

1 **CLASPs stabilize the intermediate state between microtubule growth and catastrophe**
2

3 Lawrence EJ^a*, Chatterjee S^a, Zanic M^{a,b,c,*}

4
5 ^aDepartment of Cell and Developmental Biology, ^bDepartment of Chemical and Biomolecular
6 Engineering, ^cDepartment of Biochemistry, Vanderbilt University, Nashville, TN 37240

7
8 *Correspondence to beth.lawrence@vanderbilt.edu, marija.zanic@vanderbilt.edu

9
10 **ABSTRACT**

11
12 CLASPs regulate microtubules in many fundamental cellular processes. CLASPs stabilize
13 dynamic microtubules by suppressing catastrophe and promoting rescue, the switch-like
14 transitions between microtubule growth and shrinkage. However, the molecular mechanisms
15 underlying CLASP's activity are not understood. Here, we investigate the effects of CLASPs on
16 distinct microtubule substrates in the absence of tubulin to gain insight into how CLASPs
17 regulate microtubule dynamics. Surprisingly, we find that human CLASP1 depolymerizes stable
18 microtubules in the presence of GTP, but not in the absence of nucleotide. Conversely, CLASP1
19 stabilizes dynamic microtubules upon tubulin dilution in the presence of GTP. Our results
20 demonstrate that CLASP1 drives microtubule substrates with different inherent stabilities into
21 the same slowly-depolymerizing state in the absence of tubulin in a nucleotide-dependent
22 manner. We interpret this state as the pre-catastrophe intermediate state between microtubule
23 growth and shrinkage. Thus, we conclude that CLASPs stabilize the intermediate state between
24 microtubule growth and shrinkage to suppress microtubule catastrophe and promote rescue.

31 **INTRODUCTION**

32
33 Microtubules are dynamic cytoskeletal polymers essential for fundamental cellular processes.
34 Individual microtubules switch between phases of growth and shrinkage through a behavior
35 known as microtubule dynamic instability (Mitchison and Kirschner 1984). The transition from
36 microtubule growth to shrinkage is called catastrophe, and the transition from shrinkage back to
37 growth is called rescue. To facilitate their roles in diverse cellular processes, microtubules are
38 regulated by a large number of microtubule-associated proteins (MAPs). CLASPs (cytoplasmic
39 linker-associated proteins) are a highly conserved family of microtubule-associated proteins that
40 stabilize microtubules in many cellular contexts including cell division, cell migration and
41 neuronal development (Akhmanova et al. 2001, Lawrence et al. 2020). Human CLASPs stabilize
42 microtubules by autonomously suppressing microtubule catastrophe and promoting microtubule
43 rescue without changing the rates of microtubule growth or shrinkage (Aher et al. 2018,
44 Lawrence et al. 2018, Lawrence and Zanic 2019). However, the molecular mechanisms
45 underlying CLASP's activity remain largely unknown.

46
47 CLASPs belong to a larger group of proteins that use tubulin-binding TOG (tumor
48 overexpression gene) domains to modulate microtubule dynamics (Slep 2009, Al-Bassam and
49 Chang 2011, Farmer and Zanic 2021). Another prominent TOG-domain protein, XMAP215,
50 uses its TOG domains to accelerate microtubule growth (Gard and Kirschner 1987, Brouhard et
51 al. 2008). XMAP215's mechanism involves stabilizing a weakly-bound tubulin dimer at the
52 microtubule end, which serves as an intermediate state in microtubule
53 polymerization (Ayaz et al. 2012, Ayaz et al. 2014, Brouhard and Rice 2014). In contrast, human
54 CLASPs do not affect the microtubule growth rate, but specifically modulate microtubule
55 catastrophe and rescue (Aher et al. 2018, Lawrence et al. 2018, Lawrence and Zanic 2019).
56 Additionally, the unique architecture of CLASPs TOG domains suggests that CLASPs regulate a
57 distinct tubulin conformation (Leano et al. 2013, Maki et al. 2015, Leano and Slep 2019,
58 Lawrence et al. 2020). It is not known what state of the microtubule end CLASPs act on to
59 regulate the transitions between microtubule growth and shrinkage.

60
61 Interestingly, an early model of microtubule dynamic instability proposed the existence of a
62 metastable intermediate state of dynamic instability between the microtubule growth and
63 shrinkage phases (Tran et al. 1997, Janosi et al. 2002). In support of this, recent work found that
64 dynamically growing microtubules exhibit a distinct slowdown in growth prior to catastrophe
65 (Maurer et al. 2014, Mahserejian et al. 2022). Importantly, in the presence of CLASP,
66 microtubules can withstand large growth fluctuations, and return to a robust growth phase
67 following transient growth slowdowns, thus avoiding catastrophe (Lawrence et al. 2018,
68 Mahserejian et al. 2022). Furthermore, CLASPs promote microtubule pausing in cells and *in*
69 *vitro*, and stabilize microtubule ends at anchor points such as kinetochores, focal adhesions, and
70 the cell cortex (Sousa et al. 2007, Li et al. 2012, Aher et al. 2018, Lawrence et al. 2020,
71 Mahserejian et al. 2022). Therefore, we hypothesized that CLASPs stabilize microtubules in the
72 pre-catastrophe state, an intermediate state between microtubule growth and shrinkage.

73
74 The stabilization of an intermediate state drives a biochemical reaction in either forward or
75 reverse direction, depending on the availability of the reactants. For XMAP215, the absence of
76 soluble tubulin reverses its activity from a microtubule polymerase to depolymerase (Shirasu-

77 Hiza et al. 2003, Brouhard et al. 2008). This discovery provided critical insight into XMAP215's
78 mechanism of action. To what extent CLASP's anti-catastrophe activity may be modulated by
79 the availability of soluble tubulin is not known. Here, we investigate the effects of CLASPs on
80 distinct microtubule substrates in the absence of tubulin to unravel the molecular mechanisms by
81 which CLASPs regulate microtubule catastrophe and rescue.

82

83

84 RESULTS

85

86 Human CLASP1 depolymerizes GMPCPP-stabilized microtubules in a GTP-dependent 87 manner

88

89 To investigate whether CLASP1, like XMAP215, has the ability to depolymerize stabilized
90 microtubules, we used an established *in vitro* assay, combining TIRF microscopy with purified
91 protein components (Gell et al. 2010). Briefly, stable microtubules were polymerized with
92 GMPCPP, a slowly hydrolyzable GTP analogue, and adhered to coverslips. Microtubule
93 depolymerization was monitored over 15 minutes under different reaction conditions (Figure
94 1A). In the buffer control condition, in the absence of any MAPs, microtubules depolymerized
95 very slowly over the course of the experiment, as expected (Figure 1B left, 1D; $0.29 \text{ nm/s} \pm 0.04$
96 nm/s; SE, N = 90). As a positive control, we purified recombinant chTOG (Figure S1), the
97 human homolog of XMAP215, and tested its depolymerase activity. Indeed, we observed
98 microtubule depolymerization with 200 nM chTOG (Figure 1B middle; $2.64 \text{ nm/s} \pm 0.02 \text{ nm/s}$;
99 SE, N = 50). Thus, like XMAP215, human chTOG depolymerizes microtubules in the absence of
100 soluble tubulin. In contrast, when stabilized microtubules were incubated with 200 nM purified
101 recombinant CLASP1 (Figure S1), we did not observe significant microtubule depolymerization
102 (Figure 1B right; $0.248 \text{ nm/s} \pm 0.008 \text{ nm/s}$; SE, N = 79; p = 0.59 compared to the buffer control).
103 Thus, unlike XMAP215/chTOG, CLASP1 does not depolymerize microtubules under these
104 conditions.

105

106 The configuration of microtubule ends depends on the nucleotide state of the end-bound tubulin
107 dimers. Given that the specific configuration of tubulin recognized by CLASP's TOG domains is
108 not known, we wondered whether CLASP1's activity is sensitive to the nucleotide state of the
109 tubulin at the microtubule ends. Therefore, we investigated the effects of including GTP in the
110 reaction mix for our depolymerization assay, which is expected to exchange with the GMPCPP
111 bound to the terminal tubulin dimers (Mitchison 1993) (Figure 1B). The addition of 1 mM GTP
112 to the buffer control condition did not promote microtubule depolymerization (Figure 1B left,
113 1C; $0.14 \text{ nm/s} \pm 0.05 \text{ nm/s}$; SE, N = 108; p = 0.25 compared to the no GTP control). Therefore,
114 the presence of GTP itself does not significantly destabilize the microtubule lattice. Furthermore,
115 chTOG displayed only a mild, 1.5-fold increase in depolymerase activity in the presence of 1
116 mM GTP compared to the no GTP condition (Figure 1B middle, 1C; $4.0 \text{ nm/s} \pm 0.2 \text{ nm/s}$; SE, N
117 = 77). In contrast, upon introduction of 200 nM CLASP1 and 1 mM GTP, the microtubules
118 robustly depolymerized, displaying a 24-fold increase in depolymerization rate when compared
119 to the CLASP1 with no GTP condition (Figure 1B right, Figure 1C; Supplementary Movie 1; 6.0
120 $\text{nm/s} \pm 0.9 \text{ nm/s}$; SE, N = 89; p = 0.024 compared to CLASP1 without GTP). Overall, we
121 conclude that similar to XMAP215 and chTOG, CLASP1 robustly depolymerizes stabilized
122 microtubules in the absence of soluble tubulin. However, while chTOG's depolymerase activity

123 shows little sensitivity to the presence of GTP in solution, CLASP1's activity is strongly
124 promoted by GTP. These results demonstrate that, in the absence of soluble tubulin, CLASP1
125 possesses GTP-dependent microtubule depolymerase activity.

126

127 **A minimal TOG2 domain construct is sufficient for microtubule depolymerase activity**

128

129 Humans possess two CLASP paralogs: CLASP1 and CLASP2, with multiple TOG domains
130 contained within all major isoforms (CLASP1 α , CLASP2 α , and CLASP2 γ) (Figure 2A).
131 Previous work established that a minimal construct composed of the TOG2 domain and the
132 serine-arginine-rich region of CLASP2 α (TOG2-S) recapitulates the anti-catastrophe and rescue
133 activity of full-length human CLASP2 α on dynamically-growing microtubules (Aher et al.
134 2018). We, therefore, set out to establish whether other CLASP isoforms depolymerize
135 microtubules in the presence of GTP, and determine the minimal requirements for CLASP's
136 depolymerase activity. To address this, we incubated GMPCPP-stabilized microtubules with 200
137 nM of CLASP1, CLASP2 α , or CLASP2 γ and 1 mM GTP (Figure 2B). While CLASP1 displayed
138 the strongest depolymerase activity, we found that all CLASP family members depolymerized
139 the stabilized microtubules in the presence of GTP (Figure 2B-C). Next, we tested whether the
140 isolated TOG2-S construct also possesses microtubule depolymerase activity. Indeed, we
141 observed microtubule depolymerization when microtubules were incubated with 200 nM EGFP-
142 tagged TOG2-S and 1 mM GTP (Figure 2B-C). The depolymerization rates of microtubules with
143 all CLASP family members and the minimal TOG2-S domain construct were statistically
144 significantly different from the control ($p < 0.001$, one-way ANOVA followed by a post hoc
145 Tukey HSD). The finding that the minimal TOG2-S construct is capable of depolymerizing
146 stable microtubules demonstrates that CLASP's depolymerase activity does not strictly require a
147 string of multiple TOG domains. Interestingly, the depolymerization rates with TOG2-S were
148 significantly different from those with CLASP2 α , but not CLASP2 γ , suggesting that the TOG1
149 domain may contribute to CLASP's depolymerizing activity. Furthermore, the fact that TOG2-S
150 is also the minimal unit required for CLASP's anti-catastrophe and rescue activities suggests that
151 the molecular mechanisms underlying CLASP's depolymerase activity are linked to its
152 mechanism of microtubule dynamics regulation.

153

154 **CLASP1 depolymerizes plus and minus ends in the presence of GTP, but is plus-end**
155 **specific in the presence of GDP**

156

157 Microtubules have two structurally and biochemically distinct ends; a plus end and a minus end.
158 In our depolymerization assays, we noticed intriguing differences in the behavior of the two
159 microtubule ends in the presence of CLASP1 and GTP. To determine the end-specific activity of
160 CLASP1, we performed a titration of CLASP1 concentration from 0 nM to 500 nM in the
161 presence of 1 mM GTP on polarity-marked microtubules, allowing us to distinguish plus and
162 minus ends (see Methods) (Figure 3A-C, Supplementary Movie 2). We found that the
163 microtubule depolymerization rate increased with increasing CLASP1 concentrations at both
164 plus and minus ends (Figure 3B-C). Fitting the CLASP1 titration data to the Michaelis-Menten
165 equation revealed that the half-maximum depolymerization rate was achieved at 15 nM CLASP1
166 (95% CI: 10 nM – 20 nM) for plus ends, and 42 nM (95% CI: 5 nM - 79 nM) for minus ends
167 (Figure 3C). Therefore, CLASP1 depolymerizes both microtubule plus and minus ends in the

168 presence of GTP but the plus ends are more susceptible to CLASP1 depolymerase activity than
169 the minus ends.

170
171 Intriguingly, due to the head-to-tail assembly of tubulin dimers in the microtubule lattice,
172 microtubule minus ends do not possess an exposed nucleotide, rather it is buried in the
173 microtubule lattice (Nogales et al. 1999). Therefore, the finding that CLASP1 depolymerizes
174 both microtubule ends raises the question of how CLASP1 depolymerizes minus ends if
175 CLASP1's mechanism involves sensing or exchanging the nucleotide state of terminal tubulin
176 dimers. One possibility is that CLASP1 facilitates nucleotide exchange all along the microtubule
177 lattice. To investigate the potential effects of CLASP1 on lattice nucleotide exchange, we
178 performed computational modeling in which nucleotide exchange was permitted to occur either
179 exclusively at microtubule ends or at both ends and lattice (Figure S2). We assessed the
180 depolymerization profiles of microtubules simulated to have mean depolymerization rates
181 matching the experimentally observed microtubule depolymerization rates. When nucleotide
182 exchange was simulated to occur at both ends and lattice, the characteristics of the microtubule
183 depolymerization were very different between simulated and experimental microtubules.
184 Specifically, the simulated microtubules displayed a highly nonlinear depolymerization profile,
185 with depolymerization rates accelerating over time due to the exposure of lattice-exchanged
186 dimers. In contrast, when nucleotide exchange was permitted only at microtubule ends, the
187 depolymerization rates were constant over time, as observed in our experimental results.
188 Therefore, the mechanism in which CLASP1 facilitates nucleotide exchange all along the
189 microtubule lattice does not explain the experimentally-observed minus-end depolymerization.
190 Rather, we conclude that CLASP1 depolymerizes both plus and minus ends primarily through an
191 end-specific mechanism.

192
193 To address the specific roles of nucleotides and nucleotide hydrolysis, we next performed
194 sequential nucleotide exchange experiments in which the CLASP1 concentration was maintained
195 constant but the solution was exchanged for reaction mixtures containing different nucleotides
196 (Figure S3, Supplementary Movie 3). First, we incubated microtubules in the presence of
197 CLASP1 without any nucleotide in the solution, and saw no depolymerization, as expected.
198 Next, we introduced 1 mM GTP in the same observation channel and observed
199 depolymerization. Finally, we exchanged the reaction solution to include 1 mM GMPCPP and
200 found that depolymerization quickly stopped (Figure S3). Thus, CLASP1's depolymerase
201 activity can be switched on with GTP and switched off with GMPCPP. We also investigated
202 CLASP1 activity in the presence of different nucleotides and nucleotide analogs. As before,
203 CLASP1 robustly depolymerized microtubules in the presence of 1 mM GTP. Surprisingly,
204 CLASP1 also robustly depolymerized microtubules in the presence of 1 mM GDP. Conversely,
205 in the presence of GMPCPP (a mimic of the GTP-state), no microtubule depolymerization was
206 observed with CLASP1. In the presence of GTP γ S (a mimic of the post-hydrolysis GDP-Pi
207 state), a slow but significant rate of microtubule depolymerization was observed (Figure S3; 0.61
208 \pm 0.06 nm/s; SE, N=60; p<0.001 when compared with the GMPCPP condition). Taken together
209 these data suggest that the post-hydrolysis state of GTP facilitates CLASP-mediated microtubule
210 depolymerization, but that GTP hydrolysis itself is not strictly required.

211
212 Interestingly, we observed that, while CLASP1 depolymerized both of the microtubule ends in
213 the presence of GTP, only one end appeared to depolymerize in the presence of GDP (Figure

214 S3). To investigate this further, we assessed the depolymerase activity of 200 nM CLASP1 on
215 polarity-marked microtubules across a range of GTP and GDP concentrations (from 0 mM – 1
216 mM) (Figure 3D-F). As before, CLASP1 depolymerized both microtubule plus and minus ends
217 with GTP in solution but only plus ends with GDP (Figure 3D). The rate of CLASP1-mediated
218 microtubule depolymerization increased with increasing GTP concentrations at both plus and
219 minus ends (Figure 3E). The half-maximum depolymerization rate was achieved at 0.12 mM
220 GTP (95% CI: 0.06 mM – 0.18 mM; Michaelis-Menten fit) for plus ends, and 0.6 mM GTP
221 (95% CI: 0.2 mM – 1.1 mM) for minus ends. Notably, CLASP1 enhanced the depolymerization
222 of plus ends to a greater extent than minus ends: CLASP1 accelerated the depolymerization rate
223 by 55-fold at the plus ends, and by 40-fold at the minus ends when comparing the 0 mM GTP
224 condition to the saturating GTP concentration (V_{max}) for each end. In comparison, the
225 depolymerization rate increased in a less sensitive manner with increasing GDP concentrations at
226 microtubule plus ends, eventually reaching a similar rate to the GTP condition at the highest
227 nucleotide concentration tested (1 mM) (Figure 3F). Strikingly, we observed no
228 depolymerization at minus ends with CLASP1 at any GDP concentration tested (linear fit; slope:
229 0.07 nm s⁻¹ mM⁻¹ (95%CI:(-0.01, 0.15) nm s⁻¹ mM⁻¹). Therefore, microtubule plus ends are more
230 sensitive to CLASP1 in the presence of both nucleotides than minus ends. Furthermore, the
231 finding that CLASP1 depolymerizes minus ends with GTP, but not GDP, points to potentially
232 distinct requirements for the removal of tubulin from the microtubule minus end. Overall, the
233 distinct behaviors of the two microtubule ends are consistent with the previous report that the
234 kinetics of the metastable intermediate state differ significantly between plus and minus ends
235 (Tran et al. 1997).

236

237 **CLASP1 and TOG2 binding to microtubule ends is modulated by nucleotides**

238

239 We next investigated the effects of the nucleotide in solution on the CLASP1's localization on
240 stabilized microtubules. To this end, we incubated GMPCPP-stabilized microtubules with 1 nM
241 Alexa 488-labeled-CLASP1 in the presence of different nucleotides. When no nucleotide was
242 present in the solution, CLASP1 displayed clear microtubule end-binding preference (Figure
243 4A). The observed end-binding preference of CLASP1 is similar to previous observations of full-
244 length CLASP2 γ , which preferentially associates with the plus-ends of stabilized microtubules in
245 the absence of GTP (Lawrence et al. 2018). We also observed instances where CLASP1
246 localized to both microtubule ends (e.g. see Figure 4A-B, no nucleotide condition), which may
247 explain CLASP's ability to depolymerize microtubule plus and minus ends. Notably, CLASP1's
248 enhanced end-localization was lost when GTP was present in the solution (Figure 4A-B). This is
249 consistent with a recent study demonstrating that the localization of CLASP2 α on microtubule
250 ends is lost with GTP (Luo et al. 2022). Furthermore, we observed preferential binding of
251 CLASP1 to microtubule ends with the addition of GMPCPP, but not with the addition of GDP
252 (Figure 4A-B). In other words, CLASP1 accumulated at the microtubule ends only in conditions
253 that are incompatible with CLASP-mediated microtubule depolymerization (i.e., no nucleotide or
254 GMPCPP in solution), but did not accumulate at the microtubule ends in conditions compatible
255 with depolymerization (i.e., GTP or GDP in solution). These observations led us to hypothesize
256 that in the presence of GTP or GDP individual CLASP molecules dissociate from microtubule
257 ends along with the terminal tubulin dimers.

258

259 To gain further insight into the depolymerase activity on a molecular level, we investigated
260 whether GTP affects the duration of single-molecule TOG2-S binding events on microtubules.
261 GMPCPP-stabilized microtubules were incubated with 200 pM EGFP-L-TOG2-S in the presence
262 and absence of 1 mM GTP and imaged at 20 fps. We observed that TOG2-S also exhibited
263 microtubule end preference in the absence of GTP (Figure 4C). In the absence of GTP, the dwell
264 times of EGFP-L-TOG2-S were long, with a mean dwell time of 3.8 ± 0.3 s (SE, N = 405). In
265 contrast, in the presence of GTP, the dwell times of EGFP-L-TOG2-S were significantly shorter
266 (0.53 ± 0.06 s; SE, N = 708, $p < 0.001$ compared to the no nucleotide condition, Mann-Whitney
267 test) (Figure 4D). Our measurements of microtubule depolymerization rates in the presence of
268 TOG2-S and GTP correspond to the removal of one tubulin dimer every ~ 0.3 s on average (for
269 an overall depolymerization rate of ~ 2 nm/s, Figure 2C), remarkably similar to the single-
270 molecule dwell times in the presence of GTP. We thus speculate that microtubule
271 depolymerization occurs through TOG2-mediated dissociation of individual terminal tubulin
272 dimers which have exchanged their nucleotide to GTP.
273

274 **CLASP1 dictates the microtubule stability in a nucleotide-dependent manner**

275
276 Thus far, we have demonstrated that, in the absence of soluble tubulin, CLASP1 drives the
277 depolymerization of stable microtubules in a nucleotide-dependent manner. However, in
278 physiological conditions, CLASP operates along with tubulin in solution, and stabilizes
279 microtubules by specifically suppressing microtubule catastrophe and promoting rescue (Aher et
280 al. 2018, Lawrence et al. 2018, Lawrence and Zanic 2019). Indeed, we found that a titration of
281 soluble tubulin from 0 μ M to 8 μ M in the presence of 200 nM CLASP1 and 1 mM GTP resulted
282 in a concentration-dependent decrease in the rate of microtubule depolymerization (Figure S4).
283 At tubulin concentrations higher than 6 μ M, microtubule depolymerization was inhibited and
284 microtubules grew extensions that did not undergo catastrophe or shrinkage during the time
285 course of the experiment. Therefore, CLASP1 activity switches from depolymerizing, when the
286 tubulin concentration is below the critical concentration for templated nucleation, to stabilizing
287 when the tubulin concentration is above the critical concentration.
288

289 To determine whether CLASP's stabilizing activity requires tubulin in solution, we performed
290 'tubulin dilution' experiments with unstable microtubule lattices. It has been previously observed
291 that microtubules exhibit a brief phase of slow depolymerization prior to catastrophe upon
292 tubulin dilution (Duellberg et al. 2016). This phase is thought to correspond to an intermediate
293 state in which the microtubule end contains a mixture of both GTP and GDP-bound tubulin
294 dimers. To mimic microtubule ends in a pre-catastrophe state, we polymerized microtubules
295 using a mixture of GTP and GMPCPP (Figure 5A, see Methods). When soluble tubulin was
296 subsequently diluted, the mixed-lattice microtubules slowly depolymerized, consistent with
297 being in the pre-catastrophe state. The rates of slow depolymerization were similar regardless of
298 the nucleotide in solution (Figures 5A and C, 'mixed-nucleotide lattice' control conditions).
299 Interestingly, with the addition of 20 nM CLASP1 and either 1 mM GTP or 1 mM GDP,
300 microtubule depolymerization rates did not accelerate, and the microtubules were maintained in
301 a prolonged slowly depolymerizing state (Figure 5A and C). Strikingly, when CLASP1 and
302 GMPCPP were introduced to the unstable mixed-nucleotide lattice, we found that the
303 microtubules were completely stabilized, with a mean depolymerization rate of $0.33 \text{ nm/s} \pm 0.04$
304 nm/s (SE, N=26) for the CLASP1 condition versus $16.8 \text{ nm/s} \pm 0.7 \text{ nm/s}$ (SE, N=30) for

305 GMPCPP-only condition (Figures 5A and C; $p=0.002$). Therefore, while GMPCPP on its own is
306 not sufficient to stabilize unstable microtubules, CLASP1 in the presence of GMPCPP is able to
307 completely prevent microtubule depolymerization, even in the absence of soluble tubulin. This
308 result demonstrates that CLASP's stabilizing activity does not require soluble tubulin but does
309 depend on nucleotide. We conclude that CLASP in the presence of GTP and GDP allows the
310 microtubule end to persist in the intermediate state. In contrast, CLASP-mediated stabilization of
311 microtubules in the presence of GMPCPP represents a transition from the intermediate, pre-
312 catastrophe state, to a growth-competent microtubule state.

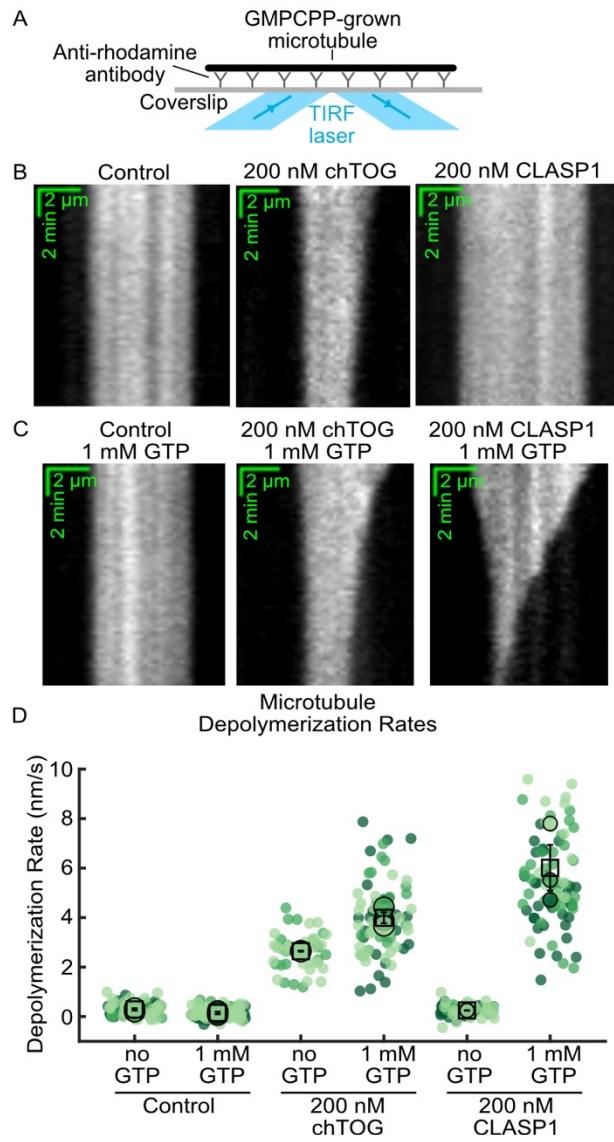
313
314 To capture dynamic microtubules in the pre-catastrophe state and directly probe the effects of
315 CLASP1, we performed tubulin dilution experiments on dynamic microtubules polymerized with
316 GTP. Since microtubule polymerization triggers GTP-hydrolysis within the polymer, these
317 polymerization conditions result in mostly GDP-containing, highly unstable lattices. We then
318 exchanged the polymerization mixture for a reaction solution containing different nucleotides,
319 alone or with CLASP1 (Figure 5B). Upon dilution of soluble tubulin with any of the nucleotides
320 alone, the microtubules underwent catastrophe within a few seconds, followed by the onset of
321 fast depolymerization, as expected (Figure 5B-C, 'GDP-lattice' control conditions). In contrast,
322 upon dilution with CLASP1 and GTP, the microtubules were captured in the slow shrinkage
323 phase, depolymerizing an order of magnitude slower than the control (Figures 5B and C).
324 Dilution with CLASP1 and GDP resulted in more moderate microtubule stabilization.
325 Furthermore, when the growth mixture was exchanged for CLASP1 and GMPCPP, the
326 microtubules did not undergo catastrophe at all and remained stable.

327
328 Surprisingly, we noticed that the depolymerization rates of the different microtubule substrates
329 were remarkably similar in the presence of CLASP1, despite their very different inherent
330 stabilities in the absence of CLASP1 (Figure 5G-H). Notably, in the presence of CLASP1 and
331 GTP, the mean depolymerization rates were $9 \text{ nm/s} \pm 1 \text{ nm/s}$ (SE, $N=30$) for mixed-lattice
332 microtubules, and $11 \text{ nm/s} \pm 2 \text{ nm/s}$ (SE, $N=33$) for GDP-lattice microtubules, and were not
333 statistically significantly different ($p=0.614$). Furthermore, CLASP1 also depolymerized
334 GMPCPP-stabilized microtubules at a similar rate of $9.7 \text{ nm/s} \pm 0.3 \text{ nm/s}$ (SE; $N=20$) (Figure 3E,
335 plus-end data, 1 mM GTP, 200 nM CLASP1 condition). Similarly, the depolymerization rates in
336 the presence of CLASP1 and GDP were the same on mixed-nucleotide lattices and GDP-lattices
337 ($\sim 10 \text{ nm/s}$; $p=0.931$). Finally, all tested microtubule substrates were stable in the presence of
338 CLASP1 and GMPCPP ($\sim 0.5 \text{ nm/s}$; $p=0.138$). Taken together, these data indicate that CLASP1
339 dictates the stability of microtubule ends in a pre-catastrophe state in a nucleotide-dependent
340 manner.

341
342
343 **DISCUSSION**
344

345 We discovered that CLASPs specifically stabilize an intermediate state of the microtubule as it
346 transitions from growth to shrinkage. Our results show that CLASP depolymerizes stable
347 microtubules in a nucleotide-dependent manner. On the other hand, CLASP stabilizes unstable
348 microtubule ends even in the absence of soluble tubulin. Remarkably, we find that CLASP drives
349 all microtubule substrates to the same slowly-depolymerizing state in the presence of GTP. We
350 interpret this state as an intermediate state between microtubule growth and catastrophe.

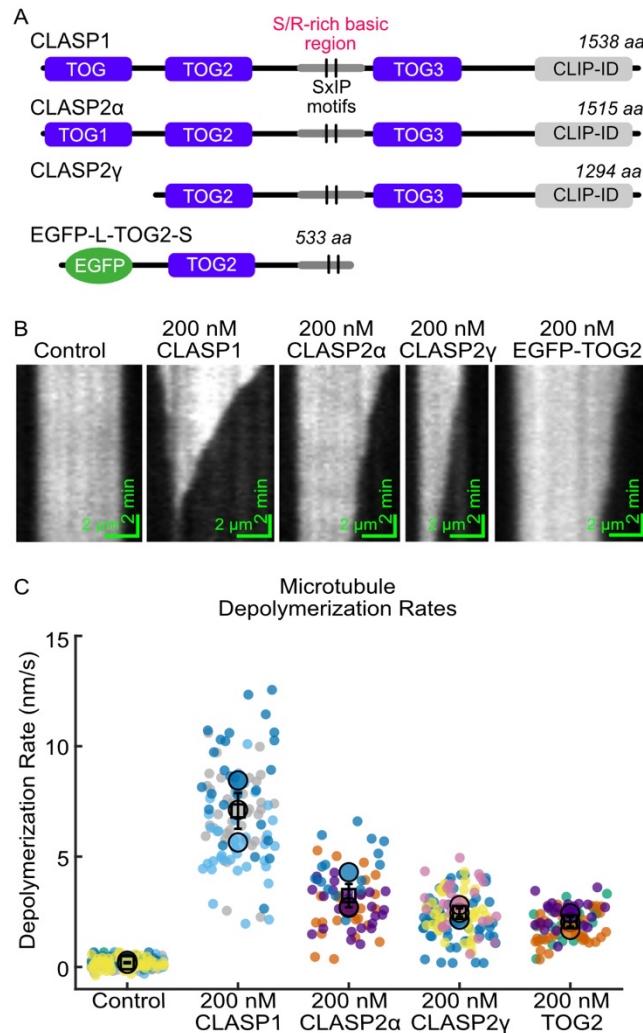
351 CLASP's ability to suppress the catastrophe of dynamic microtubules upon tubulin dilution
352 demonstrates that CLASP's anti-catastrophe mechanism does not require soluble tubulin. This is
353 in contrast to XMAP215, which switches between polymerase and depolymerase activities
354 depending on the availability of soluble tubulin. Furthermore, the strong nucleotide sensitivity of
355 CLASP1 also points to key differences in their mechanisms. Taken together, our results support
356 a mechanism whereby CLASP controls microtubule dynamics by stabilizing a metastable,
357 nucleotide-dependent intermediate state of the microtubule end, which occurs as the microtubule
358 transitions from growth to catastrophe (Figure 6).

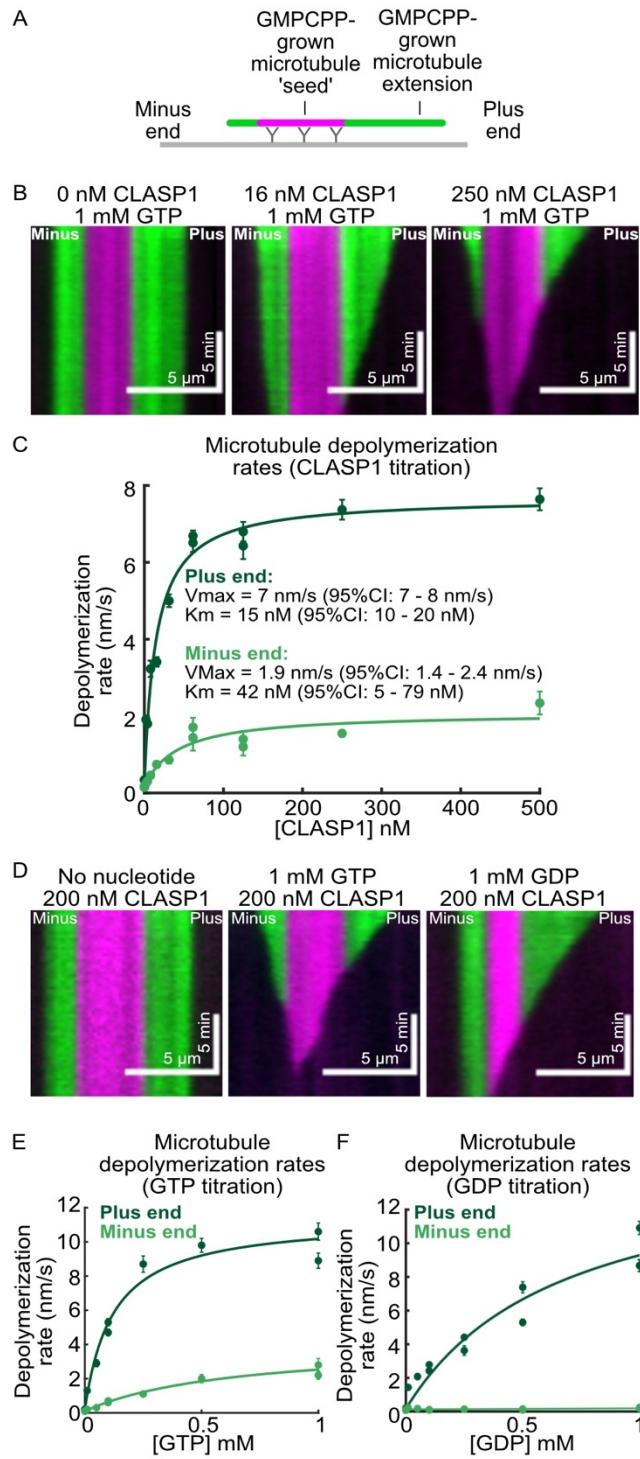

359
360 What is the nature of the microtubule end in the intermediate state between growth and
361 catastrophe? Our finding that CLASP promotes slow microtubule depolymerization in the
362 presence of GTP, GTP γ S, and GDP, but not GMPCPP, suggests that the intermediate state
363 requires a post-GTP hydrolysis state. Indeed, it has been proposed that the transient exposure of
364 terminal GDP-tubulin dimers during growth serves as a precursor to catastrophe (Bowne-
365 Anderson et al. 2013, Farmer and Zanic 2022). Exposure of GDP-tubulin at growing microtubule
366 ends has recently been linked to an increase in microtubule growth fluctuations and slowed
367 microtubule growth (Cleary et al. 2022). Furthermore, exchanging GDP for GTP on the
368 microtubule end was predicted to suppress microtubule catastrophe (Piedra et al. 2016). Notably,
369 CLASP does not localize to shrinking microtubule ends, which depolymerize through the loss of
370 GDP-tubulin subunits. Therefore, CLASP likely recognizes a distinct microtubule end
371 configuration specific to the pre-catastrophe state, which may involve exposed GDP-tubulin
372 subunits. Importantly, we find that the minimal TOG2 construct recapitulates CLASP's
373 depolymerase activity on stable microtubules. Given that TOG2 has a unique architecture that
374 permits binding to a distinct, highly curved conformation of tubulin (Leano et al. 2013, Maki et
375 al. 2015, Leano and Slep 2019, Lawrence et al. 2020), we speculate that this unique tubulin
376 conformation is transiently probed by microtubule ends in the intermediate state (Fedorov et al.
377 2019). The binding of CLASP could further stabilize this curved tubulin conformation,
378 potentially facilitating nucleotide exchange in tubulin dimers at the microtubule end.
379

380 Our data using different nucleotides and analogues indicate that CLASP drives the microtubule
381 into and out of the intermediate state in a nucleotide-dependent manner. Importantly, we found
382 that GMPCPP, a slowly hydrolyzable analog of GTP, does not allow CLASP1-mediated
383 microtubule depolymerization in any of the conditions tested. This result is particularly striking
384 in the tubulin dilution experiments with dynamic microtubules where control microtubules
385 undergo catastrophe within seconds following dilution, but are completely stabilized with
386 CLASP1 and GMPCPP. In the three-state model of microtubule dynamics (Tran et al. 1997), we
387 interpret this as a return of the microtubule end to a fully GTP-like state compatible with growth.
388 Because GMPCPP on its own is not sufficient to prevent dilution-induced microtubule
389 catastrophe, this result gives support to the model in which CLASP1 directly facilitates
390 nucleotide exchange at the microtubule end.
391

392 Notably, a recent study reconstituting CLASP2-mediated kinetochore attachments reported
393 nucleotide sensitivity of CLASP-microtubule attachments (Luo et al. 2022). Here the authors
394 used DNA origami to design clusters of CLASP2, which formed sustained load-bearing
395 attachments to stable microtubule ends. The authors found that CLASP's attachment to
396 microtubule ends was abrogated in the presence of GTP. This finding is consistent with our

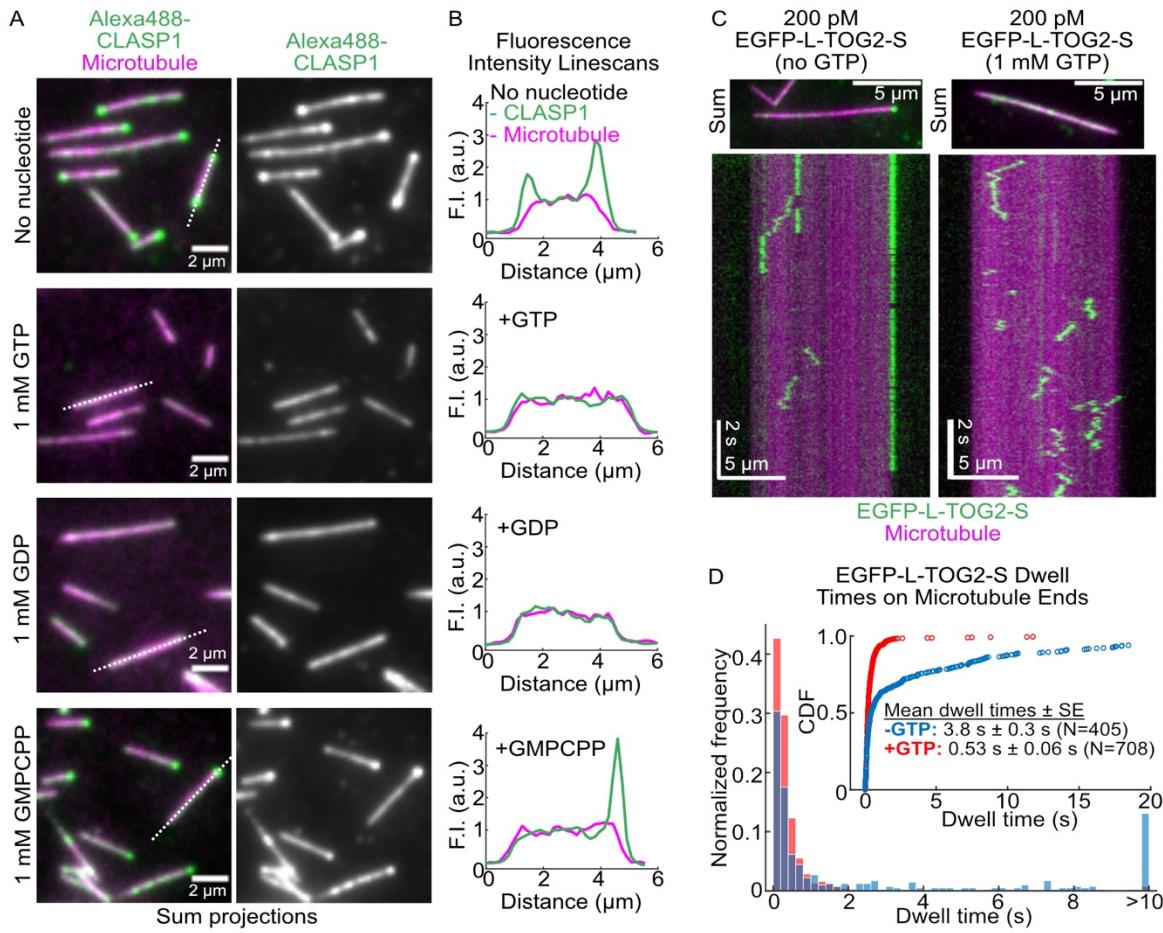
397 results suggesting that CLASP recognizes nucleotide-specific microtubule end configuration.
398 Given that CLASPs are critical for stabilizing microtubule ends at kinetochores (Maiato et al.
399 2002, Maiato et al. 2005, Mimori-Kiyosue et al. 2006, Kolenda et al. 2018), CLASPs may
400 prevent kinetochore-anchored microtubules from undergoing catastrophe by stabilizing the
401 intermediate state. While we speculate that nucleotide exchange in the terminal tubulin dimers
402 likely underlies CLASP's activity, we cannot rule out a possibility that the conformation of
403 CLASP itself is modulated by GTP. Along these lines, a previous study identified putative GTP-
404 binding motifs in Orbit, the Drosophila homologue of CLASP (Inoue et al. 2000). However,
405 these motifs are only partially conserved in human CLASP proteins, and mutating the remaining
406 conserved residues in human CLASP2 does not impact CLASP2's activity (Luo et al. 2022).
407 Future studies will be required to distinguish between these possibilities and dissect the
408 underlying mechanisms.
409


410 Taken together, our results support a mechanism whereby CLASPs stabilize a nucleotide-
411 dependent intermediate state of the microtubule end, which occurs as the microtubule transitions
412 from growth to catastrophe. For dynamically growing microtubules, extending the period of time
413 spent in the intermediate state would allow the microtubule to re-enter the growth phase, thus
414 avoiding catastrophe. We further propose that stabilizing the intermediate state underlies
415 CLASP's mechanism of microtubule rescue. For example, lattice defects could transiently
416 stabilize the fast-shrinking ends after catastrophe, prompting a return to the intermediate state,
417 which is recognized and stabilized by CLASP. Indeed, previous work showed that CLASP
418 promotes lattice repair and that just a few CLASP molecules are sufficient to promote
419 microtubule rescue (Aher et al. 2018, Aher et al. 2020). We, therefore, present a unifying
420 mechanism underlying the two major activities of CLASP in suppressing catastrophe and
421 promoting rescue. Overall, our discovery that CLASP1 stabilizes the intermediate state between
422 microtubule growth and shrinkage in a nucleotide-dependent manner provides key mechanistic
423 insights into an important family of microtubule regulatory proteins. To what extent other
424 microtubule-associated proteins regulate the stability of the intermediate state is an exciting area
425 for future research.

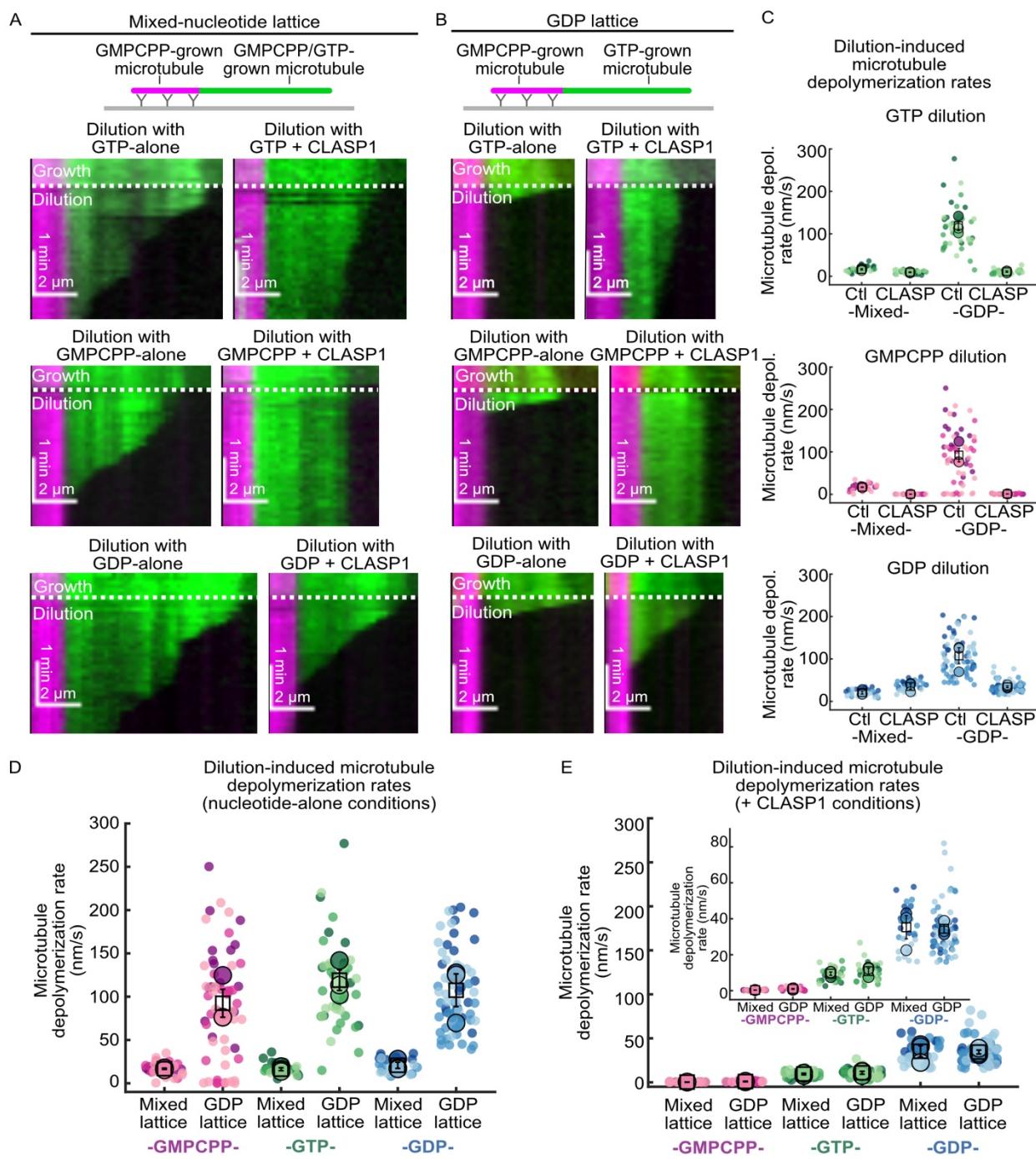

426
427

428 **Figure 1. Human CLASP1 depolymerizes GMPCPP-stabilized microtubules in a GTP-
429 dependent manner.** (A) Schematic of the microtubule depolymerization assay. (B)
430 Representative kymographs of GMPCPP-stabilized microtubules incubated with storage buffer,
431 200 nM chTOG or 200 nM CLASP1. (C) Representative kymographs of GMPCPP-stabilized
432 microtubules incubated with storage buffer, 200 nM chTOG, or 200 nM CLASP1 in the presence
433 of 1 mM GTP. (D) Quantification of microtubule depolymerization rates for the conditions in
434 (B) and (C). N = 50 - 108 microtubules for each condition across at least 2 experimental days.
435 Individual data points from different experiments are plotted in different shades and the means
436 for each experimental repeat are plotted as larger points in the same color. The squares indicate
437 the average of the experimental means and the vertical bars are the standard errors of the means.

438
439

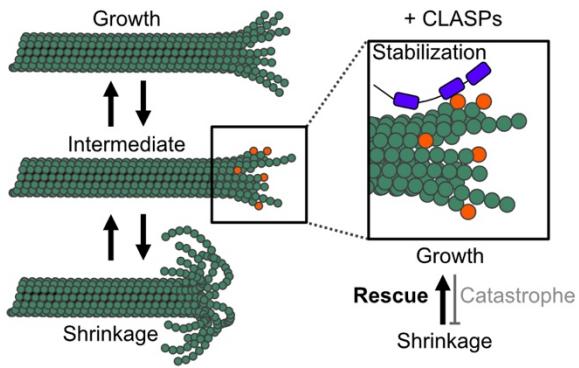

440
441
442 **Figure 2. A minimal TOG2 domain construct is sufficient for microtubule depolymerase**
443 **activity.** (A) Domain structures of human CLASP family members and an EGFP-tagged TOG2
444 domain from CLASP2 α . (B) Representative kymographs of GMPCPP-stabilized microtubules
445 incubated with storage buffer, 200 nM CLASP1, 200 nM CLASP2 α , 200 nM CLASP2 γ , or 200
446 nM EGFP-L-TOG2-S in the presence of 1 mM GTP. (C) Quantification of microtubule
447 depolymerization rates for the conditions in (B). The mean rates of microtubule
448 depolymerization are: 0.19 nm/s +/- 0.03 nm/s (SE; N=221) for the buffer control, 7.1 nm/s +/-
449 0.8 nm/s (SE; N=102) for CLASP1, 3.2 nm/s +/- 0.5 nm/s (SE; N=70) for CLASP2 α , 2.4 nm/s
450 +/- 0.2 nm/s (SE; N=136) for CLASP2 γ , and 2.0 +/- 0.2 nm/s (SE; N=86) for TOG2-S. All data
451 were obtained across at least 3 different experimental days.

454
455
456
457
458
459
460


Figure 3. CLASP1 depolymerizes plus and minus ends in the presence of GTP, but is plus-end specific in the presence of GDP. (A) Schematic of the polarity-marked microtubule assay used to distinguish plus and minus ends. (B) Representative kymographs of polarity-marked microtubules incubated with 0 nM, 16 nM, and 250 nM CLASP1. (C) Quantification of microtubule depolymerization rates as a function of CLASP1 concentration in the presence of 1

461 mM GTP. The plus end data are in dark green and the minus end data are in light green. The
462 solid lines represent the Michaelis-Menten fit to the data. (D) Representative kymographs of
463 polarity-marked microtubules incubated with 200 nM CLASP1 in the no nucleotide, 1 mM GTP,
464 and 1 mM GDP conditions. (E) Quantification of microtubule depolymerization rates as a
465 function of GTP concentration in the presence of 200 nM CLASP1. The plus end data are in dark
466 green and the minus end data are in light green. The solid lines represent the Michaelis-Menten
467 fit to the data. (F) Quantification of microtubule depolymerization rates as a function of GDP
468 concentration in the presence of 200 nM CLASP1. The plus end data are in dark green and the
469 minus end data are in light green. The solid lines represent the Michaelis-Menten fit to the data
470 for the plus end and a linear fit for the minus end.
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487


Figure 4. CLASP1 and TOG2 binding to microtubule ends is modulated by nucleotides. (A) Representative sum projection images of 1 nM Alexa488-CLASP1 on GMPCPP-stabilized microtubules in the absence or presence of the indicated nucleotide. Images are sum-projections of the 488-CLASP1 intensities from the first 5 seconds (100 frames) of 30-second movies imaged at 20 fps. The dotted lines indicate the positions of the corresponding linescans. (B) Fluorescence intensity linescans of the microtubules indicated by the dotted lines in (A). (C) Representative sum projection images of GMPCPP-stabilized microtubules incubated with 200 pM EGFP-L-TOG2-S with and without 1 mM GTP. The top images are sum projections from the first 5 seconds (100 frames) of 30-second movies imaged at 20 fps. Below are representative kymographs of GMPCPP-stabilized microtubules incubated with 200 pM EGFP-L-TOG2-S with and without 1 mM GTP and imaged at 20 fps. (D) Quantification of the single-molecule EGFP-L-TOG2-S dwell times on GMPCPP-stabilized microtubules in the presence and absence of 1 mM GTP. The inset shows the cumulative distribution function of the data. Data are from 3 independent experimental repeats.

488
489

490 **Figure 5. CLASP1 dictates the microtubule depolymerization rate in a nucleotide-
491 dependent manner.** (A) Representative kymographs of mixed-nucleotide microtubule
492 extensions (green) undergoing depolymerization after tubulin dilution. Microtubules were grown
493 with 7 μM A488 tubulin, 0.8 mM GMPCPP and 0.2 mM GTP, and then the buffer was
494 exchanged while imaging (dotted white line) for nucleotides alone or in the presence of 20 nM
495 CLASP1. (B) Representative kymographs of GDP microtubule extensions (green) undergoing
496 depolymerization after tubulin dilution. Microtubules were first grown with 12 μM A488 tubulin
497 and 100 μM GTP, and then the buffer was exchanged while imaging (dotted white line) for

498 nucleotides alone or in the presence of 20 nM CLASP1. (C) Quantification of the mixed-lattice
499 and GDP-lattice microtubule depolymerization rates following dilution with and without
500 CLASP1 in the presence of different nucleotides. Data were obtained over at least 3 different
501 experimental days. The mean rates and statistics can be found in Supplemental Table 1. The data
502 in (C) were replotted to show dilution-induced microtubule depolymerization rates in the
503 presence of nucleotides alone (D) and in the presence of CLASP (E) for the different
504 microtubule templates.
505
506

507
508

509 **Figure 6. CLASPs stabilize an intermediate state between microtubule growth and**
510 **shrinkage.** Microtubules switch between growth and shrinkage through a metastable
511 intermediate state, characterized by a unique nucleotide-dependent configuration of tubulin at the
512 microtubule end (denoted in orange). CLASPs (purple) recognize and stabilize this intermediate
513 state, thus suppressing catastrophe and promoting rescue.

514

515 **METHODS**

516

517 **DNA constructs**

518

519 Human His-CLASP1 (NM_015282.2) in pFastBacHT vector was purchased from Genscript. The
520 cDNA encoding full-length human CLASP2 α was purchased from Dhamacon (Accession:
521 BC140778.1) and subcloned into a pFastBacHT vector (Invitrogen) containing an N-terminal
522 6xHis-tag. The His-CLASP2 γ construct was generated as previously described (Lawrence et al.,
523 2018). The cDNA encoding His-EGFP-L-TOG2-S in a pRSETa vector was a gift from E.
524 Grishchuk (University of Pennsylvania, Philadelphia, PA, USA) (Luo et al. 2022). The plasmid
525 containing chTOG cDNA was a gift from Stephen Royle (Addgene plasmid # 69108;
526 <http://n2t.net/addgene:69108>; RRID: Addgene_69108). The chTOG cDNA was subcloned into a
527 modified pFastBac vector containing an N-terminal 6xHis tag (a gift from G. Brouhard, McGill
528 University, Montréal, QC, Canada). Cloning products were verified by DNA sequencing.
529

530 **Protein preparation**

531

532 Tubulin purification and fluorescent labeling

533 Bovine brain tubulin was purified using cycles of polymerization and depolymerization using the
534 high-molarity PIPES method (Castoldi and Popov 2003). Tubulin was labeled with
535 tetramethylrhodamine (TAMRA) and Alexa Fluor 488 dyes (ThermoFisher Scientific, Waltham,
536 MA, USA) according to the standard protocols and as previously described (Hyman et al. 1991,
537 Gell et al. 2010). Fluorescently-labeled tubulin was used at a ratio of between 5% and 25% of the
538 total tubulin.
539

540 CLASP and chTOG protein purification

541 His-CLASP1 protein was expressed in baculovirus-infected Sf9 insect cells using the Bac-to-Bac
542 system (Invitrogen). After the first amplification, baculovirus-infected insect cells (BIIC) stocks
543 were used to infect Sf9 cells at a density of 1×10^6 viable cells/ml at a ratio of 10^{-4} BIIC:total
544 culture volume (Wasilko and Lee 2006, Wasilko et al. 2009). Cells were harvested 5 days after
545 infection. His-CLASP1 cell pellets were lysed by one freeze-thaw cycle and Dounce
546 homogenizing in lysis buffer containing 50 mM HEPES (4-(2-hydroxyethyl)-1-
547 piperazineethanesulfonic acid) (pH 7.5), 150 mM NaCl, 2 mM MgCl₂, 5% (v/v) glycerol, 0.1%
548 (v/v) Tween-20, 2 mM MgCl₂, 10 mM imidazole, 1 mM dithiothreitol (DTT) and supplemented
549 with protease inhibitors. Genomic DNA was sheared by passing the lysate through an 18-gauge
550 needle. The crude lysates were clarified by centrifugation for 20 min at 4°C and 35,000 rpm in a
551 Beckman L90K Optima and 50.2 Ti rotor. Clarified lysates were applied to a HisTrapHP column
552 (GE Lifesciences) according to the manufacturer's protocol. His-CLASP1 protein was eluted in
553 50 mM HEPES (pH 6.8), 150 mM NaCl, 5% (v/v) glycerol, 0.1% (v/v) Tween-20, 2 mM MgCl₂,
554 1 mM DTT, 50 mM L-glutamate, 50 mM L-arginine, and a linear gradient of 50 mM - 300 mM
555 imidazole. His-CLASP1 was further purified and buffer exchanged into CLASP storage buffer
556 (25 mM PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] [pH 6.8], 150 mM KCl, 5% (v/v)
557 glycerol, 0.1% (v/v) Tween-20, 50 mM L-glutamate, 50 mM L-arginine, and 1 mM DTT) by size
558 exclusion chromatography using a Superdex 200 Increase 10/300 GL column (Cytiva). Purified

559 CLASP1 was labeled using Alexa Fluor 488 Microscale Protein Labeling Kit (ThermoFisher
560 Scientific, cat. #A30006) according to the manufacturer's instructions.
561

562 His-CLASP2 α protein was expressed in Sf9 insect cells and purified as described above for His-
563 CLASP1 with the following modifications. Cell pellets were lysed in 50 mM PIPES (pH 6.8),
564 120 mM KCl, 2 mM MgCl₂, 50 mM L-glutamate, 50 mM L-arginine, 10% glycerol (v/v), 0.1%
565 (v/v) Tween-20, 1 mM DTT and supplemented with protease inhibitors. His-CLASP2 α was
566 eluted in 50 mM PIPES (pH 6.8), 400 mM KCl, 5% (v/v) glycerol, 0.1% (v/v) Tween-20, 2 mM
567 MgCl₂, 1 mM DTT, 50 mM L-glutamate, 50 mM L-arginine, and a linear gradient of 50 mM -
568 300 mM imidazole. Purified His-CLASP2 α from the HisTrap column was desalted into CLASP
569 storage buffer using an Amicon centrifugal filter. His-CLASP2 γ protein was expressed in Sf9
570 insect cells and purified as previously described (Lawrence et al. 2018).
571

572 His-EGFP-L-TOG2-S protein was expressed in BL21(DE3) *E. coli* cells. Expression was
573 induced with 0.2 mM IPTG at 18°C for 16 h. Cells were lysed for 1 hr at 4°C in 50 mM HEPES
574 (pH 7.5), 300 mM NaCl, 2 mM MgCl₂, 5% (v/v) glycerol, 0.1% (v/v) Tween-20, 1 mM DTT and
575 40 mM imidazole and supplemented with 1 mg/ml lysozyme, 10 mg/ml PMSF and EDTA-free
576 protease inhibitors (Roche). The crude lysate was sonicated on ice and then clarified by
577 centrifugation for 30 min at 4°C and 35,000 rpm in a Beckman L90K Optima and 50.2 Ti rotor.
578 Clarified lysates were applied to a HisTrapHP column (Cytiva) according to the manufacturer's
579 protocol. His-EGFP-L-TOG2-S protein was eluted with 50 mM HEPES (pH 7.5), 500 mM NaCl,
580 2 mM MgCl₂, 5% (v/v) glycerol, 0.1% (v/v) Tween-20 and 1 mM DTT and linear gradient of 40
581 mM - 500 mM imidazole. Purified His-EGFP-L-TOG2-S from the HisTrap column was desalted
582 into CLASP storage buffer using a PD-10 desalting column (Cytiva).
583

584 His-chTOG protein was expressed in Sf9 insect cells and purified as described above for His-
585 CLASP1 with the following modifications. Cell pellets were lysed in buffer containing 50 mM
586 HEPES (pH 7.2), 400 mM KCl, 2 mM MgCl₂, 10% glycerol, 0.005% Brij35, 1 mM dithiothreitol
587 (DTT) and supplemented with protease inhibitors. His-chTOG protein was eluted in 50 mM
588 HEPES (pH 7.2), 400 mM KCl, 2 mM MgCl₂, 10% (v/v) glycerol, 0.005% (v/v) Brij35, 1 mM
589 dithiothreitol (DTT), and a linear gradient of 60 mM - 400 mM imidazole. His-chTOG was
590 further purified and buffer exchanged into storage buffer (50 mM HEPES [pH 7.2], 400 mM
591 KCl, 2 mM MgCl₂, 10% (v/v) glycerol, 0.005% (v/v) Brij35, 1 mM DTT) by size exclusion
592 chromatography using a Superdex 200 Increase 10/300 GL column (Cytiva).
593

594 Protein purity was assessed by SDS-PAGE and/or mass spectrometry analysis. All proteins were
595 snap frozen in liquid nitrogen as single-use aliquots and stored at -80°C.
596

597 **TIRF microscopy and microfluidic channel preparation**

598 Imaging was performed using a Nikon Eclipse Ti microscope with a 100 \times /1.49 n.a. TIRF
599 objective (Nikon, Tokyo, Japan), Andor iXon Ultra EM-CCD (electron multiplying charge-
600 coupled device) camera (Andor, Belfast, UK); 488- and 561- solid-state lasers (Nikon Lu-NA);
601 HS-625 high-speed emission filter wheel (Finger Lakes Instrumentation, Lima, NY USA); and
602 standard filter sets. For the data in Figure S2, images were acquired with a Nikon high speed Ti-
603 E microscope with epifluorescence, a 100x/1.49 TIRFApo objective and an Andor Neo 5.5

604 sCMOS camera (2560x2160 pixels, 1 pixel = 6.5 μm x 6.5 μm). In both cases, the microscopes
605 were computer-controlled using Nikon Elements. A Tokai-Hit objective heater was used to
606 maintain the sample at 35°C for all experiments. Images were acquired with exposure times of
607 50 ms – 200 ms and at the frame rates specified in the methods.

608 Microscope chambers were constructed as previously described (Gell et al. 2010). Briefly, 22 \times
609 22 mm and 18 \times 18 mm silanized coverslips were separated by strips of Parafilm to create
610 narrow channels for the exchange of solution. The channels were rinsed with BRB80 (80 mM
611 PIPES adjusted to pH 6.8 with KOH, 1 mM MgCl₂, and 1 mM EGTA), incubated with 1:50 anti-
612 TRITC antibody (ThermoFisher Scientific. #A-6397) in BRB80 for 5 min, rinsed with BRB80,
613 incubated with 1% Pluronic F127 in BRB80 for 30 min and rinsed again with BRB80.
614

615 **GMPCPP-stabilized microtubule depolymerization assay**

616 GMPCPP-stabilized microtubules (TAMRA-labeled) were prepared according to standard
617 protocols (Gell et al. 2010). Microtubules were introduced into the imaging chamber and adhered
618 to anti-TRITC antibody-coated coverslip surfaces. Reaction mixes containing concentrations of
619 the proteins and nucleotides specified in the main text were introduced into the channels in
620 imaging buffer. The imaging buffer consisted of BRB80 supplemented with 40 mM glucose, 40
621 $\mu\text{g}/\text{ml}$ glucose oxidase, 16 $\mu\text{g}/\text{ml}$ catalase, 0.5 mg/ml casein, 50 mM KCl, 10 mM DTT and 1
622 mM MgCl₂. Microtubules were imaged for 15 minutes at a frame rate of 0.04 fps. Microtubule
623 lengths were tracked over time with FIESTA (Ruhnow et al. 2011) and used to calculate mean
624 depolymerization rates for the first 5 minutes of depolymerization. For each individual
625 microtubule, the filament length in every frame for the first 5 minutes of the movie (0.04 fps)
626 was plotted against time in MATLAB, and the depolymerization rates were determined from the
627 slope of the linear regression line fitted to the data. Outliers were identified as $\pm 3 \times \text{SD}$ away
628 from the mean and discarded. Data were plotted as “SuperPlots” in which individual data points
629 are color-coded by experimental repeat (Lord et al. 2020). Statistical significance testing was
630 performed on the means of the experimental repeats using a paired two-tailed t-test, or one-way
631 ANOVA on the pooled data followed by a post hoc Tukey HSD as specified in the text.
632

633 **Polarity-marked microtubule depolymerization assay**

634 Polarity-marked microtubules were generated by polymerizing A488-labeled GMPCPP-tubulin
635 extensions from TAMRA-labeled microtubule seeds with 3.5 μM - 5 μM A488-tubulin and 1
636 mM GMPCPP for 10 minutes in microfluidic channels. Since microtubules grown with
637 GMPCPP do not undergo catastrophe and microtubule plus ends grow faster than minus ends,
638 the two ends were distinguished by their lengths, with the longer extension designated as the plus
639 end and the shorter extension as the minus end. Reaction mixes containing CLASP1 and
640 nucleotides as indicated in the main text were introduced into the channels in imaging buffer, and
641 microtubule depolymerization was imaged for 20 minutes at a frame rate of 0.04 fps.
642 Microtubule depolymerization rates were determined independently for each end of the A448-
643 GMPCPP-stabilized extensions on kymographs over the first 5 minutes of the experiment.
644 Outliers were identified as $\pm 3 \times \text{SD}$ away from the mean and discarded. The depolymerization
645 rates of plus and minus ends for the titrations of CLASP1, GTP, and GDP (plus-end only) were
646 fit to the Michaelis-Menten equation:
647

649

$$\nu = \frac{\nu_{max}[S]}{K_d^h + [S]}$$

650

651 where ν_{max} is the maximum depolymerization rate, K_m is the concentration at which half-
652 maximum rate is achieved

653

654 **Tubulin dilution experiments**

655

656 Microtubules with mixed-nucleotide and GDP lattices were polymerized in the microfluidic
657 channels from GMPCPP-stabilized microtubule seeds. Mixed lattice extensions were grown with
658 7 μ M A488-tubulin and a nucleotide mixture containing 0.2 mM GTP and 0.8 mM GMPCPP for
659 20 minutes, resulting in microtubule lattices with an estimated nucleotide content of
660 approximately 50% GTP and 50% GMPCPP (Tropini et al. 2012). GDP microtubules were
661 grown with 12 μ M A488-tubulin and 1 mM GTP for 10 minutes. Buffer exchange was
662 performed using filter paper to dilute soluble tubulin and introduce reaction mixtures containing
663 nucleotides with or without 23 nM CLASP1 while imaging. Post-dilution, mixed-lattice
664 microtubules were imaged for 15 minutes at a frame rate of 0.2 fps, and GDP-lattice
665 microtubules were imaged at a frame rate of 1 fps for 5 minutes. Microtubule plus-end
666 depolymerization rates were determined from kymographs for the first 5 minutes after dilution.
667 Outliers were identified as $\pm 3 \times SD$ away from the mean and discarded. Data were plotted as
668 “SuperPlots” as described above and statistical significance testing was performed on the means
669 of the experimental repeats using a paired two-tail t-test.

670

671 **Single-molecule dwell time analysis**

672

673 GMPCPP-stabilized microtubules were incubated for 2 minutes with 200 pM EGFP-L-TOG2-S
674 or 1 nM A488-labelled CLASP1 to allow the reaction to equilibrate in the imaging chambers
675 prior to imaging. For, EGFP-L-TOG2-S, images were acquired at 20 fps for 30 seconds using the
676 maximum 488 nm laser power and 50 ms exposure. For 488-CLASP1, images were acquired at 2
677 fps for 5 minutes. An image of the microtubule seed was taken before and after the timelapse.
678 The durations of the binding events on microtubule ends were measured from kymographs
679 generated in Fiji (Schindelin et al. 2012) by manually marking the beginning and end of each
680 event. Dwell times were plotted as histograms with 0.2 s (4-frame) bins and cumulative
681 distribution frequency (CDF) plots in MATLAB. Statistical significance was determined using a
682 Mann-Whitney test.

683

684 **Computational simulations**

685

686 To understand how the process of CLASP-mediated nucleotide-dependent depolymerization
687 progresses over time, we traced the experimental kymographs of polarity-marked GMPCPP-
688 stabilized microtubules incubated with 61.5 nM CLASP and 1 mM GTP and looked at the time
689 dependence of depolymerization rates at microtubules minus and plus ends (Figure S2).

690

691 We modeled microtubule depolymerization by incorporating the feature of nucleotide exchange
692 at tubulin dimers incorporated in a microtubule. To implement the exchange kinetics at tubulin
dimer level in the model, we first re-shape/project the hollow cylindrical manifold of a

693 microtubule onto a 2-dimensional lattice where each lattice node represents a site for the tubulin
694 dimer (Figure S1A). Of note, the 2-dimensional lattice is a rectangular domain of size $L_x \times L_y$
695 where L_x denotes the number of tubulin dimers in a single protofilament, and L_y denotes the total
696 number of protofilaments (N_{pf}) in the microtubule under consideration (typically 14 for
697 GMPCPP-stabilized microtubules, see Figure S1A). For simplicity, we considered that all the
698 protofilaments in a microtubule are of same length as the microtubule itself. Each lattice site can
699 accommodate at most a single tubulin dimer. The nucleotide exchange at a site (either at
700 microtubule lattice or at microtubule ends or both) was considered as a ‘change of state’ of a
701 tubulin dimer residing at the site under consideration (as illustrated in Figure S1A, where upon
702 nucleotide exchange, ‘green’ sites turn into ‘blue’).

703 In simulations, the nucleotide exchange happens with pre-defined rates at tubulin dimers
704 incorporated at the microtubule ends as well as at the tubulin dimers embodied within the
705 microtubule lattice. In experiments, we observed that in presence of a fixed concentration of
706 GTP, the depolymerization rate at microtubules ends increases with increasing CLASP
707 concentration (Figure 3). This observation led us to consider the rate of exchange in simulations
708 to be proportional to the CLASP concentration. However, in experiments, in absence of CLASP
709 (i.e zero CLASP concentration), the ends also depolymerize, albeit at a much slower rate.
710 Henceforth, there would be another concentration-independent timescale associated with the
711 exchange kinetics. Taken together, the effective exchange rate at plus/minus end was considered
712 to be $K_{plus/minus} = k_{exchange}^{0-plus/minus} + k_{exchange}^{plus/minus}$ [M] where [M] is the effective CLASP
713 concentration and $k_{exchange}^{0-plus/minus}$ is the CLASP concentration independent nucleotide exchange
714 rates at microtubule ends. Further, the probability of exchange $p_{exchange}^{plus/minus}$ is defined as $(1 -$
715 $\exp(-K_{plus/minus} \Delta t))$ where Δt denotes the time step chosen for the simulation.
716

717 In each iteration of the simulation, we scanned the columns at the microtubule ends and
718 randomly visited all N_{pf} number of sites along the rows. Upon visiting a randomly picked
719 microtubule end site, we drew a random number p between 0 and 1 from uniform distribution. If
720 p is less than $p_{exchange}^{plus}$ at the plus end (or $p_{exchange}^{minus}$ at the minus end), we considered that the
721 nucleotide exchange had occurred at the site under consideration. Further we considered that a
722 terminally exposed column would fall off from a microtubule end if a critical number of tubulin
723 dimers are exchanged at the exposed column. Through this iterative exchange process, if the
724 number of exchanged sites at an exposed end column equals/exceeds a predetermined threshold
725 value ($N_{threshold}$), that end column falls off. For our simulations, if not mentioned otherwise,
726 $N_{threshold}$ was chosen to be 6 (Atherton et al. 2018). In the model, removal of a terminally exposed
727 end column marks the depolymerization of a linear array of tubulin dimers at microtubule end
728 which shortens the microtubule length by 8 nm-the length of a single tubulin dimer (Figure
729 S1A).
730

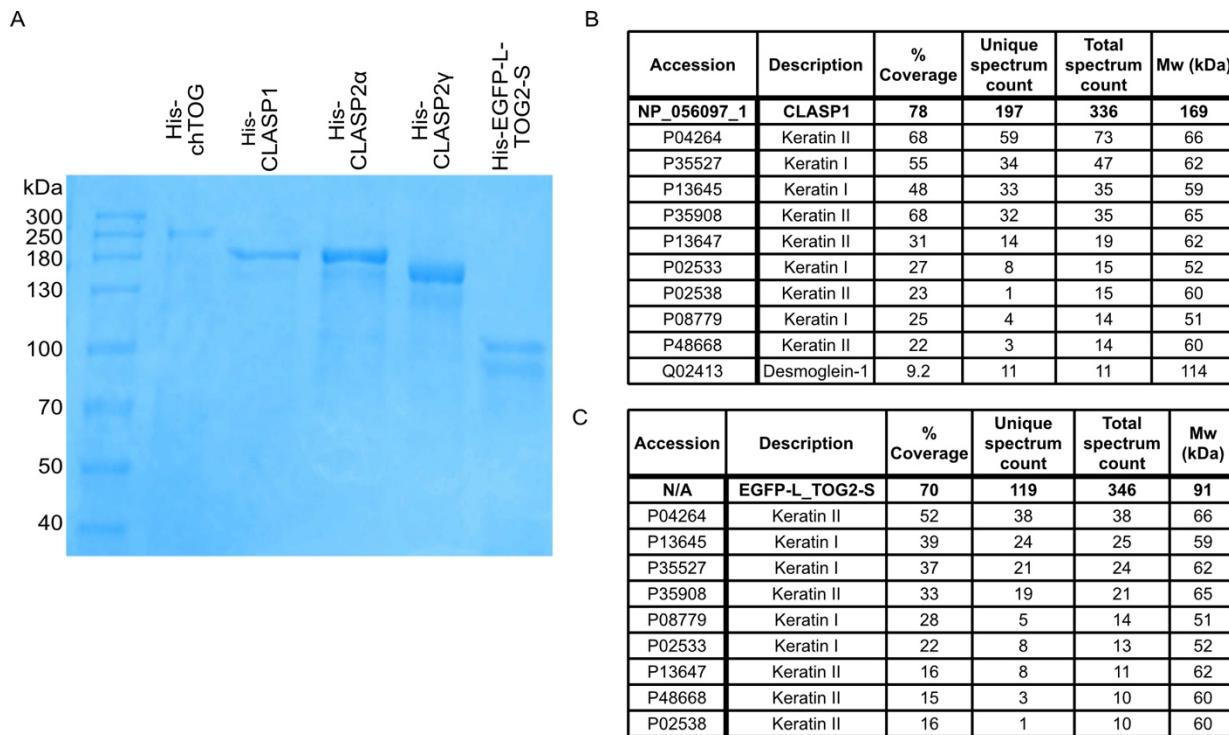
731 Next, we introduced the nucleotide exchange at tubulin dimers integrated within microtubule
732 lattice at a pre-defined rate in addition to the exchanges that are occurring at the microtubule
733 ends. The rationale underlying this consideration is described in the following. At plus ends,
734 CLASP may facilitate nucleotide exchange from GMPCPP to GTP which acts as a precursor for
735 terminal tubulin removal and depolymerization. However, at minus ends, the exchangeable

736 nucleotide in the β -tubulin subunit is ‘buried’ inside the lattice. Therefore, if the exchange
737 happens at the minus ends, it may also happen within the microtubule lattice.

738

739 For the argument posed above, we chose the minus end exchange rate to be the same as the
740 exchange rate on the lattice. The probability of lattice exchange $p_{exchange}^{lattice}$ is defined as
741 $p_{exchange}^{lattice} = (1 - \exp(-K_{lattice} \Delta t))$ where $K_{lattice}$ is $k^{lattice} [M]$ and $k^{lattice}$ denotes the rate of lattice
742 exchange per unit time per unit concentration. For simplicity, in simulations having lattice
743 exchange switched ‘on’, we chose $k_{exchange}^{0-plus/minus}$ – the CLASP concentration-independent end
744 exchange rates to be zero as its effect was small compared to concentration-dependent end
745 exchange rates. In presence of nucleotide exchange at lattice incorporated tubulin dimers, at a
746 particular time step, if a terminally exposed column of dimers falls off, iteratively the adjacent
747 column (the newly exposed one) also falls off when the number of exchanged sites at that
748 column reaches/exceeds $N_{threshold}$.

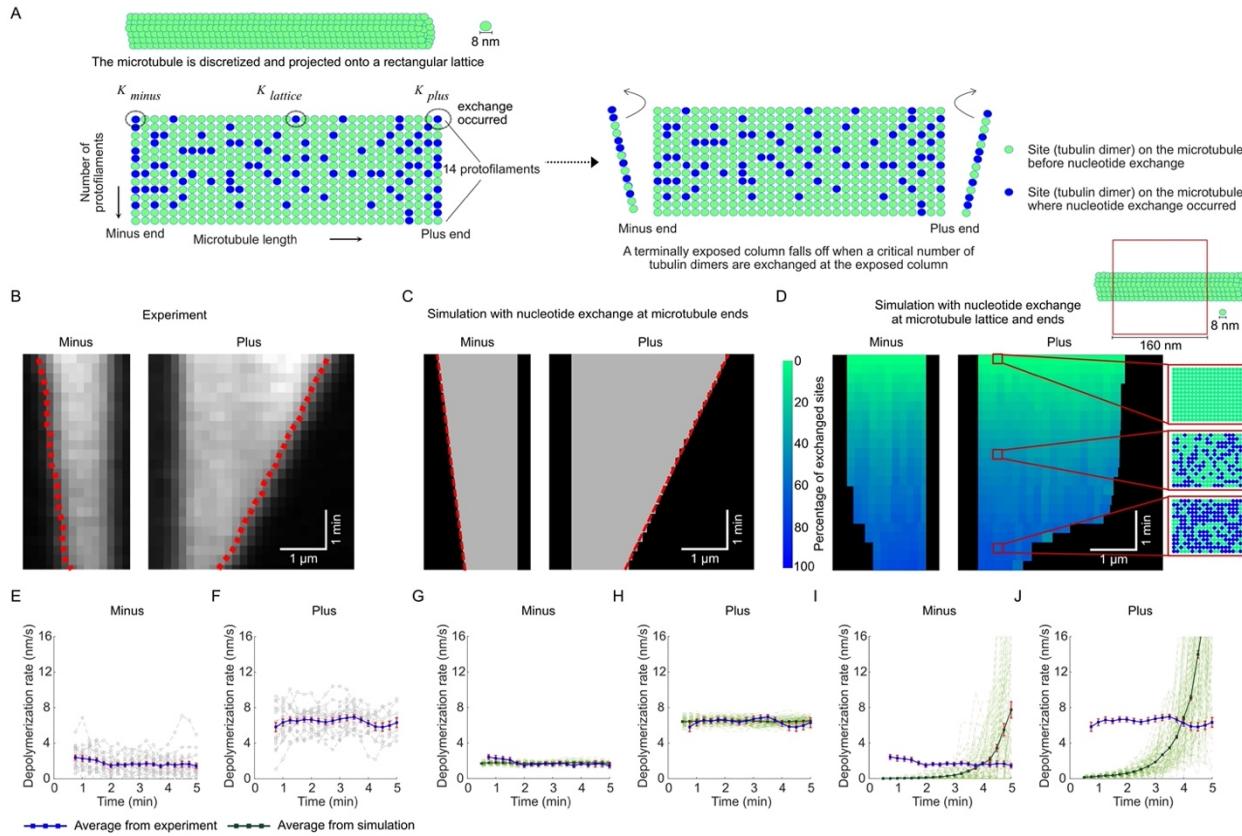
749


750 The model parameters are listed in Table S2. The code for the agent-based nucleotide exchange
751 simulations was written in MATLAB (The MathWorks, Natick, MA) and is available at
752 <https://github.com/ZanicLab/>. A single simulation run of microtubule depolymerization takes
753 minutes of real-time in Apple M1 CPU, RAM 16 GB.

754

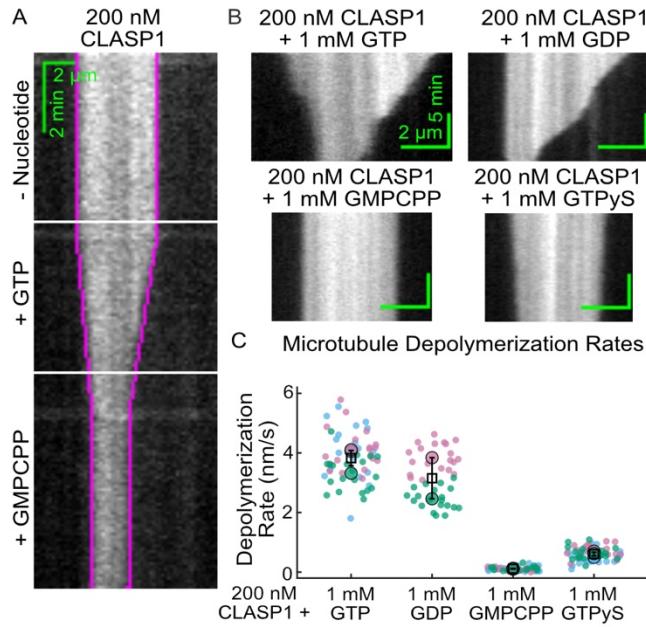
755

756 **SUPPLEMENTAL MATERIALS**

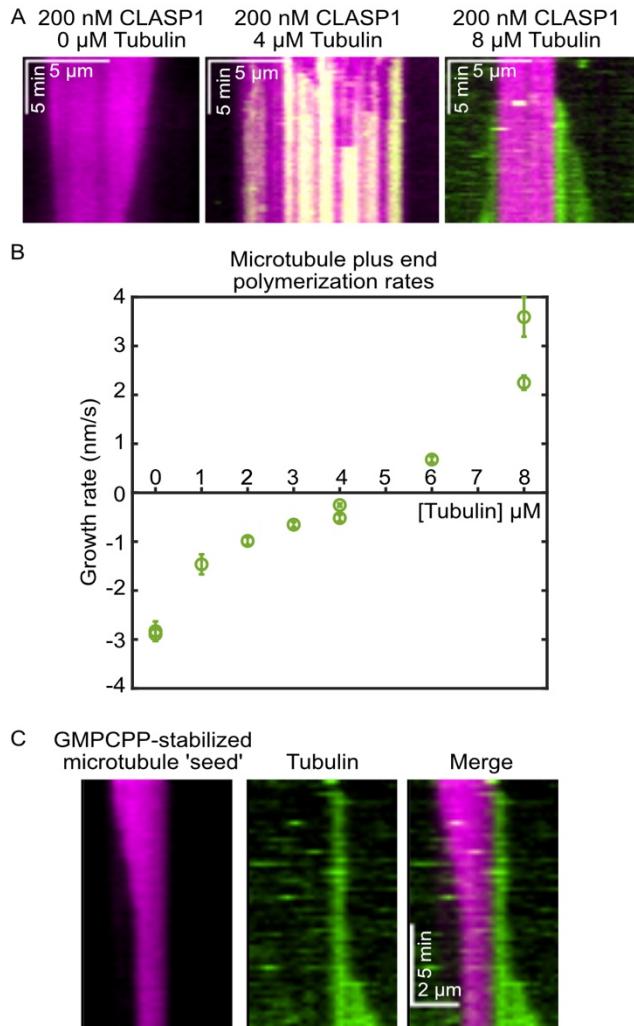

757

758
759

760 **Figure S1. Purification of proteins used in this study.** (A) SDS-page gel showing purified His-
761 chTOG, His-CLASP1, His-CLASP2 α , His-CLASP2 γ and His-EGFP-L-TOG2-S proteins. The
762 lower band in the His-EGFP-L-TOG2-S sample likely represents a truncated protein or
763 breakdown product as no significant contaminating proteins were found in the mass spectrometry
764 analysis. (B) Mass spectrometry analysis of His-CLASP1 and His-EGFP-L-TOG2-S proteins.
765 The hits with a total spectrum count of 10 or more are listed.


766
767

768
769


770 **Figure S2. Computational modeling demonstrates that nucleotide exchange in the**
 771 **microtubule lattice does not recapitulate the characteristics of the microtubule**
 772 **depolymerization observed in experiments.** (A) Schematics of the computational model for
 773 CLASP-dependent nucleotide-exchange leading to depolymerization. (B) A representative
 774 kymograph of an experimental microtubule depolymerizing in the presence of 1 mM GTP and
 775 61.5 nM CLASP. The red dashed lines indicate the traces of the microtubule ends obtained using
 776 KymographClear and KymographDirect (Mangeol et al., 2016). (C) Representative kymograph
 777 shows microtubule depolymerization simulated using the model of nucleotide exchange solely at
 778 the microtubule ends. (D) Representative color-coded kymograph shows microtubule
 779 depolymerization simulated using model of nucleotide exchange throughout the entire
 780 microtubule lattice in addition to the exchange at the ends. The colormap represents the
 781 percentage of exchanged sites on the microtubule. The ‘zoomed in’ regions on the kymograph
 782 show the tubulin dimers within a 160 nm long segment on the microtubule lattice, at three
 783 different time points (0 min, 2.5 min and 5 min). Over the course of time, more and more tubulin
 784 dimers are exchanged (‘green’ sites turning into ‘blue’ sites) inside the microtubule lattice. (E-F)
 785 The time dependence of depolymerization rate at microtubule minus (E) and plus (F) ends as
 786 observed in experiments. In (E-F) the grey curves denote trajectories obtained from individual
 787 microtubules in experiment (N=20). The blue curve denotes the average curve evaluated from
 788 grey trajectories. (G-H) The time dependence of depolymerization rate at microtubule minus (G)
 789 and plus (H) ends as obtained from the model of nucleotide exchange solely at the microtubule
 790 ends. (I-J) The time dependence of depolymerization rate at microtubule minus (I) and plus (J)
 791 ends as obtained from the model of nucleotide exchange throughout the entire microtubule lattice
 792 in addition to the exchange at the ends. In (G-J) the light green curves denote trajectories

793 obtained from individual microtubules in simulation. The dark green curve denotes the average
794 curve evaluated from individual microtubule trajectories in simulation. The instantaneous
795 depolymerization rates presented in (E-J) were estimated by averaging over a 1 min time
796 window. The error bars represent SEM (N=20 in experiment, N=100 in all simulated cases).
797
798

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

Figure S3. The post-hydrolysis nucleotide state is required for CLASP1's microtubule depolymerase activity. (A) Representative kymograph of a GMPCPP-stabilized microtubule incubated sequentially with no nucleotide, 1 mM GTP and 1 mM GMPCPP. The white horizontal lines indicate the times of solution exchange; the purple line is a manual trace of the microtubule end position overlaid onto the kymograph. (B) Representative kymographs of GMPCPP-stabilized microtubules incubated with buffer or 200 nM CLASP1 in the presence of 1 mM GDP, 1 mM GMPCPP and 1 mM GTP γ S. (C) Quantification of microtubule depolymerization rates for the conditions in the presence of different nucleotides. The mean depolymerization rates were 3.8 nm/s \pm 0.3 nm/s; (SE, N=60) with GTP, 3.1 nm/s \pm 0.7 nm/s; (SE, N = 40) with GDP, 0.115 \pm 0.008 nm/s; (SE, N=60) with GMPCPP, and 0.61 \pm 0.06 nm/s; (SE, N=60) with GTP γ S.

814
815
816
817
818
819
820
821
822
823

Figure S4. Soluble tubulin does not abolish CLASP's depolymerase activity until the tubulin concentration is above the critical concentration for microtubule growth. (A) Representative kymographs of microtubules in the presence of 0 μ M, 4 μ M and 8 μ M soluble tubulin and 200 nM CLASP1. The stable microtubule seed is shown in magenta and the tubulin is shown in green. (B) Quantification of the microtubule plus-end polymerization rate across a range of tubulin concentrations from 0 μ M to 8 μ M in the presence of 200 nM CLASP1. (C) An example kymograph of a microtubule undergoing CLASP-mediated depolymerization at one end polymerization at the other in the presence of 8 μ M soluble tubulin and 200 nM CLASP1.

	Mixed nucleotide microtubules							GDP microtubules							
	Control			CLASP1			p value (control versus CLASP1)	Control			CLASP1			p value (control versus CLASP1)	
	mean rate (nm/s)	SE	number of MTs	mean rate (nm/s)	SE	number of MTs		mean rate (nm/s)	SE	number of MTs	mean rate (nm/s)	SE	number of MTs		
824	GTP	16	2	28	9.4	0.9	30	0.117	115	12	42	11	2	33	0.001
825	GDP	21	4	29	35	6	30	0.095	107	19	68	34	2	64	0.059
826	GMPCPP	16.8	0.7	30	0.33	0.04	26	0.002	92	16	58	1	0.3	25	0.03

Supplementary Table 1. Depolymerization rates of different microtubule substrates in the presence and absence of CLASP1. Data related to Figure 5C. Each condition represents data from 3 independent experimental days.

830

Parameter	Description	Value	Notes
N_{pf}	Number of protofilaments	14	Matching GMPCPP-microtubules
$N_{threshold}$	Critical number of exchanged dimers within a single column that triggers depolymerization of that column	6	Atherton et al., 2018
Δt	Simulation time step	0.01 s	Chosen by numerical experimentation
[M]	CLASP concentration	61.5 nM	Chosen from experimental data
$k_{exchange}^{0\text{-plus/minus}}$ [in the model of nucleotide exchange solely at the microtubule ends]	CLASP concentration independent nucleotide exchange rates at microtubule ends	0.017 s ⁻¹ at plus end; 0.014 s ⁻¹ at minus end	Numerically obtained by matching experimental depolymerization rates in absence of CLASP
$k_{exchange}^{plus/minus}$ [in the model of nucleotide exchange solely at the microtubule ends]	Nucleotide exchange rates at microtubule ends /[time][CLASP concentration]	0.00678 s ⁻¹ nM ⁻¹ at plus end, 0.00167 s ⁻¹ nM ⁻¹ at minus end	Numerically obtained by matching experimental depolymerization rates in presence of 61.5 μ M CLASP
$k_{lattice}^{lattice}$ [in the model of nucleotide exchange throughout the entire microtubule lattice in addition to the exchange at the ends]	Nucleotide exchange rates at microtubule lattice/[time][CLASP concentration]	0.000056 s ⁻¹ nM ⁻¹	Numerically obtained by matching experimental depolymerization rates in presence of 61.5 μ M CLASP
$k_{exchange}^{plus/minus}$ [in the model of nucleotide exchange throughout the entire microtubule lattice in addition to the exchange at the ends]	Nucleotide exchange rates at microtubule ends /[time][CLASP concentration]	0.00019 s ⁻¹ nM ⁻¹ at plus end, 0.000056 s ⁻¹ nM ⁻¹ at minus end	Numerically obtained by matching experimental depolymerization rates in presence of 61.5 μ M CLASP

831

832

833 **Supplementary Table 2.** List of model parameters. Related to Figure S2.

834

835

836 **SUPPLEMENTAL MOVIE CAPTIONS**

837 **Movie 1.** GMPCPP-stabilized microtubules were incubated with 200 nM CLASP1 in the
838 absence (left) and presence of 1 mM GTP (right).

839 **Movie 2.** Polarity-marked, GMPCPP-stabilized microtubules were incubated with 1 mM GTP in
840 the absence (left) or presence of 500 nM CLASP1 (right).

841

842

843 **ACKNOWLEDGEMENTS**

844

845 We thank S. Hall for help with protein purification, A. Maiorov and E. Grishchuk (University of
846 Pennsylvania) for the kind gift of the EGFP-L-TOG2-S expression construct, G. Brouhard
847 (McGill University) for the modified pFastBac expression vector. We also thank H. McDonald
848 and the Vanderbilt Mass Spectrometry Research Center (MSRC) Cores for the mass
849 spectrometry analysis, which was supported in part by Vanderbilt Ingram Cancer Center
850 Resource Share Scholarship 2020-2909607. We thank members of the Zanic lab, A. Olivares, E.
851 Grishchuk and the Vanderbilt Microtubules and Motors Club for discussions and feedback.
852 E.J.L. acknowledges the support of the National Institutes of Health IBSTO training grant
853 T32CA119925. M.Z. acknowledges support from the National Institutes of Health grant
854 R35GM119552.

855

856

857 **REFERENCES**

858

- 859 • Aher, A., M. Kok, A. Sharma, A. Rai, N. Olieric, R. Rodriguez-Garcia, E. A. Katrukha, T. Weinert, V. Olieric, L. C. Kapitein, M. O. Steinmetz, M. Dogterom and A. Akhmanova (2018). "CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain." *Dev Cell* **46**(1): 40-58 e48.
- 860 • Aher, A., D. Rai, L. Schaedel, J. Gaillard, K. John, Q. Liu, M. Altelaar, L. Blanchoin, M. Thery and A. Akhmanova (2020). "CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation." *Curr Biol* **30**(11): 2175-2183 e2176.
- 861 • Akhmanova, A., C. C. Hoogenraad, K. Drabek, T. Stepanova, B. Dortland, T. Verkerk, W. Vermeulen, B. M. Burgering, C. I. De Zeeuw, F. Grosfeld and N. Galjart (2001). "Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts." *Cell* **104**(6): 923-935.
- 862 • Al-Bassam, J. and F. Chang (2011). "Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP." *Trends Cell Biol* **21**(10): 604-614.
- 863 • Atherton, J., M. Stouffer, F. Francis and C. A. Moores (2018). "Microtubule architecture in vitro and in cells revealed by cryo-electron tomography." *Acta Crystallographica Section D Structural Biology* **74**(6): 1-13.
- 864 • Ayaz, P., S. Munyoki, E. A. Geyer, F. A. Piedra, E. S. Vu, R. Bromberg, Z. Otwinowski, N. V. Grishin, C. A. Brautigam and L. M. Rice (2014). "A tethered delivery mechanism explains the catalytic action of a microtubule polymerase." *Elife* **3**: e03069.
- 865 • Ayaz, P., X. Ye, P. Huddleston, C. A. Brautigam and L. M. Rice (2012). "A TOG:alphabeta-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase." *Science* **337**(6096): 857-860.
- 866 • Bowne-Anderson, H., M. Zanic, M. Kauer and J. Howard (2013). "Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe." *Bioessays* **35**(5): 452-461.
- 867 • Brouhard, G. J. and L. M. Rice (2014). "The contribution of alphabeta-tubulin curvature to microtubule dynamics." *J Cell Biol* **207**(3): 323-334.
- 868 • Brouhard, G. J., J. H. Stear, T. L. Noetzel, J. Al-Bassam, K. Kinoshita, S. C. Harrison, J. Howard and A. A. Hyman (2008). "XMAP215 is a processive microtubule polymerase." *Cell* **132**(1): 79-88.
- 869 • Castoldi, M. and A. V. Popov (2003). "Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer." *Protein Expr Purif* **32**(1): 83-88.
- 870 • Cleary, J. M., T. Kim, A. S. I. Cook, L. A. McCormick, W. O. Hancock and L. M. Rice (2022). "Measurements and simulations of microtubule growth imply strong longitudinal interactions and reveal a role for GDP on the elongating end." *Elife* **11**: e75931.
- 871 • Duellberg, C., N. I. Cade, D. Holmes and T. Surrey (2016). "The size of the EB cap determines instantaneous microtubule stability." *Elife* **5**(APRIL2016): 1-23.
- 872 • Farmer, V. J. and M. Zanic (2021). "TOG-domain proteins." *Curr Biol* **31**(10): R499-R501.
- 873 • Farmer, V. J. and M. Zanic (2022). "Beyond the GTP-cap: Elucidating the molecular mechanisms of microtubule catastrophe." *Bioessays*: e2200081.

- Fedorov, V. A., P. S. Orekhov, E. G. Kholina, A. A. Zhmurov, F. I. Ataullakhanov, I. B. Kovalenko and N. B. Gudimchuk (2019). "Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability." *PLoS Comput Biol* **15**(8): e1007327.
- Gard, D. L. and M. W. Kirschner (1987). "A microtubule-associated protein from *Xenopus* eggs that specifically promotes assembly at the plus-end." *J Cell Biol* **105**(5): 2203-2215.
- Gell, C., V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schaffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic and J. Howard (2010). "Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy." *Methods Cell Biol* **95**(C): 221-245.
- Hyman, A., D. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman and T. Mitchison (1991). "Preparation of modified tubulins." *Methods Enzymol* **196**: 478-485.
- Inoue, Y. H., M. do Carmo Avides, M. Shiraki, P. Deak, M. Yamaguchi, Y. Nishimoto, A. Matsukage and D. M. Glover (2000). "Orbit, a novel microtubule-associated protein essential for mitosis in *Drosophila melanogaster*." *J Cell Biol* **149**(1): 153-166.
- Janosi, I. M., D. Chretien and H. Flyvbjerg (2002). "Structural microtubule cap: stability, catastrophe, rescue, and third state." *Biophys J* **83**(3): 1317-1330.
- Kolenda, C., J. Ortiz, M. Pelzl, S. Norell, V. Schmeiser and J. Lechner (2018). "Unattached kinetochores drive their own capturing by sequestering a CLASP." *Nat Commun* **9**(1): 886.
- Lawrence, E. J., G. Arpag, S. R. Norris and M. Zanic (2018). "Human CLASP2 specifically regulates microtubule catastrophe and rescue." *Mol Biol Cell* **29**(10): 1168-1177.
- Lawrence, E. J. and M. Zanic (2019). "Rescuing microtubules from the brink of catastrophe: CLASPs lead the way." *Curr Opin Cell Biol* **56**: 94-101.
- Lawrence, E. J., M. Zanic and L. M. Rice (2020). "CLASPs at a glance." *J Cell Sci* **133**(8): jcs243097.
- Leano, J. B., S. L. Rogers and K. C. Slep (2013). "A cryptic TOG domain with a distinct architecture underlies CLASP-dependent bipolar spindle formation." *Structure* **21**(6): 939-950.
- Leano, J. B. and K. C. Slep (2019). "Structures of TOG1 and TOG2 from the human microtubule dynamics regulator CLASP1." *PLoS One* **14**(7): e0219823.
- Li, W., T. Moriwaki, T. Tani, T. Watanabe, K. Kaibuchi and G. Goshima (2012). "Reconstitution of dynamic microtubules with *Drosophila* XMAP215, EB1, and Sentin." *J Cell Biol* **199**(5): 849-862.
- Lord, S. J., K. B. Velle, R. D. Mullins and L. K. Fritz-Laylin (2020). "SuperPlots: Communicating reproducibility and variability in cell biology." *J Cell Biol* **219**(6).
- Luo, W., V. Demidov, Q. Shen, H. Girão, M. Chakraborty, A. Maiorov, F. I. Ataullakhanov, C. Lin, H. Maiato and E. L. Grishchuk (2022). "CLASP2 stabilizes GDP-associated terminal tubulins to prevent microtubule catastrophe." *bioRxiv*: 2022.2004.2025.489454.

946 • Mahrer, S. M., J. P. Scripture, A. J. Mauro, E. J. Lawrence, E. M. Jonasson, K. S.
947 Murray, J. Li, M. Gardner, M. Alber, M. Zanic and H. V. Goodson (2022).
948 "Quantification of microtubule stutters: dynamic instability behaviors that are strongly
949 associated with catastrophe." *Mol Biol Cell* **33**(3): ar22.

950 • Maiato, H., A. Khodjakov and C. L. Rieder (2005). "Drosophila CLASP is required for
951 the incorporation of microtubule subunits into fluxing kinetochore fibres." *Nat Cell Biol*
952 **7**(1): 42-47.

953 • Maiato, H., P. Sampaio, C. L. Lemos, J. Findlay, M. Carmena, W. C. Earnshaw and C. E.
954 Sunkel (2002). "MAST/Orbit has a role in microtubule-kinetochore attachment and is
955 essential for chromosome alignment and maintenance of spindle bipolarity." *J Cell Biol*
956 **157**(5): 749-760.

957 • Maki, T., A. D. Grimaldi, S. Fuchigami, I. Kaverina and I. Hayashi (2015). "CLASP2
958 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics."
959 *J Mol Biol* **427**(14): 2379-2395.

960 • Maurer, S. P., N. I. Cade, G. Bohner, N. Gustafsson, E. Boutant and T. Surrey (2014).
961 "EB1 accelerates two conformational transitions important for microtubule maturation
962 and dynamics." *Curr Biol* **24**(4): 372-384.

963 • Mimori-Kiyosue, Y., I. Grigoriev, H. Sasaki, C. Matsui, A. Akhmanova, S. Tsukita and I.
964 Vorobjev (2006). "Mammalian CLASPs are required for mitotic spindle organization and
965 kinetochore alignment." *Genes Cells* **11**(8): 845-857.

966 • Mitchison, T. and M. Kirschner (1984). "Dynamic instability of microtubule growth."
967 *Nature* **312**(5991): 237-242.

968 • Mitchison, T. J. (1993). "Localization of an exchangable GTP binding site at the plus end
969 of microtubules." *Science* **261**(20. Aug.): 1044-1047.

970 • Nogales, E., M. Whittaker, R. A. Milligan and K. H. Downing (1999). "High-resolution
971 model of the microtubule." *Cell* **96**(1): 79-88.

972 • Piedra, F. A., T. Kim, E. S. Garza, E. A. Geyer, A. Burns, X. Ye and L. M. Rice (2016).
973 "GDP-to-GTP exchange on the microtubule end can contribute to the frequency of
974 catastrophe." *Mol Biol Cell* **27**(22): 3515-3525.

975 • Ruhnow, F., D. Zwicker and S. Diez (2011). "Tracking single particles and elongated
976 filaments with nanometer precision." *Biophys J* **100**(11): 2820-2828.

977 • Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
978 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein,
979 K. Eliceiri, P. Tomancak and A. Cardona (2012). "Fiji: an open-source platform for
980 biological-image analysis." *Nat Methods* **9**(7): 676-682.

981 • Shirasu-Hiza, M., P. Coughlin and T. Mitchison (2003). "Identification of XMAP215 as a
982 microtubule-destabilizing factor in Xenopus egg extract by biochemical purification." *J
983 Cell Biol* **161**(2): 349-358.

984 • Slep, K. C. (2009). "The role of TOG domains in microtubule plus end dynamics."
985 *Biochem Soc Trans* **37**(Pt 5): 1002-1006.

986 • Sousa, A., R. Reis, P. Sampaio and C. E. Sunkel (2007). "The Drosophila CLASP
987 homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by
988 promoting the pause state." *Cell Motil Cytoskeleton* **64**(8): 605-620.

989 • Tran, P. T., R. A. Walker and E. D. Salmon (1997). "A metastable intermediate state of
990 microtubule dynamic instability that differs significantly between plus and minus ends." J
991 Cell Biol **138**(1): 105-117.
992 • Tropini, C., E. A. Roth, M. Zanic, M. K. Gardner and J. Howard (2012). "Islands
993 containing slowly hydrolyzable GTP analogs promote microtubule rescues." PLoS One
994 **7**(1): e30103.
995 • Wasilko, D. and S. E. Lee (2006). "TIPS: Titerless Infected-Cells Preservation and Scale-
996 Up." BioProcessing Journal **5**(3): 29-32.
997 • Wasilko, D. J., S. E. Lee, K. J. Stutzman-Engwall, B. A. Reitz, T. L. Emmons, K. J.
998 Mathis, M. J. Bienkowski, A. G. Tomasselli and H. D. Fischer (2009). "The titerless
999 infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-
1000 sensitive human soluble guanylate cyclase (sGC) from insect cells infected with
1001 recombinant baculovirus." Protein Expr Purif **65**(2): 122-132.
1002