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Abstract

The level of each RNA species depends on the balance between its rates of production and decay.
Although previous studies have measured RNA decay across the genome in tissue culture and
single-celled organisms, few experiments have been performed in intact complex tissues and
organs. It is therefore unclear whether the determinants of RNA decay found in cultured cells are
preserved in an intact tissue, and whether they differ between neighboring cell types and are
regulated during development. To address these questions, we measured RNA synthesis and decay
rates genome wide via metabolic labeling of whole cultured Drosophila larval brains using 4-
thiouridine. Our analysis revealed that decay rates span a range of more than 100-fold, and that
RNA stability is linked to gene function, with mMRNAs encoding transcription factors being much less
stable than mRNAs involved in core metabolic functions. Surprisingly, among transcription factor
mRNAs there was a clear demarcation between more widely used transcription factors and those
that are expressed only transiently during development. mRNAs encoding transient transcription
factors are among the least stable in the brain. These mRNAs are characterized by epigenetic
silencing in most cell types, as shown by their enrichment with the histone modification H3K27me3.
Our data suggests the presence of an mRNA destabilizing mechanism targeted to these transiently
expressed transcription factors to allow their levels to be regulated rapidly with high precision. Our
study also demonstrates a general method for measuring mRNA transcription and decay rates in
intact organs or tissues, offering insights into the role of MRNA stability in the regulation of complex
developmental programs.

Introduction

Development of a multicellular organism requires intricate control of protein production in response
to specific signals. Much of this control is exercised at the level of transcription, with signaling
cascades leading to binding of transcription factors to recognition sites in the genome. Transcription
factor binding precipitates production of a target mRNA, and eventually, translation of protein
required in a specific cell at a specific time. Another class of gene regulation, known as post-
transcriptional regulation, operates on the mRNA after its production. mRNAs can be regulated post-
transcriptionally by several means — translation, intracellular localization, and decay, among others.
The stability of an mRNA determines whether it is available for translation into protein and whether
it reaches the region of the cell where it is required. Regulation of mRNA stability is a key component
of gene regulation because the inappropriate presence of even a single molecule of mMRNA could
have drastic consequences. According to some estimates, one molecule of mRNA directs the
synthesis of 6,000 molecules of protein on average'. In combination with translational control, rapid
degradation of unneeded RNAs can prevent the accumulation of proteins in the incorrect cell type
or at the incorrect developmental stage.
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Multicellular development involves many rapid transitions in cell types and finely-tuned spatial
boundaries. Such cell-fate changes are often accompanied by rapid changes in gene expression.
For example, reiterated, segmental organisation of the early Drosophila embryo depends on the
striped expression of pair-rule segmentation genes in alternate segment-wide stripes®. Expression
of these transcripts is highly dynamic®*, with the mRNAs of fushi tarazu (ftz) and other pair-rule
transcript having half-lives of only 7 min>®. Instability of Ftz protein appears also to be critical for
correct patterning’.

Later in development, the embryo undergoes even more complicated patterning to create tissues
and organs, the most intricate of which is probably the brain. In Drosophila, neural identities are
determined by a defined series of temporal transcription factors®, and similar transcriptional
cascades have been described in mammalian neural stem cells®. For several switches, a rapid
transition in expression of successive factors depends transcriptional repression of an early factor
by its successor'®. However, it seems likely that robust switching between stem cell identities also
depends on rapid mRNA degradation or translational repression.

Current measurements of RNA stability have largely been derived from single-celled organisms or
cultured mammalian cells, and so do not directly address in vivo mechanisms of cell-state changes
in developing tissues. Very few studies have estimated RNA stability in multicellular organisms'"'2,
and we are unaware of any data describing RNA stability across an entire brain. In this paper, we
estimate synthesis and decay rates in the Drosophila larval brain genome wide by analysing the
metabolic labeling kinetics of more than 7,000 RNAs. We show that decay rates of different RNA
species vary by orders of magnitude, with rates differing greatly across different gene functions. In
particular, we find that mRNAs that encode transcription factors are particularly unstable, especially
if their expression is restricted to a limited number of cell types. Many of these cell-type-specific
transcription factor RNAs are derived from genes which targets of histone H3K27 trimethylation, a
chromatin modification that is associated with transcriptional repression. Our results suggest a link
between transcriptional and post-transcriptional repression during brain development.

Results

To study RNA dynamics genome-wide, we first devised a protocol to address the technical
challenges of estimating decay rates from small tissue samples (see Methods). We found that RNA
transcription and decay rates can be estimated from these samples using metabolic labeling, the
steady-state assumption, and a single timepoint design'. In this method, synthesis rates are
estimated directly from a pulse of 4-thiouridine RNA labeling, and decay rates are inferred by
comparing the synthesis rates to the measured total RNA levels from the same sample. The steady-
state assumption requires that total RNA levels do not change over the course of the assay. To
evaluate this assumption, we collected RNA from brains either directly after dissection or after 60
minutes of incubation in our culture conditions. We found that the global pattern of RNA levels was
highly correlated between the two time points (r? = 0.94), supporting our use of the steady-state
model (Fig. S1A). A similar result was found when we compared brains incubated for 60 min in the
presence of 4-thiouridine to brains harvested directly after dissection (Fig. S1B), suggesting that
incubation in 500 uM 4-thiouridine does not cause large gene expression changes over this time
frame.
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We next generated genome-wide estimates of RNA synthesis and decay rates in the larval brain.
We added 4-thiouridine (4sU) to L3 larval brains cultured briefly ex vivo™, and then isolated RNA
from the brains after 20 minutes of labeling time (Fig 1A). This time frame is short enough to
resolve transcriptional dynamics for many RNAs", yet long enough to allow precision in the the
labeling duration and to recover a reasonable amount of labeled RNA. RNAs containing 4-
thiouridine were purified and RNA sequencing libraries were constructed from both the labeled
4sU* RNA and the total RNA. 4sU* RNA was rich in unspliced intronic regions relative to total
RNA, as expected, because 4sU* RNAs are either recently transcribed or in the process of
transcription (Fig. 1B). The data resulting from these sequencing experiments was then used to
estimate RNA synthesis and decay rates'® and to explore the roles of RNA dynamics in the brain.

We first used our genome-wide dataset to assess the contribution of transcription and decay rates
to the total RNA levels in the brain. Synthesis rates span a wider range than decay rates (c = 0.79
vs. o = 0.44 for the log-transformed rates) (Fig. 1C). We transformed the decay rates to half-lives
and found that the median RNA half-life was 82 minutes (Fig. 1D), similar to recent estimates in
mammalian cells"'®. However, the distribution is highly skewed with many short half-lives and a long
tail of more stable RNAs. Using our method, we were not able to resolve half-lives greater than
approximately 1000 minutes (see Methods). Therefore, we grouped genes with half-lives greater
than 1000 minutes into a single bin labeled = 1000 minutes (Fig. 1D). Non-coding RNAs had much
higher decay rates than coding transcripts, but only slightly lower synthesis rates (Fig. 1E). Of note,
we found that many highly stable non-coding RNAs have known functions — for example, 7SL and
RNAse MRP have established metabolic roles, and roX7 and cherub have important developmental
functions (Fig. 1F)'®"". We then used this dataset as a starting point to identify features linked to
RNA stability in the developing brain.

We hypothesized that RNAs which are localized to neurites need to be stable in order to survive their
long transit from the nucleus to the periphery. To address this hypothesis, we defined neurite-
localized mRNAs based on homology to mammalian mRNAs which were found to be enriched in
neurites across several studies '® and compared their decay rates to those of other RNAs. We found
that neurite-localized mRNAs have lower decay rates than other mRNAs in the genome (Fig. S2).
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They also have higher synthesis rates and higher total RNA levels. We conclude that mRNAs which
are present at the distal periphery of neuronal cytoplasmic projects are more highly synthesised,
stable, and have higher total RNA levels. We propose that the low decay rates of these mRNAs
helps them survive their long journey to the tips of neurites.
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To investigate the relationship between the function of MRNAs and their stability, we grouped genes
into functional categories using GO Slim annotations and determined the stability profiles of the gene
groups (Fig. 2). We found the general principle that mRNA stability was intimately linked to gene
function. Genes encoding transcription factors produced RNAs with much lower stability than
average (median around 28" percentile). In contrast, genes encoding structural molecules, many of
which are ribosomal protein genes, had very high stability (median around 79" percentile). In
between these two outliers, gene groups had less severe bias, but many were nonetheless intriguing.
RNAs encoding receptors had low median stability whereas RNAs encoding binders of receptors
had a bimodal distribution, with some having relatively low and others relatively high stability (Fig.
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2). There is only a weak global correlation between RNA decay rate and total RNA level (r* = 0.04),
and the correlation is absent when examining the genes encoding transcription factors alone (r< =
0.00) (Fig. S3A). Some highly expressed mRNAs are also unstable. For example, many unstable
mMRNAs encoding receptors are also highly expressed (Fig. S3B). Together these results argue for
tight regulation of RNA stability and coupling of RNA degradation to the functional roles of the mRNA.
functional classes of MRNAs - Fig 2: Different functional classes of mRNAs have distinct decay
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Fig 3: Cell-type-specific transcription factor RNAs are rapidly degraded

A) The stabilities of RNAs (including both mRNAs and ncRNAs) that are enriched in specific cell
types are shown. mRNAs encoding transcription factors (TFs) are indicated in blue. The asterisks
to the right of the plot indicate that the stabilities for the indicated group of cell-type-specific RNAs
are different than other RNAs in the dataset (Mann-Whitney U test). The heatmaps on the right
display the fraction of each category that is composed of TFs and the significance of the
enrichment. The enriched RNAs were extracted from a single-cell RNA-seq dataset derived from
larval brains'®. Cell type key: NE-OL (neuroepithelia/optic lobe), NE Tch (neuroepithelia/trachea),
Glut N (glutamatergic neurons), Immat N (immature neurons), Chol N (cholinergic neurons),
Undet N (undetermined neurons), KCs (Keyon cells), Pept N (peptidergic neurons), Octop N
(octopaminergic neurons), Serot N (serotoninergic neurons), GABA N (Gabaergic neurons),
NPCs (neural progenitor cells), Dopa N (dopaminergic neurons), RGL (ring gland), Hemos
(hemocytes), Motor N (motor neurons).

B) Stability of cell-type-specific RNAs vs. non-specific RNAs for transcription factor genes (TFs)
and other genes (non-TFs). (*p<0.05, **p<10e7°, ***p<10e™).

Brain tissue consists of many different cell types. We tested whether RNAs that are highly regulated
and expressed in only certain cell types would be more unstable than other RNAs that are more
widely expressed in the brain. We found that in general, this is not true, but it is true for the subclass
of RNAs that encode transcription factors. To classify RNAs as cell type specific or non-specific, we
made use of a single-cell RNA-seq study of the larval brain from a similar developmental timeframe
(48 hours after larval hatching, early L3)". We classified RNAs as cell type specific (CTS) if they
were both statistically enriched in a given cell type and at least 2-fold more abundant in that cell type
relative to the rest of the brain. RNAs enriched in certain cell types such as neuroepithelial cells were
generally unstable (Fig. 3A). In contrast, RNAs enriched in hemocytes, glia, and several classes of
mature neurons tended to be stable. When viewed as a group, CTS RNAs are more stable than
average, if RNAs encoding transcription factors are excluded (Fig. 3B).
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To explore this effect further, we analyzed the functions of RNAs in the top and bottom 10% of
stability for CTS RNAs. Stable CTS RNAs were enriched for metabolic processes and regulation of
transporters (Fig. S4). In contrast, unstable CTS RNAs were most enriched for transcriptional
regulators. Strikingly, CTS RNAs that encode transcription factors were more unstable than other
transcription factor RNAs (16" percentile of stability vs. 28" percentile of stability) (Fig. 3B). Among
the various cell types, we found that RNAs specific to immature neurons, neural progenitor cells,
neuroepithelia, and cholinergic neurons were enriched with mRNAs encoding transcription factors
(Fig. 3A).

To put our results into context, we examined the RNA stability and cell type enrichment for another
class of regulators, the RNA-binding proteins (RBPs) and the subclass of these which are known to
bind mRNAs, the mRBPs. RBPs and mRBPs were only enriched in RNAs specific to neural
progenitor cells (Fig. S5A). Cell-type-specific mMRBP mRNAs, but not cell-type-specific RBP mRNAs,
have lower stability than other cell-type-specific mMRNAs (Fig. S5B). These analyses show that cell
type specificity is linked to RNA stability, but only for certain classes of genes.


https://doi.org/10.1101/2022.12.03.518875
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518875; this version posted December 4, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

RBPs B —

NE-OL (60) : * 0.10 ns
NE Tch (90)
Immat N (90) +
Chol N (122)
Glut N (62)
KCs (69)
Undet N (108)
Pept N (118)
Octop N (101) H
GABAN (63) -
Serot N (100)
NPCs (142)
Dopa N (18)
RGL (119) +
Hemos (173)
Glia (321)
Motor N (75)

0.05 100 I

80

fraction of genes

—

0.00

60 1 | [] RNA class
O ubiquitous
40 O cell type specific

cell type (num genes)

-log4q p-value

2
K]
K]
4
1
1
1
3
3
1
1
9
(0]
K]
2
5
1

RNA stability percentile

" 0 20 1 [

0 50 100 Q KR LR KL I
QD DD R

stability percentile <2~§~ ‘Z*g& : |

T
counts enrichment other RBP mRBP

Fig. S5: mRNAs encoding RNA binding proteins are enriched in neural progenitor cells
A) The same plot shown in Fig. 3A, but with the mRNAs known to encode RNA-binding proteins
(RBPs) highlighted. mRBPs are RBPs which are known to bind mRNA and are a subset of RBPs.
B) Stability of cell-type-specific RNAs vs. ubiquitous RNAs for mMRNAs encoding RBPs or mRBPs
(*p<0.05, **p<10e7', ***p<10e™?).
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Fig 4: Unstable transcription factor RNAs are targets of H3K27 trimethylation

The RNA stability percentile of genes with H3K27me3 binding sites is shown. The asterisks to
the right of the plot indicate that the stabilities for the indicated group of cell-type-specific RNAs
are different than other RNAs in the dataset (Mann-Whitney U test). The heatmaps on the right
display the fraction of each category which is composed of TFs and the significance of the
enrichment. The H3K27me3 binding sites were derived from ChlIP-seq of whole L3 larvae which
were collected as part of the ModENCODE project®’. Genes were classed as having a binding
site within 1 kb of their transcription start site (upstream (A)), within 1 kb of their transcription
termination site (downstream (C)), or within the gene body itself, including both introns and exons
(gene body (B)). We assigned genes to a methylation category based on the combination of
regions which had a methylation binding site. Each gene is assigned to only one category. We
excluded the upstream-downstream (AC) category because of scarcity; only 10 genes fell into
this category. (*p<0.05, **p<10e7'°, ***p<10e™7).
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Fig 5: Relationships between RNA decay and gene attributes

The relationship between RNA decay rates and gene membership in the following categories is
shown: transcription factor (TF), extended H3K27me3 genes (me3), and cell-type-specific genes
(CTS). H3K27me3 target genes were defined as those which have H3K27me3 binding sites
upstream, downstream, and covering the gene body, as specified in Figure 4.

A) The overlap between each gene group is shown. CTS TFs are cell-type-specific transcription
factor genes. The p-value for the overlap enrichment is shown. Note that the overlap between
CTS TF & TF and the overlap between TF & TF is not shown because these categories have
100% overlap by definition. The numbers in parentheses indicate the number of genes in each
group.

B) The log transformed and winsorized decay rates are shown.

C) The equation for the linear regression model is shown. The model predicts the logio decay rate
using gene membership in each of the three groups (TF, me3, and CTS) as features. The model
was built either with or without interactions between the features. by — b7 indicate the coefficients,
with only bo — bs determined for the model without interactions. The model without interactions
can be derived from this equation simply by setting the interaction coefficients (bs — b7) to 0.

D) A multiple linear regression model was built to predict RNA decay rate as a function of TF,
CTS, and H3K27me3 status. The blue diamonds indicate the values determined using all data,
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whereas the grey box plots show the range of values obtained from subsampling the dataset with
bootstrapping. Bootstrapping was performed by subsampling each non-overlapping gene group
with a unique combination of factors using a sample size equivalent to the smallest group size
(n=39). 10,000 bootstrap samples were taken. (Note: the eight non-overlapping gene groups are
shown in (F)).

E) P-values obtained from the linear regression model in (D). The p-values are the -log1o value
of the original p-values. The p-values corresponding to bo using the entire dataset are 0, thus the
-log1o value is undefined, but it could be interpreted as an infinitely large number, and is indicated
by the blue triangles.

F) The decay rates of all eight possible non-overlapping groups derived from three possible
explanatory features is shown. Each group is indicated by a vector (TF, me3, CTS), where 1 =
present and 0 = not present.

G) For each of the three possible explanatory features (TF, me3, CTS), the mean change
between a group which is positive for the feature is compared to the group that is negative for
the feature but is identical with respect to the other features. The overlaid numbers indicate the
number of genes in each group. An asterisk marks the comparisons which show the effect of
adding either TF or me3 to a group which already has the other feature (i.e. adding TF to a group
which is already positive for me3 or vice versa).

We next asked what features could explain the low stability of cell-type-specific transcription factor
RNAs. These RNAs had no significant enrichment for known RNA-binding protein motifs (see
Methods)®. However, we found that they are targets of epigenetic silencing. Silenced genes are
marked by regions of histone H3K27 trimethylation, which often extend through both the gene body
and its regulatory regions. These genes are often referred to as Polycomb group (PcG) target genes
2122 To identify potential PcG target genes, we examined H3K27 trimethylation sites in the fly
genome collected from L3 larvae as part of the modENCODE project?®. 339 genes for which we have
determined RNA decay rates correspond to genes that have methylation sites within 1 kb of their
transcription start site (upstream), within 1 kb of their transcription stop site (downstream) and within
the gene body, the region corresponding to the transcript itself (including both introns and exons of
the gene). Because these genes are predicted PcG targets, rather than experimentally confirmed
targets, we refer to them as extended H3K27me3 genes. These genes have exceptionally low
stability when compared to genes without H3K27 trimethylation, and other classes of genes with
methylation covering only some of these regions also had lower stability than average (Fig. 4). This
observation suggests a link between transcriptional silencing and high RNA decay rates.

We wondered whether the relationships between RNA decay rates and cell type specificity, H3K27
trimethylation, and transcription factor status could be disentangled from each other. These gene
groups are highly overlapping, with RNAs encoding transcription factors making up 49% of extended
H3K27me3 genes and cell-type-specific transcription factors making up 13% of extended
H3K27me3 genes (Fig. 5A). These overlaps are highly significant. Transcription factor genes are
enriched for extended H3K27me3 (odds ratio 18.3, Cl =14.4 —23.2, p <0.001) and CTS transcription
factor RNAs are also enriched for extended H3K27me3 (odds ratio 17.8, Cl =11.8 — 26.9, p < 0.001)
(Fig. 5A). The overlap among these gene groups complicates any simple interpretations that do not
consider the relationship between them.

To determine which features(s) have the largest correlation with RNA decay rates, we performed
multiple linear regression to model the decay rates as a function of gene membership in each of the
three groups (TF = encodes a transcription factor, me3 = extended H3K27 trimethylation, and CTS
= cell type specificity). We found that these features differ in their effects, and that interactions
between the features change the interpretation of the effects. Before regression, we log transformed
the decay rates and winsorized the top and bottom 1% of the data to reduce the effect of outliers
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(Fig. 5B). Next, we modeled the decay rates as a function of RNA membership in each gene group,
either with or without interactions between the features (Fig. 5C — E). The obtained B coefficients
indicate the strength and directionality of the effect, whereas the p-values indicate the probability
that the coefficient is zero. The coefficients Bo, B1, B2, B3 are present in both models, but they can
differ. For example, 1 from the non-interaction model indicates the effect of TF without considering
that the TF category overlaps the CTS category, but the model with interactions takes this overlap
into account, with the coefficient s describing the effect of TF and CTS combined. The model with
interactions shows that TF has an effect both independently of other categories and in combination
with CTS (both 1 and s are positive, Fig. 5D, blue diamonds).

In order to focus our analysis on genes which belong to our groups of interest, we rebuilt the model
with 10,000 bootstrapped data sets sampled from our data (Fig. 5D — E). This procedure will give
each of our gene sets of interests the same importance in the model, rather than importance
proportional to their frequency in the original dataset. For the bootstrapped models, we randomly
sampled each independent gene group (groups shown in Fig. 5F) at the same depth (39 genes per
group per iteration, which corresponds to the minimum size of all gene groups). The bootstrapped
models largely agree with the models built using the whole dataset, and the range of values obtained
in the bootstrapped models reinforce confidence in the effects of some features. The coefficients
obtained from bootstrapping differ slightly from the coefficients derived from the whole dataset in the
model without interactions (Fig. 5D), showing, for example, that the effect of 34 (TF) is higher when
the analysis is focused on our gene groups of interest than when using the whole dataset. In contrast,
the coefficients are nearly identical between the bootstrapped models and the model considering the
whole dataset in the case of the model with interactions — this is likely because many of the
independent gene groups that are used to determine the interaction coefficients are small and highly
or completely sampled in the bootstrapping procedure. We found that 2 (me3) and s (TF & CTS)
are positive in nearly all the bootstrapped models, reinforcing our confidence that both H3K27
trimethylation and encoding a transcription factor in combination with cell type specificity are
associated with higher RNA decay rates (Fig. 5D, right). B+ is positive and B3 is negative in most
bootstrapped models, showing that encoding a transcription factor and cell type specificity are
associated with high and low RNA decay rates, respectively (Fig. 5D, right). Overall, our linear
models suggest that both H3K27 trimethylation and encoding a TF are predictors of high RNA decay
rates, as is the combination of the features cell-type-specific and encoding a transcription factor.

To address the same question in a different way, we examined the decay rates of each independent
gene group in which the combination of features is constant (Fig. 5F). We found that extended H3K27
trimethylation is associated with a similar increase in decay rates regardless of the other features it
is combined with, whereas the other groups show more variable behavior. Each group is denoted by
a vector which specifies its combination of features, with zero indicating that the feature is not present
and one indicating that the feature is present (see Legend). For example, (1,0,0) identifies genes
which encode transcription factors, but which do not have any other features. This gene set does
not overlap with the set denoted by (1,1,0), which specifies genes which both encode TFs and have
extended H3K27 trimethylation. Direct comparison of each independent group gives similar insights
to those obtained via linear regression. The CTS feature alone is not a consistent indicator of high
RNA decay rate and in some comparisons is associated with a lower decay rate (Fig. 5G). In
contrast, extended H3K27 trimethylation is a consistent indicator of high decay rate across all
comparisons, whereas the effect of encoding a transcription factor is strongest in combination with
the CTS feature (Fig. 5G).
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Because of the strong and consistent correlation of H3K27 trimethylation with high RNA decay rates,
we wondered whether there might be a functional link between PcG targeting and RNA decay. Such
a link would ensure that transiently expressed RNAs could not wreak havoc in another cell type as
a consequence of leaky transcription and that they could be cleared effectively before transitioning
to another cell state. The most obvious explanation for the link is that convergent evolutionary
selection processes have led to both PcG-driven transcriptional silencing and low RNA stability for
these genes. However, the most parsimonious explanation for the link would be that the two are
functionally related — i.e. whatever processes serve to transcriptionally silence the gene also cause
the locus-derived RNA to be rapidly degraded. To distinguish between these possibilities, we
examined a dataset which measured both nascent and total RNA levels after knockdown of
components of the Polycomb repressive complex 1 (PRC1) in a Drosophila neural-derived cell line
BG3%. As expected, knockdown of the Ph subunit of PRC1 increased the levels of many RNAs at
the nascent RNA level. These RNAs also increased in total RNA levels (Fig. S6A — C). Nascent RNA
sequencing captures the active transcriptional response to a change. It is expected that a change in
transcriptional regulation of a gene would change its nascent RNA levels, but that the total RNA
levels would mirror the changes in nascent RNA with a slight time delay depending on the half-life
of the RNA in question. If a perturbation acts by altering RNA stability, then we would expect it to
change the ratio between the nascent and the total RNA levels. We found that the ratio between the
total and nascent RNA levels was slightly increased after Ph knockdown for genes which were
defined as probable targets of PcG-driven silencing (PcG domain genes, Fig. S6D). This experiment
suggests that Ph depletion primarily derepresses the transcription of PcG domain genes, but that
the stability of the resulting RNAs remains similar after they are transcriptionally derepressed.
Therefore, we fail to find evidence of a direct causative link between PcG targeting and RNA decay.

Finally, we examined the RNA stabilities for two groups of genes which are known to be
spatiotemporally regulated in either the Drosophila embryo or larva. One group of genes is involved
in neural fate determination, via specifying the developmental timing window in which a neuron is
born. Another group of genes regulates anterior-posterior patterning in the Drosophila embryo.
These groups of genes had low RNA stability, in agreement with our finding that rapid RNA decay is
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needed for RNAs which are required transiently in development (Fig. 6). We note that five of these
genes (hb, Kr, tll, and sip1/2) are shared between the groups and have functions in both processes.
The majority of these RNAs encode transcription factors (Fig. 6). Therefore, we suggest a model
wherein mRNAs encoding transiently expressed and dynamically regulated transcription factors are
selected to be unstable so that rapid developmental transitions can occur robustly.

neural fate 4 © O ngOQD . o

@ non-TF
TF

O me3

process

patterning - CC@ 8:) o

0 20 40
stability percentile

Fig 6: RNAs which are highly regulated during development are rapidly degraded

The stability percentile of RNAs (both mRNAs and ncRNAs) which are annotated as being
involved in neural fate determination or early patterning of the Drosophila embryo. For neural fate
determination, the RNAs are a combination of temporal transcription factor genes and other genes
that undergo temporal regulation in neural precursor cells®. For pattern formation, the genes were
taken from a curated list hosted on the Interactive Fly website and encompassing gene sets known
as the gap genes and the pair-rule genes®. Most of these genes are TFs; the non-TFs are
indicated. Genes which are in our group of extended H3K27me3 genes (me3) are also indicated.

Discussion

Here, we report a systematic analysis of RNA transcription and decay rates in the developing
Drosophila brain. We accomplished this feat by adapting 4sU metabolic labeling and sequencing to
small tissue samples. Although we collected RNA from 150 larval brains per replicate, we have
shown that the experiment can be performed with as little as 5 ug of total RNA which can be collected
from as few as 25 brains (see Methods). Our study serves as proof of principle that RNA labelling
experiments and kinetic data can be collected from complex tissue types, which are often more
biologically relevant than monolayer cells in culture. There are many potential uses for our dataset.
For example, our analysis of decay rates identified many IncRNAs with higher than average RNA
stability. Among these IncRNAs was the RNA cherub (half-life = 248 min), which was recently found
to have an important function in brain tumor formation'’. It will be interesting to examine the functions
of other high stability IncRNAs, which are likely to have important roles.

Using this data, we showed that transcription rates span a larger range than decay rates, but decay
rates are nonetheless biologically relevant. As shown in previous studies of RNA decay from tissue
culture cells and single-celled organisms, RNA decay is tightly coupled to the function of the encoded
RNA"152526 |nterestingly, not all high expression RNAs are stable. For example, some RNAs
encoding receptors are highly abundant but also unstable. Such dynamics might allow cells to
respond to changes in conditions rapidly, even for abundant RNAs.

Perhaps the most striking finding was the high turnover rate of RNAs encoding transcription factors.
Although some past studies of RNA kinetics in tissue culture cells have observed lower stability for
RNAs encoding transcription factors, our study takes this observation a step further. We found that
the low stability status of these RNAs is linked to their tendency to be transiently expressed and
developmentally regulated. These characteristics of the unstable transcription factor RNAs are
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demonstrated via their enrichment in certain transient cell populations, such as among immature
neurons. Likewise, their high levels of H3K27 trimethylation in data derived from whole larvae
indicates that these genes tend to be kept in a transcriptionally silent state in most cell types.

There are two possible models to explain the relationship between transcriptional regulation and the
high decay rates of these RNAs. The first possibility is that the transient TF RNAs contain cis-acting
elements, such as RNA-binding protein motifs. On the whole, we have not found evidence for
universal RBP targeting of TF mRNAs, but it is possible that evolutionary pressures have selected
sequence characteristics that destabilize these RNAs on a case-by-case basis and/or that
destabilization depends on complex combinatorial action of multiple RNA-binding proteins that
cannot be easily detected.

A second possibility is that transcriptional regulation of these RNAs is directly linked to their high
degradation rates. Using data from another study®*, we found that knockdown of PRC1 subunit Ph
generally increases both the nascent and total RNA levels of PcG target RNAs, which argues against
a direct effect of the PRC1 complex on RNA decay. However, this observation does not rule out the
possibility that PcG targeting could be linked to RNA degradation of the same gene product through
an unknown mechanism. This RNA destabilizing mechanism might remain active even after the gene
is derepressed via experimental manipulation or in vivo during development. There is a growing body
of evidence that factors which regulate the RNA life cycle can be deposited on the RNA during the
process of transcription, a process which has been shown to depend on the promoter?’=3'. Likewise
it seems possible that factors which regulate transcriptional silencing could also recruit RNA
destabilizing factors which could be deposited on an RNA during transcription. An exciting candidate
for a PRC linked destabilizing factor is the rixosome, a complex involved in rRNA processing that
was recently shown to interact with PRC complexes®. Future experiments involving careful
manipulation of the PRC complexes and ablation of interactions with candidate RNA decay
regulators will be needed to determine if a causative link between PcG targeting and RNA decay
exists.

Materials and Methods

Choice of labeling approach and protocol optimization

We considered different approaches for estimating RNA decay rates from our small tissue samples.
We decided to employ a pulse labeling approach with 4-thiouridine (4sU) and to extract RNA kinetic
parameters from a single timepoint'**3. Classically, RNA decay has been measured with a pulse-
chase approach. However, this method is difficult to perform with tissue samples. A pulse period and
subsequent chase period in culture will expose the tissue to more time and potential damage from
the ex vivo conditions. Furthermore, many chase timepoints are needed to capture the half-lives of
RNAs at different ends of the half-life spectrum. In addition to the extra resources need to process
these numerous samples and their replicates, taking timepoints from tissue involves destructive
sampling — that is they are collected from different sets of animals. Calculations which involve
comparison between timepoints will compound error for measurement of RNA half-lives from noisier
sources such as tissue. In the single timepoint method, both labeled RNA and total RNA are
quantified from the same timepoint, and the resulting data is used to estimate RNA synthesis and
decay rates using a steady-state model'*%,

Drosophila culture and RNA extraction
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Drosophila melanogaster wild type strain Oregon-R flies were raised on standard cornmeal-agar
medium at 25°C. For each replicate 150 wandering third instar larvae were collected and their brains
were dissected in brain culture media (BCM: 80% v/v Schneider's Drosophila medium (Thermo
Fisher 21720024), 20% v/v heat inactivated fetal bovine serum (Sigma F4135) FBS, and 10 ug/mli
human insulin (Sigma 19278). The BCM used here is based on a previous recipe used for longterm
culturing of larval brains™ but modified to exclude whole larval extract, which contains RNAses and
non-brain RNAs that could contaminate our sequencing libraries. Brains were collected in small
batches of 15-20 in order to minimize total dissection and preparation time before labeling, which
was kept to under 20 minutes. Brains were transferred to 1.7 ml epitubes and the media was replaced
with BCM containing 500 uM 4-thiouridine (4sU, Carbosynth NT06186) for 20 minutes. For the
incubation condition testing experiments shown in Figure S1, 50 brains were collected per replicate
and the brains were incubated for 60 minutes. Our current version of the labeling protocol is able to
recover adequate 4sU-labeled RNA from as few as 25 brains, corresponding to ~5 pg of total RNA
as input for the 4sU RNA purification. In addition to the methods described below, we now
recommend using SPRI bead-based purification instead of chloroform extraction and using buffers
which further increase 4sU-labeled RNA purification specificity (protocol available on request).

Labeling was performed with tubes laid on their side with gentle shaking in the dark (80 rpm on an
orbital shaker, New Brunswick Innova 2000). At the end of the labeling period, the brains were quickly
washed with Schneiders media + 500 uM 4sU. All incubation and wash steps used 200 ul of the
specified media. The wash with Schneider's medium was performed to remove traces of FBS, which
we found to have high levels of a thiol-reactive molecule that that could possibly interfere with our
4sU RNA purification approach. The samples were then flash frozen in liquid nitrogen. Next, RNA
was extracted with the hot acid phenol method. Brains were homogenized on ice in SEA buffer (50
mM NaOAc, pH 5.2, 10 mM EDTA, 0.3% Sarkosyl) for 20 seconds using a motorized pestle. After
homogenization, 1% SDS was added, and the extraction was continued as previously described®.
Previous experiments using Trizol for extraction led to sporadic failure of 4sU purification, which we
believe was due to reducing agent carryover from Trizol to the sample.

Purification of thiolated RNAs and sequencing library construction

RNA was biotinylated in a 360 pl reaction containing 10 mM HEPES 7.5, 1 mM EDTA, and 24 ug of
brain RNA. After adding other components, MTSEA biotin-XX (MTS-biotin, Biotium #90066) was
added to a final concentration of 0.04 mg/ml as suggested*. The stock concentration of MTS-biotin
was dissolved in anhydrous DMSO (ThermoFisher, D12345) to a concentration of 0.2 mg/ml and
stored at -80 °C before use. The biotinylation reactions were purified with 2 rounds of extraction with
an equal volume of chloroform and cleaned up with isopropanol precipitation. Pellets were
resuspended in 50 yl of H20 and subjected to purification of on yMACs streptavidin columns as
previously described, although reaction volumes were scaled down two-fold (i.e. 50 yl RNA added
to 50 pl of beads)®. Pulldown RNA was isopropanol precipitated and resuspended in 10 ul H20. All
precipitations were done with 150 mM NaOAc, pH 5.2, 50% isopropanol, and and 50 pg/ml
GlycoBlue (ThermFisher, AM9516), then washed in cold 75% ethanol.

Ribosomal RNA depletion was then performed using biotinylated RNAs which are anti-sense to the
5S, 5.8S, 18S, and 28S ribosomal RNAs, as previously described® with adaptations. We used in
vitro transcribed anti-sense rRNA against the 5S, 5.8S, 18S, and 28S rRNAs (see below). For total
RNA samples, 500 ng of RNA was mixed with asrRNA in a 50 ul hybridization reaction. All recovered
pulldown RNA was mixed with asrRNA in a 25 yl hybridization reaction. For each 100 ng of input
RNA, a mix containing 0.3 pmol of each asrRNA was added per each 100 ng of input RNA, which is

15


https://doi.org/10.1101/2022.12.03.518875
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518875; this version posted December 4, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

approximately 2-fold molar excess over the rRNA in the sample. The input hybridization reaction was
purified with 250 pl of Dynabeads MyOne Streptavidin C1 (Thermo Fisher, 65001) in 100 ul binding
volume. The pulldown hybridization reaction was purified with 25 ul of beads in 25 ul volume. Beads
were washed in Dynabeads solution A prior to use. The binding reactions were incubated 10 min at
22 °C in the thermomixer at 600 rpm. The supernatant (rRNA depleted) was then cleaned up and
treated with DNAse using the RNAqueous-Micro Total RNA Isolation Kit (Thermo Fisher, AM1931).

The RNA was eluted in 10 pl from the kit and 6 pl was input into the library construction with the
Lexogen SENSE Total RNA-Seq Library Prep Kit for lllumina (Lexogen 009). Libraries were PCR
amplified using primers with unique 6mer i7 indices with 19 cycles (input libraries) or 18 cycles
(pulldown libraries). Libraries were pooled and sequenced on an lllumina HiSeq 2500 and
sequenced as 2 x 125 bp paired-end reads with 2 x 9 cycles of additional index read sequencing.
Samples for the incubation condition testing experiments were processed similarly, except that
ribosomal RNA subtraction was not performed and 500 ng of total RNA was used to construct
poly(A)-primed libraries using the QuantSeq 3' mMRNA-Seq Library Prep Kit FWD for lllumina
(Lexogen 015) and amplified for 13 — 15 PCR cycles. Quant-seq libraries were loaded onto an
lllumina NextSeq 500/550 High Output v2 cartridge and subjected to single-end sequencing on a
NextSeq 500 instrument for 85 cycles with 6 cycles of index sequencing.

In vitro transcription and spike-ins:

Drosophila rRNAs corresponding to the 5S, 5.85, 185, and 28S were cloned in the anti-sense
orientation behind the T7 promoter in the ERCC plasmid backbone and linearized with BamHI. In
vitro transcription was performed with the T7 Megascript kit (Thermo Fisher, AM1334) with 40% of
the UTP substituted with Biotin-16-UTP (Tebubio N-5005). Reactions were treated with TURBO
DNAse (Thermo Fisher, AM2238) and then cleaned up with the RNA Clean & Concentrator-25 kit
(Zymo Research, R1017) and eluted with water.

We added two types of synthetic RNA spike-ins to use for quality control. Non-thiolated spike-in
RNAs were from the Lexogen SIRV E2 mix (Lexogen 025.03) and thiolated spike-in RNAs (mix m2)
were derived from a subset of the ERCC plasmids donated by NIST including: ERCC-00057, ERCC-
00073, ERCC-00077, ERCC-00104, ERCC-00112, ERCC-00142, ERCC-00150, ERCC-00162,
ERCC-00165, and ERCC-00168. The thiolated spike-ins were made using T7 RNA polymerase
(NEB M0251) on BamHI-digested templates. The transcription reactions contained 0.5 mM of each
NTPs and additional 4sUTP (TriLink N-1025) added in proportion to the number of Us in each
transcript: >350 Us, 0.125 mM; 190-350 Us, 0.25 mM; 100-190 Us, 0.5 mM; <100 Us, 1 mM. The
thiolated spike-ins were quantified with the Qubit RNA BR assay (Thermo Fisher, Q10210) and
mixed at equal final concentrations. The non-thiolated spike-ins were added to both the input and
pulldown samples before ribosomal RNA removal. The thiolated spike-ins were added to the
pulldown samples before biotinylation and pulldown, whereas they were added to the input samples
before ribosomal RNA removal. For the 20 min labeling experiments, 2.25 ng of thiolated spike-ins
were added to each input sample and 0.25 ng were added to each pulldown sample. 4.8 ng of
Lexogen E2 mix was added to each input sample and 6.1 ng was added to each pulldown sample.
For the 60 min incubation test samples, 0.15 ng of thiolated spike-ins and 0.31 ng of Lexogen E2
mix was added to each total RNA sample.

RNA-seq data processing
Adapter removal and/or quality trimming were performed following recommendations from Lexogen.
For SENSE RNA-seq libraries, the first 9 nt of the R1 read, the first 6 nt of the R2 read, and adapter
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sequences were removed with Cutadapt® using the command “-m 20 -u 9 -U 6”. For the QuantSeq

libraries, BBDuk®* was used with the parameters “k=13 ktrim=r mink=5 qtrim=r trimg=10
minlength=20". Raw sequence data from BG3 cells that was generated using the lon Total RNA-seq
Kit v2 (Thermo Fisher, 4475936)** was downloaded from the SRA and used without further
processing because the data had already been trimmed. Drosophila melanogaster genomic and
transcript sequences were downloaded from Ensembl (release 99, assembly BDGP6.28). Kb-
python*® was used to build a Kallisto*! index with the coding, non-coding, and spike-in transcripts,
as well intronic sequences with 30 nt of flanking sequence on either side. Kallisto was used to
estimate counts mapping to each intron and each transcript using the options “--rf-stranded” for the
SENSE RNA-seq libraries and the options “-I 220 -s 130 --single --fr-stranded --single-overhang” and
“1 100 -s 100 --single --fr-stranded --single-overhang” for the QuantSeq and lon Total RNA-seq
libraries, respectively. Transcript per million (TPM) values were then recalculated for both intronic
and exonic regions for each gene after removing reads which were assigned to ribosomal RNA or
spike-in RNAs. INSPEcT'® was then used to estimate RNA synthesis, processing and decay rates
from the 4sU-labeled and total RNA data. Snakemake*? and Conda*® were used to run the RNA-seq
pipeline and manage software dependencies. Downstream analysis and figure construction was
completed using open-source scientific computing software, including Numpy, Scipy, Pandas, and
Matplotlib, run in Jupyter notebooks**~2. Further details of the RNA-seq pipeline and the generated
figures are available on Github at https://github.com/marykthompson/foursu_timecourse and
https://github.com/marykthompson/brain_stability.

RNA-Seq data analysis

Before downstream analyses, the data sets were filtered to exclude genes which were not
adequately expressed. For each experiment, we chose a cutoff of 10 counts in at least 2/3 of the
libraries for at least one condition. Because small RNAs are not recovered quantitatively by general
RNA-seq protocols, in our analysis we focus on mRNAs and non-coding RNAs >200 nt (this includes
both IncRNAs and other non-coding RNAs such as the signal recognition particle 7SL RNA). For
analysis of decay and synthesis rate trends in specific gene groups versus other genes, the Mann-
Whitney U-test was used. To calculate the error in the synthesis and decay measurements reported
in Table S1, we used the variance of the synthesis and total RNA levels reported by INSPEcT™3. We
converted these variance measures to coefficient of variation (CV) values and also calculated CV
values for degradation rates based on the formula used by INSPECcT for decay rate calculation at
steady-state (decay rate = synthesis rate/(total RNA — pre-mRNA)). We observed that some genes
had very long calculated half-lifes (> 1000 min), but that the variation between half-lives from these
genes had large inter-replicate variation due to estimate uncertainty. We chose 1000 min as an
upper limit based on the expected purification specificity of 4sU™ RNA relative to total RNA in the
4sU* sample. Based on an empirically determined estimate from spike-in RNAs, we determined that
some unlabeled RNAs will be present in the 4sU* RNA sample. We chose a cutoff of a 1:100 ratio
of 4sU* to mature RNA in the total RNA library. This ratio corresponds to a calculated half-life of
1386 min, which we rounded to 1000. For scatterplots where experiments are compared, a
pseudocount corresponding to the minimum value across experiments (i.e. min TPM) was added to
all values before log transformation to allow plotting.

Comparison of RNA stability data with other datasets, gene lists, and gene features

Genes encoding transcription factors were obtained from the Flybase Gene Groups page. RNA-
binding proteins were taken as genes mapping to GO term (RNA binding, GO:0003723) and mRNA-
binding proteins were taken as genes mapping to GO term (mRNA binding, GO:0003729). Genes
enriched in specific cell types in the L3 brain were taken from a single-cell RNA-seq dataset and
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were defined as genes statistically enriched in a given cell type (p < 0.05) and with a fold-change
enrichment of at least 2-fold'®. PcG domain genes were taken from a study that identified them based
on their high enrichment levels in both Ph Chip-seq and H3K27me3 ChlIP-chip?*. Neurite-localized
RNAs were extracted from a meta-analysis and correspond to genes found to have significant neurite
enrichment (p < 0.1) in at least three studies'. DIOPT 9.0*° was used to extract Drosophila homologs
of gene sets from other species. The DIOPT query was run using https://www.flyrnai.org/cqi-
bin/DRSC_orthologs.pl and filtered to remove homologs found in fewer than 8 sources (DIOPT score
> 7). The search for enriched RBP motifs was done with Transite using the TSMA mode against their
entire database of RBP motifs?®. GO analysis was performed with clusterProfiler® and the returned
categories were simplified with the semantic similarity score cutoff set to 0.5. For modeling decay
rates as a function of gene features, decay rates were first logo transformed and winsorized at the
top and bottom 1%. The rates were fit to a linear model that considered the effect of each feature
alone and in combination with each other (see Fig. S6C). The model was run on either the entire
dataset or subsampled 10,000 times with bootstrapping. Bootstrapping was performed by
subsampling each non-overlapping gene group with a unique combination of features using a sample
size equivalent to the smallest group size (n=33). Regression was performed with the OLS function
in the Statsmodels package®'.

Data Deposition

RNA sequencing data, including processed files summarizing RNA kinetic rates and expression
levels, have been deposited in the Gene Expression Omnibus under accession GSE219202.
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