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Abstract

Common variants affecting mMRNA splicing are typically identified though splicing
quantitative trait locus (sQTL) mapping and have been shown to be enriched for GWAS signals
by a similar degree to eQTLs. However, the specific splicing changes induced by these variants
have been difficult to characterize, making it more complicated to analyze the effect size and
direction of sQTLs, and to determine downstream splicing effects on protein structure.

In this study, we catalogue sQTLs using exon percent spliced in (PSI) scores as a
quantitative phenotype. PSI is an interpretable metric for identifying exon skipping events and
has some advantages over other methods for quantifying splicing from short read RNA
sequencing. In our set of SQTL variants, we find evidence of selective effects based on splicing
effect size and effect direction, as well as exon symmetry. Additionally, we utilize AlphaFold2 to
predict changes in protein structure associated with sQTLs overlapping GWAS traits,
highlighting a potential new use-case for this technology for interpreting genetic effects on traits

and disorders.
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Introduction

Alternative splicing is a fundamental cellular process which greatly increases the diversity of
transcript isoforms across tissues and cell types in eukaryotes. It is estimated that the human
transcriptome has a 10 fold increase in the number of alternatively spliced transcripts, compared
to approximately 20,000 protein-coding genes,! of which almost all undergo alternative
splicing®. From an evolutionary perspective, splicing changes have driven phenotypic
differences between closely related vertebrates in a relatively short amount of time, highlighting
its importance in gene function®. Furthermore, mRNA splicing patterns can be influenced by
genetic variation across individuals and populations, as repeatedly demonstrated by studies that
link common variants to splicing changes through the mapping of splicing quantitative trait loci
(sQTLs).>®

While most studies use RNA sequencing data to capture splicing events, they critically
differ in the computational methods used to quantify splicing. Measuring alternative splicing
through short read RNA-seq data is non-trivial, and always requires some level of compromise
depending on the goals of the study. Oftentimes, a study aims to catalog as many splicing events
as possible to increase power to detect splicing QTLs and characterize the types of genetic
variants that affect splicing. These methods often consider different types of events, such as exon
skipping and 3°/5” end usage simultaneously, which reduces the overall interpretability of the
splicing signal but may provide insights into mechanisms of individual splicing events’810, In
other studies, splicing is quantified by inferring levels of full transcripts!*-23. While this approach
produces a biologically relevant splicing readout regarding downstream transcriptome effects, it
is limited by isoform annotation and quantification, which is challenging from short-read RNA-

seq data.
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Splicing QTLs are known to colocalize with GWAS signals and potentially explain a
considerable proportion of heritability of complex diseases.!41® Changes in splicing that
associate with traits are likely mostly driven by differences in amino acid sequences that affect
the function of downstream protein products’-?°, These changes can be systematically mapped
to functional domains by utilizing large databases of resolved protein structures like UniProt??,
where multiple isoforms splicing isoforms are curated for about 5,000 genes. This resource can
help reveal the types of splicing events that may be most relevant for trait colocalization.

Most recently, through the development of AlphaFold2??, estimating the protein structure of
splicing isoforms where an experimentally resolved structure is unavailable has become
substantially easier and more reliable. Now, one can simply provide an amino acid sequence
from two splice-isoforms, and interpret what parts of the protein are affected and to what
degree?®25, This is especially relevant where alternate usage of rare isoforms may play a role in
trait or disease risk. To date, no study has deeply probed how changes in splicing driven by
genetic variation impact the function of proteins, which could reveal the causal mechanism
underlying trait associations.

In this project, we map splicing QTLs in the GTEX resource?® using an interpretable
splicing phenotype that measures exon skipping events from RNA-seq split read counts. While
we detect fewer sQTLs than some of the alternative approaches?®, our sQTLs are more optimized
for downstream interpretation of splicing effects and for analyzing properties of genetically
controlled exons. Additionally, by mapping changes in exon inclusion, we can more easily probe
how protein structure is affected by these alterations, both by interpreting resolved protein
structures and by predicting new structures with and without an alternatively spliced exon.

Throughout our study, we demonstrate how this approach can reveal relevant biology, and how
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81  contemporary protein structure prediction further contextualizes the importance of genetically

82  regulated splicing.

83 Results

84 A simple splicing phenotype improves interpretability of splicing QTLs

85  To begin, we cataloged splicing QTLs in protein coding genes using splicing quantified with the
86  Percent Spliced In (PSI or y) metric on an exon-by-exon basis as a molecular phenotype. We

87  used bulk RNA-sequencing data across 18 tissues and whole genome sequencing was from the
88  Genotype-Tissue Expression Project Version 8 (GTEx v8). We applied the methods for sQTL
89  mapping from GTEx?®, but with splicing quantified with the PSI phenotype (See methods for

90 details). PSI directly captures exon skipping events, but makes no inference about whole isoform
91  usage or complex splicing, which is advantageous for our downstream application. This set of
92  variant-exon pairs are hence referred to as wQTLs, with variants and target exons referred to as
93  sVariants and sExons respectively. Across tissues, limiting to one sExon per gene, we identified
94 between 698 and 2,021 genes with a significant yQTL (Figure 1B), with the number of

95  significant genes correlating with the number of samples available per tissue, as is typical in

96 QTL studies®?%28 (p = 0.0177, Adjusted R? = 0.2604, Figure S1A). In total, we cataloged fewer
97  yQTL per tissue than in the GTEx?® main analysis, which uses the Leafcutter cluster phenotype
98 to quantify splicing and map QTLs in the same dataset (Figure S1F). While Leafcutter® identifies
99  more splicing events and finds more sQTLSs, it presents an interpretability challenge. It is often

100  difficult to identify which exon a Leafcutter cluster corresponds to, and effect directions are
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101  sometimes unclear. While yQTLs are less powerful in a statistical sense, the method clearly

102  links splicing events to exons, genes and effect directions.

103 We obtained a final set of yQTLs for downstream analyses by collapsing yQTLs across
104 tissues, considering the tissue where the wQTL had the highest effect size (APSI) when it

105  appeared in multiple tissues, and removing genes where the 3’ or 5’ terminal exon was the top
106  exon. This filter focused our analyses on exon skipping events. In total, we obtained a set of

107 4,835 genes with a significant yQTL. In comparison to other variably spliced exons from genes
108 that lacked a wQTL, sExons were slightly shorter in bp (Mean bp: 141 and 137 respectively,
109  Mann-Whitney U-test p = 0.022, Figure S1B). Additionally, among yQTLs, sExons were more
110  likely to fall in the later part of the transcript (%* Uniformity test p < 2e-16, Figure S1C), also
111 when compared to the same set of variably spliced exons in genes with no yQTL (Mann-

112 Whitney U-test p = 0.00115, Figure S2). This is consistent with the observation that splicing
113  QTLs tend to be more active post-transcriptionally?é.

114 Another advantage of our approach is that wQTL analysis allows for direct evaluation of
115  exon symmetry. Symmetry refers to whether an exon has a length in base pairs that is divisible
116 by 3, and therefore encodes a complete reading frame. We hypothesize that wQTLs induce

117  changes in exon inclusion that have a relatively low impact on fitness, since sVariants by

118  definition are common in the population. Non-symmetric exons almost always induce a

119  frameshift when they are alternatively spliced,?>% so we predict that wQTLs will be enriched for
120  symmetric exons. We found that indeed, among sExons, 41.20% were symmetric compared to
121 38.77% of all non-terminal exons annotated in gencode v26 (Figure 1C, Fisher’s Exact Test p =
122 6.64x10%), providing evidence that common splice-regulatory variants are less likely to severely

123 impact gene function.
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124 We next asked if yQTLs are more likely to act by splicing out typically highly included
125  exons, or splicing in typically lowly included exons. We found that across all sVariants, the

126  major allele more often corresponded to higher exon inclusion, and that wQTL derived alleles
127 more commonly trigger exon skipping (Figure 1D,E, Binomial p = 3.21 X 10-13). Interestingly,
128  we found that these derived alleles were also less common in the population, indicating potential
129  selective pressure against loss of an exon in transcripts (Figure 1F). This effect was more

130  pronounced when limiting to higher effect size yQTLs (Figure S1D). While molecular QTLs are
131  typically thought of as having little impact on fitness due to their wide distribution in the

132 population, these results indicate that yQTL may undergo purifying selection driven by

133 downstream molecular effects.

134 Though not the main focus of this analysis, we annotated the sVariants themselves using
135 VEP3'to ask if derived alleles triggering exon skipping are more likely to fall in exonic, intronic,
136  or intergenic space with respect to their target gene. We found no significant differences in this
137  regard, with approximately equal proportions of variants falling in each annotation category

138  (Figure S1E).
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140  Figure 1: Properties of genetically regulated exon splicing, as revealed by wQTL analysis. A)

141 Overview of the analysis approach. Using bulk RNA-seq data from GTEx V8, we mapped splicing

142  quantitative trait loci using individual exon PSI as a molecular phenotype. This allowed us to define a
143  ‘high inclusion’ and ‘low inclusion’ allele, as well as define whether the wQTL derived allele results in
144 higher or lower exon inclusion in the final transcript. B) Number of mapped wQTLs per GTEX tissue. We
145  chose these 18 tissues based on their coverage of protein coding genes in GTEx. C) Percentage of

146 symmetric exons in sExons and all exons annotated in gencode v26. We found that sExons are more
147  likely to be symmetric, indicating that wQTLs are less likely to induce large functional changes in target
148  proteins. D) Distribution of high-inclusion wQTL allele frequencies across 4,835 genes. We found that
149  alleles which correspond to high exon inclusion are more common in the GTEx V8 dataset. E) Counts of
150  derived allele effect directions. It was more common for yQTL derived alleles to decrease target exon
151  PSI. F) Distribution of derived allele frequencies between ywQTLs where the derived allele increases vs.
152  decreases PSI. Here we limited to wQTLs where the APSI score is greater than 0.035, but this difference
153  increases at more stringent cutoffs (see supplemental figure 1D)
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154  yQTLs share signals between GWAS loci and eQTLSs.

155  Next, we sought to investigate if higher interpretability of wQTLs could potentially build

156  mechanistic insight of genome wide association study (GWAS) hits and expression QTLS.

157 First, we performed colocalization analysis®? of wQTLs mapped across 18 GTEXx tissues
158  against curated sets of GWAS summary statistics for 87 traits 3 (See Methods for details).

159  Colocalization is a statistical framework to determine a posterior probability that two genetic
160  association studies share an underlying causal variant. Out of 82,729 splicing events with a

161 yQTL, we found that 942 (1.13%) colocalized with at least one GWAS trait, corresponding to
162 338 genes out 0of 4,725 yQTLs (7.15%). At least one colocalizing wQTL in at least one tissue
163  was found for 70 out of 87 tested traits, some replicating across multiple tissues (Supplemental
164  Figure 3). These percentages are slightly higher than previous reports of sQTL trait

165 colocalization (5% of genes in Barbeira et al.®®), suggesting that wQTLs may be prioritizing

166  more biologically relevant splicing signals. Among genes with a colocalization event, we found
167  no significant association with exon symmetry or derived allele effect directions, in comparison
168  to other genes with a yQTL but no colocalization (Figure 2B). However, we recognize that

169  colocalization analysis is often conservative®3, and we are likely missing some splicing-trait

170  associations that we may be underpowered to detect given the size of the dataset and the number
171 of GWAS summary statistics available.

172 While it is known that eQTLs and sQTLs generally have little overlap between causal
173 variants®'2%, we aimed to assess if yQTLs could reveal the mechanisms of cases where an

174  overlap is found. One model for why this may occur is that a yQTL triggering splicing of a non-
175  symmetric exon induces nonsense mediated decay, thereby resulting in a reduction of transcript

176  levels which is then manifested as an eQTL. To test this hypothesis, we performed fine mapping
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of yQTLs using susie®* to prioritize potential causal variants and check for overlaps with eQTLs
(Methods). Across genes and tissues, we found that yQTLs had 1.49 credible sets per gene on
average, with each credible set containing a mean of 2.19 variants. We then overlapped these
credible sets with those of GTEx eQTLs on a tissue by tissue basis. While the signal was weak,

we found a consistent pattern of wQTLs with non-symmetric sExons more likely to overlap with

eQTLs, in comparison to symmetric exons (Figure 2C). This highlights the possibility that
genetic effects on common splicing of non-symmetric exons that disrupt open reading frames
could be another mechanism for genetic effects on gene expression.
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Figure 2: yQTL-GWAS colocalizations and shared causal variants with eQTLs
A) yQTL-GWAS posterior distributions for power vs. colocalization, for the top colocalization event for
each yQTL gene. A cluster appears in the upper right corner, which we use as a cutoff to define trait

colocalization events (blue). Contingency tables represent the number of genes with or without a
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190  colocalization event, and where the total exon length is symmetric or nonsymmetric and where the yQTL
191  derived allele increases or decreases exon inclusion. Using Fisher’s exact test, neither comparison reaches
192  statistical significance. B) Log(Odds Ratio) for enrichment of non-symmetric sExons with yQTLs that
193  share causal variant credible sets with eQTLs, on a tissue by tissue basis. Light blue colors indicate a

194 nominally significant enrichment (Fisher’s exact test p < .05 The barplot reports the number of genes with

195  shared eQTL and yQTL credible set in each tissue.

196  The effects of genetically controlled splicing on protein structure

197  Another advantage of our wQTL method is that it allows for straightforward mapping of mMRNA
198  splicing changes onto downstream protein structure. Since PSI is interpretable in this way, we
199  sought to ask if exons influenced by regulatory variants have any distinguishing properties with
200  respect to their corresponding protein domains, compared to variable exons with no significant
201  genetic splicing regulators. We hypothesized that sExons would be depleted for highly structured
202  protein domains since these would likely have a larger impact on protein function which might
203  be under purifying selection. Utilizing protein structure databases, as well as the more

204  sophisticated protein structure prediction tool Alphafold2, we built a holistic approach to probe
205  these questions.

206 To begin we mapped 4,566 non-terminal sExon nucleic acid sequences onto human

207  protein amino acid sequences extracted from the MANE database*® (see Methods for details).
208  MANE isoforms represent the most commonly used protein isoforms across many public

209 datasets, which are often the most clinically relevant with respect to variant interpretation,

210  MANE was chosen as a reference because it includes maps of nucleic acid to amino acid

211  sequences for each gene, thus eliminating potential ambiguity in choosing the correct open

212 reading frame. Across sExons, 2,824 (61.85%) were represented in their respective gene’s

213  MANE isoform. Notably, we found that exons with higher median PSI in GTEx were more


https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.518915; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

214 likely to be included in MANE (Supplemental Figure 3), likely because low PSI exons are

215 typically not a part of the most common gene isoform. We also extracted amino acid sequences
216  from 2,708 constitutive exons and 2,071 variable exons from genes with no significant yQTL.
217 Next, these pools of exons were divided and compared accordingly, to evaluate their
218  associations with various protein features: constitutive and variable exons, variable exons with
219  high (>0.5) and low (<0.5) median PSI, sExons and exons without a significant wQTL, and

220  sExons that colocalize and do not colocalize with a GWAS trait. Across each pair of exon sets,
221  amino acid sequences were annotated with multiple features describing the structuredness,

222  solubility, length, and function of the corresponding protein domain (Table 1). The means

223  between features were then compared using the non-parametric Mann-Whitney U-test (Figure 3).
224 We first focused on pLDDT and RSA scores that in combination could serve as a proxy
225  for an exon being at the interior or exterior of the protein 3 dimensional structure?>3¢, Overall,
226  we observed that high PSI exons in general had higher per exon pLDDT scores (p<2X10-%) and
227  lower per exon RSA (p<2Xx10-16). This indicates, unsurprisingly, that high PSI exons are

228  enriched in well-structured core regions of their protein’s 3D structure. Interestingly, we

229  observed that asparagines, which are indicative of protein phosphorylation sites and functional
230 relevance, were depleted in high PSI exons compared to low PSI exons (p=0.023). We also

231  observed depletion of asparagines in SExons when compared to variably spliced exons not

232  regulated by any yQTL. sExons are also depleted for cysteines (p=0.0023) which could indicate
233  that alternatively spliced exons are less important for the overall protein 3D structure.

234 Finally we focused on sExon targets of wQTLs that colocalize with one of the 87 GWAS
235  traits discussed in the previous section, to assess if exons whose genetically controlled splicing is

236  involved in a trait share any discernible characteristics. The analysis revealed that these sExons
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overall appear to be less structured (p=6.1e-3 and p=0.034 for RSA and pLDDT scores
respectively). Additionally, colocalizing exons were enriched for asparagines and depleted for
cysteines (p=0.023 and p=0.071 respectively), which could indicate that GWAS-relevant sExons
are more likely to carry phosphorylation chemical modifications (since asparagines are
frequently the residues to be phosphorylated) than those not without GWAS indication.

For further functional annotation of sExons, we analyzed the binary features including
involvement in the transmembrane domain, exon symmetry, and numerous domain and motif
annotations from the UniProt?%. While no significant differences were observed in most
comparisons, high PSI exons were depleted for being involved in transmembrane domains and
enriched in carrying overall domain annotation signal (p<2X10-16 for both). This is consistent
with prior observations of higher per exon pLDDT score and lower RSA for those exons, per the
previous results. The difficulty of detecting signals may be at least partially due to the
incompleteness of functional domain databases, with only 2,067 out of 4,835 (42.8%) of tested
exons having any functional domain annotation. While some proteins are well-studied and

annotated, the majority are still uncurated.
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253  Table 1: Description of features used to describe protein domains of interest

Feature Description and Significance

The relative solvent accessible surface area (rASA) of a residue is a degree of

residue solvent exposure. RSA < 25 is considered to be buried in the protein,

otherwise, it is considered to be exposed. For each sExon, we report the first

quantile of RSA across all residues, which describes the overall accessible
RSA area of the exon.

Predicted local distance test. This is a per-residue metric output by

AlphaFold2, which represents the model's confidence in its prediction of

protein structure at that residue. A lower pLDDT score indicates an

intrinsically unstructured protein domain, and vice versa. For each sExon, we

report the third quartile of pLDDT scores across all residues, which describes
pLDDT the overall structuredness of this domain.

Percent of asparagines in the aligned sExon sequence. This metric is used
% Asparagine because asparagines are important sites for protein phosphorylation. It could

Residues indicate functional importance of the domain of interest.

Percent of cysteines in the aligned sExon sequence. This metric is used
% Cysteine because cysteines shape the overall 3D structure by forming disulfide
Residues bridges.

Length of amino acid sequence aligned to the MANE Ensembl database
sequences. Alternative splicing of longer exons could potentially have a
Length higher impact on protein function.

Percent of sExons that carry any functional domain signal. Those signals

include a wide range of amino acid sequence motifs and chemical
Presence of modifications as well as cellular localisation signals extracted from the
Functional UniProt database. This metric could indicate the overall importance of
Domain sExons for proteins' function.

254


https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/

255

256
257
258
259
260
261
262

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.518915; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Exon length (aa)

120{ P=4.2e-08  p<2e-16 p =0.37 p =0.0061
80 1
40 1
100 p=3.4e-10 p<2e-1 p =0.86 p,=0.034
75
50 -
251
0
0.39 p,=3e-04 p =0.023 p =0.027 p =0.0
0.2 1
ool b A L L
0.0 = : - T
0.3 p=0.02 p=0.12 p =0.0023 p =0.071
0.2
0.1
0.0 i= - - - . T T T
100 p =0.77 p =0.00011 p=0.00047 p=0.79
751
50 1
251
T F T F T F T F
25922864 47992875 45663007 325 4243
PSl is variable  Average Variable exon wQTL
across GTEx PSI > 50% has yQTL  colocalizes
individuals with GWAS

Figure 3: Comparisons of encoded protein domain features among variably and constitutively

spliced exons.

Five continuous features (see Table 1) of exons are tested across four comparisons. For each comparison,

the violin representing the group with the higher median value for each feature is shaded. P-values are

calculated using Mann-Whitney U-tests. Comparisons that did not reach statistical significance are plotted

in grey.
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263  Genetically controlled protein structural changes in GWAS trait

264 colocalization

265 Next, we sought to evaluate if specific changes in protein structure were attributed to

266  yQTLs with strong GWAS trait colocalization signals. To do so, we predicted the structure of
267 146 proteins for both spliced-in and spliced-out sExon isoforms with ColabFold®’, quantifying
268  which regions of the protein are affected by alternate exon usage and to what degree. The chosen
269  exons have a yQTL that colocalizes with a GWAS trait, are non-terminal, and both isoforms’
270  length is less than ~1200 amino acids, due to the current limitations of ColabFold. Overall, we
271  observed a wide range of structural rearrangements, from minor deletions of unstructured regions
272  to the exclusion of whole structured domains. To summarize observed perturbations across

273  genes, Euclidean distances were calculated between predicted alignment error (PAE)?2 score
274 matrices for each pair of structures. Cases where splicing causes major rearrangements on the
275  structural level are expected to have a higher Euclidean distance between the two isoforms. In
276  general, we found that a wide range of structural changes was driven by alternative splicing

277  associated with GWAS traits (Figure 4). We find that this Euclidean distance between pairs of
278  isoforms correlates weakly with the gene’s LOEUF score (p=0.205, p=0.013, Supplemental

279  Figure 5), indicating that more constrained genes with respect to loss of function variant

280 intolerance are also less tolerant to large structural changes. As a measure of goodness of

281  structural alignment, root mean square distance (RMSD) was calculated between spliced-in and
282  outisoforms as well (Supplemental Figure 4A). This indicates the quality of alignment by

283  showing the mean distance (in A) between corresponding residues in structurally aligned

284  proteins. RMSD could serve as a proxy for topological rearrangement on the 3D level. In

285  contrast, the Euclidean distance between PAE matrices indicates how well domains between
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286  structures are preserved, and in general correlated poorly with the Euclidean distance score
287  (Supplemental Figure 4B). All 146 predicted structures are available to download as

288  supplementary data.

289
CCNL1 | Body Mass Index
— , SULT1A1 | Pooled Education Years
% i 28 PNPLA2 | ADHD
20 -
= YJEFN3 | Schizophrenia VKORCT1 | Self-reported
S DS hypertension
(o] )
8 <G GGTLC2| High light
s & scatter reticulocyte count
10 1 i \
O o
0 5 10 15
290 Euclidean Distance between isoform PAE Matrices

291  Figure 4: Distribution of Euclidean distances between predicted alignment error (PAE) matrices
292  among GWAS colocalized wQTLs . A higher Euclidean distance indicates more structural difference
293  between the spliced in and spliced out isoform. Seven notable examples are showcased, with the spliced
294  in and spliced out isoforms overlaid. The tan structure is the spliced in, and green structure is the spliced-
295  outisoform. The red region of the protein represents the sExon. Each protein is labeled by its gene and
296  the GWAS trait it is associated with.

297

298  Finally, we focus on three notable examples of predicted protein structure changes associated

299  with GWAS hits, which highlight the utility of our approach.
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300 We first investigated structural perturbations of SP140 caused by the splicing of exon 13
301  (Figure 5A). It is associated to chr2:230245867:C:T (rs28445040), which is also colocalized with
302 aCrohn’s disease GWAS. This result was first reported in Zhao et. al®8, and we replicated their
303  findings using entirely different datasets. (In Zhao et. al, exon 7 is the significant exon defined
304 by Ensembl v65. This maps to exon 13 in gencode v26, which we use here.) The sExon is

305 aligned to amino acids 223 to 247 of MANE transcript of SP140. No structural annotation is

306 available for this part of the protein, as currently available experimental structures only cover
307  positions 687-862 (pdb accession: 6g8r). Structural changes predicted by AlphaFold2 between 2
308 isoforms are minor and are in an intrinsically disordered region of the protein that is supported
309 by arelatively small euclidean distance (1.73) although RMSD is quite high (16.9). Our

310  predictive approach corroborates exon 13 lying within an unstructured region, and that its

311  alternative splicing does not affect the protein core. No known post-translational modifications
312  or protein-protein interaction annotations in structural databases overlap with the peptide.

313 Next, we present another case of a wQTL with a significant GWAS colocalization event:
314  chrl1:584591:A:G (rs35865896) associated with splicing of exon 4 in IRF7, a key transcription
315  factor of the immune system. The QTL is significant in 12 out of the 18 tested tissues. This

316  association implies that higher usage of an isoform that skips exon 4 is associated with decreased
317  risk of lupus erythematosus®® (Figure 5B). The exon aligns to positions 158-226 in the canonical
318 transcript from MANE, and we observed modest structural changes (Euclidean distance 2.46)
319  between the canonical and spliced-out predicted structures (RMSD=17.4). After aligning the two
320  structures, we found that the whole C-terminal domain of IRF7 is mirrored. However, the overall
321  organization of the domain is preserved. Notably, cleavage sites of 2 viral proteases 3C

322  (positions 167-168 and 189-190 for EV68 and EV71 respectively) are present in the sExon“C. In
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323  addition, 2 residues of the alternatively spliced exon are involved in DNA binding (amino acids
324 187 and 189)*L. It could potentially be of interest to investigate the effect of splicing on the DNA
325  binding abilities of IRF7 with respect to lupus risk and progression, as suggested by this finding.
326 Finally, we focus on alternative splicing at exon 16 of HMGCR, which is part of a

327  cholesterol metabolism pathway (Fig 5C). We cataloged chr5:75355259:A:G (rs3846662) as the
328  top sVariant, which strongly colocalizes with a GWAS for high cholesterol levels. We observed
329  asubstantial Euclidean distance between the 2 predicted structures (3.14 compared to the median
330 of 2.64 across all other comparisons). While, according to the PAE matrix, the spliced-in isoform
331 contains 2 major clusters (domains), the middle part of the C-terminal domain in the spliced-out
332 isoform is predicted to break into 2 domains. According to the prediction followed by structural
333 alignment (RMSD = 6.13), splicing of exon 16 that corresponds to amino acids 522-574 in the
334  MANE Ensembl protein database isoform causes mirroring of a part of the protein between

335 amino acids 368 and 511, and separation to a new structural unit in the spliced-out isoform.

336  Follow-up sequence annotation revealed that the exon consists of a turn (522-525), 2 beta strands
337  (528-546 and 549-556 respectively) and a helix (562-575) inferred from the PDB structural

338 database (PDB accession: 2r4f). In addition, this exon is annotated with one of three Coenzyme
339 A binding domains found in HMGCR (565-571)%. Interestingly, HMGCR is responsible for a
340 rate-limiting step in the synthesis of cholesterol, thus regulating cellular cholesterol homeostasis.
341  Taking this into account, we hypothesize that skipping exon 16 in HMGCR interferes with the
342  Coenzyme A binding domain, thus inhibiting this enzyme’s function and reducing blood

343  cholesterol levels. Even though the wQTL effect size is quite small in this example

344  (APSI=0.014), the GWAS risk allele and the exon-including yQTL allele are the same, further

345  suggesting a functional relationship.
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In general, we present a powerful approach for characterizing splicing-related protein
changes. While identifying distinct protein isoforms originating from mRNA splicing has been
challenging historically*3, computational prediction provides a path for identifying structures of
minor isoforms whose usage may be important for trait risk. Importantly, our technique relates
dosages of isoforms that include or skip exons to common genetic variation. Predicting these
structural changes as related to genetics adds another layer of interpretation when deciphering
the mechanisms that link genetic variants to GWAS traits, and in the future could assist in

identifying drug targets for genetic diseases.
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356  Figure 5: Predicted structural changes associated with GWAS-colocalized wQTLs

357  Detailed descriptions of splicing of A) SP140 exon 13, colocalized with Crohn’s disease risk, B) IRF7
358  exon 4, colocalized with Lupus Erythematosus risk and C) HMGCR exon 16, colocalized with high

359 cholesterol levels. The whole gene is displayed at the top of each row, with the relevant exon labelled in
360  red or with a red arrow. In each row, from left to right, we display: Two overlapping locuszoom plots for
361  the GWAS (top) and the yQTL (bottom) in the same region. Variants are colored by their LD with

362  respect to the top variant for each association, measured in r?. To the lower middle, the plot shows the
363  yQTL in each respective GTEXx tissue, with the genotype corresponding to reference and alternate alleles.

364  The GWAS risk allele is marked with a red asterisk. Next, we display two matrices of PAE scores,
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365  corresponding to the AlphaFold2 predicted structures of spliced-in and spliced-out exons. This is a simple
366  way to visualize splicing a highly structured protein domain. The sExon is marked in grey in the spliced-
367  out isoform matrix. Third, we plot ribbon diagrams with overlapping structures of the two isoforms, as
368  predicted by AlphaFold2. The tan structure is the spliced-in, and the green structure is the spliced-out

369 isoform. The variably spliced exon is coloured in red.

370 Discussion

371 In conclusion, we present a perspective to splice quantitative trait loci mapping that
372  prioritizes downstream interpretability of the splicing signal itself. In particular, we focus on the
373  properties of yQTL-affected exons, and the impact of genetically controlled slicing on protein
374  structure. These aspects of splicing are generally understudied, as most research to date has
375  focused on characterizing the properties of splicing variants themselves, as opposed to the

376  molecular consequences of alternative splicing®!>26, Through our approach of focusing on
377  exon skipping events, we found that symmetric exons are more likely to be affected by wQTLs,
378 and that derived alleles are more likely to trigger exon exclusion. We found many instances of
379  yQTLs that colocalized with GWAS traits, and that these trait-relevant splicing events were
380  more likely to occur in the core structured regions of proteins. By predicting protein structures
381  with AlphaFold, we demonstrate the potential mechanisms of different changes in splicing

382  leading to trait associations.

383 When calculating PSI using counts of reads that span exon-exon junctions, we depend
384  solely on exon annotations, rather than whole isoform annotations. This is advantageous in our
385 case, as isoform annotations are notoriously incomplete*®°, and methods to estimate ratios of
386 isoforms can be unreliable®>2, However, we recognize that exon skipping is far from the full

387  picture of splicing variation, and hypothetical structures with and without a single exon may not
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388  be translated in reality. Importantly, it should be noted that our method is not meant to predict
389 ratios of real transcripts or protein isoforms, but rather to prioritize domains that may have

390 relevance for fitness and trait associations. With newer advanced methods like long read

391  sequencing, it is becoming possible to quantify whole transcripts which capture complex splicing
392  events®°, In the future, these technologies could provide a higher resolution picture of isoform
393  proportions associated with trait and disease risk. Additionally, while in this work we focus on
394  splicing changes associated with common variants, resolving structures of rare splice isoforms is
395 afruitful approach for improving genetic diagnosis, discovering rare disease etiology, and

396 identifying potential therapeutic targets®6-5°,

397 With the revolution in protein-structure prediction launched by AlphaFold??, it is now
398  possible to predict isoform structures associated with conditions of interest, thus opening up

399  enormous opportunities to track molecular perturbations without performing laborious structural
400 biology experiments. However, this method comes with some limitations. As such, co-

401 translational and post-translational modifications are not predicted by AlphaFold, while these
402  potentially drive a large fraction of cell-signaling and trait associations®®¢*, Additionally,

403  AlphaFold remains limited to single protein structures with a length limitation of 2700 residues
404  (1000-1200 residues in the case of ColabFold used in this study), although recent model

405  upgrades for predicting protein complexes were released by DeepMind®2. Another area of

406 interest in interpreting AlphaFold predictions is determination of intrinsically disordered or

407  unstructured protein regions, as low pLDDT regions are thought to have a high likelihood of
408  being unstructured in isolation. It has been argued that AlphaFold may be of use as a tool for
409 identifying such regions, performing on par with specifically created tools. However,

410 experimental validation of intrinsically disordered regions is highly recommended using SAXS,
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411 NMR, X-Ray crystallography, cryo-EM, etc. Additionally, AlphaFold has not been trained or
412  validated for predicting the structural impact of single mutations, and generally performs poorly
413  for this purpose®. Here, we focus on the more tractable problem of comparing isoform structures
414  where large portions of the protein differ, rather than single mutations, where the model’s output
415 s likely more biologically relevant. Although structures obtained from AlphaFold2 generally
416  correlate well with experimental structures, regions with low confidence scores should be treated
417  cautiously as they might not represent truly disordered regions®*. Thus, we reiterate that

418  predicted structures do not necessarily correspond to actual biological structures, but rather

419  prioritize protein domains that may be affected by genetically regulated splicing.

420 While determining the structure of a protein gives valuable information about its function
421  and role in specific conditions, the structure is not the only relevant factor. Post-translational

422  modifications and cellular localization play a crucial role in protein activation and

423  deactivation®%, To address how those properties are changed in alternatively spliced transcripts,
424 we utilized the UniProtKB database which is a well-curated source of various features’

425  annotation. Although it is a trustworthy and fast-expanding resource, functional annotations for
426  many proteins are still incomplete. Mostly those are proteins not involved in disorders, common
427  pathways, and other well-studied processes. This limits UniProtKB’s utility for discovering new
428  associations between structural changes and molecular/functional perturbations. Additionally,
429  disordered regions are in general poorly annotated as they are not well captured by standard

430  protein structure determination methods®’. To fill the gap of experimental annotation, multiple
431  prediction tools have been developed*. While it is beneficial to have at least some annotation,

432  one should treat it with caution.
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433 Despite limitations, yQTL analysis provides a different perspective on genetically

434 controlled pre-mRNA splicing. Our findings indicate that the effect size and direction of exon
435  skipping events affect variant allele frequencies, which implies an association with overall

436  fitness. Paired with the computational prediction of protein structures, we envision this technique
437  being used as a starting point for contextualizing genetic associations to disease where

438  alternative splicing is suspected to be involved. In future studies of splicing QTLs, we suggest

439 that the impact on protein structure be considered further.

a20  Methods

441 PSI Calling from GTEx V8

442  Exon level percent spliced in (PSI) scores were calculated from GTEx V8 RNA-seq BAM files
443  (See Consortium 202026 Supplemental Information for upstream data processing steps). We
444 limited our analysis to 18 tissues, which were chosen for their coverage in GTEx and their

445  coverage of the most coding genes possible (Table S1). Exon PSI for protein-coding genes was
446  quantified using the Integrative Pipeline for Splicing Analysis (IPSA),*4> which was modified

447  to run on Google Cloud through Terra. (https://github.com/quigolab/ipsa-nf) The ‘-unstranded’

448  flag was used during the sjcount process. Exons were defined by the modified version of
449  Gencode annotation v26 used in GTEx V8, which collapses genes with multiple isoforms to a
450  single isoform per gene.

451  (https://storage.googleapis.com/gtex analysis v8/reference/gencode.v26.GRCh38.genes.qgtf).

452  For downstream QTL analysis, PSI data for each tissue was prepared by 1) removing exons with

453  data available in less than 50% of donors and 2) removing exons with fewer than 10 unique
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454 values across all available donors, to remove constitutive exons with no variability across

455 individuals (Table S1). Overall, we kept between 9.41% and 17.16% of exons with PSI data
456  available. In subsequent analyses, this set of exons is referred to as “sufficiently variable.” Post-
457  filtering exon PSI calls were normalized for QTL mapping by randomly breaking any ties

458  between two individuals with the same PSI at an exon, then applying inverse-normal

459  transformation across all individuals. Filtered and normalized PSI calls were saved in BED

460  format with start/end position corresponding to each gene’s transcription start site (TSS). The
461  gene containing each exon was included in the BED files for use with QTLtools’ group

462  permutation mode.

463 Additionally, constitutive exons were separated from variable exons for other

464  downstream analyses. These were defined by 1) selecting all exons with a PSI of 1 in in all but at
465  most 10 donors across the 18 GTEX tissues 2) Merging this list across all 18 tissues, recording
466  the number of times an exon is constitutive across tissues 3) Keeping exons that were

467  constitutive across at least 9 tissues 3) Further filtering the list by removing terminal exons, and
468 limiting to one constitutive exon per gene, based on a. the number of tissues an exon was

469  constitutive in and b. a random selection in the few cases where there were ties.

470
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Table S1: Total number of exons with PSI covered across tissues

N Exons |N Exons

per tissue |per tissue Genes

pre- post- Percent |covered
Tissue filtering  |filtering usable |per tissue
Adipose_Subcutaneous 260,800 (29,180 11.19% (8,585
Artery Tibial 253,109 (27,453 10.85% (8,127
Brain_Cerebellum 239,928 (36,095 15.04% {8,605
Brain_Cortex 240,439 (26,121 10.86% |7,857
Brain_Nucleus_accumbens_basal_gan
glia 247,074 26,372 10.67% |7,998
Cells_Cultured_fibroblasts 230,752 (28,486 12.34% (8,479
Cells_EBV.transformed_lymphocytes |220,547 |37,837 17.16% |9,291
Colon_Transverse 231,647 |29,066 12.55% (8,630
Esophagus_Mucosa 245,627 |26,721 10.88% |7,984
Liver 224,469 |21,605 9.62% |6,283
Lung 265,555 |34,585 13.02% (9,387
Muscle_Skeletal 240,921 (22,664 9.41% |6,788
Nerve_Tibial 261,375 30,771 11.77% |8,783
Pituitary 259,310 [32,795 12.65% |8,774
Skin_Sun_Exposed _Lower leg 259,438 (29,570 11.40% {8,588
Spleen 241,122 30,379 12.60% |8,277
Thyroid 266,364 |30,035 11.28% |8,586
Whole_Blood 236,866 |23,135 9.77% |6,039

Primary wQTL mapping and collapsing across tissues

For each of the 18 GTEXx V8 tissue groups, cis-QTL mapping was run on every exon that passed
filtering, considering all genetic variants with an allele frequency greater than 5% in GTEX
within 1Mb of the gene’s TSS. We used QTLtools*® run in grouped permutation mode, with

groups defined by gene. This strategy controls for splicing correlation between exons that are


https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.518915; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

478  part of the same gene. 15 PEER factors, 5 genetic principal components (PCs), as well as sex,
479  PCR bias, and sequencing platform were also included as covariates in the QTL model, as

480  recommended in the GTEx V8 STAR methods.?®

481 For every exon, we selected the most significant variant, and for every gene the most
482  significant exon. A gene was determined to be a wQTL if the top variant’s beta adjusted p-value
483  was less than 0.05. Although QTLs were directly mapped using normalized PSI measurements,
484  we defined effect sizes by referring back to the non-normalized PSI calls and calculating the
485  change in PSI (APSI) as difference in the REF/REF and ALT/ALT genotype medians.

486  We compiled the wQTL results across tissues to achieve a set of cross-tissue top yQTLs. When a
487  gene was significant across multiple tissues, we used the tissue where the effect size (APSI

488  score) of the yQTL was the highest. This process ensured that a gene was only included once in
489  our final set of wQTLs, and was labeled by one variant that affects splicing (sVariant).

490 Underlying LD patterns may obscure the true variant that causes splicing differences, but for
491  simplicity in this project, we choose a single sVariant per exon.

492 For each top yQTL, we labeled the alleles associated with high and low target exon

493 inclusion based on the regression slope from QTL calling. This classification is more

494  biologically relevant than reference and alternative alleles, which are only dependent on the

495  reference genome. Additionally, we labeled the ancestral and derived alleles of each top yQTL
496  based on data from the 1000 Genomes Project Phase 3.4’

497 To compare sExons to variable exons without a yQTL, we considered genes where the
498  most significant variant-exon pair across all tissues in which the gene was tested had an adjusted

499  p-value >0.2.
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500 Colocalization Analyses

501 We performed colocalization analysis to evaluate the extent that wQTLs share potential
502  causal variants with GWAS traits. First, we ran a nominal QTLtools pass in cis using PSI calls
503  from exons with a significant wQTL in at least 1 of 18 GTEX tissues as in the previous analysis.
504  The definition of a common variant and range of 1Mb up and downstream of the gene’s TSS
505  were the same. With this set of common variant-splicing associations, we performed

506  Approximate Bayes Factor colocalization analysis using the coloc R package®, running nominal
507  yQTL calls from 18 GTEXx tissues against 87 sets of GWAS summary statistics (Table 2) for a
508 total of 1,566 possible colocalization events. To define a colocalized trait, we calculated

509 PP.power and PP.coloc for each potential colocalization event, which we define as (PP.H3 +
510 PP.H4) and (PP.H4 / (PP.H3 + PP.H4)) respectively. We considered a trait to be colocalized if
511 the Euclidean distance between (1,1) and (PP.power, PP.coloc) is less than .25 (See Figure 2).
512  We chose this looser definition of colocalization to allow for more data in downstream analyses,

513  and where the false positive rate is less critical.

514  Fine mapping with Susie (overlap with eQTLS)

515 To find causal variant credible sets for yQTLs, we applied the fine mapping procedure
516  used in the eQTL catalog,*® which applies Susie to find independent sets of variants with 95%

517  posterior inclusion probability of containing the true causal variant for a QTL.

518  (https://github.com/eQTL-Catalogue/gtimap) We ran fine mapping on all exons independently,
519  so we employed an aggregation procedure to achieve one or multiple sVariant credible sets per

520 gene. For all exons in a gene, we considered all possible unions of all credible sets. Collapsed


https://github.com/eQTL-Catalogue/qtlmap
https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.518915; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

521  credible sets contained disjoint sets of variants. We then used these collapsed credible sets to

522  compare to eQTL credible sets, also from the eQTL catalog.

523  Extraction of Amino Acid Sequences and Sequence Properties

524 To analyze how exons affected by yQTLs map to protein sequence and structure, we
525  leveraged AlphaFold predictions and other resources. First, SExon nucleic acid sequences were
526  extracted from the hg38 assembly of the human genome using

527  gencode.v26.GRCh38.GTExV8.genes annotations. blastx: 2.12.0+ was used to perform mapping
528  of extracted sExons onto transcript sequences present in the MANE.GRCh38.v1.0 database. For
529  each sExon best hits were selected based on e-value. Hits with e-value greater than 0.001 were
530 discarded. sExons with the best hit occurring in another protein were also excluded from further
531 analysis.

532 Length outliers were removed before conducting structural analysis. pLDDT scores were
533  obtained from pdb files of the human proteome from the AlphaFold database (Reference

534  proteome UP000005640). As the pLDDT score is a per residue measure, summary statistics

535 (min, Q1, median, Q3, max) were calculated for each exon. (https://freesasa.github.io/)

536  FreeSASA 2.0.3 (--format=rsa) tool was used to calculate per residue relative solvent

537  accessibility (RSA). The same summary statistics were applied as for the pLDDT score. Domain
538 annotation (evidence of overlap between sExon and any annotated domain/motif/chemical

539  modification) was obtained from the UniProt database. The following signals were collected:
540 DOMAIN, SIGNAL, TOPOLOGY, TRANSMEMBRANE, MOTIF, TOPO_DOM, ACT_SITE,
541 MOD_RES, REGION, REPEAT, TRANSMEM, BINDING, NP_BIND, COILED, DISULFID,

542 CARBOHYD, DNA_BIND, CROSSLNK, ZN_FING, METAL, SITE, INTRAMEM, LIPID for
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the further analysis. In addition, exons were annotated with their respective gene’s LOEUF
scores, which were extracted from GNOMAD v2.1.1.

To analyze distinct structural characteristics of exons, we calculated the above features
across all exons with sufficient coverage in GTEX, then compared features by: (1) variable vs.
constitutive exons, as defined above, (2) Highly included vs. lowly included exons, defined as
sufficiently variable exons with a median PSI across all available individuals and tissues less
than and greater than 50% respectively, (3) sSExons vs. non-sExons, defined as exons with or
without a significant wQTL variant in at least one of the 18 analyzed GTEX tissues in the
previous section, and (4) colocalizing sExons vs. non-colocalizing sExons, with the former
having a significant SQTL-GWAS colocalization event signal and its absence for the former
group, defined using the same cutoff thresholds as in the previous colocalization analysis. To
perform statistical analysis, Mann-Whitney U-tests were performed for numerical features (RSA
and pLDDT summary statistics, asparagine and cysteine percent, exon length and symmetry
distributions). Fisher’s exact tests were performed to test differences in categorical features

(presence of the domains, enrichment in transmembrane domains, etc).

Prediction of Protein Structure Changes with AlphaFold2

ColabFold (https://github.com/sokrypton/ColabFold) (Google Colab version of
AlphaFold 2) was used to predict protein structures for transcripts with and without sExons. To
build MSA, the MMseqs2 searching tool was used on the UniRef + Environmental databases.
Both paired and unpaired sequences were utilized for MSA construction. No template mode was
used in order not to introduce bias of one structure by the other, since in most cases only either

spliced-in or spliced-out structure is present in PDB database. Three recycles were performed to
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565  obtain better structure predictions. Two metrics were used to track potential effect of splicing
566  event on protein structures: RMSD between aligned structures and Euclidian distance between
567  positional alignment error (PAE) score matrices.

568 Prior to calculating RMSD, spliced-in and spliced-out isoforms were structurally aligned
569  using PyMol 2.5.0. Then RMSD was calculated between aligned parts of structures, eliminating
570  misaligned parts including alternatively spliced exons. PAE scores were analyzed to determine
571  perturbations in domain arrangement between spliced-in and spliced-out versions of the

572  transcript. Euclidean distance between PAE matrices of splice-in and spliced-out isoforms was
573  calculated to track the effect of splicing onto domain rearrangements caused by splicing events.
574  In addition to PAE matrix analysis, structures were visualized using PyMol 2.5.0 and

575  superimposed to detect major topological differences between them.

576
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577 Data Availability

578 Raw and processed data files are available to download at https://zenodo.org/record/7275062.
579  Accompanying code is available to review and download at

580 https://github.com/jeinson/sqtl manuscript

581

ss2  Acknowledgements

583  We would like to thank the current and former members of the Lappalainen Lab for helpful

584  discussions and code sharing. This work was supported by NIH grants RO1IGM122924,

585 R01MH106842, and grant WASPDDLS21:080 by the Data Driven Life Science program by the
586  Knut and Alice Wallenberg Foundation. Part of the computations were enabled by resources

587  provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX partially
588  funded by the Swedish Research Council through grant agreement no. 2018-05973. T.L. is a paid
589  advisor to GSK, Pfizer, Goldfinch Bio and Variant Bio, and has equity in Variant Bio.

590


https://zenodo.org/record/7275062
https://github.com/jeinson/sqtl_manuscript
https://doi.org/10.1101/2022.12.05.518915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.518915; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

so1  Supplemental Figures

2200
A B 400 Cis
g
. = 300
. . £ 1.0 tag
(=) >
-Thyruid c =
. 200 E non sExons
1800 ' g 100 T s sExons
. >
w
g ICe\IsﬁEEV.transicrmedilympnocytes ] A 0
o] Brain Carobell [ in_Sun_Eposod_Lowor_og Variable exons sExons 0.0
o] , A Brein_Cergbeltm | with no sQTL 000 025 050 075 1.00
& 1400 . Exon's relative position in transcript
g b E 05
I d 05 -
2 .
0.4 5 sVariant
. © =) Annotation
@03 03
1000 E 500 W eonic
@ (0.2 £0. i nk
[Eraianuc\eusﬁaccumhensﬁhasa\ jang\ial (=] ‘5 . !nterg.e ¢
5 (Whoe Biood}— 01 &0 M intronic
o =
200 400 600 00 01 02 03 04 Decreases.PS| Increases.PS|
Total Individuals Delta PSI Cutoff sVariant derived allele effect
Eos
c
3
£ 03 Splicing quantification method
(=2}
® 02 [ Leatcutter
S 01
@
o
0.0
& f §°’ @'3 .5'? § & & & éP
=~ ~ & ~ & s & A-“& <
&r,e w}ﬁ/ q \5_)9 ‘Qa@
§ < &’ &
® ¥ &
§ ¢
N d
o
=
592 Tissue

593  Supplemental Figure 1: Supplemental Characterizations of wQTLs

594  A) Relationship between the number of individuals tested and the number of significant wQTLs per

595 tissue. We catalog more significant genes in tissues where more donors are available, as is typical in QTL
596  studies. B) Distribution of lengths between variable exons with and without a significant sVariant

597  controlling splicing levels. While statistically significant, the difference is not large. C) Density plot of
598  variable exons’ relative position in their respective transcripts. Across both groups, variable exons tend to
599  occur later in the transcript. D) Increase in difference between derived allele frequency distributions when
600 increasing the yQTL effect size cutoff. The Kolmogorov-Smirnov D score, which quantifies the degree of
601  difference between two distributions, increases as we consider stronger yQTLs. E) Annotations of top
602  sVariants across all yQTL genes, split by derived allele effect direction on PSI. F) Percentages of tested
603  genes with a significant yQTL across tissues, compared to genes with an sQTL with splicing mapped
604  using Leafcutter.
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Supplemental Figure 2: Tissue specificity of GWAS-yQTL colocalization.
Counts of yQTL-GWAS colocalization events across the 18 tested tissues. Traits are colored by their

broad category, and rows are organized by hierarchical clustering.
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Supplemental Figure 3: Additional Properties of exons found in MANE isoforms.

A) Distribution of median PSI scores between exons included or excluded in their respective gene’s
MANE isoform. B) Genes with larger structural changes between trait-associated isoforms are also less
likely to be haploinsufficient. This suggests genes which tolerate regulatory variants with large splicing

effect sizes are also more tolerant to loss-of-function coding variants.
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620  Supplemental Figure 4: RMSD between predicted protein structures
621  A) Distribution of Root Mean Squared Distance (RMSD) between spliced in and spliced out yQTL
622  isoforms that colocalize with a GWAS trait. B) Correlation between RMSD and the Euclidean Distance

623  between isoform PAE matrices. These two quantities are not significantly correlated.
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