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New high-resolution maps show that rubber causes significant deforestation
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Understanding the impacts of cash crop expansion on natural forest is of fundamental
importance. However, for most crops there are no remotely-sensed global maps!, and
global deforestation impacts are estimated using models and extrapolations. Natural
rubber is an example of a major commodity for which deforestation impacts have been
highly uncertain, with estimates differing more than five-fold!*. Here we harnessed earth
observation satellite data and cloud computing’ to produce the first high-resolution maps
of rubber and associated deforestation covering all Southeast Asia. Our maps indicate
that rubber-related forest loss has been significantly underestimated in policy, by the
public and in recent reports®%. Our direct remotely-sensed observations show that
deforestation for rubber is two to threefold higher than suggested by figures currently
widely used for setting policy*. With over 3.76 million hectares of forest loss for rubber
since 1993 (2.77 [2.5-3 95% CI] million hectares since 2000), and over 1 million hectares
of rubber plantations established in Key Biodiversity Areas, the impacts of rubber on
biodiversity and ecosystem services in Southeast Asia are extensive. Thus, rubber
deserves more attention in domestic policy, within trade agreements and in incoming due

diligence regulations.

Around 90-99% of tropical deforestation is linked to the production of global commodities
such as beef, soy, oil palm, natural rubber, coffee and cocoa 2, Understanding the impacts of
individual commodities on natural forests is of fundamental importance for targeted policies
and interventions. However, with relatively few exceptions — most notably oil palm and soy'-!’
— directly observed global or regional maps derived from satellite imagery are unavailable for

most commodities. Instead, commodity-specific global deforestation is typically estimated

11,12 13,14

using models and extrapolations with large levels of uncertainty.
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Natural rubber is an example of a commodity whose impacts on forests have remained poorly
understood despite its economic importance!® and the potential for widespread deforestation,

13,16-21

land degradation and biodiversity loss . Natural rubber is used in the manufacture of

almost three billion tyres per year!>??

, and continued and increasing global demand is driving
land use conversion in producer countries'*. Production is primarily located in Southeast Asia
(90% of the global production®?), with the remainder coming from South and Central America
and more recently also West and Central Africa?*. Rubber is produced from the latex of a
tropical tree (Hevea brasiliensis), and the spectral signature of rubber plantations is similar to

forest®

, making it challenging to identify conversion of natural forest to rubber plantations
from space. In addition, around 85% of global natural rubber is produced by smallholdersS,
meaning that the plantations are scattered and often below 5 ha in size, increasing the challenge
of detecting them from satellite images and capturing them in national crop statistics.
Consequently, the impacts of rubber are surrounded by uncertainty and estimates of rubber-
driven deforestation differ by more than five-fold: from less than 1 million ha almost globally
between 2005 and 2018% to more than five million ha between 2003 and 2014 in continental
South-East Asia alone®. Direct observations based on remote sensing have previously only

existed for subsets of Southeast Asia>?”?8, individual countries!??, or subnational areas*’, and

most are outdated, so do not reflect the current risk.

Currently, the most widely used dataset to estimate global rubber-related deforestation has been
derived using a ‘land balance’ model'!. This model combines remotely sensed data on tree
cover loss with non-spatial estimates of crop expansion, derived mainly from national-scale
statistics. The ‘land balance’ approach means that tree cover loss is not spatially linked to
commodity expansion, and therefore is not a substitute for more accurate products that provide

spatially explicit estimates of crop expansion into forest areas, as explicitly acknowledged by

Not yet peer-reviewed and potentially still subject to corrections
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the authors®'. The ‘land balance’-derived data®* suggest that rubber is a relatively minor
problem when compared to the impact of other major forest risk commodities, with palm oil
and soy accounting for seven to eight times more deforestation than rubber; and in UK imports®
for 20 and 57 times more deforestation, with rubber sitting on a par with nutmeg. This has
contributed to the reduced the attention that rubber has received as a driver of deforestation
compared to other commodities and has led policy makers to question the need to include
rubber in the European Commission’s proposal for a regulation on deforestation-free products’,
and secondary legislation associated with UK Environment Act Schedule 17 aimed at
addressing illegal deforestation. However, given the inherent uncertainty in model-based
estimates, there is an urgent need for robust evidence to provide guidance for policy
interventions to avoid rubber being prematurely excluded from key policy processes and

interventions, particularly as review of policy will not be due for several years.

Here we present up-to-date analyses and provide the first Southeast Asia wide maps of rubber
and associated deforestation, encompassing over 90% of the natural rubber production volume.
We used the latest high-resolution Sentinel-2 imagery (at a spatial resolution of 10 m) to map
the extent of rubber across all Southeast Asia in 2021. Our approach is based on the distinctive
phenological signature of rubber plantations which allows them to be distinguished from
typical tropical forests based on leaf-fall and regrowth, which occur in specific time windows
that differ by region. To tackle the challenge of heavy cloud cover in the region we use multi-
year imagery composites. We track the deforestation history of locations occupied by rubber
in 2021 using historical Landsat imagery and a spectral-temporal segmentation algorithm
(LandTrendr)**. Here, we use the term ‘deforestation’, but this can include other types of tree
cover loss if that tree cover (e.g., agroforests, plantation forests, agricultural tree crops and

rubber itself) was established prior to the 1980s.
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96  First rubber map for all Southeast Asia

97  Our results show that mature rubber plantations occupied an area of 14.5 [5.6-23.4 95% CI]

98  million hectares in Southeast Asia in 2021, with over 70% of the production area situated in

99  Indonesia, Thailand and Vietnam. Other significant areas were situated in China, Malaysia,
100 Myanmar, Cambodia, and Laos (Table 1, Fig. 1 A). The rubber maps achieved an overall
101  classification accuracy of 0.91 with a producer’s accuracy of 0.83 (Extended Data Table 1).
102 Our estimates are consistent with the sum of national statistics reported to the Forest and
103 Agriculture Organization of the United Nations (FAQO), according to which the total area of
104  harvested rubber in the above eight countries was 10.18 million ha in 2020%. Due to the
105  currently low global rubber price many plantations may not be harvested, meaning that
106  although our mean estimate is higher than the values reported to the FAO, there is a broad
107  alignment, and our lower confidence interval is in fact exceedingly conservative. Our estimates
108  are also generally within the bounds estimated by two other recent remote sensing studies for

109  rubber>?® (Table 1).

110
A. Rubber distribution B. Deforestation between 2001-2016 due to rubber
N
# by
20°N % >
15°N
10°N
5°N
0°
5°S
10°S
Ifraction of rubber / 500 m pixel Ifraction of deforestation / 500 m pixel
— |
15°S 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 1 1 100°E 110°E 120°E 130°E 140°E 100°E 110°E 120°E 130°E 140°E

112 Fig. 1 | Rubber distribution in 2021 (A) and associated deforestation (B) across Southeast Asia. For better
113 visualization, the rubber map (A) was aggregated to 500 m resolution by calculating the proportion of 10 m rubber
114 pixels in each 500 m pixel; the deforestation due to rubber map (B) was aggregated to 500 m by calculating the
115  proportion of 30 m deforestation pixels within each 500 m pixel. The maps in their original resolution are available
116 at https://wangyxtina.users.earthengine.app/view/rubberdeforestationfigi.
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117  Significant deforestation due to rubber

118  We used time-series Landsat imagery to identify the deforestation date for all areas classed as
119  rubber in 2021 in two categories: pre-2000 and 2001-2016 (overall classification accuracy of
120  0.78; Extended Data Table 2). Specifically, we used the LandTrendr algorithm33, which
121  identifies break points in the pixels’ spectral history (Normalized Burn Ratio), indicating a
122 sudden change from forest or other types of tree cover to bare or burnt ground. We only used
123 the first breakpoint, going as far back in time as the imagery allows (1988), meaning that we
124 only include rotational plantation clearance into the deforestation estimate if these plantations
125  were established prior to 1988.

126

127  Our data show that rubber led to significant deforestation across all of Southeast Asia (Fig. 1
128  B). In total, we estimate that 3.76 million ha of forest have been cleared for rubber between
129 1993 and 2016. Almost three quarters of this forest clearance occurred since 2001 (2.77 [2.53
130 - 3.01 95% CI] million ha), meaning that around one fifth of the rubber area in 2021 was
131  associated with deforestations occurring after 2000 (Extended Data Table 3). In addition, over
132 1 million ha of rubber plantations in 2021 were situated in Key Biodiversity Areas**, globally
133 important for the conservation of biodiversity (Table 1).

134

135  In terms of individual countries, both historically and since 2001, deforestation was highest in
136  Indonesia, followed by Thailand and Malaysia (Figs. 2 and 3). While these three countries
137  account for over two-thirds of the total rubber-related deforestation in Southeast Asia between
138 2001-2016, significant deforestation also occurred in Cambodia since 2001, where almost 40%
139  of rubber plantations are associated with deforestation (Fig. 2) and 19% with deforestation in

140  Key Biodiversity Areas (Table 1).
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Fig. 2 | Area of rubber-related deforestation between 2001-2016 for individual countries in Southeast Asia.
The bars show the cumulative area of deforestation (2001-2016) for rubber plantations in 2021 and orange areas
are the fraction of deforestation that occurred inside Key Biodiversity Areas (KBA)**. The blue line shows the
percentage of the total national rubber area in 2021 that was associated with deforestation between 2001-2016
(the percentage is given on second y-axis). The figures for China only include its main production areas
(Xishuangbanna and Hainan).
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Fig.3 | Total area of rubber-related deforestation in Southeast Asia between 1993-2016. The colours show
the fraction of overall deforestation that occurred in individual countries. While most deforestation occurred in
Indonesia and Thailand and while the deforestation trends are similar across countries, the fraction of deforestation
occurring in continental Southeast Asia (mainly Cambodia) has increased over the last decade. Rates of rubber-
deforestation in some countries were strongly correlated with the global rubber price (black dashed line, second y
axis): simple Pearson’s correlations (i.e., without accounting for a potential temporal lag) were Cambodia R=0.83,
Vietnam R=0.75, Malaysia R=0.61, Laos R=0.58, Myanmar R=0.54, and Indonesia R=0.54.
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167 Rubber deforestation is underestimated

168  Recent estimates of deforestation embedded in rubber, intended for inform policy by the EU’,
169  G7% and UKS, all used the data generated by Pendrill et al. (2019)!!, which place total rubber-
170  related deforestation (in 135 countries, including all major rubber producers except China and
171  Laos) between 2005-2017 at below 700,000 ha. Translating to an average annual deforestation
172  of 53,000 ha (Table 2), these estimates lie several-fold below the estimates of this and other
173  studies based on spatially explicit data - in the case of Cambodia several hundred-fold (Table
174 2). An update of the Pendrill et al. data® now provides an almost 30-fold higher estimate for
175  deforestation in Cambodia (Table 2), but still places total quasi-global rubber-related
176  deforestation between 2005-2018 below 1 million ha. In contrast, the World Resources
177  Institute! estimated that rubber replaced 2.1 million ha of forest 2001-2015 in just seven
178  countries, which account for less than half of the global natural rubber production, and Hurni
179  and Fox (2018)? estimated that rubber replaced more than 5 million ha of forest in continental
180  Southeast Asia alone. Although our estimates are in fact conservative compared to these other
181  estimates, and although none of the figures can be directly compared as they refer to somewhat
182  different time periods and different definitions of forest, it is of critical note that even our lower
183  95% confidence interval still greatly exceeds (three-fold) the model-based estimates currently
184  widely used to guide policy and to calculate deforestation footprints. Furthermore, even if we
185  replaced our estimates for Indonesia and Malaysia with those of Pendrill et al. (2019), the two
186  countries in which Pendrill et al. (2019) attempted to exclude plantation rotation from
187  deforestation totals, our annual rubber-deforestation totals would still be more than twice as

188  high (Extended Data Note).
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189  Discussion

190  Here we provide the first high-resolution maps for rubber and associated deforestation between
191  1993-2016 for all Southeast Asia. We show that rubber has led to several million ha of
192 deforestation, and that the global data®* currently widely used in setting deforestation policies
193 are likely to severely underestimate the scale of the problem. Whilst very helpful for providing
194  aholistic assessment of the role of agricultural commodities in driving tropical and subtropical
195  deforestation across the globe, these and other model-based data are not a substitute for
196  spatially explicit estimates of crop expansion into natural forests®'. Our estimates lie several-
197  fold above these data despite only covering Southeast Asia and not, for example, West and
198  Central Africa, where there has been significant recent rubber expansion, likely driving
199  deforestation®*.

200

201  Due to the heterogenous data landscape with greatly variable accuracy across crops, the
202 impacts of crops on deforestation cannot be reliably compared. The findings of this study would
203  place rubber deforestation above the impacts found for coffee, and, contrary to previously
204  assumed, above the impacts of cocoa'*. While still lower than the impacts of oil palm, not so
205 by a factor of 8-10 as has been previously suggested!* and instead only by a factor of 2.5-4
206  (also noting that here we are comparing our data for Southeast Asia only with global estimates
207  for these other crops). However, these comparisons are difficult to make, not least because the
208  estimated impacts of cocoa also differ threefold between studies!* with cocoa being another
209  example of a crop for which there are no global remotely-sensed maps.

210

211 Our figures are likely to be conservative: First, we used 2021 as the reference year and hence
212 do not capture deforestation for rubber if by 2021 the rubber plantation was converted to a

213  different land use. Since there was a rubber price boom in the first decade of this millennium,
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214  followed by a price crash since 2011, it is possible that in the meantime some rubber area has
215  been converted to other more lucrative land uses>®, which will not be included in our estimates.
216  Second, we used the ESA global tree cover map?’ as a mask for mapping rubber plantations. If
217  rubber areas were not picked up as tree cover by this map, they are also excluded from our
218  estimates. Third, due to continuous cloud cover small areas in the region lacked clear Sentintel-
219 2 images and had to be excluded (especially in Indonesia). While the area that had to be
220  excluded due to cloud cover was very small, a noteworthy wider issue is that our maps are
221  potentially more accurate for mainland Southeast Asia than for insular Southeast Asia, where
222 in addition to more persistent cloud cover, other challenges were present in the form of a less
223 predictable rubber phenology and complex land use pattens and trajectories. Finally, we only
224  map mature rubber; younger rubber plantations (around <5 years old) are excluded.

225

226  We have considered and accommodated possible areas of ambiguity that might otherwise lead
227  to an overestimation of deforestation using our method. First, rotational plantation and tree
228  crop clearing and replanting may erroneously be classed as deforestation. This is a key issue,
229  which is notoriously difficult to address and hence also affects other studies'"!! (Extended Data
230  Note). The issue is likely to be particularly important in Indonesia, Malaysia, and Thailand
231  where rubber and other plantations have a longer history of planting. To address this, we only
232 use the first deforestation date and ignore subsequent pixel changes, meaning that this problem
233 would only apply to plantations and tree crops established prior to, and mature by, 1988. This
234  baseline is relatively conservative. Second, deforestation may have occurred for a different
235 land use, with the area then subsequently being converted to rubber. This may indeed affect
236  our data, but the issue will be smaller for rubber than for example for oil palm, which boomed
237  and expanded more recently’®, possibly replacing other land uses in addition to forests, whereas

238  rubber is a crop with a longer history in the area and a greater plantation longevity of c. 25
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239  years®. Third, the vegetation in some pixels may have undergone some type of disturbance in
240  the rubber defoliation time window, followed by regrowth in the rubber refoliation window,
241  leading to them having the characteristic phenology signature of rubber and erroneously being
242 classed as such. To exclude such pixels and increase the accuracy of our analysis we created a
243 ‘disturbance’ mask (see Methods). Thus overall, we consider that the estimates of deforestation
244 due to rubber plantations that we have provided are more likely to be an underestimate than an
245  overestimate of the scale of the issue.

246

247  The current estimates for deforestation caused by rubber®* used for policy considerations in
248  the EU” and UK® are based on a land-balance model'!"!2. Such models typically allocate total
249  deforestation area to different commodities based on national (or sub-national, e.g. in the case
250  of this model for Brazil and Indonesia) reports of crop expansion'!. This can lead to significant
251  over or underestimates of the role of different crops in driving deforestation®'. First, crop
252  expansion statistics are hampered by uncertainties and inconsistent reporting across crops and
253  countries. Secondly, while the total area of a crop can remain stable, its actual place of
254 occupancy may change®'. This is highly relevant to rubber as oil palm has expanded into
255  traditional rubber growing areas®”, with new compensatory rubber plantations being

18,30

256  established elsewhere, e.g., in uplands and often climatically marginal areas'®, where they

13,14 and model-

257  may be associated with deforestation. Thus, while the use of extrapolation
258  based'!!? approaches provide some form of estimation for the extent of deforestation due to
259  rubber plantations, we advocate caution in their interpretation. Instead, where available, we
260  argue for the use of results from direct observations of the dynamics of crop production systems
261  (e.g., using remotely-sensed satellite imagery), thereby greatly increasing the accuracy of

262  deforestation estimates.

263
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264  Interms of future projections of the impact of rubber and the time critical need for deforestation
265  legislation, it is likely that demand for natural rubber will continue to increase'. Synthetic

266  alternatives or other natural sources are not a perfect substitute*®*!

, and, being based on
267  petrochemicals primarily derived from crude oil, they are also considered more
268  environmentally harmful. Natural rubber on the other hand is a renewable resource with the
269  potential to contribute to climate change mitigation*’ and to benefit the livelihoods of
270  smallholder farmers*’. However, if not regulated carefully, rubber can have severe negative

131621 and livelihoods****. Our deforestation data also

271  consequences for both the environmen
272  suggest that the assumed ‘breathing space’*® generated by the currently low rubber price may
273  be false, with continued (and volatile) deforestation for rubber since 2011, a problem that is
274  likely to increase when rubber prices rise again.

275

276  Given the significant rubber related deforestation demonstrated here, it is encouraging that an
277  increasing number of global initiatives aim to address this. A frequently voiced concern by
278  critics is that it is very difficult for rubber operators to trace their supply chains and that any
279  deforestation regulations would present a disproportionate burden for rubber operators.
280  Contrary to for example oil palm where there is a limited time window (c. 24 hours) between
281  harvest and mill processing, the raw rubber harvest has greater longevity and hence can travel
282  several hundred km and change hands between half a dozen or more aggregators before
283  arriving at processing facilities*. Another critically important point is the need to ensure that
284  the poorest countries and importantly smallholders are not disadvantaged by deforestation
285  regulations, as contrary to larger companies they may not be able to afford the premiums for
286  certified sustainable production. While this applies to all commodities, it is a particularly

287  important consideration for commodities that are strongly linked to smallholder livelihoods

288 and development prospects, such as rubber. Recent initiatives for example by the Forest
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289  Stewardship Council have demonstrated that these challenges can be overcome when farmers
290  are organised in groups, with an additional benefit being that farmer cooperatives can negotiate
291  a joint price to buffer their livelihoods against the volatile global rubber price. In addition,
292  whilst supply chains are indeed complex and challenging to trace, the high-end rubber
293  processing side is dominated by very few and identifiable actors. Around 70% of the global
294 natural rubber production is used in tyres with a few major tyre companies accounting for the
295  majority of global consumption'>. Many of these are already part of the Global Platform for
296  Sustainable Natural Rubber (GPSNR) — an international multistakeholder membership
297  organisation committing to lead improvements in socioeconomic and environmental
298  performance of the natural rubber value chain. Further work would be needed to make
299  connections between rubber-driven deforestation and specific EU supply chains, but in the
300 absence of such information it should be assumed that the EU is significantly exposed to
301  rubber-deforestation, with over 40% of EU natural rubber imports coming from Indonesia, with
302  much of the remainder coming from Thailand and Malaysia*, i.e. countries that according to
303  our data experience some of the most significant rubber-driven deforestation. In addition, the
304  lack of traceability information at the current time provides a further argument for the inclusion
305  of rubber in regulatory processes in order to improve traceability and to provide an opportunity
306  for the EU supply chain to support sustainable production.

307

308 In summary, we believe that rubber merits more consideration in policies and processes that
309  aim to reduce commodity driven deforestation, and that it is vitally important to use the best
310 available evidence on the scale of the problem. The issue outlined here for rubber is of
311  fundamental importance in its own right because rubber is responsible for millions of hectares
312  of deforestation. However, we also highlight the wider need to enhance the evidence base

313  available to inform policy decisions. There is an opportunity for increased clarity and rigorous
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quantification in the extent of environmental degradation caused by major cash crops that is

increasingly possible using remotely sensed earth observation.
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459 Tables

460 Table 1 | Area estimates of rubber plantations for individual countries in Southeast Asia. For China only the
461 main production areas are included (Xishuangbanna and Hainan). 95% confidence intervals were calculated using
462 accuracy estimates presented in Extended Data Table 1. Hurni & Fox (2018) derived both standard mapped figures
463 and error-corrected figures (indicated by an asterisk). For Thailand their figures only include northeast Thailand
464  and for Vietham only areas south of Hanoi.

465
% Rubber in | % Rubber I'::reezsg(zeg Xiaz%g: a Hurni & Fox 2018
Country | Rubber (ha) ':‘)‘;'r’ KBA (ha) | in KBA rubber (rubberin | (rubber in 2014, ha)?
(ha)® 2018, ha)®
Indonesia 5,134,276 | 35% 397,347 8% 3,668,735 NA NA NA
Thailand 3,742,929 | 2% 291,516 8% 3,292,671 4,650,000 | 1,429,487 | 2,861,400"
Viethnam 1,605,900 | 11% 59,367 4% 728,764 740,000 912,696 | 1,916,600
China 1,097,077 | 8% 58,067 5% 745,000 NA NA NA
Malaysia 985,012 | 79 49,380 5% 1,106,861 NA NA NA
Myanmar 779,546 | 5% 84,561 1% 323,956 680,000 NA NA
Cambodia 618,039 | 4% 117,665 19% 310,877 200,000 917,446 | 2,974,300
Laos 573,964 | 4% 49,115 9% NA 700,000 260,471 765,600
Southeast | 14:536:742 7.62%
Asia | £ 8930,998 1,107,018 +4.68% | 10,176,864
(95% Cl) (95% CI)
466

467 Table 2 | Comparison of rubber-related deforestation estimates generated by this and other studies. The
468 dataset in grey (first row) has been used to guide deforestation policy” and to calculate individual countries’
469 imported deforestation®8. Hurni & Fox (2018) derived both standard mapped figures and error-corrected figures
470  (indicated by an asterisk).

471
Rubber related deforestation in 1000 ha yr
Definition of Time Total in
Method . . . Ref . . ) .
etno forest period | o orenceAred | i ence| Indonesia | Thailand Malaysia | Cambodia
area
Pendrill et 2005-
al. 2020* 2017|135 tropical = 2 ° e o
Land- |Tree cover >=25% countries, incl. all
balance |(Hansen et al. major rubber
model |2013) producers (except
Pendrill et 2005- |China and Laos)
al, 20228 2018 52 23 6 5 3
Brazil, Cambodia,
. Cameroon,
Mix of o .
Goldman et |spatially Tree cover >=30% 2001- Democ_ranc
al. 2020 explicit (Hansen et al. 2015 Republic of the 140 64 NA 48 22
’ da?a 2013) Congo, India,
Indonesia, and
Malaysia
135 69
Hurni & Fox |Remote - 2003- [Mainland
20182 sensing Internal classifier 2014 |Southeast Asia NA NA NA
437* 232*
Tree cover >=10%
Grogan et |Remote | g0 et o 2001- 1o mbodia NA NA NA 34
al. 2019 sensing 2015
2013)
ESA WorldCover
) Remote |{10-m 2020 v100 2001- .
This study sensing |(tree cover 2016 Southeast Asia 173+ 15 63 34 20 15
>=10%)
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472  Methods

473  We used Sentinel-2 imagery to produce an up-to-date distribution map of rubber plantations
474  for all Southeast Asia and mapped this against time-series data from Landsat images between
475  1988-2021 to identify the historical deforestation date for areas of rubber in 2021.

476  Sentinel-2 imagery

477  Sentinel-2 is an optical multispectral imaging mission from the Copernicus Program headed by
478  European Commission in partnership with European Space Agency (ESA). It acquires very
479  high-resolution multispectral imagery with a global revisit frequency of 5 days. In this study,
480  we used the Sentinel-2 level-2A Surface Reflectance (SR) imagery' obtained through Google
481  Earth Engine? to map the extent of rubber plantations in Southeast Asia. Sentinel-2 SR imagery
482  has been corrected for atmospheric influences with the ‘Sen2Cor’ processor algorithm®>. To
483  remove clouds and cloud shadows, we applied the ‘QA60’ cloud mask band from the Sentinel-
484  2A SR imagery, and Sentinel-2 Cloud Probability datasets* where pixels with cloud probability
485  greater than 50% are considered as clouds. Cloud shadows are defined as areas of cloud
486  projection intersection with low-reflectance near-infrared pixels. The full details of masking

487 clouds and cloud shadows can be found at https://developers.google.com/earth-

488 engine/tutorials/community/sentinel-2-s2cloudless.

489  Sentinel-2 SR images acquired between 2020-2022 were used as inputs for mapping rubber
490  extent. For each image, we selected ten spectral bands and computed seven vegetation indices.
491  The selected bands included four 10 meter resolution bands (Blue: B2, Green: B3, Red: B4 and
492  Near-Infrared: B8) and six 20 meter resolution bands (Red Edge bands®: B5, B6, B7, B8A,
493  Short-wave Infrared bands: B11, B12). The seven vegetation indices included Normalized
494  Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Re-
495  normalization of Vegetation Moisture Index (RVMI), Normalized Burn Ratio (NBR),

496  Modified Normalized Burn Ratio (MNBR), Soil Adjusted Vegetation Index (SAVI) and
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497  Enhanced Vegetation Index (EVI). All the spectral bands and vegetation indices were
498  resampled to 10 m resolution for further analysis. The equations used for calculating the

499  vegetation indices are as follows:

B8—B4

500 NDVI = (1)
B8+ B4
501 NDpwI = 2B )
B8+B11
502 RVM] = NDVI_NDWI 3)
NDVI+NDWI
503 NBR = 28512 (4)
B8+B12
504 MNBR = B8—(B11+B12) 5)
~  B8+B11+B12
505 SAV] = L5x(B8-BY) (6)
(B8+B4+0.5)
506 EVI = 2.5X(B8—B4) 7
(B8+6XB4—7.5XB2+1)
507

508  Mapping the extent of rubber plantations

509 We designed a novel phenology-based methodology to map rubber plantations across
510  Southeast Asia. Unlike tropical rainforests and other tree plantations, rubber plantations shed
511  their leaves during the drier and colder season and subsequently regain their leaves. For
512 instance, in mainland Southeast Asia defoliation generally occurs during January-February and
513  the subsequent refoliation during March-April. In Indonesia the occurrence of the dry season
514  is more spatially heterogenous’. In some areas the lowest monthly precipitation occurs during
515  June-September. Backed by sample data®’ we made the assumption that in these areas the
516  defoliation occurs during June-September with the subsequent refoliation occurring during
517  October-December (Extended Data Fig.2). We refer to the areas where rubber defoliation
518  occurs during January-February as region-A, and where rubber defoliation occurs in June-

519  September as region-B.
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520  The unique phenology of rubber gives it distinct spectral characteristics, making it
521  distinguishable from other tree cover using satellite imagery. In this study, we used a tree cover
522  mask from the ESA global land cover map'? (The European Space Agency WorldCover 10 m
523 2020 product) and classified tree cover into rubber and other tree cover based on the spectral
524  differences between rubber refoliation and defoliation stages (using Sentinel-2 imagery). For
525  the defoliation stage, we generated a composite image using 15% NDVI percentile of all
526  images acquired during January-February in 2021 and 2022 for region-A, and during June-
527  September in 2020 and 2021 for region-B. For the refoliation stage, we used the 85% NDVI
528  percentile composite of all images acquired during March-April in 2021 and 2022 for region-
529 A, and during October-December in 2020 and 2021 for region-B. Each composite image
530  contained 17 variables, including 10 spectral bands and 7 vegetation indices (see Sentinel-2
531 imagery above). The composite image difference between the refoliation and defoliation stages
532  was subsequently used as input for a Random Forest machine learning classification.

533 To run the machine learning classification, individual samples are required for each
534  classification category. In this study, we collected a total of 2,010 rubber points and 1,816

.12 and random sampling

535 evergreen forest points from ground-truthed points, publications
536  points, which we visually interpreted using high-resolution satellite imagery through the
537  software Collect Earth Online'*!> (CEO). For the latter, we randomly sampled 1,000 forest
538  points and 1,000 rubber points from ground-truth data collected in 2010 (World Agroforestry
539  Centre Southeast Asia) and visually interpretated and subsequently re-labelled these points for
540  the year 2021 through CEO and Google Earth'®. In CEO, the visual interpretation was based
541  on the Mapbox Satellite imagery base map, 2021 monthly Planet NICFI images'’ (Norway’s
542 International Climate and Forests Initiative satellite data program) and yearly composite

543  images for January-February and March-April from Sentinel-2 (2017-2021)" and Landsat-5-7-

544 8 (1988-2016)'8. First, we assigned each sample point to a land cover class for the year 2021.
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545  If the land cover was rubber, we further identified the deforestation date for that point using
546  historical Landsat images'®, starting from 1988. Where available, additional very high-
547  resolution imagery from Google Earth!® was used to facilitate the interpretation process.

548  We randomly split all sampling points into 80% as training samples for mapping rubber, using
549  the remaining 20% to validate the final rubber map.

550 Disturbances such as degradation or plantation removal could potentially produce similar
551  spectral features to rubber phenology, leading to commission errors. To reduce commission
552 errors, we removed all rubber pixels where this may have occurred using a 2021 primary forest
553  mask and a no-disturbance mask (Extended Data Fig.1). The 2021 primary forest mask was
554  created by using the 2001 primary forest layer from Turubanova, et al. (2018)!” and removing
555  areas of subsequent forest loss between 2000-2021 (Hansen Global Forest Change v1.9)*°. The
556  no-disturbance mask was generated with the following steps: (1) Calculate the NBR index
557  (Normalized Burn Ratio, above equation-4) for all Sentinel-2 images between 2019-2021; (2)
558 Create NBR three-year median composites for March-June, July-September and October-
559  December (region-A) or January-May and October-December (region-B) (yielding three
560 composites for region-A, and two composites for region-B); (3) Extract the values of NBR
561  composites for all the rubber samples; (4) Plot the NBR values and calculate the 5% percentile
562  thresholds for individual composites, meaning 95% of rubber samples’ NBR values are above
563  these thresholds; (5) Apply the thresholds to all three (region-A) or two (region-B) NBR
564  composite images, resulting five binary images (1: no disturbance, 0: potential disturbance). If
565 a pixel was classed as 1 in all three (region-A) or two (region-B) binary images, it was
566  considered as not disturbed. A 5 by 5-pixel majority filter was applied to the no-disturbance
567  mask to remove isolated pixels.

568 In summary, we developed a novel approach, which involves classifying an ESA tree cover

569  baseline map'® into rubber and other tree cover based on phenology, and removing any pixels
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570  that are potentially confounded by disturbance using a primary forest mask and a no-
571  disturbance mask, which we generated specifically for this purpose. We also applied a post-
572  classification 5 by 5-pixel majority filter to the resulting map, and a minimum patch size
573  threshold of 0.5 ha to reduce pixel-level classification noise and to remove classification
574  artifacts.

575

576  Identifying the deforestation date

577  We tracked the first historical deforestation date for all rubber plantations mapped in 2021.
578  This was done using the LandTrendr spectral-temporal segmentation algorithm?"?? (a Landsat-
579  based algorithm for the detection of trends in disturbance and recovery). LandTrendr
580  characterises the history of a Landsat pixel by decomposing the time series into a series of
581  bounded line segments (i.e. trends over several years) and identifying the break points between
582  them. These linear segments and breakpoints allow for the detection the greatest pixel-level
583  change (e.g. deforestation) and therewith for the identification of the year in which this greatest
584  spectral change occurred.

585  In this study, we ran LandTrendr GEE API*? (a JavaScript module developed in Google Earth
586  Engine, https://emapr.github.io/LT-GEE/api.html) using the annual time-series index from
587  USGS Landsat Surface Reflectance Tier 1 datasets. The clouds and cloud shadows were
588  masked using the CFMASK?®. A medoid approach was used to generate the annual composite
589  image. This approach uses the value of a given band that is numerically closest to the median
590  of all the available images for each year. In this study, we used the time-series NBR index
591  (Normalized Burn Ratio, equation-4 above) from 1988 to 2021 for the temporal segmentation.
592  The deforestation date was identified as the end year of the linear segment with the largest
593  slope (greatest loss). As an additional constraint, we imposed a minimum start NBR value for

594  this linear segment of over 0.595, thereby reducing the risk of including the clearance of old
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595 plantations (planted before 1988) as deforestation. Any deforestation pixels below this
596  threshold were excluded from our deforestation estimates. We tested a range of NBR thresholds
597  and selected this one as it provided maximum overall accuracy. We also excluded pixels with
598  adeforestation date later than 2016 because it takes around 5 years for rubber plantations to be
599 identifiable from the satellite imagery following deforestation.

600  We validated the deforestation date map using the deforestation dates of rubber points collected
601  through Collect Earth Online!® (see section above on mapping the extent of rubber plantations).
602 In total, there were 704 rubber points with deforestation dates, 80% of which were from
603  deforestation before 1990. As we did not have ground-truthed deforestation points for all years,
604  we grouped the deforestation dates into two broader time periods (pre-2000 and between 2001-
605  2016).

606

607  Deforestation in Key Biodiversity Areas associated with rubber

608 We further explored the potential impacts of rubber and associated deforestation on regional
609  biodiversity. To do this, we clipped our maps of rubber and associated deforestation to a
610  shapefile for Key Biodiversity Areas (KBA)?*, and then calculated the area of rubber and
611  associated deforestation within these areas. Key Biodiversity Areas are some of the most
612  critical sites for the conservation of species and habitats globally. Rubber and deforestation in
613  these areas thus poses a significant threat to global biodiversity.

614

615 Data availability

616  The earth observation datasets that supported the findings of this study are publicly available
617 (e.g., Google Earth Engine data catalogue). The final maps of rubber and associated
618  deforestation will be made publicly available.

619
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Code availability

The code used for this study will be made available publicly available.
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708  Extended Data legends

709  Extended Data Note | Definitions of ‘forest” and ‘deforestation’

710

711  Extended Data Table 1 | Confusion matrix for mapping rubber across Southeast Asia.

712

713  Extended Data Table 2 | Confusion matrix for mapping deforestation associated with rubber
714 across Southeast Asia.

715

716  Extended Data Table 3 | Area of rubber-related deforestation for individual countries in
717  Southeast Asia. The 95% confidence Interval (CI) was calculated using the accuracy estimates
718  presented in Extended Data Table 2.

719

720  Extended Data Fig.1 | Methodology flow for mapping rubber (blue), generating non-
721  disturbance mask (green) and estimating deforestation (orange). Different image composites
722 were used for region-A (defoliation between January-February) and region-B (defoliation
723  between June-September). All processing was done in Google Earth Engine.

724

725  Extended Data Fig.2 | Rubber phenology regions, grids, and sampling points. As rubber
726  phenology varies across Southeast Asia we divided the study area into two regions using
727  OpenLandMap Monthly Precipitation’. Region-A: rubber defoliation was assumed to occur
728  between January-February and refoliation between March-April. Region-B: rubber defoliation
729  was assumed to occur between June-September and refoliation between October-December.
730  The algorithm was run separately for 3 by 3-degree grid cells (in blue). The forest and rubber
731  sample ground-truth points were used for training the algorithm (80%) and subsequently

732 validating the map (20%).
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