

1 Genome-wide Identification and Expression Profile Analysis of Laccase
2 Family Genes in the *Hypsizygus marmoreus*

3 Gang Wang^{1#}, Cheng Wang^{2#}, HongBo Wang³, Ying Zhu¹, Yuanyuan Wang³, Yu chen¹, Lin Ma³,
4 Zijun Sun⁴, Bobin Liu^{1*}, and Fang Liu^{3*}

5 ¹ Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University,
6 Yancheng 224007, China

7 ² Nantong Haimen Natural Resources and Planning Bureau, Nantong 226007, China

8 ³ College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

9 ⁴ School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China

10 Gang Wang, baiwang0708@163.com

11 Cheng Wang, 106136128@qq.com

12 Ying Zhu, 1985953706@qq.com

13 HongBo Wang, 1692286571@qq.com

14 Yuanyuan Wang, 1528666164@qq.com

15 Yu chen, 3144854866@qq.com

16 Lin Ma, worldmalinmm@gmail.com

17 Zijun Sun, 1304011412@qq.com

18 # These authors contributed equally to this work.

19 * Correspondence: Bobin Liu (liubb@yctu.edu.cn), Fang Liu (fliufang@163.com)

20

21 **Abstract**

22 Laccase exists widely in plants and fungi. It is a copper-containing polyphenol
23 oxidase that can degrade lignin, oxidate, and phenolic substances, inhibit heterophytes,
24 promote fruiting body formation, and improve the quality of mushrooms. In this study,
25 18 laccase genes were identified from the whole genome of a white strain (HM62) of
26 *Hypsizygus marmoreus*, and the mapping, structure, and evolution of laccase genes
27 were analyzed at the whole genome level, while the spatiotemporal expression was
28 evaluated at different developmental stages. The laccase genes mainly distributed on
29 chromosomes 1, 2, 3, 4, 6, 9, and 10, and 9 genes were clustered linearly on
30 chromosome 6, indicating gene doubling. Phylogenetic tree analysis showed that the

31 laccase gene family was divided into three subfamilies. The spatiotemporal
32 expression analysis of the laccase gene family showed that *HmLac09* and *HmLac10*
33 were highly expressed in different periods and might be involved in lignin
34 degradation and fruit body formation, respectively. The expression levels of *HmLac02*,
35 *HmLac05*, *HmLac08*, and *HmLac17* genes in gray or gray and white heterozygous
36 strains were higher than those in white strains, which might be related to the
37 difference in lignin decomposition in gray strains, and one of the factors leading to
38 different growth rates. The present study investigated the characterization of the *H.*
39 *marmoreus* laccase gene family, extending our understanding of laccase mediated
40 fruiting body development and growth rate mechanisms in this fungi.

41 **Key words:** Fungi, Laccase, Genomics, lignin-degrading gene

42 1. Introduction

43 Laccase is a polyphenol oxidase with copper ions. It is involved in the
44 degradation of lignin together with lignin peroxidase (Giardina et al. 2010),
45 manganese peroxidase, and multifunctional peroxidase and is widely present in plants,
46 insects, fungi, and bacteria (Buddolla et al. 2014). The laccase molecule is composed
47 of a single polypeptide, a copper ion active center, and a sugar ligand. Those from
48 different sources vary in degrees of glycation that use the unique redox ability of
49 copper ions to carry out one-electron oxidation of reducing substrates and reducing
50 oxygen to water (Li et al. 2000). According to the nature of magnetism and
51 spectroscopy, laccase is composed of three conservative copper ion structural domains.
52 The active center of the copper ions is divided into three categories: type I (T1)
53 copper ion (T1-Cu) or blue type copper (T2), type II copper ion (T2-Cu) or type
54 copper, and two type III (T3) copper ions (T3-Cu) or coupling double karyotypes of
55 copper (Li 2014; Hoegger et al. 2006). However, all laccase structures do contain all
56 three types of copper ions. Typically, copper ion has four non-vacancy conserved
57 motifs (L1–L4), which are the marker sequences of laccase from another polyphenol
58 oxidase. These sequences include 10 histidines and 1 cysteine. These amino acid

59 residues combine with the three copper ions of laccase to form ligands that effectuate
60 the physiological roles of laccase (Gold and Alic 1993; Jia et al. 2019; Liao 2017). To
61 adapt to different growth environments, laccase needs various functions; thus, they
62 gradually differentiate into varied homologous genes with different functions
63 (combined sequence and structure analysis of the fungal family). In the evolution of
64 laccase protein, some related functional amino acid residues rarely mutated and
65 became a conserved part, which was used as the identification tag of the gene (the
66 structure and function of fungal laccases).

67 In addition, laccase genes were involved in lignin degradation, vegetative growth,
68 fruiting body formation, and pigmentation during the growth of edible fungi (Lundell
69 et al. 2010). Laccase gene families have been reported in edible fungi, such as
70 *Coprinopsis cinerea*, *Auricularia auricula*, *Flammulina velutipes*, *Volvariella*
71 *volvacea*, and *Pleurotus ostreatus*. To date, 17 gene families in *Coprinopsis cinerea*,
72 the largest basidiomycetes laccase gene family, have been identified (Kilaru et al.
73 2006; Yang 2014; Jiao et al. 2018; Wang et al. 2015; Lu et al. 2015). Several studies
74 have assessed the molecular and functional aspects of this family. The laccase gene of
75 *H. marmoreus* (lcc1), 2336 bp in length containing 13 introns and 14 exons, was
76 cloned, and the phylogenetic tree showed homology with the laccase gene of
77 *Flammulina velutipes*. Interestingly, the laccase activity of the recombinant strain was
78 higher than that of the control, the growth rate of mycelia was significantly increased,
79 the primordia formation was 3–5 days early, and the fruiting body maturity was 5
80 days higher, indicating that the laccase gene could promote the growth of mycelia and
81 the development of the fruiting body (Zhang et al. 2015). A previous study showed
82 that the activities of laccase and β -glucosidase in the primordia stage were
83 significantly higher than those in other states, which might be related to the formation
84 of primordia and promote the early transfer reproductive growth of *H. marmoreus*
85 (Song et al. 2018). Kojic acid is an inhibitor of laccase; a study showed that laccase
86 activity was downregulated by kojic acid during mycelia recovery and color

87 transformation but significantly upregulated during the primary stage, further
88 indicating that laccase is closely related to the fruiting body development of *H.*
89 *marmoreus* (Zhang et al. 2018).

90 Hitherto, only a few studies have evaluated the laccase genes due to the lack of a
91 laccase genome and systematic identification, induction, and functional analysis of the
92 laccase gene family. Therefore, in the present study, (1) the laccase gene family was
93 systematically identified, and its structure and chromosomal location were analyzed at
94 the chromosome level of the white strain genome; (2) intraspecific and interspecific
95 evolution of the laccase gene family in *H. marmoreus* was assessed; (3) the
96 spatiotemporal expression of the laccase gene in different tissues and mycelia of *H.*
97 *marmoreus* in different periods was analyzed.

98 **2. Materials and Methods**

99 **2.1 The materials**

100 Three transcriptomic experiments were carried out to analyze the spatiotemporal
101 expression of laccase genes. In the first experiment, three stages of mycelia
102 post-ripening stage (opening and tiling bacteria), a color turning stage (gray strain
103 turning color, white strain not turning color), and primordia formation were selected
104 during the growth of the *H. marmoreus* grey strain (*Hm61*) and white strain (*Hm88*).
105 (2) In the second experiment, the lid epidermal tissue samples were taken from gray
106 (*Hm61*), white (*Hm88*), and their hybrid progeny (*HMZ5*) strains. (3) In the third
107 experiment, mononuclear mycelium *Hm61_G6*, *Hm88_W2*, and their hybrid *HMZ5*
108 mycelium were respectively taken. There were three biological replicates per sample
109 in each experiment. Cultivation bag matrix (mass ratio): wood 78%, bran 21%, lime
110 powder 0.5%, gypsum powder 0.5%. Water content 65%.

111 **2.2 Sequence retrieval**

112 The white strain HM62-W was the reference genome, which was completed by
113 Genome and Biotechnology Research Center of Strait Joint Research Institute of
114 Fujian Agriculture and Forestry University (NCBI Accession no.

115 JABWDO000000000). The reference genome of the grey strain Haemi51987-8 was
116 published in 2018 (Min et al. 2018). Combined with Hi-C sequencing data, 278
117 overlapping groups of Haemi51987-8 were interrupted for remounting and gene
118 prediction, resulting in a high-quality genome map named *HM01_Gray*. *Macrolepiota*
119 *albuminosa* data from Ensembl Fungi (<http://fungi.ensembl.org/index.html>) database,
120 while the data of *Wolfiporia extensa* and *Fistulina hepatica* were obtained from NCBI
121 database.

122 **2.3 Identification of members of Laccase gene family of *H. marmoreus***

123 The identification procedures of laccase gene family members of Laccase of *H.*
124 *marmoreus* were as follows: (1) Using NCBI GenBank
125 (LCC1-LCC17: Bk004111-bk004127), and the amino acid residues of 17 non-allelic
126 laccase genes from *Coprinopsis cinerea* were used as seed sequences. With the help
127 of local Blast software, the sequences with E value less than or equal to $1e^{-10}$ were
128 used as candidate bases (Hoegger et al. 2006; Camacho et al. 2009). (2) Candidate
129 sequences were compared back to Swissport database, and the sequence with the
130 highest consistency was reserved laccase gene; (3) Through multiple sequence
131 alignment, the genes without laccase marker sequences were deleted; (4) Used the
132 Batch CD-search (<https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi>)
133 function of CDD database to predict the domain of candidate genes, and deleted the
134 genes with iron oxidase domain. To avoid the loss of possible laccase gene family
135 members due to incomplete domains, the SMART database
136 (<http://smart.embl-heidelberg.de/>) was used to verify the existence of three conserved
137 domains. The candidate genes with laccase conserved domain were selected as
138 members of the HmLacs family. The identification method of laccase gene family
139 members of 54 strain of *H. marmoreus*, *Macrolepiota albuminosa*, *Wolfiporia Extensa*,
140 *Fistulina hepatica*, and other edible fungi was the same as above.

141 Use SignalP 5.0 Server (<http://www.cbs.dtu.dk/services/SignalP/>) and
142 SecretomeP 2.0 Server (<http://www.cbs.dtu.dk/services/SecretomeP/>) to predict

143 HmLacs family typical signal peptide and atypical signal peptide.

144 **2.4 Gene structure and conserved motif analysis of *HmLacs***

145 Use of MEME website (<http://meme.sdsc.edu/meme/intro.html>) tool for *HmLacs*
146 family Motif (Motif) identification and analysis of the Motif width is set to 6-200
147 residue, the biggest base sequence number for 25, repeat any number of times Using
148 Python scripts to obtain chromosome positions and exon-intron numbers using
149 TBtools for phylogenetic tree gene structure Conservative Motif distribution
150 visualization (Chen et al. 2018).

151 **2.5 Chromosomal localization and collinearity analysis of all *HmLacs***

152 MCSanX software was used to analyze the collinearity and gene duplication
153 events. The E value of blast was less than or equal to $1e^{-10}$, and the other parameters
154 were default parameters (Wang et al. 2012). For tandem repetition file output by
155 MCSanX, further manual identification was carried out, and the identification
156 criteria were as follows : (1) the ratio of shorter sequence length to longer sequence
157 length was large At 70%; (2) The similarity of the two amino acid sequences is more
158 than 70%; (3) The two genes were in 100 KB fragment (Gu et al. 2002); In addition,
159 GGgenes' R package was used to carry out microscopic collinearity visualization
160 Bedtools with 80 KB as a unit to count the density of genes on chromosomes, and
161 Tbtools was used to display chromosome location (Hall 2010).

162 **2.6 Multiple sequence alignment, phylogenetic analysis, and classification of *H. marmoreus* laccases**

164 The intraspecific (white and gray strain) and interspecific (*Coprinus cinereus*,
165 *Pleurotus ostreatus*, *Flammulina velutipes*, *Lentinula edodes*, *Volvariella volvacea*,
166 *collybia albuminosa*, *Wolfiporia Extensa*, *Fistulina hepatica*) laccase gene family
167 phylogenetic trees were constructed respectively, and the protein sequences of laccase
168 gene in *Arabidopsis thaliana* were outgroup. Phylogenetic tree construction was
169 carried out with the help of the finsuite manager plug-in (Zhang et al. 2020): (1)
170 multi-sequence alignment of protein sequences using the normal alignment mode of

171 MATTF; (2) deletion of vacancies using trimAl and retention of conserved amino acid
172 residues; (3) ModelFinder Software selects the best protein evolution model (Lanfear
173 et al. 2017) (4) Under the model of IQ-tree automatic selection (automatic option in
174 IQ-Tree) (Lam-Tung et al. 2015), The maximum likelihood phylogenetic TREE was
175 deduced for 20000 ultra-fast guidance and approximate likelihood ratio tests using
176 IQ-tree (Gascuel 2010; Minh et al. 2013), (5) For the construction of laccase family
177 sequence of gray strain and white strain of Mushroom, phylogenetic tree was
178 constructed by Bayesian method, and MrBayes was used under Wag+I+G model 3.2.6
179 Software reconstruction of Bayesian phylogenetic tree, sampling every 100
180 generations, discarding 25% of aging samples, remaining samples tree construction
181 and calculation of posterior probability (Ronquist et al. 2012).

182 **2.7 Analysis of the expression profiles of *HmLacs* in *H. marmoreus* based on
183 RNA-seq**

184 Total RNA was extracted from each sample according to the Kit (E.Z.N.A Plant
185 RNA Kit, Omega, Biotech, Norcross, Ga). Illumina NEBNext® UltraTM RNA
186 Library Prep Kit was used for Library construction, and the steps provided by the Kit
187 were followed. Total RNA samples were commissioned to Be sequenced using
188 Illumina HiSeqTM 2500 (Illumina Inc, CA, USA) platform by Beijing Nuohe
189 Zhiyuan Bioinformatics Technology Co., LTD. Sequencing depth of each sample was
190 60X. At the same time, some RNA samples were kept in the -80°C refrigerator for
191 storage.

192 The transcriptome data analysis steps are as follows: (1) all Illumina data
193 sequenced by rna-seq were subjected to quality control by FastQC and Trimomatic
194 (Bolger et al. 2014). (2) The HISAT2 (Kim et al. 2019) software was used to compare
195 RNA sequencing read segments with default parameters, and Samtools (Li et al. 2009)
196 was used to sort alignments according to the order of reference sequences, so as to
197 obtain THE ALIGNMENT results in BAM format. Statistics were made according to
198 the alignment results. (3) Based on the comparison results, Stringtie (Pertea et al.

199 2015) software was used to estimate gene expression. In addition, Ballgown (Frazee
200 et al. 2015) software provided by Stringtie were used to extract the number of read
201 segments (read count) and FPKM values of genes located in gene exons after
202 comparison from the results generated by Stringtie. (4) edgeR (Robinson et al. 2010)
203 Read Counts was used to convert it into CPM (counts -per million) to filter genes that
204 were not expressed or were all low expressed in all samples; (5) Differential
205 expression analysis was conducted by Pairwise comparison of each sample using
206 Bioconductor's R language package edgeR: After filtering with CPM values, and
207 Normalization with TMM (Mean of M-values), crosstalk significance is checked
208 using statistical methods from edgeR (p values are calculated), The fold change
209 between the two groups was estimated. Visualization of differentially expressed genes
210 (DEG) using R language; (6) According to the list of differentially expressed genes,
211 we used R language Bioconductor package topGO for GO enrichment analysis.
212 TopGO estimates the significance of functional enrichment (p-value) based on the
213 hypergeometric distribution into Fisher's exact probability test. In the enrichment
214 analysis results, p-value ≤ 0.05 was taken as the threshold, and the functions meeting
215 this condition were defined as significantly enriched functions. (7) KEGG enrichment
216 analysis was performed by R/Bioconductor package according to the list of
217 differentially expressed genes. Enricher function was used to estimate the significance
218 of functional enrichment (P value). With p-value ≤ 0.05 as the threshold, functions
219 meeting this condition were defined as significantly enriched functions.

220 **2.8 Experimental validation of *HmLacs* gene expression levels by qRT-PCR**

221 The expression level of DEGs were validated by qRT-PCR. Primer3Plus
222 (<http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi>) and NCBI Primer-BLAST
223 (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/>) were used to design gene-specific
224 primer pairs (Table S1). Total RNA of tissues was extracted using Invitrogen Trizol,
225 First-strand cDNA was synthesized with StarScript II First-strand cDNA Synthesis
226 Mix with gDNA Remover for qPCR (A224-02; Genstar). The RT-qPCR was

227 performed with 2x RealStar Green Fast Mixture (Genstar) on Multicolor Real-Time
228 PCR Detection System (Bio-Rad). Reaction parameters for thermal cycling were 95°C
229 for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 30 s, finally a melting
230 curve (65–95°C, at the increments of 0.5°C) performed to confirm the PCR specificity.
231 The expression level of each gene relative to housekeeping genes were calculated
232 using the $2^{-\Delta\Delta C_t}$ with three replicates per sample (Li 2014). Then we made the
233 correlated analyses between qRT-PCR values with FPKM values. In this experiment
234 *GADPH* and *β-actin* were used as the reference genes.

235 **3. Results and analysis**

236 **3.1 Identification of genes and characterization of homologous genes encode the**
237 **laccase proteins in *H. marmoreus***

238 A total of 20 laccase genes were identified as candidates in the whole laccase
239 genome by family alignment and similarity search against the published model fungi
240 of *C. cinerea*, *P. ostreatus*, *F. velutipes*, and *L. edodes*. The comparison between CDD,
241 SMRAT, and Swissport databases and analysis of laccase marker sequences (L1-L4)
242 identified 18 laccase genes in the reference genome hm62-W of the white strain
243 (Figure 1); all these genes had three copper ion conserved domains. The amino acid
244 sequences of 18 laccase genes were consistent with the characteristics of fungal
245 laccase, and no deletion or replacement of amino acid residues was detected. Also, the
246 characteristic sequence of fungal laccase was L1 – L4, i.e., the binding region of
247 copper ions. At these sites, copper ions T1, T2, and T3 must bind to 10 histidines and
248 1 cysteine to form functional ligands (Figure 2).

249 The number of amino acids encoded by the 18 laccase gene proteins in the
250 reference genome of laccase is 504 – 726, and the molecular weight is 53.41356 –
251 80.99129 kDa (Table 1). The isoelectric point (IEP) was 4.41 – 6.52 except for
252 *HmLac02*, which was 8.45. Compared to most fungal laccase, the IEP was in line with
253 the physicochemical properties of fungal laccase. *HmLac02* was identified as a basic
254 protein, which might have other functions of laccase.

255 The cleavage location of the laccase gene signal peptide was predicted, and the
256 results showed that *HmLac01*, *HmLac03*, *HmLac04*, *HmLac05*, *HmLac08*, *HmLac09*,
257 *HmLac10*, *HmLac12*, *HmLac13*, *HmLac16*, *HmLac17*. Twelve genes, including
258 *HmLac18*, had signaling peptides at the *N*-terminal about 16 – 30 aa long, identified
259 as secretory proteins. On the other hand, 6 kinase genes, *HmLac2*, *HmLac6*, *HmLac7*,
260 *HmLac11*, *HmLac14*, and *HmLac15* did not harbor the typical signal peptides (Table
261 1). However, in the prediction of subcellular localization, the results showed that all
262 18 *HmLacs* were extracellular proteins, and the prediction of atypical laccase showed
263 that they had atypical signaling peptides, presumably because not all members of the
264 laccase gene family had the function of lignin degradation.

265 **3.2 Genomic location and duplication events among *HmLac* genes**

266 In the reference genome, 18 laccase genes were mainly distributed on
267 chromosomes 1 (*HmLac01*), 2 (*HmLac02*), 3 (*HmLac04*), 5 (*HmLac05*), 4 (*HmLac06*),
268 6 (*HmLac07*, *HmLac08*, *HmLac09*, *HmLac10*, *HmLac11*, *HmLac12*, *HmLac13*,
269 *HmLac14*, and *HmLac15*), chromosome 9 (*HmLac16* and *HmLac17*), and
270 chromosome 10 (*HmLac18*). Interestingly, there are 9 laccase genes on chromosome
271 6 distributed in clusters, indicating that gene replication events occurred during the
272 evolution of species. This phenomenon has not been reported previously (Figure 1).
273 Herein, we also found that these 18 laccase genes, except *HmLac16* and *HmLac17*
274 distributed in the middle of chromosome 9, were mainly distributed at both ends of
275 the chromosome, and the chromatin in this region was loose, which needs to be
276 investigated further. Combined with the MCScanX operation and manual correction
277 results, we found that *HmLac10* and *HmLac14*, *HmLac11*, and *HmLac13* in the white
278 line were lineal homologous genes. *HmLac02*, *HmLac03*, *HmLac08*, *HmLac09*,
279 *HmLac10*, *HmLac11*, and *HmLac12* genes formed the tandem repeats, and *HmLac01*,
280 *HmLac04*, *HmLac05*, *HmLac06*, *HmLac13*, *HmLac14*, *HmLac15*, *HmLac16*,
281 *HmLac17*, and *HmLac18* may be produced by retrotransposition.

282 **3.3 Gene structure, conserved motifs, and evolutionary correlations with *Hmlacs***

283 The comparison of the homology revealed that the consistency of amino acid
284 sequence among laccase genes had a high diversity, and the identity ranged from
285 41.5–90.54%, which might be related to the specificity of functional differentiation in
286 the evolutionary process (Figure S1). Nonmetric multidimensional scale (NMDS)
287 analysis of the phylogenetic branch length showed that the white strain was divided
288 into three groups, with significant differences among the groups (Figure S2). The
289 phylogenetic tree of laccase gene construction of the *HM62-W* strain showed that the
290 genes were divided into three subfamilies: Group 1 consisted of 13 family members,
291 Group 2 had 2 family members, and Group 3 contained 3 family members. The amino
292 acid similarity among each subgroup was low, which could be because different
293 subfamilies are involved in diverse functions.

294 Gene structure analysis showed that the number of exons of the laccase gene
295 ranged from 9–30 and that the structures in each subfamily were similar (Figure 3). In
296 Group 1, *G_HmLac10*, *G_HmLac13*, *G_HmLac4*, *HmLac12*, and *HmLac4* had 15
297 exons. The number of introns in Group 3 increased significantly, especially in the
298 copper ion binding region (Cu-oxidase, Cu-oxidase_2, Cu-oxidase_3), suggesting that
299 the introns might underlie the gene structure diversity, and the members of each group
300 may perform different functions. Further analysis showed that all *HmLacs* genes
301 contain at least one intron in their respective copper ion domain, which may be the
302 conserved intron of the laccase gene. The Motif-based sequence analysis tool was
303 used to identify 25 conservative motifs (length 6–50 aa) of proteins (Table S2).
304 Among these conservative motifs, Group 3 has a unique Motif 20, 21, and 22,
305 indicating that it might be related to the specific function of this group. The
306 comparison of 25 conserved motifs in the CDD database revealed that 13 motifs had
307 conserved domains of fungal laccase: Motif 1–6, 8, 10, 11, 12, 13, 23, and 24. These
308 motifs were conserved across all *HmLacs*, while the rest were specific, providing
309 favorable evidence for grouping *HmLacs*.

310 **3.4 Phylogenetic analysis and classification of *HmLacs***

311 To further categorize and investigate the evolutionary correlation of *HmLacs*, we
312 identified 122 laccase domains from 64 *H. marmoreus* genomes which assembled by
313 de novo using whole genome sequencing (WGS) data, and constructed an unrooted
314 phylogenetic tree using the maximum likelihood (ML) methods. Based on the
315 classification of *HmLacs* and the primary structural features of *HmLac* proteins, all
316 122 *HmLacs* genes were classified into three major groups and further divided into
317 seven subgroups; the structure of each group of genes was similar (Figure 4).

318 The representative species of basidiomycetes, ligneous white-rot fungus (*C.*
319 *cinerea*, *M. albuminosa*, *P. ostreatus*, *L. edodes*, and *F. velutipes*), ligneous brown rot
320 fungus (*F. hepatica* and *W. extensa*), and rotting straw fungus (*V. volvacea*) were used
321 to construct the phylogenetic trees, the *Arabidopsis thaliana* as outside groups (Figure
322 4). The results showed that the laccase genes are mainly divided into five groups, and
323 each species's laccase genes are clustered together respectively, indicating that there
324 were gene replication events. Previous studies suggested that *PoLac2* was involved in
325 lignin degradation and fruity body formation (Jiao et al. 2018). In Group 2, *PoLac2*
326 was clustered with *HmLac16* and *HmLac18*, suggesting that the gene might be
327 involved in lignin degradation. Group 3 did not consist of a laccase gene of *H.*
328 *marmoreus*. The *HmLacs* genes are similar to the laccase genes in *M. albuminosa* and
329 *P. ostreatus*, but unrelated to those of *F. hepatica*, *W. extensa*, and *V. volvacea*.

330 **3.5 Expression profiles of *HmLac* genes in *H. marmoreus***

331 The life history of *H. marmoreus* can be divided into mycelium, mycelium kink
332 (discoloring), primordial, bud, and forming stages. In the present study, the samples of
333 the grey and white mycelium of *H. marmoreus* in the post-ripening (CK), kink (5 days
334 after cap opening), and primordium formation stages (8 days after cap opening) were
335 subjected to transcriptomic sequencing analysis.

336 Previous studies speculated that the white strain was the albino strain of the gray
337 strain, which was weaker than the gray strain in growth speed and stress resistance.
338 The expression levels of the three transcriptomes of *H. marmoreus* are shown in

339 **Figure 5.** In the transcriptomic experiment, *HmLac09* and *HmLac10* were highly
340 expressed in the gray strain, white mononuclear mycelia, and binuclear heterozygous
341 mycelia, followed by *HmLac14*, suggesting that these genes are related to the growth
342 and development of *H. marmoreus*. The expression levels of *HmLac02*, *HmLac05*,
343 *HmLac08*, and *HmLac17* genes in gray or heterozygous strains were higher than those
344 in the white mononuclear strains but did not differ significantly compared to the other
345 laccase genes. In the cap epidermal transcriptome experiment, *HmLac09* gene was
346 highly expressed in all three strains. The expression of *HmLac02*, *HmLac03*,
347 *HmLac17*, *HmLac14*, and *HmLac18* in gray and hybrid was higher than that of the
348 white strain, while the expression of *HmLac10* in white and hybrid was higher than
349 that of the gray strain. The other 11 laccase genes were low expression, suggesting
350 that they played a small role in the development of the cap. The results of
351 transcriptome experiment III showed that *HmLac09* and *HmLac10* were highly
352 expressed in different periods, further proving the critical role of these two genes in
353 the growth and development of *H. marmoreus*. The expression levels of *HmLac02*,
354 *HmLac05*, *HmLac08*, and *HmLac17* genes in gray or heterozygous strains were
355 higher than those in white mononuclear strains and formed differential expression,
356 which was consistent with the results of experiments I and II, indicating that any one
357 of *HmLac02*, *HmLac05*, *HmLac08*, and *HmLac17* may be a factor leading to different
358 growth rates of the gray strain in lignin decomposition. Taken together, *HmLac09*,
359 *HmLac10*, *HmLac17*, and *HmLac18* are the key laccase genes in *H. marmoreus*.

360 The expression of *Lac17*, *Lac10*, and *Lac09* in different color strains was verified
361 by Real-Time Quantitative Reverse Transcription (qRT-PCR) (**Figure 5**). These results
362 showed that the correlation coefficients between Fragments Per Kilobase of exon
363 model per Million mapped fragments (FPKM) and qRT-PCR were $R^2 = 0.7312$ (0.6331), $R^2 = 0.7084$ (0.7084), and $R^2 = 0.8099$ (0.8099) for *Lac17*, *Lac10*,
364 and *Lac09*, respectively.

366

367 **4. Discussion**

368 Laccase of white-rot fungi is a major lignin-degrading gene that has been widely
369 studied in recent years due to its high lignin-degrading efficiency. As one of the
370 typical white-rot fungi, its nutritional components mainly originate from the
371 degradation of lignin; hence, the laccase activity directly affects the production
372 efficiency of *H. marmoreus* in the factory. Based on the whole genome identification,
373 several laccase genes have been identified in many edible mushroom species, such as
374 *P. ostreatus*, *F. velutipes* (Jiao et al. 2018; Wang et al. 2015). Based on the
375 high-quality genome of *H. marmoreus*, this study compared the homologous
376 sequences of related published species at the whole genome level, and combined with
377 SMART database, CDD database, and laccase marker (L1-L4), identified 18 laccase
378 family genes. This was 8 more than the 10 laccase genes identified by Zhang et al.
379 through transcriptome assembly and splicing (Zhang et al. 2015). These 8 genes
380 contain the characteristic structure of the copper ion binding region and are accurate
381 members of the laccase gene family, which consists of 18 members. Currently, it is
382 the largest laccase gene family found in Basidiomycota, exceeding the 17 laccase
383 genes in *C. cinerea* (Kilaru et al. 2006), which might be the result of the growth and
384 development of *H. marmoreus* and its dependence on laccase.

385 Based on the IEPs of the laccase gene family members, HmLac2 was identified
386 as a basic protein. It is found that *H. marmoreus* often needs to grow in acidic
387 environment, but some basic substances are secreted during the growth process,
388 which gradually increases the pH value of the culture material. *HmLac2* plays a vital
389 role in the special period. In addition, the mushroom has both acidic and basic
390 proteins, indicating that its acid-base stability is different, which is consistent with the
391 previous conclusion that fungal laccase has a wide optimal pH range (Baldrian 2006).
392 Similar situations also occur in other species, such as *PoLac8* in *P. ostreatus*, thereby
393 necessitating additional experiments are needed to verify the specific functions (Jiao
394 et al. 2018). Some studies proposed that laccase was a secreted protein, but the results

395 of signaling peptides in this experiment showed that some laccase did not have typical
396 signal peptides, as in *F. velutipes*, *V. volvacea*, and *L. edodes* (Wang et al. 2015; Lu et
397 al. 2015). Also, laccases might be intracellular enzymes with specific functions. Thus,
398 we hypothesized that laccase, such as *HmLac2*, *HmLac6*, *HmLac7*, *HmLac11*,
399 *HmLac14*, and *HmLac15* may be extracellular proteins without typical signaling
400 peptides.

401 The distribution of 18 *HmLacs* on chromosome 6 was not uniform, and 9 genes
402 were clustered linearly on chromosome 6, indicating that the laccase gene was derived
403 from gene replication. The main driving force of the laccase gene family expansion
404 was tandem repetition and reverse transcription transpose; 7 tandem repetition genes
405 were identified. This phenomenon indicated that the original laccase genes were
406 differentiated into paraphyletic homologs with different functions during the evolution
407 process to meet the various functional requirements of fungi throughout the life cycle.
408 Six lineal homologs have been identified in *H. marmoreus* and *P. ostreatus*, and it has
409 been inferred that these genes may come from a common ancestor. The results of gene
410 structure analysis showed that most of the *HmLacs* genes enriched in the same group
411 had similar intron numbers. The results of gene structure analysis showed that most
412 *HmLacs* genes enriched in the same group had similar intron numbers. The number
413 and distribution of introns were related to gene evolution, which could be attributed to
414 intron insertion or deletion caused by environmental pressure after species
415 differentiation. In order to respond to various stresses promptly, genes must be
416 activated quickly. In this respect, compact gene structures with fewer introns are
417 conducive to expression (Kong et al. 2007).

418 The phylogenetic trees of laccase genes from 56 resequenced strains and 8 spore
419 strains showed that the laccase gene family was divided into three large subgroups,
420 which was consistent with a single reference genome laccase gene family. Among the
421 species, 122 *HmLacs* were divided into five groups. In each group, the laccase genes
422 were clustered together, indicating that the formation of laccase genes was earlier than

423 speciation and that gene replication events occurred after species differentiation. The
424 phylogenetic tree revealed that the laccase gene family of *H. marmoreus* is closely
425 related to *L. edodes* and *F. velutipes*, and most *V. volvacea* and *C. cinerea* cluster into
426 one branch, indicating that the laccases of *H. marmoreus* are closely related to wood
427 rot fungi, but farther related to grass rot fungi, which is consistent with the previous
428 findings.

429 *HmLac09* and *HmLac10* are highly expressed at various developmental stages
430 and in the mononuclear mycelium and hybrid seed. *PoLac2* was overexpressed in *P.*
431 *ostreatus* by *Agrobacterium*-mediated transformation (Jiao et al. 2018). The laccase
432 activity of the transformant was increased to varying degrees, and the expression level
433 of the *PoLac2* gene in the transformant was 2–8 times higher than that of the wild
434 type. The lignin degradation rate of the transformant was 2.36–6.3% higher than that
435 of the wild type within 30 days. In this study, the expression levels of *HmLac16*,
436 *HmLac17*, and *HmLac18* reached their peak in the early bag-opening stage
437 (post-ripening stage). Moreover, *HmLac16* and *HmLac17* were clustered on the same
438 branch as *PoLac2*, which might be closely related to the lignin degradation of *H.*
439 *marmoreus*.

440

441 **Author Contributions:**

442 Conceptualization, C.W., B.-B.L., F.L., and G.W.; methodology, Y.C.; formal analysis,
443 Y.-Y.W., and H.-B.W.; investigation, B.-B.L.; data curation, Z.-J.S.; writing-original
444 draft preparation, GW, B.-P.T., and L.M.; writing-review and editing, Y.C., C.W., and
445 G.W. All authors have read and agreed to the published version of the manuscript.

446 **Funding:**

447 This study was supported by the Open Foundation of Jiangsu Key Laboratory for
448 Bioresources of Saline Soils [JKLBZ202005], Jiangsu Province
449 industry-university-research cooperation project [BY2021457], and National Natural
450 Science Foundation of China [32002108].

451 **Institutional Review Board Statement:** Not applicable.

452 **Informed Consent Statement:** Not applicable.

453 **Data Availability Statement:** The original genome data was uploaded to NCBI

454 BioProject, under the accession number: PRJNA508399.

455 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no

456 role in the design of the study; in the collection, analyses, or interpretation of data; in

457 the writing of the manuscript, or in the decision to publish the results.

458 **Data availability**

459 The genome sequences of *H. marmoreus* have been deposited at GeneBank under the

460 accession number of JABWDO000000000. The data from this study were deposited

461 with NCBI GenBank under accession numbers: PRJNA508399 and PRJNA644211

462

463 **Figure1.** Distribution and domain of *HmLacs* on chromosomes. A. Chromosomal

464 location and gene duplication of *HmLacs*. B. Phylogenetic tree and domain of

465 *HmLacs*.

466 **Figure2.** Standard sequence (L1-L4) multiple sequence alignment of *H. marmoreus*

467 and Motif results.

468 **Figure3.** Phylogenetic tree, gene structure and conserved Motif analysis of 18

469 *HmLacs*. The phylogenetic tree was constructed based on *HmLacs* of *H. marmoreus*

470 using Maximum Likelihood (ML) method, the branch labels designate bootstrap

471 support values; b. The motif composition of *H. marmoreus* *HmLacs* proteins.

472 Different colored boxes represent different motifs; c. Domain analysis of *H.*

473 *marmoreus* *HmLacs* proteins.

474 **Figure4.** Phylogenetic tree using Maximum Likelihood (ML) analyses and class of

475 *HmLacs* proteins. A. Phylogenetic tree of 122 laccase domains of 64 *H. marmoreus*. B.

476 Phylogenetic tree of interspecific laccase gene family. The tree includes 10 species: *H.*

477 *marmoreus*, *C. cinerea*, *M. albuminosa*, *P. ostreatus*, *L. edodes*, *F. velutipes*, *F.*

478 *hepatica*, *V. volvacea* and *W. extensa*, and the *Arabidopsis thaliana* as outside groups.

479 **Figure5.** Expression patterns of 18 *HmLacs* genes expression profiles and qRT-PCR
480 analysis of the expression levels. A. Expression quantity heat map of 18 *HmLacs* in
481 different samples. B, H, and Z indicate Spores and dikaryon strain; CK, 05, 08 indicate
482 post-ripening (CK), kink (5 days after cap opening), and primordium formation stages
483 (8 days after cap opening) of *H. marmoreus* (white and gray strain); G and W, indicate
484 white and gray strain, while M1 and M2 indicate crossing progenies.

485 **Table 1.** Features of *HmLacs* genes identified in *H. marmoreus*.

486 **Table 2.** List of the putative Motifs of *H. marmoreus HmLacs*.

487 **Figure S1.** Consistency of amino acid sequences among *HmLacs*.

488 **Figure S2.** NMDS analysis of *HmLacs*.

489 **Table S1.** Laccase gene primer sequences.

490

491

492

493 **References**

494 Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010)
495 Laccases: a never-ending story. Cellular and molecular life sciences : CMLS
496 67(3): 369-85. <https://doi.org/10.1007/s00018-014-1823-9>

497 Buddolla V, Bandi R, Avilala J, Arthala PK, Golla N (2014) Fungal laccases and their
498 applications in bioremediation. Enzyme research 2014: 1-21.
499 <https://doi.org/10.1155/2014/163242>

500 Li GR, Yu HS, Fu SY, Qin WJ(2000) Research progress on the structure and
501 application of laccase catalytic active center. Journal of Cellulose Science and
502 Technology 8(2):42-49. <https://doi.org/10.3969/j.issn.1004-8405.2000.02.008>

503 Li Y (2014) Study on a new strategy of highly efficient directional immobilization of
504 fungal laccase. Shandong University. <https://doi.org/10.7666/d.Y2597656>

505 Hoegger PJ, Kilaru S, James TY, Thacker JR, U Kües (2006) Phylogenetic
506 comparison and classification of laccase and related multicopper oxidase protein
507 sequences.The FEBS journal 273(10):2308-26.
508 <https://doi.org/10.1111/j.1742-4658.2006.05247.x>

509 Gold MH, Alic M(1993) Molecular biology of the lignin-degrading basidiomycete
510 *Phanerochaete chrysosporium*. Microbiological reviews 57(3): 605-22.
511 <https://doi.org/10.1128/MMBR.57.3.605-622.1993>

512 Jia Y, Chen Y, Luo J, Hu Y(2019) Immobilization of laccase onto meso-MIL-53(Al)
513 via physical adsorption for the catalytic conversion of triclosan.Ecotoxicology

514 and environmental safety 184(22):109670.
515 <https://doi.org/10.1016/j.ecoenv.2019.109670>

516 Liao HJ (2017) Bioinformatics analysis of *Pleurotus ostreatus* Laccase gene, Isolation
517 and purification of *Pleurotus ostreatus* Laccase, enzymatic properties and
518 functional groups study. Southwest University.

519 Lundell TM, Mkel MR, K Hildén (2010) Lignin-modifying enzymes in filamentous
520 basidiomycetes--ecological, functional and phylogenetic review. Journal of basic
521 microbiology 50(1):5-20. <https://doi.org/10.1002/jobm.200900338>

522 Kilaru S, Hoegger PJ, Kües U (2006) The laccase multi-gene family in *Coprinopsis*
523 *cinerea* has seventeen different members that divide into two distinct subfamilies.
524 CURR GENETICS 50(1): 45-60. <https://doi.org/10.1007/s00294-006-0074-1>

525 Yang X (2014) Cloning, expression and phylogenetic analysis of a divergent laccase
526 multigene family in *Auricularia auricula-judae*. Microbiological Research
527 169(5-6): 453-62. <https://doi.org/10.1016/j.micres.2013.08.004>

528 Jiao X, Li G, Wang Y, Nie F, Cheng X, Abdullah M et al (2018) Systematic Analysis
529 of the *Pleurotus ostreatus* Laccase Gene (PoLac) Family and Functional
530 Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin.
531 Molecules 23(4):880. <https://doi.org/10.3390/molecules23040880>

532 Wang W, Liu F, Jiang Y, Wu G, Guo L, Chen R et al (2015) The multigene family of
533 fungal laccases and their expression in the white rot basidiomycete *Flammulina*
534 *velutipes*. Gene 563(2): 142-9. <https://doi.org/10.1016/j.gene.2015.03.020>

535 Lu Y, Wu G, Lian L, Guo L, Wang W , Yang Z et al (2015) Cloning and Expression
536 Analysis of *Vvlcc3*, a Novel and Functional Laccase Gene Possibly Involved in
537 Stipe Elongation. International Journal of Molecular Sciences 16(12): 28498-509.
538 <https://doi.org/10.3390/ijms161226111>

539 Zhang J, Chen H, Chen M, Ren A, Huang J, Hong W et al (2015) Cloning and
540 functional analysis of a laccase gene during fruiting body formation in
541 *Hypsizygus marmoreus*. Microbiological research 179: 54-63.
542 <https://doi.org/10.1016/j.micres.2015.06.005>

543 Song L, Dou H, Xi Y, Liang Q, Wei S et al (2018) Study on the changes of
544 extracellular enzyme activity in Different growth stages of Mushroom. Edible
545 Fungi 40(2): 4. <https://doi.org/10.3969/j.issn.1000-8357.2018.02.006>

546 Zhang J, Wang H, Chen M, Wang Q, Song X, Juan J et al (2018) Effects of kojic acid
547 on Lignocellulosic enzyme during the formation of fruiting body of *Fungatella*
548 SPP. Mycosistema 37(12): 8. <https://doi.org/10.13346/j.mycosistema.180123>

549 Min B, Kim S, Oh YL, Kong WS, Park H, Cho H et al (2018) Genomic discovery of
550 the hyspin gene and biosynthetic pathways for terpenoids in *Hypsizygus*
551 *marmoreus*. BMC Genomics 19(1): 789.
552 <https://doi.org/10.1186/s12864-018-5159-y>

553 Camacho C, Coulouris G, Avagyan V, Ning M, Papadopoulos J, Bealer K et al (2009)
554 BLAST+: architecture and applications. Bmc Bioinformatics 10(1):421.
555 <https://doi.org/10.1186/1471-2105-10-421>

556 Chen C, Xia R, Chen H, He Y (2018) TBtools, a Toolkit for Biologists integrating
557 various HTS-data handling tools with a user-friendly interface. Cold Spring
558 Harbor Laboratory(8). <https://doi.org/10.1101/289660>

559 Wang Y, Tang H, Debarry J D, Tan X , Li J, Wang X et al (2012) MCScanX: a toolkit
560 for detection and evolutionary analysis of gene synteny and collinearity.Nucleic
561 Acids Research 40(7):49-49. <https://doi.org/10.1093/nar/gkr1293>

562 Gu Z, Andre C, Feng-Chi C, Peter B, Wen-Hsiung L (2002) Extent of Gene
563 Duplication in the Genomes of Drosophila, Nematode, and Yeast. Molecular
564 Biology & Evolution(3):256-262.
565 <https://doi.org/10.1093/oxfordjournals.molbev.a004079>

566 Hall I M (2010) BEDTools: a flexible suite of utilities for comparing genomic
567 features. Bioinformatics 26(6):841.
568 <https://doi.org/10.1093/bioinformatics/btq033>

569 Zhang Dong, Gao Fangluan, Jakovlić Ivan, Zou Hong, Zhang Jin, Li Wen X, Wang
570 Gui T (2020) PhyloSuite: An integrated and scalable desktop platform for
571 streamlined molecular sequence data management and evolutionary
572 phylogenetics studies. Mol Ecol Resour 20(1):348-355.
573 <https://doi.org/10.1111/1755-0998.13096>

574 Lanfear R, Frandsen P B, Wright A M, Senfeld T, Calcott B (2017) PartitionFinder 2:
575 New Methods for Selecting Partitioned Models of Evolution for Molecular and
576 Morphological Phylogenetic Analyses. Molecular Biology & Evolution
577 34(3):772-773. <https://doi.org/10.1093/molbev/msw260>

578 Lam-Tung N, Schmidt H A, Arndt V H, Quang M B (2015) IQ-TREE: A Fast and
579 Effective Stochastic Algorithm for Estimating Maximum-Likelihood
580 Phylogenies. Molecular Biology & Evolution (1):268-74.
581 <https://doi.org/10.1093/molbev/msu300>

582 Gascuel O (2010) New Algorithms and Methods to Estimate Maximum-Likelihood
583 Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology
584 59(3):307-21. <https://doi.org/10.1093/sysbio/syq010>

585 Minh Bui Quang, Nguyen Minh Anh Thi, von Haeseler Arndt (2013) Ultrafast
586 approximation for phylogenetic bootstrap. Mol Biol Evol 30(5): 1188-95.
587 <https://doi.org/10.1093/molbev/msx281>

588 Ronquist F, Teslenko M, Mark P, Ayres D L, Darling A, Hhna S et al (2012) MrBayes
589 3.2: efficient Bayesian phylogenetic inference and model choice across a large
590 model space. Systematic Biology 61(3): 539-42.
591 <https://doi.org/10.1093/sysbio/sys029>

592 Bolger A M, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina
593 sequence data. Bioinformatics (15): 2114-20.
594 <https://doi.org/10.1093/bioinformatics/btu170>

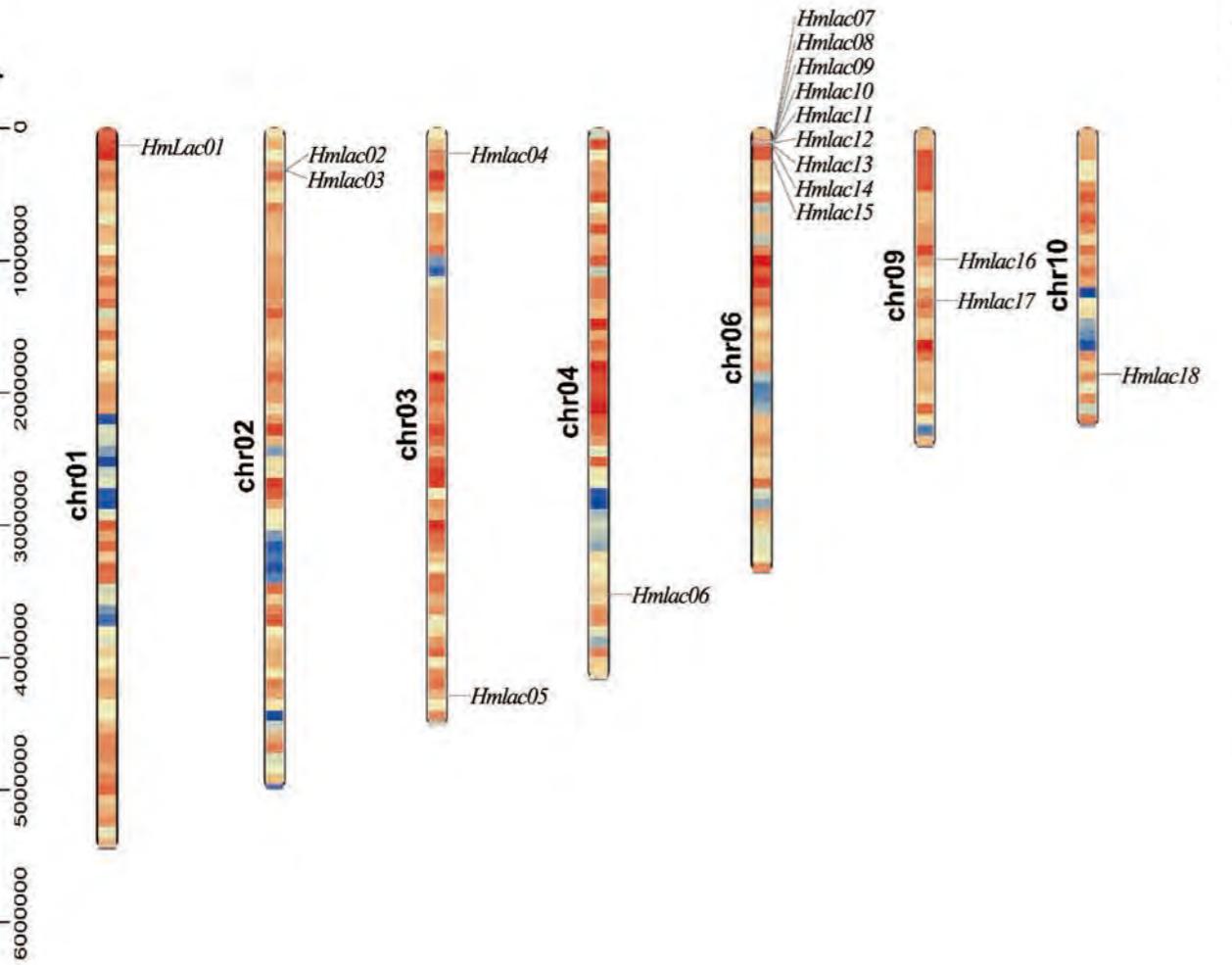
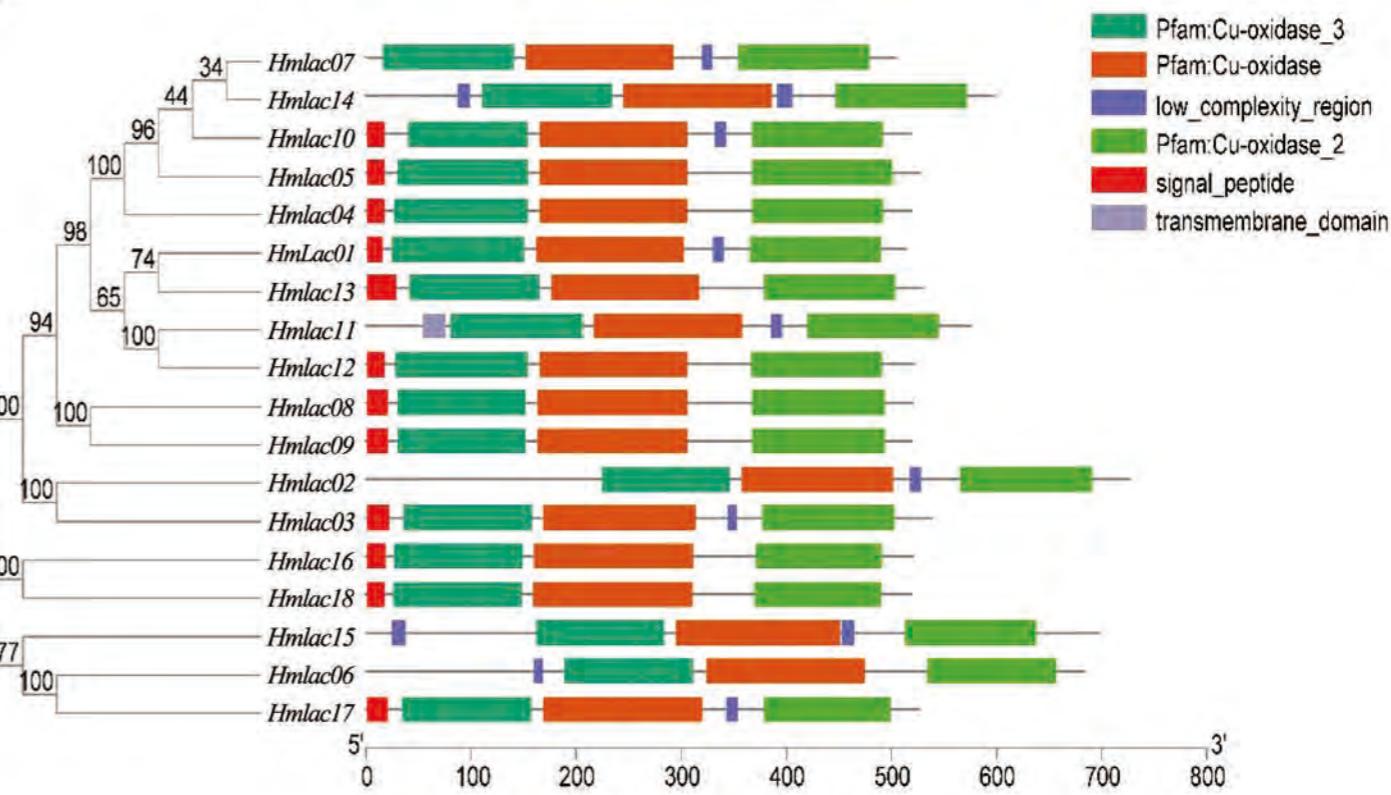
595 Kim D, Paggi J M , Park C, Bennett C, Salzberg S L (2019) Graph-based genome
596 alignment and genotyping with HISAT2 and HISAT-genotype. Nature
597 Biotechnology 37(8): 1. <https://doi.org/10.1038/s41587-019-0201-4>

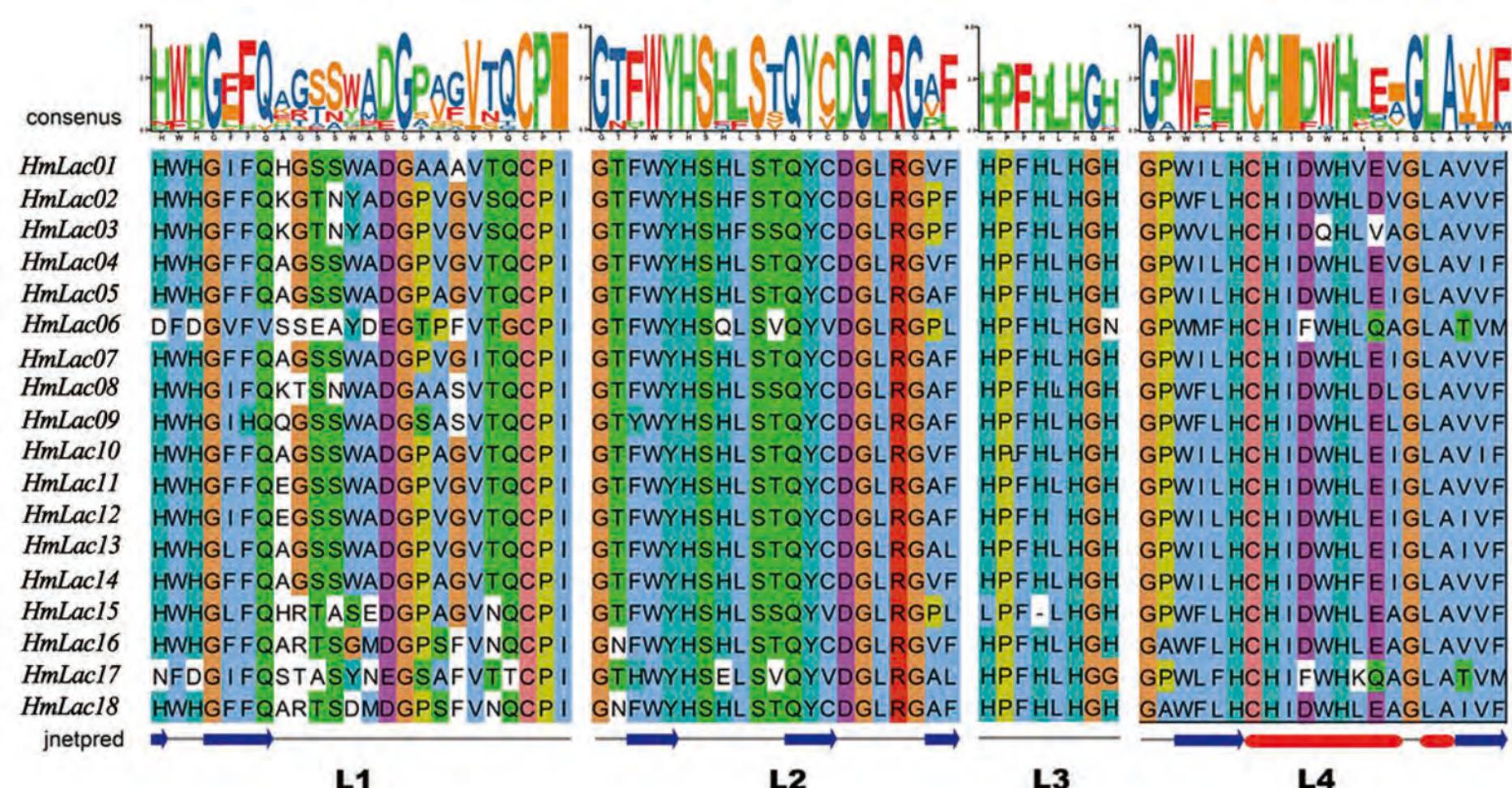
598 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The
599 Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16): 2078-9.
600 <https://doi.org/10.1093/bioinformatics/btp352>

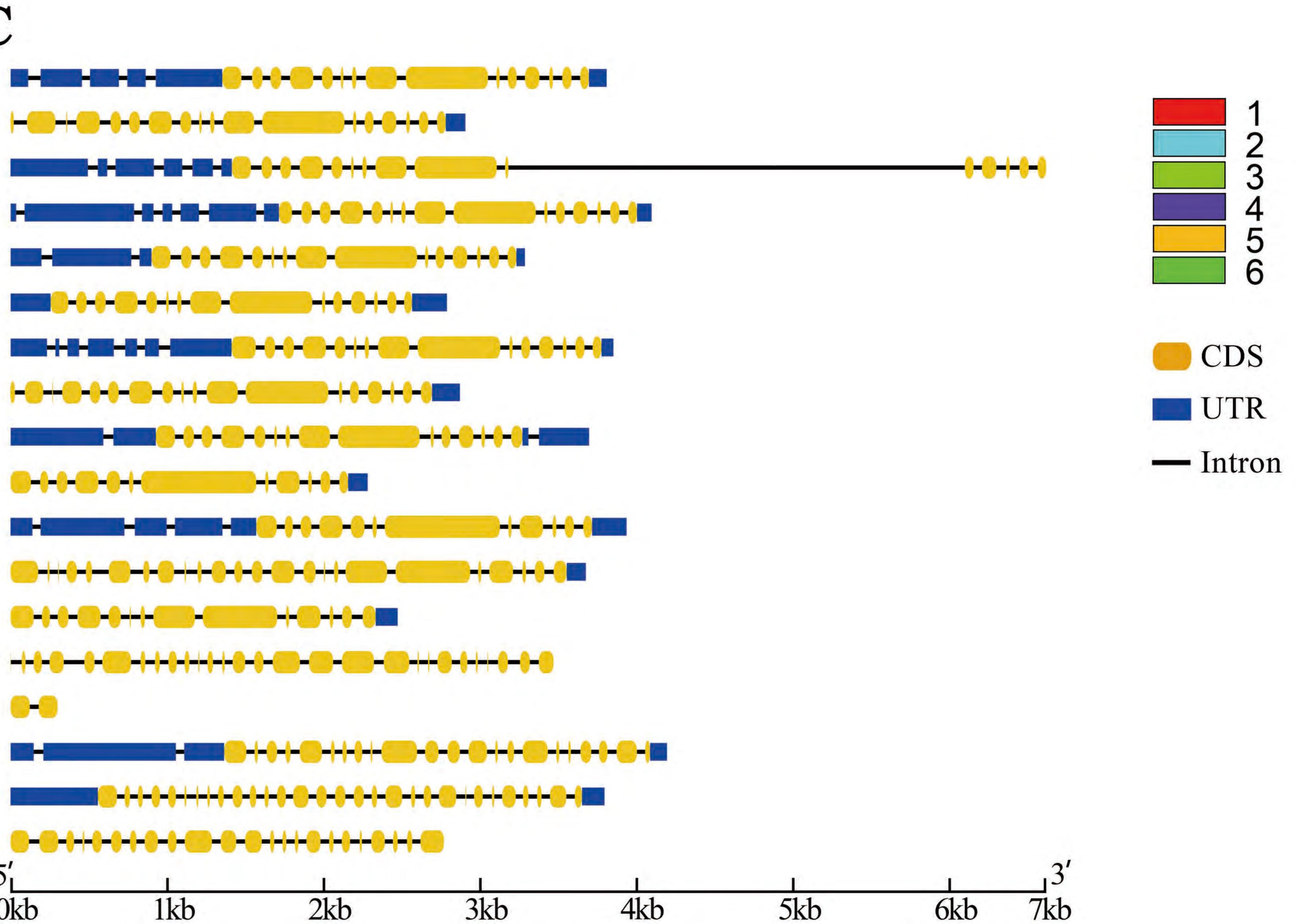
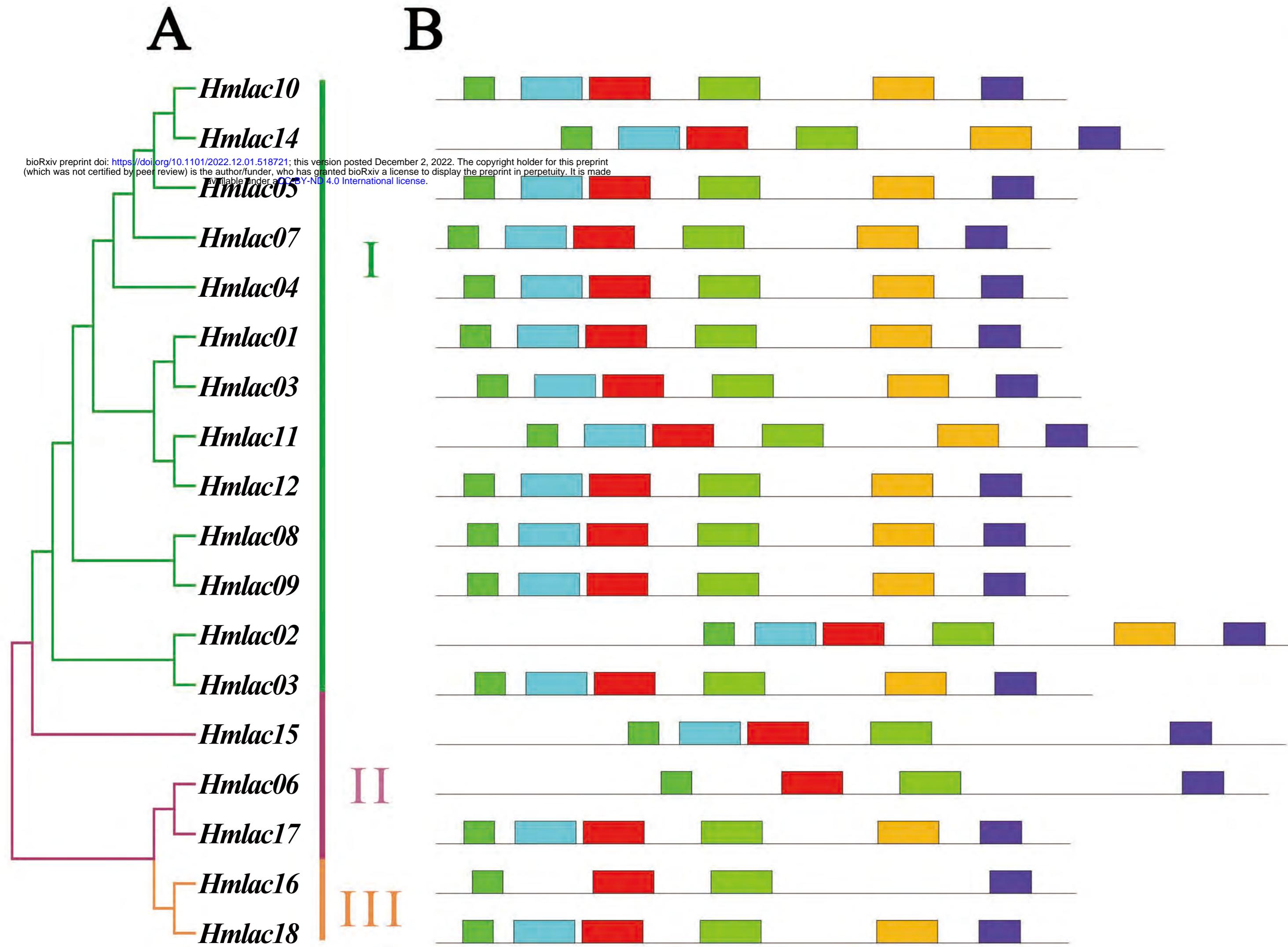
601 Pertea Mihaela, Pertea Geo M, Antonescu Corina M, Chang Tsung-Cheng, Mendell
602 Joshua T, Salzberg Steven L (2015) StringTie enables improved reconstruction of
603 a transcriptome from RNA-seq reads. Nat Biotechnol 33(3): 290-5.
604 <https://doi.org/10.1038/nbt.3122>

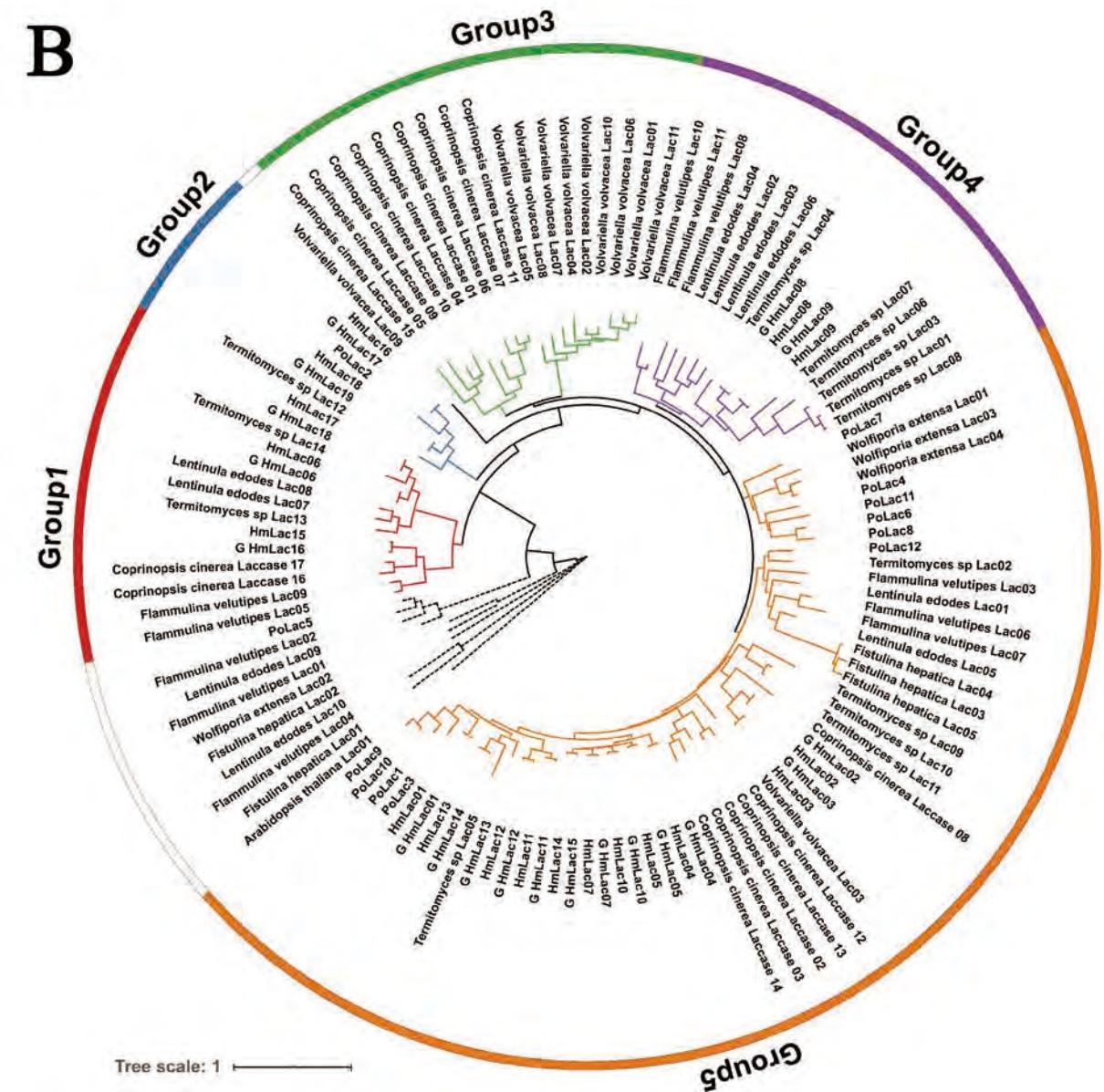
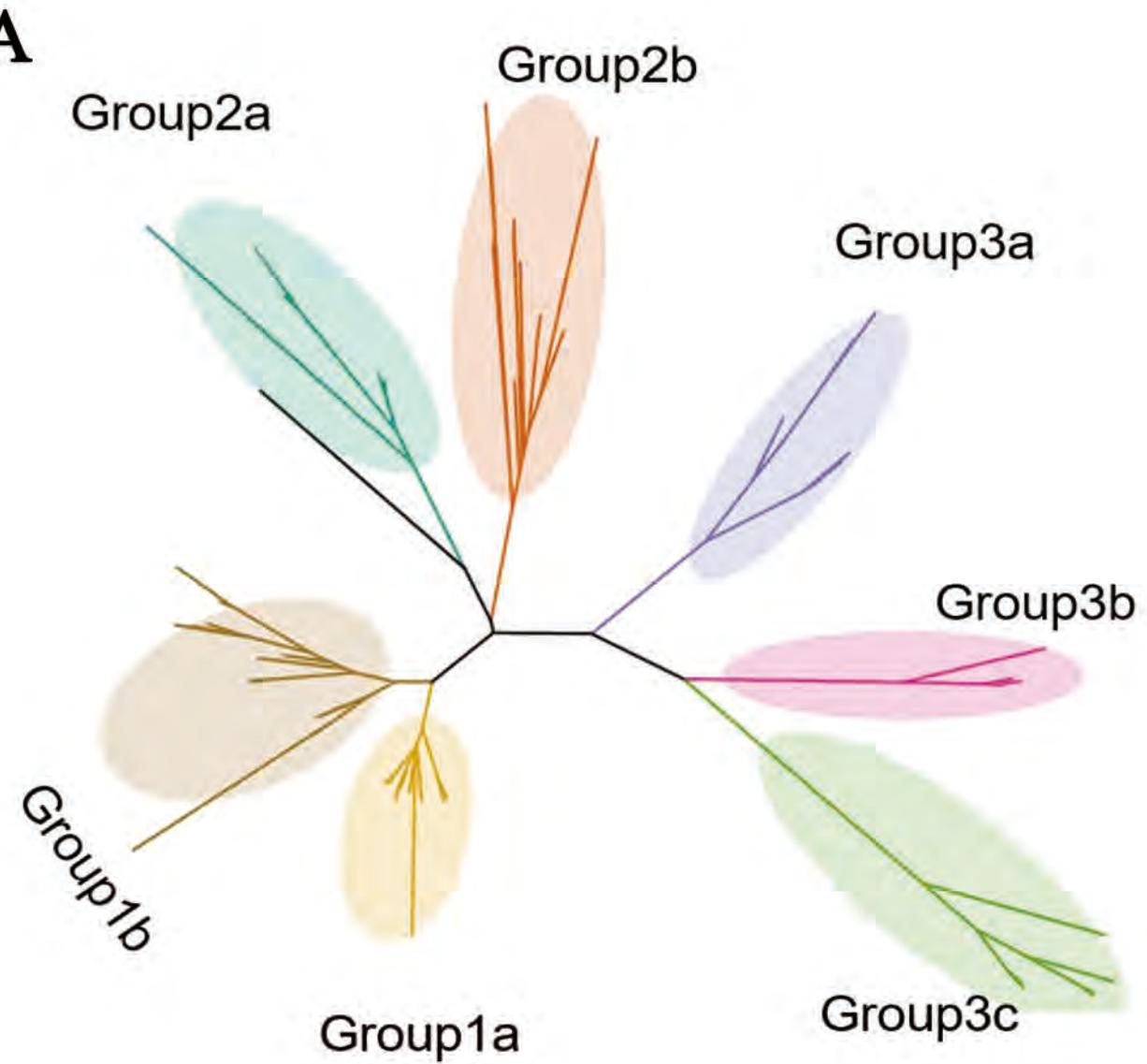
605 Frazee Alyssa C, Pertea Geo, Jaffe Andrew E, Langmead Ben, Salzberg Steven L,
606 Leek Jeffrey T (2015) Ballgown bridges the gap between transcriptome assembly
607 and expression analysis. Nat Biotechnol 33(3): 243-6.
608 <https://doi.org/10.1038/nbt.3172>

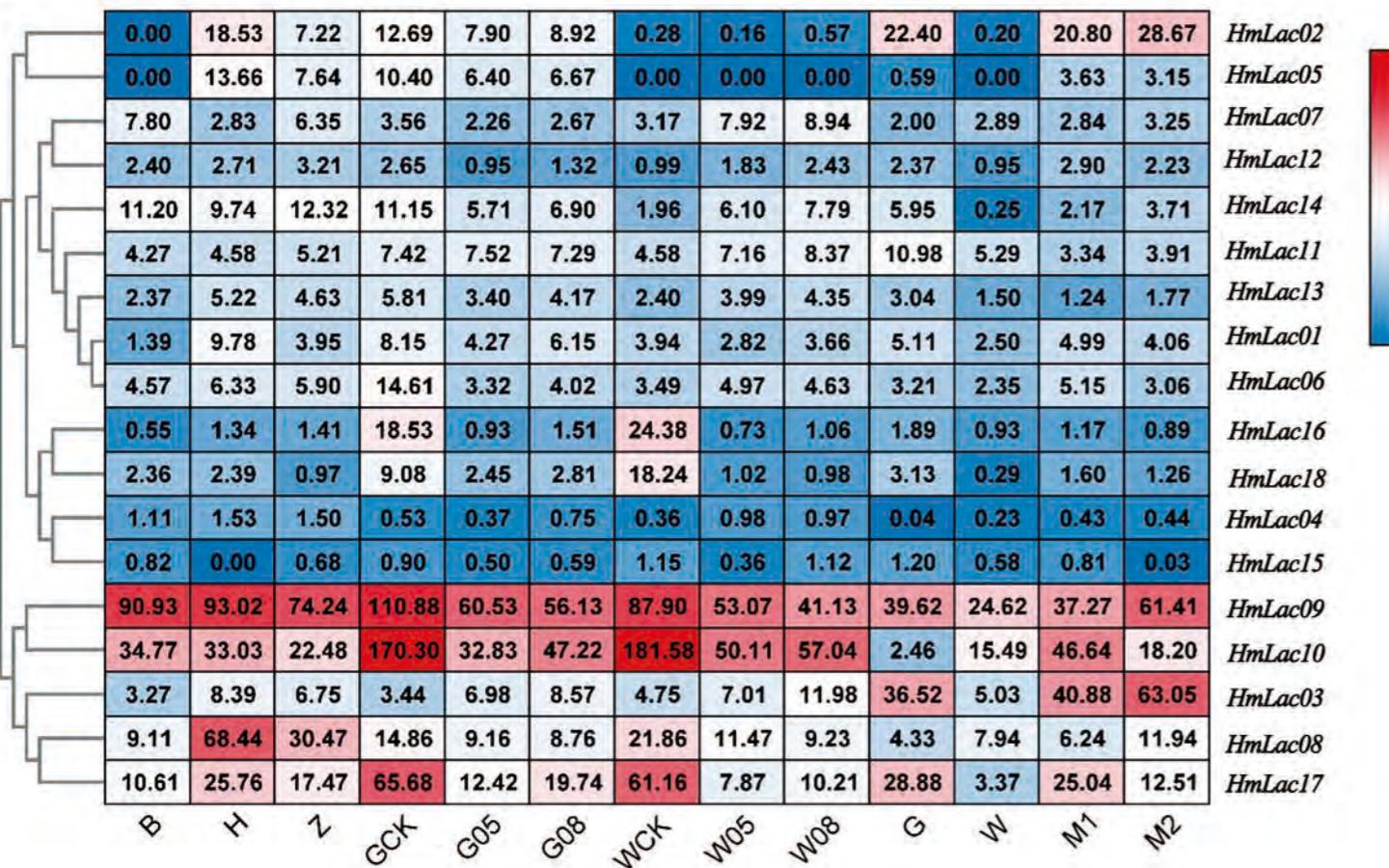
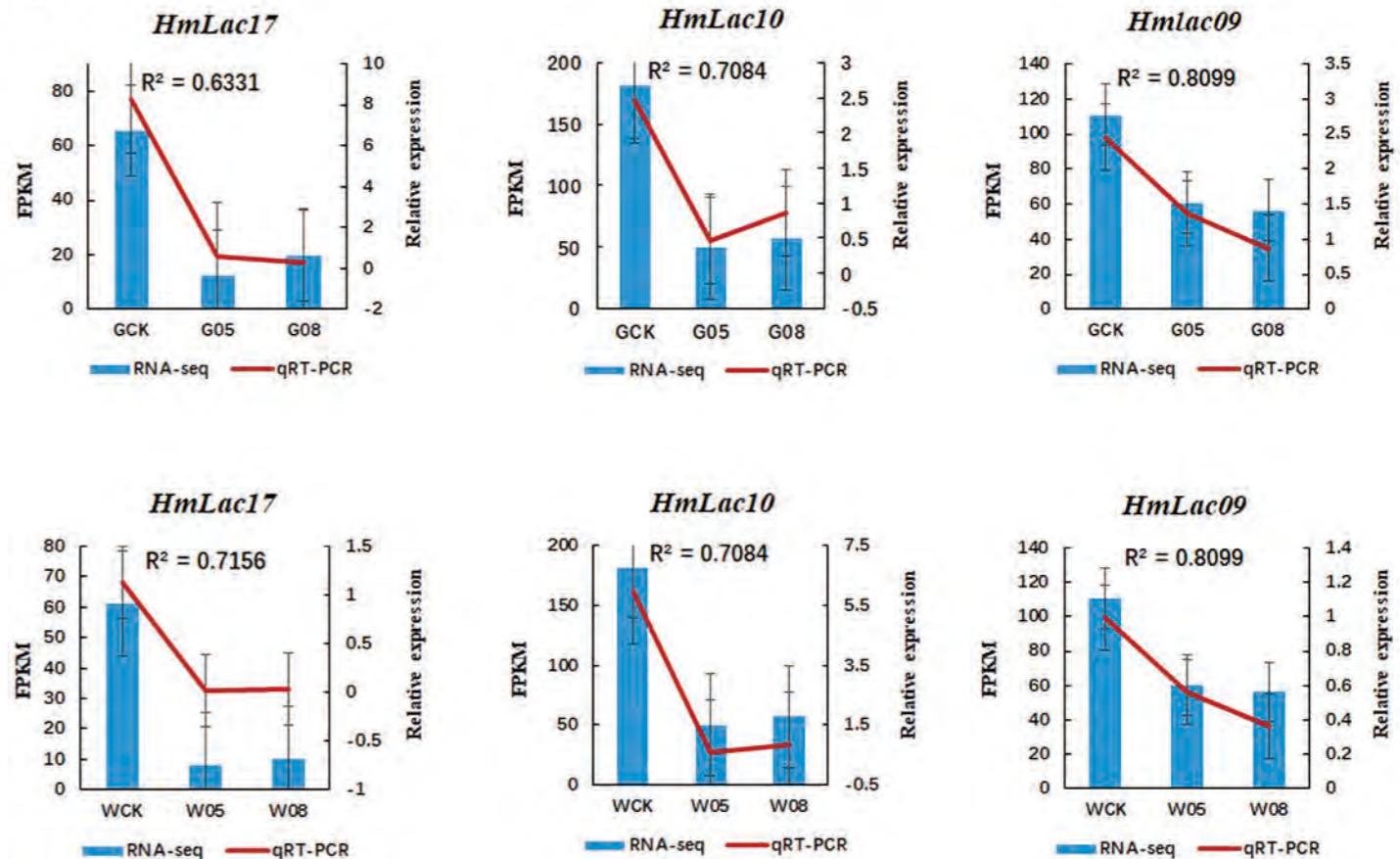
609 Robinson Mark D, McCarthy Davis J, Smyth Gordon K (2010) edgeR: a
610 Bioconductor package for differential expression analysis of digital gene
611 expression data. Bioinformatics 26(1): 139-40.
612 <https://doi.org/10.1093/bioinformatics/btp616>



613 Baldrian P (2006) Fungal laccases – occurrence and properties. Fems Microbiology
614 Reviews 30(2): 215-42. <https://doi.org/10.1111/j.1574-4976.2005.00010.x>


615 Kong H, Landherr L L, Frohlich M W, Leebens-Mack J, Hong M, Depamphilis C W
616 (2007) Patterns of gene duplication in the plant skp1 gene family in angiosperms:
617 evidence for multiple mechanisms of rapid gene birth. Plant J 50(5): 873-85.
618 <https://doi.org/10.1111/j.1365-313X.2007.03097.x>



619



620



621

A**B**

A**B**

Table 1 Features of *HmLacs* genes identified in *Hypsizygus marmoreus*

Gene Name	Gene ID	MW			Chromosome No.	Signal Peptide	Intron/exon number
		Size(aa)	(Da)	pI			
<i>HmLac01</i>	<i>HM01gene000570</i>	513	55329.78	6.2	1	16-17	15/14
<i>HmLac02</i>	<i>HM01gene018960</i>	726	80991.29	8.54	2	-	24/24
<i>HmLac03</i>	<i>HM01gene018970</i>	538	58712.2	5.52	2	22-23	14/14
<i>HmLac04</i>	<i>HM01gene035380</i>	518	55068.24	4.41	3	18-19	15/17
<i>HmLac05</i>	<i>HM01gene051280</i>	526	56023.63	4.99	3	18-20	15/20
<i>HmLac06</i>	<i>HM01gene064720</i>	683	74349.71	6.52	4	-	22/25
<i>HmLac07</i>	<i>HM01gene082910</i>	504	53413.56	4.45	7	-	15/21
<i>HmLac08</i>	<i>HM01gene082960</i>	520	56522.73	6.07	7	21-22	12/12
<i>HmLac09</i>	<i>HM01gene082970</i>	519	56568.31	3.4	7	21-22	12/16
<i>HmLac10</i>	<i>HM01gene083010</i>	517	54974.59	4.82	7	18-19	15/19
<i>HmLac11</i>	<i>HM01gene083030</i>	575	61995.57	3.41	7	-	18/18
<i>HmLac12</i>	<i>HM01gene083050</i>	521	55900.59	6.1	7	18-19	15/17
<i>HmLac13</i>	<i>HM01gene083150</i>	529	56965.73	5.94	7	29-30	15/21
<i>HmLac14</i>	<i>HM01gene083210</i>	597	63908.77	5.08	7	-	18/18
<i>HmLac15</i>	<i>HM01gene083660</i>	697	76917.7	6.05	7	-	28/28
<i>HmLac16</i>	<i>HM01gene117180</i>	520	57214.98	6.34	9	19-20	30/30
<i>HmLac17</i>	<i>HM01gene118350</i>	525	56864.6	6.56	9	21-22	22/24
<i>HmLac18</i>	<i>HM01gene128560</i>	519	56701.19	5.98	10	18-19	23/23