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Abstract

Assessing the consistency of quantitative MRI measurements is critical for inclusion in
longitudinal studies and clinical trials. Intraclass coefficient correlation and coefficient of
variation were used to evaluate the different consistency aspects of diffusion- and myelin-
based MRI measures. Multi-shell diffusion and inhomogeneous magnetization transfer
datasets were collected from twenty healthy adults at a high-frequency of five MRI
sessions. The consistency was evaluated across whole bundles and the track-profile along
the bundles. The impact of the fiber populations on the consistency was also evaluated
using the number of fiber orientations map. For whole and profile bundles, moderate to
high reliability of diffusion and myelin measures were observed. We report higher
reliability of measures for multiple fiber populations than single. The overall portrait of the
most consistent measurements and bundles drawn from a wide range of MRI techniques
presented here will be particularly useful for identifying reliable biomarkers capable of
detecting, monitoring and predicting white matter changes in clinical applications and has

the potential to inform patient-specific treatment strategies.
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Key points:
e Reliability and variability are excellent to good for DWI measurements, and good
to moderate for MT measures for whole bundles and along the bundles.
e The number of fiber populations affects the reliability and variability of the MRI

measurements.

e The reliability and variability of MRI measurements are also bundle dependent.
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1. Introduction

In recent decades, there has been a growing body of evidence that white matter (WM) plays
a prominent role in various pathologies. In this context, longitudinal studies of WM have
become increasingly important. Currently, various magnetic resonance imaging (MRI)
techniques are used to assess different properties of WM tissues such as axonal density,
fiber organization, or myelin (Jones et al., 2013). The most common technique is diffusion-
weighted imaging (DWI), which includes single-compartment models such as Diffusion
Tensor Imaging (DTI, Basser et al., 1994) or more complex models using multi-
compartment fitting such as High Angular Resolution Imaging (HARDI, Dell’Acqua &
Tournier, 2019; Jeurissen et al., 2013) and Neurite Orientation Density and Dispersion
Imaging (NODDI, H. Zhang et al., 2012) from multi-shell diffusion MRI. Other techniques
like magnetization transfer imaging (MTI, M. Kim & Cercignani, 2014; Wolff & Balaban,
1989) are also increasingly used to examine changes in the myelin content of WM. Key
measures of WM microstructure derived from these models are sensitive to changes in a
healthy population (Alexander, 2017; Beck et al., 2021; Boukadi et al., 2019;
Honnedevasthana Arun et al., 2021; Koshiyama et al., 2020; Munsch et al., 2021; Uddin et
al., 2019) or in pathological conditions (Beaudoin et al., 2021; Brown et al., 2017,
Granziera et al., 2021; Laule & Moore, 2018; Lu et al., 2021; Rahmanzadeh et al., s. d.;
Schneider et al., 2017). In addition, studies have also shown the effect of a treatment or
therapeutic intervention on WM measures in clinical trials (Arnold et al., 2022; Gurevich
et al., 2018; Roy et al., 2021; Vavasour et al., 2019).

However, reliably evaluating, monitoring, or predicting any changes in WM
microstructure requires data with high consistency and enough statistical power to detect
these changes (Poldrack et al., 2017; Zuo et al., 2019). MRI measurements can be
influenced by random effects introducing measurement errors such as image noise, MRI
signal variation or scanner model (Wang et al., 2012). In addition, repeated measure
analyses also introduce additional sources of variation (a change of technologist during
data acquisition or subject positioning, for example). Together, these errors affect data
consistency which is an important factor in the sensitivity and specificity of the analysis

(Tofts etal., 2018; Wang et al., 2012; Zuo et al., 2019). Therefore, it is essential to evaluate
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the different aspects of the consistency of the measurements including reliability,
reproducibility and variability of measurements derived from MR images, especially so for
the more novel and more complex quantitative MRI protocols. Here, reliability refers to
the overall consistency of the measurements across subjects, i.¢., it reflects both the degree
of correlation and agreement between measures (Bruton et al., 2000; Koo & Li, 2016).
Variability can be separated into within-subject variability and between-subject variability.
Within-subject variability can be used to assess the ability to obtain similar values across
sessions of the same subject, i.e., an index of measurement reproducibility. Finally,
between-subject variability represents the sample heterogeneity, i.e., how much one subject
differs from another.

To date, consistency of MRI-based WM measurements has been evaluated through
numerous studies, especially for the DWI technique (Boekel et al., 2017; Grech-Sollars et
al., 2015; Hakulinen et al., 2021; Magnotta et al., 2012; Teipel et al., 2011; Thieleking et
al., 2021; Veenith et al., 2013). These studies reported moderate to high reliability in the
WM using Intraclass correlation coefficient (ICC) or Pearson’s correlation ranging from
0.5 to >0.8 as well as within- and between-subject coefficients of variation (CV) ranging
from 1 to 8% and 1 to 15% respectively. Among DTI-derived measures, Fractional
anisotropy (FA) and Mean Diffusivity (MD) generally show the highest reliability across
different WM regions (Acheson et al., 2017; Hakulinen et al., 2021; Luque Laguna et al.,
2020; Palacios et al., 2017; Shahim et al., 2017; Thieleking et al., 2021; Zhou et al., 2018).
For NODDI-derived measures, studies reported similar (intracellular volume fraction,
ICvf) or higher (orientation dispersion, OD) reliability compared to DTI measures, while
isotropic volume fraction (ISOvf) showed the poorest reliability (ICC<0.6) (Andica et al.,
2020; Chung et al., 2016; Granberg et al., 2017; Lucignani et al., 2021; Tariq, 2013). In
contrast, to the best of our knowledge, the reliability of HARDI-derived measurements
such as apparent fiber density (AFD, D. Raffelt et al., 2012) and the number of fiber
orientations (NuFO, Dell’Acqua et al., 2013a) has not been yet examined in healthy
subjects or clinical population. Regarding MTI, MTR (Henkelman et al., 2001; Vavasour
etal., 2011) - the most common measure - has been shown to have good reliability (ICC >
0.7) (Filippi et al., 2000; Hickman et al., 2004; Schwartz et al., 2019; van der Weijden et

al., 2021; Weiskopf et al., 2013). More recently, Inhomogeneous magnetization transfer
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(1IhMT, Varma et al., 2015) — a novel development of MT — has been shown to be more
specific to myelin content compared to MTR (Duhamel et al., 2019; O. M. Girard et al.,
2015; Manning et al., 2017; Varma et al., 2015; L. Zhang et al., 2020) and sensitive to
multiple sclerosis-related (MS) processes in transversal studies (Obberghen et al., 2018;
Rasoanandrianina et al., 2020; L. Zhang et al., 2020). To date, two studies reported good
reliability of ihMT measuring with ICC ranging from 0.6 to 0.95 in different regions of the
WM (Mchinda et al., 2018; L. Zhang et al., 2019), whereas the only longitudinal study
suggests that ihMT may not have enough statistical power to detect changes during brain
development (Geeraert et al.,, 2019). Hence, that reinforces the need to examine the
reliability and variability of this recent, but promising, technique.

Nevertheless, several important issues that remain to be addressed : (1) although the
recent studies include a reasonably large sample size n > 20 (Boekel et al., 2017; Hakulinen
et al., 2021; Lehmann et al., 2021; Thieleking et al., 2021), most of them are based on
limited data with sample sizes of n <10 (Andica et al., 2020; Chung et al., 2016; Granberg
etal., 2017; Koller et al., 2020; Tariq, 2013; L. Zhang et al., 2019); (2) most of the previous
studies are focused on a short-period (scan-rescan within a week or with 2-4 weeks
intervals) rather than longer time intervals. Indeed, longitudinal neuroimaging studies or
clinical trials are typically separated by a few weeks (> 3 weeks) to several months; (3)
only a few studies include more than two or three-time points (Cai et al., 2021; Schwartz
etal., 2019), thus not generating enough data per subject to assess relevant reliabilities; and
(4) few studies have directly compared multiple WM microstructural from several MRI
techniques in the same population (Koller et al., 2020; Schwartz et al., 2019).

On the other hand, none of these studies evaluated the impact of local WM complexity
on consistency, particularly the number of fiber populations. Indeed, these studies consider
each voxel as a single entity with a homogeneous fiber population. However, it has been
described that voxels contain multiple fiber populations i.e., between 66% to 90% of white
matter voxels cannot be assumed to contain a single coherently oriented axon bundle
(Jeurissen et al., 2013; Volz et al., 2018). In addition, Volz and colleagues have recently
shown that the value of FA depends on the number of fibers considered in the voxel, with
a greater FA value for the unidirectional fiber population and smaller when the

multidirectional fiber population is considered (Volz et al., 2018). Thus, measurements
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derived from different models — and by extension, their consistencies — may vary depending

on the underlying WM organization, especially within bundle or track-profiles.

To address these problems, we designed a repeated-measure study to collect multiple
microstructural (anatomical, multi-shell diffusion and inhomogeneous MT) MRI datasets
in “high-frequency” — i.e., a high number of MRI acquisitions over a short period of time
(six months) for twenty healthy subjects. All subjects were scanned five times with an
average interval of four weeks for a total of 100 MRIs. This high-frequency dataset thus
generates enough data per subject to optimize a relevant assessment of the consistency of
different brain MRI measurements. The reliability and variability were evaluated using the
Intraclass Coefficient correlation (ICC) value and within- and between-subject coefficient
of variation (CVw and CVb, respectively). Then, the consistency of MRI measurements
was evaluated across the bundles as a tracts-of-interest analysis approach — i.e., averaging
voxels within each WM bundle. To go further, the consistency of each WM measure was
also evaluated as a profile along the bundle using tractometry (Cousineau et al., 2017,
Yeatman et al., 2012). Finally, the same analyses were carried out by splitting each white
matter bundle mask according to the number of fiber orientations using the NuFO map, a

useful index of the number of fiber populations.

2. Methods

Method and results are documented and available at https://high-frequency-mri-database-

supplementary.rtfd.io.

2.1. Participants
Twenty healthy adults (mean age 36 years, age range 29-46 (SD = 4.7), 3 men and 17
women) were recruited from the environment of the University of Sherbrooke and the
Centre Hospitalier Universitaire of Sherbrooke (CHUS). The study was designed with this
proportion of male and female subjects to match a future MS group. Participants were
screened for eligibility to undergo MRI, no history of brain disease or injury, left-

handedness and received financial compensation for their participation. The study was
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approved by the ethics committee of the CHUS (Comité d’éthique de la recherche du
CIUSSS de I’Estrie) in Sherbrooke, Canada and all participants gave prior informed written

consent.

2.2. MRI data acquisition

Whole-brain MRI data were acquired using a clinical 3T MRI scanner (Ingenia, Philips
Healthcare, Best, Netherlands) using a 32-channel head coil. Each MRI session lasted
approximately 33 min and was repeated 5 times over 6 months and a 4-week interval (+/-
1 week). For each participant, images were acquired at approximately the same time of day
to avoid potential diurnal effects (i.e., a morning participant had all sessions in the morning,
with a tolerated 2—3-hour variation). All MRI data acquisitions were aligned on the anterior
commissure-posterior commissure plan (AC-PC) and included (a) anatomical 3D T1-
weighted, (b) multi-shell diffusion-weighted images (DWI), (c) inhomogeneous
magnetization transfer (ihMT).

(a) 3D T1-weighted MPRAGE image was acquired axially at 1.0 mm isotropic
resolution, repetition time (TR)/echo time (TE)/inversion time (TI) = 7.9/3.5/950 ms, field-
of-view (FOV)=224x224 mm? yielding 150 slices, flip angle = 8° for an acquisition
time of 4 min 20 s.

(b) Multi-shell DWI images were acquired with a single-shot EPI spin-echo
sequence at 2.0 mm isotropic resolution, TR/ TE= 4800/92 ms, SENSE factor = 1.9,
Multiband-SENSE factor = 2, flip angle of 90°, FOV=224x224 mm?, 66 slices for an
acquisition time of 9 min 19s. The data comprised of 100 unique directions uniformly
spread over three shells at b = 300 mm?/s (n=8 directions), b = 1000 mm?*s (n=32
directions), b = 2000 mm?/s (n=60 directions), with non-diffusion-weighted images b = 0
mm?/s (n=7), for a total of 107 total diffusion volume (Caruyer et al., 2013). To correct EPI
distortions, a reversed phase-encoded b =0 image was acquired right after the DWI
acquisition, with the same geometry (Andersson et al., 2003).

(c) Inhnomogeneous MT images were acquired using a 3D segmented-EPI
gradient-echo sequence with different MT preparation pulses with first TR/TE = 3.6/112
ms, 2 x 2 mm resolution, flip angle of 15°, FOV=224x224 mm, 65 slices of 2 mm of

thickness and 3 echoes with echo spacing 6.0 ms for an acquisition time of 6 min 04s.
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Inhomogeneous MT uses a magnetization preparation (10 Hann pulses of 0.9 ms duration
with 1.5 ms interval at a frequency offset of +/- 7000 Hz) (Varma et al., 2015). Two
additional reference images were acquired for each echo without MT preparation, with the
same parameters as the MT sequence and a second with a higher flip angle (30°) and a

shorter TR (20 ms) for quantification purposes.

2.3. MRI processing
2.3.1. Tractoflow: DWI and T1 processing
After visual quality assessment, for each participant, Tractoflow (Theaud et al., 2020) a

pipeline developed by SCIL (https://github.com/scilus/tractoflow), was used to process

DWI and T1w images. This pipeline generates both diffusion measures and tractography
of WM, from raw DWI, T1w, bvec/bval files and the reversed phase-encoded b=0 and has
been proved to be highly reproducible in time and immediate test-retest (Theaud et al.,
2020). Briefly, after denoising and correcting the raw DWI images for motion, eddy-
currents, geometric distortions and field inhomogeneity, the fiber orientation distribution
function (fODF) was generated using constrained spherical deconvolution (Descoteaux et
al., 2007; Tournier et al., 2007) with a fixed fiber response of [15, 4, 4] x 10 s/mm? for all
subjects (Pierpaoli & Basser, 1996), as recommended in (Dell’Acqua et al., 2013b), a
maximal spherical harmonics order of 8 and all b-value DWI data. Four DTI measures
including Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD)
and Axial Diffusivity (AD) were computed and HARDI-derived measures including total
apparent fiber density (AFD total) and the number of fiber orientations (NuFO), were
extracted from the fODF (see Table 1 for a list of available measures). In parallel, the T1w
anatomical image was also denoised, corrected, and registered to the b=0 and the FA
images before tissue segmentation to generate the tracking maps including inclusion,
exclusion maps and a WM seeding mask (G. Girard et al., 2014). The whole-brain
ensemble tractogram was generated from an fODF map and tracking masks using both the
anatomically constrained particle filter tracking algorithm (PFT, G. Girard et al., 2014) and
local tracking with 5 and 2 seeds per voxel respectively. Except for the number of seeds
per voxel, all parameters used the default Tractoflow settings (see Theaud et al., 2020 for

a complete pipeline description).
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2.3.2. Neurite Orientation Dispersion Density Imaging
NODDI is a multi-shell compartment modelling technique that identifies three types of
microstructural environments: intracellular, extracellular, and CSF compartments (Zhang
et al. 2012). NODDI measures were extracted using NODDI flow from SCIL

(https://github.com/scilus/noddi_flow), which used Accelerated Microstructure Imaging

via Convex Optimization (AMICO, Daducci et al., 2015) from multi-shell DWI images.
Complementing, the extracellular volume fraction (ECvf), a measure of the volume
fraction within a voxel that is not neuronal and assumed to be due to glial cells infiltration,
was computed as follows ECvf=1-ICvf. Finally, four microstructural maps were generated:
ECvf, intracellular volume fraction (ICvf), isotropic volume fraction (ISOvf), and

orientation dispersion (OD).

2.3.3. Magnetization Transfer Imaging (MTI)
Inhomogeneous MT images were processed using a custom in-house pipeline including
tools from the FSL, Advanced Normalization Tools software (ANTs, Avants et al., 2011)
and SCIL pipeline scripts (https://github.com/scilus/ihmt_flow). For each echo, raw ihMT
images were firstly co-registered using ANTs linear registration (Avants et al., 2008). Next,
the reference image was used to perform tissue segmentation with the AtroposN4 command
from ANTs. Tissue maps from the above T1w processing were concatenated and used as
brain mask during ihMT processing. Two ihMT images were generated from all
frequencies and reference images as previously described in Varma et al., 2015: ihMT ratio
(iIhMTR) and ihMT AR saturation (ihMTdR 1sat) — developed to enhance ihMTR contrast
by decoupling the ihMTR signal from the T1 longitudinal relaxation rate. Additionally,
from the positive frequency data and reference images, we also computed two “standard”
MT images: MT ratio (MTR) and MT saturation (MTsat) — generated as described in Helm
et al., 2008. However, it should be noted that these MT measures are computed from ihMT
acquisitions whose saturation frequency of 7000 Hz is outside the range generally used for
MTR and MTsat (1000-2500 Hz). Finally, the four resulting myelin-sensitive maps were
registered to the b=0 and the FA images using nonlinear SyN ANTs. Table 1 provides the

complete list of measures included in the analyses.


https://doi.org/10.1101/2022.12.01.518514
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.01.518514; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Public pipeline Models Measures Abbreviation
Fractional Anisotropy FA
Diffusion Tensor Axial Diffusivity AD
Tractoflow .
Imaging (DTI) Radial Diffusivity RD
https:// github.com/ ‘ Mean Diffusivity MD
scilus/tractoflow High Angular Apparent fiber density total AFD total
Resolution Diffusion
Tmaging (HARDI) Number of Fiber Orientation NuFO
NODDI Flow Intracellular Volume Fraction ICVF
Neurite Orientati
. eun.e rema 101.1 Extracellular Volume Fraction ECVF
. Dispersion and Density
https://github.com/ Imagi Isotropic Volume Fraction ISOVF
. X maging (NODDI)
scilus/noddi_flow Orientation Distribution (0)))
ihMT flow inhomogeneous Magnetization Transfer (MT) ratic =~ ihMTR
Magnetisation Transfer ~ inhomogeneous MT delta R1 saturation ihMTdR1sat
https://github.com/ Imaging (MTI) Magnetization Transfer ratio MTR
scilus/ihmi_flow Magnetization Transfer saturation MTsat

Table 1. List of pipelines, models and measures evaluated with the corresponding

abbreviations.

2.4. White matter virtual dissection
The major fascicles were automatically extracted using RecoBundlesX (Rheault, 2020)
(https://zenodo.org/record/4104300#.YNoP1XVKiiM) a multi-atlas and multi-parameter
version of RecoBundles (Garyfallidis et al., 2018). For the sake of clarity and to avoid
overloading, we focus the paper on a subset of bundles to show consistency in one
association, commissural and projection pathway: Arcuate Fasciculus (AF), section 3 of
the Corpus Callosum (CC), and Cortico-Spinal Tract (CST) are selected as bundles of
interest (Catani & Schotten, 2012). In addition, the inferior fronto-occipital fasciculus
(IFOF) is also included to show consistency in a “hard-to-track” long bundle (Figure 1).
Bundle colors will be matched throughout the results. All analyses are nonetheless
conducted on all bundles and measures, and the respective results are available at
the

and included 1n

https://high-frequency-mri-database-supplementary.rtfd.io/

supplementary data.

2.5. Common space and average measures
To perform consistency voxel-based analysis, all images were registered in a common

space. Symmetric diffeomorphic normalization (SyN) of ANTs is used to build a template
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in diffusion space based on our population. For the registration, we used iterative rigid,
affine, and SyN (neighborhood cross-correlation) transformations with optimal similarity

measures for the linear (mutual information) (Avants et al., 2011) (https://high-frequency-

mri-database-supplementary.readthedocs.io/en/latest/pipeline/common_space.html). The

processed b0 images resampled at 1 mm isotropic from Tractoflow were used as an input
with four iterations with decreasing degrees of downsampling and smoothing.

All subject-specific measures maps and bundles were aligned in the common diffusion
space using the resulting nonlinear registration. Finally, averaged maps were computed for

each measure and shown in Figure 2 and available at https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/average _maps.html.

2.6. Consistency for whole-bundle average and profiles along bundles
For each bundle, the consistency of the different measurements was evaluated from (1) the
bundle-averaged i.e., one measure for the whole bundle and (2) along the bundle as a
profile, also called track-profile or connectometry (Cousineau et al., 2017; Yeatman et al.,
2012; Yeh et al., 2016). For the bundle-averaged, the density map was used to generate a
binary mask of each whole bundle in the common space. Then, to minimize the effect of
partial volume, each whole bundle mask was eroded by one voxel to generate a
conservative bundle mask that we called the “safe mask”. For the consistency profiles,

Tractometry_flow, a public pipeline developed by SCIL

(https://github.com/scilus/tractometry flow, Cousineau et al., 2017; Yeatman et al., 2012)
was applied to each subject-specific bundle to obtain binary mask corresponding to each
bundle section (each section corresponding to a specific label). Each bundle was resampled
into 10 equidistant sections and intersected with the safe mask.

Next, left and right masks were merged for each average and section bundle mask
(Supplementary Figure 1). Finally, DTI, HARDI, NODDI and MTI measures were

extracted for each bundle mask over session.

2.7. Impact of fiber populations on consistency
Many studies have reported that voxels containing multiple fiber populations (Jeurissen et

al., 2013; Volz et al., 2018) affect the microstructural measures (Volz et al., 2018). Here,
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we evaluate the effect of fiber populations projecting in multiple orientations on the
consistency of the WM measures. To this end, we used the NuFO maps which are estimated
from the number of local maxima of the fODF profile in each voxel (Dell’Acqua et al.,
2013b). The intensity of each voxel corresponds to the number of fiber populations, ranging
from 1 for the single fiber population to 2 and more for the multiple fiber populations
(Jeurissen et al., 2013). We apply two thresholds of 1 and =2 on the NuFO map to
compartmentalize the “average” bundle (i.e., whole bundle) into “single” and “multi” fiber
populations compartments, respectively. For this, each voxel of the whole and section
masks for each bundle was sorted according to these two thresholds (https://high-

frequency-mri-database-

supplementary.readthedocs.io/en/latest/pipeline/fiber population.html.)

An overview of our analysis pipeline is illustrated in Supplementary Figure 2 and

https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/data/overview.html#pipeline-summary.

2.8. Quality control
A visual quality assessment procedure was carried out for major steps including raw input
data, preprocessing, registration steps, bundles segmentation and tract profiles using

dMRIgc flow (https://github.com/scilus/dmrigc_flow). Because resampling the bundles

involves smaller mask volumes and therefore, introduces a potential confounding factor, it
is important to ensure that each section of bundles contains enough voxels to assess
consistency measurements. For this purpose, we extracted the volume of each section
corresponding to the bundle profile analyses and the fiber population compartments that
generate a novel subdivision of the masks of each section in single- and multi-
compartment. Two minimum thresholds of 1000 and 400 voxels respectively were used to
perform analyses, therefore, sections of bundles that had fewer voxels than these thresholds
were excluded.

Since ISOvf accounts for the isotropic volume fraction, this parameter has generally very
low values in the WM (Tariq, 2018) , and many studies emphasized the poor reliability of
this NODDI parameter (Andica et al., 2020; Chung et al., 2016; Lehmann et al., 2021;

Lucignani et al., 2021). To improve the consistency of this parameter, we proposed an
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evaluation of different thresholds to remove values close to zero. A range of thresholds

between 0 and 0.1 with a step size of 0.01 was used.

2.9. Evaluation of bundles
The evaluation of the reproducibility of bundles is carried out first to minimize the impact
of the wvariability of reconstruction by tractography on the measurements. The
reproducibility of the bundles was achieved using the same method as Rheault et al., 2020,
2022. We computed the Dice similarity score, correlation between the density maps and
adjacency streamlines from all pairwise combinations to provide the agreement between

segmentations of the same bundle across sessions.

2.10. Correlation analysis
Pearson's correlation coefficient (r) was used to evaluate the covariance of the averaged
diffusion measures for all bundles. For this, we used each bundle's averaged measure,
extracted from each voxel and averaged along bundles. Pearson correlations were
computed for each session and then averaged across sessions to generate an average
correlation map for all sessions. The average correlation interactive map and correlation

interactive maps corresponding to the sessions are available at https://high-frequency-mri-

database-supplementary.readthedocs.io/en/latest/results/correlation.html.

2.11. Consistency evaluation
2.11.1. Consistency measures
The reliability of computed measures was investigated using the Image Intra-Class
Correlation coefficient (I2C2, Shou et al., 2013), a generalization of the Intra-Class
Correlation coefficient (ICC, Koo & Li, 2016) to n-dimensional images (one-way random
effect, absolute agreement). The ICC estimates the correlation between measures values
corresponding to different sessions in terms of their consistency across subjects. The
variability induced by within-subject and between-subject effects on the measures was
quantified using two coefficients of variation per measure. The coefficient of variation
within-subject (CVw) was used to evaluate the dispersion of observations when repeatedly

measuring a single individual (i.e., reproducibility), thus representing the amount of
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random error or noise contributing to the measure. For the CVw, the CV is first estimated
per subject over their respective imaging sessions and then averaged. The coefficient of
variation between-subject (CVb) was used to evaluate the sample heterogeneity. The CVb
is obtained by first averaging each subject session-wise, to then estimate the CV over those
averages.

Confidence intervals and p-values were obtained for the [2C2 using non-parametric
bootstrap (Briggs et al., 1997; Efron & Tibshirani, 1994) and the accelerated bias-corrected
percentile method (Diciccio & Romano, 1988; Efron & Tibshirani, 1994) using SciPy tools

(https://scipy.org/). To avoid overloading, confidence intervals and p-values are only

reported for selected bundles and the whole bundle analysis (see Supplementary Table 2).

2.11.2. Voxel-based consistency analysis
Computation of consistency measures was restricted to the safe white matter masks. The
consistency analyses of each measure were carried out at the voxel-level within the bundles
mask. The individual masks corresponding to each subject and session in the common
space were provided as input. The overlap between masks across sessions and subjects was
then performed as described in the consistency measures. Incomplete overlap of mask
between subjects and sessions was compensated by densifying each measure in the affected
regions voxel-wise, using the average value estimated from the available subjects or
sessions. The averaged masks used for the computation of statistical measurements are then

obtained subject-wise or session-wise by mathematical union.

3. Results
3.1. Quality control

None of the data were excluded based on input quality controls. However, two
subjects were excluded from IFOF and UF analyses due to failed reconstruction of these
bundles - caused by poor WM-GM-CSF segmentation in the internal capsule. In this case,
all sessions were excluded for these two bundles but included for the correctly
reconstructed bundles. CC Part 1 reconstruction failed for most subjects and was therefore
excluded from all analyses. The set of bundles finally included in this paper is shown in

Figure 1. Regarding, the number of voxels in each section of bundles, section 10 of the
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cingulum bundle had an average volume under the threshold. The consistency profile of
this bundle was therefore generated for sections 1 to 9 (Supplementary Figure 3). No other
bundle sections were excluded based on volume. Finally, based on the graph and
consistency results for the different thresholds of the ISOvf map, before analysis, an
additional thresholding step was applied to exclude values under 0.045, for each subject

(Supplementary Figure 4).

Arcuate Cingulum (CG) Inferior fronto- Inferior Optic Uncinate Cortico-
Fasciculus occipital longitudinal radiation Fasciculus spinal tract
(AF) Fasciculus (IFOF)  Fasciculus (OR) (UF) (CST)

(ILF)
Corpus Callosum (CC) Superior Longitudinal Fasciculus
(SLF)

CC4 “ cce SLF1
; - e ;
y CcC 2b 4 ‘ M
rccs i ((

! 3
SLF 2 J

* ‘ céza '&-\\_

CC 6 R SLF 3

Figure 1.Representation of the major bundle models used by RecobundlesX as shape priors

to extract the bundles from the whole tractogram. Bundles of both hemispheres are shown.

3.2. Diffusion- and myelin-based maps in diffusion template space

Three representative axial slices of the resulting averaged maps in common diffusion
space are shown in Figure 2, the bottom row represents the third line with a colormap. As
expected, the maps highlight the regional variation of measurements corresponding to each
map, both in grey (top rows) and with a range of colors (bottom row). The maps are smooth
but show sharp contrasts between different tissue types such as CSF, GM and WM.
Moreover, higher values are observed in regions of highly structured white matter as can
be seen with FA, AFD total, NuFO, ICvf or OD in corona radiata regions, internal capsule,

forceps, or thalamic radiation, and inversely for ISOvt or MD. As for the other maps, higher
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ithMTR or ihMTdR1sat values are observed in these same regions. One can appreciate
qualitatively the similarities between all the different diffusion and myelin-based measures.

The resulting averaged maps in common space are also available at https://high-frequency-

mri-database-supplementary.readthedocs.io/en/latest/results/average maps.html.

b) HARDI c) NODDI d) MTI
RD ADF total NuFO ECvf  ICvf ISOvf  OD ihMTR ihMTdR1sat MTR  MTsat

w 2 OOV 90 00
5 080V0 8588

ﬁw OB O 64068

0005 0 0005 0 0005 0 0.5

QﬁooeJﬁoo@mﬁ@o

Figure 2. Microstructural maps, in a) DTI measures including FA (fractional anisotropy),
AD (axial diffusivity, units = mm?2/s), MD (mean diffusivity, units = mm2/s) and RD
(radial diffusivity, units = mm?2/s); b) HARDI measures with AFD total (total apparent
fiber density) and NuFO (number of fiber orientations); ¢) NODDI measures including
ECvf (extracellular volume fraction) and ICvf (intracellular volume fraction) compartment,
ISOvf (isotropic volume fraction) and OD (orientation distribution) and d) MTI measures
including ihMTR (inhomogeneous MT ratio), ihMTdRl1sat (inhomogeneous MT
saturation), MTR (MT ratio), MTsat (MT saturation); averaged across participant. All

contrasts are registered to diffusion space.

3.3. Consistency of bundle tractography

Dice scores presented in Figure 3 reveal that most of the bundles are highly
reproducible (mean Dice > 0.7). Dice scores of voxels are high and close for all bundles,
ranging from 0.56 (for SLF 1) to 0.84 (for CC 2a), which indicates that the overall spatial
agreement is good. Across all bundles, SLF 1 exhibits the lowest Dice scores on average

(density correlation and adjacency results are available at https://high-frequency-mri-
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database-supplementary.readthedocs.io/en/latest/results/bundles_reproductibility.html).

SLF 1 was not excluded from the analysis, but its results should be taken with caution
(Figure 3).

Dice score of voxels

0.4 |

0.2

AF CC3 c CCs cCc7 CST LF SLF 2 SLF3 UF

Bundles

Figure 3. Bundles dice similarity coefficient scores for all subjects and sessions. Each dot

represents one subject and session and colors correspond to each bundle.

3.4. Correlation analysis measures

Pearson's correlations of all measurements across WM bundles are shown in Figure 4.
This figure highlights three main aspects of the data: 1) within-model measures form a
highly correlated pocket, 2) most diffusion measures are correlated, and 3) some between-
model measures are correlated, while most correlations of the between-model measures are
weak. More precisely, within the DTI model, the measures of MD and RD show the
strongest association with each other (mean across bundles, r =0.97) and a lower
association with FA (r = -0.72 and r = 0.86, respectively) and AD (r = 0.82 and r = 0.64,
respectively). MD and RD also show strong associations with ECvf and ICvf (r > 0.8). On
the other hand, AD (except for RD and MD), OD and the two measures of HARDI seem
uncorrelated, either between or within a model (r<0.6, r<0.5, r<0.6, respectively). MTI
measurements show a strong association between ihMTdR1sat and MTsat (r=0.88),
ithMTR (r=0.81); and much weaker correlation between ihMTdR 1sat and MTR (r=0.45).
MTsat appears to be the only MTI measure that correlates, albeit moderately, with diffusion
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measures (r ranging from 0.3 to 0.6). This weak correlation between MTI measures and

diffusion measures shows that these are sensitive to different microstructural features.

Mean correlation of MRl measures across bundles and sessions

r 1.0
FA
DI AD 0.9 Bundles list
RD AF Arcuate Fasciculus
MD 08 O CC_2a Corpus Callosum (CC), Frontal lobe (anterior part)
i E CC_2b CC, Frontal lobe (middle part)
AFD total b CC_3 CC, Frontal lobe (posterior part)
HARDI NUFO 07 & CC_4 CC, Parietal lobe (anterior part)
L u 5 CC_5 CC, Parietal lobe (middle part)
ECvf Q CC_6 CC, Parietal lobe (posterior part)
06 Q CC_7 CC, Occipital lobe
ICvf @ CcG Cingulum Gyrus
NODDI 1SOvE o CST  Cortico Spinal Tract
0.5 g IFOF  Inferior fronto-occipital fasciculus
oD 35 ILF Inferior longitudinal fasciculus
r OR Optic radiation
04
L MTR SLF_1  Superior longitudinal fasciculus (most medial part)
Magnetization MTsat SLF_2 Superior longitudinal fasciculus
hMTR 0.3 SLF_3 Superior longitudinal fasciculus (most lateral part)
Traisior L UF  Uncinate fasciculus
LihMTdR1sat

1 absolute and squared Pearson correlation coefficient

Figure 4. Pearson's correlation coefficients among all MRI measures and bundles. The red
squares separate each DWI model and MTI. Each measurement is ordered according to the

bundle list provided in the right panel of the figure. See https://high-frequency-mri-

database-supplementary.readthedocs.io/en/latest/results/correlation.html for all correlation

interactive maps.

Based on these results, subsequent analyses will present the following measurements:
RD, AFD total, NuFO, ISOvf, MTR and ihMTdR 1sat were extracted from the 4 selected
bundles: Arcuate Fasciculus (AF), section 3 of the Corpus Callosum (CC), and Cortico-
Spinal Tract (CST). These measures were selected either because they show strong
correlations with other measures and may share overlapping information which can cause
redundancies, or because, in the opposite case, they show a pattern of decorrelation with
other measures and may therefore provide different information (Cercignani & Bouyagoub,
2018; Chamberland et al., 2019). The distribution of selected measures for each subject

and session is shown in Figure 5 and other measures are available at https://high-frequency-

mri-database-supplementary.readthedocs.io/en/latest/results/measure.html#whole-bundle-

mecasures.
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Distribution of measures across bundles
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Figure 5. Individual measures for each bundle. Each dot represents one subject and session,

and each plot represents one bundle. The colors correspond to the bundles.

3.5. Consistency of bundle-averaged measures

All consistency and MRI measurements are available at https://high-frequency-mri-

database-supplementary.readthedocs.io/en/latest/results/consistency.html and, confidence

intervals and p-values for selected bundles are shown in Supplementary Table 2. Across
DWI measures, most bundles exhibit a high degree of reliability with an ICC ranging from
0.55 for NuFo to 0.93 for FA and overall low variability ranging from 1.2% for FA to 14%
for ISOvf (Figure 6). As expected, DTI measures showed consistently the highest reliability
(95 % of ICC were higher than 0.80) and lowest variability (90 % of CVw and CVb were
lower than 5 %) with higher CVb compared to CVw and small variation across bundles
(Figure 6). For HARDI measures, AFD total showed high reliability (ICC > 0.7 [0.73-0.8])
and low variability (CVw <4.2% [1.8%-4%] and CVb < 6% [2.3%-5.7%]) for all bundles.
NuFO showed lower reliability (ICC ~ 0.62 [0.55 - 0.7]) and higher variability (CVw ~
8.1% [5.7%-11%] and CVb ~ 11.5% [9%-14%]) compared to AFD total (Figure 6).
NODDI measures showed lower reliability and higher variability compared to DTI
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measures. However, in general, OD showed consistently high reliability (ICC > ~ 0.75)
and low variability (CVw < 9% and CVb < 15%) followed by ICvf and ECvf with good
reliability (ICC > 0.7) and variability (CVw and CVb <10%) across all bundles. ISOvf
measure represents the lowest reproducible measure of all NODDI maps with moderate

reliability (ICC ~ 0.64) and greater variability (CVw and CVb <16%) (Figure 6).
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Statistical measures
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Figure 6. Consistency of bundle-averaged measurements of the selected bundles and
measures. Each bar represents a measure of consistency with a decreasing saturation: the
value of ICC in dark colors (the higher the better), Between-variability in medium colors
(the lower the better) and within-variability in light colors (the lower the better). A break
in the x-axis has been introduced to facilitate reading and the ICC and variability scales

have been adapted.

Compared to DWI measures, a more variable pattern of results emerged for MTI
measures with ICC ranging from 0.36 to 0.84 and CVs ranging from 1.4% to 13.8% across
bundles. MTsat measures showed consistently the highest reliability (ICC > 0.7 except for
UF and CC2a) followed by MTR (ICC ~ 0.67 across bundles). Both MT measures showed
the lowest variability with CVs < 5% for all bundles. Noted that MTsat showed higher
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variability (CVw ~ 2.8% and CVb ~ 4%) compared to MTR (CVw ~ 1.9% and CVb ~
2.1%) (Figure 6). In contrast, ihMT measures showed lower reliability with a mean ICC of
0.53 [0.37-0.67] and higher variability with a mean CVb of 7.9% [4.6%-11.8%] and CVw
of 8.9% [6% - 13.8%] compared to MT measures. As for the MT measures, ihMTdR 1sat
exhibited higher ICC but higher variability compared to ihMTR (Figure 6).

3.6. Consistency profiles along bundles

The distribution of measures along the bundle is https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/measure.html#profile-bundle-measures.

Globally, whatever the model and the measurement, the consistency measures quantified
along the bundles display good stability or a low variability of their profile depending on
the bundles (Figure 7). The different parts of the CC consistently show more variable
profiles depending on the bundle sections, while the SLF bundles show the most stable
profiles. On the other hand, unlike the whole bundle consistency measures, the values of
ICCs profiles are lower, and the values of CVs profiles are higher (Figure 7, see also

https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/consistency.html#profile-bundle-

consistency).

More precisely, similarly to whole bundle results, consistency of DTI measures
quantified along the bundles most often displays very stable profiles with higher ICCs
(mean across section = 0.8 [0.64-0.95]) and lower CVs values (CVb: 4.5% [0.8%-13%],
CVw: 2.8% [0.7%-9.5%]) with respect to other measures (Figure 7). Consistency profile
of HARDI measures show analogous patterns to the DTI-derived ones, with similar ICCs
and CVs values for AFD total (Figure 7, green line) and lower ICCs and higher CVs values
for NuFO (ICC:0.72 [0.5-0.88], CVb: 6.2% [1.1%-14.1%], CVw: 4.4% [0.9%-14.5%)]).
For NODDI measurements, ICCs and CVs profiles show more variability along the bundles
(Figure 7), but overall tend to be rather high to moderate for ICCs (0.76 [0.5-0.95]) and
low for CVs, with mean value across the section of 8% [0.9%-28%] and 6.4% [0.8%-21%]
for CVb and CVw respectively (Figure 7). Again, OD shows stable and higher consistency
measurements in contrast to ISOvf whose consistency profile is more variable (Figure 7,

light blue line).
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Figure 7. Consistency profile for selected bundles and three measures. The colors displayed
on the bundles represent the section numbers from 1 (blue) to 10 (red) corresponding to the
graphs. Each line of the graphs represents a measure with AFD total in green, ISOvf in
light blue and ihMTdR1sat in purple. Only these three measurements for ICC results are
displayed to facilitate the results' reading and represent the different profiles observed. On

the AF bundle, we show a black line with dots representing each of the 10 track-section.

Regarding the MTI measures, the consistency exhibits globally stable profiles for
most bundles, with more stable CV profiles than ICC profiles. As for the whole bundle
results, the highest ICCs and lowest CVs values are found for MTsat and MTR measures,
while thMT measures showed lower reliability (ICC ~ 0.51 [0.3 - 0.82]) and higher
variability (CVw ~ 7.6% [3.1%-15.6%] and CVb ~ 6.5% [1.9%-15%]) (purple line in
Figure 7).

3.7. Impact of fiber population on consistency
For all measures, the bundle compartmentalization into “single” and “multi” fiber

population regions affects ICCs and CVs values regardless of the measure (Figure 8,
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Supplementary Table 2, https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/fiber population consistency.html#whole-

bundle-consistency). Compared to ICC computed from average bundle, the

compartmentalization revealed higher ICCs (mean across bundles, ICC: 0.72, 0.82 and 0.81
for average, multi- and single-compartment respectively) and, equal to lower CVs across
bundles (mean across bundles, CVb/CVw: 6.7%/5.2%, 3.7%/2.7% and 4.6%/3.4% for
average, multi and single-compartment respectively). More precisely, ICCs measures from
multi-compartment were higher, while the ICCs value observed for single compartment is

lower and inversely for CVs (see  https:/high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/fiber population consistency.html#whole-

bundle-consistency). Differences between single and multi compartments can be moderate,

especially for DTI measurements, or more important such as MTI measurements. Some
measures exhibit a different pattern than others. This is the case for the OD measurement
of the NODDI model, whose reliability pattern is inverted. As expected, since OD is a
measure of the dispersion of fiber orientation in the voxel, a higher or equal ICCs to the
average for single compartment compared to multiple compartments for most bundles is
not surprising. This inverted pattern is also found for ihMTdR 1sat and MTsat measures for
the CST bundle (Figure 8, purple line). In addition, the impact of compartmentalization has
a more moderate effect on the consistency of SLF bundles measures. Indeed, the values of
ICCs and CVs are generally equal (or present a slight difference) between the two
compartments. This moderate effect is also found for DTI measures, for most, but not all,
bundles (Figure 8, see RD as an example, red line).

The compartmentalization also affects the mean values of the measurements. The
mean of the measures in the multi-compartment was lower than those found in the single-
compartment (for example, mean CST FA: 0.47, 0.53 and 0.35 for average, single- and
multi-compartment respectively). Globally, there is a decrease (or increase depending on
the measure) in the mean values of the measures with increasing fiber populations. The

distribution profile of measures is available https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/fiber population _measures.html#profile-

bunlde-measures.
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Intra Class Coefficient (ICC) according to fiber population
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Figure 8. Impact of fiber populations on bundle-averaged consistency values for selected
bundles. The colors correspond to the bundles. The bars represent the ICCs values, full for

"average", dotted hatch for "single" and diagonal hatch for "multi" compartment.

Figure 9 presents profile examples for some measures and the associated consistency
values for CST bundle. The compartmentalization of the bundle profiles into "single" and
"multi" fiber population regions showed a similar effect to the results on the whole bundle
profiles, with higher multi-compartment ICCs compared to the single-compartment and,

inversely for CVs (Figure 9, https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/fiber_population consistency.html#profile

-bundle-consistency). The single-compartment profile is generally close to or equal to the

whole bundle profile, while the multi-compartment is more distant from the average
profile. Some bundles present a different pattern for the inferior (section 1-3) and superior
(section 8-10; or anterior/posterior) sections compared to middle sections. For example,
CST exhibits a higher ICC in the single compartment for inferior sections (1-2), whereas
the superior sections (8-10) show weak differences between the compartments compared

to the middle part of the bundle (sections 3-7, Figure 9). Again, SLF bundles show globally
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the most stable profiles with a low impact of compartmentalization on consistency, whereas
the CC bundles show the reverse pattern. Finally, this compartmentalization effect is also
found in the measurement profiles (Figure 9). This effect is greater for some measures such
as FA or OD while others are less affected such as ISOvf, ICvf, MD or MTR. Like
consistency results, the compartmentalization does not uniformly affect the measurement
profiles of bundles according to the sections, with a different effect between the sections

in the middle and those at the ends of the bundle (Figure 9).

Measures and consistency along the CST bundle
Volume and measures

ICC value
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SNOILO3S
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Figure 9. Volume, measures and consistency values per section and compartment of the
CST bundle. The left panel shows volume and measures, the right panel shows ICC value.
Continuous line represents values obtained from bundle average, dashed line represents
value from multi compartment and dot line represents value from single compartment.
Colors correspond to measures, volume in brown, ihMTdR 1sat in purple, isoVF in light

blue and AFD total in green.

4. Discussion

Using an optimized “high-frequency” repeated-measure study collected from
twenty healthy subjects, we assessed the consistency of multiple WM microstructural
measures across the bundles, with special emphasis on the most frequently used image
analysis approaches. The Dice scores reveal a good spatial agreement of the segmentation

of the bundles across the sessions, except for SLF 1 whose results should be taken with
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caution. The results show that the reliability and variability of DWI measures are good
(ICC > 0.7; CVw and CVb < 15%) across the bundles and especially excellent for most
DTI measures as well as AFD total and OD index from the HARDI and NODDI models,
respectively (CVw and CVb < 5%, ICC > 0.75). In addition, the profile consistencies of
these measures are comparable to the whole bundles, with voxel values well above
ICC>0.7 and CVw < 4% along the bundle. In contrast, MTI showed good reliability and
variability for MT measurements (CV < 8%, ICC = 0.7) and moderate for ihMT
measurements (CV < 15%, ICC = 0.5). We also showed that the number of fiber
populations affects the consistency of the measurements, with a moderate effect on the DTI
and HARDI measurements, and a more important effect on the NODDI and MTI
measurements. Finally, SLF 2-3 and CC 4 to CC 6 bundles showed the most consistent
MRI measurements followed by AF, CST, CC 7, OR, CC3, IFOF and CG, while CC 2a,

CC 2b, UF and ILF have more moderate consistency measurements (Figure 10).

High reliability ! High reliability
ICC Good Consistency - ICC Icc High Consistency - CVw
) . . ICC >0.75; CVw > 5% ICC > 0.75; CVw < 5%
Good Consistency - ICC High Consistency - CVw z " z e
ICC >0.75; CVw > 5% ICC >0.75; CVw <5% ‘
AFD b %
oD FA AD MD RD Total cc7 cce ccs cc4
I T Arcuate I
(N B & Fasciculus (AF) | % S S -
N/ | S ] -t d ]
g Cortico-spinal tract Optic radiation SLF 1 SLF 2 SLF3 O
5 (csT) (OR) ]
cw g » cw g
. ) 6
ihMTR ihMTdRr1sat NUuFO ISOvf MTR MTsat ECvf ICvf g T
EE G E % € h 5
b *«: o =
. . Inferior longitudinal Uncinate " , ’ Cingulum (CG)
M?ggla;iggcvsv'ftgz‘cy Good Consistency - CVw Fasciculus (ILF) Fasciculus (UF) '"S:;’QJS.EZ?ESE;‘E‘
' ICC <0.75; CVw < 5% Moderate Consistency Good Consistency - CVw
ICC < 0.75; CVw > 5% ICC < 0.75; CVw < 5%

Figure 10. Classification of bundles and measures into four groups according to ICC values
and within-variability (CVw). The x-axis represents CVw values (i.e., reproducibility), and
the y-axis represents ICC values (i.e., reliability). High consistency group represents low
CVw value < 0.05 (5%) and high ICC value > 0.75 (high reliability); Good consistency -
ICC: high ICC value > 0.75 but high CVw value > 0.05 (>5%); Good consistency - CVw:
low CVw value < 0.05 but low ICC value < 0.75 and finally, Moderate consistency: high
CVw value > 0.05 (>5%) and low ICC value < 0.75.
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We chose a sample of techniques including popular and novel MRI techniques to
do all the consistency analyses. However, many other MRI techniques and processing tools
are available to do similar tasks and many ways to assess reliability and variability. For
instance, there are different methods for performing tractography (Maier-Hein et al., 2017,
Yendiki et al., 2011) or identifying bundles (Schilling et al., 2021). These latter parameters
could influence both variability and reliability. Additionally, several other microstructural
measures can be characterized. The intent here was not to provide an analysis between
different processing tools or parameters, and therefore we do not recommend using the
consistency values from this study as an absolute value. Instead, we aimed to contribute to
a global understanding of the variability and reliability of popular WM imaging techniques

such as DWI as well as newer techniques such as ihMT.

Diffusion consistency measures of whole and along-bundle profiling.

Here, we demonstrated good to excellent consistency, for both the whole bundle
and along the bundle, of most diffusion measures used in MRI studies. More precisely, the
reliability and variability of DTI measurements are comparable or superior to the previous
DTI studies, with ICC above 0.7 and within- and between-CV around 5% and 10%
(Acheson et al., 2017; Grech-Sollars et al., 2015; Hakulinen et al., 2021; Luque Laguna et
al., 2020; Magnotta et al., 2012; Palacios et al., 2017; Shahim et al., 2017; Veenith et al.,
2013; Zhou et al., 2018). In line with past studies, across white matter bundles, within- and
between-subject CV of FA (~5% [3%-6.5%] and ~9.8% [6.5%-12.5%], respectively) was
larger than other DTI measures, such as MD (~1.8% [0.2%-2.4%] and ~2.6% [1.8%-3.5%],
respectively) (Grech-Sollars et al., 2015; Luque Laguna et al., 2020; Veenith et al., 2013).
Moreover, previous studies report similar or lower variability for FA with CV ranging from
1% to 6% (Acheson et al., 2017; Grech-Sollars et al., 2015; Luque Laguna et al., 2020;
Palacios et al., 2017; Veenith et al., 2013), while reports of MD are more variable, ranging
from 2 to 7 % with most studies being around 2% within- and/or between-subject CV
(Grech-Sollars et al., 2015; Magnotta et al., 2012; Shahim et al., 2017; Zhou et al., 2018).
The AFD total measure derived from HARDI exhibits similar consistency to DTI with CV
< 10% and ICC > 0.7. Regarding NuFO, only one study has assessed the reliability of this

measure in a test-retest study and reports moderate reliability with an ICC of approximately
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0.6 across four bundles (Boukadi et al., 2019). In agreement with this study, we report an
ICC value of ~0.62 ranging from 0.5 to 0.7 for all bundles. We also report high variability
with a mean CVDb of 11% and CVw of 8.1% ranging from 5.7% to 14%. Together, this
suggests that there is a need for further validation of this measure before adopting it in
longitudinal studies. On the other hand, even though NODDI measurements are inherently
noisier than DTI measurements for white matter modelling — likely due to a more complex
model and requiring high b-value data — within- and between-variability for ICvf and ECvf
were lower or comparable to the FA variability in most bundles (Andica et al., 2020; Chung
et al., 2016; Lucignani et al., 2021). However, this sensitivity to noise inherent to NODDI
could explain the higher within-variability of ISOvf and OD. Indeed, despite the additional
thresholding applied on ISOvf, this measure systematically presents the largest CV in all
the bundles, which is consistent with studies that suggest that ISOvf is a poorly reliable
parameter (Tariq, 2013, 2018). Finally, our findings of overall greater CVb for most
measures compared with their corresponding CVw are in accordance with other DTI- and
NODDI-based reliability studies (Andica et al., 2020; Chung et al., 2016; Lucignani et al.,
2021; Tariq, 2013; Veenith et al., 2013). This result is expected, as there will be greater
microstructural heterogeneity in a localized region across a population compared with

multiple observations within the same subject.

MTI consistency measures of whole and along-bundle profiling.
Previous studies that include MTR reported ICCs ranging from 0.5 to 0.9 and

variability <6% in the different brain regions (Schwartz et al., 2019; van der Weijden et al.,
2021) which is consistent with our MTR findings although our MT measurements were
derived from ihMT images. We also showed that MTsat had the highest consistency among
MTI measurements with variability <5% and ICC of 0.77. These results are consistent with
the only study that reported a measure of between-variability ranging from 6 to 8%
(Weiskopfetal., 2013). For ihMT, we reported a mean ICC of 0.5 ranging from 0.4 to 0.56,
a lower value than the previous multicenter MRI study that reported an ICC above 0.7 (L.
Zhang et al., 2019, p. 20). Mchinda and colleagues’ study reports standard deviations of
between-individual ihMTR under 10% (Mchinda et al., 2018; L. Zhang et al., 2019),
whereas we reported lower between-subject CV (CVb < 6.8%). For ihMTdR 1sat, we report
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moderate ICC of ~ 0.6 ranging from 0.43 to 0.48 with high CVb ~8.7% and CVw ~9.1%.
These differences could be explained by, first the different ways to assess variability and
reliability measures, then the difference for ihMT sequences with a long cosine-modulated
RF pulse, without any T1D filtering in Zhang's report instead of a train of short RF pulses
with moderate T1D filtering in this study (L. Zhang et al., 2019); and Mchinda’s report an
1thMTR between-subject variability based on 1.5T MRI instead of 3T MRI in this study
(Mchinda et al., 2018). In addition, Varma et al. reported that ihMTR could be varied
depending on different sets of saturation parameters, especially when the saturation time is
in the range of 0-200 ms (Ercan et al., 2018; Varma et al., 2015). This discrepancy between
studies suggests a strong effect of experimental design and local factors on the
measurements and, therefore, makes it difficult to compare our results with each other.
Nevertheless, we can agree that among the MTI-derived measures, the thMT measures
appear to be more variable and less reliable than the other measures. Noted that considering
these measurements are derived from the same acquisition, the ihMT effect (i.e., signal-to-
noise ratio, SNR) being much weaker than a standard MT effect, it is expected that the
variability of tihMT will always be greater than the MT variability. However, ihMT is more
specific to myelin (Duhamel et al., 2019; Prevost et al., 2018), which is a significant
advantage in clinical studies. Thus, as with all new contrast, further optimization might
improve the accuracy of thMT measures and, by extension, their consistency under

different experimental conditions.

Consistency and fiber population

Results emerging from the single versus multi-fiber population impact show that
the fiber populations affect the consistency of measures. The higher the fiber populations
of'abundle (i.e., multi fibers), the higher the ICC and lower the within- and between-subject
CV. Inversely, the lower the fiber populations of a bundle (i.e., single fiber), the lower the
ICC and higher the within- and between-subject CV. Despite it seems like counter-intuitive
results, a smaller range of values for the compartment with multiple fiber populations for
most measures compared to the single compartment explains the greater consistency (CST
FA range in multi: 0.34-0.42 vs single 0.48-0.61). Thus, the intrinsic variability of the

measurements in the multi compartment is already more restricted than in the single
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compartment. Although the method and the variability values are not directly comparable,
Volz et al. also report greater variability of the compartment with a single fiber population
compared to compartments with multiple fiber populations (Volz et al., 2018). In
agreement with this study, diffusion and myelin measurements per se are also impacted by
compartmentalization, with higher value in the single compartment compared to the
multiple compartments (and vice versa depending on the measurements). This reinforces
the idea that the organization of the underlying WM affects both measures and consistency.
Moreover, some bundles are more affected than others, this is notably the case of the CC
which, unlike the SLF bundles, displays a more pronounced compartmentalization effect.
Beyond the bundle, we also showed that some measurements are more affected than others,
suggesting that the affected measurements are sensitive to the orientation of the fibers of
the white matter. This has been described for the ihMT which shows a dependence on the
orientation of the fibers with respect to BO. Thus, in the presence of several fiber
populations, this effect could be averaged, thereby improving the consistency of the
measurements. Together, these results suggest that the dissociation of voxels according to

the number of fibers populations may be relevant and must be tested in future studies.

What is the contribution of this study to clinical and research studies?

Assessing the consistency of measurements extracted from MRI images represents
an important step toward validating this approach in longitudinal studies and clinical trials.
Clinical applications favor measures with high reliability, which optimizes a trade-off
between the two variability components with low within-variability (i.e., more stable across
different measuring times) and high between-variability (i.e., more differentiable across
participants). This variability pattern is a necessary criterion for the high validity of a
biomarker, which can be used to diagnose, monitor, and predict neurological consequences
by clarifying the effects of a disease or treatment.

We have shown that the measures corresponding to this criterion are the "simplest"
i.e., the DTI-derived measures, particularly FA, RD, AD and MD. However, this study
sheds light on more advanced measures that could be promising candidates as biomarkers.
This is particularly the case of the AFD total - an axonal density index - which can be

interesting in pathologies where the axons are altered and disrupted, such as Alzheimer's
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disease (Roy et al., 2021). Next, a growing body of evidence shows that NODDI-derived
ICvf and ECvf measures — which provide a proxy of the axonal density and the volume of
extracellular space — are predictive of response to treatment (Dowell et al., 2019; Kraguljac
etal., 2019; Sarrazin et al., 2019), reinforcing that these measures may be clinically relevant
biomarkers. The OD measure is a dispersion measure of fiber orientation in the voxel
whose reliability is good and which covaries with the NuFO (Chamberland et al., 2019).
The latter displays more moderate reliability, but unlike OD, which requires a multi-shell
DWI acquisition, NuFO can be extracted from clinical acquisitions without requiring
advanced modelling, which is an important advantage for clinical studies. In addition,
recent studies show that it is important from the biological mechanisms point of view to
consider fiber orientation dispersion, especially in the crossing fibers regions such as the
semioval centrum (Andersen et al., 2020; Chad et al., 2021; Mito et al., 2018; Schilling et
al., 2020). A DTI study showed in MS patients that considering the orientation of the fibers
for the FA highlights changes in WM related to disability, while the standard FA failed to
do so (Andersen et al., 2020). Another study shows that a fixel-based analysis (D. A. Raffelt
et al., 2017) reveals a specific degeneration of the SLF with preservation of the CST and
the CC in Alzheimer's disease whereas this degeneration results in an increase in FA with
conventional DTI measures, i.e., the decrease in FA of the SLF bundle leads to a "virtual"
increase in FA in the CST (Mito et al., 2018). This indicates that consideration of different
fiber populations can detect a change in bundle-specific MRI measurements, without
causing significant abnormality in other bundles that intersect in the same region (Doan et
al., 2017; Lee et al., 2015; Mito et al., 2018). Therefore, appropriate consideration of
different fiber orientations using specific methods or indices such as NuFO or OD could
play a critical role in understanding brain disease processes where conventional
measurements are "blind".

Regarding the MTI, although the MTR is the most used measure, this study shows
that the MTsat presents a lower within-variability and a greater between-variability

compared to the MTR (https://high-frequency-mri-database-

supplementary.readthedocs.io/en/latest/results/consistency.html#within-variability).

Again, this indicates that MTsat would be a more favorable biomarker than MTR.

Moreover, recent studies have shown that MTsat is more sensitive than MTR in MS
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(Granzieraet al., 2021; Lema et al., 2017; Saccenti et al., 2020). Despite lower consistency,
recent studies support the use of thMT in clinical studies due to its specificity to myelin,
especially in patients with MS (Obberghen et al., 2018; Prevost et al., 2018; Varma et al.,
2015). Indeed, albeit preliminary due to the small number of subjects, a recent study
showed that in MS patients ihMTR was correlated with clinical disability, whereas MTR
failed to do so (Obberghen et al., 2018). Moreover, many efforts have been made recently
to overcome significant technical limitations - especially on its feasibility on different
scanners - and make ihMT an applicable tool in daily clinical practice that may outperform
MT measures soon (O. M. Girard et al., 2015; Soustelle et al., 2022; Varma et al., 2018;
Wood et al., 2020).

Regarding the bundles, our results suggest that all bundles that show high
consistency, whether extracted on whole or along the bundles, are involved in different
pathologies, aging or development. This is particularly the case for AF, ILF, IFOF, CST,
UF and CG which have very good consistency per se (Dice score) (Atkinson-Clement et
al., 2017; Beaudoin et al., 2021; Bergamino et al., 2020; Coelho et al., 2021). A more
moderate observation can be made regarding some parts of the corpus callosum, which
showed more variable consistency of data. Beyond this, the profiles reveal good to
excellent levels of coherence, like the measurements from whole bundle. Interestingly, the
consistency levels and measurements vary according to the sections along the bundle. This
suggests that along-bundle profiling could help to reliably highlight more subtle changes
such as the presence of a white matter lesion, which may impact one or more parts of the
bundle without affecting the whole bundle. This is supported by a recent study which shows
that AFD profiles are affected by the presence of a lesion and are significantly different at
the location of WMH in fronto-pontine tracts bundle in mild-cognitive impairment subjects

with high WM lesion load (T. Kim et al., 2022).

5. Conclusion

Using an optimized “high-frequency” repeated-measure study collected from twenty
healthy subjects, we showed that the reliability and variability of DWI measures are
excellent to good across the bundles as well as along the bundle. In contrast, MTI showed

good reliability and variability for MT measurements and moderate for i1hMT
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measurements. We also showed that the number of fiber populations affects the consistency
of the measurements, with a moderate effect on the DTI and HARDI measurements, and a
more important effect on the NODDI and MTI measurements. Finally, the most consistent
MRI measurements are found for SLF 2-3 and CC 4 to CC 6 bundles, then for AF, CST,
CC 7, OR, CC3, IFOF and CG, while CC 2a, CC 2b, UF and ILF have more moderate

consistency measurements.
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https://github.com/scilus/scilpy.  Consistency analysis code is available at
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