-up sequence annotation revealed that the exon consists of a turn (522-525), 2 beta strands 336 

(528-546 and 549-556 respectively) and a helix (562-575) inferred from the PDB structural 337 

database (PDB accession: 2r4f). In addition, this exon is annotated with one of three Coenzyme 338 

A binding domains found in HMGCR (565-571)42. Interestingly, HMGCR is responsible for a 339 

rate-limiting step in the synthesis of cholesterol, thus regulating cellular cholesterol homeostasis. 340 

Taking this into account, we hypothesize that skipping exon 16 in HMGCR interferes with the 341 

Coenzyme A binding domain, thus inhibiting this enzyme’s function and reducing blood 342 

cholesterol levels. Even though the ψQTL effect size is quite small in this example 343 

(ΔPSI=0.014), the GWAS risk allele and the exon-including ψQTL allele are the same, further 344 

suggesting a functional relationship.  345 
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In general, we present a powerful approach for characterizing splicing-related protein 346 

changes. While identifying distinct protein isoforms originating from mRNA splicing has been 347 

challenging historically43, computational prediction provides a path for identifying structures of 348 

minor isoforms whose usage may be important for trait risk. Importantly, our technique relates 349 

dosages of isoforms that include or skip exons to common genetic variation. Predicting these 350 

structural changes as related to genetics adds another layer of interpretation when deciphering 351 

the mechanisms that link genetic variants to GWAS traits, and in the future could assist in 352 

identifying drug targets for genetic diseases.  353 

 354 
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 355 

Figure 5: Predicted structural changes associated with GWAS-colocalized ψQTLs  356 

Detailed descriptions of splicing of A) SP140 exon 13, colocalized with Crohn’s disease risk, B) IRF7 357 

exon 4, colocalized with Lupus Erythematosus risk and C) HMGCR exon 16, colocalized with high 358 

cholesterol levels. The whole gene is displayed at the top of each row, with the relevant exon labelled in 359 

red or with a red arrow. In each row, from left to right, we display: Two overlapping locuszoom plots for 360 

the GWAS (top) and the ψQTL (bottom) in the same region. Variants are colored by their LD with 361 

respect to the top variant for each association, measured in r2. To the lower middle, the plot shows the 362 

ψQTL in each respective GTEx tissue, with the genotype corresponding to reference and alternate alleles. 363 

The GWAS risk allele is marked with a red asterisk. Next, we display two matrices of PAE scores, 364 
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corresponding to the AlphaFold2 predicted structures of spliced-in and spliced-out exons. This is a simple 365 

way to visualize splicing a highly structured protein domain. The sExon is marked in grey in the spliced-366 

out isoform matrix. Third, we plot ribbon diagrams with overlapping structures of the two isoforms, as 367 

predicted by AlphaFold2. The tan structure is the spliced-in, and the green structure is the spliced-out 368 

isoform. The variably spliced exon is coloured in red.  369 

Discussion 370 

In conclusion, we present a perspective to splice quantitative trait loci mapping that 371 

prioritizes downstream interpretability of the splicing signal itself. In particular, we focus on the 372 

properties of ψQTL-affected exons, and the impact of genetically controlled slicing on protein 373 

structure. These aspects of splicing are generally understudied, as most research to date has 374 

focused on characterizing the properties of splicing variants themselves, as opposed to the 375 

molecular consequences of alternative splicing9,15,18,26. Through our approach of focusing on 376 

exon skipping events, we found that symmetric exons are more likely to be affected by ψQTLs, 377 

and that derived alleles are more likely to trigger exon exclusion. We found many instances of 378 

ψQTLs that colocalized with GWAS traits, and that these trait-relevant splicing events were 379 

more likely to occur in the core structured regions of proteins. By predicting protein structures 380 

with AlphaFold, we demonstrate the potential mechanisms of different changes in splicing 381 

leading to trait associations.  382 

When calculating PSI using counts of reads that span exon-exon junctions, we depend 383 

solely on exon annotations, rather than whole isoform annotations. This is advantageous in our 384 

case, as isoform annotations are notoriously incomplete49,50, and methods to estimate ratios of 385 

isoforms can be unreliable51,52. However, we recognize that exon skipping is far from the full 386 

picture of splicing variation, and hypothetical structures with and without a single exon may not 387 
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be translated in reality. Importantly, it should be noted that our method is not meant to predict 388 

ratios of real transcripts or protein isoforms, but rather to prioritize domains that may have 389 

relevance for fitness and trait associations. With newer advanced methods like long read 390 

sequencing, it is becoming possible to quantify whole transcripts which capture complex splicing 391 

events53–55. In the future, these technologies could provide a higher resolution picture of isoform 392 

proportions associated with trait and disease risk. Additionally, while in this work we focus on 393 

splicing changes associated with common variants, resolving structures of rare splice isoforms is 394 

a fruitful approach for improving genetic diagnosis, discovering rare disease etiology, and 395 

identifying potential therapeutic targets56–59.  396 

With the revolution in protein-structure prediction launched by AlphaFold22, it is now 397 

possible to predict isoform structures associated with conditions of interest, thus opening up 398 

enormous opportunities to track molecular perturbations without performing laborious structural 399 

biology experiments. However, this method comes with some limitations. As such, co-400 

translational and post-translational modifications are not predicted by AlphaFold, while these 401 

potentially drive a large fraction of cell-signaling and trait associations60,61. Additionally, 402 

AlphaFold remains limited to single protein structures with a length limitation of 2700 residues 403 

(1000-1200 residues in the case of ColabFold used in this study), although recent model 404 

upgrades for predicting protein complexes were released by DeepMind62. Another area of 405 

interest in interpreting AlphaFold predictions is determination of intrinsically disordered or 406 

unstructured protein regions, as low pLDDT regions are thought to have a high likelihood of 407 

being unstructured in isolation. It has been argued that AlphaFold may be of use as a tool for 408 

identifying such regions, performing on par with specifically created tools. However, 409 

experimental validation of intrinsically disordered regions is highly recommended using SAXS, 410 
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NMR, X-Ray crystallography, cryo-EM, etc. Additionally, AlphaFold has not been trained or 411 

validated for predicting the structural impact of single mutations, and generally performs poorly 412 

for this purpose63. Here, we focus on the more tractable problem of comparing isoform structures 413 

where large portions of the protein differ, rather than single mutations, where the model’s output 414 

is likely more biologically relevant. Although structures obtained from AlphaFold2 generally 415 

correlate well with experimental structures, regions with low confidence scores should be treated 416 

cautiously as they might not represent truly disordered regions64. Thus, we reiterate that 417 

predicted structures do not necessarily correspond to actual biological structures, but rather 418 

prioritize protein domains that may be affected by genetically regulated splicing. 419 

While determining the structure of a protein gives valuable information about its function 420 

and role in specific conditions, the structure is not the only relevant factor. Post-translational 421 

modifications and cellular localization play a crucial role in protein activation and 422 

deactivation65,66. To address how those properties are changed in alternatively spliced transcripts, 423 

we utilized the UniProtKB database which is a well-curated source of various features’ 424 

annotation. Although it is a trustworthy and fast-expanding resource, functional annotations for 425 

many proteins are still incomplete. Mostly those are proteins not involved in disorders, common 426 

pathways, and other well-studied processes. This limits UniProtKB’s utility for discovering new 427 

associations between structural changes and molecular/functional perturbations. Additionally, 428 

disordered regions are in general poorly annotated as they are not well captured by standard 429 

protein structure determination methods67. To fill the gap of experimental annotation, multiple 430 

prediction tools have been developed41. While it is beneficial to have at least some annotation, 431 

one should treat it with caution. 432 
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 Despite limitations, ψQTL analysis provides a different perspective on genetically 433 

controlled pre-mRNA splicing. Our findings indicate that the effect size and direction of exon 434 

skipping events affect variant allele frequencies, which implies an association with overall 435 

fitness. Paired with the computational prediction of protein structures, we envision this technique 436 

being used as a starting point for contextualizing genetic associations to disease where 437 

alternative splicing is suspected to be involved. In future studies of splicing QTLs, we suggest 438 

that the impact on protein structure be considered further.  439 

Methods 440 

PSI Calling from GTEx V8 441 

Exon level percent spliced in (PSI) scores were calculated from GTEx V8 RNA-seq BAM files 442 

(See Consortium 202026 Supplemental Information for upstream data processing steps). We 443 

limited our analysis to 18 tissues, which were chosen for their coverage in GTEx and their 444 

coverage of the most coding genes possible (Table S1). Exon PSI for protein-coding genes was 445 

quantified using the Integrative Pipeline for Splicing Analysis (IPSA),44,45 which was modified 446 

to run on Google Cloud through Terra. (https://github.com/guigolab/ipsa-nf) The ‘-unstranded’ 447 

flag was used during the sjcount process. Exons were defined by the modified version of 448 

Gencode annotation v26 used in GTEx V8, which collapses genes with multiple isoforms to a 449 

single isoform per gene.  450 

(https://storage.googleapis.com/gtex_analysis_v8/reference/gencode.v26.GRCh38.genes.gtf).  451 

For downstream QTL analysis, PSI data for each tissue was prepared by 1) removing exons with 452 

data available in less than 50% of donors and 2) removing exons with fewer than 10 unique 453 
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values across all available donors, to remove constitutive exons with no variability across 454 

individuals (Table S1). Overall, we kept between 9.41% and 17.16% of exons with PSI data 455 

available. In subsequent analyses, this set of exons is referred to as “sufficiently variable.” Post-456 

filtering exon PSI calls were normalized for QTL mapping by randomly breaking any ties 457 

between two individuals with the same PSI at an exon, then applying inverse-normal 458 

transformation across all individuals. Filtered and normalized PSI calls were saved in BED 459 

format with start/end position corresponding to each gene’s transcription start site (TSS). The 460 

gene containing each exon was included in the BED files for use with QTLtools’ group 461 

permutation mode.  462 

 Additionally, constitutive exons were separated from variable exons for other 463 

downstream analyses. These were defined by 1) selecting all exons with a PSI of 1 in in all but at 464 

most 10 donors across the 18 GTEx tissues 2) Merging this list across all 18 tissues, recording 465 

the number of times an exon is constitutive across tissues 3) Keeping exons that were 466 

constitutive across at least 9 tissues 3) Further filtering the list by removing terminal exons, and 467 

limiting to one constitutive exon per gene, based on a. the number of tissues an exon was 468 

constitutive in and b. a random selection in the few cases where there were ties. 469 

  470 
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Table S1: Total number of exons with PSI covered across tissues 471 

Tissue 

N Exons 

per tissue 

pre-

filtering 

N Exons 

per tissue 

post-

filtering 

Percent 

usable 

Genes 

covered 

per tissue 

Adipose_Subcutaneous 260,800 29,180 11.19% 8,585 

Artery_Tibial 253,109 27,453 10.85% 8,127 

Brain_Cerebellum 239,928 36,095 15.04% 8,605 

Brain_Cortex 240,439 26,121 10.86% 7,857 

Brain_Nucleus_accumbens_basal_gan

glia 247,074 26,372 10.67% 7,998 

Cells_Cultured_fibroblasts 230,752 28,486 12.34% 8,479 

Cells_EBV.transformed_lymphocytes 220,547 37,837 17.16% 9,291 

Colon_Transverse 231,647 29,066 12.55% 8,630 

Esophagus_Mucosa 245,627 26,721 10.88% 7,984 

Liver 224,469 21,605 9.62% 6,283 

Lung 265,555 34,585 13.02% 9,387 

Muscle_Skeletal 240,921 22,664 9.41% 6,788 

Nerve_Tibial 261,375 30,771 11.77% 8,783 

Pituitary 259,310 32,795 12.65% 8,774 

Skin_Sun_Exposed_Lower_leg 259,438 29,570 11.40% 8,588 

Spleen 241,122 30,379 12.60% 8,277 

Thyroid 266,364 30,035 11.28% 8,586 

Whole_Blood 236,866 23,135 9.77% 6,039 

 472 

Primary ψQTL mapping and collapsing across tissues 473 

For each of the 18 GTEx V8 tissue groups, cis-QTL mapping was run on every exon that passed 474 

filtering, considering all genetic variants with an allele frequency greater than 5% in GTEx 475 

within 1Mb of the gene’s TSS. We used QTLtools46 run in grouped permutation mode, with 476 

groups defined by gene. This strategy controls for splicing correlation between exons that are 477 
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part of the same gene. 15 PEER factors, 5 genetic principal components (PCs), as well as sex, 478 

PCR bias, and sequencing platform were also included as covariates in the QTL model, as 479 

recommended in the GTEx V8 STAR methods.26 480 

For every exon, we selected the most significant variant, and for every gene the most 481 

significant exon. A gene was determined to be a ψQTL if the top variant’s beta adjusted p-value 482 

was less than 0.05. Although QTLs were directly mapped using normalized PSI measurements, 483 

we defined effect sizes by referring back to the non-normalized PSI calls and calculating the 484 

change in PSI (𝚫PSI) as difference in the REF/REF and ALT/ALT genotype medians.  485 

We compiled the ψQTL results across tissues to achieve a set of cross-tissue top ψQTLs. When a 486 

gene was significant across multiple tissues, we used the tissue where the effect size (𝚫PSI 487 

score) of the ψQTL was the highest. This process ensured that a gene was only included once in 488 

our final set of ψQTLs, and was labeled by one variant that affects splicing (sVariant). 489 

Underlying LD patterns may obscure the true variant that causes splicing differences, but for 490 

simplicity in this project, we choose a single sVariant per exon.  491 

For each top ψQTL, we labeled the alleles associated with high and low target exon 492 

inclusion based on the regression slope from QTL calling. This classification is more 493 

biologically relevant than reference and alternative alleles, which are only dependent on the 494 

reference genome. Additionally, we labeled the ancestral and derived alleles of each top ψQTL 495 

based on data from the 1000 Genomes Project Phase 3.47  496 

To compare sExons to variable exons without a ψQTL, we considered genes where the 497 

most significant variant-exon pair across all tissues in which the gene was tested had an adjusted 498 

p-value > 0.2.  499 
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Colocalization Analyses 500 

We performed colocalization analysis to evaluate the extent that ψQTLs share potential 501 

causal variants with GWAS traits. First, we ran a nominal QTLtools pass in cis using PSI calls 502 

from exons with a significant ψQTL in at least 1 of 18 GTEx tissues as in the previous analysis. 503 

The definition of a common variant and range of 1Mb up and downstream of the gene’s TSS 504 

were the same. With this set of common variant-splicing associations, we performed 505 

Approximate Bayes Factor colocalization analysis using the coloc R package32, running nominal 506 

ψQTL calls from 18 GTEx tissues against 87 sets of GWAS summary statistics (Table 2) for a 507 

total of 1,566 possible colocalization events. To define a colocalized trait, we calculated 508 

PP.power and PP.coloc for each potential colocalization event, which we define as (PP.H3 + 509 

PP.H4) and (PP.H4 / (PP.H3 + PP.H4)) respectively. We considered a trait to be colocalized if 510 

the Euclidean distance between (1,1) and (PP.power, PP.coloc) is less than .25 (See Figure 2). 511 

We chose this looser definition of colocalization to allow for more data in downstream analyses, 512 

and where the false positive rate is less critical.  513 

Fine mapping with Susie (overlap with eQTLs) 514 

To find causal variant credible sets for ψQTLs, we applied the fine mapping procedure 515 

used in the eQTL catalog,48 which applies Susie to find independent sets of variants with 95% 516 

posterior inclusion probability of containing the true causal variant for a QTL. 517 

(https://github.com/eQTL-Catalogue/qtlmap) We ran fine mapping on all exons independently, 518 

so we employed an aggregation procedure to achieve one or multiple sVariant credible sets per 519 

gene. For all exons in a gene, we considered all possible unions of all credible sets. Collapsed 520 
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credible sets contained disjoint sets of variants. We then used these collapsed credible sets to 521 

compare to eQTL credible sets, also from the eQTL catalog.  522 

Extraction of Amino Acid Sequences and Sequence Properties 523 

To analyze how exons affected by ψQTLs map to protein sequence and structure, we 524 

leveraged AlphaFold predictions and other resources. First, sExon nucleic acid sequences were 525 

extracted from the hg38 assembly of the human genome using 526 

gencode.v26.GRCh38.GTExV8.genes annotations. blastx: 2.12.0+ was used to perform mapping 527 

of extracted sExons onto transcript sequences present in the MANE.GRCh38.v1.0 database. For 528 

each sExon best hits were selected based on e-value. Hits with e-value greater than 0.001 were 529 

discarded. sExons with the best hit occurring in another protein were also excluded from further 530 

analysis. 531 

Length outliers were removed before conducting structural analysis. pLDDT scores were 532 

obtained from pdb files of the human proteome from the AlphaFold database (Reference 533 

proteome UP000005640). As the pLDDT score is a per residue measure, summary statistics 534 

(min, Q1, median, Q3, max) were calculated for each exon. (https://freesasa.github.io/) 535 

FreeSASA 2.0.3 (--format=rsa) tool was used to calculate per residue relative solvent 536 

accessibility (RSA). The same summary statistics were applied as for the pLDDT score. Domain 537 

annotation (evidence of overlap between sExon and any annotated domain/motif/chemical 538 

modification) was obtained from the UniProt database. The following signals were collected: 539 

DOMAIN, SIGNAL, TOPOLOGY, TRANSMEMBRANE, MOTIF, TOPO_DOM, ACT_SITE, 540 

MOD_RES, REGION, REPEAT, TRANSMEM, BINDING, NP_BIND, COILED, DISULFID, 541 

CARBOHYD, DNA_BIND, CROSSLNK, ZN_FING, METAL, SITE, INTRAMEM, LIPID for 542 
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the further analysis. In addition, exons were annotated with their respective gene’s LOEUF 543 

scores, which were extracted from GNOMAD v2.1.1. 544 

To analyze distinct structural characteristics of exons, we calculated the above features 545 

across all exons with sufficient coverage in GTEx, then compared features by: (1) variable vs. 546 

constitutive exons, as defined above, (2) Highly included vs. lowly included exons, defined as 547 

sufficiently variable exons with a median PSI across all available individuals and tissues less 548 

than and greater than 50% respectively, (3) sExons vs. non-sExons, defined as exons with or 549 

without a significant ψQTL variant in at least one of the 18 analyzed GTEx tissues in the 550 

previous section, and (4) colocalizing sExons vs. non-colocalizing sExons, with the former 551 

having a significant sQTL-GWAS colocalization event signal and its absence for the former 552 

group, defined using the same cutoff thresholds as in the previous colocalization analysis. To 553 

perform statistical analysis, Mann-Whitney U-tests were performed for numerical features (RSA 554 

and pLDDT summary statistics, asparagine and cysteine percent, exon length and symmetry 555 

distributions). Fisher’s exact tests were performed to test differences in categorical features 556 

(presence of the domains, enrichment in transmembrane domains, etc). 557 

Prediction of Protein Structure Changes with AlphaFold2 558 

ColabFold (https://github.com/sokrypton/ColabFold) (Google Colab version of 559 

AlphaFold 2) was used to predict protein structures for transcripts with and without sExons. To 560 

build MSA, the MMseqs2 searching tool was used on the UniRef + Environmental databases. 561 

Both paired and unpaired sequences were utilized for MSA construction. No template mode was 562 

used in order not to introduce bias of one structure by the other, since in most cases only either 563 

spliced-in or spliced-out structure is present in PDB database. Three recycles were performed to 564 
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obtain better structure predictions. Two metrics were used to track potential effect of splicing 565 

event on protein structures: RMSD between aligned structures and Euclidian distance between 566 

positional alignment error (PAE) score matrices.  567 

Prior to calculating RMSD, spliced-in and spliced-out isoforms were structurally aligned 568 

using PyMol 2.5.0. Then RMSD was calculated between aligned parts of structures, eliminating 569 

misaligned parts including alternatively spliced exons. PAE scores were analyzed to determine 570 

perturbations in domain arrangement between spliced-in and spliced-out versions of the 571 

transcript. Euclidean distance between PAE matrices of splice-in and spliced-out isoforms was 572 

calculated to track the effect of splicing onto domain rearrangements caused by splicing events. 573 

In addition to PAE matrix analysis, structures were visualized using PyMol 2.5.0 and 574 

superimposed to detect major topological differences between them. 575 

  576 
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Data Availability 577 

Raw and processed data files are available to download at https://zenodo.org/record/7275062.  578 

Accompanying code is available to review and download at 579 

https://github.com/jeinson/sqtl_manuscript 580 
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Supplemental Figures 591 

 592 

Supplemental Figure 1: Supplemental Characterizations of ψQTLs 593 

A) Relationship between the number of individuals tested and the number of significant ψQTLs per 594 

tissue. We catalog more significant genes in tissues where more donors are available, as is typical in QTL 595 

studies. B) Distribution of lengths between variable exons with and without a significant sVariant 596 

controlling splicing levels. While statistically significant, the difference is not large. C) Density plot of 597 

variable exons’ relative position in their respective transcripts. Across both groups, variable exons tend to 598 

occur later in the transcript. D) Increase in difference between derived allele frequency distributions when 599 

increasing the ψQTL effect size cutoff. The Kolmogorov-Smirnov D score, which quantifies the degree of 600 

difference between two distributions, increases as we consider stronger ψQTLs. E) Annotations of top 601 

sVariants across all ψQTL genes, split by derived allele effect direction on PSI. F) Percentages of tested 602 

genes with a significant ψQTL across tissues, compared to genes with an sQTL with splicing mapped 603 

using Leafcutter.  604 
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 605 

 606 

Supplemental Figure 2: Tissue specificity of GWAS-ψQTL colocalization.  607 

Counts of ψQTL-GWAS colocalization events across the 18 tested tissues. Traits are colored by their 608 

broad category, and rows are organized by hierarchical clustering.  609 

 610 

611 
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 612 

Supplemental Figure 3: Additional Properties of exons found in MANE isoforms.  613 

A) Distribution of median PSI scores between exons included or excluded in their respective gene’s 614 

MANE isoform. B) Genes with larger structural changes between trait-associated isoforms are also less 615 

likely to be haploinsufficient. This suggests genes which tolerate regulatory variants with large splicing 616 

effect sizes are also more tolerant to loss-of-function coding variants.  617 

  618 
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 619 

Supplemental Figure 4: RMSD between predicted protein structures 620 

A) Distribution of Root Mean Squared Distance (RMSD) between spliced in and spliced out ψQTL 621 

isoforms that colocalize with a GWAS trait. B) Correlation between RMSD and the Euclidean Distance 622 

between isoform PAE matrices. These two quantities are not significantly correlated.  623 

 624 

  625 
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