

1 **An epitope-enriched immunogen increases site targeting in germinal centers**
2
3

4 Timothy M. Caradonna¹, Ian W. Windsor², Anne A. Roffler¹, Shengli Song³, Akiko Watanabe³,
5 Garnett Kelsoe^{3,4,5}, Masayuki Kuraoka^{3*}, Aaron G. Schmidt^{1,6*}
6
7

8 ¹Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
9

10 ²Boston Children's Hospital, Boston, MA 02115, USA
11

12 ³Department of Immunology, Duke University, Durham, NC, 27710, USA
13

14 ⁴Department of Surgery, Duke University, Durham, NC 27710, USA
15

16 ⁵Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
17

18 ⁶Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
19
20
21

22 **Key words:** Protein engineering, immunogen design, epitope enrichment, immunofocusing,
23 influenza

24
25 **Correspondence:**

26 Masayuki Kuraoka
27

28 Tel: (919) 613-7807; E-mail: masayuki.kuraoka@duke.edu
29

30
31 Aaron G. Schmidt

32 Tel: 857-268-7118; E-mail: aschmidt@crystal.harvard.edu
33

34
35 Running title: Increased epitope targeting through enhanced avidity
36

37

38 **ABSTRACT**

39 Antibody immunodominance is the asymmetric elicitation of responses against protein antigens.
40 For influenza hemagglutinin (HA), antibody responses often target variable regions on HA and do
41 not provide lasting protection. Next-generation influenza vaccines should elicit antibodies
42 targeting conserved regions such as the receptor binding site (RBS). Understanding how presenting
43 an epitope on a rationally-designed immunogen influences immune responses could help achieve
44 this goal. Here, we compared an engineered RBS-enriched immunogen and its non-enriched
45 counterparts to characterize RBS-directed responses. We found that enriching the RBS-epitope on
46 a single immunogen preferentially expands RBS-directed responses relative to a cocktail of the
47 non-epitope-enriched immunogens. Single B cell analyses showed a genetically diverse RBS-
48 directed population that structural characterization showed engagement of the RBS with canonical
49 features shared with both its receptor and human broadly neutralizing antibodies. These data show
50 how epitope-enriched immunogens can expand responses to a conserved viral site, while
51 maintaining genetic and structural diversity.

52

53 **INTRODUCTION**

54 Immunodominance refers to the preferential elicitation of antibody responses against particular
55 epitopes. Epitopes that are more frequently targeted by antibodies are referred to as
56 immunodominant, while those that form minor portions of the overall repertoire are considered
57 subdominant. For influenza virus, this phenomenon is a contributing factor to the suboptimal
58 efficacy of current seasonal vaccines; elicited antibodies primarily target highly variable influenza
59 hemagglutinin (HA) epitopes, which can lead to viral escape (Angeletti et al., 2017; Koel et al.,
60 2013; Kuraoka et al., 2016; Wrammert et al., 2008). Conserved regions on HA, such as the receptor
61 binding site (RBS) and stem, play key roles in mediating viral entry. While antibodies targeting
62 these sites can be broadly protective, they often are a minority of the repertoire, particularly those
63 recognizing the stem region (Andrews et al., 2015; Corti et al., 2011; Kallewaard et al., 2016;
64 McCarthy et al., 2018; Schmidt et al., 2015b). A goal for next-generation influenza vaccines is to
65 design immunogens that alter patterns of immunodominance to favor antibody responses against
66 conserved epitopes.

67

68 Current immunogen design approaches include modifying HA to create minimal (e.g., stem- or
69 “head-only”), chimeric, or hyperglycosylated constructs that preclude the *de novo* elicitation or
70 memory recall of antibody responses to undesired, variable epitopes (Bajic et al., 2019; Corbett et
71 al., 2019; Hai et al., 2012; Yassine et al., 2015). These approaches block B cells targeting variable
72 epitopes from entering the germinal center (GC) that would otherwise outcompete B cells targeting
73 conserved, protective epitopes. Alternative strategies confer an advantage to desired B cells rather
74 than removing potential competitors; so called ‘germline-targeting’ immunogens for HIV Env, for
75 example, expand specific B cell populations, but this approach has not been demonstrated for
76 influenza HA (Corbett et al., 2019; Jardine et al., 2013; Jardine et al., 2016; Jardine et al., 2015).
77 However, while germline-encoded responses are elicited by immunization, these populations often
78 remain subdominant and their selective expansion can lead to a genetically restricted response
79 (Harshbarger et al., 2021; Sangesland et al., 2019; Sui et al., 2009).

80

81 Complementary design strategies to elicit cross-reactive B cells, used multimeric display of
82 antigenically distinct HA head- or stem-only constructs on a nanoparticle to produce a single
83 immunogen (Boyoglu-Barnum et al., 2021; Kanekiyo et al., 2019). For head-only HA constructs,

84 the predominant response targeted the ‘lateral patch’ epitope, a conserved region across the H1
85 subtype (Kanekiyo et al., 2019; Raymond et al., 2018). A possible interpretation of this observation
86 is that the antigenically distinct displayed HAs created a “gradient” of epitope conservation
87 ranging from unique to fully conserved. In other words, epitopes like the lateral patch are shared,
88 while other variable head epitopes are not: cross-reactive B cells recognizing the former were
89 therefore selectively enriched; despite the RBS being conserved, this approach failed to selectively
90 enrich responses to the conserved RBS.

91

92 We previously developed “resurfaced” HA (rsHA) immunogens where antigenically distinct, non-
93 circulating avian HAs served as scaffolds to present the conserved H1 RBS epitope (Bajic et al.,
94 2020). While immunization yielded increased breadth of RBS-directed antibodies, we observed
95 no increase in their overall frequency. We therefore expanded on this resurfacing approach with
96 the goal of increasing the overall frequency of RBS-directed responses. To that end, we designed
97 an “epitope-enriched” immunogen called a “rsHAtCh” or a resurfaced HA trimeric chimera; this
98 immunogen contains three antigenically distinct rsHAs each presenting the same H1 RBS epitope
99 (Caradonna et al., 2022). We hypothesized that enriching a single, conserved epitope on an
100 immunogen would preferentially expand B cells targeting this epitope. In a humanized IGHV1-2
101 HC2 knock-in mouse with pre-existing immunity to H1 influenza, boosting with rsHAtCh
102 expanded RBS-directed antibodies in both the H1-reactive serum and B cell compartments,
103 however, the elicited responses had limited breadth (Caradonna et al., 2022). As one immunogen
104 increased the breadth of RBS-directed responses, while the other increased the frequency, a more
105 complete understanding is necessary to identify how best to accomplish both.

106

107 Here, we immunized human J_H6 knock-in (KI) mice with rsHAtCh or a cocktail of its individual
108 components as homotrimers and then characterized GC responses to understand how antibody
109 repertoires changed. Analysis of primary GC responses show that the rsHAtCh expands RBS-
110 directed responses relative to the rsHA homotrimer cocktail. Furthermore, rsHAtCh-elicited
111 primary and secondary GC responses were genetically diverse and contained distinct clonally
112 related RBS-directed B cells with sequence features of human RBS-directed broadly neutralizing
113 antibodies (bnAbs) including engaging the RBS with receptor-like contacts. While RBS-directed
114 antibodies isolated from primary GCs had limited breadth, those from secondary GCs had high

115 affinity for historical H1s spanning twenty years. Selectively presenting multiple copies of a
116 conserved epitope on a single immunogen with heterologous scaffolds expand antibody responses
117 with enhanced breadth. These data suggest that epitope-enriched immunogens may be used to
118 influence immune responses that favor expansion of antibody responses to conserved viral regions.
119

120 RESULTS

121 **Cocktail and rsHAtCh immunizations**

122 To understand how an epitope-enriched immunogen may influence antibody responses within a
123 GC, we immunized three cohorts of huJ_H6 KI mice (**Figure 1A-B**). The huJ_H6 segment encodes a
124 string of tyrosines in the HCDR3 and is a signature of human RBS-directed human antibodies
125 (McCarthy et al., 2018; Schmidt et al., 2015b); we previously used these KI to characterize our
126 first-generation homotrimeric rsHAs (Bajic et al., 2020). The first cohort received an equimolar
127 cocktail of antigenically distinct H3, H4, and H14 HA heads “resurfaced” with the H1 RBS and
128 cystine-stapled into homotrimers. The second cohort received an equivalent amount of our epitope
129 enriched immunogen: rsHAtCh (Caradonna et al., 2022). Importantly, the individual components
130 of the heterotrimer are identical to the rsHAs used in the first cohort, therefore the same overall
131 epitopes are present in each immunization regimen. Thus, we reasoned that any observed
132 differences in immunogenicity and changes in elicited responses between these two cohorts would
133 be a consequence of how the components were arranged: the epitopes will either be presented
134 together simultaneously (rsHAtCh, “chimera”) or separately (rsHA “cocktail”) within a GC. The
135 third cohort received a homologous rsHAtCh prime-boost to test the effects of repeated exposure
136 to an epitope-enriched immunogen. GC B cells were isolated from draining lymph nodes and
137 single cell sorted into Nojima cultures at 8, 15, or 64 days after immunization to characterize the
138 primary and secondary GC B cell populations, respectively (**Figure 1C**). Cocktail and chimera
139 immunized mice had similar total GC B cells: $\sim 2.5 \times 10^5$ and 7.5×10^4 on day 8, 15, respectively.
140 Day 64 GCs, however, had $\sim 9 \times 10^3$ GC B cells, a statistically significant decrease relative to both
141 primary GC timepoints.
142

143 We determined the overall HA specificity of elicited B cells by screening culture supernatants in
144 a Luminex-based binding assay. The antigen panel included recombinant rsHAtCh, the three
145 rsHAs and their corresponding wild type HAs, as well as three historical H1 HAs. While rsHAtCh

146 recruited a significantly higher frequency of HA⁺ B cells to day 8 GCs than the homotrimer
147 cocktail, the overall frequency was similar between the cohorts by day 15 (**Figure S1A**).
148 Furthermore, the BCR reactivity distributions in day 8 and day 15 GCs were not statistically
149 different between cocktail and rsHAtCh-immunized cohorts. However, we did observe three
150 qualitative trends: 1) response to rsHAs were more prevalent than those to wild type scaffold or
151 H1 HAs, 2) responses to rsH4 and rsH14 components were greater than rsH3, and 3) responses to
152 H1 HA appear to be more prevalent in day 64 GCs than at days 8 or 15 (**Figure 1D-E**). Based on
153 these data, we focused our subsequent analyses on the rsHAtCh cohorts to understand the
154 properties of the elicited B cell repertoires, and specifically, the RBS-directed population.
155

156 **rsHAtCh elicits greater frequency of RBS-directed B cells**

157 We next characterized the RBS-directed populations between the cocktail and chimera cohorts to
158 compare binding specificity and potential immune-focusing. To isolate RBS-directed B cells, we
159 designed “ΔRBS” rsHAs with a glycan at Asn190 that abrogates binding to RBS-directed bnAbs
160 (**Figure S1B**) (Lingwood et al., 2012; Whittle et al., 2014). We defined RBS-directed antibodies
161 as those that bound a rsHA, but not the corresponding ΔRBS rsHA or the wild type scaffold HA.
162 While at day 8, there appears to be a relatively higher frequency of RBS-directed B cells in the
163 rsHAtCh cohorts relative to the cocktail, this trend was not statistically significant (**Figure 2A**).
164 However, by day 15, rsHAtCh elicited a significantly greater RBS-directed B cell population. We
165 further classified the RBS-directed responses in terms of “dependency” on the H3, H4, or H14
166 scaffold periphery surrounding the grafted RBS epitope: we defined “scaffold-dependent” if a B
167 cell bound one rsHA, and “scaffold-independent” if a B cell bound at least two rsHAs. (**Figure**
168 **2B**). Based on the H3, H4, and H14 sequence diversity, if a B cell made predominantly peripheral
169 contacts on the grafted RBS epitope, it is more likely to exhibit scaffold dependence. Using these
170 definitions, we find that rsHAtCh elicited a qualitatively higher frequency of RBS-directed B cells
171 that were scaffold independent in both day 8 and day 15 GCs (**Figure 2C-D**). Overall, scaffold
172 dependency in the rsHAtCh cohort shifted from ~30% scaffold independent at day 8 to ~60% at
173 day 15, at each point qualitatively outperforming the cocktail immunized cohort (**Figure 2E**). This
174 trend of increasing scaffold independence continued for the rsHAtCh-immunized B cells, reaching
175 ~70% scaffold independent at day 64. These data suggest that over the course of the GC reaction,

176 rsHAtCh recruits and retains B cells engaging the RBS epitope relative to the cocktail of non-
177 epitope enriched antigens.

178

179 **Genetic features of rsHAtCh-elicited B cells**

180 We then sequenced rsHAtCh-elicited GC B cells from days 8, 15, and 64 to analyze both the
181 genetic features. Overall, B cells isolated at each time point had a diverse V_H gene repertoire
182 (**Figure 3A**). While this diversity is maintained within the RBS-directed B cell population at days
183 8 and 15, at day 64, we observed an enrichment for B cells with V_H 1-39 or V_H 1-64 genes due to
184 an expansion of clonally related B cells. Notably, >50% of day 64 RBS-directed B cells were V_H 1-
185 39. Day 8 sequences of RBS-directed B cells had a roughly equal distribution of HCDR3 length
186 with an average of 14 amino acids, while days 15 and 64 B cells showed a relative skewing toward
187 17-18 and 15 amino acid HCDR3s respectively (**Figure 3B**). This observation is consistent with
188 features of canonical human RBS-directed antibodies that have longer HCDR3s necessary to
189 engage the RBS epitope (Ekert et al., 2012; Krause et al., 2011; Lee et al., 2014; Schmidt et al.,
190 2015b). Of the isolated RBS-directed B cells, the overall levels of V_H gene somatic hypermutation
191 (SHM) increased from day 8 to day 15, with a plurality of early and late primary GC B cells
192 containing <1% V_H gene mutational frequency; most B cells had <2% mutational frequency overall
193 (**Figure 3C**). In contrast, ~48% of day 64 GC B cells had >2% SHM, suggesting recall of
194 previously affinity-matured responses. However, 35% of day 64 GC B cells had a <1% mutation
195 frequency, suggesting the presence of *de novo* responses. These data indicate that both the total
196 and RBS-directed populations of rsHAtCh-elicited GC B cells were genetically diverse across day
197 8, 15, and 64 GCs.

198

199 **rsHAtCh elicits clonally related RBS-directed B cells**

200 To further characterize the RBS-directed repertoire, we selected 29 RBS-directed rsHAtCh-
201 elicited antibodies with high avidity in Luminex for one or more HAs in our screening panel for
202 subsequent analysis. 22 clustered into five clonally related populations (CRPs), characterized by
203 identical heavy and light chain gene usages, and similar CDR lengths and sequences (**Figure 4**).
204 We then analyzed heavy and light chain CDRs to identify potential dipeptides (e.g., Val-Asp) that
205 might engage the RBS with sialic acid-like contacts (Schmidt et al., 2015b). 12 RBS-directed B
206 cells from day 15 and 64 GCs had dipeptide motifs in their HCDR3 or LCDR1 loops like

207 dipeptides observed in human RBS-directed broadly neutralizing antibodies (**Figure 4**) (Lee et al.,
208 2014; Schmidt et al., 2015b; Whittle et al., 2011). From day 15 GCs, Ab3, 11, and 23 all contain
209 a Leu/Gly-Asp dipeptide motifs in the HCDR3, while those clonally related to Ab5 or 25, had a
210 reversed Asp-Gly motif. From day 64 GCs, we identified three antibodies with critical dipeptide
211 motifs: Ab42 and 47 have Asp-Gly sequences, while Ab46 has a Glu-Val, positioned in the middle
212 of their 17-19 amino acid HCDR3 loops. Notably, however, not all high affinity RBS-directed
213 antibodies contain sialic acid-like motifs. Antibodies clonally related to htcAb30 (containing V_H1-
214 39, D_H2-12, and V_K4-57 genes) or Ab41 (containing V_H1-39, D_H2-4, and V_K4-57 genes), have long
215 HCDR3 loops from 16 to 18 amino acids without any acidic residues capable of forming sialic
216 acid-like contacts. These data indicate that rsHAtCh immunization can elicit diverse antibodies
217 with similar sequences features of human RBS-directed broadly neutralizing antibodies, and that
218 the elicitation of such RBS-directed populations was observed across multiple mice.
219

220 **RBS-directed antibodies from secondary GCs bind historical H1s with high affinity**

221 From within the pool of 29 high-avidity RBS-directed antibodies, we subsequently selected the 10
222 from day 15 GCs, and 11 from day 64 GCs with highest affinity for at least one rsHA to
223 characterize biochemically. We cloned and expressed each as Fabs and tested their affinity against
224 a panel of HAs using biolayer interferometry (BLI). All antibodies were tested against the three
225 rsHA components of rsHAtCh, as well as a panel of historical H1s from 1977 to 2009. 7 of the 10
226 antibodies from day 15 GCs bound all three rsHAs with $<2\mu\text{M}$ affinity, while the remaining three
227 had detectable affinity for either one or two rsHAs (**Figure 5A**). None of the day 15 GC RBS-
228 directed antibodies had detectable affinity for any historical H1s. To determine if the critical
229 dipeptide motifs we identified by sequence analysis were important for HA binding, we mutated
230 the Asp to Ala in six different antibodies; five of the six dipeptides are in the HCDR3, while for
231 Ab14, the dipeptide is in the LCDR1. These “ Δ crit” mutants of Ab3, 11, 25, and 27 abrogated
232 binding to each rsHA (**Figure 5B**). However, Ab14 showed only a ~10-fold loss of affinity,
233 suggesting that the CDRL1 Asp is involved in antigen binding but not a critical contact. Similarly,
234 Ab23 had a ~2-fold decrease in affinity for the rsHAs, suggesting that its HCDR3 Asp is not critical
235 for RBS binding.
236

237 In contrast to RBS-directed antibodies from day 15 GCs, those from day 64 GCs were all scaffold
238 independent, engaging the individual rsHA components of rsHAtCh with high affinity (10-100nM)
239 (**Figure 5C**). Furthermore, 10 of the 11 day 64 GC antibodies had high affinity for at least H1 SI-
240 06 and NC-99 (**Figure 5D**). 9 of these antibodies were clonally related to Ab30 or Ab41 and bound
241 historical H1s from 1990 to 2006. Notably, no antibodies bound HA from strains USSR-77, KW-
242 86, BE-95, or pandemic CA-09. Kinetic analysis of day 15 and 64 antibodies showed that the
243 affinity improvement is a consequence of both an increase in the association rate and decrease in
244 the dissociation rate (**Figure 5E**). Thus, breadth against wild type historical H1s can develop after
245 boosting with the rsHAtCh immunogen; these data reflect the overall reactivity profiles observed
246 in the initial Luminex screening (**Figure 1D-E**, **Figure S1C**).

247

248 **Sialic acid-like contacts of rsHAtCh-elicited RBS-directed antibodies**

249 We next obtained high resolution structures of representative rsHAtCh-elicited antibodies that
250 contained putative critical dipeptide motifs or had significant breadth against historical H1s. We
251 determined a co-crystal structure to ~2.0Å of Ab27 Fab from day 15 GC in complex with the rsH4
252 head, and a cryoEM structure to ~3.6Å of Ab36 from day 64 GC in complex with H1 SI-06 (**Figure**
253 **6A, D; Figure S5, Table S1-S2**). Structural alignment of wild type H1 SI-06 and rsH4 shows
254 nearly identical secondary structure across the four segments of the grafted RBS epitope (RMSD
255 0.619Å) (**Figure S4A**). Both antibody footprints engage all four segments of the grafted RBS
256 epitope with predominantly heavy chain contacts and use their HCDR3 and HCDR2 loops to
257 engage the RBS with sialic acid like contacts (**Figure 6B, E**). Ab27 contains an Asp-Gly critical
258 dipeptide motif in the tip of its HCDR3 and makes sialic acid-like contacts with the backbone of
259 Ala137 and Val135 (**Figure 6C**). Ab36 engages the invariant Tyr95 in the RBS core, as well as
260 Gln226 in the 220-loop with its HCDR2 Asn-Tyr motif (**Figure 6F**). Both antibodies make
261 additional HCDR1 contacts with the 220-loop and 190-helix on HA. The HCDR3 loop is
262 positioned above Gly189 and likely explains the lack of binding of Ab31-like or Ab43-like
263 antibodies to H1 BE-95, which has an Arg at this position that would introduce significant steric
264 clash. Both antibodies make multiple germline-encoded contacts with the RBS, which is consistent
265 with the enrichment of V_H1-53- and V_H1-39-containing antibodies identified in day 15 and 64 GCs.
266 Notably, the V_H1-39-containing Ab23 contains the same HCDR2 Asn-Tyr-Gly triad and may make
267 similar RBS contacts, explaining the retained affinity with HCDR3 Δcrit mutations (**Figure S4B**).

268 All biochemically characterized V_H1-39 RBS-directed Abs contain this Asn-Tyr-Gly motif within
269 the HCDR2.

270

271 Comparison of the RBS-engaging CDRs of Ab27, Ab36, and the canonical sialic acid-mimicking
272 CH67 shows structural convergence despite unique antibody sequences; this is consistent with our
273 previous observations of diverse gene usage in human RBS-directed antibodies (**Figure 6G**)
274 (Schmidt et al., 2015b). Overlay of the HCDR2 from Ab36 with coordinated sialic acid shows
275 striking similarities: the Tyr55 side chain coordinates Tyr95 in HA and occupies roughly the same
276 space as the sialic acid triol moiety, while Ile57 makes van der Waals contacts analogous to the
277 sialic acid acetoamide group (**Figure 6H**). Additionally, Tyr55 π-stacks with the invariant HA
278 Trp153; this interaction has been previously described in a class of human H2-directed receptor-
279 mimicking antibodies containing an Ile-Phe HCDR2 motif or an HCDR3 tyrosine (**Figure 6I**) (Xu
280 et al., 2013). These representative rsHAtCh-elicited antibodies from day 15 and 64 GCs show that
281 enriched clonally related RBS-directed antibodies have similar structural features as human RBS-
282 directed bnAbs.

283

284 **DISCUSSION**

285 Here we show that increasing the frequency of the RBS epitope on a single immunogen led to
286 greater expansion of RBS-directed B cells in primary GCs, with RBS-directed subpopulations in
287 both primary and secondary GCs containing sialic acid-like CDR moieties. Indeed, structures of
288 representative RBS-directed antibodies showed two distinct mechanisms of receptor mimicry,
289 both of which have been previously characterized in human broadly neutralizing RBS-directed
290 antibodies. These data indicate that immunization with an RBS-enriched focuses to the RBS while
291 maintaining a high degree of genetic and structural diversity comparable to what has been seen in
292 human RBS-directed responses (Lee et al., 2014; Lee et al., 2012; Schmidt et al., 2015b; Xu et al.,
293 2013).

294

295 Recognition of a broadly conserved epitope by an antibody does not necessarily confer breadth
296 (Zost et al., 2019). Indeed, the breadth of RBS-directed antibody unmutated common ancestors
297 (UCAs) isolated from human donors is often quite limited; breadth is acquired through multiple
298 rounds of antigen exposure and subsequent affinity maturation (Schmidt et al., 2015a). Repeated

299 exposure to rsHAtCh led to increased RBS-directed antibody breadth, with over 40% of RBS-
300 directed Abs engaging H1s across an almost two-decade range. Lack of reactivity of Ab30- or
301 Ab41-like antibodies to H1 BE-95, is likely due to a steric clash with Arg189; the other historical
302 strains have a Gly at this position. Notably, rsHAtCh-elicited antibodies did not engage the
303 pandemic H1 CA-09; this is likely due to the significant sequence difference between the grafted
304 H1 RBS epitope based on the 2006 strain (Bajic et al., 2020). Sequential immunization with a
305 series of RBS-enriched immunogens presenting antigenically drifted RBS grafts might maintain
306 core RBS enrichment while allowing for the gradual broadening of antibody reactivities to develop
307 both retrospective and prospective breadth across distinct antigenic clusters.

308

309 How epitope enrichment may influence patterns of immunodominance is presumably
310 multifactorial, but is likely driven by the enhanced avidity between BCRs and the grafted H1 RBS
311 epitope on the rsHAtCh immunogen; avidity is critical during cell recruitment into GCs, antigen
312 acquisition in the GC light zone, and reactivation of B cells from memory (Finney et al., 2018;
313 Viant et al., 2020; Yeh et al., 2018). A computational model based on the data presented here,
314 including the qualitative observation that rsHACH more readily recruit B cells to GCs, provides a
315 potential mechanistic explanation for our observations: namely that the rsHAtch binds cross-
316 reactive BCRs multivalently and therefore can capture more antigen early in the GC and that when
317 T cell selection is a stringent constraint, it favors the evolution of broad reactivity (Yang et al.,
318 2022). This computational study shows how rational immunogen design can result in a synergistic
319 effect between antigen capture by B cells and the stringency of T cell selection in the GC for
320 developing cross-reactive B cells. The data reported here, and in the accompanying computational
321 study, further our understanding of fundamental immunological questions. The extent to which
322 secondary GCs are reseeded by memory B cells following identical antigen exposures is not
323 entirely clear (Pape and Jenkins, 2018; Shlomchik, 2018); this is relevant to our homologous
324 rsHAtCh immunization, here. While we observed accumulation of additional somatic mutations
325 in day 64 GC B cells, a plurality of B cells contained a V_H mutation frequency of <1%, suggesting
326 both the recruitment and maturation of antigen-experienced B cells as well as *de novo* recruitment
327 of naïve B cells. However, the development of H1 breadth among multiple clonally-related
328 populations from the rsHAtCh immunizations of RBS-directed antibodies supports a model in
329 which a subset of B cells are recalled and further affinity matured upon re-exposure.

330

331 These experiments are complementary to our rsHAtCh studies in IGHV1-2 HC2 KI mice
332 (Caradonna et al., 2022); where antibodies use the IGHV1-2 sequence but have human-like
333 diversity in the HCDR3 loop, which is the principal source of BCR diversity (Sangesland et al.,
334 2019; Sangesland et al., 2020). In that study, we analyzed the serum and class-switched B cell
335 compartments of heterologous-boosted mice primed with H1 SI-06 as a surrogate for immune
336 imprinting. While we observed a significant expansion of H1 RBS-directed B cells after rsHAtCh
337 immunization across both compartments, the repertoire was both limited in breadth and genetically
338 restricted. This contrasts with our observations here, where homologous-boosted J_H6 mice, in the
339 absence of immune imprinting to a specific HA, resulted in significant breadth to historical H1
340 HAs. Importantly, these two studies examined different immune compartments, primary and
341 secondary GCs versus serum and memory compartments, and thus the timing of analyses are
342 necessarily different. Understanding how immune imprinting influences subsequent recall of
343 responses in the GC and serum compartments, ultimately targeting conserved sites elicited by
344 rationally designed immunogens is necessary.

345

346 Current immunogen design strategies aim to focus antibody responses through removing or
347 occluding ‘off-target’ competing responses, such as stem-only nanoparticle or hyperglycosylated
348 HA immunogens (Bajic et al., 2019; Corbett et al., 2019; Yassine et al., 2015). The removal or
349 shielding of immunodominant HA head epitopes reduces the extent of inter-clonal competition but
350 does not confer any advantage to a specific subset of B cells. In contrast, heterologous antigen
351 display is thought to confer an avidity advantage to GC B cells recognizing cross-reactive epitopes
352 due to the asymmetric conservation of epitopes when distinct antigens are present (Boyoglu-
353 Barnum et al., 2021; Kanekiyo et al., 2019). However, not all mosaic nanoparticle designs are
354 superior to cocktail immunizations at eliciting broadly neutralizing antibodies, suggesting that
355 certain patterns of epitope enrichment may be more favorable than others, and that heterologous
356 display can be further optimized for specific epitopes (Cohen et al., 2021). Our engineered
357 rsHAtCh immunogen, enriched for the H1 RBS epitope, offers a putative competitive advantage
358 directed towards RBS-directed B cells. The trajectory of RBS-directed antibodies progressively
359 shifting towards scaffold independence across the GC reaction further supports this notion, as does
360 the expansion of RBS-directed B cells with affinity for historical H1s.

361 While prior immunogens in the field were designed to elicit immune responses through
362 heterologous HA display, this was in the context of validating potential vaccine candidates. As
363 such, cross-reactivity, neutralization, and protection, independent of epitope, were the primary
364 objectives. Here, our rsHAtCh immunogen explicitly tests the underlying principle suggested by
365 these preclinical validation studies; it analyzes the biology of heterologous display optimized for
366 a single subdominant epitope, and shows that epitope-enriched immunogens can enhance specific
367 responses against single epitopes. Thus, epitope enrichment can be used with other immunogen
368 design strategies, and more broadly adapted to other conserved and protective epitopes.

369

370 **LIMITATIONS OF THE STUDY**

371 A primary limitation of this study was sample size, given the significant stochasticity of the
372 germinal center our observations were more qualitative and we do not intend to overstate our
373 findings. Binding measurements with Luminex-based assays or BLI may not fully represent *in*
374 *vivo* avidities due monomeric versus multimeric display of BCRs on the cell surface. Conceptually,
375 the ways in which increased an epitope-enriched immunogen may impact the trajectory of the GC
376 reaction is highly complex, including among other components, B cell recruitment to germinal
377 centers, retention in germinal centers, antigen acquisition, stronger T cell help, and reactivation of
378 anamnestic responses. The deconvolution of these processes will require further fundamental
379 study.

380

381

382

383 **STAR METHODS**

384

385 **RESOURCE AVAILABILITY**

386

387 ***Lead Contact***

388 Further information and requests for resources and reagents should be directed to and will be
389 fulfilled by the lead contact, Aaron G. Schmidt (aschmidt@crystal.harvard.edu).

390

391 ***Materials Availability***

392 All unique/stable reagents generated in this study will be made available on request, but we may
393 require a payment and/or a completed materials transfer agreement if there is potential for
394 commercial application. For non-commercial use, all unique/stable reagents generated in this
395 study are available from the lead contact with a completed materials transfer agreement.

396

397 ***Data and Code Availability***

398 • CryoEM data are deposited in the Electron Microscopy Data Base and are available as of
399 the date of publication. X-ray crystallography are deposited in the Protein Data Bank
400 (7TRZ) and are available as of the date of publication. B cell receptor sequences are
401 deposited in Genbank: accession numbers are listed in the key resources table.

402 • This paper does not report original code.

403 • Any additional information required to reanalyze the data reported in this paper is
404 available from the lead contact upon request.

405

406 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

407 ***Cell Lines***

408 FreeStyle 293F cells (Thermo Fisher Cat#R79007; RRID: CVCL_D603, female) and Expi293F
409 cells (Thermo Fisher Cat#A14527; RRID: CVCL_D615, female) were cultured following
410 manufacturer's instructions. High Five cells (BTI-TN-5B1-4, female) (*Trichoplusia ni*) and Sf9
411 cells (*Spodoptera frugiperda*, female) were cultured in EX-CELL 405 SFM (Sigma, Cat# 14405C)
412 and Sf-900 II SFM (Gibco, Cat# 10902096) respectively in accordance with the manufacturer's
413 instructions.

414

415 ***Mouse Model***

416 The huJ_H6 KI mice (Bajic et al., 2020) were bred and maintained under specific pathogen-free
417 conditions at the Duke University Animal Care Facility. Eight to 12-week-old mice were used for
418 immunizations. Mouse immunization experiments were approved by the Duke University
419 Institutional Animal Care and Use Committee.

420

421 **METHOD DETAILS**

422 **Immunogen and Luminex Protein Expression and Purification**

423 rsH3, rsH4, and rsH14 HA head constructs were derived from A/long-tailed duck/Wisconsin/
424 10OS3918/2010 (H14 WI-10), A/American black duck/New Brunswick/00464/2010(H4 NB-10),
425 and A/HongKong/4801/2014 (H3 HK14) scaffolds resurfaced with the H1 SI-06 RBS described
426 previously (Bajic et al., 2020). All constructs were codon optimized by Integrated DNA
427 Technologies and purchased as gblocks that were then cloned into pVRC and sequence confirmed
428 via Genewiz. To generate the rsHAtCh construct, each rsHA was subcloned into a pVRC protein
429 expression vector containing individual components of the non-collagenous domain 2 (NC2)-
430 derived hetero-trimerization motif. Each component containing a rsHA, hetero-trimerization tag,
431 and either 8xHis, FLAG, or streptavidin binding protein (SBP) tag, was amplified via PCR to
432 introduce overlapping P2A sequence regions, and all three fragments were combined with
433 linearized pVRC vector via Gibson assembly into the final expression construct. Trimeric
434 constructs for Luminex screening contained C-terminal HRV 3C-cleavable 8xHis and SBP tags.

435

436 Expi 293F cells (ThermoFisher) or HEK293F cells (ThermoFisher) were used to express proteins.
437 Transfections were performed with Expifectamine or PEI reagents per the manufacturer's
438 protocol. For homotrimeric HA and Luminex antigens, transfactions were harvested and
439 centrifuged for clarification after 5-7 days. Cobalt-TALON resin (Takara) was used to perform
440 immobilized metal affinity chromatography via the 8xHis tag. Proteins were eluted using
441 imidazole, concentrated, and passed over a Superdex 200 Increase 10/300 GL (GE Healthcare)
442 size exclusion column. Size exclusion chromatography was performed in 10mM Tris pH 7.5,
443 150mM NaCl. For immunogens, HRV 3C protease (ThermoScientific) cleavage of affinity tags

444 was performed prior to immunization. Cobalt-TALON resin was used for a repurification to
445 remove the His-tagged HRV 3C protease, cleaved tag, and remaining uncleaved protein.

446

447 rsHAtCh protein was expressed via transient transfection in HEK293F cells for 5 days, and all
448 subsequent purification steps were carried out at 4°C. Clarified culture supernatants were purified
449 over Cobalt-TALON affinity resin (Takara), with subsequent purification via size exclusion
450 chromatography (SEC) over a Superdex 200 Increase (Cytiva) column equilibrated in 10mM Tris,
451 150mM NaCl, pH 7.5 running buffer. Fractions containing only trimeric rsHAtCh were then
452 passed over G1 anti-FLAG-agarose resin (Genscript) equilibrated in 10mM Tris, 150mM NaCl,
453 pH 7.5, incubated for 1 hour rotating, and eluted with 50mM Tris, 150mM NaCl, containing
454 160µg/mL 1xFLAG peptide (ApexBio) pH 7.5 following a 1-hour incubation with mild agitation.
455 The sample was then purified a third time over Streptavidin-agarose resin (Pierce) preequilibrated
456 in 10mM Tris, 150mM NaCl, pH 7.5, incubated for 1 hour rotating, washed with 20mM HEPES,
457 150mM NaCl, 5% glycerol, pH 7.0, and eluted with 20mM HEPES, 150mM NaCl, 4mM biotin,
458 5% glycerol pH 7.0 after a 1-hour incubation. All affinity and heterotrimerization tags were
459 removed using HRV 3C protease (Thermo), and the sample was purified a final time via SEC
460 equilibrated in PBS, and the trimeric peak was harvested and concentrated to 2.0mg/mL for
461 immunizations.

462

463 Fab and IgG Expression and Purification

464 The variable heavy and light chain genes for each antibody were purchased as codon optimized
465 gBlocks by Integrated DNA Technologies, and subsequently cloned into pVRC constructs
466 containing the appropriate constant domains as previously reported (Schmidt et al., 2015a;
467 Schmidt et al., 2015b). The Fab heavy chain vector contained a HRV 3C-cleavable 8xHis tag, and
468 the IgG heavy chain vector contained HRV 3C-cleavable 8xHis and SBP tags. The same
469 transfection and purification protocol as used for the immunogens and coating proteins was used
470 for the Fabs and IgGs.

471

472 Biolayer Interferometry

473 Biolayer interferometry (BLI) experiments were performed using a BLItz instrument (ForteBio)
474 with Ni-NTA biosensors (ForteBio). All proteins were diluted in 10mM Tris, 150mM NaCl, pH

475 7.5. HA proteins were immobilized to the biosensors, and Fabs were used as the analytes. To
476 determine binding affinities, single-hit measurements were performed starting at 10 μ M to
477 calculate an approximate K_D in order to evaluate which concentrations should be used for
478 subsequent titrations. Measurements at a minimum of four additional concentrations were
479 performed. Vendor-supplied software was used to generate a final K_D estimate via a global fit
480 model with a 1:1 binding isotherm. All binding studies were carried out in 10mM Tris, 150mM
481 NaCl, pH 7.5 at room temperature.

482

483 Mouse Strains and Murine Immunizations

484 The huJ_H6 KI mice (Bajic et al., 2020) were bred and maintained under specific pathogen-free
485 conditions at the Duke University Animal Care Facility. Eight to 12-week-old mice were
486 immunized with 20 μ g of rsHAtCh antigens or an equimolar amount of an rsHA cocktail (rsH3,
487 rsH4, and rsH14) in the footpad of the right hind leg. Eight weeks later, cohort of mice were
488 boosted with 20 μ g rsHAtCh in the hock ipsilaterally. All antigens were mixed with Alhydrogel®
489 before immunizations. Mouse immunization experiments were approved by the Duke University
490 Institutional Animal Care and Use Committee.

491

492 Flow Cytometry

493 Single cell suspensions were obtained from LN cells and labeled with mAbs to identify GC B cells
494 (GL-7+/B220^{hi}/CD38^{lo}/IgD-/CD138-) as described (Kuraoka et al., 2016). Labeled cells were
495 analyzed/sorted in a FACS Vantage with DIVA option (BD Bioscience). Flow cytometric data
496 were analyzed with FlowJo software (Treestar Inc.). Doublets were excluded by FSC-A/FSC-H
497 gating strategy. Cells that take up propidium iodide were excluded from our analyses.

498

499 Nojima Culture

500 Single B cells were cultured in the presence of NB-21.2D9 feeder cells (Kuraoka et al., 2016). One
501 day before B-cell sorting, NB-21.2D9 cells were seeded into each well of 96-well plates (2,000
502 cells/well) in B cell media (BCM); RPMI-1640 (Invitrogen) supplemented with 10% HyClone
503 FBS (Thermo scientific), 5.5×10^{-5} M 2-mercaptoethanol, 10 mM HEPES, 1 mM sodium pyruvate,
504 100 units/ml penicillin, 100 μ g/ml streptomycin, and MEM nonessential amino acid (all
505 Invitrogen). Next day (Day 0), recombinant mouse IL-4 (Peprotech; 2 ng/ml) was added to the

506 cultures, and then single B cells were directly sorted into each well using a FACS Vantage. On
507 day 2, 50% (vol.) of culture media were removed from cultures and 100% (vol.) of fresh BCM
508 were added to the cultures. On days 3 to 8, two-thirds of the culture media were replaced with
509 fresh BCM every day. On day 10, culture supernatants were harvested for ELISA determinations
510 and culture plates that contain cell pellets of expanded, clonal B cells were stored at -80°C for
511 V(D)J amplifications.

512

513 ELISA and Luminex Multiplex Assay

514 IgG⁺ culture supernatants determined by standard ELISA were screened for the reactivity to rHAs
515 by Luminex multiplex assay (Kuraoka et al., 2016; Watanabe et al., 2019). Briefly, Culture
516 supernatants were diluted (1: 10) in 1×PBS containing 1% BSA, 0.05% NaN₃ and 0.05% Tween20
517 (assay buffer) with 1% milk and incubated for 2 hours with the mixture of antigen-coupled
518 microsphere beads in 96-well filter bottom plates (Millipore). After washing with assay buffer,
519 beads were incubated for 1 hour with PE-conjugated goat anti-mouse IgG Abs (Southern Biotech).
520 After three washes, the beads were re-suspended in assay buffer and the plates were read on a Bio-
521 Plex 3D Suspension Array System (Bio-Rad). The following antigens were coupled with
522 carboxylated beads (Luminex Corp): BSA (Affymetrix), goat anti-mouse Igκ, goat anti-mouse
523 Igλ, goat anti-mouse IgG (all Southern Biotech), and a panel of rHAs as listed in the rHA
524 expression methods subsection.

525

526 BCR Sequencing

527 Rearranged V(D)J gene sequences were obtained from single-cell cultured GC B cells by a nested
528 PCR as described (Kuraoka et al., 2016; Rohatgi et al., 2008; Tiller et al., 2009) with modifications.
529 Total RNA was extracted from selected samples using Quick-RNA 96 kit (Zymo Research). cDNA
530 was synthesized using Superscript III with 0.2 μM each of gene-specific reverse primers
531 (mIgGHGC-RT, mIgKC-RT, mIgLC23-RT, mIgLC1-RT, and mIgLC4-RT) at 50°C for 50 min
532 followed by 85°C for 5 min. cDNA samples were then subjected to two rounds of PCR using
533 Herculase II fusion DNA polymerase (Agilent Technologies).

534

535 In some experiments, cDNA was synthesized from DNase I-treated RNA using SMARTScribeTM
536 Reverse Transcriptase (Clontech) with 0.2 μ M each of gene-specific reverse primers (same as
537 above) and 1 μ M of 5' SMART template-switching oligo (TSO-bioG). cDNA was then subjected
538 to two rounds of SMART PCR using Herculase II fusion DNA polymerase with a common forward
539 primer (5Anchor1-FW1) for both the 1st and the 2nd PCR, and reverse primers.

540

541 V(D)J amplicands were submitted to Duke DNA sequencing facility to obtain DNA sequences.
542 The rearranged V, D, and J gene segments were first identified using IMGT/V-QUEST
543 (<http://www.imgt.org/>) or Cloanalyst (Kepler, 2013), and then numbers and kinds of point
544 mutations were determined.

545

546 IMGT High V-Quest was used to analyze variable heavy and light chain sequences.

547

548 CryoEM Grid Preparation and Image Recording.

549 Complexes of H1N1 A/Solomon Island/3/2006 Q226 hemagglutinin (HA) with ab36 were formed
550 by combining at a final concentration 2.5 mg/mL HA with 1.8 mg/mL Fab (2-fold excess of
551 binding sites) in a buffer composed of 10 mM Tris pH 7.5 with 150 mM NaCl. Octyl β -D-glucoside
552 (OG) was added at a final concentration of 0.08% (w/v) to correct the HA orientation bias. HA·Fab
553 complexes were incubated for 30 minutes on ice before application to C-flat 1.2-1.3 400 Cu mesh
554 grids (Protochips). Grids were glow discharged (PELCO easiGlow) for 30 seconds at 15 mA and
555 prepared with a Gatan Cryoplunge 3 by applying 3.5 μ L of sample and blotting for 4.0 seconds in
556 the chamber maintained at a humidity between 86% and 90%.

557

558 CryoEM Image Analysis and 3D Reconstruction and Model Fitting

559 Images for HA and Ab36 Fab complexes were recorded on a Titan Krios microscope operated at
560 300 keV with a Gatan BioQuantum GIF/K3 direct electron detector. Automated image acquisition
561 was performed with Serial EM. Specifications and statistics for images are reported in **Table S2**.

562

563 Image analysis was carried out in RELION. Beam-induced motion correction of micrograph
564 movies was performed with UCSF MotionCor2 followed by contrast transfer function estimation
565 with CTFFIND-4.1, both as implemented in RELION. Particles were picked from motion

566 corrected micrographs by a general model using crYOLO. Extracted particles were down sampled
567 by a factor of 3 and subjected to 2D classification. Views were primarily down and near the 3-fold
568 axis. An initial C3-symetric 3D model was prepared from small subset of particle that suffered
569 from a preferred orientation. A subset of 2D classes exhibited side views, however, they consisted
570 of a dimer of HA and Fab complexes. These particles were separated from the rest and re-extracted
571 with symmetric offsets to create two HA-centered particle stacks. These side views were combined
572 with the top views and subjected to 3D classification and refinement yielding a Nyquist-limited
573 reconstruction. Re-extraction of particles at the full pixel size and subsequent 3D classification
574 and refinement were performed with a mask that omitted the stem of HA and the Fc of the Fab to
575 yield a 4.2 Å map. CTF refinement was performed to correct beam tilt, trefoil, anisotropic
576 magnification, and per particle defocus in RELION. Bayesian polishing was also performed in
577 RELION leading to a 3.7 Å reconstruction following 3D refinement. The final map was improved
578 to 3.6 Å resolution with B-factor sharpening (**Figure S2**).

579

580 Heavy and light chains of PDB entries 4KUZ and 1FIG were aligned and extracted to make an
581 initial model for the Fab. A protomer of H1 Solomon Islands was extracted from PBD entry 5UGY.
582 These initial models were ridged body fit into the Ab36 cryoEM density map using Chimera. The
583 gross positions of the initial models were further refined by ridged body real-space refinement
584 with Phenix. The sequences of the initial antibody Fv domains were corrected to match the actual
585 sequence in COOT. The coordinates were further real space refined with Phenix. Iterative cycles
586 of model adjustment and refinement were performed to eliminate Ramachandran outliers and non-
587 covalent interatomic distances of less than 2.2A. Map-to-model statistics and FSC curves were
588 prepared with Phenix (**Table S2** and **Figure S2**).

589

590 Crystallization

591 rsH4 (H4 A/American black duck/New Brunswick/00464/2010 with H1 A/Solomon Islands/03/
592 2006 grafted RBS) HA1 head domain and htcAb27 Fab were incubated at a 1:1.3 molar ratio and
593 complexes were purified using a Superdex 200 gel filtration column equilibrated in 10 mM Tris-
594 HCl, 150 mM NaCl, pH 7.5. Complexes were concentrated to 16 mg/mL and crystals were grown
595 at 18° via hanging drop vapor diffusion. htcAb27 and rsH4 head complex crystals were grown in
596 12% PEG 20,000, 100 mM PIPES, 100 mM NaCl, pH 6.0. Crystals were cryoprotected in mother

597 liquor supplemented with 10% 2-methyl-2,4-pentanediol (MPD) and flash frozen in liquid
598 nitrogen.

599

600 **Structure Determination and Refinement**

601 Diffraction data were recorded at 0.999 Å with a rotation of 1° per image on the 24-ID-C beamline
602 at the Advanced Photon Source, Argonne National Laboratory. Data was indexed and reduced by
603 the RAPD data-processing pipeline (<https://github.com/RAPD/RAPD>), using XDS (Kabsch,
604 2010) for indexing and integration and the CCP4 programs AIMLESS and TRUNCATE (Winn et
605 al., 2011) for scaling and structure-factor calculation. The data were scaled in the P₂12₁2₁ space
606 group, and an initial structure was determined using molecular replacement (MR) in PHASER
607 using the first generation rsH4 NB-10 HA head (PDB 6UR5) for the HA head search model, and
608 separate models for the V_HV_L (PDB 1A6U, 5I66 respectively) and C_HC_L (PDB 1FIG). The
609 additional mutations in the grafted epitope of the rsH4 NB-10 v2 HA head were rebuilt from the
610 starting model. The structure was then refined with phenix.refine using reciprocal-space, real-
611 space, grouped B factor, and Translation Libration Screw-rotation (TLS) refinement (McCoy et
612 al., 2007). There was limited density for several residues on the N and C termini of the HA
613 construct, which did not improve during refinement and were removed from the final model. All
614 model building was performed in Coot (Emsley and Cowtan, 2004), and model quality was
615 assessed using the MolProbity server (Chen et al., 2010). Figures were created using PyMOL
616 Molecular Graphics System (v2.4.1, Schrödinger LLC). Refinement statistics are shown in Table
617 S1. X-ray crystallography data were deposited in the Protein Data Bank (7TRZ)

618

619 **QUANTIFICATION AND STATISTICAL ANALYSIS**

620 Curve fitting and statistical analyses were performed with GraphPad Prism (version 9). Non-
621 parametric statistics were used throughout where feasible. Tests, numbers of animals, and
622 statistical comparison groups are indicated in each of the Figure Legends. The Mann-Whitney U
623 test was used to compare two populations without consideration for paired samples. A p value <
624 0.05 was considered significant.

625

626

627 **ACKNOWLEDGMENTS**

628 We thank Stephen Harrison, Jared Feldman, Kevin R. McCarthy, and Goran Bajic for helpful
629 discussion. We thank Xiaoe Liang at Duke University for assistance and mouse colony
630 maintenance. This work is based upon research conducted at the Northeastern Collaborative
631 Access Team beamlines, which are funded by the National Institute of General Medical Sciences
632 from the National Institutes of Health (P30 GM124165). This research used resources of the
633 Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility
634 operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-
635 AC02-06CH11357. We thank the beamline staff at NE-CAT for help. We acknowledge support
636 from the NIH for R01AI146779 (A.G.S.), P01AI89618-A1 (A.G.S, M.K.) and T32 GM007753
637 (T.M.C.). This research has been funded in whole or part with federal funds under a contract from the
638 National Institute of Allergy and Infectious Diseases, NIH contract 75N93019C00050.

639

640 AUTHOR INFORMATION

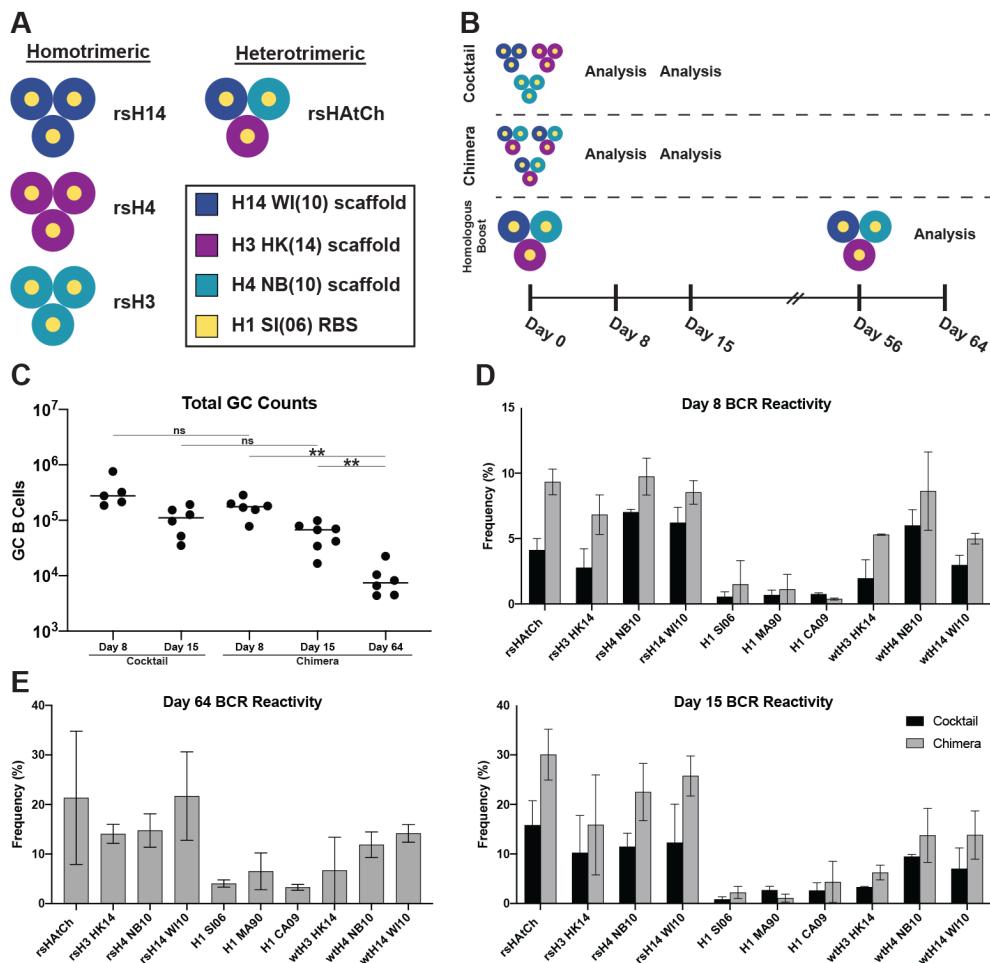
641

642 Author Contributions

643 T.M.C., A.W., G.K., M.K., A.G.S designed research; T.M.C., I.W.W., A.A.R., S.S., A.W., M.K.,
644 A.G.S., performed research; T.M.C., I.W.W., A.A.R., S.S., A.W., G.K., M.K., A.G.S. analyzed
645 data; T.M.C and A.G.S wrote the paper; T.M.C., I.W.W., A.A.R., S.S., A.W., G.K., M.K., A.G.S.
646 edited and commented on the paper.

647

648 **Correspondence and requests for materials should be addressed to:** Aaron G. Schmidt
649 (aschmidt@crystal.harvard.edu) or Masayuki Kuraoka (masayuki.kuraoka@duke.edu)


650

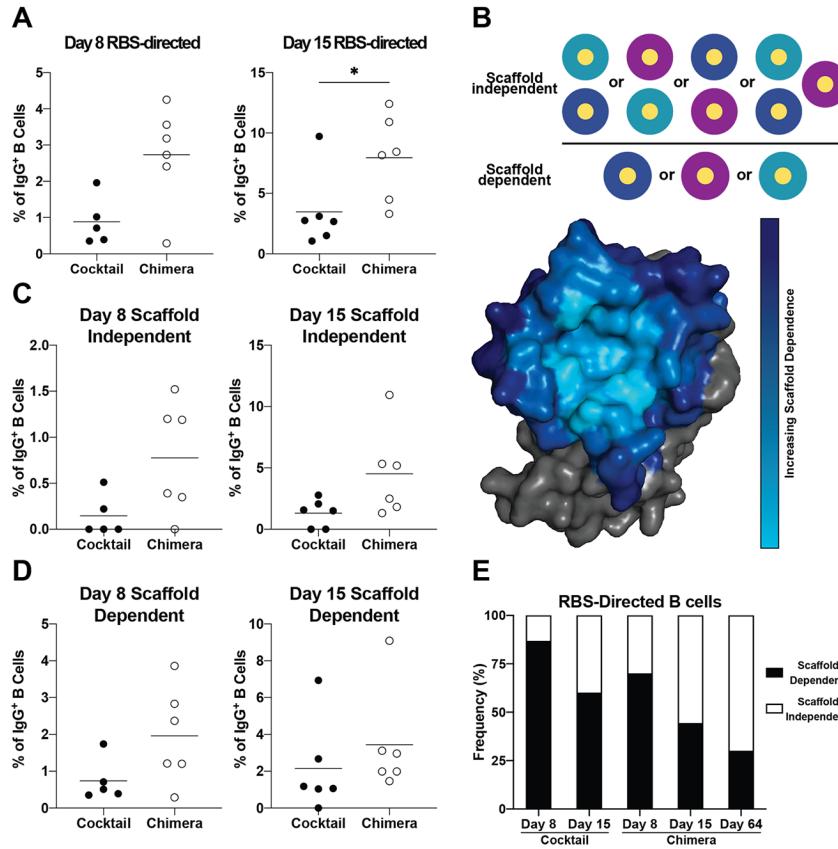
651

652 **Competing financial interest:** T.M.C. and A.G.S. have filed a provisional patent application for
653 the design of the HAtCh immunogen.

654 **FIGURES**

655

656

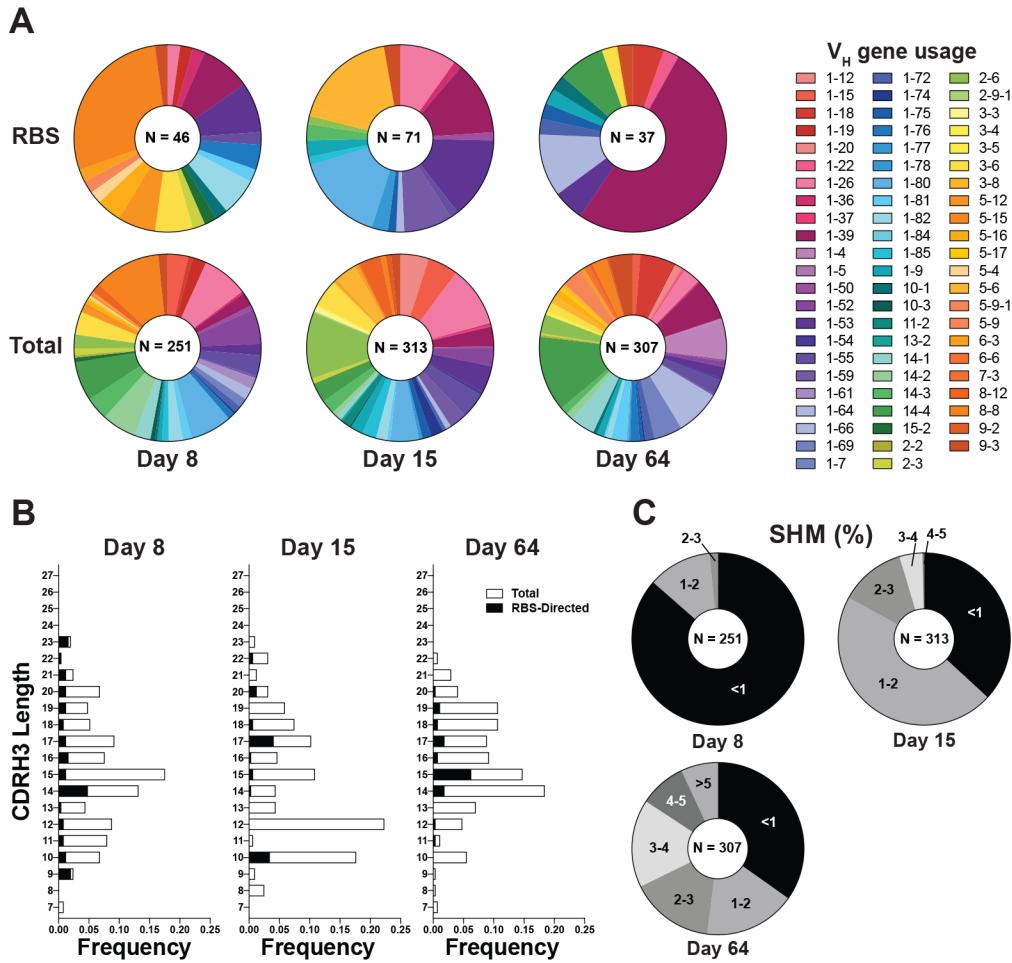

657

658

659 **Figure 1: Germinal center analysis of cocktail and chimeric rsHA immunization. (A)** Cartoon
660 diagrams of homotrimeric rsH14 (blue), rsH4 (purple), and rsH3 (teal), and heterotrimeric
661 rsHAtCh. **(B)** Immunization cohorts and regimens for rsHA homotrimer cocktail, rsHAtCh
662 primary immunization, and rsHAtCh homologous prime-boost immunization. **(C)** Total germinal
663 center B cell populations from each mouse isolated by flow cytometry. **(D)** Combined results of
664 GC analysis for cocktail and rsHAtCh-immunized cohorts at days 8 (top) and 15 (bottom). **(E)**
665 Day 64 GC analysis of rsHAtCh homologous prime-boost immunization cohort.

666

667



668
669
670

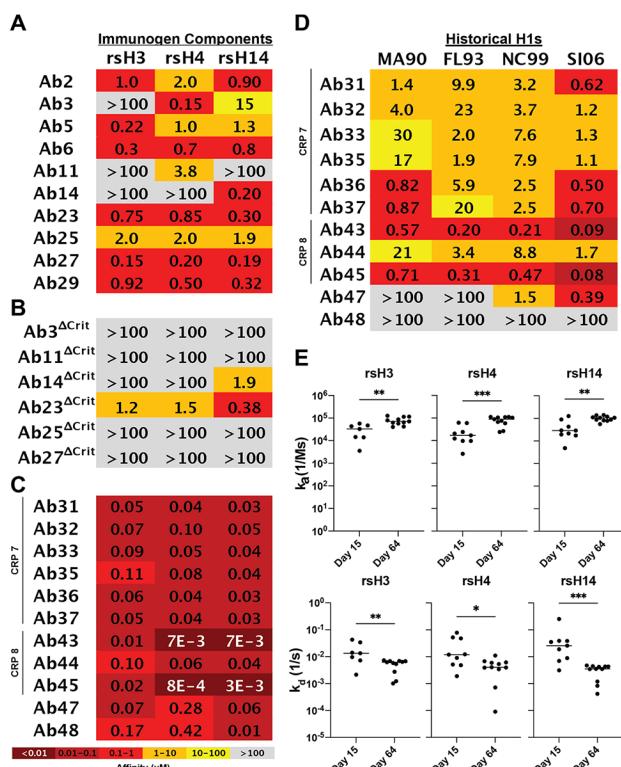
671 **Figure 2: Chimera immunization elicits greater frequency of RBS-directed B cells. (A)**
672 Frequency of RBS-directed B cells in IgG⁺ Nojima cultures for day 8 (top) and day 15 (bottom)
673 samples. **(B)** Cartoon representation scaffold independent (top) and scaffold dependent (bottom)
674 definitions. Surface representation of the RBS epitope showing increasing likelihood of scaffold
675 dependence with contacts extending away from conserved core residues **(C-D)** Frequency of
676 scaffold independent (top) and scaffold dependent (bottom) antibodies in day 8 and day 15 GCs.
677 **(E)** Balance of scaffold dependent and scaffold independent of RBS-directed B cells pooled across
678 all cohorts. Statistical significance for all comparisons determined using the Mann-Whitney U-test
679 (* denotes p < 0.05).

680

681
682

683
684
685
686
687
688
689
690
691

Figure 3: rsHAtCh-elicited germinal centers are diverse. (A) V_H gene usage of HA⁺ and RBS-directed B cells at day 8 and day 15 timepoints. **(B)** HCDR3 length distributions at day 8, 15, and 64 timepoints for all HA⁺ B cells (white) and RBS-directed B cells (black). **(C)** Somatic hypermutation (SHM) levels in primary (day 8, 15) and secondary (day 64) GCs.

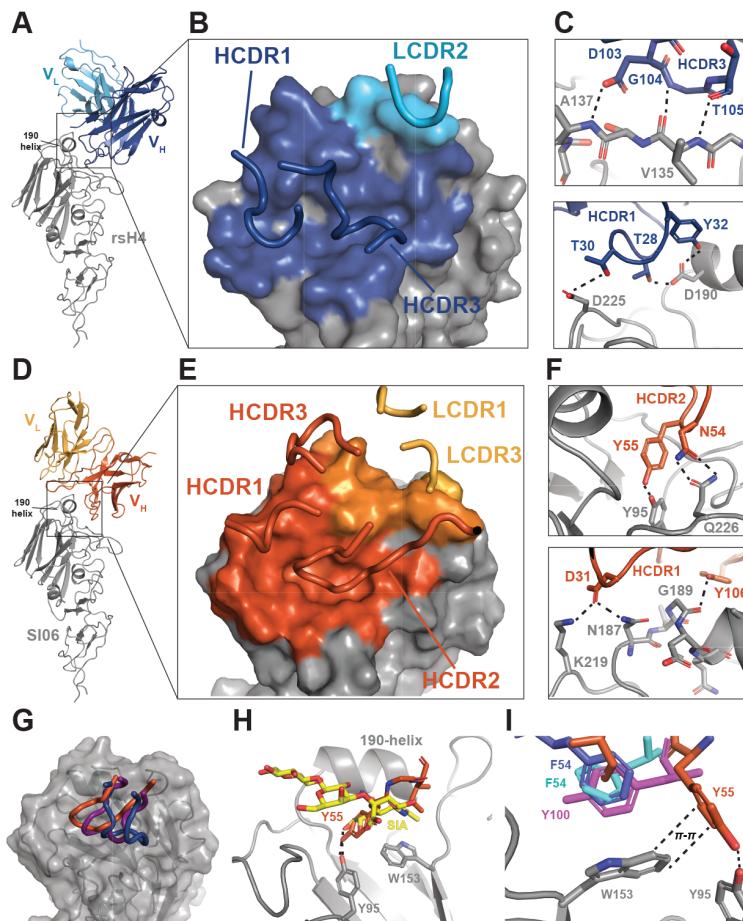

	HCDR3 Sequence	LCDR1 Sequence	V _H gene usage	V _{K/L} gene usage	
Ab2	CARWGA-QATNHYYYYYMDVW	CRASSSV---SSNYLHW	msIGHV1-39	msIGKV4-57	CRP 1
Ab3	CARGGAWD- SISLD YFYMDVW	CRSSTGAVT-TSNYANW	msIGHV1-26	msIGLV1-1	CRP 2
Ab11	CARGGAWD-FDSL D YYYYMDVW	CRSNTGAVT-ASNYANW	msIGHV1-26	msIGLV1-1	
Ab5	CARHD-Y DRP -LYYYYMDVW	CRASQDI----GSSLNW	msIGHV5-6	msIGKV9-120	CRP 3
Ab6	CVRHD-Y DRP -LYYYFMDVW	CRASQDI----GSSLNW	msIGHV5-6	msIGKV9-120	
Ab14	CARKDITT-----VDVW	CRASET V DSYGNSFMHW	msIGHV1-75	msIGKV3-10	CRP 4
Ab23	CARWGS-DYE GD YYYYYMDVW	CRASSSV---SSSYLHW	msIGHV1-39	msIGKV4-57	CRP 5
Ab25	CAREPIY DGTP YYSSYFMNVW	CKASQDV----STAVAW	msIGHV1-53	msIGKV6-17	
Ab27	CAREPIY DGTP YYYYYFMNVW	CKASQDV----STAVAW	msIGHV1-53	msIGKV6-17	CRP 6
Ab29	CAREPIY DGTP YYYYYYMNVW	CKASQDV----TTAIAW	msIGHV1-53	msIGKV6-17	
Ab30	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab31	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab32	CTRWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab33	CARWG--NSP--YFYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab34	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab35	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	CRP 7
Ab36	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab37	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab38	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab39	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab40	CARWG--NSP--YYYYYMDVW	CRATSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab41	CARWGSNYAV--YYYYYMDVW	CRANSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab43	CARWGSNYAV--YYYYYMDVW	CRANSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab44	CARWGSNYAV--Y S YYYMDVW	CRANSTV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	CRP 8
Ab45	CARWGSNYAV--YYYYYMDVW	CRANSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	
Ab42	CVRHF D Y DRP -LSYYYMDVW	CRASENI----YNSLAW	msIGHV10-1	msIGK12-46	CRP 9
Ab46	CARWGS SDY E V--YYYYYMDVW	CRASSSV---SSSYLHW	msIGHV1-39	msIGKV4-57-1	CRP 10
Ab47	CVGTM T DRPLS YHNYYMDVW	CKASQDV----GTAVAW	msIGHV1-72	msIGKV6-23	CRP 11
Ab48	CARREGL-----YYNYMDVW	CTASQDI----NKYIAW	msIGHV1-64	msIGKV19-93	CRP 12
CH67	CARAGLEPRSV D YYFYGLDW	CGGNNIG----RKRVDW	huIGHV1-2	huIGKV3-21	
641 I-9	CARRRSDFET V DFIYHYMDVW	CRASQSI----SSYLNW	huIGHV4-59	huIGKV1-39	

692
693
694

695 **Figure 4: GCs contain clonally-related RBS-directed B cells with critical dipeptide motif.**

696 HCDR3 and LCDR1 sequences, and V_H/V_{K/L} gene usages for high affinity day 15 and day 64 RBS-
697 directed antibodies. Clonally related populations (CRP) from a single mouse are labeled
698 numerically. Critical dipeptide motif for potential sialic acid mimicry shown in red. Dashes denote
699 gaps in the sequence alignment.

700



701
702

Figure 5: RBS-directed B cells from secondary GCs show increased breadth and affinity.

Affinity measurements made using biolayer interferometry (BLI) for (A) RBS-directed B cells from day 15 GCs, (B) RBS-directed B cells containing Asp→Ala mutations in their critical dipeptide motif, and (C) RBS-directed B cells from day 64 GCs against the rsHA components of rsHAtCh. (D) Affinity measurements against a panel of historical H1s. (E) Association (top) and dissociation (bottom) rates between day 15 and day 64 RBS-directed B cells with highest affinities. Statistical significance was determined using the Mann-Whitney U-test.

710

714 **Figure 6: Elicited RBS-directed antibodies exhibit multiple types of receptor mimicry.** (A)
715 Crystal structure of htcAb27 Fab (top) in complex with rsH4 NB-10 head domain, C_H and C_L
716 removed for clarity. V_H shown in dark blue, V_L shown in light blue, and HA shown in grey. (B)
717 htcAb27 binding footprint, with contacting CDR loops shown. (C) sialic acid-like HCDR3 (top)
718 and HCDR1 (bottom) contacts shown. (D) cryoEM structure of htcAb36 in complex with H1 SI06.
719 V_H shown in orange, V_L shown in yellow, and HA shown in grey. (E) htcAb36 binding footprint,
720 with contacting CDR loops shown. (F) sialic acid-mimicking HCDR2 (top) and HCDR1 (bottom)
721 contacts with HA. Salt bridges, hydrogen bonding, and pi-stacking interactions shown as dotted
722 lines. (G) Overlay of htcAb27 (blue), htcAb36 (orange), and CH67 (purple) CDRs forming sialic
723 acid-like contacts with HA. (I) htcAb36 (orange) and sialic acid (yellow, PDB code 1HGG)
724 contacts with HA. (J) π-stacking interaction between HA Trp153 and aromatic residues in
725 htcAb36 (orange), 8M2 (marine blue, PDB code 4HFU), 2G1 (cyan, PDB code 4HG4), and 8F8
726 (violet, PDB code 4HF5).

727 REFERENCES

728 Andrews, S.F., Huang, Y., Kaur, K., Popova, L.I., Ho, I.Y., Pauli, N.T., Dunand, C.J.H., Taylor, W.M.,
729 Lim, S., Huang, M., *et al.* (2015). Immune history profoundly affects broadly protective B cell responses
730 to influenza. *Science Translational Medicine* 7, 316ra192-316ra192.

731 Angeletti, D., Gibbs, J.S., Angel, M., Kosik, I., Hickman, H.D., Frank, G.M., Das, S.R., Wheatley, A.K.,
732 Prabhakaran, M., Leggat, D.J., *et al.* (2017). Defining B cell immunodominance to viruses. *Nature*
733 immunology 18, 456-463.

734 Bajic, G., Maron, M.J., Adachi, Y., Onodera, T., McCarthy, K.R., McGee, C.E., Sempowski, G.D.,
735 Takahashi, Y., Kelsoe, G., Kuraoka, M., *et al.* (2019). Influenza Antigen Engineering Focuses Immune
736 Responses to a Subdominant but Broadly Protective Viral Epitope. *Cell Host & Microbe* 25, 827-835.e826.

737 Bajic, G., Maron, M.J., Caradonna, T.M., Tian, M., Mermelstein, A., Fera, D., Kelsoe, G., Kuraoka, M.,
738 and Schmidt, A.G. (2020). Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing Viral
739 Epitope. *ACS Infectious Diseases* 6, 1182-1191.

740 Boyoglu-Barnum, S., Ellis, D., Gillespie, R.A., Hutchinson, G.B., Park, Y.-J., Moin, S.M., Acton, O.J.,
741 Ravichandran, R., Murphy, M., Pettie, D., *et al.* (2021). Quadrivalent influenza nanoparticle vaccines
742 induce broad protection. *Nature*.

743 Caradonna, T.M., Ronsard, L., Yousif, A., Windsor, I.W., Hecht, R., Bracamonte-Moreno, T., Roffler,
744 A.A., Maron, M.J., Feldman, J., Marchiori, E., *et al.* (2022). An epitope-enriched immunogen expands
745 responses to a conserved viral site. Submitted.

746 Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W.,
747 Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for
748 macromolecular crystallography. *Acta Crystallographica Section D* 66, 12-21.

749 Cohen, A.A., Yang, Z., Gnanapragasam, P.N.P., Ou, S., Dam, K.-M.A., Wang, H., and Bjorkman, P.J.
750 (2021). Construction, characterization, and immunization of nanoparticles that display a diverse array of
751 influenza HA trimers. *PloS one* 16, e0247963.

752 Corbett, K.S., Moin, S.M., Yassine, H.M., Cagigi, A., Kanekiyo, M., Boyoglu-Barnum, S., Myers, S.I.,
753 Tsybovsky, Y., Wheatley, A.K., Schramm, C.A., *et al.* (2019). Design of Nanoparticulate Group 2 Influenza
754 Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly
755 Neutralizing Antibody Lineages. *mBio* 10.

756 Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Pinna, D., Minola,
757 A., Vanzetta, F., *et al.* (2011). A neutralizing antibody selected from plasma cells that binds to group 1 and
758 group 2 influenza A hemagglutinins. *Science (New York, NY)* 333, 850-856.

759 Ekiert, D.C., Kashyap, A.K., Steel, J., Rubrum, A., Bhabha, G., Khayat, R., Lee, J.H., Dillon, M.A., O'Neil,
760 R.E., Faynboym, A.M., *et al.* (2012). Cross-neutralization of influenza A viruses mediated by a single
761 antibody loop. *Nature* 489, 526-532.

762 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. *Acta*
763 *Crystallographica Section D* 60, 2126-2132.

764 Finney, J., Yeh, C.-H., Kelsoe, G., and Kuraoka, M. (2018). Germinal center responses to complex antigens.
765 *Immunol Rev* 284, 42-50.

766 Hai, R., Krammer, F., Tan, G.S., Pica, N., Eggink, D., Maamary, J., Margine, I., Albrecht, R.A., and Palese,
767 P. (2012). Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains
768 Derived from Different Subtypes. *Journal of virology* 86, 5774.

769 Harshbarger, W.D., Deming, D., Lockbaum, G.J., Attatippaholkun, N., Kamkaew, M., Hou, S.,
770 Somasundaran, M., Wang, J.P., Finberg, R.W., Zhu, Q.K., *et al.* (2021). Unique structural solution from a
771 V(H)3-30 antibody targeting the hemagglutinin stem of influenza A viruses. *Nat Commun* 12, 559.

772 Jardine, J., Julien, J.-P., Menis, S., Ota, T., Kalyuzhniy, O., McGuire, A., Sok, D., Huang, P.-S.,
773 MacPherson, S., Jones, M., *et al.* (2013). Rational HIV immunogen design to target specific germline B
774 cell receptors. *Science (New York, NY)* 340, 711-716.

775 Jardine, J.G., Kulp, D.W., Havenar-Daughton, C., Sarkar, A., Briney, B., Sok, D., Sesterhenn, F., Ereño-
776 Orbea, J., Kalyuzhniy, O., Deresa, I., *et al.* (2016). HIV-1 broadly neutralizing antibody precursor B cells
777 revealed by germline-targeting immunogen. *Science (New York, NY)* **351**, 1458-1463.

778 Jardine, J.G., Ota, T., Sok, D., Pauthner, M., Kulp, D.W., Kalyuzhniy, O., Skog, P.D., Thinnis, T.C.,
779 Bhullar, D., Briney, B., *et al.* (2015). HIV-1 VACCINES. Priming a broadly neutralizing antibody response
780 to HIV-1 using a germline-targeting immunogen. *Science (New York, NY)* **349**, 156-161.

781 Kallewaard, N.L., Corti, D., Collins, P.J., Neu, U., McAuliffe, J.M., Benjamin, E., Wachter-Rosati, L.,
782 Palmer-Hill, F.J., Yuan, A.Q., Walker, P.A., *et al.* (2016). Structure and Function Analysis of an Antibody
783 Recognizing All Influenza A Subtypes. *Cell* **166**, 596-608.

784 Kanekiyo, M., Joyce, M.G., Gillespie, R.A., Gallagher, J.R., Andrews, S.F., Yassine, H.M., Wheatley,
785 A.K., Fisher, B.E., Ambrozak, D.R., Creanga, A., *et al.* (2019). Mosaic nanoparticle display of diverse
786 influenza virus hemagglutinins elicits broad B cell responses. *Nature immunology* **20**, 362-372.

787 Kepler, T.B. (2013). Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors.
788 F1000Res **2**, 103-103.

789 Koel, B.F., Burke, D.F., Bestebroer, T.M., van der Vliet, S., Zondag, G.C.M., Vervaet, G., Skepner, E.,
790 Lewis, N.S., Spronken, M.I.J., Russell, C.A., *et al.* (2013). Substitutions Near the Receptor Binding Site
791 Determine Major Antigenic Change During Influenza Virus Evolution. *Science (New York, NY)* **342**, 976-
792 979.

793 Krause, J.C., Tsibane, T., Tumpey, T.M., Huffman, C.J., Basler, C.F., and Crowe, J.E., Jr. (2011). A broadly
794 neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head
795 of the influenza H1N1 virus hemagglutinin. *Journal of virology* **85**, 10905-10908.

796 Kuraoka, M., Schmidt, A.G., Nojima, T., Feng, F., Watanabe, A., Kitamura, D., Harrison, S.C., Kepler,
797 T.B., and Kelsoe, G. (2016). Complex Antigens Drive Permissive Clonal Selection in Germinal Centers.
798 *Immunity* **44**, 542-552.

799 Lee, P.S., Ohshima, N., Stanfield, R.L., Yu, W., Iba, Y., Okuno, Y., Kurosawa, Y., and Wilson, I.A. (2014).
800 Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus.
801 *Nature Communications* **5**, 3614.

802 Lee, P.S., Yoshida, R., Ekiert, D.C., Sakai, N., Suzuki, Y., Takada, A., and Wilson, I.A. (2012).
803 Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced
804 by avidity. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 17040-
805 17045.

806 Lingwood, D., McTamney, P.M., Yassine, H.M., Whittle, J.R.R., Guo, X., Boyington, J.C., Wei, C.-J., and
807 Nabel, G.J. (2012). Structural and genetic basis for development of broadly neutralizing influenza
808 antibodies. *Nature* **489**, 566-570.

809 McCarthy, K.R., Watanabe, A., Kuraoka, M., Do, K.T., McGee, C.E., Sempowski, G.D., Kepler, T.B.,
810 Schmidt, A.G., Kelsoe, G., and Harrison, S.C. (2018). Memory B Cells that Cross-React with Group 1 and
811 Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires. *Immunity* **48**, 174-184.e179.

812 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007).
813 Phaser crystallographic software. *Journal of Applied Crystallography* **40**, 658-674.

814 Pape, K.A., and Jenkins, M.K. (2018). Do Memory B Cells Form Secondary Germinal Centers? It Depends.
815 *Cold Spring Harb Perspect Biol* **10**.

816 Raymond, D.D., Bajic, G., Ferdman, J., Suphaphiphat, P., Settembre, E.C., Moody, M.A., Schmidt, A.G.,
817 and Harrison, S.C. (2018). Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-
818 induced antibody. *Proceedings of the National Academy of Sciences* **115**, 168.

819 Rohatgi, S., Ganju, P., and Sehgal, D. (2008). Systematic design and testing of nested (RT-)PCR primers
820 for specific amplification of mouse rearranged/expressed immunoglobulin variable region genes from small
821 number of B cells. *J Immunol Methods* **339**, 205-219.

822 Sangesland, M., Ronsard, L., Kazer, S.W., Bals, J., Boyoglu-Barnum, S., Yousif, A.S., Barnes, R.,
823 Feldman, J., Quirindongo-Crespo, M., McTamney, P.M., *et al.* (2019). Germline-Encoded Affinity for
824 Cognate Antigen Enables Vaccine Amplification of a Human Broadly Neutralizing Response against
825 Influenza Virus. *Immunity* **51**, 735-749.e738.

826 Sangesland, M., Yousif, A.S., Ronsard, L., Kazer, S.W., Zhu, A.L., Gatter, G.J., Hayward, M.R., Barnes,
827 R.M., Quirindongo-Crespo, M., Rohrer, D., *et al.* (2020). A Single Human V(H)-gene Allows for a Broad-
828 Spectrum Antibody Response Targeting Bacterial Lipopolysaccharides in the Blood. *Cell reports* 32,
829 108065.

830 Schmidt, Aaron G., Do, Khoi T., McCarthy, Kevin R., Kepler, Thomas B., Liao, H.-X., Moody, M.A.,
831 Haynes, Barton F., and Harrison, Stephen C. (2015a). Immunogenic Stimulus for Germline Precursors of
832 Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. *Cell reports* 13, 2842-2850.

833 Schmidt, Aaron G., Therkelsen, Matthew D., Stewart, S., Kepler, Thomas B., Liao, H.-X., Moody, M.A.,
834 Haynes, Barton F., and Harrison, Stephen C. (2015b). Viral Receptor-Binding Site Antibodies with Diverse
835 Germline Origins. *Cell* 161, 1026-1034.

836 Shlomchik, M.J. (2018). Do Memory B Cells Form Secondary Germinal Centers? Yes and No. *Cold Spring*
837 *Harb Perspect Biol* 10.

838 Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.-m., Santelli, E., Stec, B., Cadwell, G., Ali, M.,
839 *et al.* (2009). Structural and functional bases for broad-spectrum neutralization of avian and human
840 influenza A viruses. *Nature structural & molecular biology* 16, 265-273.

841 Tiller, T., Busse, C.E., and Wardemann, H. (2009). Cloning and expression of murine Ig genes from single
842 B cells. *J Immunol Methods* 350, 183-193.

843 Viant, C., Weymar, G.H.J., Escolano, A., Chen, S., Hartweger, H., Cipolla, M., Gazumyan, A., and
844 Nussenzweig, M.C. (2020). Antibody Affinity Shapes the Choice between Memory and Germinal Center
845 B Cell Fates. *Cell* 183, 1298-1311.e1211.

846 Watanabe, A., McCarthy, K.R., Kuraoka, M., Schmidt, A.G., Adachi, Y., Onodera, T., Tonouchi, K.,
847 Caradonna, T.M., Bajic, G., Song, S., *et al.* (2019). Antibodies to a Conserved Influenza Head Interface
848 Epitope Protect by an IgG Subtype-Dependent Mechanism. *Cell* 177, 1124-1135.e1116.

849 Whittle, J.R., Zhang, R., Khurana, S., King, L.R., Manischewitz, J., Golding, H., Dormitzer, P.R., Haynes,
850 B.F., Walter, E.B., Moody, M.A., *et al.* (2011). Broadly neutralizing human antibody that recognizes the
851 receptor-binding pocket of influenza virus hemagglutinin. *Proceedings of the National Academy of
852 Sciences of the United States of America* 108, 14216-14221.

853 Whittle, J.R.R., Wheatley, A.K., Wu, L., Lingwood, D., Kanekiyo, M., Ma, S.S., Narpala, S.R., Yassine,
854 H.M., Frank, G.M., Yewdell, J.W., *et al.* (2014). Flow Cytometry Reveals that H5N1 Vaccination Elicits
855 Cross-Reactive Stem-Directed Antibodies from Multiple Ig Heavy-Chain Lineages. *Journal of virology* 88,
856 4047-4057.

857 Wrammert, J., Smith, K., Miller, J., Langley, W.A., Kokko, K., Larsen, C., Zheng, N.-Y., Mays, I., Garman,
858 L., Helms, C., *et al.* (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza
859 virus. *Nature* 453, 667-671.

860 Xu, R., Krause, J.C., McBride, R., Paulson, J.C., Crowe, J.E., Jr., and Wilson, I.A. (2013). A recurring
861 motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. *Nat Struct Mol Biol*
862 20, 363-370.

863 Yang, L., Caradonna, T.M., Schmidt, A.G., and Chakraborty, A.K. (2022). T helper cells select germinal
864 center B cells stringently to promote the evolution of cross-reactive influenza antibodies. Submitted.

865 Yassine, H.M., Boyington, J.C., McTamney, P.M., Wei, C.-J., Kanekiyo, M., Kong, W.-P., Gallagher, J.R.,
866 Wang, L., Zhang, Y., Joyce, M.G., *et al.* (2015). Hemagglutinin-stem nanoparticles generate heterosubtypic
867 influenza protection. *Nature medicine* 21, 1065-1070.

868 Yeh, C.-H., Nojima, T., Kuraoka, M., and Kelsoe, G. (2018). Germinal center entry not selection of B cells
869 is controlled by peptide-MHCII complex density. *Nature communications* 9, 928-928.

870 Zost, S.J., Lee, J., Gumina, M.E., Parkhouse, K., Henry, C., Wu, N.C., Lee, C.-C.D., Wilson, I.A., Wilson,
871 P.C., Bloom, J.D., *et al.* (2019). Identification of Antibodies Targeting the H3N2 Hemagglutinin Receptor
872 Binding Site following Vaccination of Humans. *Cell reports* 29, 4460-4470.e4468.

873