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ABSTRACT

A large number of machine learning-based Major Histocompatibility Complex (MHC) binding affinity (BA)

prediction tools have been developed and are widely used for both investigational and therapeutic applications,

so it is important to explore differences in tool outputs. We examined predictions of four popular tools

(netMHCpan, HLAthena, MHCflurry, and MHCnuggets) across a range of possible peptide sources (human,

viral, and randomly generated) and MHC class I alleles. We uncovered inconsistencies in predictions of BA,

allele promiscuity and the relationship between physical properties of peptides by source and BA predictions,

as well as quality of training data. Our work raises fundamental questions about the fidelity of peptide-MHC

binding prediction tools and their real-world implications.

INTRODUCTION

Human Leukocyte Antigen (HLA) alleles are critical components of the immune system’s ability to recognize

and eliminate tumors and infections (1). Infectious diseases in particular are thought to be a major source of

selective pressure on the Major Histocompatibility Complex (MHC) region which encodes HLA alleles and is

one of the most diverse regions of the human genome (2–8). There is large diversity in the antigenic peptide

sequences which individual HLA alleles can recognize and ultimately present to the adaptive immune system

(9), with a positive correlation between increased sequence diversity recognition and fitness (10).

Tools that can predict the extent to which a given HLA allele may have an affinity for a given peptide have

critical implications for our ability to understand and translationally leverage antigen-specific immune response

pathways. For instance, MHC binding affinity predictors have been – or otherwise have the potential to be –

used to evaluate an individual or population’s susceptibility to viral infection (11), to develop an understanding

of specific autoimmune conditions (12), to improve transplantation technologies (13), or even to assist in the

development of personalized cancer vaccines (14–18). Numerous peptide-MHC binding prediction tools exist,

and are key components in broader antigen prediction methodologies (19–22).

The most widely adopted MHC binding prediction tools rely on neural network models trained on binding

affinity (BA) and/or eluted ligand (EL) data. The most commonly cited tool, netMHCpan (23,24), uses both BA

and EL data in a neural network architecture with a single hidden layer to predict allele-specific binding

affinities. MHCflurry (25) attempts to improve upon netMHCpan by increasing the number of hidden layers and

augmenting BA and EL training data with unobserved decoys. MHCnuggets (26) again trains on BA and EL

data but uses a different architecture, with a long short-term memory layer and a fully connected layer to

improve its predictions further across different peptide lengths. Lastly, HLAthena (27), while most similar in

architecture to netMHCpan, relies on independently generated EL data from mono-allelic cell lines for training.
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We sought to better characterize the outputs of these tools over a large and diverse set of peptides, across

different tools and HLA alleles, as well as quantify the stability of these predictions. We also sought to measure

allelic binding preferences and whether they may enrich for foreign v. self peptides. In this study, we performed

a comprehensive in silico analysis of peptides from multiple viral proteomes, the human proteome, and

randomly generated peptides across HLA class I alleles.

RESULTS

Peptide predictions are inconsistent across tools

We first assessed the consistency of peptide-specific MHC I binding affinity predictions across four tools

(MHCnuggets, MHCflurry, HLAthena, netMHCpan) and 52 different HLA alleles. We found substantial

disagreement in peptide-specific predictions between each tool, independent of allele (Figure 1A), with median

intraclass correlation coefficient (ICC) of 0.207 and only 0.48% of peptides having ICC > 0.75. On a per-allele

basis, we found a wide range in consistency of predictions across tools, with a mean intraclass correlation as

low as 0.12 for A02:07 and as high as 0.64 for A23:01 (Figure 1B). Among all of the peptides predicted by at

least one tool to bind to at least one allele, only 7.9% were consistently predicted across all tools to bind to the

same allele (Figure 1C).
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C
Figure 1. Inconsistency of peptide predictions across tools. A) Histogram of intraclass correlation coefficients

(ICC) calculated for a set of 1 million random peptides across four tools (MHCnuggets, MHCflurry, HLAthena,

netMHCpan), with ICC calculated as the overall correlation among tools across 52 HLA alleles. The dotted

vertical line indicates the median ICC value (0.207) across all peptides. B) Histogram of ICCs for 52 HLA

alleles between four tools (MHCnuggets, MHCflurry, HLAthena, netMHCpan). The number of alleles is shown

on the y-axis and the ICC is shown on the x-axis. The dotted lines show the mean ICC for alleles belonging to

each HLA class.  Red, green, and blue colors represent data from -A, -B, and -C alleles, respectively. C)

Detailed comparison of the complete set of random peptides predicted to bind (binding score >=0.5) to HLA

alleles according to each of four tools. Patterns of agreement or disagreement among groups of peptides

predicted by different combinations of tools across 1 million random peptides are shown along each column

(e.g. the first column corresponds to peptides predicted by HLAthena while the final column corresponds to

peptides predicted by all tools). Each row indicates the predictions associated with the indicated tool. The

number of peptides in each column (vertical bars) corresponds to the size of the subset predicted by the

indicated combination of tools.

We next investigated aggregate peptide binding predictions across different HLA alleles according to each tool.

As others have noted differential HLA allelic promiscuity in peptide presentation (28–31), we too found a wide

range in the proportion of peptides a given allele was predicted to bind (Supplementary Figure 1). We
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uncovered significant inconsistencies in these predictions between tools (Figure 2). Note that this phenomenon

is independent of binding affinity threshold (Supplementary Figure 2).

Figure 2: The correlation of HLA allelic presentation of 8-11mers from the random proteome between tools.

The lower left grouping of plots displays scatter plots of peptides predicted to bind (>= 0.5 binding probability

score) between 2 tools with each point representing the number of predicted binders for each HLA allele. The

upper right grouping represents the Spearman correlation of the number of peptides predicted to bind to all

alleles between tools. Note that MHCnuggets has a number of alleles with 0 random peptides predicted to

bind. The diagonal panels show distribution of HLA allelic presentation from the random proteome for each

tool. The number of peptides that putatively bind to each of the HLA alleles is shown along the x-axis as a

series of horizontal bars with green, orange, and purple colors representing HLA-A, -B, and -C alleles,

respectively, sorted in order of decreasing quantity of binders.

Amount of training data does not explain inconsistencies between tools

As each allele has a different amount of training data, we were next interested in exploring to what extent the

quantity and quality of training data available to each tool might influence its allele-specific predictions. Indeed,
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some netMHCpan predictive models for some alleles are based on as few as 101 peptides, while others from

MHCflurry are based on as many as 31,775 peptides (Supplementary Table 1). Note that we excluded from

consideration the ~95% of alleles (4108) that were available for prediction but had no underlying allele-specific

training data available (Supplementary Table 2). Ultimately, we found that the amount of training data available

was not significantly related to the consistency of binding predictions between tools (Figure 3a), nor was it

clearly related to the quantity of binding peptides predicted by tools (Figure 3b).

A

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.04.518984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.04.518984
http://creativecommons.org/licenses/by-nd/4.0/


B

Figure 3. The relationship between training data and consistency of predictions. A) Scatterplot of ICC vs mean

training data across 4 tools with each point representing data for a single HLA allele. The mean number of

training peptides is shown on the x-axis while the ICC score is shown on the y-axis. B) Scatterplot of the

relationship between training data and predicted peptide binding. The number of peptides used as training data

for an allele is shown on the x-axis whereas the number of peptides predicted to bind for the same allele is

shown on the y-axis. Each dot is a single allele with each color representing a different tool:  red circles

(HLAthena), green triangles (MHCflurry), blue squares (MHCnuggets), purple plus signs (netMHCpan). We

note that netMHCpan does not make all of their training data available, thus the depicted quantity of training

data represents an estimate.

Predicted binding quantities are similar between human and viral proteomes

According to the pathogen driven selection theory of MHC evolution, different HLA alleles are anticipated to be

particularly attuned to foreign as opposed to self antigens (3,8,32–35). We therefore sought to compare the

predicted capacity of different HLA alleles to present different viral vs. self antigens. Further, we wished to

establish which specific alleles had the propensity to bind a larger fraction of peptides in general (allele

promiscuity) by observing the relationship between an allele’s ability to bind random peptides versus peptides

from a viral or human proteome.
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We examined distribution of predicted allelic promiscuity across alleles for 9 sets of peptides of viral, human,

and random origin (See Methods). Confining attention to human and viral proteomes, we again found a wide

range in the proportion of peptides a given allele was predicted to bind and also significant inconsistencies

between tools (Supplementary Figure 3).

We found that the alleles with highest mean binding percentage for human and viral peptides were B15:03

(2.68%) and B15:02 (2.36%) and the allele lowest mean binding percentage were B18:01 (0.24%) and A01:01

(0.33%) (Supplementary Table 3). No alleles were predicted by any tool to preferentially present either viral or

human peptides. Further, the distribution of predicted allelic promiscuity across alleles was highly consistent

between human and viral proteomes, but not when applied to a set of random peptides (Figure 4). We noted

that this phenomenon holds for closely related viruses across all tools and to a lesser extent for more distantly

related viruses (Supplementary Figure 4).

A B
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C D

Figure 4. The correlation between peptide sources of predicted allelic promiscuity across alleles. A) Heatmap

of spearman correlation between peptide sources for HLAthena-based predictions for human peptides, viral

peptides, and randomly generated peptides. Numbers show Spearman correlation coefficients between each

pair respectively, while color reflects the Spearman correlation with red approaching a Spearman correlation of

1. Analogous data is shown for netMHCpan, MHCflurry, and MHCnuggets in panels B, C, and D, respectively.

Confining attention to the 9 alleles whose predictive models were likely most robust (based on a minimum of

2000 training peptides for every tool), we again found that the distribution of predicted allelic promiscuity

across alleles was consistent between closely related viruses and to a lesser extent between more distantly

related viruses (Supplementary Figure 5).

Peptide physical properties are associated with allele-specific binding predictions

Reasoning that differences in peptide characteristics were the likeliest explanation for predicted differences in

binding affinity between different alleles and peptide sources, we next studied the distribution of physical

properties among different peptide sets. Human, viral, and random peptide sets all exhibited the same range of

physical properties, but were differentially enriched among different physical properties (Supplementary Figure

6). Between individual peptide sets, the differential enrichment ranged from 10% (CMV v. human) to 63% (BK

v. random) of peptides (Supplementary Figure 7).

We next sought to discover the relationship between the peptide similarity in physical property space and

distribution of predicted allelic promiscuity across alleles. Across all tools, there was a positive relationship

between similarity in physical property space and distribution of predicted allelic promiscuity across alleles as
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evidenced by the negative correlation between peptide set difference and Spearman correlation coefficient

(Figure 6).

A B

C D

Figure 6. The relationship between physical property similarity vs peptide binding similarity. A) Scatterplot for

HLAthena-based predictions, where each point represents predictions for a species vs species pair.  Peptide

dissimilarity is shown on the x-axis, whereas Spearman correlation coefficients of predicted allelic promiscuity

across alleles.  Color represents the length of peptide, with 8-, 9-, 10-, and 11-mers shown in red, green, blue

and purple, respectively.  Analogous data is shown for netMHCpan, MHCflurr, and MHCnuggets in panels B, C,

and D, respectively.
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Next, we found that each allele has distinct preferences for different peptide physical properties, independent

of peptide length (Figure 7A, Supplementary Figure 8). Some alleles (e.g. A01:01 and B08:01) have stronger

preference for certain physical properties (Figure 7B,C), while others (B45:01) do not have as clear of a

preference (Figure 7D).

Figure 7. Differential distributions of physical properties for 9-mer peptides predicted to bind to HLA alleles. A)

The plotting coordinates represent the first two dimensions of a UMAP transform of peptide physical properties,

which is divided into 1600 (40x40) equivalently-sized square bins (see Methods). For each bin where there is

at least one HLA allele with >0.2% difference in proportion of all peptides predicted to bind v. non-binders, the

identity of the most enriched allele is shaded in the color corresponding to that allele’s supertype as
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corresponding to the legend. B-D) Example plots of three different alleles (A01:01, B08:01, and B45:01) with

different distributions of binders. Each box represents enrichment as the percent peptide difference between

predicted binders and non-binders for the given allele. The color scale shows the percent of peptides

difference in the given box, with red meaning a larger number of predicted binders and blue meaning a larger

number of predicted non-binders.
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DISCUSSION
To the best of our knowledge, this is the first study to examine the consistency of predictions of peptide-MHC

binding across different tools, and to explore the quality and quantity of training data in this context. We note

several limitations to this work. Firstly, we confined attention to MHC class I peptides and did not include

predictions for MHC class II (36), of which there are numerous alleles. We also excluded from consideration

any potential contributions of proteasomal cleavage or other antigen processing machinery to MHC binding

(37–39). We did not seek to comprehensively assess all available tools for peptide-MHC binding affinity

prediction, but rather confined our attention to four of the most widely used tools. The majority of our randomly

generated peptides are not known to be found in nature and may not represent the optimal background

distribution for measuring allele promiscuity or interrater reliability between tools primarily used for human and

pathogenic peptides. While our analysis of peptides leveraged four essential and well-described amino acid

physical properties, there may exist unassessed latent features that could capture additional variance and

improve dimensionally-reduced comparisons. We did not assess the extent to which mass spectrometry biases

in the training datasets might affect peptide-MHC predictions (40–43). Lastly, we did not evaluate individual tool

performance based on known epitopes as this has been previously reported (23–27,44–48).

Our work raises fundamental questions about the fidelity of peptide-MHC binding prediction tools.  Why, for

instance, can predictions be so discordant among tools for which training datasets are otherwise so similar?

We especially worry about the real-world use of these prediction tools for alleles without any direct basis in

training data. Why is the predicted range of allele promiscuity so substantial, and yet not demonstrative of any

meaningful differences in enrichment between potential foreign versus self antigens?  Moreover, is this

differential promiscuity a universal biological phenomenon, with certain alleles being generally poor functional

presenters of antigen?  If this is the case, what selective advantage might have evolutionarily maintained these

alleles in the population? Evaluating more viruses – as well as bacteria, fungi, and other pathogens – and

linking these analyses with metrics such as evolutionary distance may give greater insight into the relationship

between HLA evolution and disease.
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METHODS
Sequence retrieval, peptide filtering, and kmerization

FASTA-formatted protein sequence data was retrieved from the National Center of Biotechnology Information

(NCBI) (49,50) using RefSeq as of 1-31-22 for BK, SARS-CoV-2, HHV-5, HHV-6, HSV-1, HSV-2, HSV-4, and

Human. Protein sequence data was inputted into netchop v3.0 “C-term” model with a cleavage threshold of 0.1

to remove peptides that were not predicted to undergo canonical MHC class I antigen processing via

proteasomal cleavage (of the peptide’s C-terminus). The results from netchop v3.0 were then kmerized

sequentially into 8- to 12-mers. Code used for kmerization and netchop filtering can be found at:

https://github.com/Boeinco/peptide-MHCassess. We additionally generated a set of 1 million random peptides

of length 8-12 drawn uniformly at random. Peptide sets had negligible overlap (<1% shared between human vs

viral vs random peptides).

Peptide-MHC class I binding affinity predictions

MHC class I binding affinity predictions were performed for the peptides generated from the kmerization

process above using 4 tools: netMHCpan v4.1 (23), HLAthena v1.0 (27), MHCflurry v2.0 (25), and

MHCnuggets v2.3 (51). netMHCpan was run with default options with the ‘-l’ option to specify peptides of

lengths 8-12. MHCflurry was run with default options. MHCnuggets was run with default options. HLAthena

was run using the dockerized version of HLAthena with default options, which predicts peptides of length 8-11.

MHC class I binding affinity predictions were performed for each of 24, 26, and 2, HLA-A, -B, and -C alleles,

respectively. Only alleles that were in common between all 4 tools were used (52 total alleles in common

between 2489 possible alleles). Binding affinity values were converted to binding probability values for

MHCflurry and MHCnuggets using 1- log(binding affinity) / log(50000) in order to match HLAthena and

netMHCpan binding probability predictions. Alleles were grouped into supertypes when applicable using the

HLA class I revised classification (29).

Dimensional reduction and binning analysis

Peptides were converted into physical property matrices using amino acid sequence mapping into a 4*kmer

length matrix containing each amino acid’s properties in sequence. The following physical properties of the

amino acids were encoded: side chain polarity was recorded as its isoelectric point (pI) (52), the molecular

volume of each side chain was recorded as its partial molar volume at 37°C (53),  the hydrophobicity of each

side chain was characterized by its simulated contact angle with nanodroplets of water (54) and conformational

entropy was derived from peptide bond angular observations among protein sequences without observed

secondary structure (55).
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Each dimensional reduction was performed on the pooled set of k-mers. UMAP dimensionality was performed

using uwot UMAP R implementation v0.1.11. PCA was performed using default prcomp() functions in base R

v4.1.3.

For each peptide source, binned matrices were computed using the bin2() function with 40x40 (1600) bins

from the Ash v1.0.15 package (56) in R v4.1.3. Bin values were then divided by the total number of peptides to

create bins with the % of total peptides. In order to compare between 2 peptide sources, a matrix, called the

difference matrix, is created by subtracting one matrix of a peptide source from another. Taking the absolute

value of each bin in the difference matrix, then summing the values together, results in a single metric ranging

from 0-2 measuring the difference in binned density between 2 peptide sources, the value 2 indicating that no

peptides were shared between bins and the value 0 indicating the same percentage of peptides in every bin

(Methods Figure 1).

Methods Figure 1.

Allele ordering similarity

For each allele-peptide source combination, the percentage of peptides predicted to bind with a binding

probability score of 0.5 or greater was calculated for all processed peptides. 0.5 binding score is estimated to

be equivalent to 250-300nM depending on the tool used. For each peptide source, alleles were ranked from

best to worst binders (most to least peptides >= 0.5 score) t. In order to compute allele ordering similarity
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between 2 peptide sources for a single tool, Spearman’s Rank Correlation Coefficient was calculated between

the 2 sets of allele ranks.

For the random group 1 vs random group 2 analysis, we conducted 100 replicates of dividing the randomly

generated peptides into 2 random groups and performed a Spearman rank test of allele ordering between

these groups for each of the tools.

Interrater reliability

Intraclass correlation coefficients (ICCs) were calculated using the ICC() function from the IRR v0.84.1 R

package (57). Binding prediction scores for all 1 million randomly generated peptides were separated by tool

and HLA allele, and an ICC was calculated as the interrater reliability metric between the 4 tools for each

allele. ICC was also between the 4 tools on a per peptide basis, each peptide receiving a score across 4 tools

using predictions separated by tool and peptide.
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SUPPLEMENTARY MATERIAL

Sup Figure 1: Boxplots of the relationship between predicted binding and the threshold used to determine

binding for random peptides. Each color represents a different tool with each boxplot representing the IQR of

predicted percent peptides to bind for the given threshold.
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B
Sup Figure 2. Pairplot of HLA allelic presentation of 8-11mers from the random proteome. The lower left

triangle displays scatter plots of peptides predicted to bind using 0.6 (A) and 0.7 (B) as cutoffs respectively

between 2 tools with each point representing an HLA allele. The upper right triangle represents the Spearman

correlation of the number of peptides predicted to bind to all alleles between tools. Note that MHCnuggets has

a number of alleles with 0 random peptides predicted to bind. The diagonal panels show distribution of HLA

allelic presentation from the random proteome for each tool. The number of peptides that putatively bind to

each of the HLA alleles is shown along the x-axis as a series of horizontal bars with green, orange, and purple

colors representing HLA-A, -B, and -C alleles, respectively, sorted in order of decreasing quantity of binders.
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Sup Figure 3: Pairplot of HLA allelic presentation of 8-11mers from the human and viral proteome. The lower

left triangle displays scatter plots of peptides predicted to bind (>= 0.5 binding probability score) between 2

tools with each point representing an HLA allele. The upper right triangle represents the Spearman correlation

of the number of peptides predicted to bind to all alleles between tools. Note that MHCnuggets has a number

of alleles with 0 random peptides predicted to bind. The diagonal panels show distribution of HLA allelic

presentation from the random proteome for each tool. The number of peptides that putatively bind to each of

the HLA alleles is shown along the x-axis as a series of horizontal bars with green, orange, and purple colors

representing HLA-A, -B, and -C alleles, respectively, sorted in order of decreasing quantity of binders.
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Sup Figure 4. Heatmaps of correlation between peptides for each species of predicted allelic promiscuity

across alleles. A) Spearman correlation is shown between peptide sources for HLAthena-based predictions.

Analogous data is shown for netMHCpan, MHCflurry, and MHCnuggets in panels B, C, and D, respectively.
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Sup Figure 5. Heatmaps of correlation between peptides for each species of predicted allelic promiscuity

across alleles for which there was a minimum of 2000 peptides of training data. A) Spearman correlation is

shown between peptide sources for HLAthena-based predictions. Analogous data is shown for netMHCpan,

MHCflurry, and MHCnuggets in panels B, C, and D, respectively.
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Sup Figure 6. Peptide physical property differences between different peptide sources. Each tile plot is

composed of 1600 tiles, with each tile colored by the percent peptide difference between the 2 peptide sources

in that particular tile. Red indicates an enrichment of the first label (e.g. viral vs human, viral enrichment will be

red) while blue indicates enrichment of the second label.
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Sup Figure 7. Peptide physical property difference by k-mer length. Each heatmap is the pairwise percent

difference metric between each pair of peptide sets. The redder the value, the more difference in the percent

difference metric.
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Sup Figure 8. Differential distributions of physical properties for 8,10, and 11-mer peptides predicted to bind to

HLA alleles. A,C,E) Tile plots highlighting binders enrichment 8, 10, and 11-mers respectively. The plotting

coordinates represent the first two dimensions of a UMAP transform of peptide physical properties, which is

divided into 1600 (40x40) equivalently-sized square bins (see Methods). For each bin where there is at least

one HLA allele with >0.2% difference in proportion of all peptides predicted to bind v. non-binders, the identity

of the most enriched allele is shaded in the color corresponding to that allele’s supertype as corresponding to

the legend. B,D,F) Example plots of alleles with different distributions of binders for 8, 10, and 11-mers

respectively. Each box represents enrichment as the percent peptide difference between predicted binders and

non-binders for the given allele. The color scale shows the percent of peptides difference in the given box, with

red meaning a larger number of predicted binders and blue meaning a larger number of predicted non-binders.
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