

1 **The potential role of human immune cells in the systemic dissemination of**
2 **enterovirus-D68**

3

4 **Short title: Role of human immune cells in enterovirus-D68 systemic dissemination**

5

6 Brigitta M. Laksono^{1,*}, Syriam Sooksawasdi Na Ayudhya^{1,*}, Muriel Aguilar-Bretones¹, Carmen W. E. Embregts¹,
7 Gijsbert P van Nierop¹, Debby van Riel^{1,#}

8 ¹Department of Viroscience, Erasmus MC, Rotterdam, South Holland, the Netherlands

9 *Authors contributed equally; order was determined alphabetically

10

11

12

13

14

15

16

17

18 #Correspondence to:

19 Dr Debby van Riel (d.vanriel@erasmusmc.nl)

20 Department of Viroscience, Erasmus MC

21 Dr Molewaterplein 40, 3015 GD, Rotterdam, South Holland, the Netherlands

22

23 **Abstract (216/300 words)**

24 Enterovirus-D68 (EV-D68) often causes mild respiratory infections, but can also cause severe respiratory
25 infections and extra-respiratory complications, including acute flaccid myelitis (AFM). Systemic dissemination of
26 EV-D68 is crucial for the development of extra-respiratory diseases, but it is currently unclear how EV-D68
27 viremia occurs. We hypothesize that immune cells contribute to the systemic dissemination of EV-D68, as this
28 is a mechanism commonly used by other enteroviruses. Therefore, we investigated the susceptibility and
29 permissiveness of human primary immune cells for different EV-D68 isolates. In human peripheral blood
30 mononuclear cells (PBMC) inoculated with EV-D68, only B cells were susceptible but virus replication was limited.
31 However, B cell-rich cultures, such as Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) and
32 primary lentivirus-transduced B cells, were productively infected. In BLCL, neuraminidase treatment to remove
33 α 2,6- and α 2,3-linked sialic acids resulted in a significant decrease of EV-D68 infected cells, suggesting that sialic
34 acids are the functional receptor on B cells. Subsequently, we showed that dendritic cells (DCs), particularly
35 immature DCs, are susceptible and permissive for EV-D68 infection and that they can spread EV-D68 to
36 autologous BLCL. Altogether, our findings suggest that immune cells, especially B cells and DCs, play an
37 important role in the development the systemic dissemination of EV-D68 during an infection, which is an
38 essential step towards the development of extra-respiratory complications.

39

40

41

42

43 **Author summary (195/200 words)**

44 Enterovirus D68 (EV-D68) is an emerging respiratory virus that has caused outbreaks worldwide since 2014. EV-
45 D68 infects primarily respiratory epithelial cells and the infection commonly results in mild respiratory diseases.
46 However, EV-D68 infection is also associated with complications outside the respiratory tract, including a polio-
47 like paralysis. Despite the severity of these extra-respiratory complications, it is unclear how EV-D68 is able to
48 spread outside the respiratory tract and infect other organs, like the central nervous system (CNS). To
49 understand this, we investigated if immune cells play a role in the extra-respiratory spread of EV-D68. We
50 showed that EV-D68 can infect and replicate in specific immune cells, *i.e.* B cells and dendritic cells (DCs), and
51 that the virus can be transferred from DCs to B cells. Our findings suggest that lymphoid tissues, which harbor
52 many immune cells, can be a secondary replication site for EV-D68, from where virus is released in the circulation.
53 Our data reveal the importance of immune cells in the systemic spread of EV-D68, which is essential for infection
54 of extra-respiratory tissues. Intervention strategies that prevent EV-D68 infection of immune cells will therefore
55 potentially prevent virus spread from the respiratory tract to other organs.

56

57 **Introduction**

58 Enterovirus D68 (EV-D68) is a small non-enveloped, positive single-stranded RNA virus that belongs to the family
59 *Picornaviridae*, genus *Enterovirus*. Although EV-D68 causes predominantly mild upper respiratory tract
60 symptoms, EV-D68 caused outbreaks of severe respiratory diseases worldwide in 2014, which were associated
61 with neurological complications in some individuals. Among these complications, acute flaccid myelitis (AFM)
62 was most frequently reported (1-4). Since then, EV-D68 has caused biennial outbreaks of severe respiratory
63 disease and AFM up to 2018 (3, 5). EV-D68 circulation was limited during the pandemic, partly due to COVID-19
64 measures, but EV-D68-associated severe respiratory illnesses have been rising in several countries since 2021
65 and 2022 due to easing of COVID-19 measures (6, 7). Throughout the years, multiple clades of EV-D68 circulated,
66 but so far there is little evidence for differences in the virulence of these viruses (1, 8, 9).

67 The ability of EV-D68 to disseminate into the circulation (viremia) is essential for the virus to spread from the
68 respiratory tract, which is the primary replication site of the virus, to other organs, such as the central nervous
69 system (CNS), and cause extra-respiratory complications. However, despite the importance of viremia in the
70 pathogenesis of EV-D68 infection, the mechanism that leads to EV-D68 viremia is poorly understood.

71 Studies in mice, ferrets and patient samples have shown that the virus or viral RNA can be detected in the
72 circulation and extra-respiratory tissues (1, 10-17). In intranasally inoculated mice, virus was detected in the
73 blood within 24 hours post-inoculation (hpi), and in extra-respiratory tissues, such as the spleen and skeletal
74 muscles (10, 11). In intranasally inoculated ferrets, virus was detected in axillary lymph nodes at multiple days
75 post-inoculation (earliest detection at day 5 post-inoculation) (12). In humans, virus and viral RNA have been
76 detected in serum of EV-D68 patients, but it is currently unknown how frequent viremia occurs during an EV-
77 D68 infection (13-17). In addition, it is unclear whether the virus detected in the circulation is a direct spill-over
78 from the respiratory tract or whether virus first spreads to and replicates in other tissues, *e.g.* lymphoid tissues,
79 before disseminating into the circulation.

80 Other EVs, such as poliovirus and EV-A71, are known to replicate in lymphoid tissues, resulting in a sustained
81 production of infectious viruses and subsequent spill-over into the circulation (18-22). In the case of EV-D68, the
82 role of immune cells and lymphoid tissues in the development of viremia remains unclear. Previous studies have
83 shown that EV-D68 productively infects several human immune cell lines, such as granulocytic (KG-1), monocytic

84 (U-937), T (Jurkat and MOLT) and B (Raji) cell lines (23), suggesting that immune cells or lymphoid tissues may
85 play a role in the development of EV-D68 viremia. Here, we investigated the susceptibility and permissiveness
86 of human primary immune cells to infection of EV-D68 from different clades to unravel the potential role of
87 immune cells in the development of viremia and to investigate if there are clade-specific differences in the
88 susceptibility and permissiveness of these cells. Subsequently, we investigated whether dendritic cells (DCs) can
89 transmit virus to other immune cells, such as B cells.

90

91

92 **Results**

93 **Human B cells are susceptible and permissive to EV-D68 infection**

94 To investigate whether human leukocyte subsets are susceptible to EV-D68 infection, human peripheral blood
95 mononuclear cells (PBMC) were inoculated with EV-D68 strains from subclades A, B2 and D. We observed that
96 B cells were susceptible to infection with EV-D68/A (mean $6\% \pm$ standard error of mean (SEM) 1) and EV-
97 D68/B2 ($3\% \pm 1$) but not for EV-D68/D, based on intracellular expression of EV-D68 capsid protein VP1. In one
98 donor, 3% of monocytes were susceptible to infection with EV-D68/A. We did not observe any VP1⁺ cells in
99 CD4⁺ nor CD8⁺ T cell population. (**Fig 1A**).

100 Next, we investigated whether EV-D68 inoculation of PBMC resulted in a productive infection. Supernatant
101 and cell lysate were collected and the presence of infectious virus particles at 0, 6, 8, 10, 24, 48 and 72 hpi was
102 determined by virus titration. Despite the presence of infected cells after inoculation with EV-D68/A or EV-
103 D68/B2, we did not observe an increase in infectious virus titer at any time point (**Fig 1B**). As human PBMC
104 consists only of 4 – 14% of B cells, (24) of which 3 – 6% were infected by EV-D68, we cannot exclude the
105 possibility that viral replication occurs in VP1⁺ B cells but this was below the detection limit of the assay.

106 In order to determine whether B cells are susceptible and permissive for EV-D68, we utilized two B cell-rich
107 models. We first inoculated Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) with EV-D68
108 strains from subclades A, B2 and D. The inoculation resulted in $13\% \pm 4$ EV-D68/A, $18\% \pm 5$ EV-D68/B2 and $21\% \pm 4$ EV-D68/D VP1⁺ cells, although there was variation among donors in the percentage of infected cells (**Fig 2A**). Production of new infectious viruses over time ($\sim 2 - 3$ logarithmic increase of TCID₅₀/ml within 24 hours) was detected after inoculation with all three viruses, in which EV-D68/B2 and EV-D68/D replicated faster than EV-D68/A, albeit without any statistical differences (**Fig 2B**).

113 Primary B cell clones that were lentivirus-transduced to express the germinal center-associated B cell
114 lymphoma-6 (Bcl-6) and Bcl-xL in order to endow a stable proliferative state, were inoculated with EV-D68
115 strains from subclades A, B2 and D. This resulted in $11\% \pm 2$ EV-D68/A, $27\% \pm 8$ EV-D68/B2 and $14\% \pm 6$ EV-D68/D VP1⁺ cells (**Fig 2C**). The inoculation also resulted in production of new infectious viruses ($\sim 2 - 3$ logarithmic increase within 10 to 24 hours), without any statistical differences among the different EV-D68
118 clades (**Fig 2D**).

119 **Infection of BLCL is largely mediated by the presence of α 2,3- and α 2,6-linked SAs**

120 Several immune cells, including B cells, express α 2,6-linked and α 2,3-linked sialic acids (SAs), which can function
121 as receptors for EV-D68 to initiate binding and virus entry (25-27). To investigate whether α 2,3- and α 2,6-linked
122 SAs mediate EV-D68 infection of BLCL, BLCL were treated with *Arthrobacter ureafaciens* neuraminidase (ANA)
123 to remove cell surface SAs prior to inoculation with EV-D68 strains. Upon ANA treatment, the average
124 percentages of α 2,3-linked SA⁺ BLCL decreased from 77% \pm 9 to 38% \pm 3 and of α 2,6-linked SA⁺ cells from 89% \pm
125 1 to 5% \pm 1 (**Fig 3A**). ANA treatment of BLCL prior to inoculation resulted in a significant decrease of percentage
126 of VP1⁺ cells, with only 2% \pm 1 EV-D68/A, 5% \pm 2 EV-D68/B2 and 5% \pm 1 EV-D68/D VP1⁺ cells (**Fig 3B**).

127 **Dendritic cells (DCs) are susceptible and permissive to EV-D68 infection**

128 DCs are a subset of immune cells that are attracted to sites of inflammation, but not abundantly present in
129 PBMC (28). To investigate whether DCs are susceptible and permissive to EV-D68 infection, monocytes were
130 differentiated in immature and mature DCs (imDCs and mDCs, respectively), and inoculated with EV-D68 strain
131 from subclade A as a representative strain. Increased expression of maturation markers (HLA-DR, CD86, PD-L1
132 and CD83) was used to confirm differentiation of imDCs to mDCs (**S1 Fig**). The average percentage of VP1⁺ cells
133 in imDCs (10% \pm 1) was significantly higher than in mDCs (4% \pm 1) at 6 hpi (**Fig 4A**). From 2 to 10 hpi, viral titers
134 in the supernatants increased \sim 1 logarithmic TCID₅₀/ml in imDCs and \sim 0.5 logarithmic TCID₅₀/ml in mDCs
135 inoculated with EV-D68/A, after which the virus titers decreased. Despite this decrease, at 48 hpi, virus titer in
136 the supernatants of imDCs were significantly higher than in mDCs (**Fig 4B**).

137 **imDCs can transfer EV-D68 to autologous BLCL**

138 Dendritic cells are important for local antiviral responses and antigen take-up induces DC maturation and
139 migration to lymphoid tissues (28). Therefore, we investigated whether imDCs can transmit EV-D68 infection
140 to B cells. EV-D68/A-inoculated imDCs were co-cultured with autologous BLCL (BLCL+DC), after which the
141 percentages of VP1⁺ BLCLs were determined. The following controls were included: (1) EV-D68/A-inoculated
142 imDCs (DC only); (2) BLCL cultured with supernatant from EV-D68/A-inoculated imDCs collected at 0 hpi,
143 directly after the virus inoculation for 1 hour and the subsequent washing steps (BLCL + t0 DC sup) and (3)
144 BLCL cultured with supernatant from EV-D68/A-inoculated imDCs collected at 6 hpi (BLCL + t6 DC sup). The

145 schematic representation of this experiment is presented in **Fig 5A**. As observed previously, inoculation of
146 imDCs in the absence of their autologous BLCL resulted in an average of $11\% \pm 2$ VP1⁺ cells at 6 hpi and the
147 percentage remained stable at 24 hpi. In imDCs co-cultured with BLCL, we observed an average percentage of
148 $10\% \pm 4$ VP1⁺ imDCs, although this percentage decreased at 24 hpi ($4\% \pm 2$) (**Fig 5B**). When BLCLs were
149 inoculated with supernatants from EV-D68-inoculated imDCs collected at 0 or 6 hpi, only very few B cells were
150 infected, with average percentages of 0.5% VP1⁺ BLCLs in BLCL+t0 DC sup and 1% VP1⁺ BLCLs in BLCL+t6 DC
151 sup at 24 hpi. When BLCLs were co-cultured with EV-D68-inoculated imDCs, the percentage of infected BLCL
152 increased from $2\% \pm 1$ at 6 hpi to $6\% \pm 1$ at 24 hpi (**Fig 5C**).
153 The inoculation of imDCs in the absence of BLCL resulted in production of new infectious virus particles (~1.5
154 logarithmic increase of TCID₅₀/ml) within 24 h. Detection of infectious virus particles in the supernatants of the
155 BLCL+DC co-culture showed efficient virus replication and stable virus titer over time (~1 logarithmic increase of
156 TCID₅₀/ml) within the same period of time. Very few, if any, new infectious virus particles were produced by
157 BLCL inoculated with t0 or t6 DC supernatants (**Fig 5D**). Together, the results suggested that imDCs are capable
158 to transmit virus to other susceptible immune cells, such as B cells, which subsequently become productively
159 infected.

160 **Discussion**

161 The systemic dissemination of EV-D68 is an essential step for extra-respiratory spread of the virus and the
162 development of associated complications, such as AFM, but the underlying mechanism of how viruses spread
163 to the circulation or the origin of virus in blood is largely unknown. In this study, we reveal the potential role of
164 immune cells in the systemic dissemination of EV-D68. We show that human B cells and DCs are susceptible and
165 permissive to EV-D68 infection and that DCs may play a role in the transmission of virus to B cells.

166 Immune cells are susceptible to infection of other members of *Picornaviridae*. Coxsackievirus type B infects
167 murine splenic B cells resulting in production of new virus particles (29). Poliovirus productively infects DCs and
168 macrophages *in vitro* (human PBMC) and *in vivo* (non-human primates) (30, 31). Echoviruses and EV-A71 have
169 also been reported to infect human imDCs and mDCs (32, 33). Here, we showed that primary human B cells and
170 DCs are susceptible and permissive to EV-D68 infection, which fits with findings in a cohort study that detected
171 enterovirus RNA in peripheral blood B cells and DCs (34). In B cells, this tropism is facilitated by the presence of
172 α 2,6- and/or α 2,3-linked SAs. Productive infection was only detected in BLCLs and lentivirus-transduced B cells;
173 the latter resembles activated germinal center B cells (35). Additionally, imDCs were more susceptible and
174 permissive to EV-D68 infection than mDCs. Therefore, it is possible that activation or maturation state of
175 immune cells play a role in the susceptibility and permissiveness to EV-D68 infection, similar to what is observed
176 in poliovirus (30). Furthermore, it may be that the different susceptibility to EV-D68 between imDCs and mDCs
177 is due to higher expression of α 2,6-linked SA on imDCs than mDCs (36).

178 We observed differences in the susceptibility and permissiveness to EV-D68 infection among viruses or donors
179 included in this study. Differences in the susceptibility for different EV-D68 clades were observed in B cells within
180 the PBMCs, but this was not observed in BLCLs and lentivirus-transduced B cells. Donor variation was observed
181 in PBMCs and all B cell models and, in one PBMC donor, we observed monocytes infected with EV-D68 isolate
182 from subclade A. The underlying mechanism for these differences among donors and possibly among different
183 virus clades, as well as their association with the risk of the development of extra-respiratory diseases, are still
184 unclear.

185 Virus replication within immune cells and/or lymphoid tissues is likely important for the development of a
186 viremia. Due to the susceptibility and permissiveness of immune cells to EV-D68 infection, an immune cell-rich

187 environment, such as a lymphoid tissue, can serve as a secondary replication site for EV-D68, from where the
188 virus can spread into the circulation. Since poliovirus viremia is essential for virus spread to the CNS and the
189 subsequent development of CNS diseases (37), it can be speculated that EV-D68 viremia is essential for virus
190 entry into the CNS and subsequent neurological complications, such as AFM (4, 13). In addition, a viremia could
191 lead to virus spread to other organ system contributing to non-neurological complications associated with EV-
192 D68 infection, including acute gastroenteritis, myocarditis and skin rash (38-40). Prevention of spread or
193 productive infection in the lymphoid tissues may prevent systemic dissemination, as observed in poliovirus
194 infection, in which vaccination prevents viral spread to other organs (41).

195 Based on our findings, we propose a model that explains the systemic dissemination of EV-D68 (**Fig 6**). EV-D68
196 infects respiratory epithelial cells, which results in the production of infectious virus particles and the
197 recruitment of immune cells, such as imDCs. From the respiratory tract, cell-free virus can spill over into the
198 circulatory and lymphatic systems and spread into lymphoid tissues. Alternatively, imDCs can become infected,
199 and migrate to the lymphoid tissues, where they release newly produced viruses or spread virus to resident DCs
200 or B cells. Lymphoid tissues can be the secondary replication site for EV-D68, from where the virus is released in
201 the bloodstream. Prevention of virus spread to and amplification in lymphoid tissues can therefore prevent the
202 development of a subsequent viremia and severe extra-respiratory complications caused by EV-D68.

203 **Materials and methods**

204 **Ethics statement**

205 PBMC were obtained from healthy adult donors after obtaining written informed consent. The studies were
206 approved by the medical ethical committee of Erasmus MC, the Netherlands (MEC-2015-095). For experiment
207 involving human buffy coats, written informed consent for research use was obtained by the Sanquin blood bank.

208 **Cells**

209 Human PBMC were isolated from blood (n = 8 healthy donors) by Ficoll density gradient centrifugation. BLCL
210 were established from 5 donors by transformation with Epstein-Barr virus as previously described (42). PBMC
211 and BLCL were cultured in RPMI-1640 medium (Capricorn) supplemented with 10% fetal bovine serum (FBS) and
212 100 IU/ml of penicillin, 100 µg/ml of streptomycin and 2 mM L-glutamine (PSG). After virus inoculation,
213 supernatants and cell lysates were collected and frozen and thawed three times prior to sample processing.

214 Germinal center-like primary B cell clones were generated from 3 donors. Synthetic cDNA encoding a self-
215 cleaving polyprotein Bcl-6.t2A.Blc-xL to express the germinal center B cell-associated transcription factors Bcl-6
216 and Bcl-xL was synthesized (B6L; Integrated DNA Technologies) and cloned in pENTR/D-TOPO (Thermo Fisher),
217 generating pENTR.B6L (35, 43). The B6L cDNA was subsequently transferred to pLenti6.3/V5-DEST using
218 Gateway LR Clonase II (Thermo Fisher), generating pLV-B6L. Subsequently, lentiviral vector stocks (LV-B6L) were
219 generated, all according to manufacturer's instructions (Thermo Fisher). Primary CD19⁺ B-cells were isolated
220 from human PBMC using the EasySep human CD19 positive selection kit II (StemCell Technologies) and
221 transduced using LV.B6L as described elsewhere (35). LV-B6L transduced B cells were cultured in AIM-V
222 AlbuMAX medium (Gibco) supplemented with 10% FBS, PSG, 50 µM beta-mercaptoethanol (Sigma), 25 ng/ml
223 recombinant human IL-21 (Peprotech) and growth-arrested 40 gray gamma-irradiated L-CD40L feeder cells.
224 Every 3 to 4 days, culture medium was refreshed with 25 ng/ml recombinant human IL-21 and new growth-
225 arrested 40 gray gamma-irradiated L-CD40L feeder cells. Clonal B cell cultures from each donor were generated
226 using limiting dilution. Absence of antibody reactivity towards EV-D68 was confirmed to exclude antibody
227 mediated effects on EV-D68 infection (data not shown). After virus inoculation, supernatants and cell lysates
228 were collected and frozen and thawed three times prior to sample processing.

229 Human rhabdomyosarcoma (RD) cells were cultured in DMEM (Lonza) supplemented with 10% FBS and PSG.

230 **Viruses**

231 EV-D68 strains included in this study were isolated from clinical specimens at the National Institute of Public
232 Health and the Environment (RIVM), Bilthoven, the Netherlands. The viruses were isolated on RD cells (ATCC) at
233 33°C at RIVM from respiratory samples from patients with EV-D68-associated respiratory disease. Virus stocks
234 for the studies were grown in RD cells at 33°C in 5% CO₂. The viruses included in this study with virus reference
235 number, year of isolation and accession number are as follows: clade A (or A1) (4311200821; 2012, accession
236 number MN954536), clade D (or A2) (4311400720; 2014, accession number MN954537) and subclade B2
237 (4311201039; 2012, accession number MN954539). All virus stocks were sequenced for their whole genome,
238 and that there was no evidence for cell culture adaptive mutations.

239 **Virus titration**

240 Virus titers were assessed by end-point titrations in RD cells and were expressed in median tissue culture
241 infectious dose (TCID₅₀/ml). In brief, 10-fold serial dilutions of a virus stock were prepared in triplicate and
242 inoculated onto a monolayer of RD cells. The inoculated plates were incubated at 33°C in 5% CO₂. Cytopathic
243 effect (CPE) was determined at day 5, and virus titers were determined using the Spearman-Kärber method (44).

244 **Differentiation of monocyte-derived DCs**

245 Human monocytes were isolated from buffy coats (n= 5 donors) by Ficoll density gradient centrifugation and
246 selected for CD14⁺ cells using magnetic beads. Monocytes were cultured in RPMI-1640 medium supplemented
247 with 1XGlutamax, 10% FBS, 100 IU/ml of penicillin and 100 µg/ml of streptomycin. Subsequently, monocytes
248 were differentiated into imDCs in the presence of human interleukin 4 (IL-4; 20ng/ml; PEPROTECH; 200-04) and
249 human granulocyte-macrophage colony-stimulating factor (GM-CSF; 20ng/ml; MILTENYI BIOTEC; 130-093-866).
250 At day 5, monocyte-derived imDCs were further differentiated into mature DCs by adding lipopolysaccharide
251 (LPS; 1µg/ml; Thermo Fisher Scientific; L8274-10MG) into the medium. mDCs were defined by the increased
252 expression of HLA-DR, CD86, PD-L1 and CD83 compared to imDCs (**S1 Fig**) and the determination of the cellular
253 marker expression by flow cytometry is described below.

254 **EV-D68 infection of PBMC, BLCL and lentivirus-transduced B cells**

255 Freshly isolated PBMCs, BLCLs or lentivirus-transduced B cells (1×10^6 cells) were inoculated with EV-D68 at
256 multiplicity of infection (MOI) of 0.1 for 1 h at 37°C in 5% CO₂. The inoculum was removed and cells were seeded
257 in new medium into a U-bottomed 96-well plate. Cells and supernatants were collected at 0, 6, 8, 12, 24, 48 and
258 72 h post-inoculation (hpi). The collected specimens were frozen and thawed three times to allow release of
259 intracellular virus before further used for virus titration. Cells were also collected at 6, 24, 48 and 72 hpi for
260 detection of intracellular capsid protein VP1 (10 µg/ml; GeneTex; GTX132313) by flow cytometry as described
261 below.

262 **Removal of cell surface sialic acids on BLCL**

263 BLCLs were incubated with 50 mU/ml *Arthrobacter ureafaciens* neuraminidase (Roche) in serum-free medium
264 for 2 h at 37°C in 5% CO₂. Removal of α(2,3)-linked and α(2,6)-linked sialic acids on the cell surface was verified
265 by staining with biotinylated *Maackia amurensis* lectin (MAL) I (5 µg/ml; Vector Laboratories; B-1265-1) or
266 fluorescein-labeled *Sambucus nigra* lectin (SNA) (5 µg/ml; EY Laboratories; BA-6802-1), respectively. Biotin was
267 detected using a streptavidin-conjugated AlexaFluor488 (5 µg/ml; Thermo Fisher Scientific; S11223). Virus and
268 mock inoculations in non-enzymatic-treated cells were included as positive and negative infection controls,
269 respectively. Infection of BLCL in different conditions were performed as describe above and intracellular capsid
270 protein VP1 were detected by flow cytometry as described below.

271 **EV-D68 inoculation of DCs and co-culture assays**

272 ImDCs and mDCs in a flat-bottomed 96-well plate (1×10^5 cells/well) were inoculated with EV-D68/A at MOI of 1.
273 After 1 h, the inoculum was removed and the monocytes-derived imDCs were supplemented with complete
274 RPMI-1640 containing human IL-4 and GM-CSF, while mDCs were supplemented with complete RPMI-1640
275 containing human IL-4, GM-CSF and LPS. Cells and supernatants were collected at 0, 2, 4, 6, 8, 10, 24 and 48 hpi
276 for virus titration or at 6 hpi for detection of intracellular expression of capsid protein VP1 by flow cytometry as
277 described below.

278 For co-culture assay, infected imDCs (1×10^5 cells/well) as describe above were incubated with (2×10^5 BLCL/well;
279 BLCL+DC) or without autologous BLCL (DC only). To investigate whether imDCs transfer virus particles directly
280 to autologous BLCL or indirectly by release of infectious virus, the supernatant from imDCs that were infected

281 with EV-D68/A for 6 hours, were transferred to autologous BLCL (BLCL+t6 DC sup). As a control, to show that
282 infected BLCL is not due to the leftover of virus inoculum, supernatant from the last washing step in infected
283 imDCs were transferred to the autologous BLCL (BLCL+t0 DC sup). The schematic representation of the co-
284 culture assay is presented in **Fig 5A**. The intracellular expression of capsid protein VP1 was detected at 6 and 24
285 hpi by flow cytometry as described below. Cells and supernatant were collected to detect infectious virus
286 particles at different time points.

287 **Flow cytometry**

288 For determination of leukocyte phenotypes, human PBMC were incubated with monoclonal antibodies against
289 CD19 (PE-Cy7; Beckman Coulter; IM3628), CD3 (PerCP; BD Biosciences; 345766), CD4 (V450; BD Biosciences;
290 560811), CD8 (AmCyan; BD Biosciences; 339188), CD14 (BV711; BD Biosciences; 740773) and CD16
291 (AlexaFluor647; BD Biosciences; 302020). For determination of DC phenotypes, DCs were incubated with
292 monoclonal antibodies against HLA-DR (Pacific Blue; BioLegend; 307624), CD83(PE-Cy7; BioLegend; 305326),
293 CD86 (AF647; BioLegend; 305416) and PD-L1 (BV785; BioLegend; 320736). For determination of cell phenotypes
294 in DC-BLCL co-cultures, the cells were incubated with monoclonal antibodies against HLA-DR (Pacific Blue;
295 BioLegend; 307624), CD86 (AF647; BioLegend; 305416), CD19 (PE-Cy7; Beckman Coulter; IM3628). Cells were
296 fixed and permeabilized with BD Cytofix/Cytoperm Fixation and Permeabilization kit according to the
297 manufacturer's instructions (BD Biosciences). The presence of intracellular capsid protein VP1 was determined
298 by staining with polyclonal rabbit anti-EV-D68 VP1 (10 µg/ml; Genetex; GTX132313) and goat anti-rabbit IgG
299 (FITC; BD Biosciences; 554020). Flow cytometry was performed using BD FACS Lyric (BD Biosciences, USA). Data
300 were acquired with BD Suite software and analyzed with FlowJo software. Gating strategies to define different
301 cell phenotypes and to define VP1⁺ cells are presented in **S2 – 5 Figs**.

302 **Statistical analyses**

303 Statistical analyses were performed using GraphPad Prism 9.0 software (La Jolla, CA, USA). Specific tests are
304 described in the figure legends. P values of ≤ 0.05 were considered significant. All data were expressed as
305 standard error of mean (SEM).

306

307 **Funding**

308 This work was funded by a fellowship to DvR from the Netherlands Organization for Scientific Research (VIDI
309 contract 91718308) and the Erasmus MC Foundation. SSNA received the Royal Thai Government Scholarship
310 supported by the Ministry of Science and Technology of Thailand to perform her doctoral study. GPvN received
311 financial supports from the European Union's Horizon 2020 research and innovation program under grant
312 agreements no. 874735 (VEO) and no. 101003589 (RECoVER), and the Dutch Research Council (NWO) project
313 no. 109986 (One Health Pact). The funders had no role in study design, data collection and analysis, decision to
314 publish or preparation of the manuscript.

315

316 **Acknowledgment**

317 The authors would like to thank Thomas Langerak, Lisa Bauer, Feline Benavides, Lonneke Leijten, Daryl Geers
318 Laurine Rijssbergen and Rik de Swart for technical assistance, Adam Meijer for providing the virus isolates, and
319 Rory de Vries for helpful discussion.

320

321 **Reference list**

- 322 1. Greninger AL, Naccache SN, Messacar K, Clayton A, Yu G, Somasekar S, et al. A novel outbreak enterovirus
323 D68 strain associated with acute flaccid myelitis cases in the USA (2012-14): a retrospective cohort study.
324 Lancet Infect Dis. 2015;15(6):671-82.
- 325 2. Messacar K, Abzug MJ, Dominguez SR. The Emergence of Enterovirus-D68. Microbiol Spectr. 2016;4(3).
- 326 3. Messacar K, Reno S, Dominguez SR. Continued biennial circulation of enterovirus D68 in Colorado. J Clin
327 Virol. 2019;113:24-6.
- 328 4. Messacar K, Schreiner TL, Van Haren K, Yang M, Glaser CA, Tyler KL, et al. Acute flaccid myelitis: A clinical
329 review of US cases 2012-2015. Ann Neurol. 2016;80(3):326-38.
- 330 5. Kramer R, Sabatier M, Wirth T, Pichon M, Lina B, Schuffenecker I, et al. Molecular diversity and biennial
331 circulation of enterovirus D68: a systematic screening study in Lyon, France, 2010 to 2016. Euro Surveill.
332 2018;23(37).

333 6. KC M, A W, HL M. Increase in Acute Respiratory Illnesses Among Children and Adolescents Associated with
334 Rhinoviruses and Enteroviruses, Including Enterovirus D68 — United States, July–September 2022.; 2022.
335 Contract No.: 40.

336 7. Benschop KS, Albert J, Anton A, Andres C, Aranzamendi M, Armannsdottir B, et al. Re-emergence of
337 enterovirus D68 in Europe after easing the COVID-19 lockdown, September 2021. Euro Surveill. 2021;26(45).

338 8. Wang G, Zhuge J, Huang W, Nolan SM, Gilrane VL, Yin C, et al. Enterovirus D68 Subclade B3 Strain Circulating
339 and Causing an Outbreak in the United States in 2016. Sci Rep. 2017;7(1):1242.

340 9. Yip CCY LJ, Sridhar S, Lung DC, Luk S, Chan KH et al. First Report of a Fatal Case Associated with EV-D68
341 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis.
342 Int J Mol Sci. 2017;16(18).

343 10. Evans WJ, Hurst BL, Peterson CJ, Van Wettere AJ, Day CW, Smee DF, et al. Development of a respiratory
344 disease model for enterovirus D68 in 4-week-old mice for evaluation of antiviral therapies. Antiviral Res.
345 2019;162:61-70.

346 11. Zhang C, Zhang X, Dai W, Liu Q, Xiong P, Wang S, et al. A Mouse Model of Enterovirus D68 Infection for
347 Assessment of the Efficacy of Inactivated Vaccine. Viruses. 2018;10(2).

348 12. Zheng HW, Sun M, Guo L, Wang JJ, Song J, Li JQ, et al. Nasal Infection of Enterovirus D68 Leading to Lower
349 Respiratory Tract Pathogenesis in Ferrets (*Mustela putorius furo*). Viruses. 2017;9(5).

350 13. Esposito S, Chidini G, Cinnante C, Napolitano L, Giannini A, Terranova L, et al. Acute flaccid myelitis associated
351 with enterovirus-D68 infection in an otherwise healthy child. Virol J. 2017;14(1):4.

352 14. Justin D. Kreuter M, Arti Barnes M, James E. McCarthy M, Joseph D. Schwartzman M, M. Steven Oberste P,
353 C. Harker Rhodes P, MD; , et al. A fatal CNS EV68 infection. Arch Pathol Lab Med2011.

354 15. Kusabe Y, Takeshima A, Seino A, Nishida M, Takahashi M, Yamada S, et al. [An Adult Case of Enterovirus D68
355 Encephalomyelitis Presenting as Bilateral Facial Nerve Palsy and Dysphagia]. Brain Nerve. 2017;69(8):957-
356 61.

357 16. Chong PF, Kira R, Mori H, Okumura A, Torisu H, Yasumoto S, et al. Clinical Features of Acute Flaccid Myelitis
358 Temporally Associated With an Enterovirus D68 Outbreak: Results of a Nationwide Survey of Acute Flaccid
359 Paralysis in Japan, August–December 2015. Clin Infect Dis. 2018;66(5):653-64.

360 17. Imamura T, Suzuki A, Lupisan S, Kamigaki T, Okamoto M, Roy CN, et al. Detection of enterovirus 68 in serum
361 from pediatric patients with pneumonia and their clinical outcomes. *Influenza Other Respir Viruses.*
362 2014;8(1):21-4.

363 18. Racaniello VR. One hundred years of poliovirus pathogenesis. *Virology.* 2006;344(1):9-16.

364 19. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. *Virology, epidemiology, pathogenesis,*
365 *and control of enterovirus 71.* *Lancet Infect Dis.* 2010;10(11):778-90.

366 20. Zhao T, Zhang Z, Zhang Y, Feng M, Fan S, Wang L, et al. *Dynamic Interaction of Enterovirus 71 and Dendritic*
367 *Cells in Infected Neonatal Rhesus Macaques.* *Front Cell Infect Microbiol.* 2017;7:171.

368 21. Xing J, Wang K, Wang G, Li N, Zhang Y. *Recent advances in enterovirus A71 pathogenesis: a focus on fatal*
369 *human enterovirus A71 infection.* *Arch Virol.* 2022.

370 22. He Y, Ong KC, Gao Z, Zhao X, Anderson VM, McNutt MA, et al. *Tonsillar crypt epithelium is an important*
371 *extra-central nervous system site for viral replication in EV71 encephalomyelitis.* *Am J Pathol.*
372 2014;184(3):714-20.

373 23. Smura T, Ylipaasto P, Klemola P, Kaijalainen S, Kyllonen L, Sordi V, et al. *Cellular tropism of human enterovirus*
374 *D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis.* *J Med Virol.*
375 2010;82(11):1940-9.

376 24. Laksono BM, Grosserichter-Wagener C, de Vries RD, Langeveld SAG, Brem MD, van Dongen JJM, et al. *In Vitro*
377 *Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness*
378 *of both Naive and Memory B Cells.* *J Virol.* 2018;92(8).

379 25. Sakabe S, Iwatsuki-Horimoto K, Takano R, Nidom CA, Le MTQ, Nagamura-Inoue T, et al. *Cytokine production*
380 *by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza*
381 *viruses.* *J Gen Virol.* 2011;92(Pt 6):1428-34.

382 26. Videira PA, Amado IF, Crespo HJ, Algueró MC, Dall'Olio F, Cabral MG, et al. *Surface alpha 2-3- and alpha 2-6-*
383 *sialylation of human monocytes and derived dendritic cells and its influence on endocytosis.* *Glycoconj J.*
384 2008;25(3):259-68.

385 27. Eash S, Tavares R, Stopa EG, Robbins SH, Brossay L, Atwood WJ. *Differential distribution of the JC virus*
386 *receptor-type sialic acid in normal human tissues.* *Am J Pathol.* 2004;164(2):419-28.

387 28. Cao W, Liu YJ. *Innate immune functions of plasmacytoid dendritic cells.* *Curr Opin Immunol.* 2007;19(1):24-
388 30.

389 29. Mena I, Perry CM, Harkins S, Rodriguez F, Gebhard J, Whitton JL. The role of B lymphocytes in coxsackievirus
390 B3 infection. *Am J Pathol.* 1999;155(4):1205-15.

391 30. Wahid R, Cannon MJ, Chow M. Dendritic Cells and Macrophages Are Productively Infected by Poliovirus.
392 *Journal of Virology.* 2005;79(1):401-9.

393 31. Shen L, Chen CY, Huang D, Wang R, Zhang M, Qian L, et al. Pathogenic Events in a Nonhuman Primate Model
394 of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis. *J Virol.* 2017;91(14).

395 32. Kramer M, Schulte BM, Toonen LW, de Bruijne MA, Galama JM, Adema GJ, et al. Echovirus infection causes
396 rapid loss-of-function and cell death in human dendritic cells. *Cell Microbiol.* 2007;9(6):1507-18.

397 33. Lin YW, Wang SW, Tung YY, Chen SH. Enterovirus 71 infection of human dendritic cells. *Exp Biol Med*
398 (Maywood). 2009;234(10):1166-73.

399 34. Sioofy-Khojine AB, Richardson SJ, Locke JM, Oikarinen S, Nurminen N, Laine AP, et al. Detection of
400 enterovirus RNA in peripheral blood mononuclear cells correlates with the presence of the predisposing
401 allele of the type 1 diabetes risk gene IFIH1 and with disease stage. *Diabetologia.* 2022.

402 35. Kwakkenbos MJ, Diehl SA, Yasuda E, Bakker AQ, van Geelen CM, Lukens MV, et al. Generation of stable
403 monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. *Nat*
404 *Med.* 2010;16(1):123-8.

405 36. Jenner J, Kerst G, Handgretinger R, Muller I. Increased alpha2,6-sialylation of surface proteins on tolerogenic,
406 immature dendritic cells and regulatory T cells. *Exp Hematol.* 2006;34(9):1212-8.

407 37. Horstmann DM. Poliomyelitis virus in blood of orally infected monkeys and chimpanzees. *Proc Soc Exp Biol*
408 *Med.* 1952;79(3):417-9.

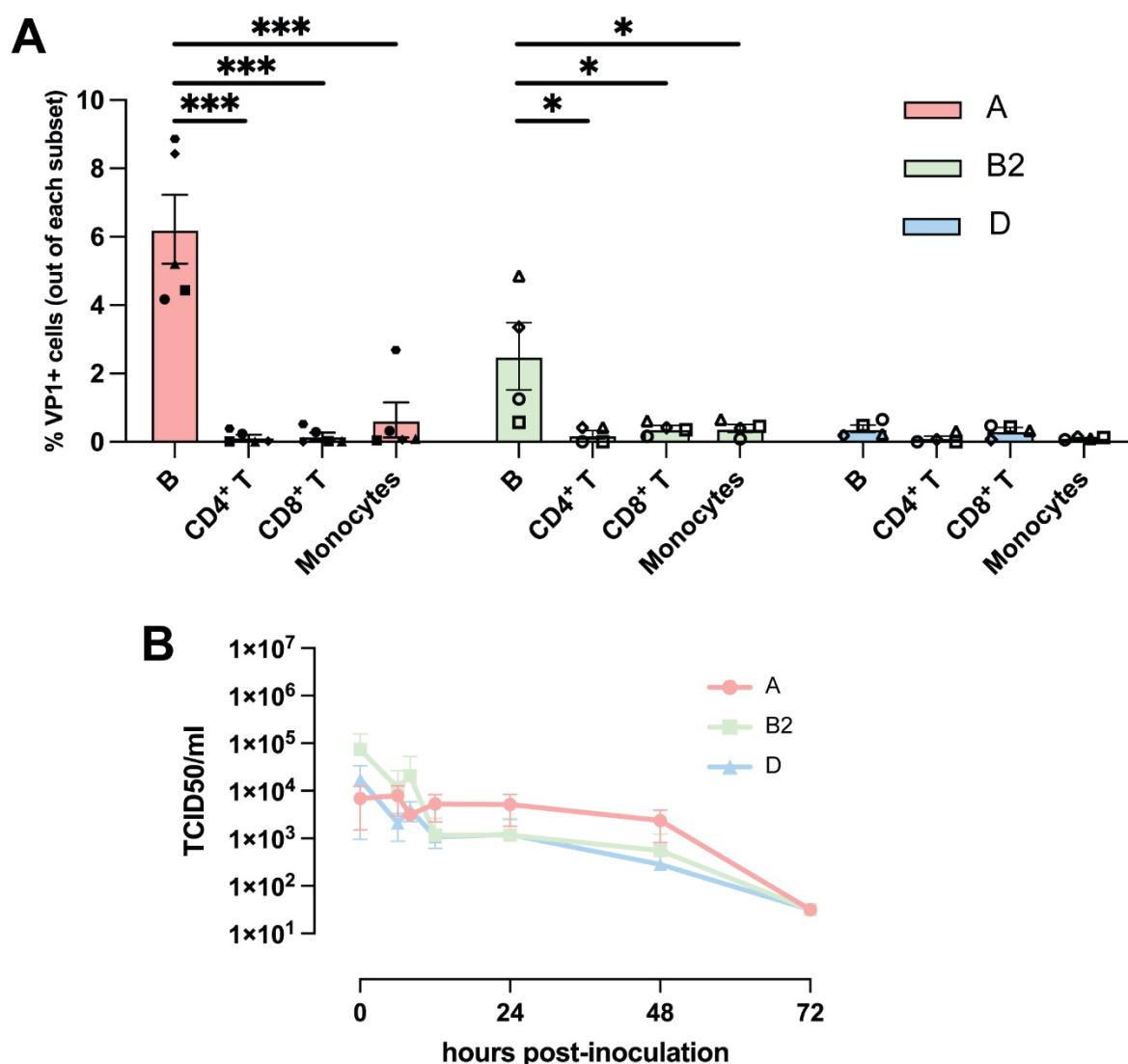
409 38. Pham NTK, Thongprachum A, Baba T, Okitsu S, Trinh QD, Komine-Aizawa S, et al. A 3-Month-Old Child with
410 Acute Gastroenteritis with Enterovirus D68 Detected from Stool Specimen. *Clin Lab.* 2017;63(7):1269-72.

411 39. Antona D, Kossorotoff M, Schuffenecker I, Mirand A, Leruez-Ville M, Bassi C, et al. Severe paediatric
412 conditions linked with EV-A71 and EV-D68, France, May to October 2016. *Eurosurveillance.* 2016;21(46):11-
413 4.

414 40. Chang TH, Yang TI, Hsu WY, Huang LM, Chang LY, Lu CY. Case report: painful exanthems caused by enterovirus
415 D68 in an adolescent. *Medicine (Baltimore).* 2019;98(33):e16493.

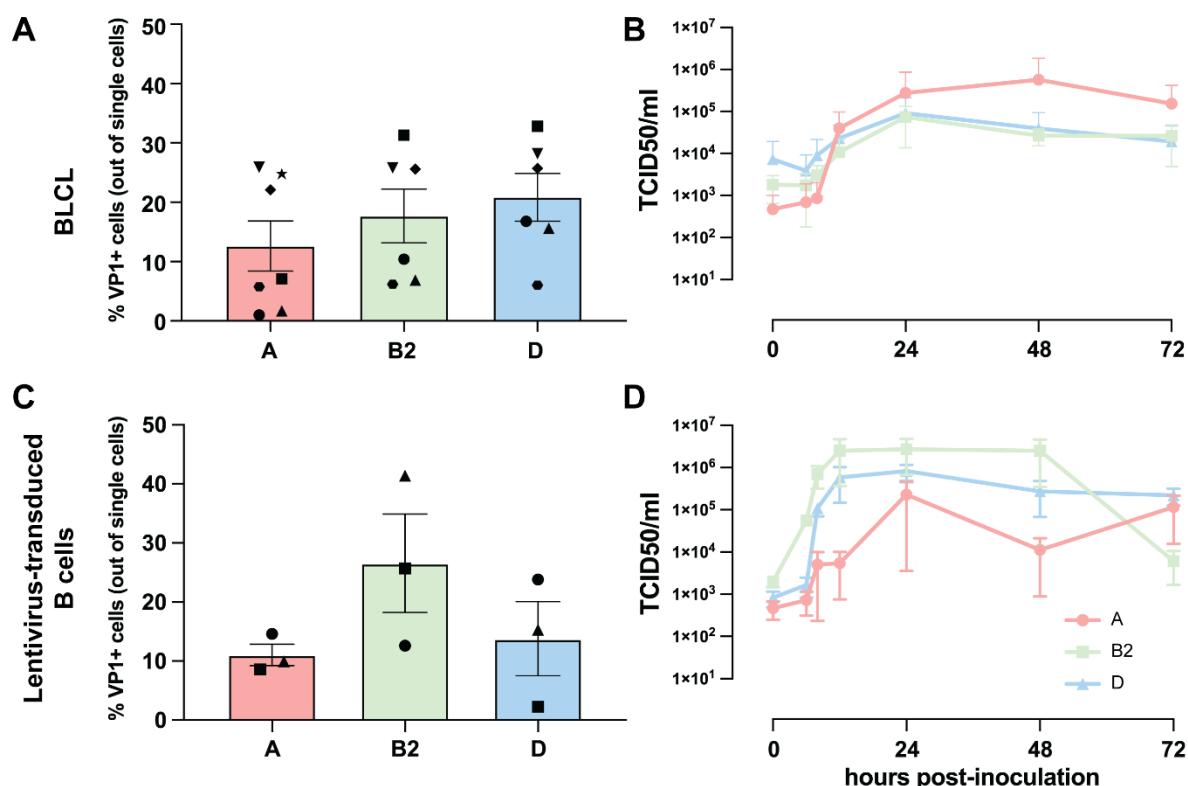
416 41. Zhu Q, Berzofsky JA. Oral vaccines: directed safe passage to the front line of defense. *Gut Microbes.*
417 2013;4(3):246-52.

418 42. van Binnendijk RS, Poelen MC, de Vries P, Voorma HO, Osterhaus AD, Uytdehaag FG. Measles virus-specific
419 human T cell clones. Characterization of specificity and function of CD4+ helper/cytotoxic and CD8+ cytotoxic
420 T cell clones. *J Immunol.* 1989;142(8):2847-54.

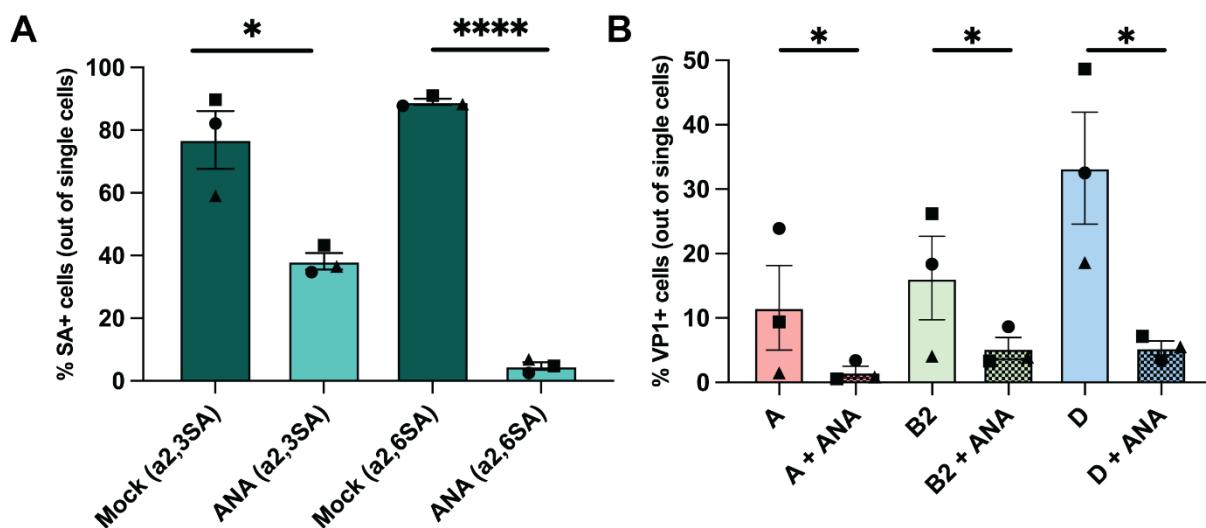

421 43. Wang Y, Wang F, Wang R, Zhao P, Xia Q. 2A self-cleaving peptide-based multi-gene expression system in the
422 silkworm *Bombyx mori*. *Sci Rep.* 2015;5:16273.

423 44. Atkinson GF. The Spearman-Karber Method of Estimating 50% Endpoints. Cornell University. Dept. of
424 Biometrics.: Biometrics Unit Technical Reports;; 1961. Contract No.: BU-141-M.

425

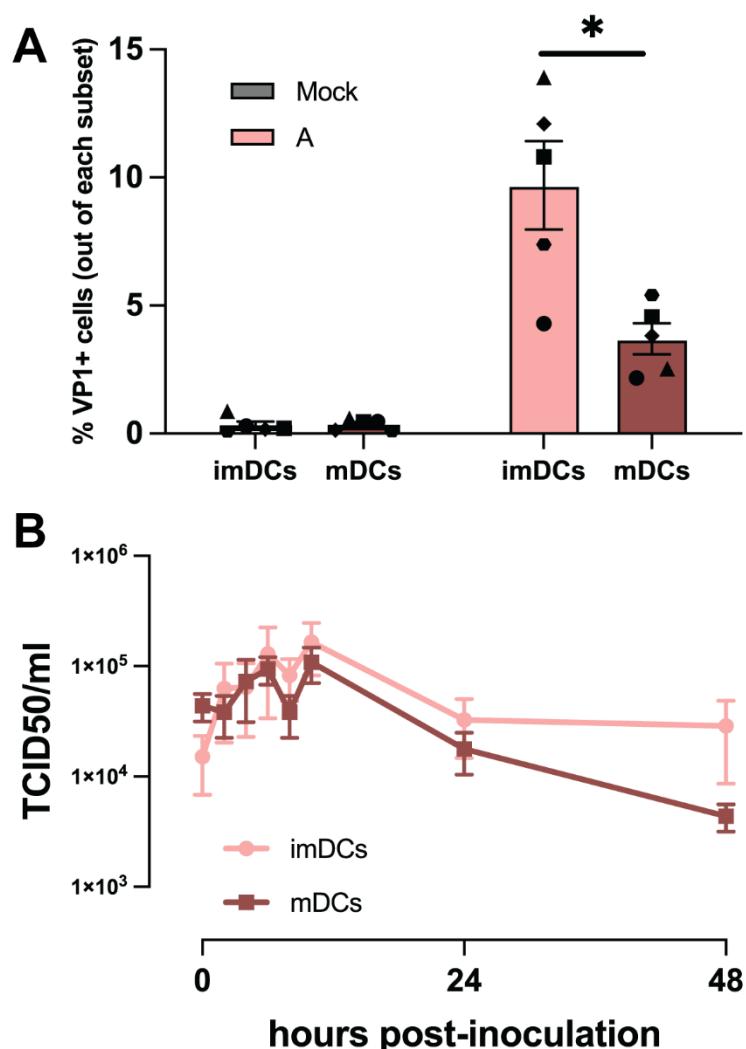

426

427 Figures and Tables

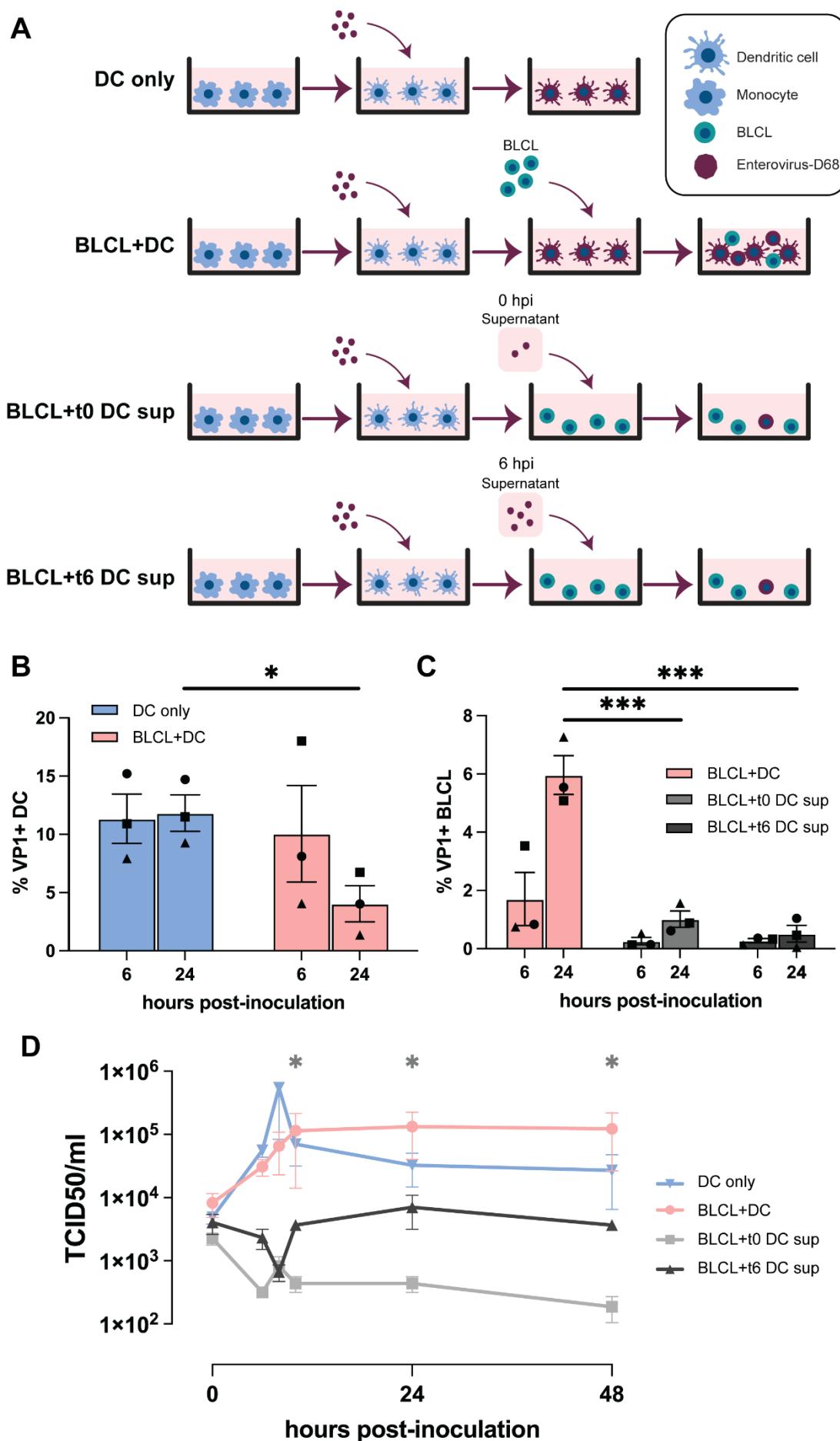


428

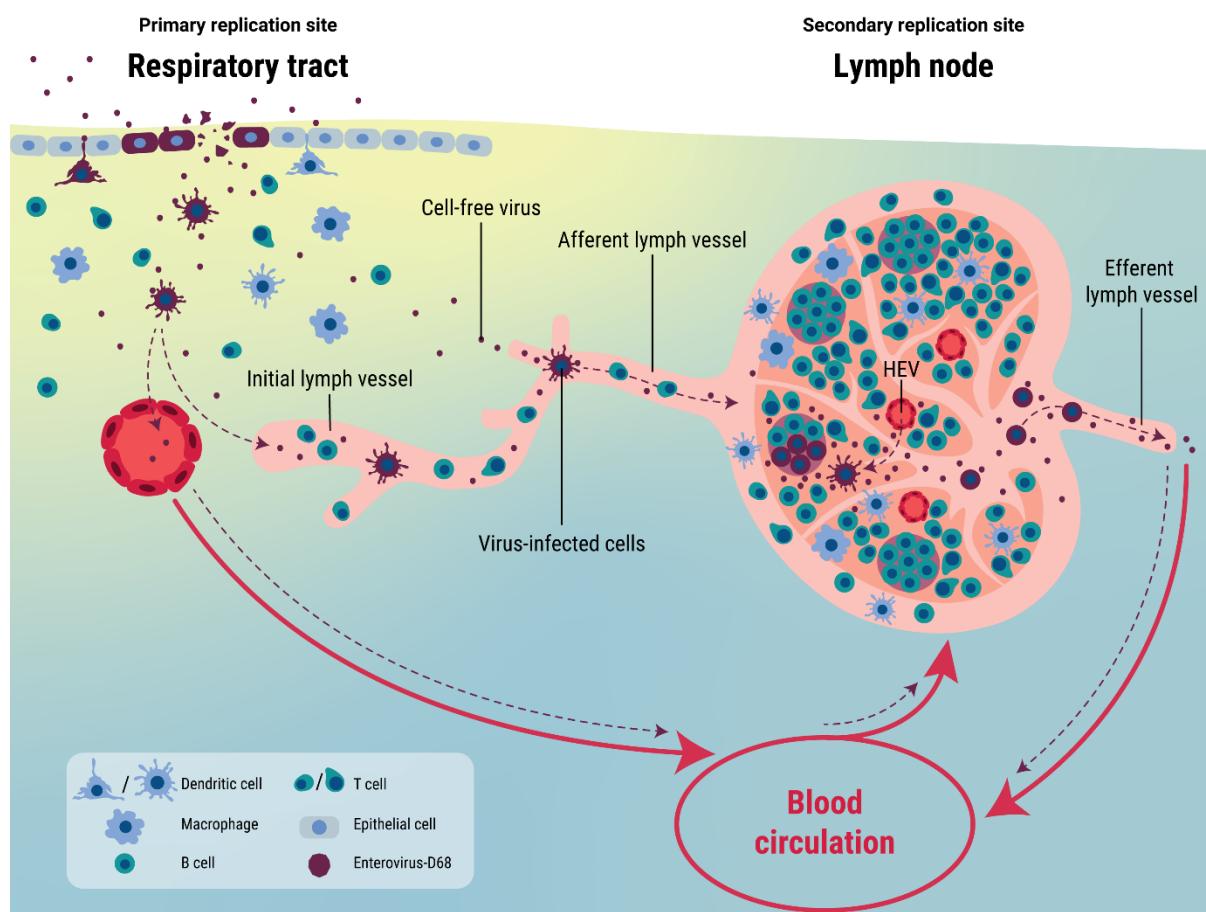
429 **Fig 1. Susceptibility and permissiveness of human PBMC to EV-D68 infection.** (A) Percentage of EV-D68 VP1⁺
430 leukocyte subsets 24 h after inoculation with EV-D68 strains from subclades A (n = 5 donors), B2 (n = 4 donors)
431 and D (n = 4 donors). Each symbol represents one donor. Statistical analysis was performed using a one-way
432 ANOVA with multiple comparison test. Error bars denoted SEM. (B) Production of infectious viruses in EV-D68-
433 inoculated PBMC. PBMC: peripheral blood mononuclear cells; SEM: standard error of mean *: P<0.05; ***:
434 P≤0.001.



436 **Fig 2. Susceptibility and permissiveness of B cell-rich models to EV-D68 infection.** BLCL and lentivirus-
437 transduced B cells were inoculated with EV-D68 strains from subclades A (n = 7), B2 (n = 6) and D (n = 6) as
438 models for EV-D68 infection in B cell-rich environment. (A – B) Percentage of EV-D68 VP1⁺ cells at 24 hpi and
439 production of new infectious virus particles in EV-D68-inoculated BLCL over time, respectively. (C – D)
440 Percentage of VP1⁺ cells at 24 hpi and production of infectious viruses in EV-D68-inoculated lentivirus-
441 transduced B-cells. Each symbol in (A) and (C) represents one donor. No statistically significant differences were
442 observed in the percentages of VP1⁺ cells among the different virus clades. Statistical analysis was performed
443 using a one-way ANOVA with multiple comparison test. Error bars denote SEM. BLCL: B-lymphoblastoid cell line;
444 hpi: hours post-inoculation; SEM: standard error of mean.


446 **Fig 3. Percentages of α 2,3-and α 2,6-linked SAs⁺ and EV-D68 VP1⁺ BLCL upon neuraminidase treatment.** (A)
447 Percentage of BLCL expressed α 2,3- (n=3) and α 2,6- (n=3) linked SAs with and without ANA treatment. (B)
448 Percentage of VP1⁺ BLCL (n=3) with and without ANA treatment inoculated with EV-D68 from subclades A, B2
449 and D, measured 24 hpi. Statistical analysis was performed with t-test. Error bars denote SEM. BLCL: B-
450 lymphoblastoid cell line. ANA: *Arthrobacter ureafaciens* neuraminidase; SAs: sialic acids; hpi: hours post-
451 inoculation; SEM: standard error of mean. *: P<0.05; ***: P≤0.0001.

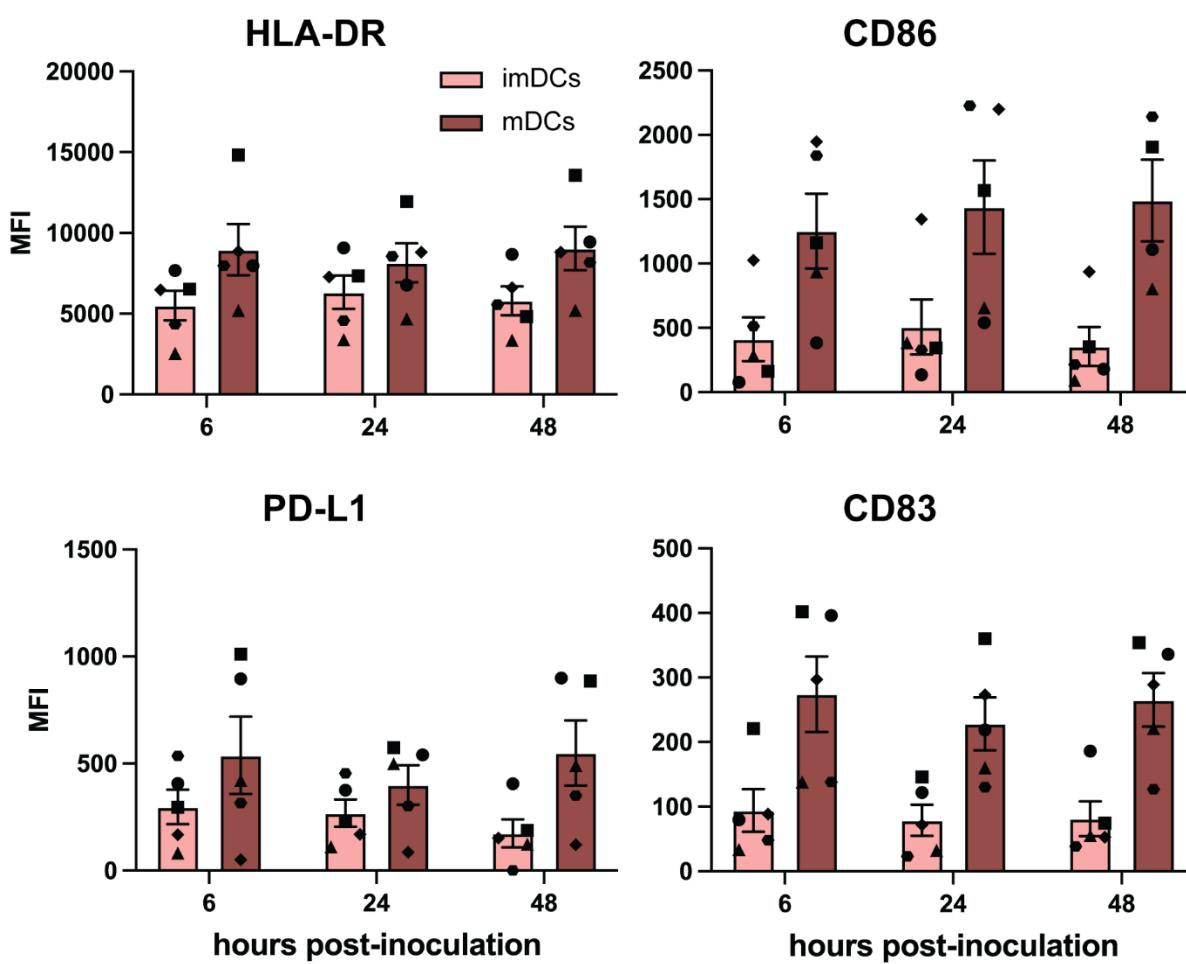
452


453

454 **Fig 4. Susceptibility and permissiveness of imDCs and mDCs to EV-D68 infection.** (A) Percentage of EV-D68 VP1⁺
455 imDCs (n = 5) and mDCs (n = 5) measured at 6 hpi. (B) Production of infectious viruses in EV-D68/A-inoculated
456 imDCs (n = 3) and mDCs (n = 3). Samples for virus titration were collected at 0, 2, 4, 6, 8, 10, 24 and 48 hpi. All
457 statistical analyses in this figure were performed with t-test. Error bars denote SEM. imDCs: immature dendritic
458 cells; mDCs: mature dendritic cells; hpi: hours post-inoculation; SEM: standard error of mean. *: P<0.05; **:
459 P<0.01.

461 **Fig 5. Co-culture of EV-D68-inoculated imDCs with their autologous BLCL.** (A) Schematic representation of the
462 experimental setup and controls. (B) Percentages of EV-D68 VP1⁺ imDCs and (C) BLCL in different culture
463 conditions at 6 and 24 hpi. (D) Production infectious viruses in different culture conditions. Statistical analysis in
464 (B) was performed with t-test. Statistical analysis in (C) and (D) were performed with a one-way ANOVA with
465 multiple comparison test and compared to BLCL+t0 DC sup and BLCL+t6 sup, respectively. Error bars denote
466 SEM. BLCL: B-lymphoblastoid cell line; imDCs: immature dendritic cells; hpi: hours post-inoculation; SEM:
467 standard error of mean; BLCL+t0 DC sup: autologous BLCL co-cultured with supernatant collected from EV-
468 D68/A-inoculated imDCs at 0 hpi. BLCL+t6 DC sup: autologous BLCL co-cultured with supernatant collected from
469 EV-D68/A-inoculated imDCs at 6 hpi. *: P<0.05; **: P≤0.001.

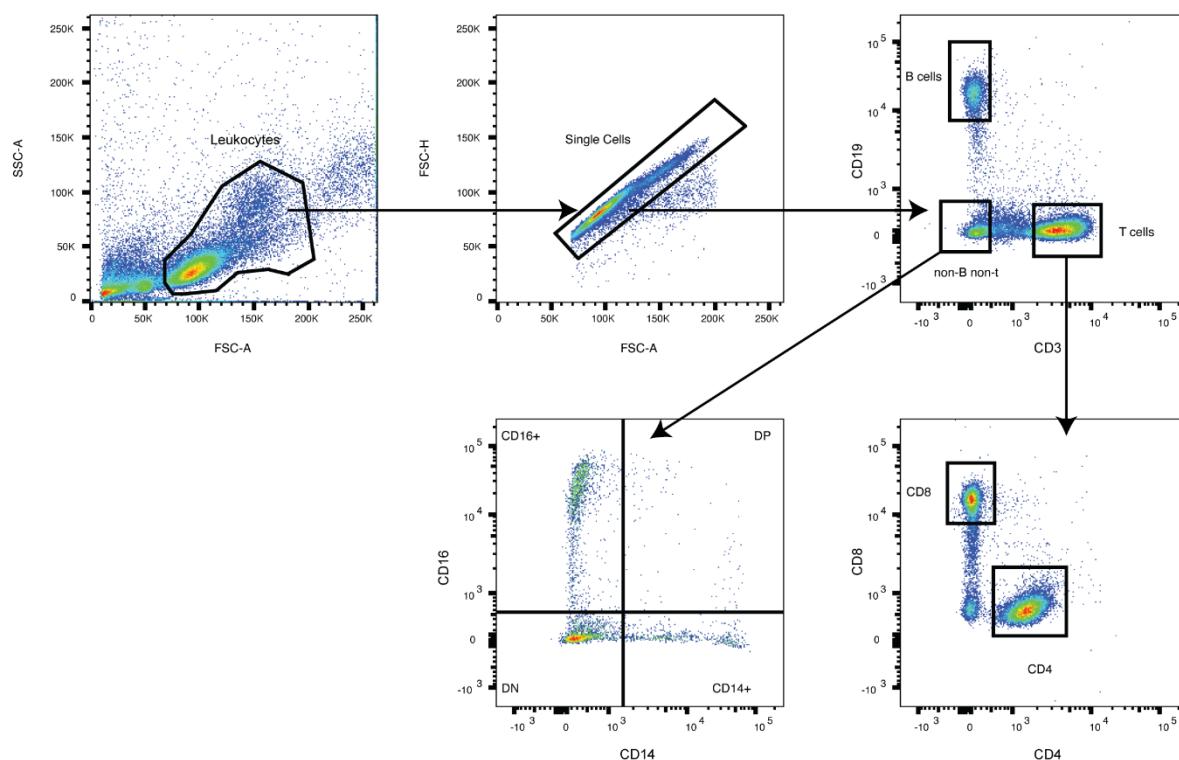
470



471

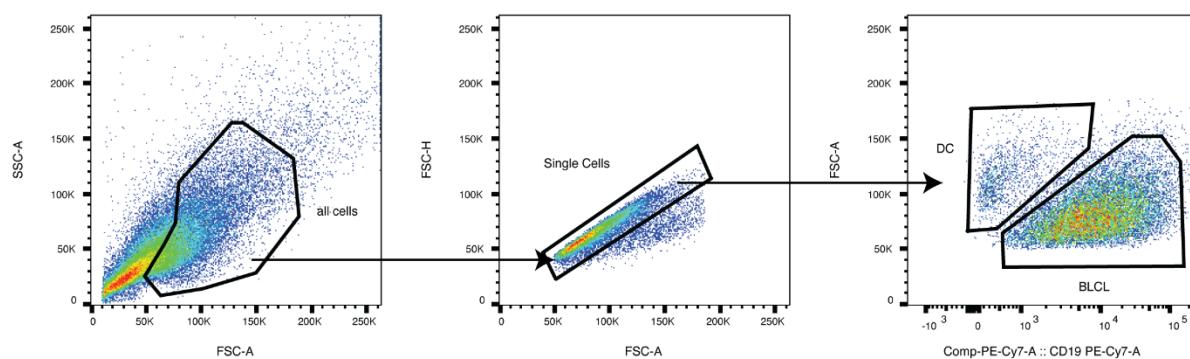
472 **Fig 6. Proposed model for systemic dissemination of EV-D68.** EV-D68 enters the respiratory tract and initially
473 infects respiratory epithelial cells. The infection will result in the recruitment of immune cells, including imDCs.
474 Subsequently, cell-free EV-D68 can spread to lymphoid tissues by spilling over into the circulatory or lymphatic
475 system. Alternatively, it can infect imDCs, which can transfer the virus to lymphoid tissues. These lymphoid
476 tissues can function as a secondary replication site, where EV-D68 infects mDCs and B cells. From this site, cell-
477 free virus or virus-infected immune cells can enter the blood circulation and spread virus to other tissues. HEV:
478 high endothelial venule. Red arrow: blood circulation; purple dotted arrow: potential routes of EV-D68 spread.

479


480 **Supplementary Information**

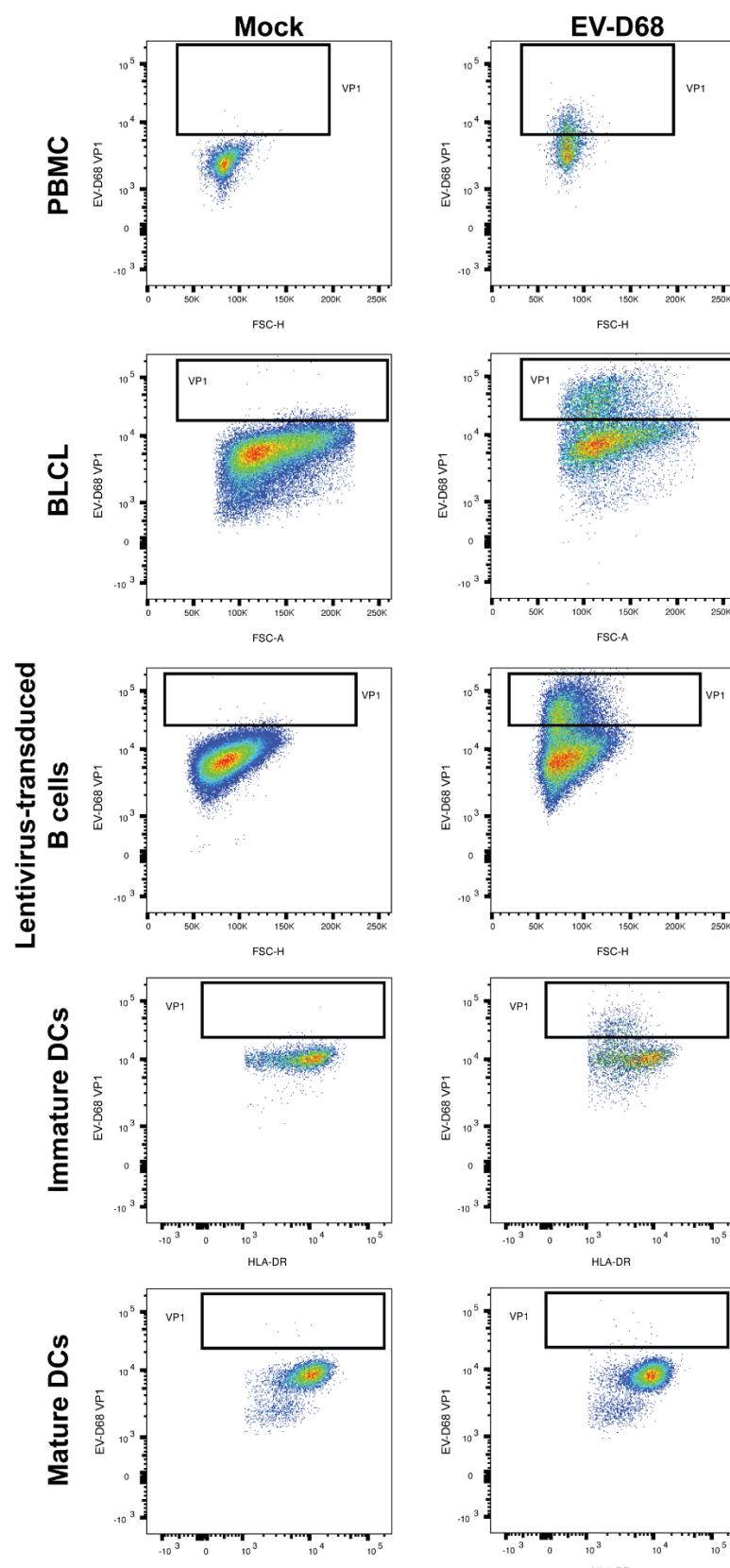
481

482 **S1 Fig. The expression of dendritic cell maturation markers in immature and mature dendritic cells (imDCs and**
483 **mDCs).** mDCs were defined by the upregulation of surface HLA-DR, CD86, PD-L1 and CD83 after treatment of
484 monocyte-derived imDCs with lipopolysaccharide. Each symbol represents one donor. Error bars denote
485 standard error of mean. MFI: median fluorescence intensity.


486

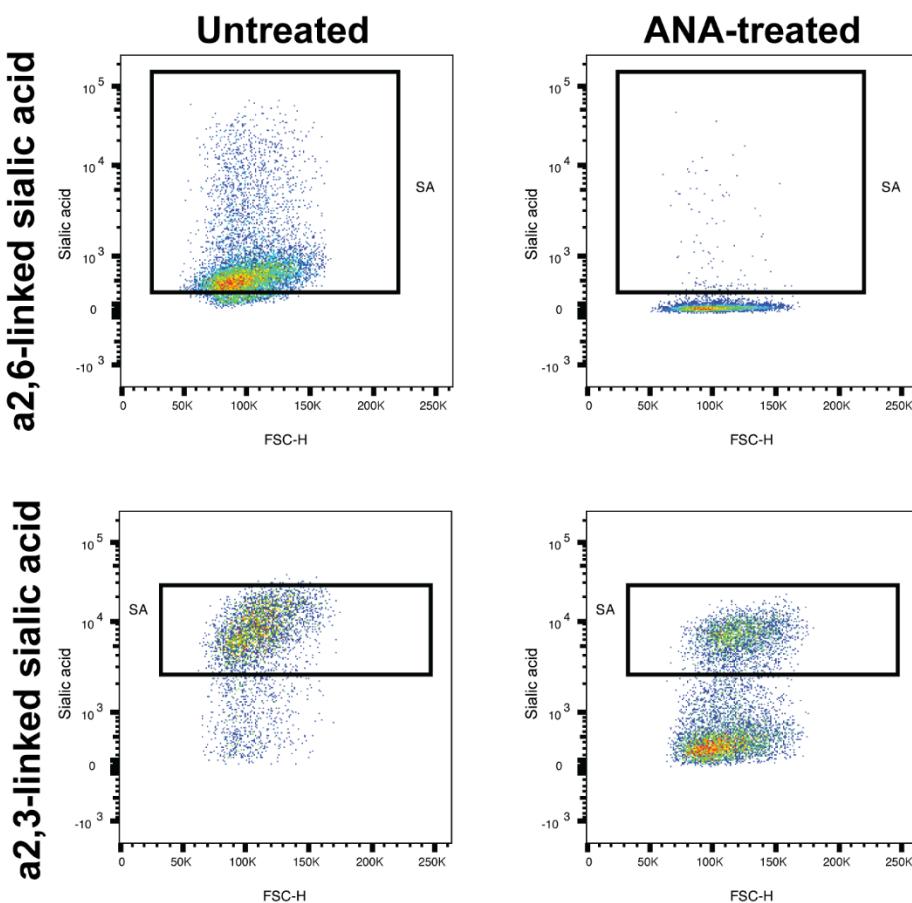
487

488 **S2 Fig. Representative gating strategy for peripheral blood mononuclear cell subpopulations.** B cells were
489 defined as CD3⁻CD19⁺ cells; CD4⁺T cells as CD3⁺CD19⁻CD4⁺CD8⁻ cells; CD8⁺T cells as CD3⁺CD19⁻CD4⁻CD8⁺ cells; and
490 monocytes as CD3⁻CD19⁻CD14^{-/+}CD16^{-/+} cells.


491

492

493 **S3 Fig. Representative gating strategy for EV-D68-inoculated immature dendritic cells (imDCs) co-cultured**
494 **with autologous B-lymphoblastoid cell line (BLCL).** imDCs were defined as CD19⁻ cells; BLCL were defined as
495 CD19⁺ cells.


496

497

498 **S4 Fig. Representative gating strategies for EV-D68 VP1⁺ cells.** PBMC: peripheral blood mononuclear cells; BLCL:

499 B-lymphoblastoid cell line; DCs: dendritic cells.

500

501 **S5 Fig. Representative gating strategy to determine percentages of α 2,3- and α 2,6-linked sialic acid⁺ (SAs⁺)**

502 **BLCL.** Percentages of SA⁺ cells were determined at 0 h post-inoculation. ANA: *Arthrobacter ureafaciens*

503 neuraminidase; BLCL: B-lymphoblastoid cell line.

504

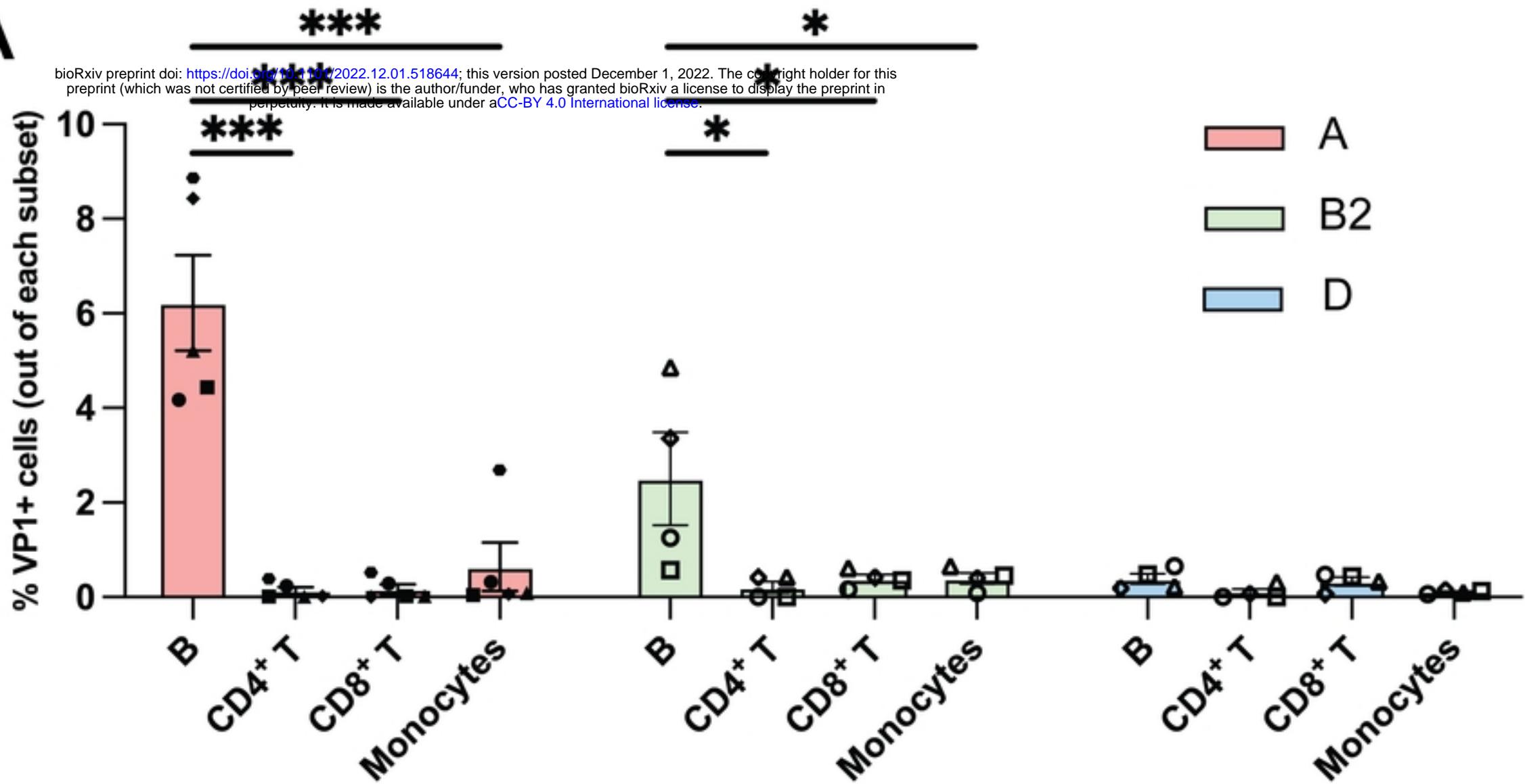
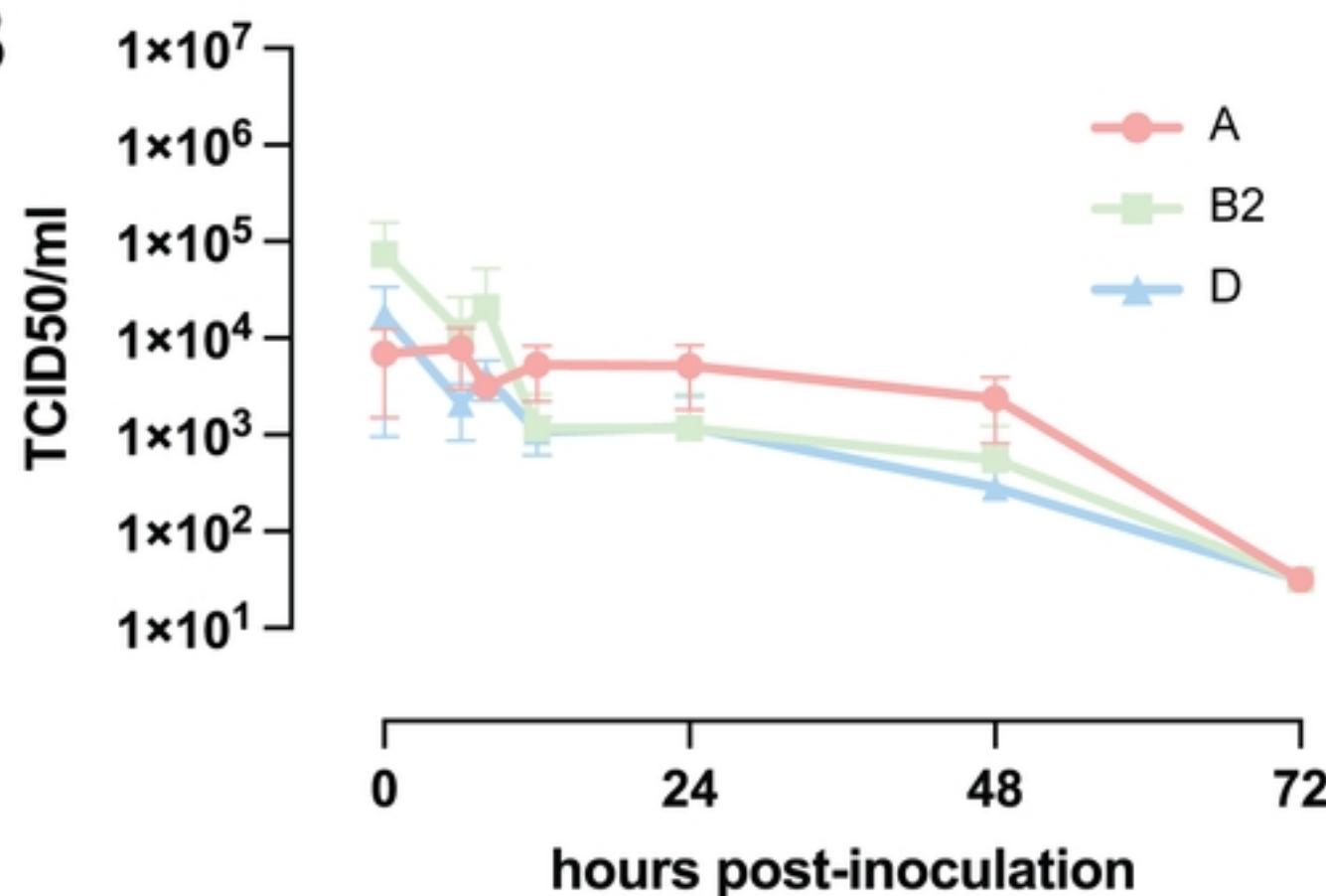


A**B**

Fig 1

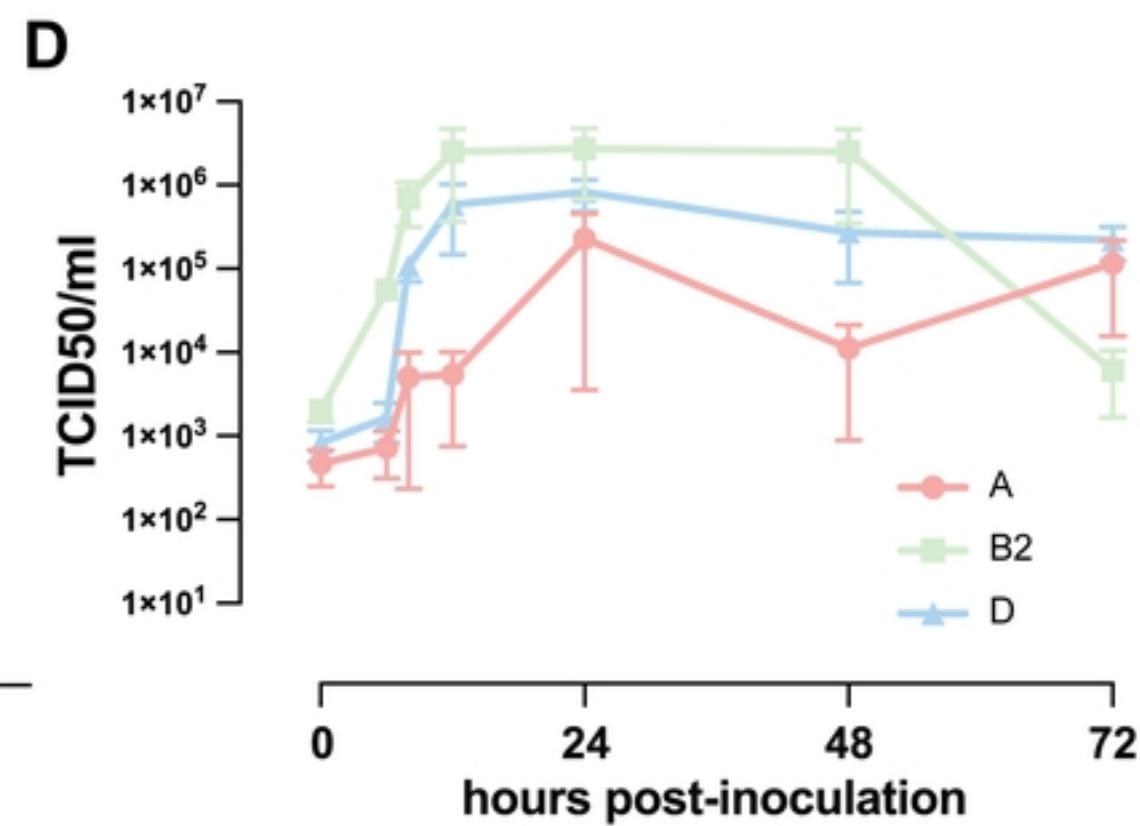
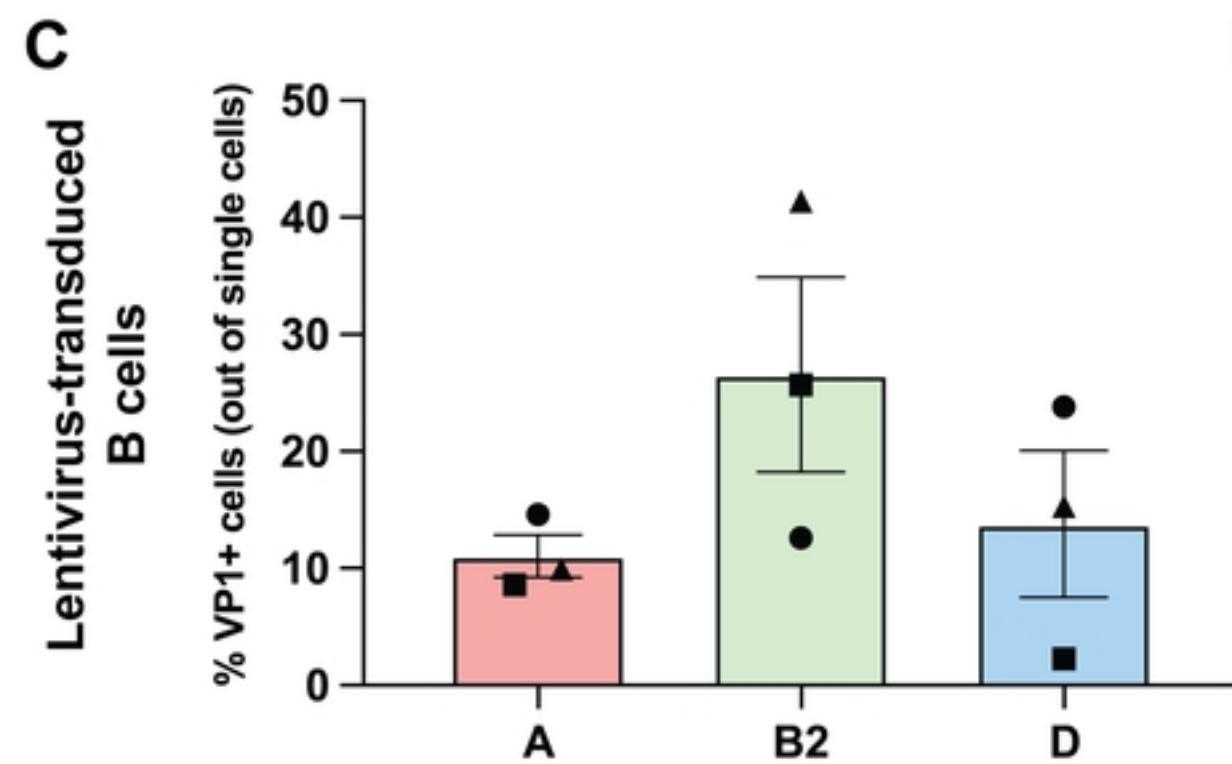
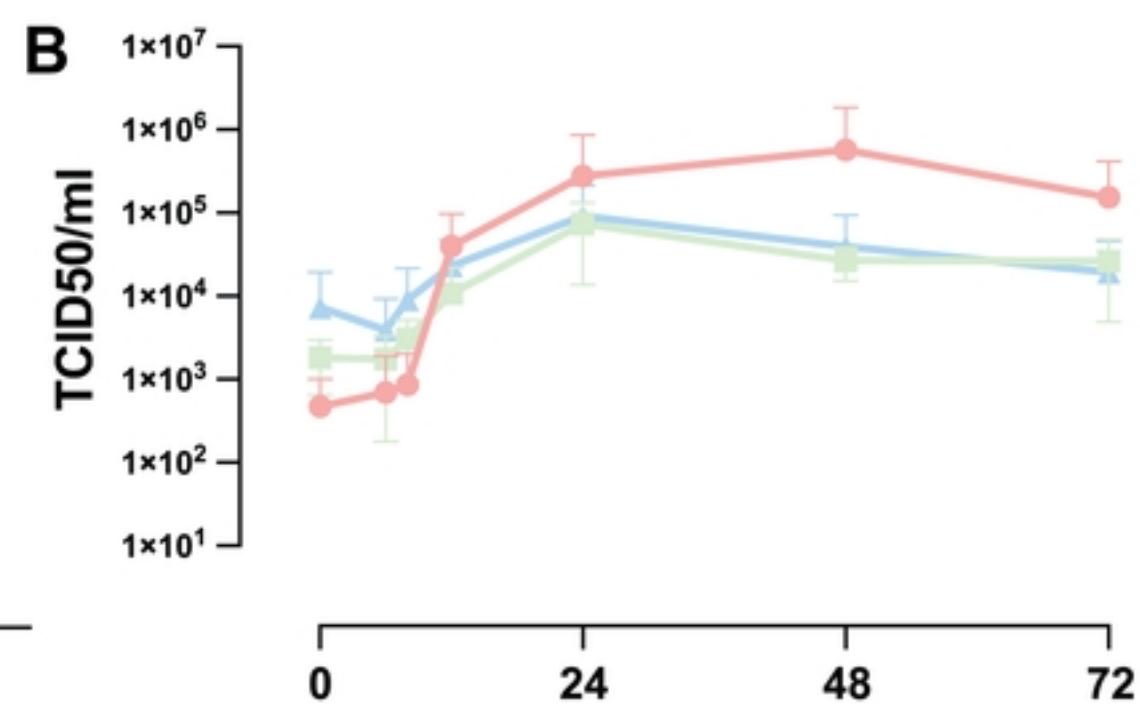
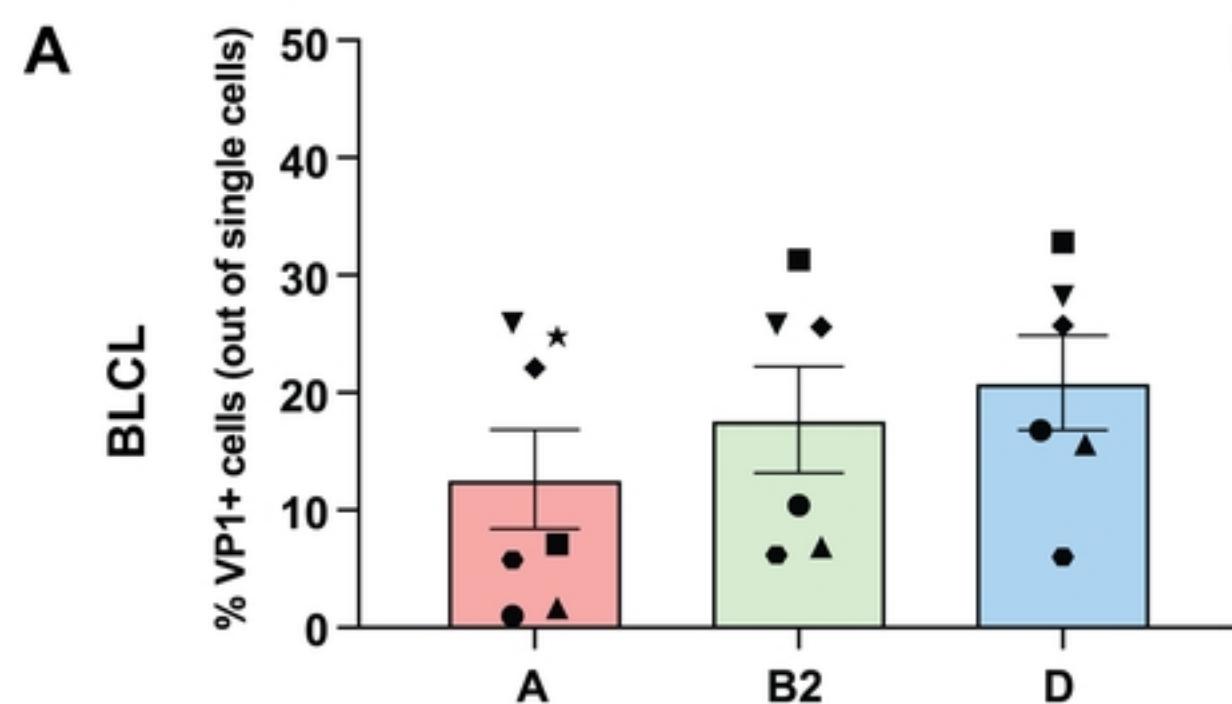
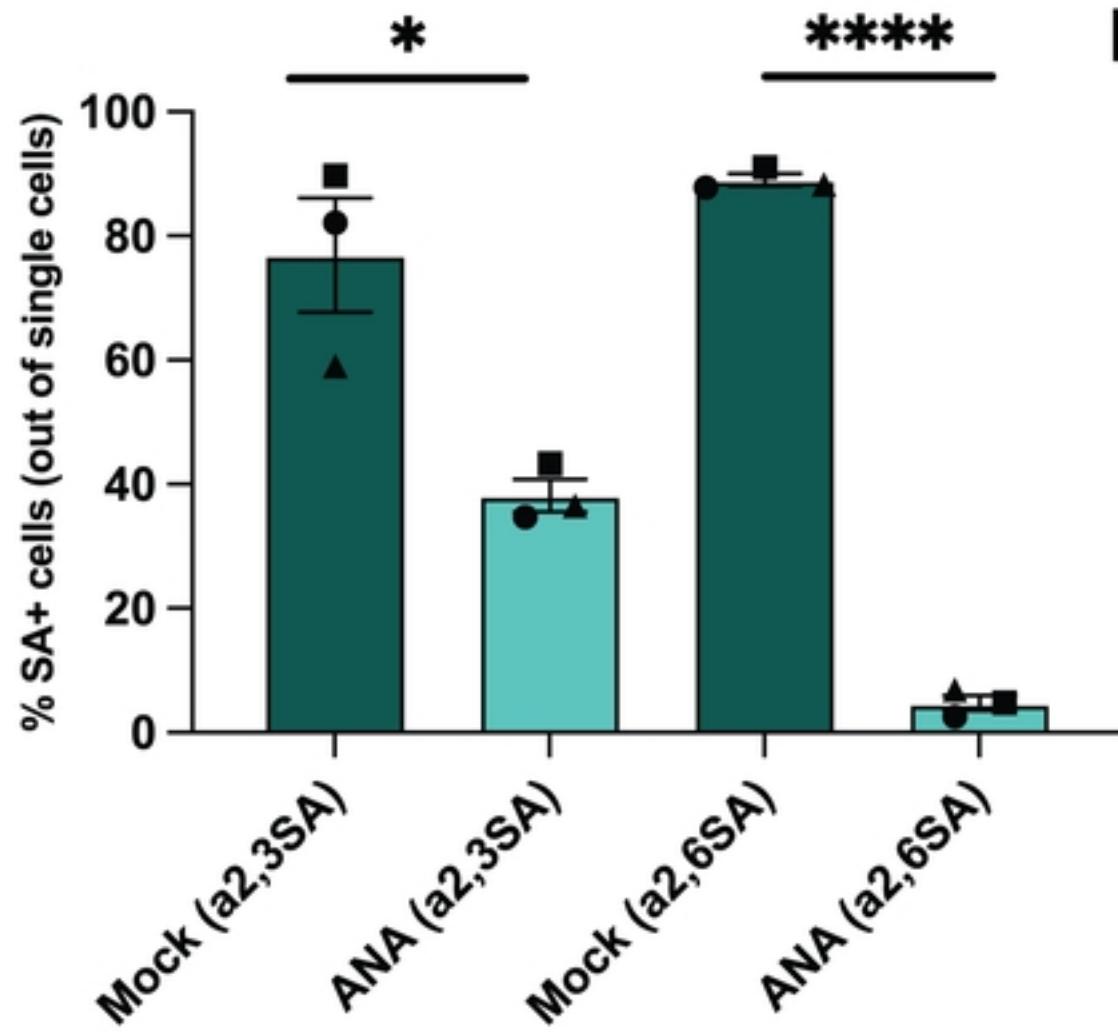
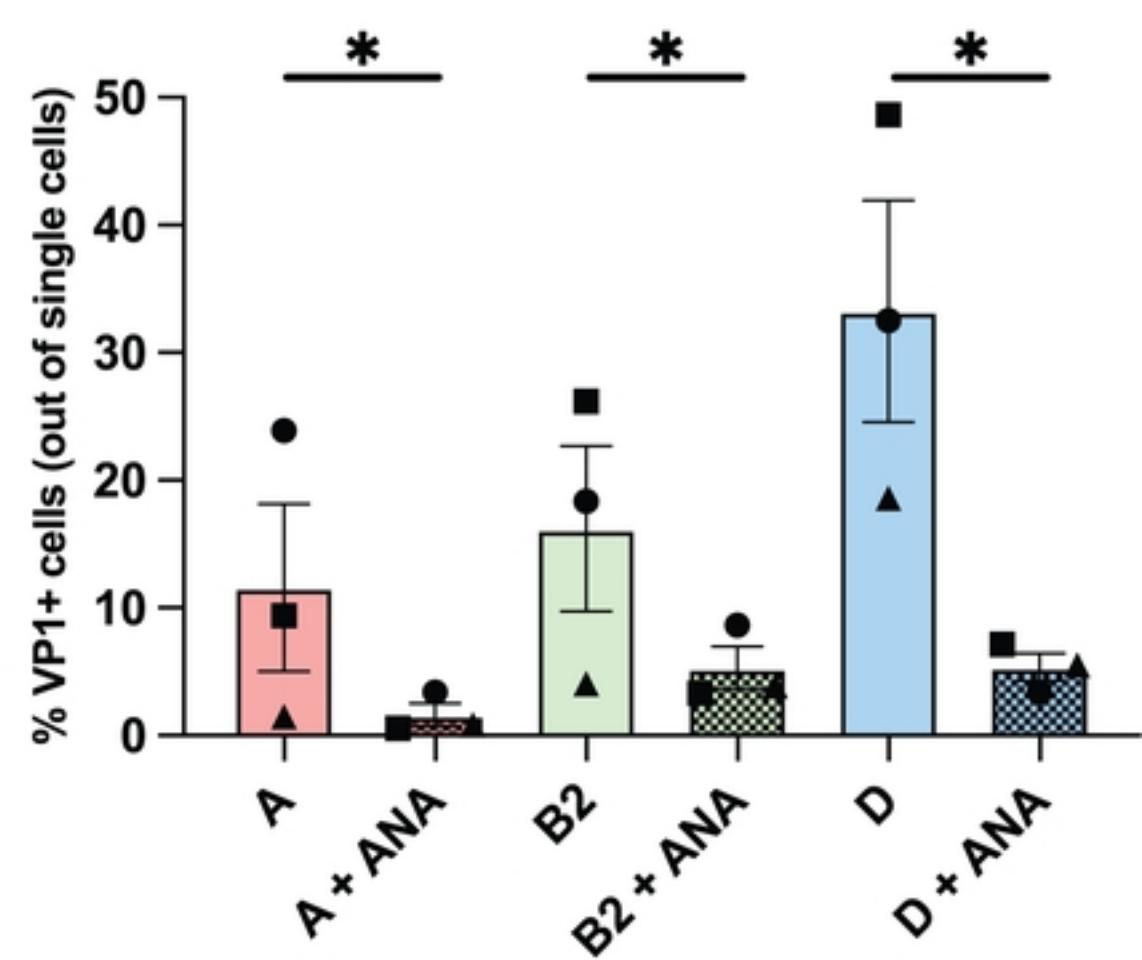







Fig 2

A**B****Fig 3**

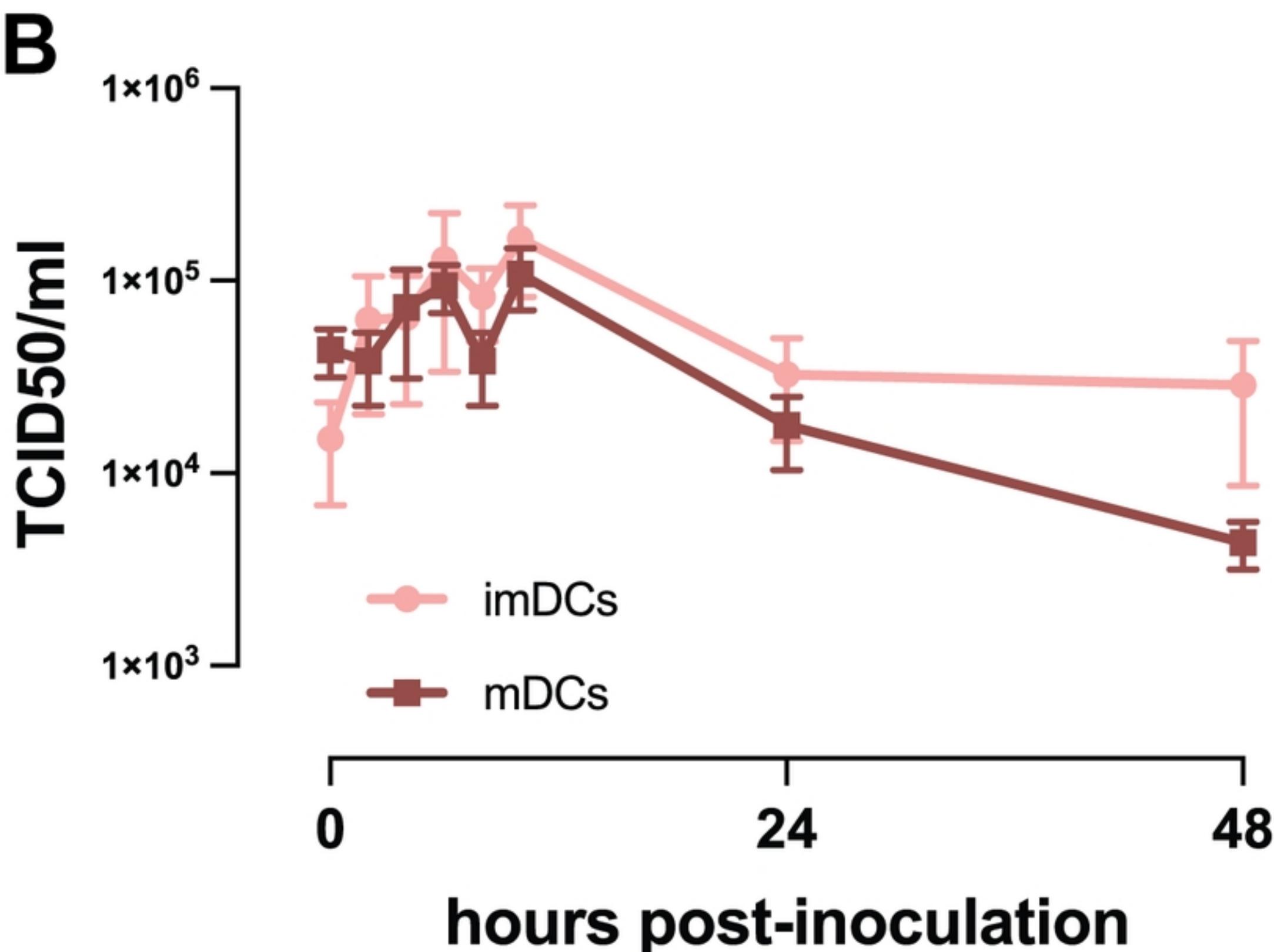
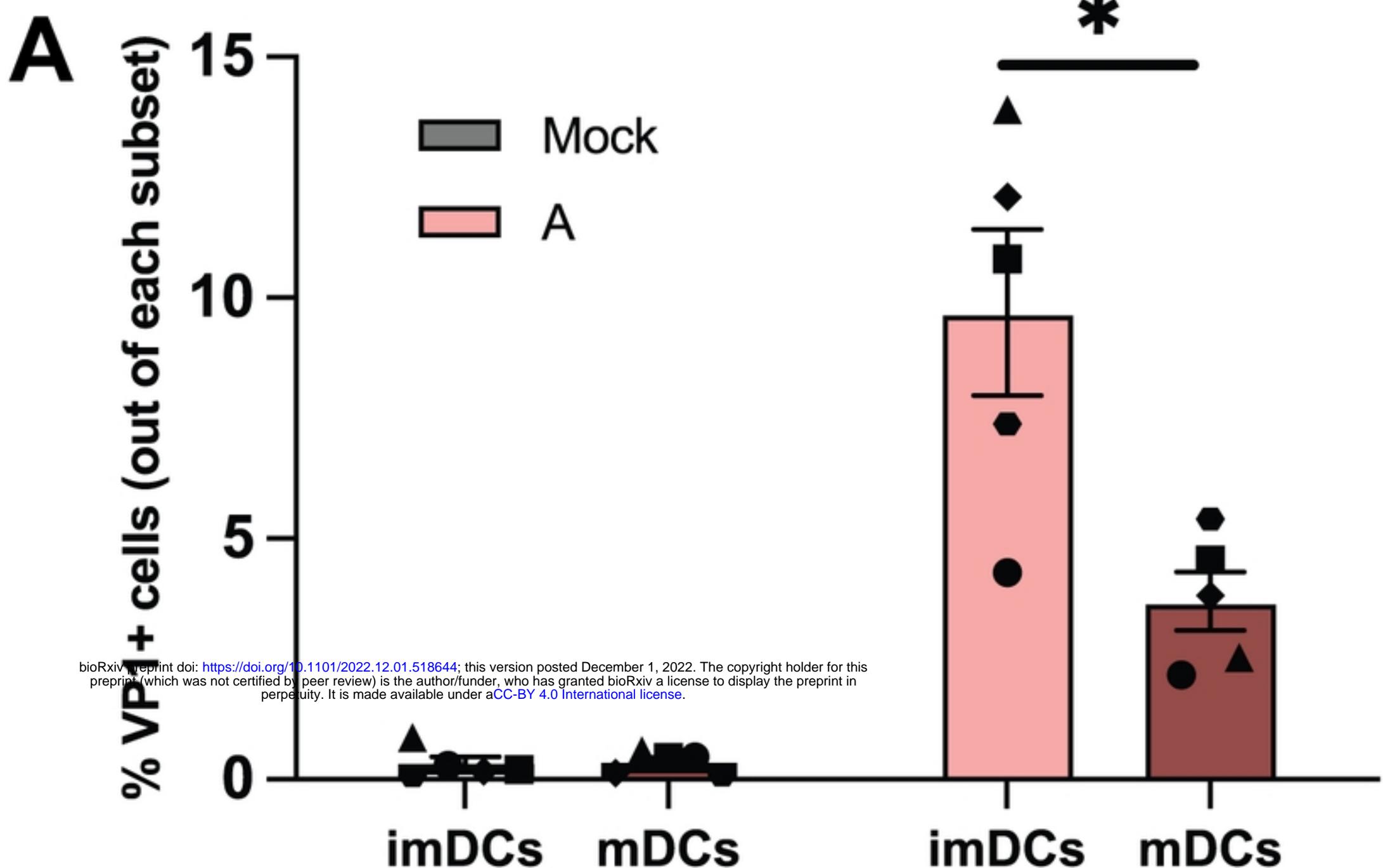
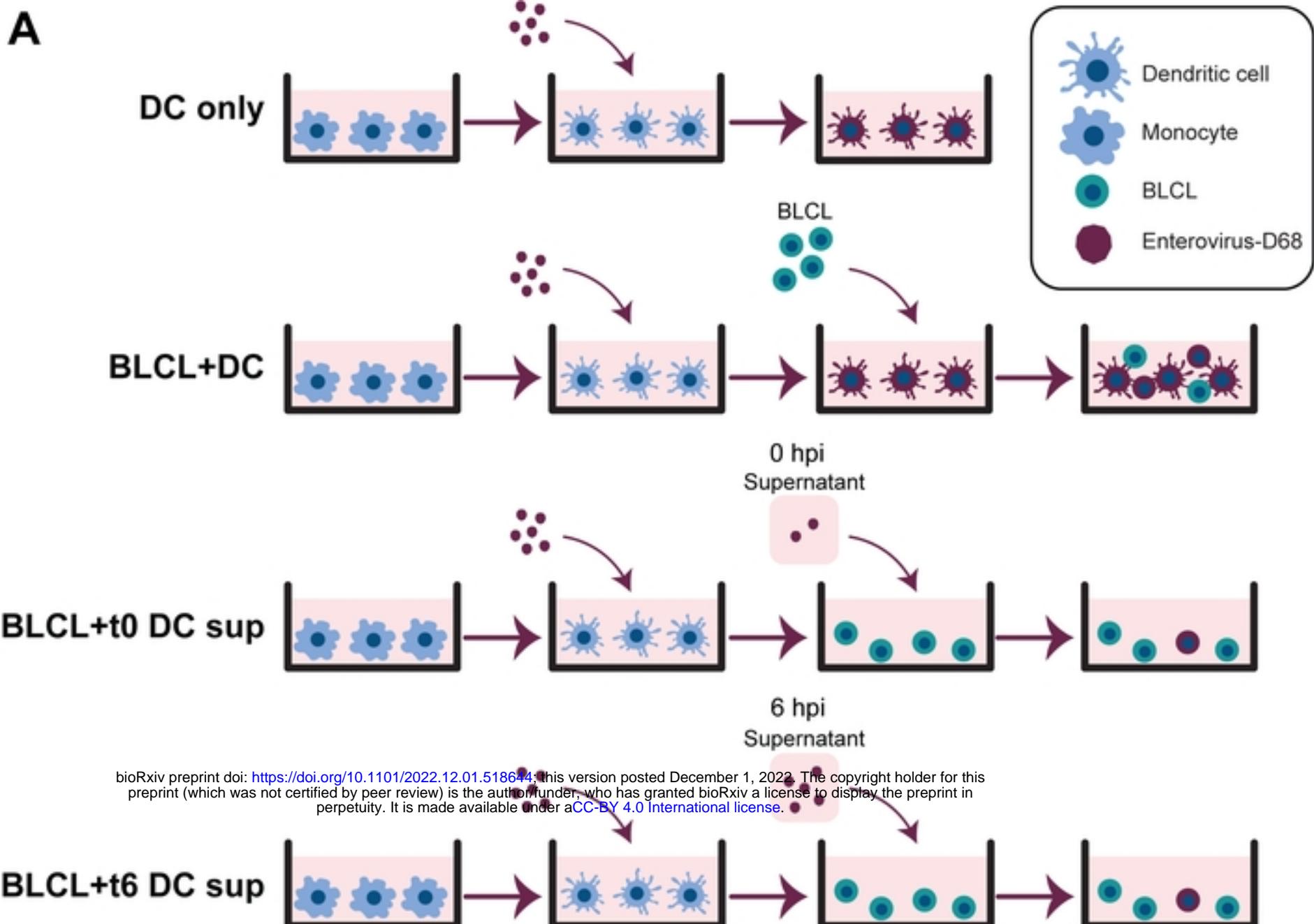
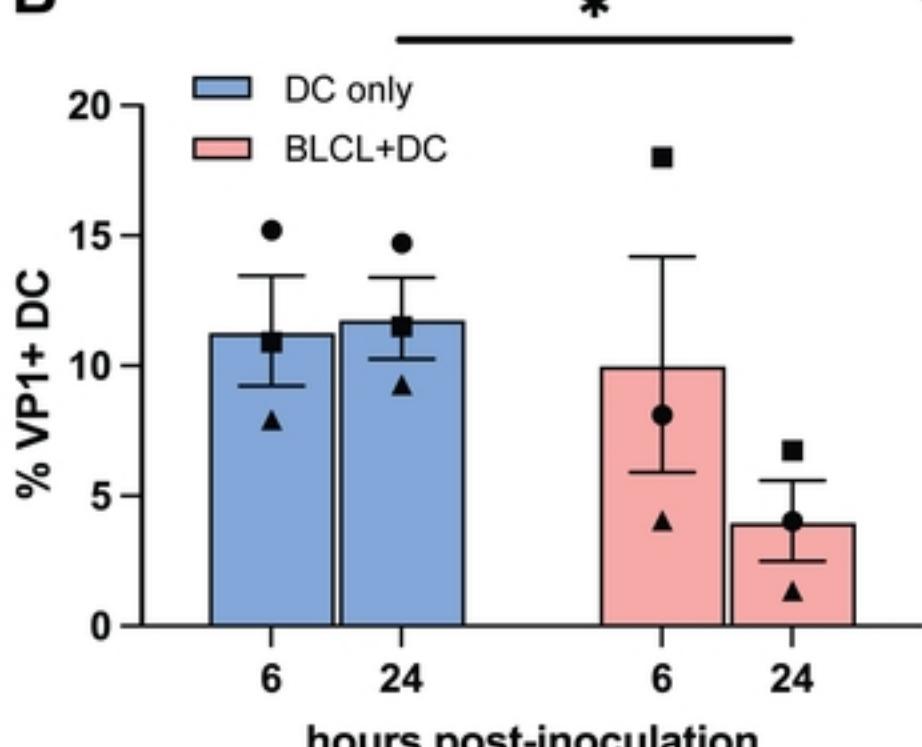
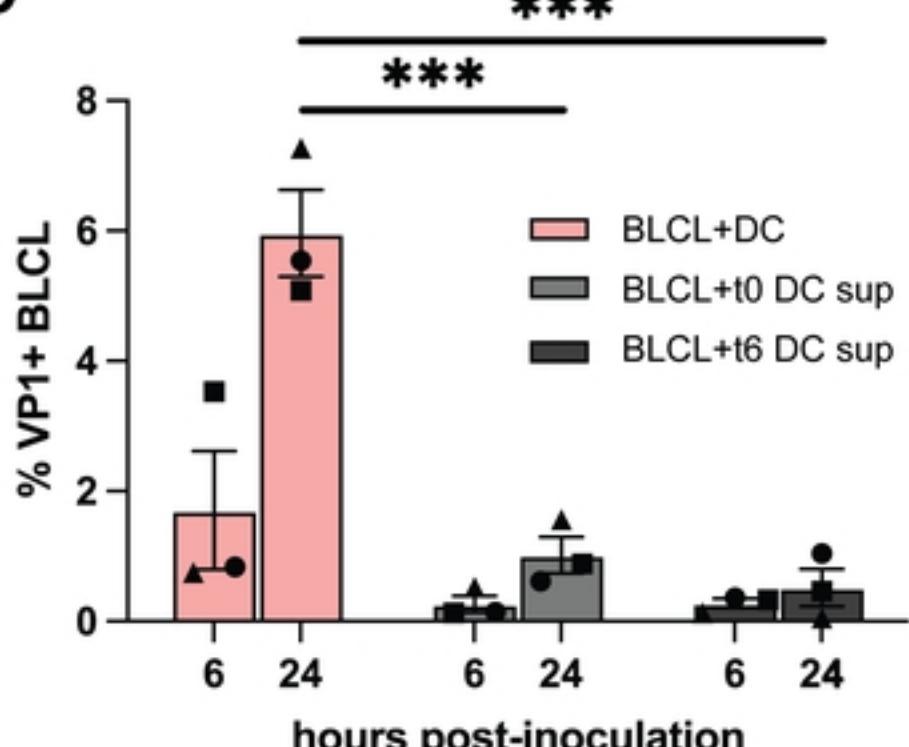
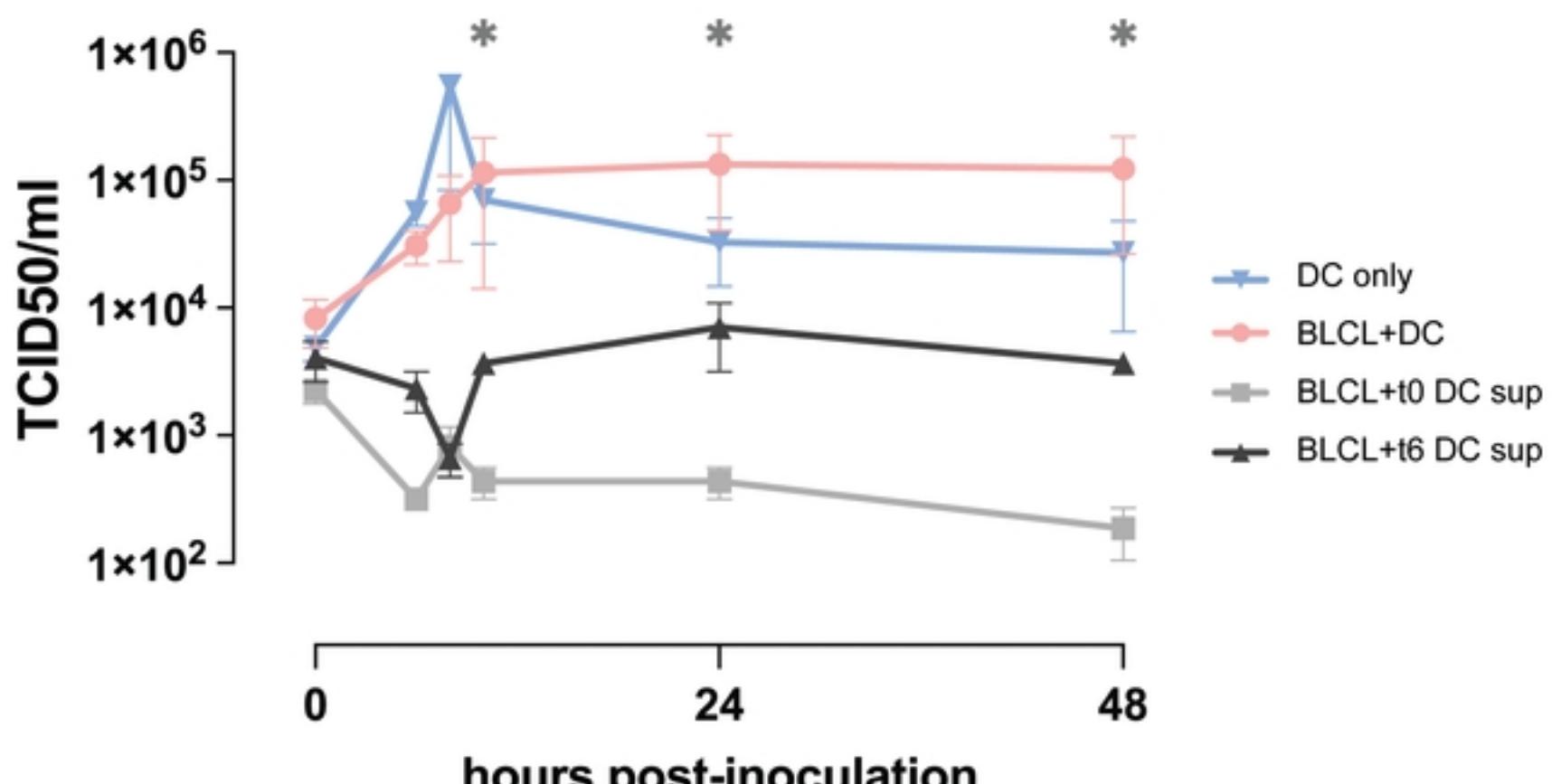







Fig 4

A**B****C****D****Fig 5**

Primary replication site

Secondary replication site

Respiratory tract

Lymph node

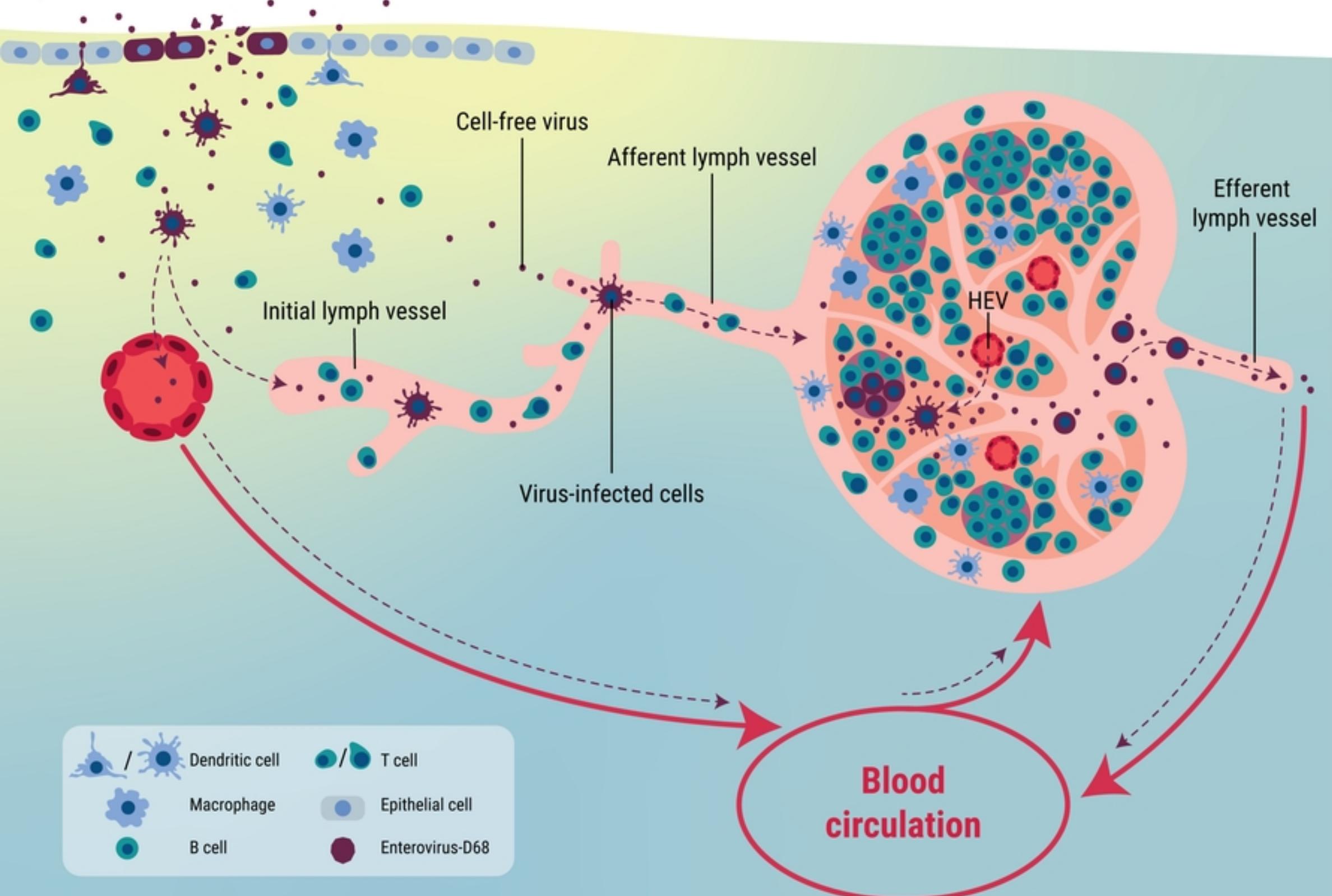


Fig 6