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Understanding the impacts of cash crop expansion on natural forest is of fundamental 21 

importance. However, for most crops there are no remotely-sensed global maps1, and 22 

global deforestation impacts are estimated using models and extrapolations. Natural 23 

rubber is an example of a major commodity for which deforestation impacts have been 24 

highly uncertain, with estimates differing more than five-fold1-4. Here we harnessed earth 25 

observation satellite data and cloud computing5 to produce the first high-resolution maps 26 

of rubber and associated deforestation covering all Southeast Asia. Our maps indicate 27 

that rubber-related forest loss has been significantly underestimated in policy, by the 28 

public and in recent reports6-8. Our direct remotely-sensed observations show that 29 

deforestation for rubber is two to threefold higher than suggested by figures currently 30 

widely used for setting policy4. With over 3.76 million hectares of forest loss for rubber 31 

since 1993 (2.77 [2.5-3 95% CI] million hectares since 2000), and over 1 million hectares 32 

of rubber plantations established in Key Biodiversity Areas, the impacts of rubber on 33 

biodiversity and ecosystem services in Southeast Asia are extensive. Thus, rubber 34 

deserves more attention in domestic policy, within trade agreements and in incoming due 35 

diligence regulations.     36 

 37 

Around 90-99% of tropical deforestation is linked to the production of global commodities 38 

such as beef, soy, oil palm, natural rubber, coffee and cocoa 9. Understanding the impacts of 39 

individual commodities on natural forests is of fundamental importance for targeted policies 40 

and interventions. However, with relatively few exceptions – most notably oil palm and soy1,10 41 

– directly observed global or regional maps derived from satellite imagery are unavailable for 42 

most commodities. Instead, commodity-specific global deforestation is typically estimated 43 

using models11,12 and extrapolations13,14 with large levels of uncertainty.    44 

 45 
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Natural rubber is an example of a commodity whose impacts on forests have remained poorly 46 

understood despite its economic importance15 and the potential for widespread deforestation, 47 

land degradation and biodiversity loss13,16-21. Natural rubber is used in the manufacture of 48 

almost three billion tyres per year15,22, and continued and increasing global demand is driving 49 

land use conversion in producer countries14. Production is primarily located in Southeast Asia 50 

(90% of the global production23), with the remainder coming from South and Central America 51 

and more recently also West and Central Africa24. Rubber is produced from the latex of a 52 

tropical tree (Hevea brasiliensis), and the spectral signature of rubber plantations is similar to 53 

forest25, making it challenging to identify conversion of natural forest to rubber plantations 54 

from space. In addition, around 85% of global natural rubber is produced by smallholders26, 55 

meaning that the plantations are scattered and often below 5 ha in size, increasing the challenge 56 

of detecting them from satellite images and capturing them in national crop statistics. 57 

Consequently, the impacts of rubber are surrounded by uncertainty and estimates of rubber-58 

driven deforestation differ by more than five-fold: from less than 1 million ha almost globally 59 

between 2005 and 20183 to more than five million ha between 2003 and 2014 in continental 60 

South-East Asia alone2. Direct observations based on remote sensing have previously only 61 

existed for subsets of Southeast Asia2,27,28, individual countries1,29, or subnational areas30, and 62 

most are outdated, so do not reflect the current risk.  63 

 64 

Currently, the most widely used dataset to estimate global rubber-related deforestation has been 65 

derived using a ‘land balance’ model11. This model combines remotely sensed data on tree 66 

cover loss with non-spatial estimates of crop expansion, derived mainly from national-scale 67 

statistics. The ‘land balance’ approach means that tree cover loss is not spatially linked to 68 

commodity expansion, and therefore is not a substitute for more accurate products that provide 69 

spatially explicit estimates of crop expansion into forest areas, as explicitly acknowledged by 70 
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the authors31. The ‘land balance’-derived data3,4 suggest that rubber is a relatively minor 71 

problem when compared to the impact of other major forest risk commodities, with palm oil 72 

and soy accounting for seven to eight times more deforestation than rubber; and in UK imports6 73 

for 20 and 57 times more deforestation, with rubber sitting on a par with nutmeg. This has 74 

contributed to the reduced the attention that rubber has received as a driver of deforestation 75 

compared to other commodities and has led policy makers to question the need to include 76 

rubber in the European Commission’s proposal for a regulation on deforestation-free products7, 77 

and secondary legislation associated with UK Environment Act Schedule 17 aimed at 78 

addressing illegal deforestation. However, given the inherent uncertainty in model-based 79 

estimates, there is an urgent need for robust evidence to provide guidance for policy 80 

interventions to avoid rubber being prematurely excluded from key policy processes and 81 

interventions, particularly as review of policy will not be due for several years.  82 

 83 

Here we present up-to-date analyses and provide the first Southeast Asia wide maps of rubber 84 

and associated deforestation, encompassing over 90% of the natural rubber production volume. 85 

We used the latest high-resolution Sentinel-2 imagery (at a spatial resolution of 10 m) to map 86 

the extent of rubber across all Southeast Asia in 2021. Our approach is based on the distinctive 87 

phenological signature of rubber plantations which allows them to be distinguished from 88 

typical tropical forests based on leaf-fall and regrowth, which occur in specific time windows 89 

that differ by region. To tackle the challenge of heavy cloud cover in the region we use multi-90 

year imagery composites. We track the deforestation history of locations occupied by rubber 91 

in 2021 using historical Landsat imagery and a spectral-temporal segmentation algorithm 92 

(LandTrendr)32. Here, we use the term ‘deforestation’, but this can include other types of tree 93 

cover loss if that tree cover (e.g., agroforests, plantation forests, agricultural tree crops and 94 

rubber itself) was established prior to the 1980s.  95 
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First rubber map for all Southeast Asia 96 

Our results show that mature rubber plantations occupied an area of 14.5 [5.6–23.4 95% CI] 97 

million hectares in Southeast Asia in 2021, with over 70% of the production area situated in 98 

Indonesia, Thailand and Vietnam. Other significant areas were situated in China, Malaysia, 99 

Myanmar, Cambodia, and Laos (Table 1, Fig. 1 A). The rubber maps achieved an overall 100 

classification accuracy of 0.91 with a producer’s accuracy of 0.83 (Extended Data Table 1). 101 

Our estimates are consistent with the sum of national statistics reported to the Forest and 102 

Agriculture Organization of the United Nations (FAO), according to which the total area of 103 

harvested rubber in the above eight countries was 10.18 million ha in 202023. Due to the 104 

currently low global rubber price many plantations may not be harvested, meaning that 105 

although our mean estimate is higher than the values reported to the FAO, there is a broad 106 

alignment, and our lower confidence interval is in fact exceedingly conservative. Our estimates 107 

are also generally within the bounds estimated by two other recent remote sensing studies for 108 

rubber2,28 (Table 1).   109 

 110 

 111 

Fig. 1 | Rubber distribution in 2021 (A) and associated deforestation (B) across Southeast Asia. For better 112 
visualization, the rubber map (A) was aggregated to 500 m resolution by calculating the proportion of 10 m rubber 113 
pixels in each 500 m pixel; the deforestation due to rubber map (B) was aggregated to 500 m by calculating the 114 
proportion of 30 m deforestation pixels within each 500 m pixel. The maps in their original resolution are available 115 
at https://wangyxtina.users.earthengine.app/view/rubberdeforestationfig1.      116 
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Significant deforestation due to rubber 117 

We used time-series Landsat imagery to identify the deforestation date for all areas classed as 118 

rubber in 2021 in two categories: pre-2000 and 2001-2016 (overall classification accuracy of 119 

0.78; Extended Data Table 2). Specifically, we used the LandTrendr algorithm33, which 120 

identifies break points in the pixels’ spectral history (Normalized Burn Ratio), indicating a 121 

sudden change from forest or other types of tree cover to bare or burnt ground. We only used 122 

the first breakpoint, going as far back in time as the imagery allows (1988), meaning that we 123 

only include rotational plantation clearance into the deforestation estimate if these plantations 124 

were established prior to 1988.  125 

 126 

Our data show that rubber led to significant deforestation across all of Southeast Asia (Fig. 1 127 

B). In total, we estimate that 3.76 million ha of forest have been cleared for rubber between 128 

1993 and 2016. Almost three quarters of this forest clearance occurred since 2001 (2.77 [2.53 129 

- 3.01 95% CI] million ha), meaning that around one fifth of the rubber area in 2021 was 130 

associated with deforestations occurring after 2000 (Extended Data Table 3). In addition, over 131 

1 million ha of rubber plantations in 2021 were situated in Key Biodiversity Areas34, globally 132 

important for the conservation of biodiversity (Table 1).   133 

 134 

In terms of individual countries, both historically and since 2001, deforestation was highest in 135 

Indonesia, followed by Thailand and Malaysia (Figs. 2 and 3). While these three countries 136 

account for over two-thirds of the total rubber-related deforestation in Southeast Asia between 137 

2001-2016, significant deforestation also occurred in Cambodia since 2001, where almost 40% 138 

of rubber plantations are associated with deforestation (Fig. 2) and 19% with deforestation in 139 

Key Biodiversity Areas (Table 1).    140 
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 142 

 143 

 144 

 145 

 146 

   147 

Fig. 2 | Area of rubber-related deforestation between 2001-2016 for individual countries in Southeast Asia. 148 
The bars show the cumulative area of deforestation (2001-2016) for rubber plantations in 2021 and orange areas 149 
are the fraction of deforestation that occurred inside Key Biodiversity Areas (KBA)34. The blue line shows the 150 
percentage of the total national rubber area in 2021 that was associated with deforestation between 2001-2016 151 
(the percentage is given on second y-axis). The figures for China only include its main production areas 152 
(Xishuangbanna and Hainan).   153 
 154 
 155 
 156 
 157 

 158 

 159 

Fig.3 | Total area of rubber-related deforestation in Southeast Asia between 1993-2016. The colours show 160 
the fraction of overall deforestation that occurred in individual countries. While most deforestation occurred in 161 
Indonesia and Thailand and while the deforestation trends are similar across countries, the fraction of deforestation 162 
occurring in continental Southeast Asia (mainly Cambodia) has increased over the last decade. Rates of rubber-163 
deforestation in some countries were strongly correlated with the global rubber price (black dashed line, second y 164 
axis): simple Pearson’s correlations (i.e., without accounting for a potential temporal lag) were Cambodia R=0.83, 165 
Vietnam R=0.75, Malaysia R=0.61, Laos R=0.58, Myanmar R=0.54, and Indonesia R=0.54.   166 
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Rubber deforestation is underestimated 167 

Recent estimates of deforestation embedded in rubber, intended for inform policy by the EU7, 168 

G78 and UK6, all used the data generated by Pendrill et al. (2019)11, which place total rubber-169 

related deforestation (in 135 countries, including all major rubber producers except China and 170 

Laos) between 2005-2017 at below 700,000 ha. Translating to an average annual deforestation 171 

of 53,000 ha (Table 2), these estimates lie several-fold below the estimates of this and other 172 

studies based on spatially explicit data - in the case of Cambodia several hundred-fold (Table 173 

2). An update of the Pendrill et al. data3 now provides an almost 30-fold higher estimate for 174 

deforestation in Cambodia (Table 2), but still places total quasi-global rubber-related 175 

deforestation between 2005-2018 below 1 million ha. In contrast, the World Resources 176 

Institute1 estimated that rubber replaced 2.1 million ha of forest 2001-2015 in just seven 177 

countries, which account for less than half of the global natural rubber production, and Hurni 178 

and Fox (2018)2 estimated that rubber replaced more than 5 million ha of forest in continental 179 

Southeast Asia alone. Although our estimates are in fact conservative compared to these other 180 

estimates, and although none of the figures can be directly compared as they refer to somewhat 181 

different time periods and different definitions of forest, it is of critical note that even our lower 182 

95% confidence interval still greatly exceeds (three-fold) the model-based estimates currently 183 

widely used to guide policy and to calculate deforestation footprints. Furthermore, even if we 184 

replaced our estimates for Indonesia and Malaysia with those of Pendrill et al. (2019), the two 185 

countries in which Pendrill et al. (2019) attempted to exclude plantation rotation from 186 

deforestation totals, our annual rubber-deforestation totals would still be more than twice as 187 

high (Extended Data Note).   188 
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Discussion 189 

Here we provide the first high-resolution maps for rubber and associated deforestation between 190 

1993-2016 for all Southeast Asia. We show that rubber has led to several million ha of 191 

deforestation, and that the global data3,4 currently widely used in setting deforestation policies 192 

are likely to severely underestimate the scale of the problem. Whilst very helpful for providing 193 

a holistic assessment of the role of agricultural commodities in driving tropical and subtropical 194 

deforestation across the globe, these and other model-based data are not a substitute for 195 

spatially explicit estimates of crop expansion into natural forests31. Our estimates lie several-196 

fold above these data despite only covering Southeast Asia and not, for example, West and 197 

Central Africa, where there has been significant recent rubber expansion, likely driving 198 

deforestation24.  199 

 200 

Due to the heterogenous data landscape with greatly variable accuracy across crops, the 201 

impacts of crops on deforestation cannot be reliably compared. The findings of this study would 202 

place rubber deforestation above the impacts found for coffee, and, contrary to previously 203 

assumed, above the impacts of cocoa1,4. While still lower than the impacts of oil palm, not so 204 

by a factor of 8-10 as has been previously suggested1,4 and instead only by a factor of 2.5-4 205 

(also noting that here we are comparing our data for Southeast Asia only with global estimates 206 

for these other crops). However, these comparisons are difficult to make, not least because the 207 

estimated impacts of cocoa also differ threefold between studies1,4 with cocoa being another 208 

example of a crop for which there are no global remotely-sensed maps. 209 

 210 

Our figures are likely to be conservative: First, we used 2021 as the reference year and hence 211 

do not capture deforestation for rubber if by 2021 the rubber plantation was converted to a 212 

different land use. Since there was a rubber price boom in the first decade of this millennium, 213 
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followed by a price crash since 201135, it is possible that in the meantime some rubber area has 214 

been converted to other more lucrative land uses36, which will not be included in our estimates. 215 

Second, we used the ESA global tree cover map37 as a mask for mapping rubber plantations. If 216 

rubber areas were not picked up as tree cover by this map, they are also excluded from our 217 

estimates. Third, due to continuous cloud cover small areas in the region lacked clear Sentintel-218 

2 images and had to be excluded (especially in Indonesia). While the area that had to be 219 

excluded due to cloud cover was very small, a noteworthy wider issue is that our maps are 220 

potentially more accurate for mainland Southeast Asia than for insular Southeast Asia, where 221 

in addition to more persistent cloud cover, other challenges were present in the form of a less 222 

predictable rubber phenology and complex land use pattens and trajectories. Finally, we only 223 

map mature rubber; younger rubber plantations (around <5 years old) are excluded.  224 

 225 

We have considered and accommodated possible areas of ambiguity that might otherwise lead 226 

to an overestimation of deforestation using our method. First, rotational plantation and tree 227 

crop clearing and replanting may erroneously be classed as deforestation. This is a key issue, 228 

which is notoriously difficult to address and hence also affects other studies1,11 (Extended Data 229 

Note). The issue is likely to be particularly important in Indonesia, Malaysia, and Thailand 230 

where rubber and other plantations have a longer history of planting. To address this, we only 231 

use the first deforestation date and ignore subsequent pixel changes, meaning that this problem 232 

would only apply to plantations and tree crops established prior to, and mature by, 1988. This 233 

baseline is relatively conservative. Second, deforestation may have occurred for a different 234 

land use, with the area then subsequently being converted to rubber. This may indeed affect 235 

our data, but the issue will be smaller for rubber than for example for oil palm, which boomed 236 

and expanded more recently38, possibly replacing other land uses in addition to forests, whereas 237 

rubber is a crop with a longer history in the area and a greater plantation longevity of c. 25 238 
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years30. Third, the vegetation in some pixels may have undergone some type of disturbance in 239 

the rubber defoliation time window, followed by regrowth in the rubber refoliation window, 240 

leading to them having the characteristic phenology signature of rubber and erroneously being 241 

classed as such. To exclude such pixels and increase the accuracy of our analysis we created a 242 

‘disturbance’ mask (see Methods). Thus overall, we consider that the estimates of deforestation 243 

due to rubber plantations that we have provided are more likely to be an underestimate than an 244 

overestimate of the scale of the issue.                 245 

 246 

The current estimates for deforestation caused by rubber3,4 used for policy considerations in 247 

the EU7 and UK6 are based on a land-balance model11,12. Such models typically allocate total 248 

deforestation area to different commodities based on national (or sub-national, e.g. in the case 249 

of this model for Brazil and Indonesia) reports of crop expansion11. This can lead to significant 250 

over or underestimates of the role of different crops in driving deforestation31. First, crop 251 

expansion statistics are hampered by uncertainties and inconsistent reporting across crops and 252 

countries. Secondly, while the total area of a crop can remain stable, its actual place of 253 

occupancy may change31. This is highly relevant to rubber as oil palm has expanded into 254 

traditional rubber growing areas39, with new compensatory rubber plantations being 255 

established elsewhere, e.g., in uplands18,30 and often climatically marginal areas16, where they 256 

may be associated with deforestation. Thus, while the use of extrapolation13,14 and model-257 

based11,12 approaches provide some form of estimation for the extent of deforestation due to 258 

rubber plantations, we advocate caution in their interpretation. Instead, where available, we 259 

argue for the use of results from direct observations of the dynamics of crop production systems 260 

(e.g., using remotely-sensed satellite imagery), thereby greatly increasing the accuracy of 261 

deforestation estimates.  262 

 263 
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In terms of future projections of the impact of rubber and the time critical need for deforestation 264 

legislation, it is likely that demand for natural rubber will continue to increase15. Synthetic 265 

alternatives or other natural sources are not a perfect substitute40,41, and, being based on 266 

petrochemicals primarily derived from crude oil, they are also considered more 267 

environmentally harmful. Natural rubber on the other hand is a renewable resource with the 268 

potential to contribute to climate change mitigation42 and to benefit the livelihoods of 269 

smallholder farmers43. However, if not regulated carefully, rubber can have severe negative 270 

consequences for both the environment13,16-21 and livelihoods26,44. Our deforestation data also 271 

suggest that the assumed ‘breathing space’36 generated by the currently low rubber price may 272 

be false, with continued (and volatile) deforestation for rubber since 2011, a problem that is 273 

likely to increase when rubber prices rise again.  274 

 275 

Given the significant rubber related deforestation demonstrated here, it is encouraging that an 276 

increasing number of global initiatives aim to address this. A frequently voiced concern by 277 

critics is that it is very difficult for rubber operators to trace their supply chains and that any 278 

deforestation regulations would present a disproportionate burden for rubber operators. 279 

Contrary to for example oil palm where there is a limited time window (c. 24 hours) between 280 

harvest and mill processing, the raw rubber harvest has greater longevity and hence can travel 281 

several hundred km and change hands between half a dozen or more aggregators before 282 

arriving at processing facilities45. Another critically important point is the need to ensure that 283 

the poorest countries and importantly smallholders are not disadvantaged by deforestation 284 

regulations, as contrary to larger companies they may not be able to afford the premiums for 285 

certified sustainable production. While this applies to all commodities, it is a particularly 286 

important consideration for commodities that are strongly linked to smallholder livelihoods 287 

and development prospects, such as rubber. Recent initiatives for example by the Forest 288 
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Stewardship Council have demonstrated that these challenges can be overcome when farmers 289 

are organised in groups, with an additional benefit being that farmer cooperatives can negotiate 290 

a joint price to buffer their livelihoods against the volatile global rubber price. In addition, 291 

whilst supply chains are indeed complex and challenging to trace, the high-end rubber 292 

processing side is dominated by very few and identifiable actors. Around 70% of the global 293 

natural rubber production is used in tyres with a few major tyre companies accounting for the 294 

majority of global consumption15. Many of these are already part of the Global Platform for 295 

Sustainable Natural Rubber (GPSNR) – an international multistakeholder membership 296 

organisation committing to lead improvements in socioeconomic and environmental 297 

performance of the natural rubber value chain. Further work would be needed to make 298 

connections between rubber-driven deforestation and specific EU supply chains, but in the 299 

absence of such information it should be assumed that the EU is significantly exposed to 300 

rubber-deforestation, with over 40% of EU natural rubber imports coming from Indonesia, with 301 

much of the remainder coming from Thailand and Malaysia46, i.e. countries that according to 302 

our data experience some of the most significant rubber-driven deforestation. In addition, the 303 

lack of traceability information at the current time provides a further argument for the inclusion 304 

of rubber in regulatory processes in order to improve traceability and to provide an opportunity 305 

for the EU supply chain to support sustainable production. 306 

 307 

In summary, we believe that rubber merits more consideration in policies and processes that 308 

aim to reduce commodity driven deforestation, and that it is vitally important to use the best 309 

available evidence on the scale of the problem. The issue outlined here for rubber is of 310 

fundamental importance in its own right because rubber is responsible for millions of hectares 311 

of deforestation. However, we also highlight the wider need to enhance the evidence base 312 

available to inform policy decisions. There is an opportunity for increased clarity and rigorous 313 
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quantification in the extent of environmental degradation caused by major cash crops that is 314 

increasingly possible using remotely sensed earth observation.    315 

 316 
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Tables 459 

Table 1 | Area estimates of rubber plantations for individual countries in Southeast Asia. For China only the 460 
main production areas are included (Xishuangbanna and Hainan). 95% confidence intervals were calculated using 461 
accuracy estimates presented in Extended Data Table 1. Hurni & Fox (2018) derived both standard mapped figures 462 
and error-corrected figures (indicated by an asterisk). For Thailand their figures only include northeast Thailand 463 
and for Vietnam only areas south of Hanoi.    464 
 465 

Country Rubber (ha) 
% 

Rub
ber  

Rubber in 
KBA (ha) 

% Rubber 
in KBA 

FAO 2020 
harvested 

rubber 
(ha)23  

Xiao et al. 
2021 

(rubber in 
2018, ha)28 

Hurni & Fox 2018 
(rubber in 2014, ha)2 

Indonesia 5,134,276 35%  397,347 8% 3,668,735 NA NA NA 

Thailand 3,742,929 26%  291,516 8% 3,292,671 4,650,000 1,429,487 2,861,400* 

Vietnam 1,605,900 11% 59,367 4% 728,764 740,000 912,696 1,916,600* 

China 1,097,077 8%  58,067 5% 745,000 NA NA NA 

Malaysia 985,012 7%  49,380 5% 1,106,861 NA NA NA 

Myanmar 779,546 5%  84,561 11% 323,956 680,000 NA NA 

Cambodia 618,039 4%  117,665 19% 310,877 200,000 917,446  2,974,300* 

Laos 573,964 4%  49,115 9% NA 700,000 260,471 765,600* 

Southeast 
Asia  

14,536,742  
±±±± 8,930,998 
(95% CI) 

 1,107,018 
7.62%  

±±±± 4.68% 
(95% CI) 

10,176,864 
 

 
 

 466 

Table 2 | Comparison of rubber-related deforestation estimates generated by this and other studies. The 467 
dataset in grey (first row) has been used to guide deforestation policy7 and to calculate individual countries’ 468 
imported deforestation6,8. Hurni & Fox (2018) derived both standard mapped figures and error-corrected figures 469 
(indicated by an asterisk).  470 
 471 

 Method 
Definition of 

'forest' 
Time 

  period 
Reference area 

Rubber related deforestation in 1000 ha yr-1 

Total in 
reference 

area 
Indonesia Thailand Malaysia Cambodia 

Pendrill et 
al. 20204  

Land-
balance 
model  

Tree cover >=25% 
(Hansen et al. 
2013)  

2005-
2017 135 tropical 

countries, incl. all 
major rubber 
producers (except 
China and Laos) 

53 22 9 5 0.1 

Pendrill et 
al. 20223 

2005-
2018 

52 23 6 5 3 

Goldman et 
al. 20201  

Mix of 
spatially 
explicit 
data  

Tree cover >=30% 
(Hansen et al. 
2013)  

2001-
2015 

Brazil, Cambodia, 
Cameroon, 
Democratic 
Republic of the 
Congo, India, 
Indonesia, and 
Malaysia 

140 64 NA 48 22 

Hurni & Fox 
20182  

Remote 
sensing  

Internal classifier  
2003-
2014 

Mainland 
Southeast Asia 

135 

NA NA NA 

69 

437* 232* 

Grogan et 
al. 201929  

Remote 
sensing  

Tree cover >=10% 
(Sexton et al. 
2013)  

2001-
2015 

Cambodia  NA NA NA 34 

This study 
Remote 
sensing  

ESA WorldCover 
10-m 2020 v100 
(tree cover 
>=10%) 

2001-
2016 

Southeast Asia 173 ± 15 63 34 20 15 
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Methods 472 

We used Sentinel-2 imagery to produce an up-to-date distribution map of rubber plantations 473 

for all Southeast Asia and mapped this against time-series data from Landsat images between 474 

1988-2021 to identify the historical deforestation date for areas of rubber in 2021.    475 

Sentinel-2 imagery 476 

Sentinel-2 is an optical multispectral imaging mission from the Copernicus Program headed by 477 

European Commission in partnership with European Space Agency (ESA). It acquires very 478 

high-resolution multispectral imagery with a global revisit frequency of 5 days. In this study, 479 

we used the Sentinel-2 level-2A Surface Reflectance (SR) imagery1 obtained through Google 480 

Earth Engine2 to map the extent of rubber plantations in Southeast Asia. Sentinel-2 SR imagery 481 

has been corrected for atmospheric influences with the ‘Sen2Cor’ processor algorithm3-5. To 482 

remove clouds and cloud shadows, we applied the ‘QA60’ cloud mask band from the Sentinel-483 

2A SR imagery, and Sentinel-2 Cloud Probability datasets4 where pixels with cloud probability 484 

greater than 50% are considered as clouds. Cloud shadows are defined as areas of cloud 485 

projection intersection with low-reflectance near-infrared pixels. The full details of masking 486 

clouds and cloud shadows can be found at https://developers.google.com/earth-487 

engine/tutorials/community/sentinel-2-s2cloudless.  488 

Sentinel-2 SR images acquired between 2020-2022 were used as inputs for mapping rubber 489 

extent. For each image, we selected ten spectral bands and computed seven vegetation indices. 490 

The selected bands included four 10 meter resolution bands (Blue: B2, Green: B3, Red: B4 and 491 

Near-Infrared: B8) and six 20 meter resolution bands (Red Edge bands6: B5, B6, B7, B8A, 492 

Short-wave Infrared bands: B11, B12). The seven vegetation indices included Normalized 493 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Re-494 

normalization of Vegetation Moisture Index (RVMI), Normalized Burn Ratio (NBR), 495 

Modified Normalized Burn Ratio (MNBR), Soil Adjusted Vegetation Index (SAVI) and 496 
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Enhanced Vegetation Index (EVI). All the spectral bands and vegetation indices were 497 

resampled to 10 m resolution for further analysis. The equations used for calculating the 498 

vegetation indices are as follows:  499 
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             507 

Mapping the extent of rubber plantations 508 

We designed a novel phenology-based methodology to map rubber plantations across 509 

Southeast Asia. Unlike tropical rainforests and other tree plantations, rubber plantations shed 510 

their leaves during the drier and colder season and subsequently regain their leaves. For 511 

instance, in mainland Southeast Asia defoliation generally occurs during January-February and 512 

the subsequent refoliation during March-April. In Indonesia the occurrence of the dry season 513 

is more spatially heterogenous7. In some areas the lowest monthly precipitation occurs during 514 

June-September. Backed by sample data8,9 we made the assumption that in these areas the 515 

defoliation occurs during June-September with the subsequent refoliation occurring during 516 

October-December (Extended Data Fig.2). We refer to the areas where rubber defoliation 517 

occurs during January-February as region-A, and where rubber defoliation occurs in June-518 

September as region-B.      519 
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The unique phenology of rubber gives it distinct spectral characteristics, making it 520 

distinguishable from other tree cover using satellite imagery. In this study, we used a tree cover 521 

mask from the ESA global land cover map10 (The European Space Agency WorldCover 10 m 522 

2020 product) and classified tree cover into rubber and other tree cover based on the spectral 523 

differences between rubber refoliation and defoliation stages (using Sentinel-2 imagery). For 524 

the defoliation stage, we generated a composite image using 15% NDVI percentile of all 525 

images acquired during January-February in 2021 and 2022 for region-A, and during June-526 

September in 2020 and 2021 for region-B. For the refoliation stage, we used the 85% NDVI 527 

percentile composite of all images acquired during March-April in 2021 and 2022 for region-528 

A, and during October-December in 2020 and 2021 for region-B. Each composite image 529 

contained 17 variables, including 10 spectral bands and 7 vegetation indices (see Sentinel-2 530 

imagery above). The composite image difference between the refoliation and defoliation stages 531 

was subsequently used as input for a Random Forest machine learning classification.   532 

To run the machine learning classification, individual samples are required for each 533 

classification category. In this study, we collected a total of 2,010 rubber points and 1,816 534 

evergreen forest points from ground-truthed points, publications11,12 and random sampling 535 

points, which we visually interpreted using high-resolution satellite imagery through the 536 

software Collect Earth Online13-15 (CEO). For the latter, we randomly sampled 1,000 forest 537 

points and 1,000 rubber points from ground-truth data collected in 2010 (World Agroforestry 538 

Centre Southeast Asia) and visually interpretated and subsequently re-labelled these points for 539 

the year 2021 through CEO and Google Earth16. In CEO, the visual interpretation was based 540 

on the Mapbox Satellite imagery base map, 2021 monthly Planet NICFI images17 (Norway’s 541 

International Climate and Forests Initiative satellite data program) and yearly composite 542 

images for January-February and March-April from Sentinel-2 (2017-2021)1 and Landsat-5-7-543 

8 (1988-2016)18. First, we assigned each sample point to a land cover class for the year 2021. 544 
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If the land cover was rubber, we further identified the deforestation date for that point using 545 

historical Landsat images18, starting from 1988. Where available, additional very high-546 

resolution imagery from Google Earth16 was used to facilitate the interpretation process.  547 

We randomly split all sampling points into 80% as training samples for mapping rubber, using 548 

the remaining 20% to validate the final rubber map.   549 

Disturbances such as degradation or plantation removal could potentially produce similar 550 

spectral features to rubber phenology, leading to commission errors. To reduce commission 551 

errors, we removed all rubber pixels where this may have occurred using a 2021 primary forest 552 

mask and a no-disturbance mask (Extended Data Fig.1). The 2021 primary forest mask was 553 

created by using the 2001 primary forest layer from Turubanova, et al. (2018)19 and removing 554 

areas of subsequent forest loss between 2000-2021 (Hansen Global Forest Change v1.9)20. The 555 

no-disturbance mask was generated with the following steps: (1) Calculate the NBR index 556 

(Normalized Burn Ratio, above equation-4) for all Sentinel-2 images between 2019-2021; (2) 557 

Create NBR three-year median composites for March-June, July-September and October-558 

December (region-A) or January-May and October-December (region-B) (yielding three 559 

composites for region-A, and two composites for region-B); (3) Extract the values of NBR 560 

composites for all the rubber samples; (4) Plot the NBR values and calculate the 5% percentile 561 

thresholds for individual composites, meaning 95% of rubber samples’ NBR values are above 562 

these thresholds; (5) Apply the thresholds to all three (region-A) or two (region-B) NBR 563 

composite images, resulting five binary images (1: no disturbance, 0: potential disturbance). If 564 

a pixel was classed as 1 in all three (region-A) or two (region-B) binary images, it was 565 

considered as not disturbed. A 5 by 5-pixel majority filter was applied to the no-disturbance 566 

mask to remove isolated pixels.                    567 

In summary, we developed a novel approach, which involves classifying an ESA tree cover 568 

baseline map10 into rubber and other tree cover based on phenology, and removing any pixels 569 
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that are potentially confounded by disturbance using a primary forest mask and a no-570 

disturbance mask, which we generated specifically for this purpose. We also applied a post-571 

classification 5 by 5-pixel majority filter to the resulting map, and a minimum patch size 572 

threshold of 0.5 ha to reduce pixel-level classification noise and to remove classification 573 

artifacts.     574 

 575 

Identifying the deforestation date 576 

We tracked the first historical deforestation date for all rubber plantations mapped in 2021. 577 

This was done using the LandTrendr spectral-temporal segmentation algorithm21,22 (a Landsat-578 

based algorithm for the detection of trends in disturbance and recovery). LandTrendr 579 

characterises the history of a Landsat pixel by decomposing the time series into a series of 580 

bounded line segments (i.e. trends over several years) and identifying the break points between 581 

them. These linear segments and breakpoints allow for the detection the greatest pixel-level 582 

change (e.g. deforestation) and therewith for the identification of the year in which this greatest 583 

spectral change occurred.      584 

In this study, we ran LandTrendr GEE API22 (a JavaScript module developed in Google Earth 585 

Engine, https://emapr.github.io/LT-GEE/api.html) using the annual time-series index from 586 

USGS Landsat Surface Reflectance Tier 1 datasets. The clouds and cloud shadows were 587 

masked using the CFMASK23. A medoid approach was used to generate the annual composite 588 

image. This approach uses the value of a given band that is numerically closest to the median 589 

of all the available images for each year. In this study, we used the time-series NBR index 590 

(Normalized Burn Ratio, equation-4 above) from 1988 to 2021 for the temporal segmentation. 591 

The deforestation date was identified as the end year of the linear segment with the largest 592 

slope (greatest loss). As an additional constraint, we imposed a minimum start NBR value for 593 

this linear segment of over 0.595, thereby reducing the risk of including the clearance of old 594 
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plantations (planted before 1988) as deforestation. Any deforestation pixels below this 595 

threshold were excluded from our deforestation estimates. We tested a range of NBR thresholds 596 

and selected this one as it provided maximum overall accuracy. We also excluded pixels with 597 

a deforestation date later than 2016 because it takes around 5 years for rubber plantations to be 598 

identifiable from the satellite imagery following deforestation.   599 

We validated the deforestation date map using the deforestation dates of rubber points collected 600 

through Collect Earth Online15 (see section above on mapping the extent of rubber plantations). 601 

In total, there were 704 rubber points with deforestation dates, 80% of which were from 602 

deforestation before 1990. As we did not have ground-truthed deforestation points for all years, 603 

we grouped the deforestation dates into two broader time periods (pre-2000 and between 2001-604 

2016).  605 

 606 

Deforestation in Key Biodiversity Areas associated with rubber  607 

We further explored the potential impacts of rubber and associated deforestation on regional 608 

biodiversity. To do this, we clipped our maps of rubber and associated deforestation to a 609 

shapefile for Key Biodiversity Areas (KBA)24, and then calculated the area of rubber and 610 

associated deforestation within these areas. Key Biodiversity Areas are some of the most 611 

critical sites for the conservation of species and habitats globally. Rubber and deforestation in 612 

these areas thus poses a significant threat to global biodiversity.  613 

 614 

Data availability 615 

The earth observation datasets that supported the findings of this study are publicly available 616 

(e.g., Google Earth Engine data catalogue). The final maps of rubber and associated 617 

deforestation will be made publicly available.    618 

 619 
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Code availability 620 

The code used for this study will be made available publicly available.  621 
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Extended Data legends 708 

Extended Data Note | Definitions of ‘forest’ and ‘deforestation’ 709 

 710 

Extended Data Table 1 | Confusion matrix for mapping rubber across Southeast Asia.  711 

 712 

Extended Data Table 2 | Confusion matrix for mapping deforestation associated with rubber 713 

across Southeast Asia.  714 

 715 

Extended Data Table 3 | Area of rubber-related deforestation for individual countries in 716 

Southeast Asia. The 95% confidence Interval (CI) was calculated using the accuracy estimates 717 

presented in Extended Data Table 2.  718 

 719 

Extended Data Fig.1 | Methodology flow for mapping rubber (blue), generating non-720 

disturbance mask (green) and estimating deforestation (orange). Different image composites 721 

were used for region-A (defoliation between January-February) and region-B (defoliation 722 

between June-September). All processing was done in Google Earth Engine. 723 

 724 

Extended Data Fig.2 | Rubber phenology regions, grids, and sampling points. As rubber 725 

phenology varies across Southeast Asia we divided the study area into two regions using 726 

OpenLandMap Monthly Precipitation7. Region-A: rubber defoliation was assumed to occur 727 

between January-February and refoliation between March-April. Region-B: rubber defoliation 728 

was assumed to occur between June-September and refoliation between October-December. 729 

The algorithm was run separately for 3 by 3-degree grid cells (in blue). The forest and rubber 730 

sample ground-truth points were used for training the algorithm (80%) and subsequently 731 

validating the map (20%). 732 
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