

1 **Scavenger receptor endocytosis controls apical membrane
2 morphogenesis in the *Drosophila* airways**

5 Ana S. Pinheiro¹, Vasilios Tsarouhas¹, Kirsten Senti^{1,2}, Badrul Arefin^{1,3}, Christos
6 Samakovlis^{1,4}

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

¹ Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden.

² IMBA – Institute of Molecular Biotechnology, Austrian Academy of Sciences, Austria

³ Sahlgrenska Academy, Gothenburg University, Sweden

⁴ Cardiopulmonary Institute, Justus Liebig University of Giessen, Aulweg 130, Giessen 35392, Germany.

Correspondence to C.S. (email: christos.samakovlis@scilifelab.se) or V.T. (email: Vasilios.Tsarouhas@su.se).

37 **Abstract**

38 The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ
39 morphogenesis and function. In the *Drosophila* airway tree, the interplay of apical ECM
40 components with the underlying membrane and cytoskeleton controls tube elongation,
41 but the link between ECM composition with apical membrane morphogenesis and tube
42 size regulation is elusive. Here, we characterized Emp (epithelial membrane protein),
43 a *Drosophila* CD36-homologue belonging to the scavenger receptor class B protein-
44 family. *emp* mutant embryos fail to internalize the luminal chitin deacetylases Serp and
45 Verm at the final stages of airway maturation and die at hatching with liquid filled
46 airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for
47 LDLr-domain containing proteins. *emp* mutants also display over elongated tracheal
48 tubes with increased levels of the apical proteins Crb, DE-cad and phosphorylated Src
49 (p-Src). We show that Emp associates and organizes the β H-Spectrin cytoskeleton
50 and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo
51 protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src
52 levels. We propose that during morphogenesis, Emp senses and responds to luminal
53 cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis
54 and thereby restricts airway elongation.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 **Keywords:** Emp, CD36, scavenger receptor, endocytosis, recycling, Crb, β H-
70 Spectrin, cytoskeleton, Src kinase, airways

71 **Introduction**

72

73 The tube shapes in transporting organs like kidney, lung and vascular system are
74 precisely controlled to ensure optimal fluid flow and thereby, function. Failure in normal
75 tube size acquisition leads to cystic, stenotic or winding tubes. The *Drosophila*
76 respiratory network, the trachea, provides a well-characterized system for the genetic
77 dissection of tubular organ maturation. Like mammalian lungs, the trachea undergoes
78 a precisely timed series of maturation events to convert the nascent branches into
79 functional airways. First, a transient secretion burst of luminal proteins (Tsarouhas *et*
80 *al.*, 2007; Jayaram *et al.*, 2008; Förster, Armbruster and Luschnig, 2010) and initiates
81 tube expansion. Luminal proteins assemble into a chitinous central rod and into an
82 apical ECM (taenidia) lining the apical membrane. After 10 hours, luminal material
83 becomes rapidly cleared from the tubes by massive endocytosis involving several
84 endocytic pathways (Tsarouhas *et al.*, 2007). Finally, a liquid clearance pulse converts
85 the tubes into functional airways (Tsarouhas *et al.*, 2007). Genetic studies suggested
86 an instructive role of luminal chitin and proteins in tube growth coordination and
87 termination. Mutations affecting chitin biosynthesis (kkv) or matrix assembly (knk,
88 gasp) show irregular tube shapes, diametric expansion and tube maturation defects
89 (Moussian *et al.*, 2006; Tiklová, Tsarouhas and Samakovlis, 2013; Öztürk-Çolak *et al.*,
90 2016). Tube elongation is continuous during tracheal development and its termination
91 requires chitin biosynthesis and the secreted chitin deacetylases vermiform (Verm)
92 and serpentine (Serp) (Beitel and Kransnow, 2000; Luschnig *et al.*, 2006; Wang *et al.*,
93 2006). These luminal proteins presumably modify the structure and physical properties
94 of the extra-cellular matrix (ECM) and thereby restrict tube elongation. In addition to
95 the luminal matrix pathway, components involved in the assembly of basolateral
96 septate junctions (SJs) also restrict tube elongation, through the regulation of the
97 subcellular localization of Crumbs, a transmembrane protein that promotes expansion
98 of the tracheal cell apical surface and tube elongation (Laprise *et al.*, 2010). More
99 recently, the conserved non-receptor tyrosine kinase Src42 was found to promote axial
100 elongation by controlling the apical cytoskeleton and apical cell junctions (Förster and
101 Luschnig, 2012; Nelson *et al.*, 2012; Olivares-Castiñeira and Llimargas, 2018).
102 Additionally, Yki and several components of the Hippo pathway control tube
103 elongation, along with transcription factors like Blimp-1 and Grh (Hemphälä *et al.*,
104 2003; Robbins, Gbur and Beitel, 2014; Öztürk-çolak *et al.*, 2018; McSharry and Beitel,

105 2019; Skouloudaki *et al.*, 2019). An appealing model suggests that the interaction
106 between apical membrane and ECM elasticity may influence apical cytoskeletal
107 organization and thereby control tube shapes (Dong, Hannezo and Hayashi, 2014).
108 Although ECM integrity and the apical cytoskeleton appear crucial in tube length
109 regulation, it is unknown how ECM signals are perceived by the airway cells to regulate
110 their shapes during tube maturation.

111

112 Scavenger receptors comprise a superfamily of cell surface membrane proteins that
113 bind and internalize modified lipoproteins and various other types of ligands. CD36
114 (cluster of differentiation 36) belongs to class B scavenger receptor family, which
115 includes scavenger receptor B1 (SRB1) and lysosomal integral membrane protein 2
116 (LIMP2). CD36 is expressed on the surface of many cell types including epithelial,
117 endothelial cells, and macrophages. Disruption of CD36 function in mice can lead to
118 inflammation, atherosclerosis, metabolic disorders, tumor growth and metastasis
119 (Chen *et al.*, 2008; Pascual *et al.*, 2017; Wang *et al.*, 2020). CD36 has several cargoes,
120 including long-chain fatty acids, oxidized LDL (ox-LDL), oxidized phospholipids and
121 thrombospondin-1 (TSP-1) (Githaka *et al.*, 2016; Yang *et al.*, 2017; Deng *et al.*, 2022).
122 In vitro imaging studies of macrophages and endothelial cells propose that CD36
123 clustering at the cell surface upon engagement of multivalent ligands and in
124 conjunction with the cortical cytoskeleton triggers signal transduction and receptor-
125 ligand complex endocytosis (Jaqaman *et al.*, 2011; Githaka *et al.*, 2016). The activity
126 of several signaling effectors, including the Src family kinases, Fyn, Yes (Thorne *et*
127 *al.*, 2006; Zani *et al.*, 2015) and the mitogen-activated kinases, Jun-kinase (JNK) 1
128 and 2 (Rahaman *et al.*, 2006) can be regulated by CD36. The *Drosophila* genome
129 includes a family of 14 CD36-like genes, with distinct tissue-specific expression
130 patterns. The genetic analysis of a few members in this class B scavenger receptor
131 family implicated them in phagocytosis, immune responses and photoreceptor
132 function (Philips, Rubin and Perrimon, 2005; Stuart *et al.*, 2005; Voolstra *et al.*, 2006).
133 The *Drosophila* Emp (Epithelial membrane protein) shows the highest similarity with
134 CD36 and is selectively expressed in embryonic epithelial tissues (Hart, Klein and
135 Wilcox, 1993).

136

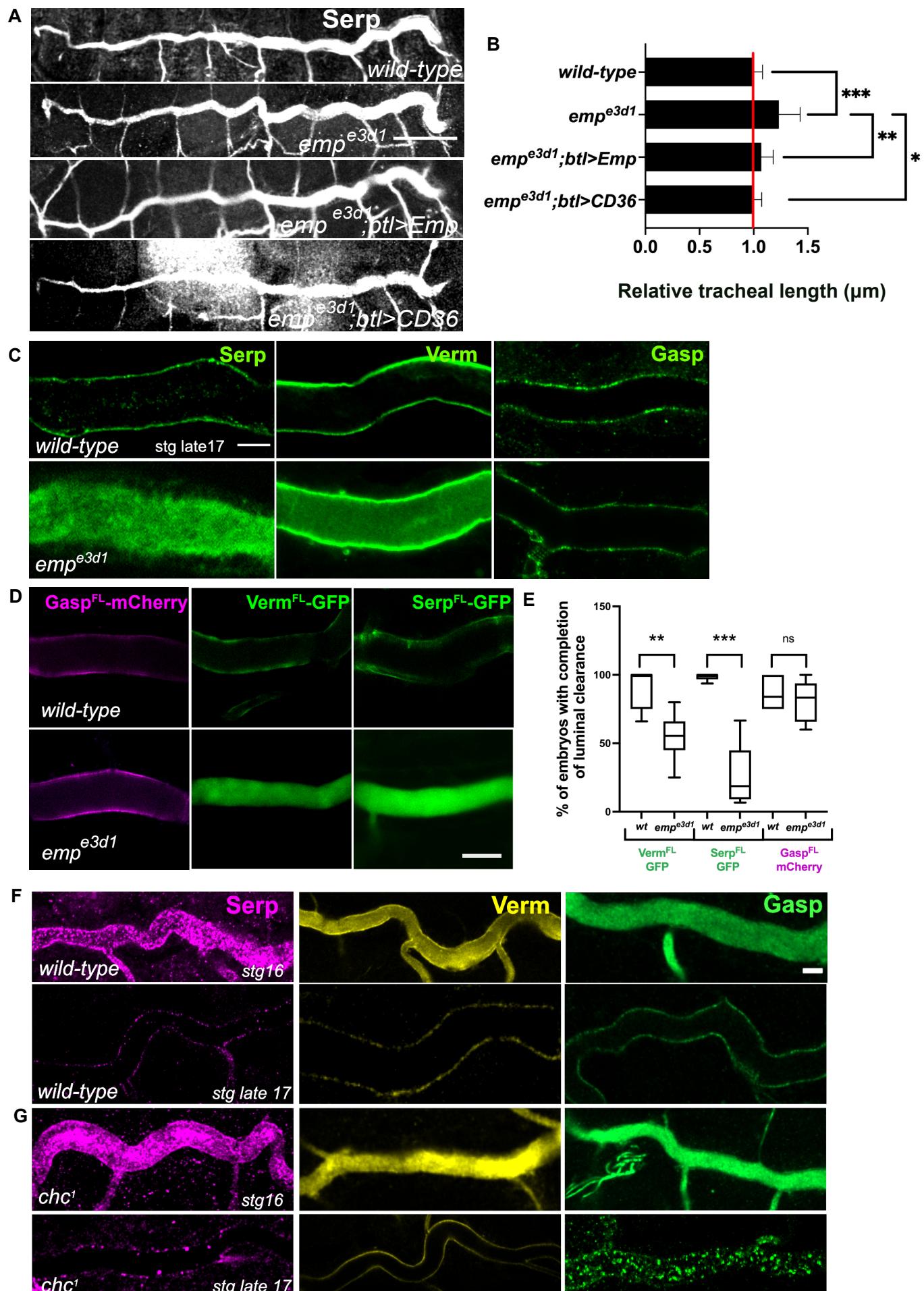
137 Here, we show that Emp is a selective receptor for internalization, endosomal targeting
138 and tracheal luminal clearance of proteins with LDLr domains. *emp* mutants display

139 over elongated tracheal tubes with increased levels of junctional Crb, DE-cad and
140 phospho-Src. Reduction of Src42A in *emp* mutants, rescues the tube elongation
141 phenotype indicating that Emp modulates junctional p-Src42A levels to control apical
142 membrane expansion and tube length. The organization of the beta-heavy spectrin
143 (β H-Spectrin) cytoskeletal network is compromised in *emp* mutants. Emp binds to β H-
144 Spectrin suggesting that it provides a direct link between ECM, apical membrane and
145 cytoskeleton during tube maturation process. Re-expression of human CD36 in *emp*
146 mutants can ameliorate the mutant tube phenotypes suggesting conserved functions
147 of Emp.

148

149

150 **Results**


151

152 **Emp is a selective scavenger receptor required for tube elongation and luminal 153 protein clearance**

154 *emp* (or CG2727 in Flybase) encodes a class-B scavenger receptor expressed in
155 embryonic ectodermal epithelial tissues including the tracheal system (Hart, Klein and
156 Wilcox, 1993). To elucidate the developmental functions of *emp* in the airways, we
157 generated a deletion mutant (*emp*^{e3d1}, referred as *emp* mutant hereafter) using the
158 FLP/FRT recombinase system (Parks *et al.*, 2004) (Figure 1-figure supplement 1A).
159 PCR mapping of genomic DNA identified a 4.8 kb deletion encompassing exon 2 in
160 the CG2727 locus. Both immunofluorescence and Western blots using a polyclonal
161 antiserum against recombinant Emp (see Methods) (Figure 1-figure supplement 1B),
162 failed to detect Emp protein in *emp* mutants (Figure 1-figure supplement 1C-D).
163 Similarly, quantitative RT-PCR of RNA extracted from late embryos showed a strong
164 reduction of *emp* RNA in the mutants (Figure 1-figure supplement 1E). *emp*
165 homozygous or *Df(2R)BSC608/emp* mutants were embryonic lethal with few escapers
166 surviving to 1st instar larvae. This embryonic lethality could be rescued by the re-
167 expression of a transgenic *emp* construct using the ectodermal driver 69BGal4. This
168 suggests that the deletion generates a strong loss-of function mutation in *emp* and
169 does not affect any neighboring genes required for embryo viability. To examine a
170 potential role of Emp in airway maturation, we visualized the tracheal tubes during
171 embryonic development in *wild-type* and *emp* mutants. *emp* embryos at stage 16

172 showed a 30% over-elongation of the dorsal trunk (DT) compared to the *wild-type*
173 (Figure 1A), but showed no defects in tube diameter (Figure 1-figure supplement 1F).
174 *emp* mutants also failed to fill their airways with gas at hatching (Figure 1-figure
175 supplement 1I, J). Both phenotypes could be rescued by re-expression of *emp* in
176 tracheal cells of the *emp* mutants (Figure 1A, 1B, Figure 1-figure supplement 1 Ic, J).
177 We conclude that Emp is required for normal tube elongation and gas-filling during
178 embryonic development. The survival of *emp* mutants overexpressing *emp* in the
179 airways was limited to larval stages, suggesting that the tracheal-specific re-
180 expression of *emp* is not sufficient for larval or adult survival. This suggests additional
181 roles for Emp in other tissues. The human homologue of Emp, CD36 shares the overall
182 protein architecture and 30% of amino acid identity with Emp (Figure 1-figure
183 supplement 1 G, H). We generated a transgenic line expressing the coding sequence
184 of human CD36 and drove its expression in fly airways to test if Emp and CD36 have
185 conserved functions. We found that both the tracheal length and gas-filling defects in
186 *emp* mutants were partially reversed by tracheal CD36 overexpression, arguing for a
187 conserved function of CD36 (Figure 1A, 1B, Figure 1-figure supplement 1Id, J).
188

189 To establish whether the failure of tracheal gas-filling originates from a defect in
190 luminal protein clearance, we stained *wild-type* and *emp* mutants for the luminal
191 proteins Serp, Verm and Gasp. These secretory proteins were internalized from
192 the lumen by late stage 17 in *wild-type* embryos. Serp and Verm, but not Gasp
193 were selectively retained in the *emp* dorsal trunk (DT) airways (Figure 1C)
194 suggesting a role of Emp in the internalization of a subset of luminal proteins. To
195 confirm the protein clearance phenotypes, we generated *emp* mutants carrying
196 *btl>Serp-GFP* or *btl>Verm-GFP* or *btl>Gasp-mCherry* transgenes and analyzed
197 them by live-imaging from 17h to 21h AEL (Figure 1D, E). The three reporters were
198 normally secreted into the lumen of both *emp* mutants and *wild-type* embryos and
199 at 19 hours they were cleared from the tubes of *wild-type* embryos. In *emp* mutants
200 Gasp-mCherry was also cleared from the lumen but the Serp-GFP and Verm-GFP
201 reporters remained inside the tube. This suggests that Emp acts as a selective
202 endocytosis receptor during luminal protein clearance. The unperturbed clearance
203 of Gasp-Cherry suggested differential requirements for the internalization of luminal
204

Figure 1

205 **Figure 1. *emp*^{e3d1} mutants show over-elongation of the tracheal tube and severe**
206 **luminal clearance defect of Serp.**

207 (A) Images showing the DT of *wild-type*, *emp*^{e3d1}, *emp*^{e3d1};*btl*>*Emp*, *emp*^{e3d1};*btl*>*CD36* embryos
208 stained for the luminal marker Serp.

209 (B) Graph showing the tracheal DT length in *wild-type* embryos (n=16), *emp*^{e3d1} mutants (n=17),
210 *emp*^{e3d1};*btl*>*Emp* (n=19) and *emp*^{e3d1};*btl*>*CD36* (n=15) embryos.

211 (C) Confocal images showing the DT of *wild-type* and *emp*^{e3d1} mutant at late stage 17 embryos,
212 stained for the endogenous luminal proteins Serp, Verm and Gasp.

213 (D) Confocal images showing the DT of live *btl*>*Gasp*^{FL}-*mCherry* (magenta), *btl*>*Verm*^{FL}-*GFP* and
214 *btl*>*Serp*^{FL}-*GFP* (green) in *wild-type*, and *emp*^{e3d1} mutant at 20.0 h AEL.

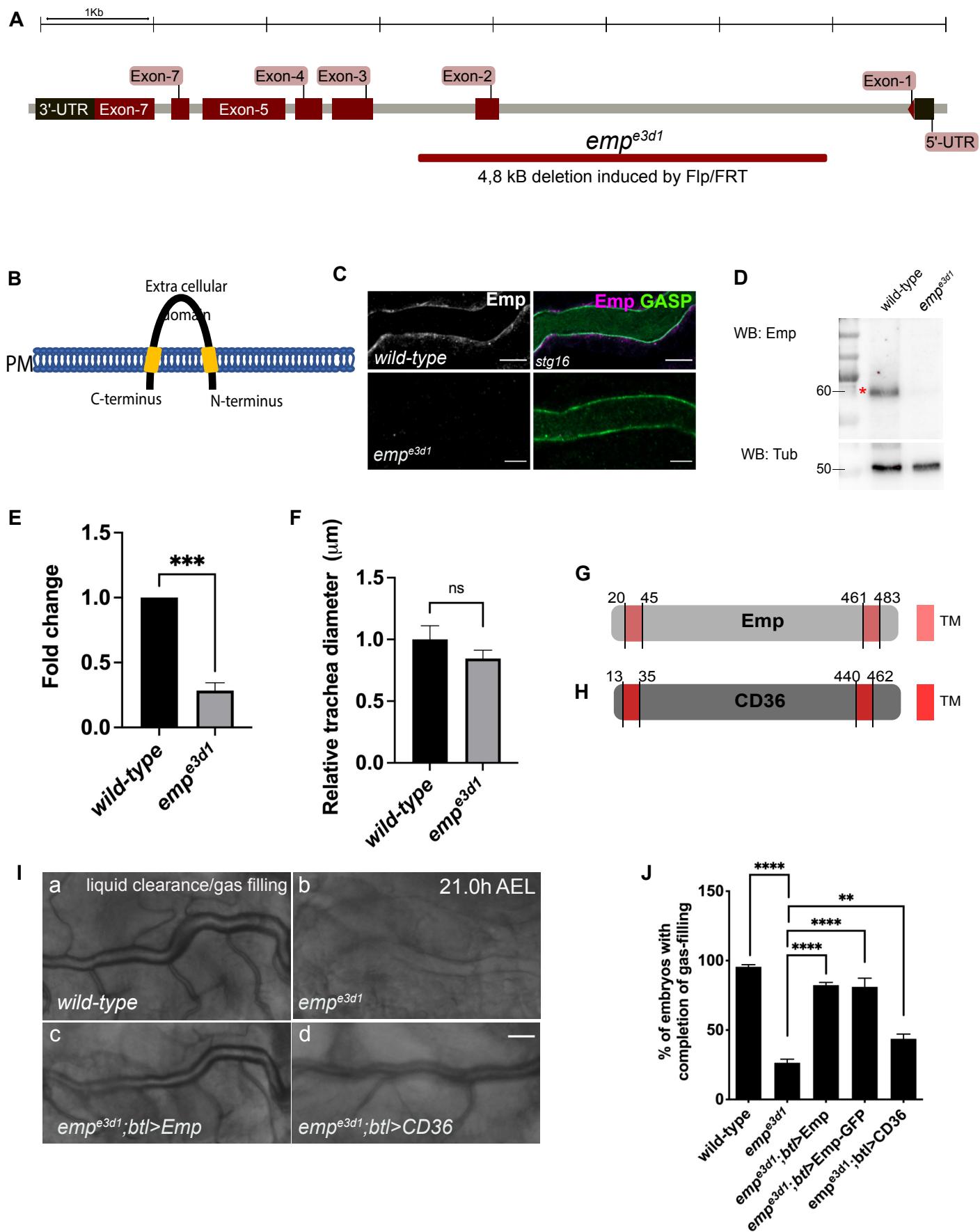
215 (E) Plots showing the percentage of embryos with completion of luminal clearance in *btl*>*Verm*^{FL}-
216 *GFP* (green, n=59), *emp*^{e3d1};*btl*>*Verm*^{FL}-*GFP* (green, n=37), *btl*>*Serp*^{FL}-*GFP* (green, n=58),
217 *emp*^{e3d1};*btl*>*Serp*^{FL}-*GFP* (green, n=15), *btl*>*Gasp*^{FL}-*mCherry* (magenta, n=28) and
218 *emp*^{e3d1};*btl*>*Gasp*^{FL}-*mCherry* (magenta, n=18).

219 (F) Confocal images showing the tracheal DT of *wild-type* and *chc*¹ mutant embryos, stained for the
220 endogenous luminal markers Serp (magenta), Verm (yellow) and Gasp (green) before and after
221 luminal clearance, stage 16 and late stage 17. Error bars denote s.e.m., p < 0,05* p < 0,005** and
222 p < 0,0005*** (unpaired two tailed t tests). Scale bars, 50µm, 10µm and 5µm for images (A), (C, D)
223 and (F) respectively.

224

225 proteins. We stained *clathrin* (*chc*¹) mutants for Serp, Verm and Gasp and analyzed
226 them at late embryonic stages, when luminal clearance is completed in *wild-type*
227 embryos. We found that Serp and Verm were cleared, whereas Gasp clearance
228 was selectively impaired in *chc*¹ mutants (Figure 1F). This indicates that Emp is
229 involved in a selective, clathrin-independent endocytosis pathway internalizing
230 Verm and Serp. Gasp endocytosis is clathrin-dependent and presumably involves
231 an unidentified surface receptor. These genetic experiments suggest that Emp
232 controls tracheal tube elongation and luminal clearance of chitin deacetylases
233 presumably by mediating their endocytosis.

234


235 **Dynamic subcellular localization of Emp during tracheal development**

236

237

238

239

Figure 1-figure supplement 1

240 **Figure 1—figure supplement 1**

241 **Conserved function of Emp and it's human homologue CD36**

242 (A) Schematic view of the *emp* (CG2727) locus. The Flp/FRT-induced 4,8Kb deletion in
243 *emp*^{e3d1}.

244 (B) The extra cellular domain of the Emp protein selected to generate the anti-Emp antibody.

245 (C) Confocal images of DT, showing the Emp antibody specificity.

246 (D) Western Blot from *wild-type* and *emp*^{e3d1} lysates embryos, probed for Emp and α -Tubulin.

247 (E) The expression levels of *emp* mRNA were calculated by qRT-PCR from *wild-type* or *emp*^{e3d1}
248 embryos at stage 16.

249 (F) Bar plots showing the relative tracheal diameter of *wild-type* (n=10) and *emp*^{e3d1} (n=8)
250 embryos.

251 (G-H) Graphical illustration of the Emp (G) and human CD36 (H) protein domains.

252 (I) Widefield images of DT at late stage 17 of living *wild-type*, *emp*^{e3d1}, *emp*^{e3d1}; *btl>Emp* and
253 *emp*^{e3d1}; *btl>CD36* embryos showing gas-filling phenotype.

254 (J) Bar graph displaying the percentage of embryos that fill with gas in *wild-type* (n=177),
255 *emp*^{e3d1} (n=182), *emp*^{e3d1}; *btl>Emp* (n=119), *emp*^{e3d1}; *btl>Emp-GFP* (n=178), and *emp*^{e3d1};
256 *btl>CD36* (n=70) embryos. Error bars denotes s.e.m., p >0,05 not significant (ns), p < 0,005**,
257 p < 0,0005*** and p < 0,0001**** (unpaired two tailed t tests). Scale bars, 5 μ m (C) 50 μ m (I).

258

259 **Figure 1—figure supplement 1- source data 1**

260 This zip archive contains the raw unedited western-blot shown in Figure 1—figure supplement 1.
261

262 To further elucidate Emp functions, we generated an antibody against its extracellular
263 domain (Figure 1-figure supplement 1B) and determined its subcellular localization by
264 co-staining for the previously characterized apical membrane protein Crb and markers
265 of adherens (DE-cad, pY) and septate epithelial junctions (Dlg, Cora). During tracheal
266 branch elongation (stage 14 to 16), *wild-type* embryos showed an Emp enrichment in
267 epithelial apical membranes and in subapical cytoplasmic puncta (Figure 2A). Similar
268 to the tracheal cells, we detected apical Emp localization, initially diffuse in dots in
269 subapical regions and progressively more defined at the apical cortical region in the
270 epidermis and hindgut of stage 15 to 16 *wild-type* embryos (Figure 2-figure
271 supplement 1A-B). During late stage 16 - early stage 17, Emp localization became
272 predominantly restricted in the junctional subapical region of epithelial cells, where it
273 colocalized with Crb, DEcad-GFP, and Phospho-Src (Figure 2A, Figure 2- figure
274 supplement C-D). The Emp signal showed only weak

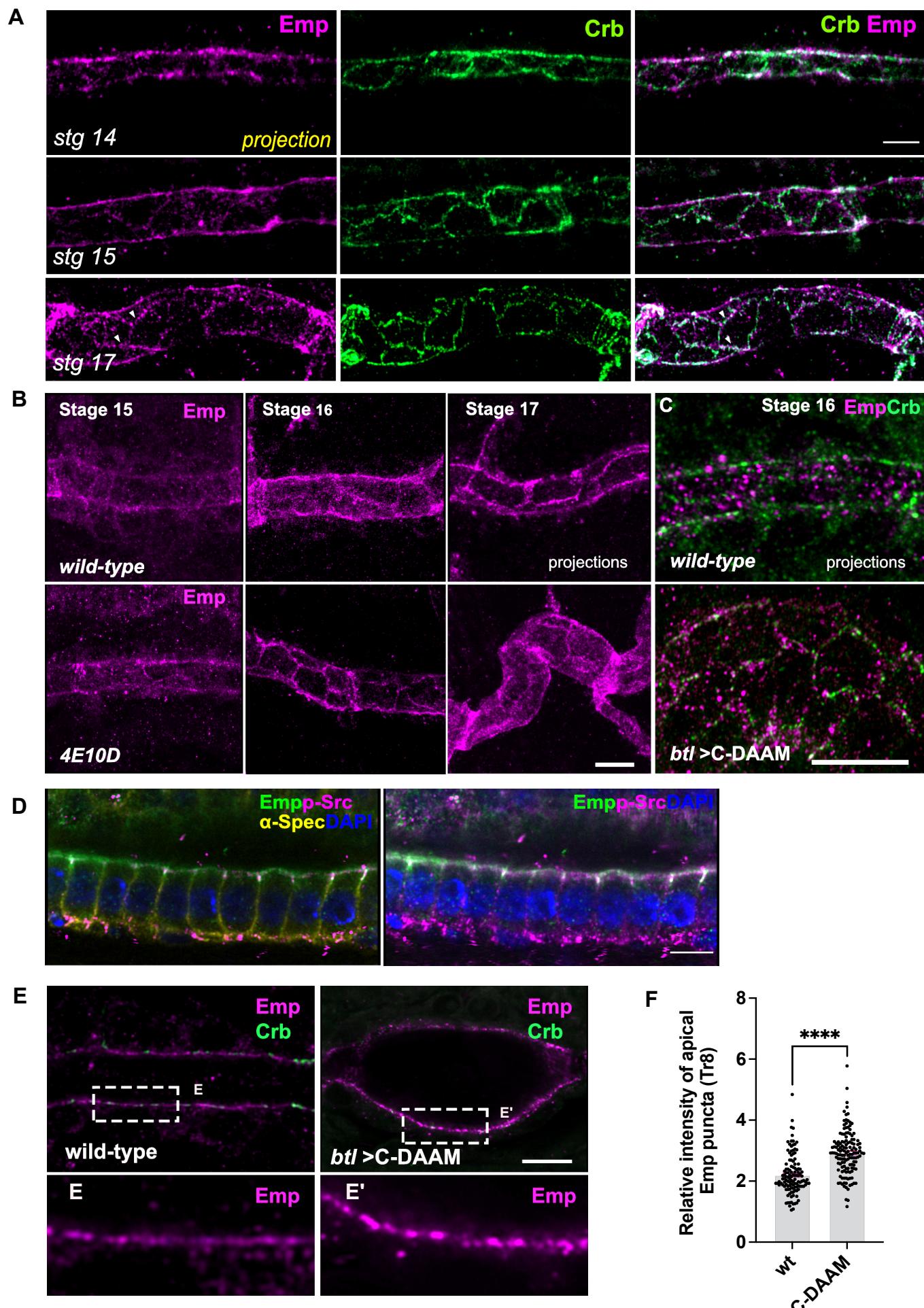


Figure 2

275 **Figure 2. Dynamic apical distribution of Emp during tube maturation.**

276 (A) Confocal images showing dorsal trunk (DT) projections, from stage 14, 15 and 17 embryos, stained
277 for Emp and Crb (Crumbs).

278 (B) DT projections, from stage 15, 16 and 17 of *wild-type* and *Ptp4E10D* (4E10D) stained for Emp.

279 (C) Confocal images of the DT in *wild-type* and *btl>C-DAAM* stained for Emp and Crb.

280 (D) Confocal images of embryonic tracheal cells stained for Emp, p-Src, α -Spectrin (α -Spec) and DAPI
281 showing the subcellular localization of Emp in stage 17.

282 (E) Confocal images showing the tracheal DT of *wild-type* and *btl>C-DAAM* embryos stained for Emp
283 and Crb. Insets shows the magnification of (E), indicated by the white rectangles.

284 (F) Bar plot showing the relative intensity of apical Emp puncta at DT (Tr8) in *wild-type* ($n = 168$ puncta,
285 5 embryos) and *btl>C-DAAM* ($n = 237$ puncta, 6 embryos). Statistically significant shown in p - values
286 $p < 0,0005^{***}$ (unpaired two tailed t tests). Scale bars, 5 μ m (A, B, D, E) and 10 μ m (C).

287

288 colocalization with the septate junction markers Coracle, Mtf, Dlg and with the lateral
289 cytoskeleton marked by α -Spectrin (Figure 2-figure supplement 1 A-C). The massive
290 uptake of luminal material correlates with the disassembly of apical actin bundles
291 running along the transverse tube axis. The diaphanous-like formin, DAAM and the
292 type III receptor tyrosine phosphatases, Ptp4E and Ptp10D, control the organization
293 of F-actin bundles running along the perpendicular tube axis in the *Drosophila* airways
294 (Matusek *et al.*, 2006; Tsarouhas *et al.*, 2019). Mutations in *Ptp10D4E* (*Ptp10D* and
295 *Ptp4E*) or expression of a dominant negative form of DAAM (*btl>C-DAAM*) disrupt the
296 transverse actin bundle arrays and prematurely initiate luminal protein clearance.
297 Similarly, Latrunculin A (Lat-A) injection in embryos destroys the actin bundles and
298 leads to luminal protein uptake. These experiments had suggested that the transverse
299 F-actin bundles restrict the endocytic uptake of luminal cargoes (Tsarouhas *et al.*,
300 2019). We tested whether the dynamic localization of Emp may be altered in
301 *Ptp10D4E* mutants and in embryos overexpressing the dominant negative C-DAAM
302 construct in the airways. Embryos of both genotypes showed premature translocation
303 of Emp to the airway cell junctions compared to *wild-type* (Figure 2B, C). This
304 suggests, that similar to luminal protein uptake, the relocation of Emp to the apical
305 junctional region can be induced by the premature disassembly of the actin bundles.
306 Additionally, we analyzed the localization and intensity of Emp and Crb protein
307 stainings along the apical membrane in *wild-type* and *btl>C-DAAM* embryos. DAAM
308 inactivation increased the intensity of apical Emp punctuate accumulations compared
309

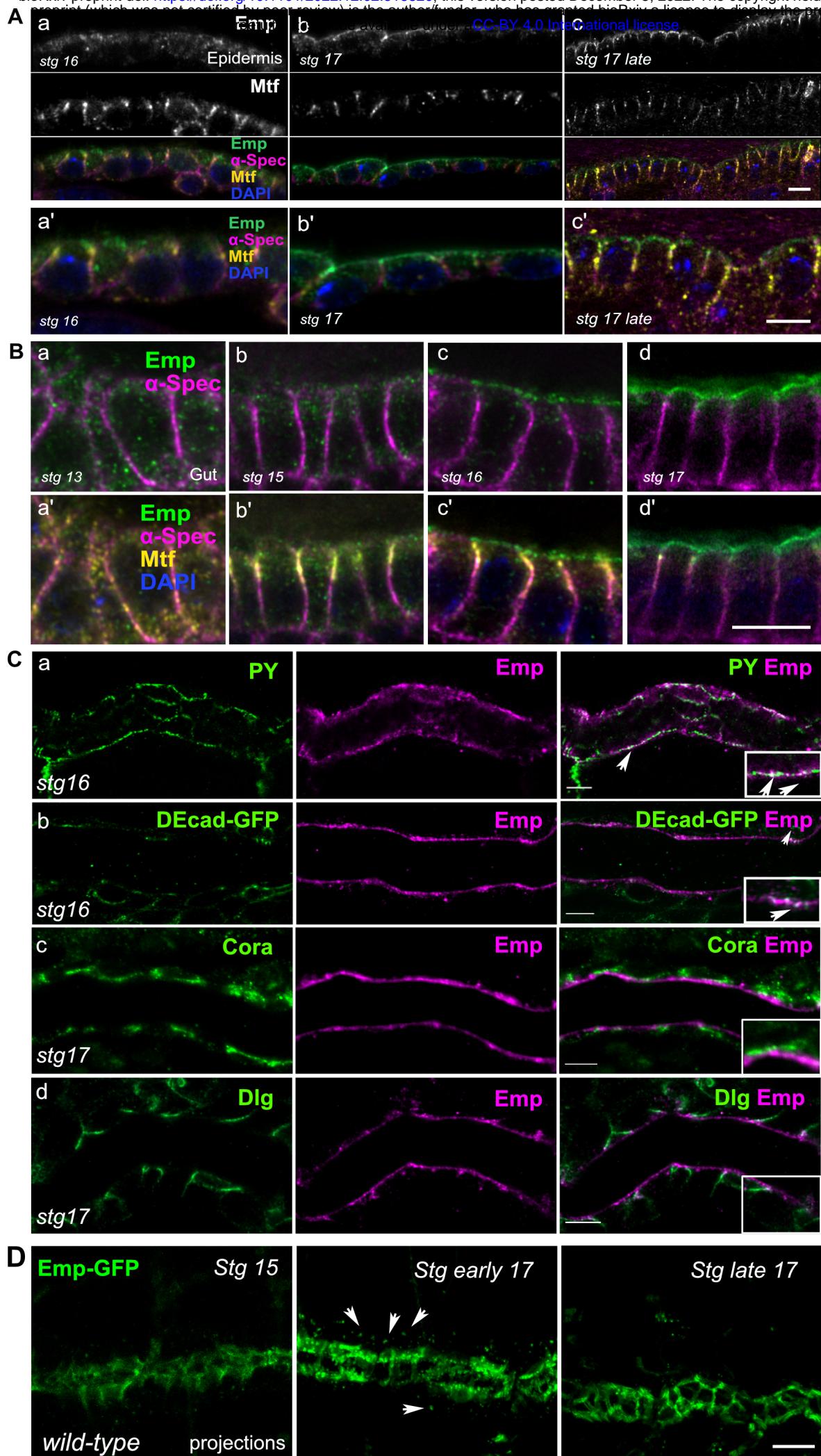


Figure 2-figure supplement 1

310 **Figure 2—figure supplement 1**

311 **Emp localization**

312 (A) Confocal images of embryonic epidermis stained for Emp, melanotransferrin (Mtf) and α -spectrin
313 (α -Spec) showing the subcellular localization of Emp in stage 16 (a), stage 17 (b) and stage 17 late (c).
314 (a'- c') represents zoomed images from a – c.

315 (B) Confocal images of embryonic gut stained for Emp, Mtf and α -Spec showing increasing apical
316 accumulation of Emp in stage 13 (a-a'), stage 15 (b-b'), stage 16 (c-c') and stage 17 (d-d').

317 (C) Confocal images of the tracheal DT, showing the relative localization of Emp and various cellular
318 markers including PY (a), DE-cadherin (b), during stage 16, Cora (Coracle) (c) and Dlg (Disc Large) (d)
319 during stage 17. Insets show zoomed cross section views of the DT of Emp co-localization with PY and
320 DE-cadherin, as indicated by arrowheads.

321 (D) Confocal frames of the dorsal trunk of living *wild-type* embryos expressing Emp-GFP (green). The
322 protein gradually accumulates at apical junctions through intracellular trafficking. Arrowheads indicates
323 the intercellular Emp. Scale bars, 5 μ m.

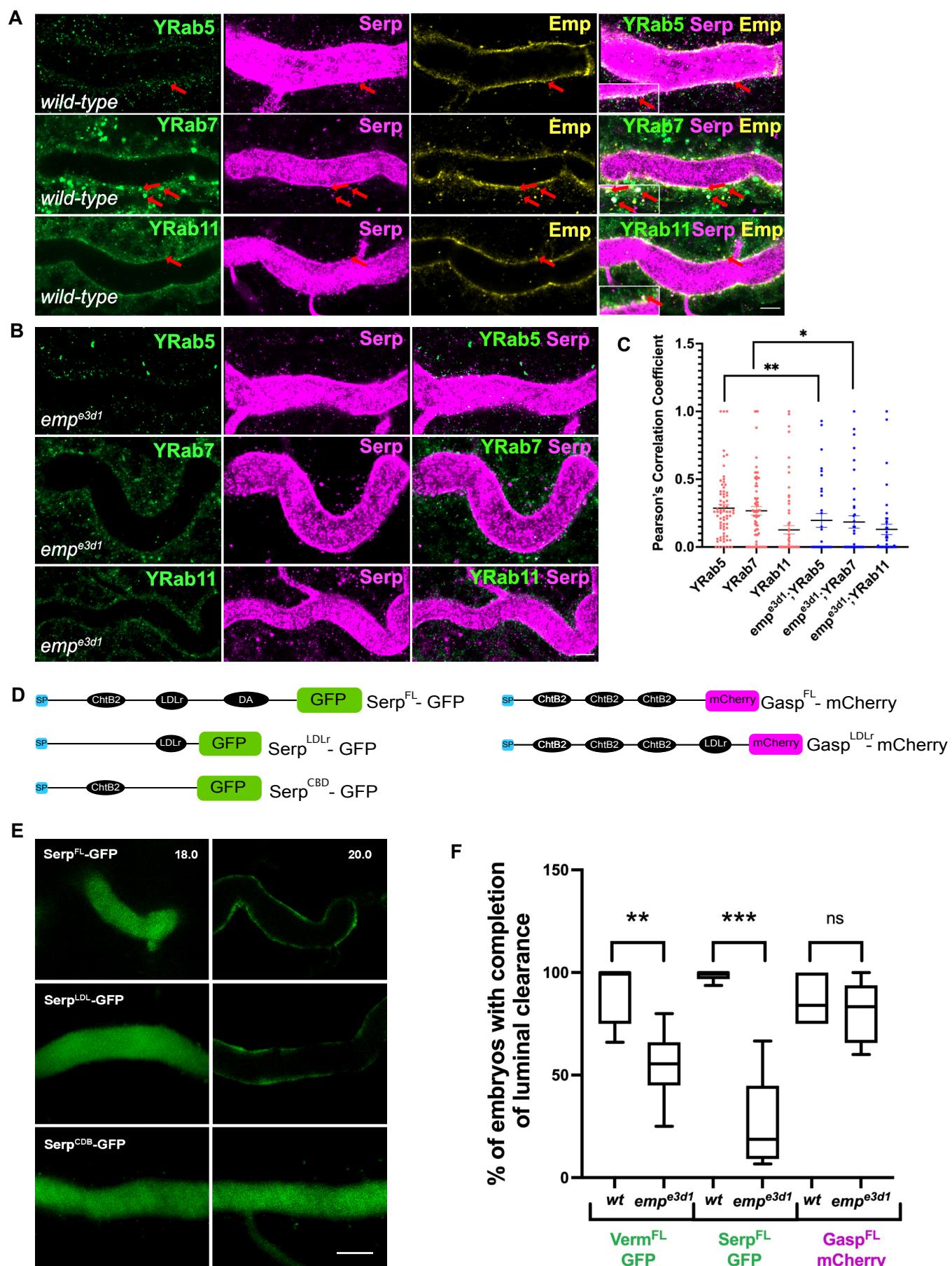
324

325 to *wild-type* (Figure 2E, F), further arguing that the transverse actin bundles restrict
326 Emp localization at the apical membrane.

327

328 To test if a subset of the apical Emp puncta may correspond to endocytic vesicles, we
329 analyzed the localization of Emp relatively to several YFP-tagged Rab GTPases
330 (YRab), expressed at endogenous levels. Co-staining for Emp and GFP (Dunst *et al.*,
331 2015) showed an overlap with YRab5 (early endosomes) and YRab7 (late
332 endosomes) with the Emp positive cytoplasmic puncta. We also detected weaker
333 colocalization with YRab11 (recycling endosomes), (Figure 3A). Live-imaging of
334 embryos expressing *btl>Emp-GFP* in the time interval of luminal protein clearance
335 (early stage 17) showed an increase of Emp intracellular puncta compared to stage 15
336 or late stage 17 embryos (Figure 2—figure supplement 1D). Overall, these experiments
337 suggest that the localization of Emp in the apical membrane and endocytic vesicles is
338 dynamic and influenced by actin bundle integrity. The timing of the final, steady-state
339 accumulation of Emp is controlled by PTP signaling.

340


341 **Serp internalization and endosomal targeting requires Emp**

342

343 The luminal retention of Serp in *emp* mutants and the partial localization of Emp with
344 endosomal markers led us to examine if Emp mediates the endosomal uptake and

345 trafficking of luminal Serp. We co-stained for endogenous YFP-tagged endosomal
346 markers and Serp in *wild-type* and *emp* mutant embryos. This analysis showed that
347 intracellular Serp puncta co-stained for the early endosomal marker Rab5 (Figure 3A,
348 C red arrows, R=0.29) and late endosomal marker, Rab7 (Figure 3A, C red arrows,
349 R=0.27) in *wild-type* embryos. In the *emp* mutants the colocalization of Serp with both
350 early and late endocytic markers was significantly decreased (Figure 3B), suggesting
351 that Emp mediates Serp internalization and endosomal vesicle targeting. In addition,
352 the number of intracellular Serp puncta were reduced in *emp* mutant embryos
353 compared to *wild-type* (Figure 3-figure supplement 1A), whereas the total number of
354 GFP puncta corresponding to early and late endosomes remained unchanged (Figure
355 3-figure supplement 1B). Taken together, these results suggest that Emp is a receptor
356 for Serp internalization and endosomal targeting.

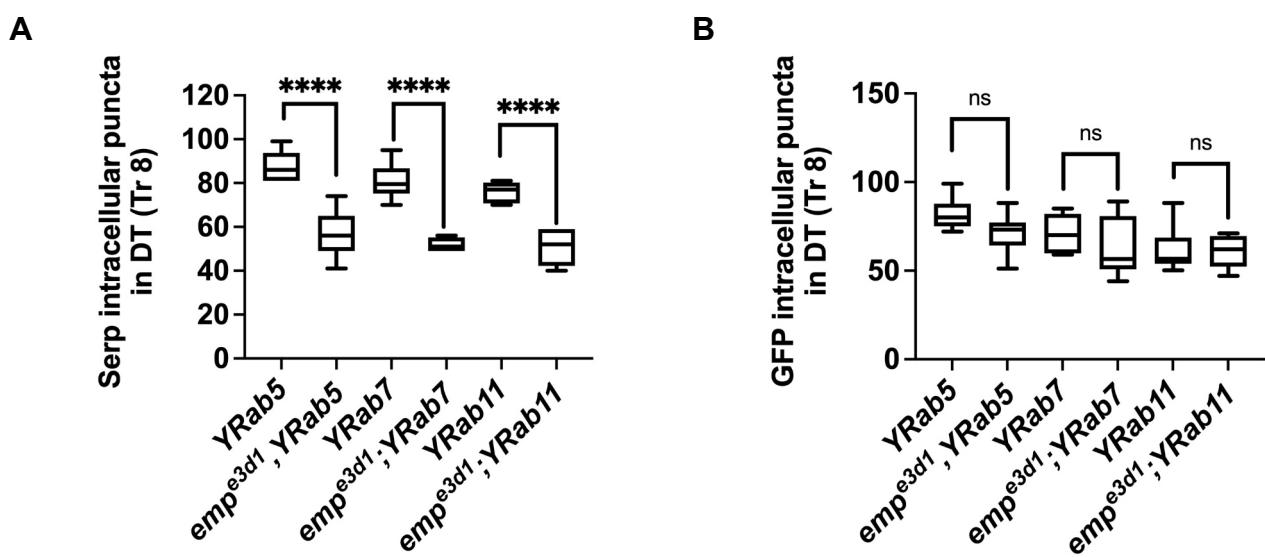

357
358 To further investigate Emp cargo specificity, we tested the luminal clearance of GFP
359 constructs, tagged with different domains of Serp in *wild-type* embryos and *emp*
360 mutants (Figure 3D). We used GFP constructs fused to either Serp-full-length or to the
361 Serp-LDLr-domain (Low density lipoprotein receptor-domain) or to the Serp-CBD-
362 domain (chitin binding domain) (Luschnig *et al.*, 2006; Wang *et al.*, 2006) and
363 examined their luminal secretion and clearance. The constructs were expressed and
364 normally secreted into the tracheal tubes of *wild-type emp* mutant embryos. The Serp-
365 LDLr reporter was cleared from the lumen as efficient as the full-length Serp-GFP but
366 the CBD-GFP fusion was retained in the tracheal lumen of 20% of *wild-type* embryos.
367 Interestingly both the Serp-GFP and LDLr-GFP were strongly retained in the lumen of
368 *emp* mutants. These results suggest that the LDLr domain of Serp, targets GFP to
369 Emp-mediated internalization (Figure 3E, F). CBD-GFP clearance failed in 40% of the
370 *emp* mutants suggesting that this cargo is also internalized by alternative receptors.
371 To further test if the addition of the LDLr-domain is sufficient to target an unrelated
372 protein for Emp-mediated uptake, we fused the Serp LDLr-domain to the Gasp-
373 mCherry protein, which does not require *emp* for its luminal clearance. As with the
374 Serp-based constructs we analyzed the clearance of *Gasp^{FL}-mCherry* and
375 *Gasp^{FL+LDLr}-mCherry* in *wild-type* and *emp* mutant embryos (Figure 3D). Both
376 constructs were normally cleared from the airways of *wild-type* embryos. However,
377 *btl>Gasp^{FL+LDLr}-mCherry*, but not *btl>Gasp^{FL}-mCherry*, was retained in the airways of
378

Figure 3

379 **Figure 3. The endosomal localization of Serp is strongly reduced in *emp*^{e3d1} mutants.**
380 (A) Confocal images of tracheal DT of *wild-type* embryos expressing endogenous tagged YFP-Rab
381 (knock-in) proteins, YRab5, YRab7 and YRab11 stained with Emp, Serp and GFP. Insets show
382 zoomed cross section views of the DT (y-z plane) of Emp co-localization with YRab5, YRab7 and
383 YRab11, as indicated with red arrowheads.
384 (B) Confocal images showing the tracheal DT, stained for Serp and endogenous YRab5, YRab7 and
385 YRab11 in *emp*^{e3d1} mutant.
386 (C) Scatter plots representing the co-localization between the YRabs and Serp in *wild-type* and in
387 *emp*^{e3d1} mutants.
388 (D) Schematic representation of Serp and Gasp domain organization. The following abbreviations are
389 used: SP, signal peptide (blue); LDLr, low density lipoprotein receptor (black); ChtB, Chitin binding
390 domain (black); GFP (green); Cht BD2, chitin binding domain (black); and mCherry (magenta).
391 *btl>Serp*^{FL}-GFP represents the full length of Serp, *btl>Serp*^{LDLr}-GFP represents the LDLr domain of
392 Serp, *btl>Serp*^{CBD}-GFP expresses ChtB domain of Serp, *btl>Gasp*^{FL}-mCherry represents the full-
393 length Gasp protein and *btl>Gasp*^{LDLr}-mCherry represents the full-length Gasp protein with addition
394 of the LDLr domain.
395 (E) Confocal images showing the DT of live *btl>Serp*^{FL}-GFP, *btl>Serp*^{LDLr}-GFP, *btl>Serp*^{CBD}-GFP,
396 (green) embryos before (18.0 h AEL) and after (20.0 h AEL) luminal protein clearance. *btl>Serp*^{CBD}-
397 GFP embryos show incomplete luminal GFP clearance compared to *btl>Serp*^{FL}-GFP or
398 *btl>Serp*^{LDLr}-GFP.
399 (F) Plots showing the percentage of embryos with completion of luminal clearance in *btl>Serp*^{FL}-GFP
400 (green, n = 58); *emp*^{e3d1}; *btl>Serp*^{FL}-GFP (green, n = 15); *btl>Serp*^{LDLr}-GFP (green, n = 32);
401 *emp*^{e3d1}; *btl>Serp*^{LDLr}-GFP (green, n = 26); *btl>Serp*^{CBD}-GFP (green, n = 45); *emp*^{e3d1};
402 *btl>Serp*^{CBD}-GFP (green, n = 28); *btl>Gasp*^{FL}-LDLr-mCherry (magenta, n = 57); and
403 *emp*^{e3d1}; *btl>Gasp*^{FL}-LDLr-mCherry (magenta, n = 56). The median (horizontal line) is shown in the
404 plots with the data range from 25th to 75th percentile. Error bars denote s.e.m., p < 0,05*, and p <
405 0,0005*** (unpaired two tailed t tests). Scale bars, 5 µm (A, B) and 10 µm (E).
406
407
408 *emp* embryos (Figure 3F compare with Figure 1E). These data suggest that the LDLr
409 domain confers cargo specificity for Emp-mediated internalization. Loss of function
410 *verm* *serp* mutants or overexpression of *serp* leads to over elongation of the tracheal
411 tubes (Luschnig *et al.*, 2006; Wang *et al.*, 2006). We thus examined the effects of Serp
412 and Verm on the levels and localization of Emp. *btl>Serp*-GFP overexpressing
413 embryos showed increased punctate accumulations of Emp and Crb

414

Figure 3-figure supplement 1

415 **Figure 3—figure supplement 1.**

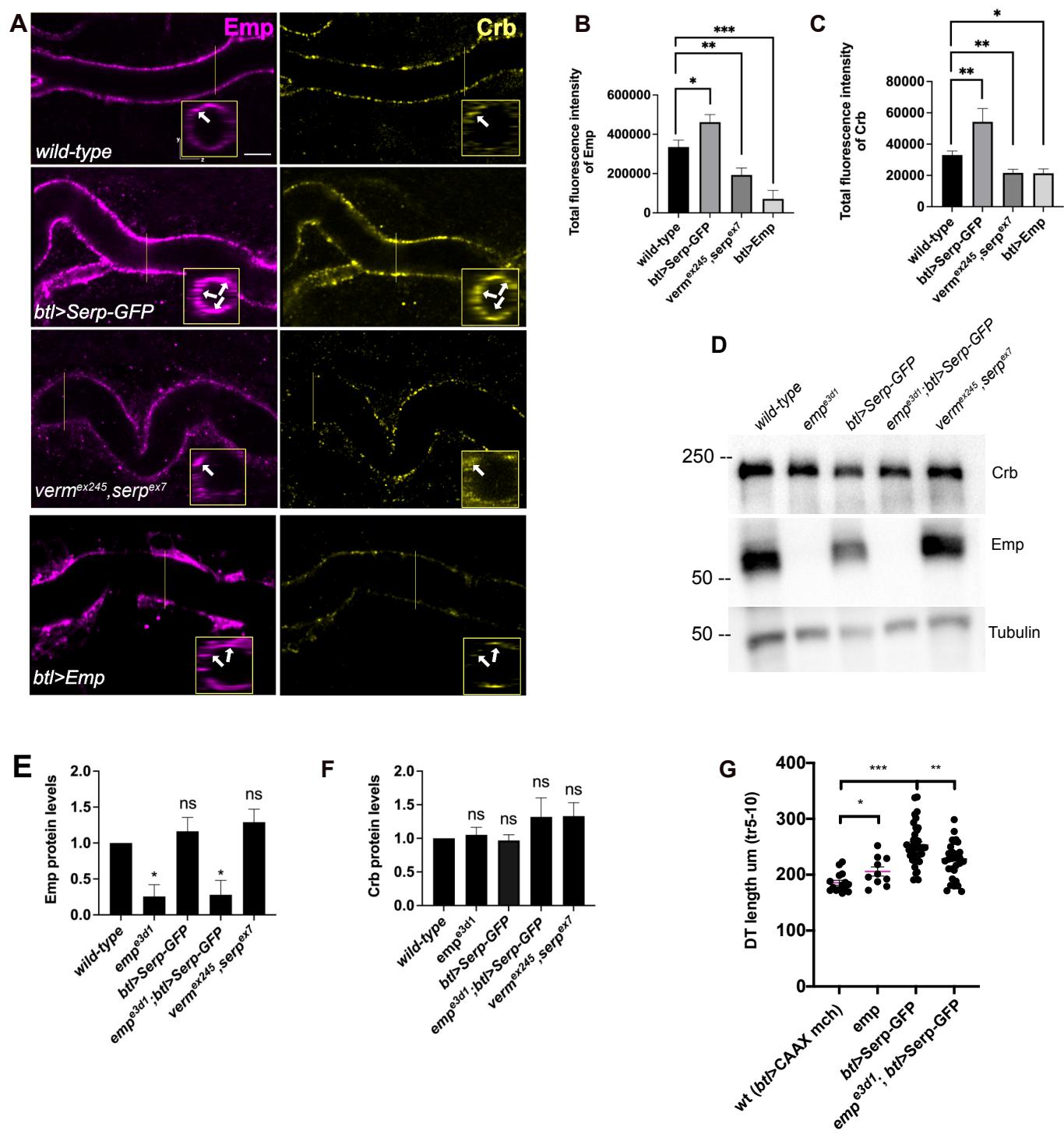
416 **Quantification of Serp internalization**

417 Boxplots of Serp (A) and GFP (B) intracellular puncta of tracheal cells in *YRab5*, *emp^{e3d1}*; *YRab5*,
418 *YRab7*, *emp^{e3d1}*; *YRab7*, *YRab11* and *emp^{e3d1}*; *YRab11* embryos at late stage 16. The boxplot (A-B)
419 shows the median (horizontal line) and the data range from 25th to 75th percentile p>0,05 not
420 significant (ns) and p <0,0001****(unpaired two tailed *t* tests).

421

422

423 at the apical cell surface compared to *wild-type* (Figure 4A). Conversely, in
424 *verm^{ex245}*, *serp^{ex7}* double mutants, we detected more diffuse punctate cytoplasmic
425 accumulations for both Emp and Crb compared to *wild-type* (Figure 4A, B). To
426 investigate whether the changes in intensity and localization of Emp and Crb puncta
427 upon Serp-GFP overexpression or *verm* and *serp* deletion were due to changes in
428 protein synthesis or stability we performed Western blots of mutant and *wild-type*
429 embryos. The total protein levels of Crb and Emp did not change in the mutants
430 suggesting that the levels of luminal Serp control the punctate accumulation of Emp
431 and Crb at the apical membrane (Figure 4D-F). As expected, overexpression of Emp
432 in the airways (*btl>Emp*) increased the overall levels of cytoplasmic Emp, but did not
433 influence the accumulation of Crb (Figure 4D). Overall, these data suggest that the
434 levels of luminal cargo control the punctate accumulation of Emp and Crb at the apical
435 membrane. Measurements from the tr5 to tr10 showed reduced DT elongation in
436 *emp^{e3d1}*; *btl>Serp-GFP* embryos compared to *btl>Serp-GFP*, suggesting that Serp
437 overexpression control the length of the *Drosophila* airways at least partially through
438 Emp (Figure 4G). Overall, these results suggest that Emp acts as a scavenger
439 receptor for LDLr domain proteins, such as Serp thereby facilitating their internalization
440 through clathrin independent endocytosis. The levels of luminal Serp control the
441 localized apical membrane accumulation of Emp and Crb to calibrate tube elongation.


442

443 **Emp controls tube morphogenesis**

444

445 Crb and DE-cad trafficking underlies the anisotropic growth of the apical surface and
446 elongation of *Drosophila* airways (Förster and Luschnig, 2012; Nelson *et al.*, 2012).
447 We first quantified the ratio of longitudinal/transverse cell junction lengths (LCJ/TCJ)

448

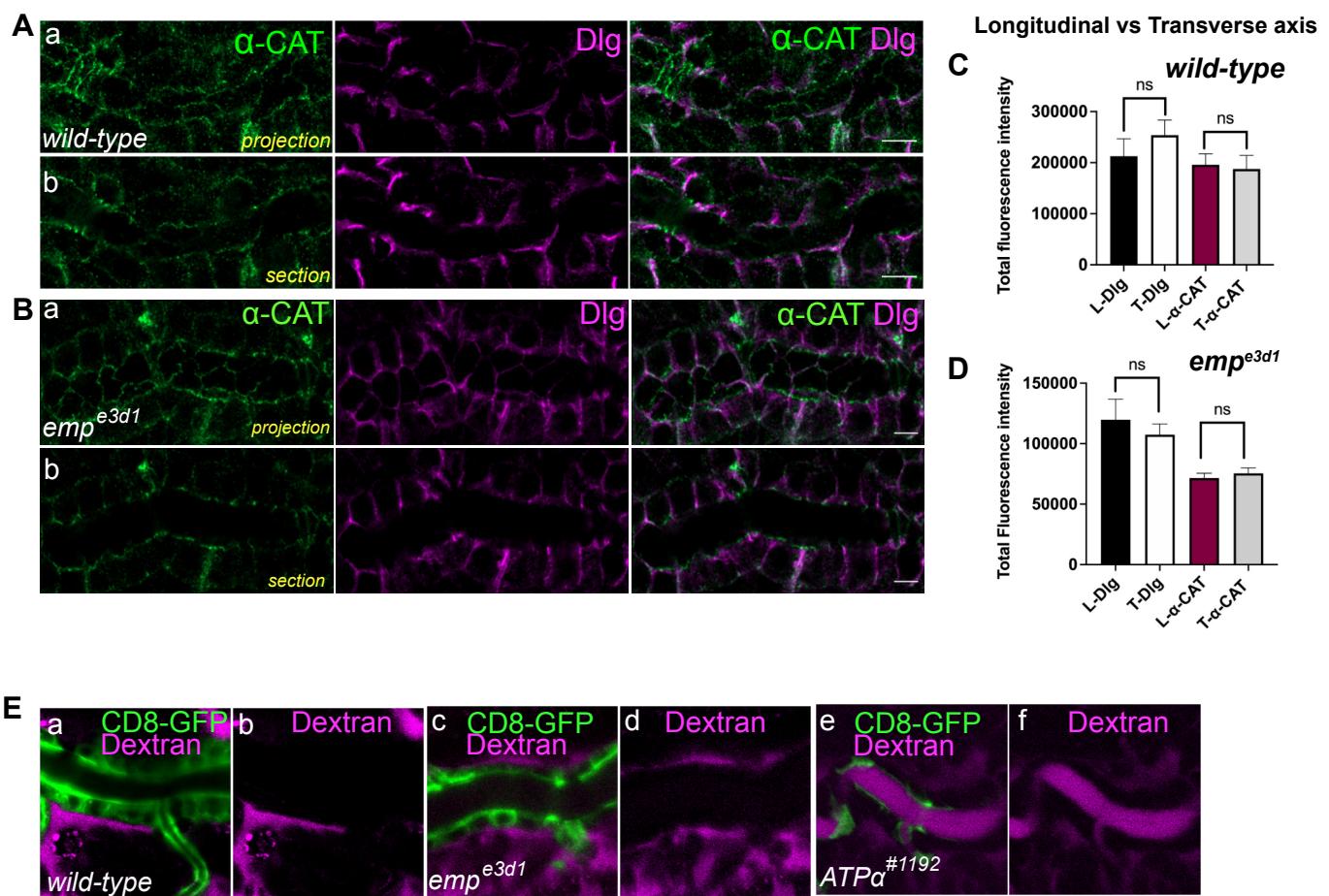
Figure 4

449 **Figure 4. Serp overexpression induces apical Emp accumulations and tracheal over-**
450 **elongation**

451 (A) Confocal images stained for Emp and Crb, in *wild-type*, *btl>Serp-GFP, verm^{ex245},serp^{ex7}* mutant and
452 *btl>Emp* embryos. Inset shows zoomed view of Emp and Crb signals. The arrows indicate the
453 accumulation of Emp and Crb in YZ plane.

454 (B - C) Bar plots showing total fluorescence intensities of apical enriched Emp (B) or Crb (C) in *wild-*
455 *type* (n = 15), *btl>Serp-GFP* (n = 12), *verm^{ex245},serp^{ex7}* (n = 10) mutant and *btl>Emp* (n = 7) embryos.

456 (D) Representative western blot from protein lysates of *wild-type*, *emp^{e3d1}*, *btl>Serp-GFP*,
457 *emp^{e3d1};btl>Serp-GFP* and *verm^{ex245},serp^{ex7}* mutants, blotted for Emp and α -Tubulin.


458 (E) and (F) shows the quantification of protein levels of Emp and Crb respectively, based on four
459 independent Western blot experiments (n = 4).

460 (G) Plots representing the length of the tracheal DT in μm (tr 5-10) from *btl>CAAX-mcherry* (control, n
461 = 15), *emp^{e3d1}* (n = 10), *btl>Serp-GFP* (n = 37) and *emp^{e3d1};btl>Serp-GFP* (n = 29) embryos. Statistical
462 significance shown in p-values; p <0,0001 ****, p <0,0005 **, p <0,01 **, p <0,05 * and p >0,05 not
463 significant (ns) (unpaired two tailed t tests). Scale bars, 5 μm .

464

465

466 in *emp* mutants and *wild-type* embryos stained for Crb. The longitudinal junction length
467 of tracheal cells increased in *emp* mutants, while the length of junctions along the
468 transverse tube axis was not affected (Figure 5A, B, C). The selective accumulation
469 of the apical polarity protein Crb at longitudinal junctions relates to the extend of tube
470 elongation. (Olivares-Castiñeira and Llimargas, 2018). Consistent with this, we
471 detected increased Crb signals along the longitudinal but not transverse junctions in
472 over-elongated tubes of *emp* mutants (Figure 5D-F). Stainings for the AJ component
473 DE-cad showed increased levels along both longitudinal and transverse junctions in
474 *emp* mutants (Figure 5D-F). To examine whether the intensity differences may be due
475 to changes in overall protein levels, we analyzed the relative protein levels of Crb and
476 DE-cad in *emp* mutants by western blots. We observed no significant difference in
477 total protein levels of Crb (Figure 5G, I) or DE-cad (Figure 5H, J) in *emp* mutant
478 embryos compared to *wild-type*. These results suggest that Crb accumulates in LCJ
479 and DE-cad in LCJs and TCJs in *emp* mutants presumably due to defects in their
480 endocytic uptake and trafficking. The relative LCJ vs TCJ intensities (Raw
481 Intensity/Junctional length) of stainings for the AJs component α -CAT (α -Catenin) (Pai
482 *et al.*, 1996) and the SJs protein Dlg (disc large) (Olivares-Castiñeira and Llimargas,
483 2018; Sharifkhodaei, Gilbert and Auld, 2019) were indistinguishable between *emp* and
484

Figure 4-figure supplement 1

485 **Figure 4—figure supplement 1.**

486 **Epithelial cell integrity is not affected in *emp*^{e3d1} mutants**

487 (A) and (B) are confocal images of tracheal DT stained for α - CAT (green) and Dlg (magenta)
488 respectively. Projections and sections of the tracheal tube in *wild-type* and *emp*^{e3d1} embryos is shown.
489 (C) and (D) plots showing the total fluorescence intensity of α -CAT and Dlg stainings in the Longitudinal
490 (L-Dlg and L- α - CAT) and Transverse (T-Dlg and T- α -CAT) axis in *wild-type* and *emp*^{e3d1} embryos
491 respectively.

492 (E) Selected confocal time-lapse images showing the tracheal clearance of Dextran-TR in living *wild-*
493 *type*, *emp*^{e3d1} and *ATP α* mutant embryos expressing the membrane marker *btl*>*CD8-GFP* during stage
494 16. Statistical significance shown in p-values p >0,05 not significant (ns) (Mann-Whitney test). Scale
495 bars, 5 μ m (A-B) and 10 μ m (E).

496 are intact in the mutants. Similarly, a dextran leakage assay comparing paracellular junction function in
497 *wild-type*, *emp*, and *ATP α* mutant embryos showed that *emp* loss does not affect general SJ integrity
498 (Figure 4-figure supplement 1E). Overall, these results suggest that Emp function regulates the apical
499 membrane levels of Crb and DE-cad without majorly affecting junctional integrity or function.

500

501 **Figure 4—source data 1**

502 This zip archive contains the raw unedited western-blot shown in Figure 4D.

503

504 *wild-type* embryos (Figure 4-figure supplement 1A-D), suggesting that intracellular
505 junction components are intact in the mutants. Similarly, a dextran leakage assay
506 comparing paracellular junction integrity of *wild-type*, *emp*, and *ATP α* mutant embryos
507 showed that *emp* loss does not affect general SJ integrity (Figure 4-figure supplement
508 1A-D, E). Overall, these results suggest that Emp function regulates the apical
509 membrane levels of Crb and DE-cad without majorly affecting junctional integrity or
510 function.

511

512 **Emp modulates the apical actin organization**

513

514 Our analysis until now suggests that Emp is a scavenger receptor involved in the
515 continuous, basal-level trafficking of Serp during tube elongation and in its massive
516 uptake during luminal protein clearance. Since the organization of the transverse actin
517 bundles restrict both tube elongation and the timing of luminal protein clearance, we
518 investigated the apical actin cytoskeleton in *emp* mutants. We first examined the
519 apical F-actin in DTs of late-stage embryos by live imaging using *btl*>*Moe-GFP*. At
520 17,5h AEL, at the time interval of airway protein clearance, *emp* mutants showed a

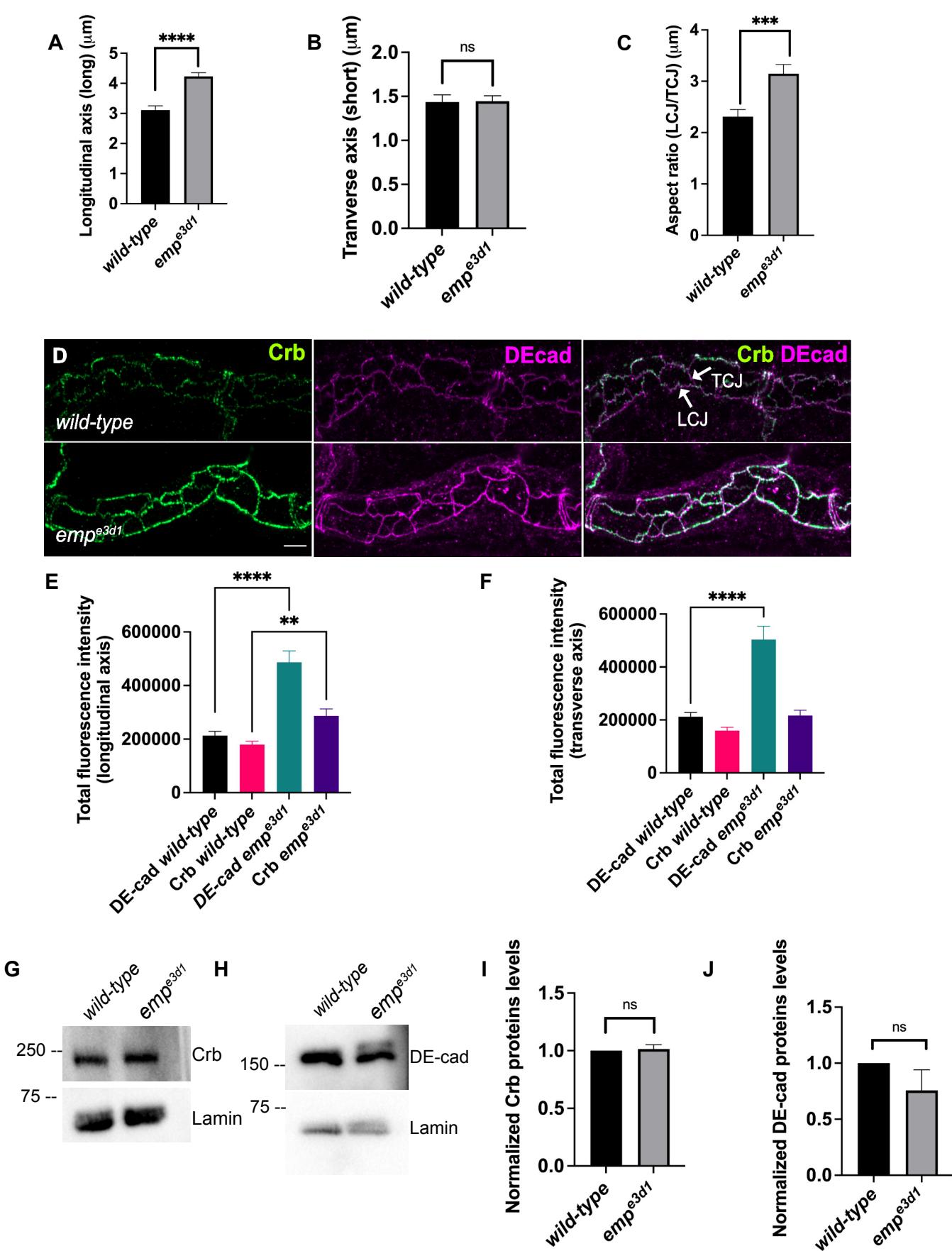


Figure 5

521 **Figure 5. Emp modulates the Crb and DE-cad levels to control tracheal tube elongation.**
522 (A) and (B) bar plots showing the length (in μm) of longitudinal and transverse cell axis, respectively in
523 *wild-type* and *emp*^{e3d1} embryos.
524 (C) Bar plots showing the aspect ratio, between longitudinal over transverse axis (LCJ/TCJ) in *wild-type*
525 ($n = 30$), and *emp*^{e3d1} ($n = 30$), mutant embryos. $p < 0,0001^{****}$, $p < 0,0005^{***}$ and $p > 0,05$ not significant
526 (ns) (unpaired two tailed t tests).
527 (D) Projection images of *wild-type* and *emp*^{e3d1} mutant embryos, from stage 16, stained for Crb and DE-
528 cadherin.
529 (E) and (F) shows quantifications of the fluorescence intensities of Crb and DE-Cadherin along
530 longitudinal (E) and transverse (F) axis in *wild-type* ($n = 78$), and *emp*^{e3d1} ($n = 66$), mutants. $p <$
531 $0,0001^{****}$ and $p < 0,01^{**}$ (Mann-Whitney test).
532 (G - H) Representative western blot from protein lysates of *wild-type* and *emp*^{e3d1} mutants, blotted with
533 anti-Crb (G) or anti-DE-cad (H) and anti-Lamin (control).
534 (I) and (J) are quantifications of Crb and DE-cad protein levels, respectively, based on three
535 independent western blot experiments ($n = 3$). Statistical significance shown in p- values; $p > 0,05$ not
536 significant (ns) (unpaired two tailed t tests). Scale bars, $5\mu\text{m}$.
537

538 **Figure 5—source data 1**

539 This zip archive contains the raw unedited western-blot shown in Figure 5G, H.
540

541 more diffuse and continuous apical actin bundle density compared to *wild-type*
542 embryos (Figure 6A, B). We also detected higher apical accumulation of the dDAAM
543 formin, in *emp* mutants compared with *wild-type* embryos by antibody stainings. These
544 observations suggested that Emp modulates the actin bundle organization,
545 presumably upon engagement with its luminal cargoes.
546

547 To identify proteins that might provide a direct connection between the cytoskeleton
548 and Emp, we used the cytoplasmic C-terminus of Emp as bait in a yeast two hybrid
549 (Y2H) screen at Hybrigenics. This uncovered 3 potential interacting proteins,
550 CG32506 encoding a RabGAP protein, CG34376 encoding a protein with a predicted
551 Zinc Finger motif and β H-Spec/Kst (Figure 6C). We further characterized the
552 interaction with β H-Spec/Kst because of its established role in the apical cytoskeleton
553 organization in *Drosophila* epithelial tissues (Thomas and Williams, 1999; Phillips and
554 Thomas, 2006). The α - and β -heavy Spectrin subunits form tetramers, which
555 assemble in two dimensional networks together with actin underneath the apical
556 plasma membranes. Additionally, β H-Spec/Kst is required for the early steps and
557 endocytic trafficking of V-ATPase in the brush border of intestinal epithelial cells

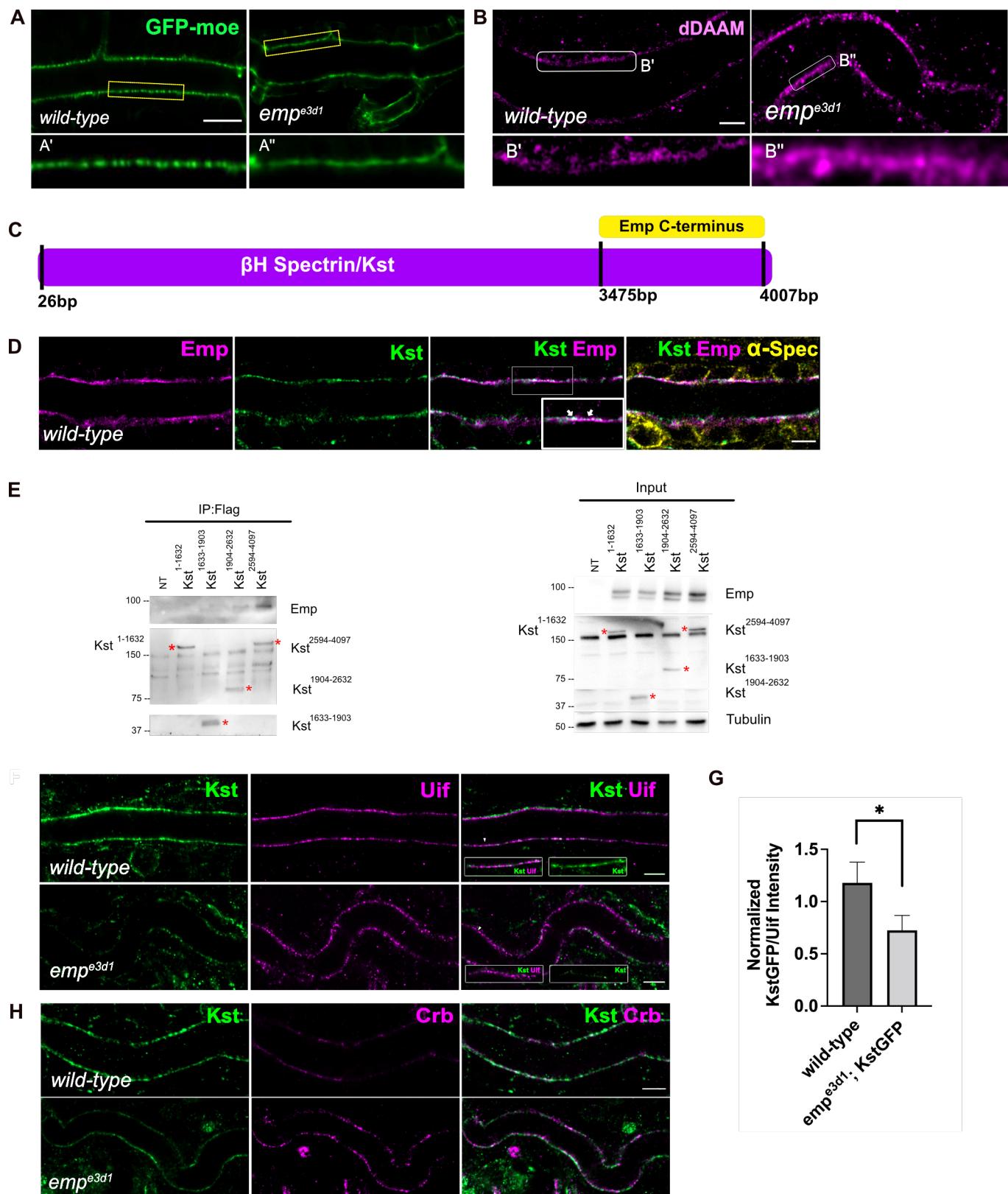
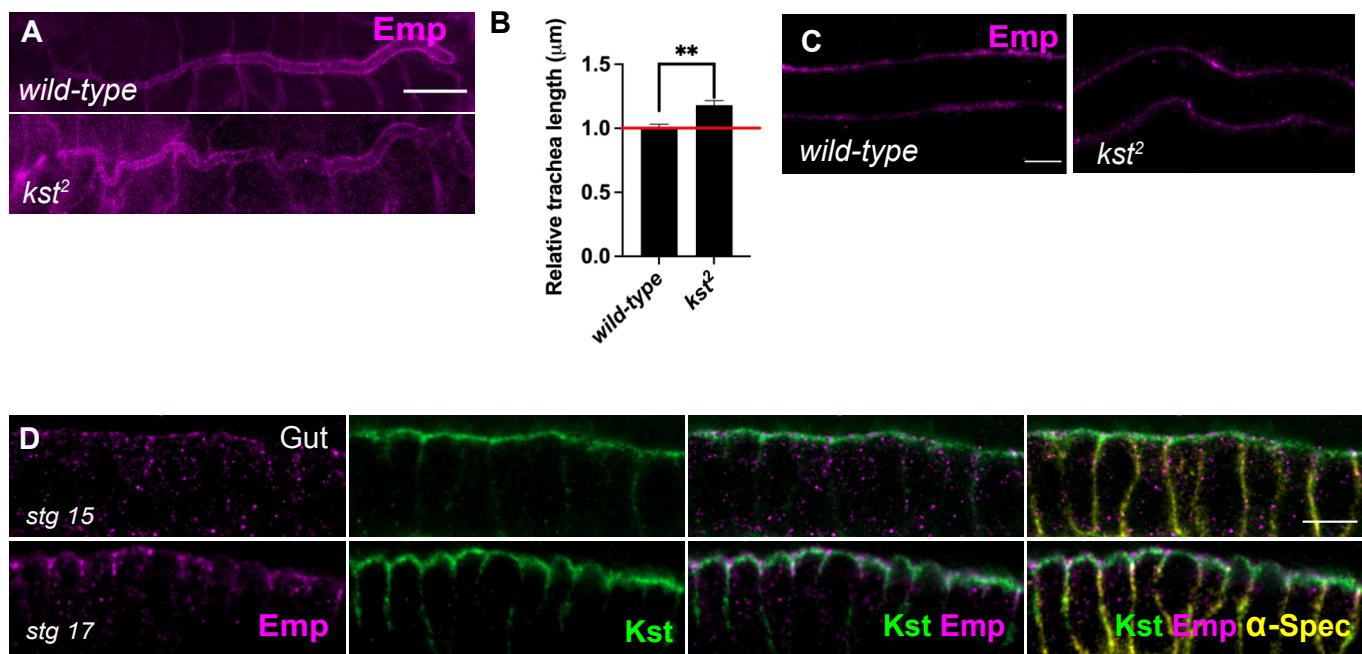


Figure 6


558 **Figure 6. Loss of Emp affects apical F-actin organization.**

559 (A) Confocal images showing live DT of *wild-type* and *emp^{e3d1}* mutant embryos from 17,5h AEL
560 expressing the actin reporter *btl>moe-GFP*. (A', A'') zoomed views of areas indicated by the rectangular
561 frames of (A) image.
562 (B) Confocal images of dDAAM stainings in *wild-type* and *emp^{e3d1}* mutant embryos. (B', B'') shows
563 magnified regions of (B), indicated with white rectangle.
564 (C) Schematic view of the interaction domains of Emp C-terminus (484aa to 520aa) and β H-Spectrin/Kst,
565 as obtained by the Y2H screen.
566 (D) Confocal images showing the DT of Kst-Venus expressing embryos (*wild-type*) stained for Emp,
567 GFP (kst), and α -Spec (α -Spectrin).
568 (E) Co-immunoprecipitation of Flag-tagged Kst constructs from transfected S2 cells lysates, blotted with
569 anti-Emp and anti-Flag. Input 2% is indicated.
570 (F) Confocal images showing endogenous Kst-Venus in the DT of *wild-type* and *emp^{e3d1}* mutants, stained
571 for GFP (kst) and Uif (Uninflatable).
572 (G) Bar plot showing Kst-GFP levels in *wild-type* (n = 5), and *emp^{e3d1}* (n = 5), mutant embryos in relation
573 to Uif.
574 (H) Confocal images showing *wild-type* and *emp^{e3d1}* mutant embryos stained for GFP (kst) and Crb.
575 Statistical significance shown in p- values, p <0,0005***, p <0,05* and p >0,05 (ns) (unpaired two tailed
576 t tests). Scale bars, 5 μ m, (B, D, F, H) and 10 μ m (A).

577

578

579 (Phillips and Thomas, 2006). We used a knock-in, fusion construct of Venus into the
580 *kst* locus to detect endogenous, β H-Spec/Kst together with Emp and α -spectrin in
581 epithelial cells of the trachea and hindgut. As expected Kst-Venus colocalized with
582 Emp apically, whereas α -spectrin was also detected along the lateral sides. To confirm
583 the Emp binding to Kst and also map their interaction domains we used
584 immunoprecipitation experiments of tagged proteins in *Drosophila* S2 cells. We
585 expressed V5-tagged Emp and a series of constructs expressing different fragments
586 of β H-Spec/Kst protein fused to the FLAG epitope. We found that the intracellular C-
587 terminus of Emp co-precipitates with the C-terminal region of β H-Spec/Kst (Figure 6E)
588 consistent with their interaction detected in the yeast-two-hybrid system. Additionally
589 *kst²* mutants show similar tracheal over elongation phenotypes with *emp* suggesting a
590 functional interaction between Emp and Kst (Figure 6-figure supplement 1A, B). To
591 further test this, we analyzed the localization and abundance of tagged β H-Spec/Kst
592 in the airways of *emp* mutants. The apical levels of β H-Spec/Kst were severely
593 reduced, while Crb staining was increased and staining of an unrelated apical protein
594

Figure 6-figure supplement 1

595 **Figure 6—figure supplement 1**

596 **Tube elongation is defected in *kst*² mutants**

597 (A) Confocal images showing the DT of *wild-type* and *kst*² embryos stained for Emp.

598 (B) Bars plots are quantifications of the tracheal tube length in *wild-type* (n=6) and *kst*² (n=10) mutant
599 embryos.

600 (C) Confocal images showing the tracheal DT of *wild-type* and *kst*² embryos stained for Emp.

601 (D) Confocal images showing the localization of Kst in the gut during stg 15 and stg 17, stained for Emp,
602 GFP (Kst) and α -Spec. Error bars denotes s.e.m., p <0,005** (unpaired two tailed t tests). Scale bars,
603 50 μ m, (A) and 5 μ m (C, D).

604

605 **Figure 6—source data 1**

606 This zip archive contains the raw unedited western-blots shown in Figure 6E.

607

608 Uninflatable remained unaffected in the *emp* mutants compared to the *wild-type*
609 (Figure 6F-H). The localization or levels of Emp were not noticeably affected in *kst*
610 mutants (Figure 6-figure supplement 1C). Together, these results indicate that the C-
611 terminal intracellular domain of Emp binds to apical β H-Spectrin (Kst) and controls the
612 spectrin cytoskeleton presumably by stabilizing β H-Spec/Kst. Additionally, in *emp*
613 mutants the intensity and distribution of actin bundles is distorted and the levels of the
614 diaphanous -related formin, DAAM are increased.

615

616 **Emp regulates Src phosphorylation**

617 Src phosphorylation and activation is required for tracheal tube elongation and
618 controls Crb accumulation at the longitudinal cell junctions (Olivares-Castiñeira and
619 Llimargas, 2018), and the Beitel laboratory proposed that Src together with DAAM
620 orient the directed membrane expansion during tube elongation (Nelson *et al.*,
621 2012). Since *emp* mutants showed higher Crb accumulation in longitudinal
622 junctions and an overall increase in the apical levels of DAAM, we compared Src
623 phosphorylation (p-Src) levels by immunostainings and by western blot in *wild-type*,
624 *emp* mutants, *btl*>*Serp-GFP* and *emp*; *btl*>*Serp-GFP* embryos (Figure 7A-C). The
625 specificity of the p-Src⁴¹⁹ antibody was first confirmed by staining of *src42A* *src64B*
626 double mutants (Figure 7-figure supplement 1A). Both *in situ* staining and the
627 western blot analysis showed increased p-Src levels in *emp* mutants compared to
628 *wild-type* (Figure 7A-C). Interestingly, p-Src levels were also increased in the *verm*

629

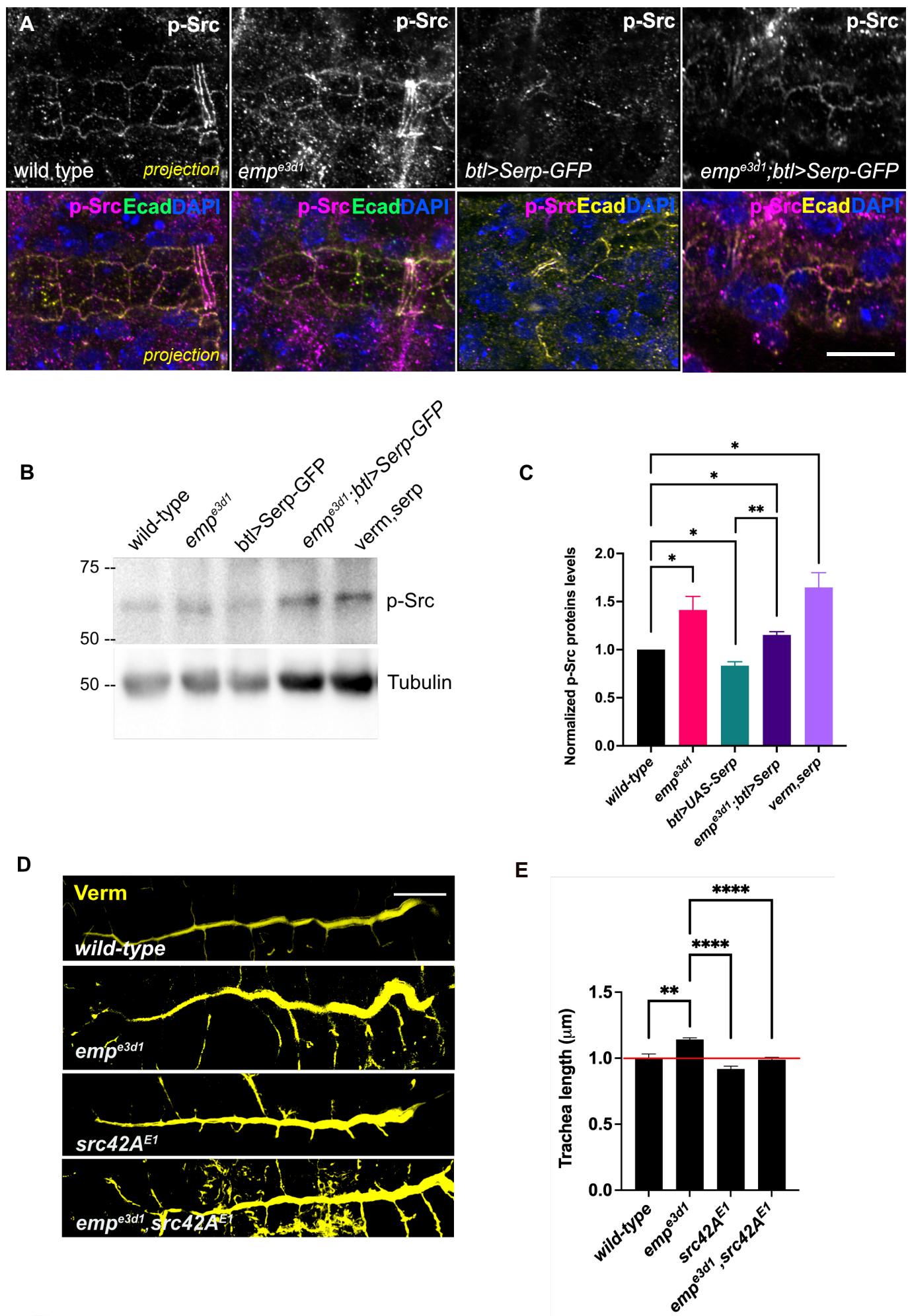


Figure 7

630 **Figure 7. Elevated p-Src levels in *emp*^{e3d1} mutants.**

631 (A) Confocal images showing projection of the tracheal DT of *wild-type*, *emp*^{e3d1} mutants, *btl>Serp-*
632 *GFP* and *emp*^{e3d1}; *btl>Serp-GFP* embryos at late stage 16 to early stage 17, stained for endogenous
633 p-Src.
634 (B) Representative western blot from protein lysates of *wild-type*, *emp*^{e3d1} mutants, *btl>Serp-GFP*,
635 *emp*^{e3d1}; *btl>Serp-GFP* and *verm,serp* double mutant embryos, blotted with anti-p-Src and anti- α -
636 Tubulin.
637 (C) Quantifications of p-Src protein levels based on three independent Western-blot experiments (n
638 = 3).
639 (D) Representative images of tracheal length size (DT), in *wild-type*, *empe3d1*, *src42AE1* and
640 *empe3d1,src42AE1* embryos stained for the luminal marker *Verm*.
641 (E) Plots show the quantification of tracheal DT length of *wild-type* (n = 6), *emp*^{e3d1} (n = 7), *src42AE1*
642 (n=10) and *emp*^{e3d1}; *src42AE1* (n=7) embryos. Error bars denotes s.e.m. *wild-type*, p < 0,005**, and p
643 < 0,0001****(unpaired two tailed t tests). Scale bars, 10 μ m and 50 μ m for images (A) and (D)
644 respectively.

645

646 *serp* double mutant embryos and decreased in *wild-type* embryos overexpressing
647 *btl>Serp-GFP* (Figure 7B). This decrease by Serp overexpression was partly
648 ameliorated in *emp* mutants (Figure 7A-C), suggesting that the effect of Serp-GFP
649 overexpression on Src phosphorylation is, at least partly, mediated by Emp on the
650 cell surface. We also detected increased p-Src levels in total protein extract from
651 *emp* and *verm serp* mutant embryos (Figure 7B) suggesting that their interaction
652 controls Src phosphorylation in other ectodermal tissues. In agreement with this,
653 neurons of the ventral neve cord in *emp* mutant embryos also showed increased p-
654 Src levels compared to *wild-type* (Figure 7-figure supplement 1B). To test if the
655 increase in p-Src levels in *emp* mutants underlies the apical membrane over-
656 elongation defects, we performed genetic interaction experiments between *src42A*
657 and *emp* mutants. As expected, *emp* mutants showed over-elongated tubes while
658 the *src42AE1* mutants showed short tubes (Nelson *et al.*, 2012). The increase of
659 tube length in *emp* mutants was significantly suppressed in *emp;src42AE1* embryos,
660 where the levels of Src protein were reduced (Figure 7D, E). Similarly, the
661 increased apical accumulation of Crb and DE-cad in *emp* mutants was partly
662 restored by overexpression of a *Src42ADN* dominant negative form (*Src42ADN*) in
663 *emp* mutant embryos. (Figure 7-figure supplement 1C-F). These results suggest

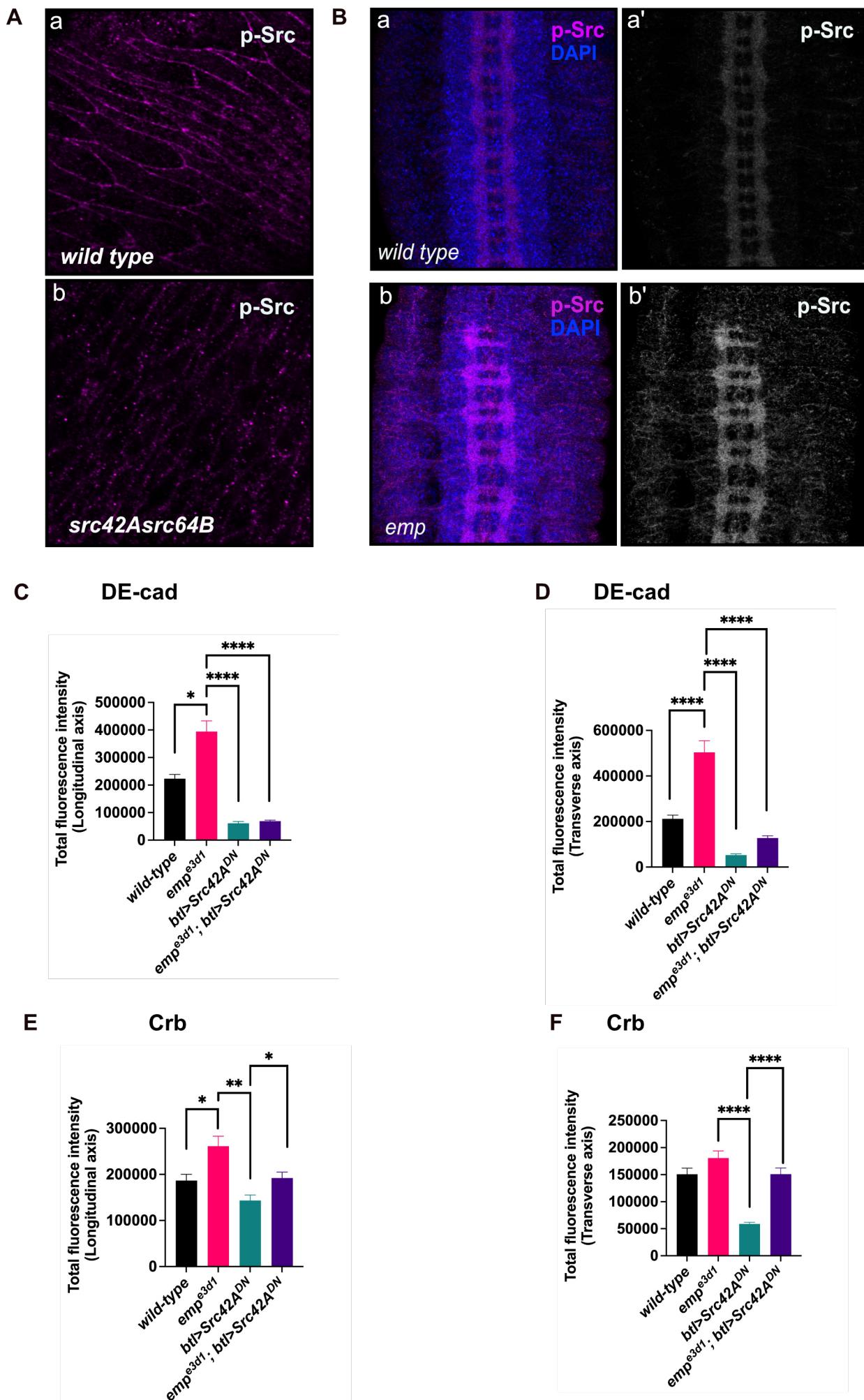


Figure 7-figure supplement 1

664 **Figure 7—figure supplement 1**

665 **p-Src levels are increased in CNS of *emp*^{e3d1} mutants**

666 (A) Confocal images of embryonic epidermis stained for p-Src in *wild-type* (a) and
667 *src42AE1;src64B* (b) embryos, showing the specificity of p-Src antibody.

668 (B) Images of the ventral nerve cord in *wild-type* (a, a') and *emp*^{e3d1} embryos (b, b') stained for p-
669 Src and DAPI.

670 (C) and (D) bar plots showing the total fluorescence intensity of DE-cad from DT in the longitudinal
671 and transverse axis, respectively in *wild-type*, *emp*^{e3d1}, *btl>src42ADN* and *emp*^{e3d1}; *btl>src42ADN*
672 embryos.

673 (E) and (F) bars plots representing the total fluorescence intensity of Crb from DT in the longitudinal
674 and transverse axis, respectively from the same embryos described in (C) (D). Error
675 bars denotes s.e.m. *wild-type*, $p < 0,05^*$, $p < 0,005^{**}$ and $p < 0,0001^{****}$ (Mann-Whitney tests).

676

677 **Figure 7—source data 1**

678 This zip archive contains the raw unprocessed western-blots shown in Figure 7B.

679

680 that downregulation of src activity and the levels of luminal Serp-GFP are sensed
681 by Emp to control apical membrane protein endocytosis and trafficking, and thereby
682 elongation.

683

684

685 **Discussion**

686

687 Emp, a CD36 homologue, is a selective scavenger receptor required for
688 endocytosis of a subset of luminal proteins. The endocytosis defects in *emp*
689 mutants become most apparent during the massive endocytosis wave that
690 removes all secreted luminal components just before gas filling of the airways. Our
691 comparison of the endocytosis requirements of Serp and Gasp together with the
692 LDLr-domain swap experiments defined a subset of Emp cargoes and indicates that
693 the LDLr-domain targets cargoes to Emp through clathrin-independent endocytosis.
694 These selective requirements of Serp and Gasp internalization are consistent with the
695 view that the choice of endocytic route is a cargo-driven process (Mettlen *et al.*, 2018).

696

697 The machinery involved in class B scavenger receptor endocytosis have not been
698 characterized in *Drosophila*, but an important characteristic of all clathrin-independent
699 endocytosis pathways is their dependance on the dynamic control of actin
700 polymerization to distort the plasma membrane for cargo internalization (Mayor,
701 Parton, and Donaldson 2014). Pioneering biochemical experiments suggested that
702 CD36 receptor clustering is essential for its internalization and signaling in response
703 to multivalent cargo binding. Single molecule tracking of CD36 in primary human
704 macrophages showed that the un-ligated receptor diffuses in linear confinement tracks
705 set by the actin cytoskeleton. These diffusion tracks enable clustering and
706 internalization upon oxLDL-ligand addition (Jaqaman *et al.*, 2011). Similarly, in human
707 endothelial cells the actin cytoskeleton is required for the increase of CD36 clustering
708 upon thrombospondin binding and Fyn, a Src-family kinase activation (Githaka *et al.*,
709 2016). These studies argue that CD36 is confined in cytoskeletal tracks and
710 cargo/ligand binding induces its clustering and signaling ability. Similarly to CD36,
711 Emp function is also tightly connected with the apical cytoskeleton. First, *emp* activity
712 is confined in apical “macro”-domains along the longitudinal tube axis by the
713 transverse, DAAM-dependent actin filaments. Disruption of these filaments induces
714 massive endocytosis and re-localization of Emp. Additionally, the initially punctate
715 Emp distribution along the apical membrane becomes aggregated upon
716 overexpression of luminal Serp, suggesting that LDLr-domains on chitin-binding
717 proteins induce Emp clustering. Apart from the Emp similarities to CD36, our results
718 also reveal an unexpected direct function of Emp in organizing the apical Spectrin and
719 actin cytoskeleton. The distribution of the DAAM-formin, the transverse actin bundle
720 density and the apical accumulation of Kst are all disrupted in *emp* mutants. Because
721 we showed that the conserved C-terminal intracellular domain of Emp binds directly
722 to Kst, we propose that a central function of Emp, and possibly CD36, is to also directly
723 organize the epithelial cytoskeleton. This notion is supported by the ability of human
724 CD36 to partially rescue the *emp* mutant phenotypes when overexpressed in the
725 *Drosophila* airways.

726

727 How can a scavenger receptor restrict epithelial tube elongation? In the interval of
728 embryonic stages 13 to 16, regulated Src and DAAM activities promote tube
729 elongation and the formation and alignment of the transverse actin bundles. These
730 bundles inhibit Emp internalization and restrict Serp endocytosis and trafficking to the

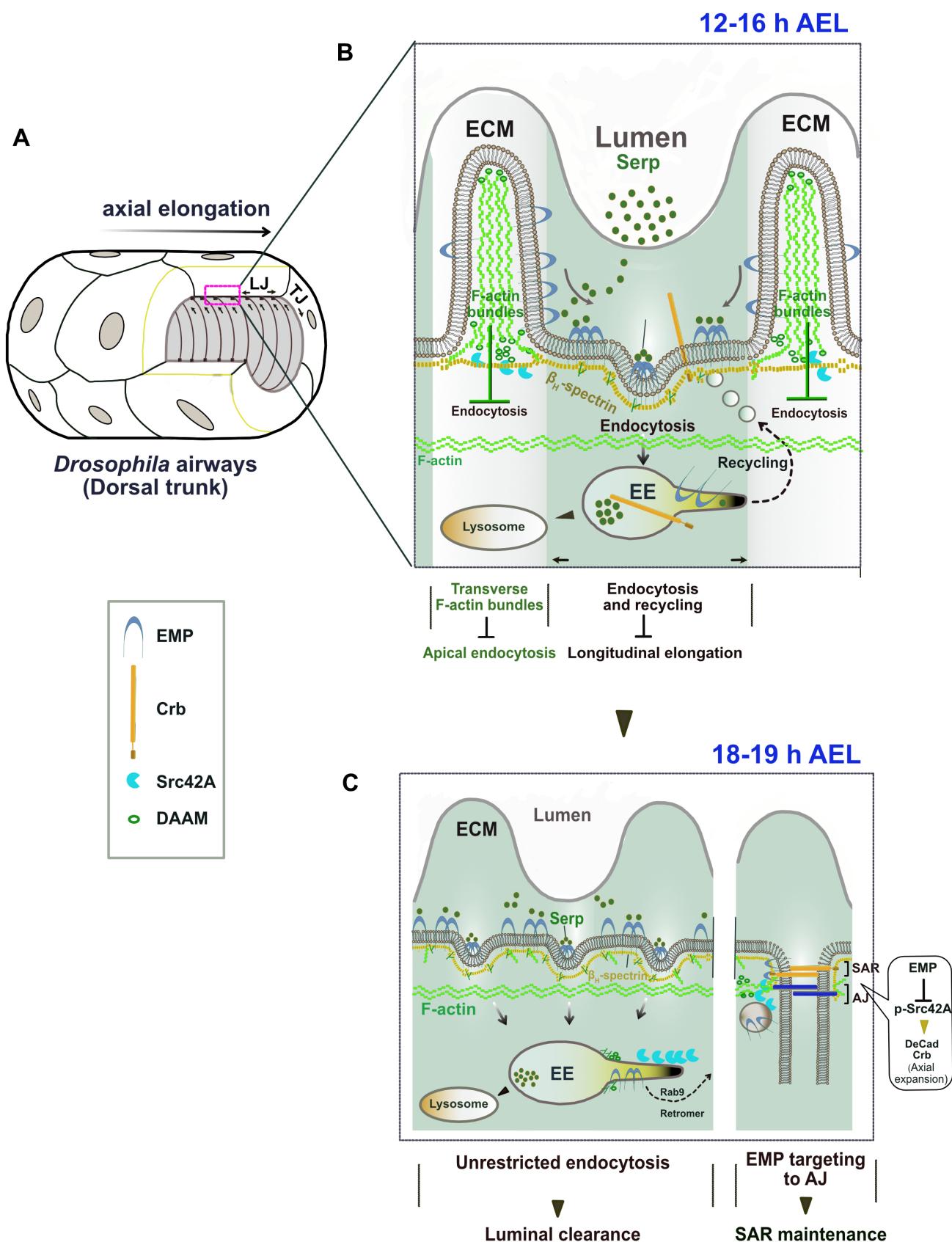


Figure 8

731 **Figure 8. The proposed model of Emp regulation**

732 (A) 3D drawing shows the multicellular tube (Dorsal Trunk) of *Drosophila* airways. The annular ridges
733 of the apical ECM are indicated in relation to the longitudinal elongation. LJ: Longitudinal junctions; TJ:
734 transverse junctions.

735 (B) Schematic zoom of the apical ECM region (A) showing the formation of two apical domains in the
736 membrane-cytoskeleton interface of tracheal cells at 12-16h AEL. Transverse F-actin bundles (white
737 color zone) restrict apical Emp endocytosis along the transverse tube axis. In F-actin bundle-free
738 membrane region (green color zone), Emp is associated with β H-Spectrin and Serp promotes Emp
739 clustering leading to endocytosis and recycling of Serp and others “passenger” transmembrane proteins
740 (i.e. Crb) along the longitudinal tube axis.

741 (C) Drawing of the apical, SAR and AJ regions during luminal protein clearance (18-19h). Emp clears
742 luminal Serp by endocytosis and trans-locates to the SAR/AJ to restrict p-Src42 activity and to control
743 DE-Cad, Crb levels at the SAR/AJ.

744

745 longitudinal tube axis. This suggests that endocytosis of luminal proteins during tube
746 elongation is controlled by at least 2 parallel pathways, one enabling Emp-endocytosis
747 along the longitudinal tube axis and one restricting it along the transverse axis. In the
748 bundle-free membrane domains, Emp associates with Kst and establishes an
749 endocytosis domain, where Serp mediated Emp clustering leads to internalization
750 (Figure 8 A, B). A similar function for Kst enabling endocytosis and trafficking of apical
751 H^+ V-ATPase has been proposed in the brush border of the larval *Drosophila* intestine,
752 where its anchoring to the membrane remains unknown. The luminal levels of chitin
753 deacetylases, like Serp, and other chitin modifying proteins are transcriptionally
754 regulated (Yao *et al.*, 2017) and are predicted to control the biophysical properties of
755 the apical ECM (Cui, Yu and Lau, 2016). We infer that luminal Serp bound to chitin
756 generates a multivalent ligand and is continuously recognized and endocytosed by
757 Emp selectively along the longitudinal tube axis. Together with the clustered receptors,
758 apical membrane and “passenger” transmembrane proteins are expected to follow in
759 the Emp endocytic vesicles. The over-elongation defects in *emp* mutant airways can
760 be explained by the failure to balance elongation induced by Src activation with
761 endocytosis of membrane and transmembrane regulators on the longitudinal tube axis
762 (Figure 8 A, B).

763

764 At the initiation of protein clearance, the transverse bundles are transiently resolved
765 and luminal proteins together with apical transmembrane proteins and membrane are
766 massively internalized and targeted for degradation or recycling to the junctional areas

767 (Figure 8C). The mechanism of Crb recycling in airway cells involves retromer
768 components (Olivares-Castiñeira and Llimargas, 2017) but the selective targeting
769 mechanism to longitudinal junctions is still unknown. The re-localization of Emp to the
770 apical epithelial junctions during airway maturation is accompanied by massive
771 alteration in Src activity, which is not restricted to the tracheal system but is common
772 to several ectodermal organs including neurons. This suggests that scavenger
773 receptor endocytosis has a general, but poorly understood role, in embryonic
774 morphogenesis of epithelial tissues. Our work on Emp provides an entry towards
775 elucidating the roles of scavenger receptor class B in development and pathogenesis.

776

777

778 **Material and Methods**

779 ***Drosophila* strains**

780 The *emp*^{e3d1} null mutant was generated by FLP-FRT site-directed recombination using
781 two piggyBac elements (PBacWH#021071 and PBacRB#e0441541). Embryos trans-
782 heterozygous for Df(2R)BSC08 and *emp* were lethal showing identical phenotypes to
783 *emp* homozygous embryos. The list of strains used are list in Supplementary Table 1.
784 *w¹¹¹⁸* was used as the *wild-type* strain. In all experiments CyO and TM3 balancer
785 strains carrying dfd-GFP were used to identify the desired genotypes. Flies were
786 raised at 25 °C and 50% humidity, with a 12 hrs light–dark cycle.

787 **Molecular Biology and Transgenic flies**

788 Complementary DNA (cDNA) encoding for *Human CD36* (RC221976) was cloned
789 using Hifi DNA assembly kit (NEB E5520S) into the pJFRC-MUH vector (Addgene,
790 plasmid 26213). *bgIII* and *Xba*I were used to clone the amplified PCR fragment. *UAS-*
791 *Emp* transgene was generated by cloning the cDNA sequencing of CG2727 by PCR
792 amplification with primers containing *Eco*RI and *Kpn*I. The *UAS-Gasp* construct was
793 generated by sequential cloning of Gasp cDNA using primers containing *Eco*RI and
794 *Xho*I. Further, *LDLr* domain and *mCherry* was subcloned using enzymes *Xho*I and
795 *Xba*I. The *UAS-Serp^{FL}-GFP* and *UAS-Serp^{LDLr}-GFP* constructs was generated
796 according to *Shenqiu Wang et al. Current Biology 2006*, and the *UAS-Serp^{CBD}-GFP*
797 was provide S. Luschning. *mCherry-Emp-V5His* construct was cloned using Hifi DNA
798 assembly kit (NEB E5520S into the pAc5.1/V5-His A vector (Invitrogen) using the

799 following enzymes Acc65I and Xhol. The different Kst constructs were generously
800 provided by N. Tapon. All the plasmids were confirmed by sequencing. Polyclonal
801 antibody (anti-Emp) obtained by immunization with bacterially expressed recombinant
802 polypeptides corresponding to amino acids 46-460aa of Emp-A. Anti-sera obtained
803 from immunized rats (Genscript).

804

805 **Co-Immunoprecipitation and western blot analysis**

806

807 *Drosophila* S2 cell extracts and Co-IP were prepared as previously described
808 (Tsarouhas *et al.*, 2019) and (Fletcher *et al.*, 2015) respectively. The FLAG-tagged Kst
809 constructs were provided by Nic Tapon (Fletcher *et al.*, 2015). For detection of purified
810 proteins and associated complexes, ChemiDoc XRS + system (BioRad) was used.
811 Western blots were probed with mouse anti-FLAG M2 (1:3000, Sigma, F3165), rat
812 anti-Emp and rabbit anti- α -tubulin (1:2000, Cell Signaling, 11H10). For western blot
813 analysis, *Drosophila* embryos were collected 12–20 h AEL and lysed in 20 μ l of lysis
814 buffer containing 50 mM HEPES (PH 7.6), 1 mM MgCl₂, 1 mM EGTA, 50 mM KCl, 1%
815 NP40, Protease inhibitor cocktail tablets (Roche #11697498001) and Phosphatase
816 inhibitor cocktail 2 (Sigma Aldrich #P5726). The lysates were centrifuged at maximum
817 speed (30,060 \times g) for 10 min at 4 °C. Protein loading buffer (50 mM Tris/HCl, pH 6.8,
818 2% sodium dodecyl sulfate (SDS), 5% glycerol, 0.002% bromophenol blue) was added
819 to the supernatant and samples were analyzed by SDS-polyacrylamide gel
820 electrophoresis (PAGE) and immunoblotting according to standard protocols, using
821 the ChemiDoc XRS + system (BioRad), after application of the SuperSignal West
822 Femto Maximum Sensitivity Substrate (ThermoFisher Scientific, 34096). The following
823 primary antibodies were used at the indicated dilutions: rabbit anti- α -tubulin (1:2000,
824 Cell Signaling, 11H10), rabbit anti-Phospho-Src (1:750 Tyr418, ThermoFisher) and
825 Lamin ADL195 (1:100, DSHB).

826

827 **Quantification of western blots**

828 For the western blot analysis, the actual signal intensity of each band of interest was
829 estimated after subtraction of the background using ImageJ/Fiji software. The values

830 were then divided by the corresponding intensities of the loading control (α -tubulin or
831 lamin).

832 **Immunostaining**

833 Embryos were dechorionated in 5% bleach and fixed for 20 min in 4% formaldehyde
834 saturated in heptane as described in (Patel, 1994). The following antibodies were
835 used: mouse anti-Ptp10D (1:10, 8B22F5, Developmental Studies Hybridoma Bank,
836 DSHB), rabbit anti Phospho-Src (1:400, Tyr 419, Thermo-Fisher), mouse anti Dlg (1:
837 100, 4F3 DSHB), mouse anti-Crb (1:10, Cq4 DSHB), mouse anti-Coracle (1:100,
838 C615.16 DSHB), DAAM antibody was a kind gift from József Mihály, rabbit anti-GFP
839 (1:400, A11122, Thermo-Scientific), chicken anti-GFP (1:400, ab13970, Abcam),
840 mouse GFP (1:200, JL-8, Clontech) gp anti-Verm (Wang *et al.*, 2006), gp anti-Gasp
841 (Tiklová, Tsarouhas and Samakovlis, 2013), mouse anti-Flag M2 (1:3000, Sigma,
842 F3165), Serp antibody were provided by S.Luschning. Secondary antibodies
843 conjugated to Cy3 or Cy5 or Alexa Fluor-488 and -568 (Jackson Immunochemicals)
844 were used and diluted as recommended by the manufacturer. For rat anti-DE-Cad
845 (1:50, DSHB) embryos were fixed with 4% PFA – heptane for 20min. Embryos
846 expressing *moeGFP* were dechorionated, devitellinized by hand and fixed in 4%
847 formaldehyde (methanol free) in PBS–heptane for 20 min. Stained embryos were
848 imaged with an Airy-scan-equipped confocal microscope system (Zeiss LSM 800, Carl
849 Zeiss) using a Plan-Apo 63x/1.40 DIC oil immersion objective.

850 **Yeast two-hybrid screen**

851 The screen was carried out by Hybrigenics using a prey library constructed from RNA
852 of embryos that were 0–24-h old. A fragment encoding the C-terminus domain of Emp
853 (amino acids 484–520) was inserted into the pB27 vector (N-LexA–bait–C fusion) and
854 was used to screen 167 million clones.

855 **qPCR**

856
857 Embryos dechorionated in bleach, hand-sorted for GFP expression, collected in 300
858 μ L TRizol LS Reagent and stored at -80°C until further use. For RNA extraction, the
859 embryos were homogenized in TRIzol LS Reagent using a 1.5 mL tube pestle and the
860 total RNA was purified using the Direct-zol RNA MicroPrep kit (R2060, Zymo

861 Research). RNA was resuspended in RNase-free water and subsequently treated with
862 DNase I (AMPD1-1KT, Merk), for genomic DNA removal. Then 400 ng of RNA was
863 reverse transcribed using High-Capacity RNA to cDNA kit (4387406 ThermoFisher).
864 The cDNA products were subsequently diluted 1:5 and 2 μ l were used as a template
865 in each qPCR reaction. qPCR was performed using iTaq Universal SYBR Green
866 Supermix (Biorad). Generation of specific PCR products was confirmed by melting-
867 curve analysis. Ct values for all genes were normalized to the levels of *Rp49*. For data
868 analysis, the delta-delta Ct values was applied. The sequences of primers used are
869 provided in Supplementary Table 2.

870 **Live imaging**

871 Dechorionated embryos mounted in a glass-slide with a gas permeable membrane
872 (Tsarouhas *et al.*, 2019). Widefield live imaging performed to analyze protein
873 clearance and gas filling on embryos as described in (Tsarouhas *et al.*, 2019). For
874 confocal live-imaging, embryos were imaged with a scanning confocal microscope
875 (LSM 780, or 800 Carl Zeiss) equipped with an Argon and an HeNe 633 laser using a
876 C-Apochromat $\times 63/1.2$ NA water objective. Z-stacks with a step size of 0.5–1.0 μ m
877 were taken every 6 min over a 3–8-h period. For high-resolution confocal live imaging,
878 an Airy-scan-equipped confocal microscope system (Zeiss LSM 800, Carl Zeiss) was
879 used. Z-stacks (0.16–0.2- μ m step size) were taken every 15 min over a 2–4-h period
880 using a Plan-Apo 63x/1.40 DIC oil or a C-Apochromat $\times 63/1.2$ NA water objective
881 (Zeiss). Raw data were processed with the Airy-scan processing tool available on the
882 Zen Black software version 2.3 (Carl Zeiss). Images were converted to tiff format using
883 the Zen Black or ImageJ/Fiji software.

884 **Morphometric analysis**

885 Tube length measurements were conducted in embryos stained for the luminal
886 markers *Verm* or *Serp*. Tracheal lengths were measured by tracing the length of the
887 dorsal trunk determined by the luminal markers using the freehand line selection tool
888 of ImageJ/Fiji software. For metamere length measurements, we traced the DT length
889 between the corresponding TC (transverse connective) branches. Longitudinal and
890 transverse cell junctions were defined according to the angles from the DT axis (angle
891 = 0°). Junctions with clear orientation angle 0° \pm 30° or 90° \pm 30° were defined as

892 longitudinal or transverse, respectively. The rate of gas-filling calculated as the
893 percentage of embryos with gas-filled tracheae divided by the total number of embryos
894 analyzed.

895

896 **Dextran injections**

897 For dye-permeability assays, 10 kDa Dextran-TR (ThermoFisher Scientific) was
898 injected into late-stage 16 embryos (after the maturation of SJ) as described in ref
899 (Jayaram *et al.*, 2008). Injections were performed in a microinjection system
900 (FemtoJet, Eppendorf) coupled to an inverted fluorescence microscope (Cell
901 Observer, Zeiss).

902

903 **Quantification of fluorescence intensity**

904
905 The total fluorescence intensity signal of Emp, Crb, DE-cad, Dlg and α -Cat was
906 measured with ImageJ by manually drawing a 5-pixel line with the "Freehand Line
907 tool", over the junctional region of the tracheal cells. The total fluorescence intensity
908 in TCJ and LCJ of Crb and DE-cad was measured according to (Olivares-Castañeda
909 and Llimargas, 2018). Background signals of 5-pixel line, were subtracted from the
910 intensities. For the quantification of fluorescent intensity on apical Emp positive
911 puncta, $0,75 \mu\text{m}^2$ squares on each puncture were defined as the regions of interests
912 (ROIs). Mean fluorescent intensity within these ROIs was measured in Fiji. These
913 values were divided by the corresponding fluorescence intensity observed in the ROI
914 of the co-stained Crb puncta. Background signals of $0,75 \mu\text{m}^2$ square-ROIs were
915 subtracted from the intensities. Data collected from ImageJ were transferred to an
916 Excel file for further analysis and the plotting using Graph Pad Prism.

917

918 **Statistical analysis**

919
920 Statistical analysis was carried out using two-tailed *t* test for unpaired variables
921 unless indicated. The type of statistical test, *n* values and *P* values are all provided in
922 the figure legends. The experiments were replicated 3 - 6 times. All statistical
923 analyses were performed using Graph Pad Prism 9.1. The number of biological

924 replicates for all the experiments is indicated in the figure legends. No explicit power
925 analysis was used to estimate sample sizes for each experiment.

926

927 **Acknowledgements**

928 We would like to thank Stefan Luschnig, Stefano De Renzis, Nic Tapon, the
929 Bloomington Drosophila Stock Center, the Drosophila Genomics Resource Center
930 (DGRC; IN) and the Developmental Studies Hybridoma Bank (DSHB; IA) for fly
931 strains, clones and antibodies. We thank the fly community that isolated,
932 characterized or distributed mutant strains or antibodies. Special thanks to Flybase
933 for the Drosophila genomic resources. We thank the Stockholm University Imaging
934 Facility (IFSU). We thank the former ERASMUS student Claudia's Cortecka,
935 members of the M. Mannervik, C. Samakovlis (particularly Ryo Matsuda), Q. Dai, S.
936 Åström and Y. Engström laboratories for comments and support during this project.
937 This work was funded by the Swedish Research Council and the Swedish Cancer
938 Society to C.S; by the Magn. Bergvalls stiftelse and O. E. och Edla Johanssons
939 vetenskapliga stiftelse to V.T; and by the German Research Foundation (DFG), grant
940 KFO309 (project number 284237345) to C.S.

941

942

943 **Author contributions**

944 A.P. designed and executed most of the experiments, analyzed most of the data and
945 wrote the paper. V.T. designed and executed experiments, analyzed data and wrote
946 the paper. K.S. conceived and initiated the project by generating the *emp* mutants.
947 B.A. generated Emp-GFP construct. C.S. conceived the project, proposed
948 experiments, analyzed data, and wrote the paper.

949

950 **Data availability**

951 All data generated or analyzed during this study are included in the manuscript and
952 supporting files. Unprocessed Western blots are provided as source data files in zip
953 format.

954

955

956

957

958

959 **References**

- 960 Beitel, G. J. and Kransnow, M. A. (2000) 'Genetic control of epithelial tube size in the
961 Drosophila tracheal system', *Development*.
- 962 Chen, K. *et al.* (2008) 'A specific cd36-dependent signaling pathway is required for platelet
963 activation by oxidized low-density lipoprotein', *Circulation Research*. doi:
964 10.1161/CIRCRESAHA.108.172064.
- 965 Cui, J., Yu, Z. and Lau, D. (2016) 'Effect of acetyl group on mechanical properties of
966 chitin/chitosan nanocrystal: A molecular dynamics study', *International Journal of Molecular
967 Sciences*, 17(1), pp. 1–13. doi: 10.3390/ijms17010061.
- 968 Deng, C. F. *et al.* (2022) 'Involvement of LDL and ox-LDL in Cancer Development and Its
969 Therapeutic Potential', *Frontiers in Oncology*, 12(February), pp. 1–17. doi:
970 10.3389/fonc.2022.803473.
- 971 Dong, B., Hannezo, E. and Hayashi, S. (2014) 'Balance between apical membrane growth and
972 luminal matrix resistance determines epithelial tubule shape', *Cell Reports*. The Authors,
973 7(4), pp. 941–950. doi: 10.1016/j.celrep.2014.03.066.
- 974 Dunst, S. *et al.* (2015) 'Endogenously Tagged Rab Proteins: A Resource to Study Membrane
975 Trafficking in Drosophila', *Developmental Cell*. doi: 10.1016/j.devcel.2015.03.022.
- 976 Ferguson, M. K. and Klafta, J. M. (2012) 'Inflationary pressures', *European Journal of Cardio-
977 thoracic Surgery*, 42(3), pp. 403–404. doi: 10.1093/ejcts/ezs090.
- 978 Fletcher, G. C. *et al.* (2015) 'The Spectrin cytoskeleton regulates the Hippo signalling
979 pathway', *The EMBO Journal*, 34(7), pp. 940–954. doi: 10.15252/embj.201489642.
- 980 Förster, D., Armbruster, K. and Luschnig, S. (2010) 'Sec24-Dependent Secretion Drives Cell-
981 Autonomous Expansion of Tracheal Tubes in Drosophila', *Current Biology*, 20(1), pp. 62–68.
982 doi: 10.1016/j.cub.2009.11.062.
- 983 Förster, D. and Luschnig, S. (2012) 'Src42A-dependent polarized cell shape changes mediate
984 epithelial tube elongation in Drosophila', *Nature Cell Biology*. Nature Publishing Group,

- 985 14(5), pp. 526–534. doi: 10.1038/ncb2456.
- 986 Githaka, J. M. *et al.* (2016) ‘Ligand-induced growth and compaction of CD36 nanoclusters
987 enriched in Fyn induces Fyn signaling’, *Journal of Cell Science*. doi: 10.1242/jcs.188946.
- 988 Hart, K., Klein, T. and Wilcox, M. (1993) ‘A Minute encoding a ribosomal protein enhances
989 wing morphogenesis mutants’, *Mechanisms of Development*, 43(2–3), pp. 101–110. doi:
990 10.1016/0925-4773(93)90028-V.
- 991 Hemphälä, J. *et al.* (2003) ‘Grainy head controls apical membrane growth and tube
992 elongation in response to Branchless/FGF signalling’, *Development*, 130(2), pp. 249–258.
993 doi: 10.1242/dev.00218.
- 994 Jaqaman, K. *et al.* (2011) ‘Cytoskeletal control of CD36 diffusion promotes its receptor and
995 signaling function’, *Cell*. Elsevier Inc., 146(4), pp. 593–606. doi: 10.1016/j.cell.2011.06.049.
- 996 Jayaram, S. A. *et al.* (2008) ‘COPI vesicle transport is a common requirement for tube
997 expansion in *Drosophila*’, *PLoS ONE*, 3(4). doi: 10.1371/journal.pone.0001964.
- 998 Laprise, P. *et al.* (2010) ‘Epithelial Polarity Proteins Regulate *Drosophila* Tracheal Tube Size
999 in Parallel to the Luminal Matrix Pathway’, *Current Biology*. doi: 10.1016/j.cub.2009.11.017.
- 1000 Luschnig, S. *et al.* (2006) ‘serpentine and vermiciform encode matrix proteins with chitin
1001 binding and deacetylation domains that limit tracheal tube length in *Drosophila*’, *Current
1002 Biology*, 16(2), pp. 186–194. doi: 10.1016/j.cub.2005.11.072.
- 1003 Matusek, T. *et al.* (2006) ‘The *Drosophila* formin DAAM regulates the tracheal cuticle pattern
1004 through organizing the actin cytoskeleton’, *Development*, 133(5), pp. 957–966. doi:
1005 10.1242/dev.02266.
- 1006 McSharry, S. S. and Beitel, G. J. (2019) ‘The Caspase-3 homolog DrICE regulates endocytic
1007 trafficking during *Drosophila* tracheal morphogenesis’, *Nature Communications*. doi:
1008 10.1038/s41467-019-09009-z.
- 1009 Mettlen, M. *et al.* (2018) *Regulation of Clathrin-Mediated Endocytosis*, *Annual Review of
1010 Biochemistry*. doi: 10.1146/annurev-biochem-062917-012644.
- 1011 Moussian, B. *et al.* (2006) ‘*Drosophila* Knickkopf and Retroactive are needed for epithelial
1012 tube growth and cuticle differentiation through their specific requirement for chitin filament
1013 organization’, *Development*, 133(1), pp. 163–171. doi: 10.1242/dev.02177.
- 1014 Nelson, K. S. *et al.* (2012) ‘*Drosophila* Src regulates anisotropic apical surface growth to
1015 control epithelial tube size’, *Nature Cell Biology*. doi: 10.1038/ncb2467.
- 1016 Olivares-Castiñeira, I. and Llimargas, M. (2017) ‘EGFR controls *Drosophila* tracheal tube

- 1017 elongation by intracellular trafficking regulation', *PLoS Genetics*. doi:
1018 10.1371/journal.pgen.1006882.
- 1019 Olivares-Castiñeira, I. and Llimargas, M. (2018) 'Anisotropic Crb accumulation, modulated by
1020 Src42A, is coupled to polarised epithelial tube growth in *Drosophila*', *PLoS Genetics*. doi:
1021 10.1371/journal.pgen.1007824.
- 1022 Öztürk-çolak, A. *et al.* (2018) 'Blimp-1 mediates tracheal lumen maturation in *drosophila*
1023 *melanogaster*', *Genetics*, 210(2), pp. 653–663. doi: 10.1534/genetics.118.301444.
- 1024 Öztürk-Çolak, A. *et al.* (2016) 'A feedback mechanism converts individual cell features into a
1025 supracellular ECM structure in *drosophila* trachea', *eLife*, 5(FEBRUARY2016), pp. 1–21. doi:
1026 10.7554/eLife.09373.
- 1027 Pai, L. M. *et al.* (1996) 'Drosophila α -catenin and E-cadherin bind to distinct regions of
1028 Drosophila Armadillo', *Journal of Biological Chemistry*. © 1996 ASBMB. Currently published
1029 by Elsevier Inc; originally published by American Society for Biochemistry and Molecular
1030 Biology., 271(50), pp. 32411–32420. doi: 10.1074/jbc.271.50.32411.
- 1031 Parks, A. L. *et al.* (2004) 'Systematic generation of high-resolution deletion coverage of the
1032 *Drosophila melanogaster* genome', *Nature Genetics*, 36(3), pp. 288–292. doi:
1033 10.1038/ng1312.
- 1034 Pascual, G. *et al.* (2017) 'Targeting metastasis-initiating cells through the fatty acid receptor
1035 CD36', *Nature*. doi: 10.1038/nature20791.
- 1036 Patel, N. H. (1994) 'Chapter 24 Imaging Neuronal Subsets and Other Cell Types in Whole-
1037 Mount *Drosophila* Embryos and Larvae Using Antibody Probes', *Methods in Cell Biology*,
1038 44(C), pp. 445–456. doi: 10.1016/S0091-679X(08)60927-9.
- 1039 Philips, J. A., Rubin, E. J. and Perrimon, N. (2005) 'Drosophila RNAi screen reveals CD36
1040 family member required for mycobacterial infection', *Science*, 309(5738), pp. 1251–1253.
1041 doi: 10.1126/science.1116006.
- 1042 Phillips, M. D. and Thomas, G. H. (2006) 'Brush border spectrin is required for early
1043 endosome recycling in *Drosophila*', *Journal of Cell Science*, 119(7), pp. 1361–1370. doi:
1044 10.1242/jcs.02839.
- 1045 Rahaman, S. O. *et al.* (2006) 'A CD36-dependent signaling cascade is necessary for
1046 macrophage foam cell formation', *Cell Metabolism*, 4(3), pp. 211–221. doi:
1047 10.1016/j.cmet.2006.06.007.
- 1048 Robbins, R. M., Gbur, S. C. and Beitel, G. J. (2014) 'Non-canonical roles for Yorkie and

- 1049 Drosophila inhibitor of apoptosis 1 in epithelial tube size control', *PLoS ONE*. doi:
1050 10.1371/journal.pone.0101609.
- 1051 Sharifkhodaei, Z., Gilbert, M. M. and Auld, V. J. (2019) 'Scribble and Discs Large mediate
1052 tricellular junction formation', *Development (Cambridge)*, 146(18). doi:
1053 10.1242/dev.174763.
- 1054 Skouloudaki, K. *et al.* (2019) 'Yorkie controls tube length and apical barrier integrity during
1055 airway development', *The Journal of Cell Biology*. doi: 10.1083/jcb.201809121.
- 1056 Stuart, L. M. *et al.* (2005) 'Response to *Staphylococcus aureus* requires CD36-mediated
1057 phagocytosis triggered by the COOH-terminal cytoplasmic domain', *Journal of Cell Biology*,
1058 170(3), pp. 477–485. doi: 10.1083/jcb.200501113.
- 1059 Thomas, G. H. and Williams, J. A. (1999) 'Dynamic rearrangement of the spectrin membrane
1060 skeleton during the generation of epithelial polarity in Drosophila', *Journal of Cell Science*,
1061 112(17), pp. 2843–2852. doi: 10.1242/jcs.112.17.2843.
- 1062 Thorne, R. F. *et al.* (2006) 'The association between CD36 and Lyn protein tyrosine kinase is
1063 mediated by lipid', *Biochemical and Biophysical Research Communications*. doi:
1064 10.1016/j.bbrc.2006.09.156.
- 1065 Tiklová, K., Tsarouhas, V. and Samakovlis, C. (2013) 'Control of Airway Tube Diameter and
1066 Integrity by Secreted Chitin-Binding Proteins in Drosophila', *PLoS ONE*. doi:
1067 10.1371/journal.pone.0067415.
- 1068 Tsarouhas, V. *et al.* (2007) 'Sequential Pulses of Apical Epithelial Secretion and Endocytosis
1069 Drive Airway Maturation in Drosophila', *Developmental Cell*. doi:
1070 10.1016/j.devcel.2007.06.008.
- 1071 Tsarouhas, V. *et al.* (2019) 'WASH phosphorylation balances endosomal versus cortical actin
1072 network integrities during epithelial morphogenesis', *Nature Communications*. Springer US,
1073 10(1). doi: 10.1038/s41467-019-10229-6.
- 1074 Voolstra, O. *et al.* (2006) 'The Drosophila class B scavenger receptor NinaD-I is a cell surface
1075 receptor mediating carotenoid transport for visual chromophore synthesis', *Biochemistry*,
1076 45(45), pp. 13429–13437. doi: 10.1021/bi060701u.
- 1077 Wang, H. *et al.* (2020) 'CD36-mediated metabolic adaptation supports regulatory T cell
1078 survival and function in tumors', *Nature Immunology*. doi: 10.1038/s41590-019-0589-5.
- 1079 Wang, S. *et al.* (2006) 'Septate-junction-dependent luminal deposition of chitin deacetylases
1080 restricts tube elongation in the Drosophila trachea', *Current Biology*. doi:

- 1081 10.1016/j.cub.2005.11.074.
- 1082 Yang, X. *et al.* (2017) 'Cd36 in chronic kidney disease: Novel insights and therapeutic
1083 opportunities', *Nature Reviews Nephrology*. Nature Publishing Group, 13(12), pp. 769–781.
1084 doi: 10.1038/nrneph.2017.126.
- 1085 Yao, L. *et al.* (2017) 'Genome-wide identification of grainy head targets in drosophila reveals
1086 regulatory interactions with the POU domain transcription factor Vvl', *Development*
1087 (Cambridge), 144(17), pp. 3145–3155. doi: 10.1242/dev.143297.
- 1088 Zani, I. *et al.* (2015) 'Scavenger Receptor Structure and Function in Health and Disease',
1089 *Cells*. doi: 10.3390/cells4020178.
- 1090
1091
1092
1093
1094
1095
1096
1097