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Abstract 
 

The cranial vault – the portion of the skull surrounding the brain and cerebellum – is highly 

variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. 

Here, we conducted a joint multi-ancestry and admixed multivariate GWAS on 3D cranial vault 

shape extracted from magnetic resonance images of 6,772 children from the ABCD study cohort, 

identifying 30 genome-wide significant genetic loci and replicating 20 of these signals in 16,947 

additional individuals of the UK Biobank. This joint multi-ancestry GWAS was enriched for 

genetic components of cranial vault shape shared across ancestral groups and yielded a greater 

discovery than a European-only GWAS. We present supporting evidence for parietal versus frontal 

bone localization for several of the identified genes based on expression patterns in E15.5 mice. 

Collectively, our GWAS loci were enriched for processes related to skeletal development and 

showed elevated activity in cranial neural crest cells, suggesting a role during early craniofacial 

development. Among the identified genes, were RUNX2 and several of its upstream and 

downstream actors, highlighting the prominent role of intramembranous ossification – which takes 

place at the cranial sutures – in influencing cranial vault shape. We found that mutations in many 

genes associated with craniosynostosis exert their pathogenicity by modulating the same pathways 

involved in normal cranial vault development. This was further demonstrated in a non-syndromic 

sagittal craniosynostosis case-parent trio dataset of 63 probands (n = 189), where our GWAS 

signals near BMP2, BBS9, and ZIC2 contributed significantly to disease risk. Moreover, we found 

strong evidence of overlap with genes influencing the morphology of the face and the brain, 

suggesting a common genetic architecture connecting these developmentally adjacent structures. 

Overall, our study provides a comprehensive overview of the genetics underlying normal cranial 

vault shape and its relevance for understanding modern human craniofacial diversity and the 

etiology of congenital malformations. 

Introduction 
 

The cranial vault – the globular portion of the skull comprised of flat, plate-like bones that 

surrounds and protects the brain – shows considerable size and shape variation within and among 

human populations1,2. Because cranial vault morphology has implications for 

paleoanthropology3,4, forensics5,6, and human health7–9, it is crucial to understand the factors that 

drive its phenotypic variation. The debate surrounding the relative contribution of genetic and 

environmental influences on the cranial vault has a long history, starting with the observation by 

Boas in the early 20th century10 that head dimensions can change in a single generation in response 

to environmental conditions. Formal heritability studies, including those reanalyzing Boas’s 

data11, indicate that genetic effects account for a sizable portion (> 50%) of the phenotypic 

variation in vault size. Of course, these positions are not in conflict, as continuous morphological 

traits are generally considered polygenic, with epistatic and gene-environment interactions playing 

an important role.  

 

Revealing the genetic architecture of the cranial vault is a necessary step toward elucidating the 

various molecular pathways involved in both normal and abnormal cranial development and 

growth. However, despite evidence of a genetic contribution, we know little about the specific 

genes that impact variation in human vault morphology. Several lines of evidence point to 

signaling molecules, like Fibroblast Growth Factors and their receptors, as being important. Genes 
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in several signaling pathways (e.g., FGF, TGF, BMP, WNT, IHH/SHH, TWIST) have been 

implicated in congenital malformations characterized by vault dysmorphology, such as syndromic 

and non-syndromic forms of craniosynostosis12,13. Genome-wide association studies (GWASs) of 

non-syndromic craniosynostosis have yielded candidates such as BMP2, BBS9, and BMP714,15. 

Moreover, gene expression and experimental studies of the developing vault have also implicated 

many of these genes (and others in their pathways) in suture morphogenesis16–19. When 

considering normal-range variation in cranial vault morphology, genome-wide QTL studies of 

skull shape in mice have implicated a few dozen genes, including some with effects on the vault20–

22. In humans, two candidate gene studies have reported associations between common variants in 

FGFR1 and cranial vault dimensions23,24, and several large GWAS of global vault size (head 

circumference) have identified a handful of loci25–27. In addition, a GWAS of vault length, width, 

and cephalic index in over 4000 individuals reported associations at several loci near relevant 

genes like SOX9 and SOX1128; notably, no association with FGFR1 was observed.   

 

One of the limitations of prior genetic studies of human vault morphology is a reliance on relatively 

simple phenotyping approaches (e.g., distances). Such measures are often straightforward to 

acquire but suffer from an inability to adequately describe complex 3D shapes and may not capture 

the most salient aspects of variation for genetic investigations. As a result, it is likely that the genes 

identified to date account for a small fraction of the heritable variation in human vault morphology. 

In genetic studies of human facial morphology, we have previously shown that data-driven 

multivariate approaches capable of more fully exploiting the information contained in 3D 

biological shapes outperform more traditional morphometric approaches29. In the present study, 

we advance the pace of genetic discovery by applying a similar phenotyping strategy to the cranial 

vault. We accomplish this by extracting 3D vault surfaces from magnetic resonance images (MRIs) 

collected on a multi-ancestry adolescent cohort, partitioning the surfaces into anatomical regions 

in a global-to-local pattern, quantifying the shape variation present in each region, and then 

performing multivariate GWASs. In addition, we test whether our discovered variants impact risk 

for single suture craniosynostosis, and, given the close relationship between brain and vault 

morphology30, we investigate the degree of overlap between their genetic architectures.   

Results 
 

Joint Multi-ancestry and Admixed Multivariate Genome-wide Association Study of Cranial 
Vault Shape 
 

Cranial vault shape, herein defined as the outer head surface encompassing the supraorbital ridge 

and extending towards the occipital bone, was extracted from structural MRIs (Extended Data Fig 

1; Methods). Due to their close correspondence, the outer soft-tissue vault surface served as a 

proxy for the underlying cranial bones. To study shape variation at both a global and local 

resolution, the cranial vault surface, represented by a mesh of 11,410 vertices, was partitioned into 

a set of smaller segments through hierarchical spectral clustering following the data-driven 

approach introduced by Claes et al.29 (Fig 1a). The result was a set of 15 cranial vault segments, 

with the first segment being the ‘global’ full cranial vault surface and segments 8 to 15 being the 

most ‘local’ segments. Considering the globular and relatively smooth nature of the cranial vault, 

in contrast to the face31 or brain32, we stopped at the fourth hierarchical level to not unnecessarily 
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inflate the total number of segments. The smallest segment, segment 12, covered 7.70% of the 

overall surface area. 

 

 

 
Fig 1: Global-to-local genome-wide association study of cranial vault shape. A, Hierarchical segmentation of cranial vault 

shape resulting in 15 cranial vault segments (cyan) across 4 hierarchical levels. B, Manhattan plot of genome-wide associations. 

For each SNP the lowest P-value (CCA, right-tailed chi square) across all 15 cranial vault segments was plotted. Full and dashed 

horizontal lines represent genome-wide (P < 5e-8) and study-wide (P < 4.37e-9) significance thresholds respectively. Plausible 

candidate genes are annotated to each genome-wide significant locus (n = 30) (Methods). C, Number of genetic loci reaching 

genome-wide significance (P < 5e-8) in each cranial vault segment.  

 

Each of the 15 cranial vault segments was subject to principal component analysis (PCA) to extract 

a smaller number of morphological dimensions, followed by parallel analysis to identify the 

optimal number of PCs to retain. We then applied canonical correlation analysis (CCA), which 

extracts the linear combination of those dimensions that maximally correlates with the state of a 

given single nucleotide polymorphism (SNP). In total, 10,647,531 SNPs across the genome were 

tested in a US cohort comprising of rich ancestral diversity. After applying quality control 

procedures on images, genotype, and covariate data, the final GWAS cohort consisted of 6,772 

unrelated individuals. 

 

Given the high level of admixture in our dataset and the lack of more than a single substantial 

homogenous group, any stratification-based approach, such as a GWAS meta-analysis, was 

deemed unfruitful and we instead opted to run a single joint multi-ancestry and admixed GWAS. 

As a compromise between sample inclusion and model complexity, our GWAS was limited to 

three ancestral groups (i.e., European, African, and Indigenous American), and any admixture 

12 3

4 7

65

8

9

10

11 12

13

14

15a

b

c

TBX15

FGF18
BMP2

KCNJ2

ZIC2PTHLH
WNT16
SHH

BCL11B
ADAMTSL3

MEIS1

HOXD
EN1

ZEB2

FGF10 KIF6

SHOX2
TBL1XR1 R

U
N
X
2

R
S
P
O
3

EYA4

BBS9

DLX5

RSPO2 ELP1 CEP55 ALX1

HMGA2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.01.518684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.01.518684
http://creativecommons.org/licenses/by/4.0/


thereof, including African Americans (i.e., admixture between African and European ancestry), 

and Latinos (i.e., admixture between European and Indigenous American ancestry with varying 

degrees of African ancestry). Prior to GWAS, cranial vault shape was adjusted for the effects of 

age, sex, height, weight, cranial size, MRI machine/scanning site, and ancestral heterogeneity 

using partial least squares regression (PLSR). The latter was done by including global genomic 

ancestry, expressed by the first 10 genomic PCs, as well as local genomic ancestry, expressed by 

ancestral dosages at 0.2 cM windows throughout the genome (Methods).  

 

In total, 15 GWASs were conducted (one per vault segment), yielding 1,658 SNPs that reached 

genome-wide significant (P < 5e-8) in at least one the segments. Of these SNPs 1,138 were also 

study-wide significant (P < 4.37e-9), correcting for the effective number of GWAS runs as 

estimated by permutation testing (Methods). Based on genomic distance and linkage 

disequilibrium (LD), SNPs were clumped into 30 independent genome-wide and 24 study-wide 

significant genomic loci (Fig 1b; Supplementary Table 1). The 30 lead SNPs combined explained 

1.03% to 1.83% of variation among the 15 cranial vault segments, and 1.31% of global cranial 

vault shape variation after adjustment for covariates. We observed a range of associated 

phenotypic effects, with some GWAS signals impacting multiple regions of the vault 

simultaneously and others impacting vault shape in a more localized manner (Supplementary Data 

1). In addition to global vault shape (segment 1), segments involving the frontal portion of the 

vault showed the largest number of significant associations (Fig 1c). Twenty-one out of 30 loci 

(21/30, 70.0%) showed significant (P < 5e-8) effects on global cranial vault shape (Fig 1c and 

Extended Data Fig 2), with 13 loci (13/21, 61.9%) providing the most significant P-values. Among 

the 7 loci (7/30, 23.2%) that had most significant effects at the finest level of segmentation (i.e., 

hierarchical level 4), only 3 (3/7, 42.9%) were also significant (P < 5e-8) in the global cranial vault. 

For most loci with their lowest P-values in the global cranial vault, significance gradually 

decreased as the vault was partitioned into smaller segments. In contrast, most of the loci with their 

lowest P-values in one of the more local level-4 segments exhibited the opposite effect. This 

suggests a distinction between globally and locally acting loci. 

 

To test for any uncontrolled confounding due to population stratification, we compared the 

obtained genome-wide association P-values to a set of simulated association P-values under the 

null hypothesis (Methods). No inflation of test statistics was observed (Extended Data Fig 3), 

suggesting that our GWAS results were not affected by uncontrolled population stratification. Due 

to the observed relationship between the fixation index (FST) and power in our GWAS, we 

calculated the genomic control factor lambda (GC) for different subsets of SNPs, defined by 

varying upper limits for the FST. The highest GC of 1.002 was found for the set of SNPs with FST 

smaller than 0.001 (Extended Data Fig 3), further suggesting the absence of uncontrolled 

confounding. 

 

Next, we replicated our GWAS signals and their phenotypic effects in an independent cohort of 

16,947 individuals from the UK Biobank33, based on MRI. For each of the 30 lead SNPs, we tested 

all segments in which genome-wide significance was reached (P < 5e-8) during the discovery 

phase, totaling 108 tests (Methods). In total, 55 out of 108 (50.9%) lead-SNP/segment pairs and 

20 out of 30 (66.7%) individual lead SNPs were replicated in at least one segment at a 5% false 

discovery rate (FDR) (Supplementary Table 1). Note that the replication MRIs were heavily 

damaged, mainly at the frontal area of the cranial vault (i.e., MR images are defaced for subject 
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anonymity). Although these defects were partially corrected for during image processing 

(Methods), the lowest segment-wise replication rates of 23.1% and 9.09% were observed in the 

corresponding cranial vault segments 5 and 11, respectively (Extended Data Fig 4). Thus, our 

replication rate is likely very conservative. 

 

Multi-Ancestry GWAS Signals are Enriched for Shared SNPs between Ancestries 
 

To investigate whether the lead SNPs representing each of our 30 genome-wide significant loci 

were shared across different ancestral populations, FST enrichment analysis was performed 

following Guo et al. (2018)34. Significantly lower African versus European, but not Indigenous 

American versus European FST was found for our set of lead SNPs compared to the expected values 

for a set of similar SNPs in terms of minor allele frequency (MAF) and LD score (Fig 2a and d). 

Notably, the mean observed African versus European (mean: 0.072, range: 0 to 0.320) and 

Indigenous American versus European (mean: 0.079, range: 0 to 0.195) FST were similar. 

However, in line with existing knowledge, the expected FST for African versus European was 

higher than for Indigenous American versus European, ultimately resulting in a significant 

enrichment of shared signals only between African and European ancestry. 

 

 

To examine how the multi-ancestry aspects of our study influenced the overrepresentation of 

shared loci, we repeated the FST enrichment analysis under two additional scenarios. In the first 

scenario, the multi-ancestry GWAS (n = 6,772) was rerun, this time without adjusting for the 

effects of local genomic ancestry. Comparing the outcome with the main GWAS revealed that the 

adjustment for local genomic ancestry induces a stronger selection for shared loci between 

ancestral groups compared to the adjustment for global genomic ancestry alone (Fig 2b and e). In 

the second scenario, the GWAS was rerun on only the subjects that were assigned European 

ancestry (n = 4,198) (Methods). In this more ancestrally homogeneous group, adjustment for the 

first 10 genomic PCs was still performed to adjust for the within-Europe population structure. In 

contrast to the main GWAS, no significant over- or underrepresentation of SNPs shared between 

ancestral groups was observed (Fig 2c and f), suggesting that the multi-ancestry nature of our 

GWAS drove the overrepresentation of shared SNPs. 

 

Fig 2g-h illustrates how the selection of shared loci was achieved through the reduction in 

statistical power for differentiated SNPs. While, in our multi-ancestry GWAS, adjustment for 

global ancestry alone reduced the power of high FST SNPs, the additional adjustment for local 

genomic ancestry exacerbated this effect. These results align with previous studies35–37. Moreover, 

for any SNP with FST equal to 1 (i.e., both ancestral groups have a different allele that is fixed 

within that group) the allelic dosage would correlate perfectly with the local genomic ancestry. 

Therefore, those SNPs would attain no power after removing the effects of local genomic ancestry 

(Fig 2g-h). Together, these results show that our multi-ancestry GWAS approach identified a 

higher-than-expected sharing of genetic factors underlying cranial vault shape between ancestral 

groups. They also illustrate how the selection of shared SNPs between ancestries directly results 

from our multi-ancestry approach to GWAS. 
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Fig 2 Adjustment for global and local genomic ancestry induces prioritization of shared signals between ancestral groups.  

a-f, FST enrichment analysis (top row: European vs. African; bottom row: European vs. Indigenous American) of lead SNPs at 

genome-wide significant GWAS loci under different scenarios. Left (green, Local + Global): the main, multi-ancestry GWAS (n 

= 6,772) with global and local genomic ancestry adjustment. Middle (cyan, Global only): a multi-ancestry GWAS on the same 

individuals (n = 6,772) with only global genomic ancestry adjustment. Right (navy, Single Ancestry): a European-only GWAS (n 

= 4,198) with global genomic ancestry adjustment. The full vertical line represents the mean observed FST and the dashed vertical 

line represents the 2.5th percentile on the distribution of expected FST. g-h, Mean test statistic of the full cranial vault GWAS 

(segment 1) across 50 FST bins (left: European vs. African; right: European vs. Indigenous American) under the GWAS scenarios 

from a-f. Error bars represent the standard deviation of the test statistic. i, Heterogeneity of effect size between European and 

African ancestry based on the univariate latent phenotypes associated with each SNP in the main GWAS (Methods). All segment-

SNP combinations with P < 5e-8 during GWAS discovery were considered, and the lowest P-value (indicating the highest 

confidence of effect size heterogeneity) for each SNP was kept after adjustment for 5% FDR. The vertical line indicates the Padjusted 

< 0.05 threshold. 

 

To further validate the sharing of effects across populations, we tested for heterogeneity of effect 

size between ancestral groups at each of our 30 lead SNPs under several scenarios (Methods). 

Briefly, each test is based on the likelihood ratio of nested models, where the full model includes 

differential effect sizes between ancestral groups, and a constraint model includes a single joint 

effect size. All testing scenarios yielded mostly consistent results (Extended Data Fig 5). At 5% 

FDR, we found heterogeneous effect sizes for 2 out of 30 lead SNPs under the most sensitive 

testing scenario (Fig 2i) and for 3 out of 30 lead SNPs across all scenarios. This lack of significant 

effect size heterogeneity further supports that the identified loci comprise shared signals among 

ancestral groups. Notably, no significant relationship was observed between FST and effect size 

heterogeneity (Extended Data Fig 6). 

 

We next performed a sensitivity analysis to evaluate the discovery of genome-wide loci when 

including or excluding non-European-ancestry GWAS cohort subjects. For each of the 30 genome-
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wide lead SNPs from the main GWAS (n = 6,772), we selected the most significant SNP from the 

European-only GWAS (n = 4,198) within 250 kb and in LD (r2 > 0.2) to represent the same locus. 

In total 25 out of 30 (83.3%) loci reached a lower P-value in the multi-ancestry GWAS. Compared 

to the European-only GWAS, we identified 8 additional genomic loci at genome-wide significance 

(P < 5e-8) (Extended Data Fig 7) while only a single additional locus (rs563186113) reached 

genome-wide significance (P = 4.10e-8) in the European-only GWAS exclusively. The overall 

lower P-values and net gain of 7 additional genomic loci demonstrate the increased sensitivity 

resulting from the inclusion of non-European-ancestry participants. 

 

Cranial Vault Shape Variation Originates Early in Development 
 

Using the genomic regions enrichment of annotations tool (GREAT38), genes near the 30 lead 

SNPs were tested for enrichment of biological processes and pathways, as well as associated 

mouse phenotypes (Supplementary Table 2 and Supplementary Table 3). Among the enriched (by 

both binomial and hypergeometric test, 5% FDR) mouse phenotypes were terms related to 

abnormal head morphology (abnormal morphology of the head, face, mouth, cranium, 

neurocranium, viscerocranium, basicranium; exencephaly), and abnormal morphology of multiple 

craniofacial bones (abnormal morphology of the squamosal, interparietal, temporal, occipital, 

supraoccipital, zygomatic, basisphenoid, nasal bone; maxilla, mandible, palate), as well as other 

bones throughout the body (abnormal morphology of the humerus, scapula, tibia, clavicle, rib, 

limb long bone, …). Interestingly, the analysis identified significant terms related to the brain and 

neural tube (open neural tube, abnormal neural tube closure, decreased midbrain size, abnormal 

midbrain size, absent cerebellar lobules, abnormal neural crest cell migration). These results 

illustrate the important role of the genes near our identified loci in normal craniofacial development 

and suggest an overlap in genetic architecture between the cranial vault, the face, and the brain. 

 

In line with the associated mouse phenotypes, we found enriched biological processes related to 

bone development (skeletal system development, osteoblast differentiation, bone development, 

ossification, osteoblast development) and cartilage development (regulation of cartilage 

development, chondrocyte differentiation, cartilage development, positive regulation of cartilage 

development). Furthermore, the analysis yielded enrichments for mesenchyme-related terms 

(mesenchymal cell differentiation, mesenchyme development, connective tissue development), as 

well as more broad terms related to embryonic development (embryo development, embryonic 

morphogenesis, embryonic organ morphogenesis and development, …). 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.01.518684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.01.518684
http://creativecommons.org/licenses/by/4.0/


 
Fig 3 Regions near the 30 genome-wide significant lead SNPs are enriched for active enhancers with preferential activity in 

cranial neural crest cells and embryonic craniofacial tissue. Each boxplot represents the distribution of H3K27ac signal in 20-

kb regions around the 30 genome-wide-significant (P < 5e-8) lead SNPs in one sample, with cranial neural crest cells (navy) and 

embryonic craniofacial tissues (cyan) highlighted. Boxplots plot the first and third quartiles, with a dark black line representing the 

median. Whiskers extend to the largest and smallest values no further than 1.5× the interquartile range from the first and third 

quartiles, respectively. The horizontal dashed line represents the median level of H3K27ac reads per million (RPM) signal across 

all cell types and tissues. 

 

Next, we analyzed H3K27ac ChIP-seq signals near the 30 lead SNPs across approximately 100 

cell types and tissues (Fig 3). We found that the 30 GWAS loci were most enriched for nearby 

H3K27ac signal in embryonic craniofacial tissues and cranial neural crest cells (CNCCs), 

indicative of cell-type specific enhancer activity. This suggests that our GWAS signals are located 

near enhancer elements that are active during early craniofacial development. Notably, while the 

frontal bone originates from CNCCs, the parietal bone arises from the mesoderm-derived 

mesenchymal progenitors. However, the H3K27ac ChIP-seq data from the latter mesenchymal 

progenitors were not available, and thus were not included in this analysis. Nonetheless, the 

majority of the identified GWAS loci affected either global cranial vault shape or the frontal 

segments, consistent with the strong contribution of CNCC-derived structures. Together, these 

results suggest that post-natal shape variation associated with the neurocranial bones originates in 

early developmental stages. 

 

 

Localization and Differential Expression of GWAS Candidate Genes in E15.5 Mice Parietal 
and Frontal Bones 
 

To compare the parietal versus frontal localization of phenotypic effects associated with our lead 

SNPs to expression levels of associated candidate genes, we performed a differential expression 

analysis of E15.5 mice parietal and frontal bone tissues. We found 648 differentially expressed 

genes (DEGs) out of approximately 30,000 analyzed genes from the sequencing library. Of the 

DEGs, 410 were upregulated in the parietal bone tissues and 238 were upregulated in the frontal 

bone tissues (Supplementary Table 4). We were particularly interested in exploring the candidate 

genes (Supplementary Table 5; Methods) located near the 30 GWAS lead SNPs to determine 
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whether a) the candidate genes’ mouse homologs demonstrated differential expression and b) 

given the genes were differentially expressed, whether their expression patterns could further 

validate the cranial vault phenotypes in which the associated lead SNPs were initially found. 

Among the GWAS candidate genes were 11 DEGs at 5% FDR, of which nine genes showed 

significantly higher expression in the frontal bone, and two in the parietal bone (Table 1 and 

Extended Data Fig 8). Other candidate genes were either not differentially expressed, had fewer 

than one gene count, or were not expressed at E15.5. 

 

To compare between the frontal and parietal phenotypes utilized in the expression analysis and the 

15 cranial vault segments used in the GWAS, all GWAS lead SNPs were assigned a ‘frontal’, 

‘parietal’, or ‘both’ label, depending on the association profile across the 15 segments (Methods). 

As GWAS lead SNPs were identified using vault segments from several overlapping hierarchical 

layers, we performed our parietal/frontal/both classifications twice using the following two 

schemes – ‘most significant hit’ and ‘most specific hit’. Both classifications schemes yielded 

concordant results, demonstrating robustness of the assigned labels. 

 

For example, GWAS lead SNP rs11609649, associated with ALX1 via GREAT, was identified in 

cranial vault segment 5 in the GWAS analysis, which corresponds to the frontal region. Since 

segment 5 contains the most significant signal for the lead SNP and since segment 5 is also 

phenotypically specific, the classification of ALX1 for the ‘most significant hit’ and ‘most specific 

hit’ method is the same – frontal. For several other loci, the most significant signal was found in a 

segment with both parietal and frontal bone content, such as the full cranial vault (segment 1). 

Nonetheless, their association may still be driven by a predominant frontal or parietal activity. For 

those loci, we identified the most specific segment by tracing the association signal into 

hierarchical levels three and four.  

 
Table 1 Classification of frontal versus parietal localization based on global-to-local GWASs and RNAseq in murine (E15.5) 

parietal and frontal bones. All candidate genes near the 30 genome-wide significant lead SNPs were tested for differential 

expression between the murine cranial tissues. Only significantly differentially expressed genes are shown. P-values are adjusted 

for 5% FDR, log2-fold change is relative to the frontal bone. 

GWAS SNP Mouse gene 
Log2-fold 
change 

Differential 
expression 

Padjusted 

Highest 
activity in 
RNAseq 

Highest activity 
in GWAS (most 

specific hit) 

Highest activity 
in GWAS (most 
significant hit) 

rs11609649 Alx1 -1.37 9.52e-13 Frontal Frontal Frontal 

rs296418 Eya4 -1.90 2.57e-17 Frontal Frontal Frontal 

rs151174669 Hmga2 -0.48 3.63e-2 Frontal Frontal Frontal 

rs7626244 Shox2 -1.96 2.25e-17 Frontal Frontal Frontal 

rs1581525 Cped1 -0.34 9.08e-3 Frontal Frontal Frontal 

rs6739488 En1 -0.61 4.52e-7 Frontal Frontal Both 

rs4842918 Adamtsl3 -1.01 3.18e-12 Frontal Parietal Both 

rs17479393 Zeb2 -0.34 2.81e-2 Frontal Parietal Both 

rs3822730 Fgf10 -0.52 1.61e-2 Frontal Parietal Parietal 

rs148673350 Bmper 0.68 6.85e-7 Parietal Parietal Both 

rs9491697 Rspo3 0.44 6.86e-3 Parietal Parietal Parietal 

 

For the majority of DEGs, the GWAS analysis identified a higher activity in the bone where the 

gene was upregulated in mice. This consistency between gene expression and phenotypic effect 
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could suggest that for those genes increased expression drives phenotypic effects. Among those 

genes were Alx1, Eya4, Hmga2, Shox2, Cped1, and En1, which all showed a frontal biased activity 

and Rspo3 and Bmper, which show a parietal biased activity. Conversely, while Fgf10, Zeb2, and 

Adamtsl3 were downregulated in the murine parietal bone, the GWAS analysis identified a higher 

parietal activity. Specifically, the association with rs3822730 near FGF10 was most significant in 

a parietal segment (segment 8; Supplementary Data 1) and genome-wide significant in other 

parietal segments (segments 4, 7, and 15) while not reaching nominal significance in any of the 

frontal segments (segments 5, 10, 11, and 12). This may indicate that the downregulation of FGF10 

allows for an increased activity of other genes involved in shaping the cranial vault. 

 

Genetic Architecture of Normal Cranial Vault Shape Comprises Risk Loci for Non-syndromic 
Craniosynostosis 
 

Craniosynostosis is a condition that occurs in approximately 1 in 2,500 newborns and is 

characterized by the premature fusion of one or more cranial sutures, thereby drastically affecting 

skull morphology during growth. The most common form, non-syndromic craniosynostosis 

(NCS), is etiologically complex and influenced by genetic and environmental factors. A previous 

GWAS14 implicated SNPs near BMP2 and BBS9 as genetic risk loci for developing sagittal NCS. 

Interestingly, both genes were also identified in the current GWAS of normal-range cranial vault 

shape. We tested whether the lead SNPs from both GWASs tagged the same genomic loci. 

Published risk SNPs for sagittal NCS, rs10262453 (r2 with rs148673350: 0.98; 1000G all 

populations) near BBS9 and rs1884302 (r2 with rs6054748: 0.95; 1000G all populations) near 

BMP2 reached P-values of 3.02e-14 and 2.40e-10 respectively in our normal-range cranial vault 

shape GWAS, thus both reaching study-wide significance (Fig 4a-b andExtended Data Fig 9). 

Remarkably, the latent shape variation associated with our lead SNP near BMP2, rs6054748, 

comprised an elongation and narrowing of the cranial vault and when exaggerated, presented a 

dolichocephalic cranial vault shape, reminiscent of sagittal NCS patients (Fig 4c-e). No such 

resemblance was observed for our BBS9 lead SNP (Supplementary Data 1). 
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Fig 4 Variation near BMP2 and BBS9 comprises risk for sagittal nonsyndromic craniosynostosis. a, LocusZoom plot around 

rs6054748 near BMP2. Sagittal NCS risk SNP rs1884302 from Justice et al. (2012) is also indicated. b, LocusZoom plot around 

rs148673350 intronic in BBS9. Sagittal NCS risk SNP rs10262453 from Justice et al. (2012) is also indicated. c-d, Exaggerated 

depiction of the latent cranial vault shape associated with both alleles of rs6054748 near BMP2. Arrows indicate the direction of 

deformation with regard to the mean cranial vault shape. e, Latent cranial vault shape associated with rs6054748 near BMP2, 

visualized on the mean cranial vault shape. Blue and red indicate an inward and outward deformation respectively. 

 

To further assess whether any other genomic loci involved in normal-range cranial vault shape 

were contributing risk for developing sagittal NCS, we proceeded with a targeted replication of 

our 30 GWAS loci in a sagittal NCS cohort consisting of 63 case-parent trios (n = 189). At 5% 

FDR, significant associations were identified for our lead SNPs rs6054748, rs148673350, and 

rs1034266 near BMP2, BBS9, and ZIC2 respectively. This ultimately resulted in a bidirectional 

replication for BMP2 and BBS9, as well as an additional candidate risk gene for sagittal NCS, 

ZIC2, not previously reported. Furthermore, we identified significant associations at the nominal 

P-value threshold (P < 0.05) with 6 other genomic loci in 92 coronal NCS trios (n = 276), 62 

metopic NCS trios (n = 186), and 17 lambdoid NCS trios (n = 51) (Supplementary Table 6). It is 

also worth noting that rs6054748 near BMP2 reached at least nominal significance in all but the 

metopic NCS cohort. 
 

Shared Genetic Signals between Face, Brain, and Cranial Vault 
 

Next, we examined the sharing of genetic signals between the cranial vault and the face. Given the 

unsigned test statistics yielded by CCA, the approach of calculating genomic correlation using LD-

score regression39, which requires signed summary statistics, was not applicable and we instead 

used Spearman correlations32. Based on a facial GWAS in a European cohort by White et al. (2021) 

who used a similar global-to-local approach to phenotyping facial shape, comparisons could be 

made for multiple facial and cranial vault segments. At 5% FDR, significant sharing of genetic 

signals was observed between the frontal cranial vault segment and all the facial segments, though 

weaker for the upper lip, nose, and philtrum (Fig 5a). Other segments of the cranial vault showed 

significant, but weaker genetic overlap with the face. These results align with biology, as the face 

a c

b

rs1884302

rs10262453

d

e
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and frontal bone are both derived from CNCCs, but the rest of the cranial vault stems from the 

mesoderm40. Unsurprisingly, a strong overlap was observed for segments of the face and cranial 

vault that contained the forehead (Fig 5b), illustrating consistency with previously published data31 

and doubling as good validation for those loci affecting forehead morphology. 

 

Based on LD (r2 > 0.2; 1000G all European populations), we found direct genomic overlap 

between facial GWAS loci and 18 out of our 30 (60.0%) cranial vault loci. Genes near these shared 

loci have established roles in CNCCs and/or craniofacial skeletal development and comprised a 

high incidence of involvement in craniofacial syndromes, often with distinct effects on facial 

appearance, e.g., TBX15 (Cousin Syndrome, OMIM:260660), HMGA2 (Silver-Russell Syndrome 

5, OMIM:618908), ZEB2 (Mowat-Wilson Syndrome, OMIM:235730), ALX1 (Frontonasal 

Dysplasia 3, OMIM:613456), MEIS1 (Cleft Palate, Cardiac Defects, And Mental Retardation, 

OMIM:600987), EN1 (Endove Syndrome, Limb-brain Type, OMIM:619218), RUNX2 

(Cleidocranial Dysplasia, OMIM:119600), BMP2 (Short Stature, Facial Dysmorphism, and 

Skeletal Anomalies with or without Cardiac Anomalies, OMIM:617877) (Supplementary Table 

7). 
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Fig 5 Genome-wide sharing of signals between the cranial vault, brain, and face. a, Genetic Spearman correlations with 

individual level-3 cranial vault segments (cyan) across level-4 brain and facial segments. b, Genetic Spearman correlations with 

individual level-3 facial segments (cyan) across level-4 vault segments. c, Genetic Spearman correlations with individual level-3 

brain segments (cyan) across level-4 vault segments d, Mutual highest normalized correlations between brain and cranial vault 

segments indicated by black lines. Segment-wise vault-brain correlations were normalized by the maximum value across the brain 

and vault respectively. Colors indicate the strength of the unnormalized pair-wise correlations. All panels use the same color scale 

for straightforward comparison. Significance of Spearman correlations was determined based on standard errors obtained through 

bootstrapping. P-values were adjusted for 5% FDR. Insignificant segments are indicated in grey.  

 

Next, we looked at the genetic correlation between the cranial vault and brain using data from a 

cortical surface morphology GWAS in a European cohort by Naqvi et al. (2021) who also 

employed a global-to-local approach to phenotyping. Sharing of genetic signals was observed 

across the brain and cranial vault segments, with strong sharing between the brain and the frontal 

segment of the cranial vault, likely relating to their shared ectodermal origin and physical 

proximity during development (Fig 5a,c)40. To further expose patterns of shared genetic signal 

irrespective of dominant drivers such as shared cellular origins, segment-wise vault-brain 

correlations were normalized (by dividing by the maximum value across a cranial vault or brain 

segment). As such, the dominance of the frontal cranial vault segment and potentially others 

a d

b c
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among the brain and cranial vault segments was mitigated. Mutual strongest connections were then 

extracted, revealing evidence for spatially dependent sharing of genetic signals between the brain 

and cranial vault (Fig 5d). These results suggests that the encapsulation of the brain by the cranial 

vault and the proximities it imposes, is at least in part responsible for their shared genetics. 

 

Sharing of genetic signals between the brain and the cranial vault may be facilitated through 

mechanical interactions, where intracranial pressure promotes the remodeling of the cranial vault 

to mirror the shape of the expanding brain41. Additionally, brain and skull development may rely 

on coordinated integration of signaling through fibroblast growth factor (FGF), bone morphogenic 

proteins (BMP), Wnt, and hedgehog30. In the current GWAS, we identified genes encoding 

members from all four signaling families with established roles in brain development and 

craniofacial skeletal development, FGF (FGF1042,43, FGF1844,45), BMP (BMP246,47), hedgehog 

(SHH48,49), and Wnt (WNT1650,51). Furthermore, we found that genes near a substantial portion of 

the 30 cranial vault loci showed evidence of involvement in brain development in mouse knockout 

studies (Supplementary Table 8). Abnormal brain morphology or size has been reported for mouse 

knockouts of MEIS152, EN153–57, KIF658, SHH59–64, HMGA265, ALX166, ZIC267–69, and CEP5570.  

In addition, several genes have been implicated in the early stages of abnormal neuronal 

development, tracing back to the neural plate (ZEB271, ZIC272), neural tube (EN173, ZEB271,74,75), 

and neural crest (ZEB274, ZIC276, ALX177). 

 

Among the shared (in LD: r2 > 0.2) brain-face-cranial vault loci included genes with known roles 

in cranial neural crest development and migration, such as ZEB274, ZIC276, DLX578, and although 

corresponding lead SNPs were not in strong LD (r2 < 0.2), also BMP279 and ALX177. Other shared 

loci include craniofacial skeletal development genes, such as EN180, FGF1845, BMP246,47, 

DLX578,81,82, RUNX247,81,83–88, PTHLH89, and TBX1590. In part, this sharing of genetic loci is likely 

due to pleiotropy, with genes like ZEB2, ZIC2, and DLX5 being expressed in both the neural crest 

and the brain. In other cases, however, genes like ALX1, RUNX2, and TBX15 have roles primarily 

in the mesenchyme with no expression in the brain. Therefore, sharing of these loci is likely driven 

by the cranial vault. 

Discussion 
 

In this study, we used an unbiased multivariate approach to phenotyping normal-range cranial 

vault shape, expanding on previous work on the face and brain. By doing so, we have accelerated 

the pace of discovery by comprehensively documenting the genetics underlying normal range 

cranial vault shape variation in humans. Overall, the 30 genome-wide significant loci reflect 

known aspects of cranial vault biology. Many of the genes near these loci are involved in 

craniofacial skeletal development, with RUNX2 being a core transcription factor for other skeletal 

development genes, and essential for intramembranous ossification, the process through which the 

cranial flat bones are formed81,83–89. Several other candidate genes identified near our GWAS loci 

encode activators of RUNX2 transcription, such as PTHLH and DLX581,85,89. This is a likely 

pathway through which they exert their influence on cranial vault shape. In addition, we identified 

members of the FGF, BMP, hedgehog, and Wnt signaling families, known to modulate different 

stages in the differentiation from mesenchymal stem cells to osteoblasts43,45,47,81,84,87–89,91. For 

example, SHH has been shown to promote osteoblast differentiation through the activation of 
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BMP2, which acts both upstream (through DLX5) and downstream of RUNX284,86,91. Previous 

genetic studies on cranial vault dimensions have identified variation near FGFR123,24, which, 

together with FGFR2 and FGFR3, is under direct transcriptional control of RUNX288. Though no 

association was found with FGFR1 here, we did find associations with FGF10 and FGF18, whose 

proteins are expressed in the calvarial mesenchyme and have high affinity for FGFR2 and FGFR3 

respectively84,87,92,93. It has been proposed that increased signaling by FGFs, including FGF10 and 

FGF18 drives a switch from FGFR2 to FGFR1 expression in osteoprogenitor cells, which is 

associated with the onset of osteogenic differentiation92,94,95. We also identified EN1, which was 

found to regulate proliferation and differentiation of osteoblasts by influencing responsiveness to 

FGFs through attenuation of FGFR1 and FGFR2 expression80. Moreover, we identified WNT16, 

which induces osteogenesis and suppresses osteoclast differentiation, cells involved in bone 

resorption96. 

 

During normal craniofacial development, a balance between proliferation and differentiation of 

the suture mesenchyme keeps the sutures patent to accommodate the growing brain30,97. Premature 

ossification of the cranial sutures results in craniosynostosis16. Interestingly, several genes 

identified through our GWAS, or their interacting partners have been implicated in syndromic and 

non-syndromic craniosynostosis. For example, early expression of RUNX2 induces ossification in 

the suture mesenchyme resulting in craniosynostosis98. Importantly, gain-of function coding 

variants in RUNX2 were reported in patients with midline craniosynostosis and the 

RUNX2 p.Ala84-Ala89del variant was reported to be significantly enriched in sagittal CS, 

implicating overexpression of this gene in the etiology of craniosynsotosis99. We also identified 

BCL11B, a transciption factor involved in keeping suture patency by preventing expression of 

RUNX2 and FGFR2 in the suture mesenchyme100 and for which de novo mutations have been 

observed in several craniosynostosis cases101,102. In addition, we identified PTHLH, whose 

associated receptor, PTH2R is implicated in syndromic craniosynostosis103. While no significant 

associations were found near FGFR1, FGFR2, or FGFR3, all implicated in syndromic and non-

syndromic craniosynostosis, we found associations with genes encoding their ligands, FGF10 and 

FGF1813. In addition, RAB23 mutations cause craniosynostosis through failure to repress FGF10 

expression104, and ZIC1, implicated in syndromic craniosynostosis, exerts its pathogenic effect 

through transcriptional regulation of EN1, which we identified in our GWAS105.  

 

Furthermore, we identified BMP2 and BBS9, which were both implicated as risk genes with large 

effect sizes (odds ratio > 4 for both loci) in a GWAS on non-syndromic sagittal craniosynostosis14. 

Using data from that GWAS, we performed a cross-GWAS replication of the lead SNPs near 

BMP2 and BBS9 and found bi-directional significant associations for both. Consistent with its 

effect on sagittal suture morphogenesis, we found our lead SNP near BMP2 to be associated with 

an elongation of the cranial vault. These results suggest that some variants affecting normal-range 

cranial vault shape variation may do so by attenuating the timing of cranial suture closure. In fact, 

a recent report has concluded that undiagnosed sagittal craniosynostosis is common in the general 

population, detected in 41 out of the 870 (4.71%) patients based on a retrospective review of head 

computed tomography scans, but goes unnoticed if the patient has a cranial index within the normal 

range (width/length > 0.7)106. The prevalence of this normocephalic sagittal craniosynostosis 

increased until 36 months of age, then plateaued, suggesting that, indeed, the timing of cranial 

suture closure is a source of normal-range cranial vault shape variation with milder features at 

increased age of synostosis106.  
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Though not identified in the current GWAS, several other genes (ERF107, SIX2108, SMAD6108, 

SMURF1108, MSX2109, ALX4109, TWIST1110, TCF12110, EPHA4111, and FREM1112) implicated in 

syndromic and non-syndromic forms of craniosynostosis affect ossification of the suture 

mesenchyme through modulation of BMP, FGF, or HH signaling and/or attenuation of RUNX2 

expression, highlighting the shared molecular pathways of craniosynostosis and normal cranial 

vault development. Because of this spatiotemporal overlap, variation at our 30 GWAS loci may 

work synergistically with rare variants in other relevant genes, modifying their effect. One such 

example is the suggested interaction between common variation near BMP2 and rare loss of 

function mutations in the gene encoding its inhibitor, SMAD6113. Mouse models of 

craniosynostosis have supported the idea of modifying genes, whereby mice carrying identical 

Fgfr2 mutations exhibited variable phenotype expression depending on their genetic 

background114. Taking into account such interactions may guide surgical interventions and 

treatment planning in craniosynostosis patients and ultimately lead to better outcomes. 

 

Sharing of loci between the cranial vault and the face and/or the brain was twofold. On the one 

side, shared loci harbor genes, such as ZEB274, ZIC276, DLX578, ALX177, and BMP279, with known 

roles in the neuroectoderm, which constitutes the shared cellular origin of the brain, facial skeleton, 

and frontal bone, while the other bones of the cranial vault have different cellular origins, i.e., the 

mesoderm40. In line with the hypothesis that those genes concurrently influence brain, facial and 

cranial vault shape through their common tissue origins, we detected strong sharing of genetic 

signals between the frontal segment of the cranial vault and both the brain and face, much stronger 

than any sharing of signal with the rest of the cranial vault. On the other hand, shared loci 

comprised a substantial number of genes involved in craniofacial skeletal development: EN180, 

FGF1845, BMP246,47, DLX578,81,82, RUNX247,81,83–88, PTHLH89, and TBX1590. Moreover, mutations 

in genes with involvement in the cranial neural crest or craniofacial skeletal development result in 

malformations of the cranial bones, such as in Mowat-Wilson syndrome (ZEB2), frontonasal 

dysplasia 3 (ALX1), cleidocranial dysplasia (RUNX2), Endove syndrome (EN1), cousin syndrome 

(TBX15), and sagittal craniosynostosis (BMP2). One explanation could be that these genes 

promote remodeling of the cranial skeleton to accommodate the growing brain, allowing for subtle 

changes in brain shape. This is especially plausible given that we detected spatially dependent 

sharing of genetic signals between the brain and cranial vault. Furthermore, mutations in several 

genes implicated in our GWAS result in abnormal brain morphology or size in mice, such as 

MEIS152, EN153–57, KIF658, SHH59–64, HMGA265, ALX166, ZIC267–69, and CEP5570. For example, 

mutations in KIF6 result in increased brain size, and a domed cranium, which likely results from 

the force exerted by the brain58. This raises the question whether cranium morphology influences 

brain morphology, or whether it is the other way around. Likely the influence is bidirectional, and 

starts early in development, as we have shown elevated transcriptional activity near our GWAS 

loci in CNCCs and embryonic craniofacial tissue. From then, this mutual influence may continue 

throughout development. Altogether, shared loci between the cranial vault and the face and/or 

brain comprise genes implicated in diverse molecular pathways across different stages of brain 

and craniofacial development. The exact mechanisms of action are a relevant topic for future 

studies. 

 

We examined the parietal versus frontal localization of candidate genes near our GWAS loci based 

on the pattern of their GWAS signal throughout the cranial vault segments, as well as RNAseq 
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data from murine (E15.5) parietal and frontal bones. We found several of the GWAS signals in 

cranial segments to be prominently frontal or parietal while also showing expression differences 

in the same frontal and parietal mouse tissue. These trends add additional support that the human 

GWAS-based signals are functionally rooted to their role in cranium development in mouse 

embryos, affirming that some genes may have a predominant frontal or parietal contribution to 

cranial vault shape. A possible explanation may lie in the different cellular origins of both bones, 

the frontal being derived from the cranial neural crest and the parietal from the mesoderm. 

Nonetheless, Fgf10, Zeb2, and Adamtsl3 showed a predominant parietal association with cranial 

vault shape while being downregulated in the parietal mouse tissue. This may indicate that their 

down-regulation drives phenotypic effects. Other explanations relate to how both methods record 

their signals, i.e., a GWAS captures accumulated effects over time, whereas RNAseq provides a 

snapshot in time. As such, RNAseq might fail to capture potentially more dominant effects of 

genes in different regions at different times. Furthermore, brain-related influences may 

substantially impact cranial vault shape and could not be picked up by the RNAseq. 

 

Although most multi-ancestry genome-wide mapping efforts to date have been limited to GWAS 

meta-analysis115–118 or admixture mapping119–123, several works have intensively explored the idea 

of a joint multi-ancestry GWAS35–37,124,125. In general, those works have agreed that adjustment 

for global genomic ancestry is necessary to avoid spurious results and that adjustment for local 

genomic ancestry is useful for obtaining more accurate effect sizes and better signal localization 

in the presence of LD expansion that comes with admixture126. Because the ancestral make-up of 

the ABCD study cohort is highly heterogeneous and unbalanced (with a large group of European 

ancestry individuals), we opted to adjust for local genomic ancestry to ensure accurate results of 

downstream analyses and biological interpretations. Atkinson et al. (2021) have made recent 

efforts toward multi-ancestry GWAS. Their methodology, called Tractor, splits the allelic dosage 

of a SNP by the inferred donor ancestries and estimates different effect sizes for the different 

ancestral groups in a mixed ancestral cohort (including admixed). Its implementation can 

theoretically be extended to support any number of ancestral groups but is currently limited to 

univariate traits only. As with many statistical methods, multivariate implementations are likely to 

follow. However, accurate estimation of multivariate phenotypic coefficients (i.e., latent traits) for 

different ancestral groups based on a single multi-ancestry cohort, is still likely to require many 

representatives from each ancestral group. This is therefore a limitation of the current study and 

similar studies to come. 

 

We acknowledge that although multi-ancestry, our GWAS cohort is still predominantly comprised 

of individuals with recent European ancestry. While 4,198 out of 6,772 (62.0%) cohort subjects 

were assigned European ancestry, the prevalence of European ancestry in e.g., the African 

American and Latino individuals contributed strongly to the overall local genomic European 

ancestry in the cohort. Hence, our discovery effort may be largely European-driven, and the 

improved discovery rate in our GWAS over a European-only GWAS may be due to the additional 

European-derived alleles. Nonetheless, we demonstrate that our GWAS hits are enriched for 

shared SNPs between the ancestral groups as a direct result of our multi-ancestry approach, and 

that effect sizes are mostly consistent across those groups, clearly illustrating the contribution of 

non-European inclusion. This also suggests that our GWAS successfully identified shared genetic 

components of cranial vault shape variation and implies that the phenotypic effects associated with 

our 30 lead SNPs likely hold more predictive value across populations127. With the high need for 
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transferable results from GWAS and its derived applications, such as polygenic (risk) scores, 

running a single joint multi-ancestry and admixed GWAS as opposed to a stratified analysis may 

be a direct way to obtain more widely generalizable results. 

 

Materials and Methods 
 

Discovery Cohort 
The Adolescent Brain Cognitive Development (ABCD) study128 is a longitudinal study following 

brain development and health through adolescence. From data release 3.0 (February 2020), high-

quality full-head MRIs were available for 11,702 participants. Following the ABCD 

recommendations for image inclusion, 471 individuals were removed from the dataset. 

Anthropometric data, including age, sex, weight, and height were available on 11,787 individuals. 

Individuals with missing data (n = 11) or extreme outlier values (Z-score > 6; n = 14) for any of 

these variables were excluded. All participants were between 9 and 10 years old at the time of data 

collection and represent diverse ancestral backgrounds. 

 

For this study, Quality Controlled Genotype Data from the ABCD cohort was downloaded as 

ABCD_release3.0_QCed Data files (.bed, .fam, .bim). It contained 11,099 unique individuals and 

516,598 genetic variants aligned to the positive strand of build GRCh37.  Subject information such 

as interview age, sex at birth, height, weight, BMI, and MRI information were extracted from the 

compiled RDS file (nda3.0.Rds) in the Data Exploration and Analysis Portal (DEAP) (cite - 

https://nda.nih.gov/study.html?id=796).  

 

Genotyping and Imputation of Discovery Cohort 
The ABCD data files were first converted to a variant call file (VCF) using PLINK129 2.0. 

Reference SNP cluster IDs (rsIDs) were added using Bcftools130,131 annotate and dbSNP154.hg37. 

The ABCD data was then lifted and sorted from build GRCh37 to GRCh38 using Bcftools and in-

house scripts. SNPs and indels were merged and only SNPs (n = 502,882) were kept for 

downstream phasing and imputation per chromosome 1–22. Phasing was performed using default 

parameter settings from SHAPEIT v4.2.2132 and the New York Genome Center (NYGC) 30x-1000 

genomes-phased-dataset as reference, which can be found at 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/workin

g/20201028_3202_phased/). 

 

The reference data file used for imputation was prepared by the Iliad genomic data pipeline 

(submitted). In short, the final reference dataset was compiled with data from the Human Genome 

Diversity Project (HGDP)133 and the 1000 Genomes Project134. HGDP samples were retrieved as 

individual sequence alignment files in CRAM format 

(https://ftp.sra.ebi.ac.uk/1000g/ftp/data_collections/HGDP/data/). The samples underwent variant 

calling via Bcftools ‘mpileup’ and ‘call’ commands for each chromosome. The HGDP dataset 

alone consists of 828 individuals from 54 populations. The data was reduced in variant size using 

an annotations list provided by the NYGC135 which was input as a regions file. Finally, each HGDP 

combined chromosome VCF was phased and then merged with its chromosomal representative 

from the NYGC 30x-1000 genomes-phased-datasets to create a more globally represented 
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reference set (NYGC1KGEN-HGDP) of 61,876,281 variants (including X chromosome) from 

4,030 Individuals in 80 populations that was used for imputation. 

 

Imputation of the ABCD data was performed using IMPUTE5 v1.1.5136 with SHAPEIT4 b38 

genetic maps and the combined NYGC1KGEN-HGDP reference dataset using default parameter 

settings. Imputation regions that would maximize the use of both the reference and target sets were 

generated using imp5Chunker_v1.1.5136. Setting a threshold imputation INFO score of > 0.3, an 

ABCD imputed dataset of 11,099 individuals with n = 49,745,078 variants was generated. 

Following the ABCD recommendations, 82 individuals that were genotyped on plate 461 were 

excluded for further analysis. 

 

Genomic Ancestry Inference 

Global Ancestry 
Genotypes of unrelated ABCD participants (using King Robust137 with a cutoff of 0.0442) were 

merged with 1000G134 Phase 3 and HGDP133 genotypes of unrelated individuals. Markers in 

common were pruned iteratively, using PLINK129 2.0, using a window of 1000 markers, a step 

size of 50 markers and an r2 cutoff of 0.2 until no more markers were being excluded. The resulting 

dataset was subjected to PCA to build an ancestry space, in which the relatives were then also 

projected. The first 10 PCs were used to express global genomic ancestry for each ABCD 

participant. 

 

Local Ancestry 
We defined local genomic ancestry to be discrete and assumed that each local genetic fragment 

can be traced back to a single ancestral population. In order to reduce model complexity and avoid 

potentially counterproductive errors, we limited local ancestry inference to three ancestral groups: 

European, African and American. With these groups, including any admixture thereof, we were 

able to include most of the ABCD participants, including African Americans, and Latinos. The 

following paragraphs describe how ABCD participants and ancestry references were selected for 

local ancestry inference. 

 

In order to refine the combined set of 1000G and HGDP reference ancestry samples, we applied 

the ADMIXTURE138 software in an unsupervised approach to estimate the genetic ancestry 

proportions of the individuals within the reference set for a given number of populations, K. The 

K:6 model was chosen as it best reflected continental distribution. It also allowed us to discern the 

samples from Oceania as one distinct ancestry component among the six (see cluster 5 in Extended 

Data Fig 10). 

  

Further analysis of the six co-ancestry proportions for this reference data included K-means 

clustering and sample filtering based on each designated cluster’s main ancestry component to 

decrease the effect of noise with the clusters and create ‘anchor’ population reference data. K-

means elkan algorithm from sklearn.cluster library on Python v3.7.6 designated each reference 

sample into one of six clusters based on their co-ancestry components. To develop these clusters 

even further, a filter was applied to each cluster for retention of samples that displayed greater than 

the average proportion of the cluster’s main ancestry component (e.g., if Cluster 0 had a K0 

ancestry component average of 0.90 across all the Cluster 0 samples, only samples with a 
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proportion of greater than 0.90 would be kept as a reference anchor). This effectively created the 

desired reference data of anchors to estimate the unknown biogeographical ancestries of the ABCD 

subjects. Analyses of the anchor reference data are shown in Extended Data Fig 10 and sample 

sizes of the anchor reference data are provided in Extended Data Table 1. The European, African, 

and American anchor references were selected as ancestry representatives for local ancestry 

inference. 

 

The supervised technique in ADMIXTURE138 was used to estimate the co-ancestry proportions of 

the entire ABCD dataset from the anchor populations with a K:6 model. There were n = 251,073 

variants after additional, independent QC (--hwe 1e-50 ‘midp’ --maf 0.01) was performed on 

ABCD subjects prior to merging with the reference anchor samples. The co-ancestry proportions 

output from the supervised K:6 test was used to filter ABCD participants. Specifically, we retained 

10,334 (10,334 / 11,099; 93.1%) participants with > 90% joint European, African, and Indigenous 

American ancestry proportions for local ancestry inference. To identify European-ancestry 

participants, the co-ancestry proportions were subjected to K-means clustering, followed by 

additional filtering, similar to what was done to the anchor references as mentioned above, yielding 

5,746 participants with a nearly wholly European ancestry component. 

 

Genome-wide local ancestry was then inferred for ancestry-pre-filtered ABCD participants, using 

the 1000G and HGDP anchor references from the European (EUR; n = 613), African (AFR; n = 

545), and Indigenous American (AMR; n = 105) clusters as ancestry representatives. This was 

done using RFMIX139 v2 with one expectation-maximization step, a window size of 0.2 cM, and 

a terminal node size of 5. The expectation-maximization step reanalyzed admixture in the ancestry 

representatives to improve the ability to distinguish ancestries. A genomic map, to inform of switch 

positions was obtained from the Eagle140 software website. 

 

We observed good consistency between global ancestry estimated by ADMIXTURE138 and 

RFMIX139 (Pearson correlation coefficient > 0.998 for all ancestries). In addition, genome-wide 

local ancestry proportions doubled as a quality control for imputation, which to date is still a non-

trivial task for multi-ancestry datasets. We reasoned that any systematic bias in haplotype matching 

during the imputation process would result in a detectable change in local genomic ancestry. 

Overall, genome-wide local ancestry proportions were consistent, except for some centromeric 

(e.g., chromosome 9) and telomeric (e.g., chromosome 21, 22) regions, as well as some known 

regions of long-range LD (e.g., chromosome 6), some of which have been previously reported to 

result in local ancestry biases126,141–143 (Extended Data Fig 11). In addition, no anomalies in local 

ancestry were detected at the 30 genome-wide significant GWAS loci (Extended Data Fig 11). 

 

Image Acquisition, Vault Phenotyping Strategy, and Quality Control 

3D Volumetric Registration 
Minimally processed T1w structural MRI data were downloaded from the ABCD data repository. 

Image preprocessing steps include distortion correction, movement correction, resampling (1mm 

isotropic voxels), alignment to standard space, and initial quality control144. Facial surfaces can be 

segmented from MR images using intensity thresholding-based approaches. However, resulting 

segmentations are prone to errors due to noise, partial volume effect, placeholders, and MR bias 

fields. More specifically, the ABCD MRI data contains artifacts, such as missing parts and noise, 

that are unstructured over the different subjects and acquisitions. Hence, these artifacts can be 
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reduced prior to segmentation, given a sufficient number of independent samples. Instead of re-

acquiring MRI data for the same ‘target’ subject and averaging them out to remove the artifacts, 

we generated virtual re-acquisitions by an inter-subject intra-MRI non-rigid image-based 

registration approach. A total of 300 MRI scans (‘floating’ scans) – matched in terms of sex, 

height, weight, and genomic ancestry – were registered to a single target MRI scan using Elastix 

(SimpleITK library145  in Python) with the Param0000 parameter map (affine and B-spline)146. The 

use of 300 floating scans per ‘target’ image was chosen based on visual inspection of the results 

while controlling for computational time and resources. The resulting, denoised consensus ‘target’ 

image was defined as the voxel-per-voxel median of the resulting warped ‘floating’ images.  

 

3D Surface Registration 
Based on the work of Matthews et al. (2018)147 a full head template (n = 28,218 vertices) was 

constructed as the average of the expected head shapes of boys and girls at 9.5 years old, i.e., those 

closest in age to our study cohort. The cranial vault (n = 11,410 vertices) was manually delineated 

on this template, encompassing the supraorbital ridge and extending towards the occipital bone 

(Extended Data Fig 1). 

 

Denoised MR scans were imported as .nii files into Matlab (version 2021a) and the craniofacial 

surface was extracted as a mesh using the isosurface function (Matlab function: isosurface). Full 

head surfaces were cleaned by cropping internal head structures, also captured by the volumetric 

imaging protocol, based on the distance of each vertex to the centroid. The full head template was 

then registered to the extracted craniofacial surfaces using MeshMonk148 following a scaled rigid 

and non-rigid registration step. Prior to rigid registration, an initial rough alignment was performed 

to ensure a similar orientation of both template and target scans. Because all MR scans were 

already aligned to standard space during image preprocessing, this could be done by manually 

placing five positioning landmarks on 100 randomly selected target surfaces and transferring the 

averages of these landmarks to all individual scans.  

 

Visual inspection of the data showed that compression of soft tissue structures caused by external 

fixation systems during the MRI scanning procedure was primarily observed near the ears, cheeks, 

and chin. To remove such distortions, ears were flagged as outliers during Meshmonk surface 

registration. In addition, while focusing on the face and cranial vault (i.e., the most reliable parts 

of the face), erroneous regions were interpolated using thin-plate splines in Matlab. 

 

Image Quality Control 
For all participants, the cranial vault shape was extracted from the full head meshes based on the 

selected region in Extended Data Fig 1. Images were manually inspected and labeled according to 

the type of error/artifact observed (e.g., partially missing data due to cropping of the MRI scans, 

external structures such as goggles, and remaining distortions of the head surface). The set of good-

quality images was then further inspected for outliers due to mapping errors or still overlooked 

imaging artefacts. Similar to previous works29,31, we measured the Mahalanobis distance for each 

cranial vault to the overall average cranial vault in a shape space spanned by PCs that capture 98% 

of total shape variation. Based on the distribution of Mahalanobis distances, a z-score was 

calculated for each image, and only images with an absolute z-score lower than 1.5 were 

considered for further analysis, yielding a set of 9,015 well-QCed images. 
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Global-to-Local Segmentation of Cranial Vault Shape 
To study genetic effects on cranial vault variation at both a global and local level, we performed a 

data-driven hierarchical segmentation on symmetrized cranial vault shape, similar to earlier work 

on facial and brain shape29,31,32. First, the meshes were adjusted for age, sex, height, weight, cranial 

size, the scanner (encoded by dummy variables), and the 10 first genomic PCs.  

 

Next, a vertex-wise similarity matrix was constructed by measuring the correlation of the distance-

to-centroid between each pair of vertices. This measure was augmented with pairwise Euclidian 

distance (proximity in 3D) to make nearby vertices more similar to enforce connectivity and 

coherence within the segments. Specifically, both measures were normalized separately so that the 

most alike pair of vertices (highest correlation or smallest distance) got a value of 1, and the least 

alike pair got a value of 0. These were then combined using a weighted sum of 60% correlational 

similarity and 40% proximity-based similarity. These percentages were chosen based on 

connectivity and coherence of segments resulting from different weighted sums of both measures 

at 5% intervals. Hierarchical spectral clustering29 was carried out based on the resulting similarity 

matrix. At each step the vertices were split into two maximally similar clusters, resulting in 1, 2, 

4, and 8 non-overlapping segments at hierarchical levels 1, 2, 3, and 4 respectively. For each of 

the resulting segments, independently of the other segments, the configurations were aligned using 

generalized Procrustes analysis (GPA) and subjected to PCA. Parallel analysis149,150 was used to 

determine the number of PCs required to explain the major phenotypic variance with fewer 

variables. 

 

Final Discovery GWAS Cohort 
The intersect of ABCD participants which satisfied covariate quality control, genotype quality 

control (n = 11,017), ancestral pre-filtering (n = 10,334), and image quality control (n = 9,015) 

yielded 8,217 participants. From this set, we removed 1,445 relatives using the King Robust137 

software with a cutoff of 0.0442 (3rd degree relatives), resulting in a final GWAS sample size of 

6,772 of which 4,198 were assigned European ancestry and 2,504 non-European, predominantly 

mixed ancestry. Imputed variants of ancestry-selected participants (n = 10,334) were filtered for 

SNPs only, with MAF > 1% and missing genotyping rate > 95%, resulting in a final set of 

10,647,531 SNPs. 

 

Joint Multi-Ancestry and Admixed GWAS Approach 
At each SNP, cranial vault shape across all 15 segments was adjusted for the assigned local 

ancestral origin of its respective genomic region, coded additively for two out of three ancestries 

(European, African, and Indigenous American ancestry). This adjustment for local genomic 

ancestry aimed to remove phenotypic differences due to ancestry-associated genotyped or 

ungenotyped variation, such that any phenotypic effect measured is dose-dependent on the SNP, 

independent of genomic ancestry (globally and locally). In other words, we wanted to ensure that 

we found genotype-phenotype associations at marker-level resolution to ensure accuracy of 

downstream analyses. 

 

Under the reduced model, the residual phenotypic variance in each of 15 cranial vault segments 

was tested for association with the presence of the major allele, coded based on the additive genetic 

model. This was done using CCA, which extracts the linear combination of PCs maximally 
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correlated with the SNP, representing a multidimensional shape deformation in the PC space. 

Significance was tested using a right-tailed chi square test with degrees of freedom equal to the 

number of phenotypic PCs (Extended Data Fig 12). 

 

Genome-wide significance of genotype-phenotype associations was declared at the traditional 

threshold of P < 5e-8. However, because of the increased multiple-testing burden introduced by 

multiple GWAS runs on different cranial vault segments, we empirically estimated the effective 

number of independent tests based on genotype permutations, following the procedure of Kanai 

(2016)151. Briefly, for a single SNP we randomly permuted the genotypes 10,000 times, essentially 

creating the distribution of chance associations with cranial vault shape under the null hypothesis. 

Each permuted genotype was tested for association with the 15 cranial vault segments and the 

lowest P-value was retained. We then divided 0.05 by the 5th percentile of the resulting 10,000 P-

values to estimate the number of effective GWAS runs performed. This was repeated for 500 

random SNPs, resulting in an average effective number of phenotypes of 11.44 (SD: 0.56), and a 

subsequent ‘study-wide’ significance threshold of P < 4.37e-9 (i.e., 5e-8 / 11.44). 

 

Peak Detection and Annotation 
Peak detection was performed in three steps starting from 1,658 SNPs that reached genome-wide 

significance in the GWASs. Starting from the most significant SNP, all SNPs within 250 kb, as 

well as those within 1 Mb and in LD (r2 > 0.01) were clumped into a single locus represented by 

the most significant SNP (lead SNP). This was repeated until all SNPs were assigned a locus (n = 

32). Next, any two loci were merged into a single locus if the lead SNPs were within 10 Mb and 

in LD with r2 > 0.01. The lead SNP with the lowest P-value was chosen to represent the newly 

merged locus. Lastly, for robustness any singleton SNP below the study-wide significance 

threshold was removed (n = 0). This resulted in 30 genome-wide and 24 study-wide significant 

genomic loci associated with cranial vault shape. LD was calculated using the genotypes of the 

GWAS cohort. LocusZoom152 plots for all 30 loci are available in the Supplementary Data 1. 

 

To study functional enrichments of the genes near our 30 GWAS loci, we performed Gene 

Ontology (GO) enrichment analysis using GREAT38 v4.0.4 with default settings. Significance was 

determined at 5% FDR by both binomial and hypergeometric tests. A set of candidate genes at 

each locus was compiled by combining the genes annotated by GREAT38, FUMA153 v1.3.7, as 

well as manually annotated genes within 500 kb of the lead SNP (Supplementary Table 6). Next, 

the most likely candidate gene was assigned based on the available literature (Supplementary Table 

7 and Supplementary Table 8). We primarily relied on evidence of involvement in craniofacial 

development from mouse models and human craniofacial syndromes, as well as previous 

implications in GWAS on the cranial vault or face (the forehead in particular). 

 

Calculating Genomic Inflation 
Following the original definition of the genomic inflation factor154, we calculated an overall 

inflation factor for our combined set of 15 GWASs (one corresponding to each cranial vault 

segment) as the median observed test statistic divided by the median expected test statistic under 

the null hypothesis (i.e., no genotype-phenotype association). As SNPs in the combined GWAS 

were represented by their lowest P-value across the 15 segments, a null distribution of P-values 

was obtained empirically by repeating the GWAS with randomly permuted genotypes for each 
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SNP and taking its lowest P-value across the segments. Because P-values corresponding to each 

segment were derived from chi square distributions with different degrees of freedom, we obtained 

a normalized test statistic, 𝜈, form the chi square statistics following Naqvi et al. (2021)32 as 𝜈 =

𝜒𝐷
2 𝐷(1 +

𝜒𝐷
2

𝑁
)⁄ , with 𝐷, the degrees of freedom, and 𝑁, the sample size. The genomic inflation 

factor was then calculated as the median observed test statistic divided by the median test statistic 

from the empirical null distribution. 

 

Replication of Vault Shape Variants 
The UK Biobank33 contains genetic and phenotypic data on approximately 500,000 UK volunteers, 

aged 40-70 at recruitment. Full-head T1-weighted MR images were available for 39,609 subjects 

from release v1.5 (August 2018) and release v2.3 (October 2020) combined. These scans were 

obtained in anonymized form, meaning that the entire face and regions around the ears were 

removed. 

 

The MRI data in NifTi format was imported into Matlab (version 2021a), and the isosurface was 

extracted (function: isosurface with an iso value of 250) from each image, followed by taking the 

concave hull (function: boundary with shrink factor set to 1) to remove internal structures. A 

cranial vault template was aligned to each mesh based on four landmarks located at the most 

superior, posterior, and lateral (left/right) points of the head. We then performed rigid and non-

rigid surface registration, using MeshMonk148 as follows. Because of data anonymization, MRI 

scans were severely damaged near the regions covering the face and ears, partially overlapping 

with the cranial vault. To extrapolate, or re-complete, the cranial vault shapes in the sample, we 

used a two-step approach. First, an active shape model155, constructed from the processed ABCD 

vault data was used to constrain the non-rigid deformations of the template. I.e., the active shape 

model replaced the more general freeform non-rigid deformation model in the MeshMonk148 

toolbox. Second, to detect the general regions where the cranial vault surfaces were damaged, the 

template was non-rigidly mapped onto each of 1,000 randomly selected images using the active 

shape model. Outlier probabilities for each vertex, obtained from the non-rigid surface registration 

were aggregated across all mapped images and were then used to manually outline erroneous 

regions (Extended Data Fig 13). Next, the non-rigid surface registration was repeated as above for 

all 39,609 images, but this time, delineated regions were restricted from contributing to the 

deformation of the template, and therefore the mapping process. Instead, these regions were being 

deformed based on neighboring points. 

 

The quality of the mapping relied on the rigid alignment of target and template, which in turn was 

hindered by the damage done to the images. In some cases, this caused the template to rotate 

incorrectly. During image quality control, rotations measured along all three orthogonal directions 

were combined into a single chi square statistic with 3 degrees of freedom. This statistic was then 

normalized by taking the right-tailed cumulative density so that unrotated images were assigned 

1, asymptotically decreasing to 0 for heavily rotated images. Using a cut-off value of 0.8, 17,959 

(unrotated) images were retained (Extended Data Fig 14). 

 

All subjects with missing covariates or covariate outliers (> 6 SD) were removed. Ancestral 

outliers (> 3 SD) were removed based on the 4 first genomic PCs (‘elbow’ of Scree plot). The 

remaining cranial vaults (n = 17,214) were adjusted for age, age squared, weight, height, sex, 
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cranial size, scanner, and the first 10 genomic PCs using PLSR. The residuals were added to the 

average ABCD cranial vault shape, followed by applying the same global-to-local segmentation 

as defined in the ABCD cohort. Segments were then independently aligned using GPA and 

projected into the corresponding ABCD shape space per segment. Subjects without genotype data, 

or with more than 5% missingness were omitted from further analysis, as well as relatives up to 

the third degree identified using the King137 robust algorithm with a cutoff of 0.0442. This resulted 

in a sample size of 16,947 for the final replication cohort. Out of the 30 genome-wide significant 

discovery lead SNPs, 29 overlapped with the replication dataset directly; rs34898775 was selected 

as a proxy SNP for rs202055590 (located 1.1 kb away, with r2 of 0.997 in all combined 1000G 

populations). 

 

To measure the presence of the associated shape trait from the discovery panel (ABCD), the 

replication panel (UK Biobank) was projected onto the latent shape trait, identified by CCA, for a 

particular SNP in a particular cranial vault segment. The resulting univariate scores were 

calculated for each lead SNP/segment pair (n = 108) for which significant (P < 5e-8) associations 

were found. The F-statistic from a linear regression was calculated to determine the significance 

of association between the projection scores and the SNP genotypes for all 108 SNP-segment 

combinations. A 5% FDR-adjusted P-value threshold of P < 0.0244 was calculated using the 

Benjamini-Hochberg156 method, yielding 55/108 significant tests, and 20/30 significant SNP 

replications in at least one cranial vault segment. 

 

FST Enrichment Analysis 
The Weir and Cockerham estimators157 for Wright’s fixation index, FST were calculated per SNP 

between European (EUR) and African (AFR), and EUR and Indigenous American (AMR) samples 

in the 1000G Phase 3 dataset using vcftools158 v0.1.17. Next, FST enrichment analysis34 was 

performed on our set of GWAS lead SNPs to see if the GWAS signals were significantly enriched 

for high or low FST SNPs. The average FST across the lead SNPs was compared to a distribution of 

10,000 averaged FST values, each calculated based on the same number of SNPs with matched 

MAF and LD scores39. To match the LD scores to the GWAS cohort, covariate-adjusted LD scores 

were calculated based on the 6,772 GWAS cohort subjects with a window size of 20 cM (--ld-

wind-cm 20), and after adjusting genotypes for the first 10 genomic PCs using scripts of Luo et al. 

(2021)159. For matching SNPs, the range of MAFs and LD scores was divided into 20 equally 

spaced quantiles, and a matched SNP was selected at random from the same bins as the original 

SNP. Significance of the enrichment was declared if the observed average FST was lower than the 

2.5th percentile or higher than the 97.5th percentile of the null distribution (5% alpha). 

 

Calculating Heterogeneity of Effect Size 
For each of the 30 lead SNPs, we performed 2 × 2 × 2 tests of effect size heterogeneity between 

ancestry groups, with each test imposing different restrictions on the generative model given by 

Eq. 1. First, we considered univariate versus multivariate SNP-trait associations. Under the 

univariate (𝑌̅ ∈ ℝ𝑛𝑥1, with 𝑛 the sample size) scenario, the latent associated shape trait from the 

main GWAS was tested, while under the multivariate (𝑌̅ ∈ ℝ𝑛𝑥𝑚, with 𝑚 the number of 

phenotypic dimensions) scenario, the latent trait was free to vary. Second, we considered both 2-

way and 3-way heterogeneity of effect size. Under the 2-way scenario, only African versus 

European effect size heterogeneity (𝛽3, 𝛽4 ∈ ℝ vs. 𝛽3 = 𝛽4 ∈ ℝ, with 𝛽2 = 𝛽5 = 0) was tested, 
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and under the 3-way scenario, African versus European versus Indigenous American effect size 

heterogeneity (𝛽3, 𝛽4, 𝛽5 ∈ ℝ vs. 𝛽3 = 𝛽4 = 𝛽5 ∈ ℝ) was tested. Third, we looked for 

heterogeneous effects sizes in the most significantly associated cranial vault segment, as well as 

all significant (P < 5e-8) segments. Under the best segment scenario, heterogeneity of effect size 

was only tested in the segment most significantly associated with the SNP in the GWAS, while 

under the significant segments scenario, heterogeneity of effect size was tested in all segments 

where that SNP was significant (P < 5e-8) in the GWAS, and the lowest 5% FDR-adjusted P-value 

was kept. 

 

𝑌̅ = 𝛽0 + 𝛽1𝑎𝐸𝑈𝑅 + 𝛽2𝑎𝐴𝐹𝑅 + 𝛽3𝑥𝐸𝑈𝑅 + 𝛽4𝑥𝐴𝐹𝑅 + 𝛽5𝑥𝐴𝑀𝑅  (1) 

 

To test for statistical significance, we considered a full model (with parameters 𝜃), which included 

different effect sizes for different ancestries, and a constrained model (with parameters 𝜃0) with 

equal contributions from all ancestries. Significance of −2 ∗ ln (
ℒ𝜃0

ℒ𝜃
) was determined based on the 

upper tail of a 𝜒2 distribution with degrees of freedom equal to the difference in number of 

parameters estimated between the nested models. Observe that the constraint model represents the 

standard GWAS setting, albeit with additional adjustment for local ancestry, where a biallelic SNP 

is modeled under the 27dditivee genetic model, i.e., its state is modeled as 0, 1, or 2, counting the 

major allele. The full model is equivalent to tractor by Atkinson et al. (2021)125, where alleles are 

assigned a donor ancestry, and are then modeled under the additive genetic model per ancestry. 

Tractor scripts were used to extract ancestry-specific allelic dosages, 𝑥𝑖. Local ancestry is modeled 

by 𝑎𝑖. The phenotype, 𝑌̅ was pre-adjusted for all covariates, including global genomic ancestry 

using PLSR. 

 

Sensitivity Analysis of Genome-Wide Associations in a Single-Ancestry versus Multi-
ancestry Cohort 
With the aim of quantifying the power gain from including 2,504 non-European ancestry subjects 

in our GWAS, a second GWAS run was performed on only those subjects that were assigned 

European ancestry (n = 4,198), being the single largest ancestral group within the cohort. Unlike 

the full, multi-ancestry GWAS, here, phenotypes were not adjusted for local ancestry. The GWAS 

was otherwise run analogously to the multi-ancestry GWAS. At each genome-wide significant 

locus, the detection power denoted by the P-value was compared between both GWASs. Because 

of the differences in lead SNPs at corresponding loci, we considered two different lead SNPs to 

tag the same locus if they were within 250 kb and in LD (r2 > 0.2). 

 

Localization of Genetic Effects Using RNA-seq Data from E15.5 Mouse Cranial Vault 

Animals and RNAseq 
Timed-pregnant female mice were purchased from Charles River Laboratory. The E15.5 embryos 

were collected via C-section after CO2 euthanasia of the pregnant dam. All animal husbandry, 

procedures and protocols were approved by and performed under the oversight of the University 

of Pittsburgh Institutional Animal Care and Use Committee. We dissected 9 E15.5 skull vaults 

along the coronal suture into the frontal (frontal bones and metopic suture), and the parietal 

(parietal bones and sagittal suture) components. Each biological replicate consists of the frontal 

and parietal components from 3 embryos. The tissue was lysed using with Trizol (Invitrogen), 
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followed by additional homogenization using the Qiashredder and then the RNA was extracted 

with the Qiagen RNAeasy kit. Axeq made and sequenced the libraries from 6 biological replicates 

(n = 3 frontal, and n = 3 parietal) as 100 bp paired end reads on an Illumina HiSeq2000 sequencer 

(Axeq Technologies, South Korea) (Wan et al. submitted). 

 

Quality Control and Read Alignment: 
The resulting 6 FASTQ formatted paired-read sequence files produced by Axeq Technologies 

were subsequently downloaded and visually inspected for quality control purposes with 

FASTQC160 v0.11.9. Read trimming was performed by Trimmomatic v0.32161 using a sliding 

window of four nucleotides and a mean Phred score (Q value) greater than 20 

(SLIDINGWINDOW:4:20) corresponding to an error probability of 0.01 over the four nucleotides. 

Sequences shorter than 25 nucleotides (MINLEN:25) were removed. 

 

The resulting trimmed reads were then aligned to the Ensembl primary assembly mouse reference 

Genome, GRCm39 (available at: http://ftp.ensembl.org/pub/release-

106/fasta/mus_musculus/dna/), utilizing the GRCm39 gene annotation file (available at: 

http://ftp.ensembl.org/pub/release-106/gtf/mus_musculus/) using the STAR162 sequence aligner 

version 2.7.10a. Alignment for the 6 trimmed paired-end reads showed an average uniquely 

mapped read percentage of 94.3% ± 0.2%.  

 

Read Counting and Differential Expression Analysis 
Gene expression quantification was carried out using the GenomicAlignment R package163 set with 

the following options: Mode = Union, singleEnd = FALSE, ignore.strand = TRUE, fragments = 

FALSE. Normalization of differentially expressed gene counts were based on five stable 

housekeeping genes (Actb, Gapdh, Rer1, Rpl27, and Rpl13a) identified in the Ho and Patrizi, 2021 

mouse cranium and brain development study164. To improve visualization of gene expression, the 

normalized gene counts were variance stabilizing transformed (VST),165–167 which is roughly 

similar to transforming the data to the log2 scale, allowing for better visualizations. To allow for 

easier comparisons between genes, especially for the combined expression plots, the mean 

difference in expression, hereafter referred to as ‘mean difference’, of the sample grouping to all 

other (parietal and frontal) sample groupings were calculated and plotted. This allows the plots to 

report the ~log2 expression change of each tissue-specific group (e.g., Sample Group 1 is sampled 

from the frontal region and thus labelled as ‘frontal’) to the mean of all other samples (e.g., the 

mean of Sample Groups 1-6). The R package DESeq2 1.36165,168 was used to analyze the 

expression data using the DESeq function165,168, which transforms read counts based on the 

estimation of size factors and dispersion, fits to a negative binomial GLM, performs a Wald 

significance test, and assesses based on a cutoff false discovery rate of < 0.05 using the Benjamini-

Hochberg procedure169. All bioinformatic analyses were performed using R-4.2.1 and 

Bioconductor170. 

 

Classification of Parietal and Frontal Character of GWAS Cranial Segments 
As part of the validation of GWAS hits via differential analysis, we compared the phenotypes 

utilized in the GWAS to those of the two tissues sampled in the expression analysis. Since the 

expression analysis was based on tissues taken from the parietal and frontal areas of the mouse 

embryo while the GWAS utilized 15 cranial vault segments, to directly compare the phenotypes 

we classified the 15 GWAS segments as containing either primarily ‘frontal’ or primarily ‘parietal’ 
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content. As some segments, like segment 1, contain both parietal and frontal content, those 

segments were labelled as ‘both.’ Subsequently, this allowed candidate genes near the GWAS lead 

SNPs to be classified as either frontal, parietal, or a combination of both parietal and frontal, 

depending on the cranial vault segment in which the lead SNPs were initially found. One issue of 

this classification scheme is that lead SNPs were not always identified in the most phenotypically 

specific cranial vault segment (i.e., hierarchical levels 3 or 4). To remedy this, we performed 

several classifications. One classification scheme, labelled as ‘most significant hit’, based the 

classification of candidate genes on the most significant segment in which it was found (i.e., based 

on the classification of segments found in hierarchical levels 1-4). The other classification, labelled 

as ‘most specific hit’, utilized the more phenotypically specific segments in which the candidate 

gene was either found in or directly related to. In this classification, a label with equal or higher 

specificity was obtained recursively by considering the most significantly associated ‘child’ 

segment until the encountered segment comprised solely of frontal or parietal content or until 

hierarchical level four was reached. As an example, GWAS lead SNP rs17479393 was identified 

in segments 1, 2, 3, 7, 8, and 15. The ‘most significant hit’ classification simply takes the most 

significant segment, segment 1 in this example, and assigns a classification. As segment 1 

encompasses both the parietal and frontal regions, it is labelled as ‘both’. The ‘most specific hit’ 

classification starts at segment 1 and follows the strongest association of its ‘child’ segments to 

reach segment 8 (through segments 2 and 4), which contains solely parietal bone content. 

 

Comparison of Human Candidate Genes to Mouse Differentially Expressed Genes 
Frontal and parietal tissue gene expression from mice embryos were analyzed to generate 

expression profiles that were ultimately compared to human candidate genes located near lead 

SNPs identified in the GWAS analysis. To make this comparison possible, gene symbol and 

human homolog mappings were carried out on mouse Ensembl identification IDs using the 

Biomart R package171.  

 

Enrichment for Enhancer Activity 
Signals of acetylation of histone H3 on lysine K27 (H3K27ac) in the vicinity of the 30 genome-

wide significant lead SNPs were calculated as described in White, Indencleef et al. (2021). See 

White & Indencleef et al. (2021) for details on datasets analyzed. Briefly, to compare H3K27ac 

signal in the vicinity of the genome-wide significant lead SNPs between cell-types in an unbiased 

manner, we divided the genome into 20 kb windows, and calculated H3K27ac reads per million 

(RPM) from each aligned read (bam or tagAlign) file in each window using bedtools coverage 

(v2.27.1). We then performed quantile normalization (using the normalize.quantiles function from 

the preprocessCore package, v3.7) on the matrix of 154,613 windows × 133 ChIP-seq datasets. 

We then selected the windows containing each of the 30 genome-wide significant lead SNPs. 

 

Genetic Overlap with Brain and Facial Traits 
To quantify sharing of genetic signals between a pair of GWAS, we calculated Spearman 

correlations as described in Naqvi et al. (2021)32. Briefly, SNPs were first selected to overlap with 

the HapMap3 SNPs172, and SNPs within the major histocompatibility complex were removed. We 

then organized the remaining SNPs in 1,725 LD blocks that are approximately independent in 

individuals of European ancestry173. The mean SNP -log10(P-value) was calculated per block, and 
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a rank-based Spearman correlation was calculated on the averaged association score per block. A 

standard error of the correlation coefficient was estimated based on 100 bootstrapping cycles. 

 

Testing Variants for Role in Non-syndromic Craniosynostosis 
We tested for genotype-phenotype associations between our 30 genome-wide significant SNPs 

and craniosynostosis based on a dataset comprising whole genome sequence data (WGS; dbGaP, 

phs001806.v1.p1) from families with children affected with four different types of 

craniosynostosis – coronal (72 trios; n = 276), lambdoidal (17 trios; n = 51), metopic (62 trios; n 

= 186), and sagittal (63 trios; n = 189). These families are trios with sequence data on an affected 

child and two unaffected parents. Trios were analyzed using the transmission disequilibrium test 

(TDT) via PLINK129.  Trios were only analyzed with trios of the same phenotype (i.e., metopic 

craniosynostosis families were only analyzed with other metopic families) so we had four discrete 

analyses based on the four types of craniosynostosis. We then checked the results of the 30 

genome-wide significant cranial vault SNPs in these four analyses. 
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Extended Data 
 

 
Extended Data Fig 1 Cranial vault surface atlas. The cranial vault surface (cyan) as defined in this study, encompassing the 

supraorbital ridge and extending towards the occipital bone. Depicted on the full head mesh template. 
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Extended Data Fig 2 Localization of genome-wide significant cranial vault shape loci. Significance is declared at P < 5e-8. 

Left to right: the number of significant loci in each cranial vault segment; the number of loci reaching their lowest P value in each 

segment; the percentage of significant loci also being the most significant in each segment. 

 

 
Extended Data Fig 3 Observed versus null-distributed genotype-phenotype associations across the FST spectrum. 

Distributions of observed (red) and null-distributed (blue) normalized test statistics (top row) with corresponding GC values and 

QQ-plots (bottom row) for subsets of SNPs statisfying indicated FST thresholds. For each SNP, both the observed and null-

distributed P-values together with their test statistics represent the best genotype-phenotype association across the 15 cranial vault 

segments (Methods). Panels for FST ≤ 1 represent the full GWAS. 
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Extended Data Fig 4 Segment-wise replication rate in the UK Biobank. Fraction of significant (P < 5e-8) loci per cranial vault 

segment that replicated at 5% FDR. Dashed line represents the overall replication rate (55/108 SNP-segment pairs). No significant 

loci were found to be associated with segments 9 and 14 during discovery. Segments 5 and its direct descendent, segment 11, both 

contain the forehead, which was severely damaged in the UK Biobank sample. 

 

 

 
Extended Data Fig 5 Effect size heterogeneity of genome-wide cranial vault shape loci. In total, we used 2 × 2 × 2 scenarios 

to test effect size heterogeneity. UV/MV: Under the ‘univariate (UV) scenario’, the latent associated shape trait from the main 

GWAS was tested. Under the ‘multivariate (MV) scenario’, the shape trait was free to vary. 2way/3way: Under the ‘2-way 

scenario’, only African-European effect size heterogeneity was tested. Under the ‘3-way scenario’, African-European-Indigenous 

American effect size heterogeneity was tested. Best segment/significant segments: Under the ‘best segment scenario’, 

heterogeneity of effect size was only tested in the segment most significantly associated with the SNP in the GWAS. Under the 

‘significant segments scenario’, heterogeneity of effect size was tested in all segments where that SNP was significant (P < 5e-8) 

in the main GWAS, and the lowest P-value was kept. P-values were adjusted for 5% FDR, and the horizontal line represents the P 

< 0.05 significance threshold. SNPs are in genomic order. 
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Extended Data Fig 6 Relationship between FST and effect size heterogeneity. Heterogeneity of effect size between European 

and African ancestry based on the univariate latent phenotypes associated with each SNP in the main GWAS. All segment-SNP 

combinations with P < 5e-8 during GWAS discovery were considered, and the lowest P-value for each SNP was kept after 

adjustment for 5% FDR. ANOVA F-test was insignificant at 5% alpha (P-value: 0.297, R2: 0.039). 

 

 
Extended Data Fig 7 Sensitivity of multi-ancestry versus European-only GWAS at genome-wide cranial vault shape loci. 

Lead SNP P-values from the main, multi-ancestry GWAS (FULL, n = 6,772) are depicted in red, lead SNPs from the European-

only GWAS (EUR, n = 4,198) have their P-values depicted in blue. Horizontal line represents the genome-wide significance 

threshold (P < 5e-8). Loci are ordered based on increasing gain in sensitivity of the FULL GWAS. 
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Extended Data Fig 8 GWAS Candidate Differentially Expressed Genes (DEGs). DEGs raw counts were VST transformed, 

housekeeping gene normalized, and shown as the mean difference of DEG sample groups to the overall mean expression across all 

(parietal and frontal) sampling groups. 

 

 

 
Extended Data Fig 9 LocusCompare plots of cranial vault shape and sagittal non-syndromic craniosynostosis for SNPs in 

common with Justice et al. (2012). a, LocusCompare174 plot around rs10262453 near BBS9. b, LocusCompare plot around 

rs1884302 near BMP2. Color represents LD (r2) with the lead SNP (purple diamond) from Justice et al. (2012). 
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Extended Data Fig 10 ADMIXTURE K:6 Model of 1000G and HGDP ancestry references. A, Clumpak plot of ADMIXTURE 

Q-file results of K:6 run for HGDP and 1000 genomes reference dataset with unsupervised K-means clustering labels applied. B, 

Clumpak plot of the same ADMIXTURE Q-file results seen in a, but for anchor reference data only. C, Population labels and the 

corresponding cluster number in sunburst chart to depict the population and sub-population membership for anchors in each cluster. 
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Extended Data Fig 11 Genome-wide local ancestry proportions. A, Genome-wide fractions of local African (AFR; red), 

European (EUR; blue), and Indigenous American (AMR; green) ancestry inferred by RFMIX v2. b, local ancestry proportions at 

the 30 genome-wide significant lead SNPs. Bands indicate 95% CI on the genome-wide local ancestry proportions.  

 

 

 

 
Extended Data Fig 12 Number of phenotypic dimensions per cranial vault segment. The rosette indicates the number of PCs 

used to describe the major phenotypic variance in each cranial vault segment as determined by parallel analysis (Methods). 

 

 

 
Extended Data Fig 13 Detection of damaged regions of the cranial vault surface in the UK Biobank. a, Vault-wide error rate. 

Yellow to green regions indicate the presence of damage in a substantial proportion of images. b, Delineated regions based on a. 
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Yellow regions were ignored when calculating the deformation field during surface registration. Cutting planes visualize cutoff 

boundaries. 

 

 

 
Extended Data Fig 14 Distribution of rotations along all three dimensions. Each grey dot represents a single image. The 

distribution centroid (red) represents scans with an aggregated score > 0.8. Those scans were selected for further analysis. 

 

 
Extended Data Table 1 Table of reference data anchors. Anchor reference samples were derived from joint 1000G and HDGP 

datasets based on a K:6 ADMIXTURE model (Methods), followed by K-means clustering, and filtering for samples with higher-

than-average main ancestry component per cluster. 

Anchor Cluster Population 
Number of 
Samples 

0 Africa 545 

1 Europe 613 

2 East-Asia 601 

3 South-Asia 369 

4 America 105 

5 Oceania 13 
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