

1 *Mycobacterium tuberculosis*-specific CD4 T cells expressing transcription factors associate with
2 bacterial control in granulomas

3

4 Nicole L. Grant*, Kristen Kelly*, Pauline Maiello*¶, Helena Abbott*, Shelby O'Connor†, Philana
5 Ling Lin‡§¶, Charles A. Scanga*¶, JoAnne L. Flynn*¶#

6

7 Affiliations:

8 * Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
9 Medicine, Pittsburgh, PA, United States of America
10 † Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison
11 WI, United States of America

12 ‡§ Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh
13 Medical Center, Pittsburgh, Pennsylvania, United States of America.

14 ¶ Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
15 of America

16 # Lead contact

17

18 * Corresponding Author:

19 JoAnne L. Flynn

20 Address: University of Pittsburgh School of Medicine, 5058 Biomedical Science Tower 3,
21 3501 Fifth Avenue, Pittsburgh PA, 15261

22 Email: joanne@pitt.edu

23 Phone: 412-624-7743

24 FAX: 412-648-3394

25

26 ABSTRACT

27 Despite the extensive research on CD4 T cells within the context of *Mycobacterium tuberculosis*
28 (Mtb) infection, few studies have focused on identifying and investigating the profile of Mtb-
29 specific T cells within lung granulomas. To facilitate identification of Mtb-specific CD4 T cells,
30 we identified immunodominant epitopes for two Mtb proteins, Rv1196 and Rv0125, using a
31 Mauritian cynomolgus macaque model of Mtb infection, providing data for the synthesis of MHC
32 Class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune
33 compartments post-infection. We found that granulomas were enriched sites for Mtb-specific cells
34 and that tetramer⁺ cells had increased frequencies of the activation marker CD69, and transcription
35 factors T-bet and ROR γ T, compared to tetramer negative cells within the same sample. Our data
36 revealed that while the frequency of Rv1196 tetramer⁺ cells was positively correlated with
37 granuloma bacterial burden, the frequency of ROR γ T or T-bet within tetramer⁺ cells was inversely
38 correlated with granuloma bacterial burden highlighting the importance of having activated,
39 functional Mtb-specific cells for control of Mtb in lung granulomas.

40

41

42

43

44

45

46

47 INTRODUCTION

48 *Mycobacterium tuberculosis* (Mtb), the causative agent of tuberculosis (TB), remains a global
49 health problem despite over a century of observations and research. The bacterium itself is a
50 complex organism with roughly 4,000 genes and an estimated 3,924 proteins, of which 204 are
51 predicted to be secreted (1). Despite this large antigenic potential, immunodominant antigens
52 overlap between human and macaque species (2). Several immunodominant antigens to Mtb have
53 been studied with some being incorporated into vaccines currently in clinical trials, although the
54 functions and relevance to virulence for many of these proteins remain incompletely understood.
55 The immunodominant antigens included in several vaccine candidates consist of the well-known
56 secreted proteins ESAT-6 and CFP-10, as well as the serine protease Rv0125, and the functionally
57 less understood protein Rv1196 (3-9). CD4 T cells have been extensively studied in the context of
58 Mtb infection, with critical functions related to their production of pro-inflammatory cytokines
59 and interactions with other cells, including CD8 T cells and macrophages (10, 11). While most
60 studies investigating CD4 T cells in TB disease use Mtb peptide stimulation, tetramer staining in
61 blood, or single cell flow or RNA sequencing analysis, few provide insight into the presence and
62 function of Mtb-specific CD4 T cells in tissue sites of infection such as lung granulomas,
63 particularly in non-human primate (NHP) models (12-16).

64

65 While the large antigenic repertoire of Mtb could contribute to enhanced pathogen recognition by
66 host T cells, it may also contribute to the difficulty in its clearance and complexity of immune
67 responses as some antigens may act as “decoys” evading host protective responses (17). Following
68 infection, granulomas are formed through the migration of innate and adaptive cells in response to
69 the initiating bacillus, contributing to the overall microenvironment (18, 19). Previous studies

70 investigating T cells in granulomas provide evidence that while they make up roughly 30-40% of
71 all cells, only a fraction produce pro-inflammatory cytokines (20). Hypotheses as to why T cells
72 may not produce high frequencies of pro-inflammatory cytokines within lung granulomas include,
73 but are not limited to: 1) T cells in lung granulomas experience constant stimulation by antigen
74 and thus become functionally exhausted; 2) the granuloma is comprised of spatial cellular
75 compartments, limiting interactions between APCs and specific T cells; and 3) non-specific T cells
76 are recruited to lung granulomas and thus the functionality is dependent on antigen-specificity.
77 Previous studies from our lab and others indicate that there are low levels of multiple exhaustion
78 markers on granuloma T cells and have predicted how the cellular spatial environment of the
79 granuloma contributes to macrophage:T cell interactions (17, 21-23). However, the difficulty in
80 studying antigen specific T cells in granulomas, which often have limited cells for analysis,
81 presents a challenge to test these possibilities. Tools to identify Mtb-specific T cells within the
82 granuloma would provide valuable insight into the phenotype and functionality of these cells.

83

84 Tetramers are a valuable tool for identifying and investigating functional attributes of antigen-
85 specific cells, however, given the wide polymorphic diversity in MHC I and II molecules in
86 humans and commonly used NHP models, designing useful tetramers can be challenging (24)(25-
87 33). Mauritian cynomolgus macaques (MCMs), provide a useful model to develop and use
88 tetramers to study antigen-specific cells as these NHPs emerged from a small, isolated, founder
89 population, leading to a substantially reduced MHC diversity (29, 34, 35). The diversity in MHC
90 I and II molecules in MCMs has been well studied, providing evidence of 7 distinct groups based
91 on the expression of major MHC haplotypes (35). Using MCMs to include only those from the a
92 specific haplotype (e.g. M1/M1) greatly reduces the major MHC I and II allele variation (35).

93 MCMs have been developed as a model for Mtb infection, presenting with granulomas and other
94 pathologies similar to humans and other NHP species, with a higher susceptibility to active TB
95 disease similar to that of rhesus macaques (36-38).

96
97 Here, we mapped dominant epitopes for two immunodominant Mtb proteins in M1/M1 MCMs
98 and acquired tetramers for these antigens. Using these new tetramers, plus two tetramers
99 previously developed to identify CD4 T cells specific for CFP-10, we investigated Mtb-specific T
100 cells within infected MCMs, providing insight into the presence of Mtb-specific T cells in the
101 blood, BAL, lungs, lung granulomas, thoracic lymph nodes (LNs), and extra-pulmonary sites (EP)
102 (3). Furthermore, we investigated the function of Mtb-specific CD4 T cells in lung lesions using
103 transcription factors and activation markers and demonstrated an association between Mtb-specific
104 CD4 T cells expressing T-bet or ROR γ T and a reduction in bacterial burden within granulomas.

105
106
107
108
109
110
111
112
113
114
115

116

117 MATERIALS AND METHODS

118 **Ethics statement**

119 All experiments, protocols, and care of animals were approved by the University of Pittsburgh
120 School of Medicine Institutional Animal Care and Use Committee (IACUC). The Division of
121 Laboratory Animal Resources and IACUC adheres to national guidelines established by the
122 Animal Welfare Act (7 U.S. Code Sections 2131-2159) and the Guide for the Care and use of
123 Laboratory Animals (Eighth Edition) as mandated by the U.S. Public Health Service Policy.
124 Animals used in this study were housed in rooms with autonomously controlled temperature,
125 humidity, and lighting. Most animals were pair-housed although some were singly housed based
126 on temperament or uneven animal numbers in the study. Animals were provided with visual and
127 tactile contact with neighboring conspecifics. Animals were provided water ad libitum, large
128 biscuits specifically formulated for NHPs, and supplemented with pieces of fresh fruits and
129 vegetable at least 4 days per week. An enhanced enrichment plan was implemented with three
130 components: Encouragement of species-specific behavior involving toys and other manipulata that
131 are filled with food treats, which are rotated on a regular basis. Puzzle feeders, foraging boards,
132 and cardboard tubes encourage foraging behaviors. Adjustable mirrors accessible to the animals
133 stimulate interaction between animals. Secondly, routine interaction between humans and
134 macaques are encouraged. Interactions occur daily and consist of small food objects offered as
135 enrichment and adhere to the established safety protocols. Animal caretakers are encouraged to
136 interact with the animals while performing tasks in the housing area. Routine procedures are
137 performed on a strict schedule to provide animals with a routine daily schedule. Third, all
138 macaques are provided with a variety of visual and auditory stimulation including TV/video

139 equipment playing cartoons for at least 3 hours per day which is rotated regularly so that
140 enrichment is not repetitively played for the same group of animals as well as devices including
141 food puzzles. All animals are checked twice daily and closely monitored to assess appetite,
142 attitude, activity level, hydration status, etc. Following Mtb infection animals are monitored for
143 evidence of disease (e.g. anorexia, weight loss, tachypnea, dyspnea, and coughing). Physical
144 exams are performed on a regular basis. Ketamine, or other approved drugs, are used to sedate
145 animals prior to all veterinary procedures (e.g. blood draws, bronchoalveolar lavage). PET-CT
146 imaging was conducted every other week for this study and has proved very useful for monitoring
147 disease progression. Veterinary technicians monitor animals closely for signs of pain or distress.
148 If any signs are noted, appropriate supportive care is provided (e.g. dietary supplementation) and
149 clinical treatments administered (analgesics). Any animal considered to have advanced disease or
150 intractable pain or distress from any cause was sedated with ketamine and humanely euthanized
151 using sodium pentobarbital.

152

153 **Animals, Mtb infection, and disease tracking by PET CT**

154 Fifteen (10 for mapping and MHC allele testing and 5 for tetramer testing) Mauritian cynomolgus
155 macaques (*Macaca fascicularis*) were obtained from Buckshire Corporation or Bioculture-
156 Mauritius. Animals were placed in quarantine for either 30 or 60 days depending on the length of
157 time in the United States and were monitored for signs of poor health and prior infection. After
158 quarantine, the animals were transferred to the University of Pittsburgh Regional Biocontainment
159 Laboratory BSL3 facilities and infected with a low dose of (<20 CFU) Mtb Erdman via
160 bronchoscopic instillation as previously described (39, 40). Infection trajectory and disease was
161 tracked using ¹⁸F-fluorodeoxyglucose (FDG) PET-CT for granuloma formation and lung

162 inflammation every 4 weeks. PET CT scans were analyzed using OsiriX viewer with a 1mm limit
163 of detection as previously detailed (41).

164

165 **Bronchoalveolar lavage (BAL)**

166 Bronchoalveolar lavage was performed as previously described (40). In brief, a 2.5mm diameter
167 bronchoscope was inserted into the trachea of a sedated animal and placed in the right middle of
168 lower lobe, where a saline solution (40mL) was introduced and suctioned into a sterile 50mL
169 conical tube. An aliquot was plated on 7H11 agar plates to determine CFU, which were counted
170 after 3 weeks of incubation at 37°C/5%CO₂. The remaining BAL fluid was centrifuged at 1800
171 rpm for 8 minutes at 4°C. Cells were resuspended in 1mL of sterile PBS and counted using a
172 hemocytometer and aliquoted for use in tetramer and flow cytometry staining.

173

174 **Necropsy procedures**

175 Necropsies were performed on animals at the pre-determined study endpoint or humane endpoint
176 determined by clinical evaluation or PET CT scan. In brief, animals were sedated with ketamine,
177 maximally bled and then euthanized with pentobarbital, and tissue samples extracted. PET CT
178 guided necropsy procedures were followed as previously described in which each granuloma or
179 disease pathology is identified on the scan and matched to the lung location for dissection (41).
180 All lung tissues, thoracic lymph nodes, spleen and liver were also obtained. Individual samples
181 were placed in RPMI 1640 media (Fisher, BW12-167F) and homogenized for single cell
182 suspensions. Sections of lymph node and lung tissue samples were formalin fixed for
183 histopathological analysis. Single cell suspensions were counted using a hemocytometer to
184 determine viable cell counts and plated on 7H11 agar plates and incubated for 21 days at 37°C for

185 CFU determination. To increase the likelihood of capturing tetramer⁺ populations, smaller samples
186 were combined from the same animal to increase the number of cells stained for more distinct
187 gating. Of note, granulomas from an individual animal were not combined with those from a
188 different animal. Using this method, we were able to identify tetramer⁺ populations with >50
189 events in most of our pooled or individual granuloma samples, thus allowing sufficient cell
190 numbers to analyze the functionality of tetramer⁺ CD4 T cells.

191

192 **IFN- γ ELISPOTS**

193 Peripheral blood mononuclear cells (PBMCs) were isolated from blood draws pre- and post-Mtb
194 infection. White membrane plates (Fisher Scientific, Cat. #MSIPS4W10) were prepared using
195 30% ETOH followed by three washes with sterile 1XPBS. Primary antibody (anti-IFN- γ clone
196 MT126L) was used as a capture antibody and following addition, plates were incubated overnight
197 at 37°C. Following addition of the capture antibody, ELISPOT plates were washed three times
198 with sterile 1XPBS and blocked for two hours at 37°C using RPMI 1640 (Sigma, Cat. #R0883)
199 supplemented with 1% L-glutamine (Thermo Fisher, Cat. #25030149), 1% HEPES (Thermo
200 Fisher, Cat. #SH3023701), and 10% human A/B serum (Gemini Bio-Products, Cat. #100-512).
201 Peptides were added to prepared plates at a final concentration of 1 μ g/mL-2 μ g/mL followed by
202 1 \times 10⁵-2 \times 10⁵ fresh or frozen (rested overnight) PBMCs. Plates were incubated for 48 hours at 37°C
203 and immediately washed 6 times with 1XPBS. Following washing, a filtered secondary antibody
204 (anti-IFN- γ , clone 7-B6) was added to plates and incubated for two hours at 37°C. Plates were
205 washed 6 times with 1XPBS then followed by addition of a Streptavidin-HRP antibody for 45
206 minutes at 37°C. Lastly, an AEC substrate (Vector Laboratories, Cat. #SK-4200) was added
207 according to manufacturer's instructions for 5-8 minutes to allow plate to develop followed by 3

208 washes each of diH₂O and 1XPBS. All samples were run in duplicate wells for each experiment
209 and represented as the average spot forming unit (SFU). Plates were dried in a cool, dark location
210 and read using an Immunospot ELISPOT plate reader (Cellular Technology Limited, Cleveland
211 OH, USA) and manually assessed for quality control.

212

213 **Peptide resuspension and mapping strategies**

214 Sequences for Mtb proteins Rv1196 and Rv0125 were obtained from publicly available databases
215 and peptide libraries were generated using a commercially available peptide library design tool
216 (PEPscreen, Millipore Sigma, Merck, Darmstadt, Germany) with peptide lengths of 20 amino
217 acids (a.a.) and an overlap of 10 a.a. Individual peptides were ordered from Genscript and
218 resuspended in DMSO (with a calculated final concentration of no greater than 10%) and sterile
219 1X PBS according to molecular weight to obtain a stock concentration of 10mM. Stock
220 concentrations were diluted using sterile 1X PBS to 1mg/mL working concentrations and peptides
221 were used at 1-4 μ g/mL according to assay standards.

222

223 **Plasmid generation and purification**

224 Plasmids containing major M1 allele variants (both MHC I and MHCII) (Supplementary Figure
225 1A) were kindly gifted from collaborators at the University of Wisconsin (O'Connor lab). To
226 obtain larger stocks, plasmids were transformed into E. coli using heat shock transformation,
227 selected on antibiotic plates and grown in liquid media. Plasmids were purified from the E. coli
228 strains with a Qiagen miniprep kit using a vacuum manifold. Concentrations of plasmids were
229 determined using a nanodrop reader with OD 260/280 ratios at ~1.8 considered pure.

230

231 **Transfection of mammalian cells for allele expression**

232 Several transfection methods were tested and success rates varied based on the plasmids containing
233 allele variants. Mammalian cells lacking MHC I (K562 cells) or MHC II (RM3 cells) proteins
234 (kindly sent by Shelby O'Connor) were used for allele restriction determination. Electroporation
235 using a BTX ECM630 was determined as the optimal system for transfecting RM3 cells containing
236 MHC II allele variants under the following conditions: mode: low voltage, capacitance 250 μ F,
237 resistance: none, charging voltage: 200 V, Chamber BTX disposable cuvette (2mm gap), field
238 strength: 750V/cm, sample volume: ~300 μ L (3, 42-44). Prior to electroporation RM3 cells were
239 kept in a log growth phase by subculturing and observing flasks for cell health and debris. Plasmids
240 were added to cuvettes (10 μ g of total plasmid; e.g. 5 μ g of DRA and 5 μ g of DRB) along with RM3
241 cells and resuspended in 150mL of ECM buffer. Following electroporation, RM3 cells were grown
242 under unsupplemented media for 24 hours at 37°C, 5%CO₂. After 24 hours, media was changed
243 and cells were grown in R10 media (RPMI 1640 + 10% FBS, 1% antimycotic/ antibiotic) for 48
244 hours. At this time, hygromycin B (Sigma, Cat. #H0654-500mg) was added to the media at a final
245 concentration of 400 μ g/mL for an additional six days, with sub-culturing every 48-72 hours.
246 Transfectants were stained for viability using a Live dead blue dye followed by anti-HLA DR DP
247 DQ antibodies (BioRad clone Bu26, Cat. #MCA2497F; Beckman clone I3, Cat. #CO6604366;
248 BioLegend, clone Tü39, Cat. #361704) or anti-HLA DP (Leinco, clone B7/21, Cat. #H129) for
249 detection of MHC II proteins.

250

251 **Generation of EBV transformed-B lymphoblastic cell lines**

252 Autologous BLCLs were generated using isolated PBMCs from pre-infection blood draws for use
253 as antigen presenting cells and culturing and testing T cell lines. Isolated PBMCs (1x10⁵-2x10⁵)

254 were added to 96 well round bottom plates with 50 μ L of *Herpesvirus papio* supernatant, from
255 filtered supernatants of S594 cells, and grown in R20 (RPMI + 20% FBS). Media was changed 3-
256 4 days following addition of S594 supernatant and thereafter every 2-3 days. When cells started to
257 clump and media was slightly yellow, the BLCLs were split into additional wells of the 96 well
258 plate. Cells from 96 wells were combined into wells of a 24 well plate in R20 and expanded into
259 larger size wells (6-well plate) with T25 or T75 flasks being seeded for freezing or for use in
260 experiments.

261

262 **Peptide specific T cell generation and expansion**

263 A series of experiments were performed to generate T cells for long term culture and testing
264 according to protocols provided by the O'Connor lab and using published protocols (45). However,
265 in our experiments, stimulation with peptide-pulsed irradiated BLCLs did not yield stable peptide-
266 responsive T cell lines. We used the following approach for the data provided here: Isolated
267 PBMCs were plated in 12 well or 6 well plates at a concentration of 1x10⁶ cells/mL in RPMI media
268 supplemented with 15% FBS, IL-2 (Abcam, Cat. #ab119439, 1 μ L/10mL) and IL-7 (Abcam, Cat.
269 #ab73201, 1 μ L/20mL). Peptide of interest was added to individual wells at a final concentration
270 of 1 μ g/mL peptide. Cells were incubated at 37°C, 5%CO₂ for 48 hours and then washed with sterile
271 1XPBS and rested for an additional 4 days in R15+IL2/IL7 media.

272

273 **Peptide specific T cell allele restriction testing**

274 PBMC T cell cultures expanded with the dominant epitope for RV1196 or Rv0125 were tested for
275 specific allele presentation using RM3 cells transfected with MHC II alleles at a 1:1 or 2:1 ratio
276 (i.e. T cell:transfected RM3 cell)(Supplementary Figure 1). Transfected RM3 cells were prepared

277 for T cell testing by adding 1 μ g/mL peptide to individual wells of a 96 well plate and incubated
278 for 90 minutes at 37°C, 5%CO₂. Following incubation, prepared T cells were added to each well
279 of a 96 well plate and incubated for another 12 hours in the presence of a Golgi plug inhibitor,
280 BFA (BD Biosciences, Cat. #555029). Stimulation plates were spun down and washed with
281 1XPBS following 12-hour incubation. Flow cytometry staining was performed for viability
282 (Live/dead fixable blue dead cell stain kit, Thermo Fisher, Cat. #L34962) and surface marker
283 expression for CD3 (BD, clone SP34-2), CD4 (BD, clone L200), CD8 (BD, clone RPA-T8), HLA
284 DR/DP/DQ (BioRad clone Bu26; Beckman clone I3; BioLegend, clone Tü39), and intracellular
285 cytokines IFN- γ (BD, clone B27), and TNF (BD, clone Mab11) using standard flow cytometry
286 and intracellular staining protocols. Samples were run on a BD LSRII or a Cytek Aurora (Cytek,
287 Bethesda, MD, USA) and analyzed using FlowJo software (BD, version 10).

288

289 **Tetramerization**

290 Monomers were prepared by the NIH tetramer core as requested for peptide and allele sequences.
291 Once received, samples were aliquoted and stored at -80°C until time of use. To tetramerize
292 monomer, fluorescently labeled streptavidin (SAV) was added in 10-minute increments, 10 times
293 based on the concentration of the SAV as previously described in the NIH tetramer core published
294 protocols (46). Serial addition of SAV allows for binding of free monomer while leaving little
295 excess SAV. After tetramerization, staining was performed on frozen PBMCs or expanded T cells
296 to ensure proper complex formation. Tetramers were stored at 4°C and used prior to 2 months from
297 synthesis to allow for minimal tetramer disaggregation. Tests were performed to determine the
298 optimal amount of tetramer to use per sample, by comparing control tetramer staining to
299 Rv1196₃₇₁₋₃₈₅ tetramer staining, showing that 4 μ g/mL was adequate to visualize a distinct

300 population of tetramer⁺ cells. For tetramer staining, samples were prepared and stained in a 500nM
301 RPMI+dasatinib (Fisher, Cat. #NC0897653) solution and washed with 50nM dasatinib solution in
302 1XPBS. Samples were stained with tetramer, control tetramer (CLIP), or no tetramer for 30
303 minutes at room temperature (RT) followed by two washes with 50nM 1XPBS. To maximize the
304 use of validated fluorophores for tetramer conjugation, we conjugated monomers for CFP-10₃₆₋₄₈
305 and CFP-10₇₂₋₈₅ in the same fluor (BV421), since both detect T cell responses to the protein CFP-
306 10, and conjugated monomer for Rv1196₃₇₁₋₃₈₅ with PE and the monomer for Rv0125₈₁₋₉₂ in APC.
307 The concentration of tetramer needed for clear identification of tetramer⁺ populations was
308 determined using expanded T cell lines and compared to control tetramer staining at the same
309 concentration. Granuloma lung samples were stained with control tetramers (CLIP monomer
310 provided by NIH and tetramerized by us), no tetramer, no transcription factor, or tetramer plus
311 transcription factors, depending on cell numbers, with all the controls being performed for each
312 animal to ensure accurate gating for analysis of tetramer⁺ and transcription factor⁺ cells.

313

314 **Flow cytometry and transcription factor staining**

315 Bronchoalveolar lavage was performed as described above and cells counted for staining at 3- and
316 4-weeks post infection for all animals and 8 weeks for 1 animal. Similarly, necropsy tissues were
317 homogenized, counted, and single cell suspensions prepared by washing with 500nM dasatinib
318 RPMI solution. After tetramer staining and washes were performed, cells were stained with
319 Zombie near infrared (NIR) (BioLegend, Cat. #423105) diluted 1:1000 per manufacturer's
320 recommendation for 10 minutes at 4°C in the dark. Cells were washed with 50nM dasatinib in
321 1XPBS twice and spun down each time at 2000 rpm, for 3 minutes at 4°C. Following washes, cells
322 were stained with surface antibody cocktail diluted in 50nM dasatinib FACS (1XPBS + 5% FBS)

323 buffer for 20 minutes at 4°C in the dark. Cells were washed twice using 50nM dasatinib FACS
324 solution, spun as described above, and fixed for a minimum of 10 minutes in 4% paraformaldehyde
325 (PFA) for processing outside of the BSL3. Samples were washed in 1XPBS and placed at 4°C
326 overnight for continued staining the following day. To begin staining the following day, samples
327 were spun at 2000 rpm for 3 minutes at 4°C and supernatants decanted. True nuclear transcription
328 factor buffer kit (BioLegend, Cat.#424401) was used for detection of transcription factors within
329 cells as per the manufacturer's recommendation. Following a 1 hour permeabilization at RT in the
330 dark and two subsequent washing steps, samples were stained for 1 hour at RT in the dark using
331 antibodies targeting transcription factors, granzyme B, and CD69. Samples were washed twice
332 using 50nM dasatinib FACS solution and resuspended in 1XPBS. Granuloma lung samples were
333 stained with control tetramers (CLIP monomer provided by NIH and tetramerized by us), no
334 tetramer, no transcription factor, or tetramer plus transcription factors, depending on cell numbers,
335 with all the controls being performed for each animal to ensure accurate gating for analysis of
336 tetramer⁺ and transcription factor⁺ cells. For analysis, we employed a gating strategy using an
337 inclusive CD4 gate (gated on all CD4⁺ cells, including CD4⁺CD8⁺) to optimize our ability to
338 identify the tetramer⁺ cells (Supplementary Figure 2). Transcription factor analysis was performed
339 on tissue samples where there were at least 50 events in the parent (i.e. Tetramer⁺) gate. A Cytek
340 Aurora was used to acquire sample events and analysis was performed on unmixed data files
341 (adjusted for reference controls) using FlowJo version 10.

342

343 **Statistical Analysis**

344 Statistical analysis was performed in GraphPad Prism (version 9). Data were tested for normality
345 using the Shapiro-Wilk test. Groups were compared using a Wilcoxon ranked sum analysis on

346 paired samples or a Mann-Whitney on unpaired samples. For correlations, CFU (+1) was \log_{10} -
347 transformed and tested for normality. For normal data, Pearson r correlation coefficient was
348 reported; otherwise, Spearman r correlation coefficient was reported. P values < 0.05 were
349 considered significant.

350

351 RESULTS

352 **Identifying a dominant epitope for Rv1196 and Rv0125 in M1/M1 MCMs**

353 A total of 10 Mtb-infected MCMs (including M1 homozygous and M1 heterozygous animals)
354 were used to epitope map two Mtb proteins, Rv1196 and Rv0125, using IFN- γ ELISPOTs (Figure
355 1). To investigate the dominant epitope binding region for these proteins, we used PBMCs from
356 various timepoints throughout infection, with PBMCs from 4-8 weeks post-infection (p.i.) eliciting
357 the best overall IFN- γ responses. To narrow down the dominant epitope binding region individual
358 20 amino acid (a.a.) peptides with overlapping 10a.a. regions were pooled in a matrix format
359 (Figure 1A, D, Supplementary Tables 1 and 2).

360

361 For mapping Rv1196, the highest IFN- γ responses were to peptides #37 and 38, indicating that the
362 optimal binding region likely included the overlapping 10 a.a. region (Figure 1B). To further
363 evaluate the amino acids involved in binding, we used truncated and shifted peptides of 9-20 a.a.
364 lengths in PBMC IFN- γ ELISPOTs (Figure 1C and Supplementary Table 1). For Rv1196, we
365 identified the optimal binding region to be between amino acid 371-385 (peptide Rv1196
366 38.3)(Figure 1G). Only peptides containing the VM (valine-methionine, a.a. 383 and 384) elicited
367 IFN- γ responses, suggesting that VM is critical in peptide binding to M1 MHC II molecules
368 (Supplementary Table 1).

369

370 A similar approach was taken using peptides for Rv0125 with the highest response elicited from
371 Rv0125 peptide 9 (Rv0125₈₁₋₁₀₀) and by truncated peptide 9.12 (Rv0125₈₁₋₉₂) (Figure 1D-G and
372 Supplementary Table 2). Results from IFN- γ ELISPOTs revealed that the dominant epitope
373 binding region for Rv1196 and Rv0125 were 15 and 12 a.a., respectively. As MHC I binds peptides
374 of smaller sizes, it was likely that these peptides are bound by MHC II and recognized by CD4 T
375 cells, though based on size, Rv0125₈₁₋₉₂ is small enough to be bound by MHC I (47).

376

377 **Rv1196₃₇₁₋₃₈₅ and Rv0125₈₁₋₉₂ are presented by the DPA/DPB allele**

378 There are two main steps in the tetramer design process: (1) identifying the dominant epitope as
379 outlined above and (2) identifying the MHC and allele presenting the dominant peptide to either
380 CD8 or CD4 T cells (MHC I or MHC II, respectively). This critical step involves generating T cell
381 lines, APC lines, and cell lines expressing specific MHC alleles. The generation of T cell lines has
382 been described in humans, mice and NHP using media supplemented with recombinant IL-2 and
383 IL-7 (48, 49). Although it has been reported that T cell lines can be passaged 10 weeks or more
384 and still be functional, we did not observe cytokine production in our T cell lines grown and
385 stimulated for more than 3 weeks in culture with irradiated BLCLs and peptide (50). We developed
386 a protocol for expanding T cells based on protocols provided by University of Wisconsin.
387 Following a 12-hour co-culture experiment, in which our expanded T cell lines were incubated
388 with autologous peptide stimulated PBMCs, we performed flow cytometry staining for surface
389 markers (CD3, CD4, and CD8) and cytokines (IFN- γ and TNF) to determine whether the peptides
390 were presented to CD4 or CD8 T cells. This demonstrated that CD4 T cells recognized and

391 produced IFN- γ and TNF in response to both peptides (Rv1196₃₇₁₋₃₈₅ and Rv0125₈₁₋₉₂) and
392 therefore were likely MHC II restricted (Supplementary Figure 1B).

393

394 These data focused our efforts on producing M1-specific MHC II allele expressing RM3 cells, a
395 cell line lacking MHC II expression (see Materials and Methods). We generated four sets of RM3-
396 transfected cells representing the dominant M1/M1 DR, DP, and DQ alleles (Supplementary
397 Figure 1A). There was variable frequency in allele expression despite within protocol consistency,
398 with DP and DR alleles exhibiting lower frequencies of expression (Supplementary Figure 1C).
399 After testing an alternative set of antibodies (different clones) for the detection of MHC II proteins
400 we observed a higher frequency of allele expression, indicating that our transfection experiments
401 were successful and that available anti-DR/DP/DQ antibodies do not detect all alleles equally
402 (Supplementary Figure 1D).

403

404 RM3-allele expressing cells (RM3-DPA/DPB, RM3-DQA/DQB, etc.) were co-cultured with
405 expanded peptide-stimulated T cells to identify the specific M1 MHC II allele presenting
406 Rv1196₃₇₁₋₃₈₅ or Rv0125₈₁₋₉₂. The frequency of CD4 T cells producing IFN- γ and TNF was
407 evaluated using flow cytometry staining in each of the following conditions: (1) PBMCs alone; (2)
408 RM3 cells with empty vector; (3) RM3-DRA/DRB*w501; (4) RM3-DRA/DRB*w2101; (5) RM3-
409 DQA/DQB; or (6) RM3-DPA/DPB in the presence of Rv1196₃₇₁₋₃₈₅ or Rv0125₈₁₋₉₂. This
410 experiment was performed using frozen or fresh PBMCs from two Mtb-infected M1 MCMs for
411 each specific peptide and revealed that both Rv1196₃₇₁₋₃₈₅ and Rv0125₈₁₋₉₂ are presented by the
412 major DPA/DPB allele (Fig 1H-K). This information was provided to the NIH tetramer core where
413 tetramers and monomers were prepared for DPA/DPB Rv1196₃₇₁₋₃₈₅ and DPA/DPB Rv0125₈₁₋₉₂

414 and two previously published CFP-10 tetramers (DRA/DRB w501 CFP-10₃₆₋₄₈ and
415 DRA/DRBw501 CFP-10₇₁₋₈₅) (3) for interrogating samples from Mtb infected MCMs.

416

417 **Mtb-specific CD4 T cells can be observed in airways and blood of infected macaques**

418 To gain insight into the presence and function of Mtb-specific cells in M1 homozygous MCMs, 5
419 animals were infected with a low dose of Mtb and monitored throughout infection using PET CT
420 imaging as previously described (41). Previous studies showed that MCMs are more susceptible
421 to Mtb infection than Chinese cynomolgus macaques, therefore the study endpoint was planned
422 for 10 weeks post-infection (36). However, Mtb disease progressed faster in 3 of the animals,
423 resulting in a clinical endpoint and necropsy at 6-9 weeks post-infection (Supplementary Figure
424 2A).

425

426 Mtb-specific CD4 T cells in the blood were tracked throughout infection by monitoring IFN- γ
427 responses following PBMC stimulation with dominant peptides (Figure 2A-C); all animals
428 responded to CFP10, Rv0125, and Rv1196 dominant peptides, although responses were variable
429 across animals and time points. At necropsy, PBMCs were stained with an optimized flow
430 cytometry panel including 4 tetramers specific for the 3 Mtb antigenic targets (CFP-10, Rv1196,
431 and Rv0125) (Figure 2D, Supplementary Figure 2D). Although tetramer⁺ cells represent a low
432 frequency of CD4 T cells in blood of infected macaques (0.1-0.18%, medians), a distinct
433 population of Mtb-specific cells was observed in the blood at necropsy (Supplementary Figure
434 2D).

435

436 To monitor the appearance of tetramer⁺ cells in the airways, flow cytometry was performed on
437 cells obtained by BAL beginning at 3-4 weeks and in one animal at 8 weeks post infection. There
438 was an increase in the frequency of tetramer⁺ cells as infection progressed (Figure 2E, F). The
439 adaptive immune response to Mtb is slow to evolve in macaques (and humans) which could
440 account for the low frequency of Mtb-specific T cells in airways at 3 and 4 weeks (51). Given the
441 low numbers of tetramer⁺ cells in BAL samples, further analysis on cell function was not
442 performed.

443

444 **Identifying Mtb-specific CD4 T cells in thoracic lymph nodes, lungs and granulomas**

445 One of the gaps in knowledge is the frequency and functionality of Mtb specific T cells within
446 lung, lymph nodes (LNs), and granulomas in NHPs or humans. The primary site of Mtb infection
447 is the lung granuloma, however, a significant amount of disease including the formation of
448 granulomas occurs within thoracic LNs (52). In this study, the median bacterial burden for
449 involved LNs, i.e. those that were CFU positive, was higher than the median CFU for lung lesions
450 (granulomas, clusters, and consolidations) (median for involved LN: 1.65×10^4 CFU, median for
451 lung lesions: 6.5×10^2) (Figure 3A). Given the high bacterial burden and presence of granulomas
452 in involved LNs, we hypothesized that Mtb tetramer⁺ cells could also be found within these sites.
453 Using thoracic LN samples isolated at necropsy, we were able to identify Rv1196 tetramer⁺ cells
454 within both involved LNs (CFU positive [CFU⁺] or gross detection of granuloma formation) and
455 uninvolved LNs (CFU negative [CFU⁻] and lacking gross detection of granulomas) (Figure 3B).
456 There was a range in frequency of Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells within thoracic lymph nodes
457 between 0.0% and 0.21% with CFU⁺ LNs having a significantly higher frequency of Rv1196
458 tetramer⁺ cells compared to CFU⁻ LNs (CFU⁺ median: 0.073%, CFU⁻ median: 0.019%, $p=0.0041$)

459 (Figure 3C, D). To identify the frequency of all tetramer⁺ cells in thoracic LN samples (i.e. using
460 all 4 tetramers), we applied a Boolean OR gating strategy which combines the events from the
461 individual tetramer⁺ gates; this was only performed on a subset of samples for which we were able
462 to use all 4 tetramers. The frequency of all tetramer⁺ cells reflected the frequency ranges of
463 Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells, providing a wider range for animal 23720, revealing that this animal
464 either did not have many Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells or had poor Rv1196₃₇₁₋₃₈₅ tetramer staining
465 (Figure 3E). As with Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells, there were significantly higher frequencies of
466 all tetramer⁺ cells in thoracic CFU⁺ LNs compared to thoracic CFU⁻ LNs (Figure 3F).

467

468 A total of 51 lesions (granulomas or granuloma clusters, individual or pooled) were analyzed for
469 this study with a range in bacterial burden between 7×10^1 - 4.3×10^5 CFU (Figure 4A). The
470 frequency of tetramer⁺ cells was variable in granulomas and within and across animals, with a
471 median frequency of 0.83% of CD4 T cells staining positive for CFP-10 tetramers and median
472 frequency of 1.27% of CD4 T cells staining positive for the Rv1196₃₇₁₋₃₈₅ tetramer; in contrast,
473 median frequency of Rv0125₈₁₋₉₂ tetramer⁺ CD4 T cells was relatively low at 0.20% (Figure 4B-
474 E). Comparing the frequency of individual tetramer staining within the same sample, there did not
475 appear to be granulomas that had consistently high frequencies of every tetramer, but instead
476 specific tetramer frequency varied within granulomas (Figure 4E), suggesting that T cells of
477 different antigen specificities were present across granulomas even in the same animal, most easily
478 seen in animal 23820 (gold plot, Figure 4E).

479

480 As anticipated, when comparing the frequency of tetramer⁺ cells in blood to the site of infection,
481 i.e. lung granulomas, there was an ~12-fold increase in Rv1196 tetramer⁺ cells in granulomas

482 (median PBMC: 0.1%; median lung granulomas: 1.24% Rv1196) (Figure 4F). There was a 6-fold
483 increase in the frequency of tetramer⁺ cells in lung granulomas as compared to uninvolved lung
484 (CFU=0) (uninvolved lung: 0.19%, median in lung granulomas: 1.24%) or even CFU⁺ lung
485 samples (without obvious granulomas) (Figure 4F). Extrapulmonary granulomas (liver or spleen),
486 although fewer samples were available, also had low frequencies of Rv1196 tetramer⁺ cells (Figure
487 4F). Similar trends were observed when comparing frequencies of CFP-10 tetramer⁺ cells (Figure
488 4F). These data support that lung granulomas are enriched sites for tetramer⁺ cells.

489

490 **Transcription factor and activation marker expression in tetramer⁺ lung granuloma cells**

491 To assess potential phenotypic and functional differences between tetramer⁺ and tetramer^{neg} CD4
492 T cells, granuloma samples were stained with the lineage specifying transcription factors T-bet,
493 GATA3, Foxp3, ROR γ T, and ROR α . Although MHC Class I tetramers in other disease models
494 have been used in conjunction with intracellular cytokine staining, few studies have used
495 intracellular cytokine staining in coordination with MHC Class II tetramers (53, 54). One of the
496 primary reasons for this is the instability of the CD4 TCR on the cell surface following TCR
497 ligation (55). Most protocols strongly recommend the use of a protein kinase inhibitor (PKI), such
498 as dasatinib, for stabilizing the TCR to enhance the staining potential of these cells. However, PKIs
499 limit T cell activation and cytokine secretion (56). Thus, we used antibodies specific for
500 transcription factors as a surrogate for cellular functionality along with our Rv1196 and CFP10
501 tetramers in our flow cytometry panel for analyzing PBMCs, lungs, LNs and lung granulomas
502 (Supplementary Figure 2B-D). For these analyses Rv0125₈₁₋₉₂ tetramer⁺ cells were excluded due
503 to their relatively low frequencies in these samples.

504

505 Significantly higher frequencies of T-bet and ROR γ T expression were observed for Rv1196₃₇₁₋₃₈₅
506 and CFP-10 tetramer $^+$ cells when compared to tetramer neg cells in the same sample (Figure 5A-B).
507 Frequencies for the remaining transcription factors were low in all CD4 $^+$ cells; despite this, there
508 was an overall trend of higher expression of GATA3 in tetramer neg cells compared to tetramer $^+$
509 cells. There was a significantly higher frequency of ROR α expressing CFP-10 tetramer $^+$ cells
510 compared to CFP-10 tetramer neg cells (Figure 5B). There were no observable differences in the
511 frequency of Foxp3 expression between tetramer $^+$ and tetramer neg cells; taken together with its low
512 overall frequency indicates that it is not highly expressed in CD4 T cells in MCM lung granulomas
513 at the time points assessed (Figure 5A-B).

514

515 We evaluated tetramer $^+$ cells for activation marker expression (CD69 and PD-1) and production
516 of the cytolytic molecule granzyme B. CFP-10 tetramer $^+$ cells and Rv1196₃₇₁₋₃₈₅ tetramer $^+$ cells
517 had significantly higher expression of CD69 when compared to tetramer neg cells in the same
518 sample, indicating that Mtb specific CD4 T cells have an activated phenotype (Figure 5C-D).
519 When evaluated for PD-1, Rv1196₃₇₁₋₃₈₅ tetramer $^+$ cells had significantly lower frequencies of PD-
520 1 compared to tetramer neg cells (Figure 5C); this trend was not uniform when analyzing CFP-10
521 tetramer $^+$ and tetramer neg cells but instead was animal dependent (Figure 5D). Expression of
522 granzyme B varied based on sample and specific tetramer, with significantly higher frequencies of
523 granzyme B expression in CFP10 tetramer $^+$ cells, and the opposite for Rv1196 tetramer $^+$ cells
524 (higher frequency in tetramer neg cells), suggesting that each group of tetramer $^+$ cells may differ in
525 effector function (Figure 5C-D). Despite variability in animal and tetramer, some tetramer $^+$ cells
526 express moderate amounts of granzyme B with ranges between 0.0-18.0% for Rv1196₃₇₁₋₃₈₅
527 tetramer $^+$ cells and 0.0-21.2% for CFP-10 tetramer $^+$ cells.

528

529 There were congruent results when using Boolean gating or individual gating, with higher
530 frequencies of T-bet and ROR γ T in all tetramer $^+$ cells than in tetramer neg cells in the same sample
531 (Figure 5E). Similarly, when CD69 and PD-1 expression was analyzed on all tetramer $^+$ CD4 T
532 cells, there were significantly higher frequencies of CD69 and lower frequencies of PD-1
533 compared to tetramer neg CD4 T cells within the same sample (Figure 5E).

534

535 **Transcription factor expression in tetramer $^+$ cells negatively correlates with individual
536 granuloma bacterial burden**

537 To investigate the potential relationship between tetramer frequency and bacterial burden within
538 individual lesions, we compared the \log_{10} CFU with the frequency of Rv1196 tetramer $^+$ or CFP-
539 10 tetramer $^+$ cells on an individual granuloma basis (i.e. only including individual isolated
540 granulomas (Figure 6A). There was a significant positive correlation ($r = 0.4374$, $p = 0.0034$)
541 between Rv1196 tetramer $^+$ cells and CFU and no correlation between CFP-10 tetramer $^+$ cells and
542 CFU ($r = -0.0164$, $p = 0.9169$) (Figure 6A). In contrast, when function (transcription factor
543 expression) was included in the analysis, there was a significant negative correlation between CFU
544 and the frequency of T-bet ($r = -0.5625$, $p = 0.0122$) or ROR γ T ($r = -0.5187$, $p = 0.0229$) expression
545 within Rv1196 tetramer $^+$ cells (Figure 6B). This significant negative correlation was also observed
546 between CFU and the expression of ROR γ T within CFP-10 tetramer $^+$ cells ($r = -0.5126$, $p =$
547 0.0354) but not expression of T-bet ($r = 0.1080$, $p = 0.6880$) (Figure 6C). Thus, bacterial burden
548 may drive increased numbers of Mtb-specific CD4 T cells in granulomas, but only functional Mtb-
549 specific CD4 T cells are associated with reduced bacterial burden.

550

551

552 DISCUSSION

553 Identifying Mtb-specific T cells in granulomas is critical to understanding the functional
554 capabilities of these cells. Unlike viruses, Mtb expresses thousands of antigens and studies in Mtb-
555 infected humans demonstrate that T cells can recognize a wide range of these antigens with
556 substantial variability among people (57). The full range of antigens recognized by T cells in
557 granulomas is unknown. It is also likely that there are many T cells in granulomas that are not
558 specific for Mtb but instead migrate to the granuloma due to inflammatory signals. Limiting
559 analysis to Mtb specific T cells thus provides a focused interrogation of the function of these cells
560 within granulomas. In this study, we developed tetramers that identify T cells specific for two Mtb
561 antigens, Rv1196 and Rv0125, and used these in addition to two previously published CFP-10
562 tetramers (another Mtb antigen) to study the enrichment and function of these cells in lung
563 granulomas from Mtb-infected macaques. Data from our lab over the past two decades support
564 that most Mtb-infected macaques have T cells that recognize these antigens. Although tetramers
565 specific for Mtb antigens have been developed and used in mice for several years, mice do not
566 form human-like granulomas and the disease trajectory is dissimilar to humans. In contrast, NHP
567 models have many similarities to human TB, including granuloma structure, other pathologies and
568 a wide range of Mtb infection outcomes. However, the rhesus and Chinese cynomolgus macaque
569 MHC loci are extremely complex, even more so than the MHC in humans (35). Thus, we took
570 advantage of the MCM model which has relatively restricted and well characterized MHC alleles
571 for our tetramer development and testing (29, 58, 59). Our data support that granulomas are
572 enriched for Mtb-specific CD4 T cells which have an activated Th1 or Th17 phenotype. Mtb
573 specific CD4 T cells expressing key transcription factors T-bet or ROR γ T were associated with

574 lower bacterial burden in granulomas, supporting that these cells are performing functions critical
575 to bacterial control.

576
577 MHC Class II tetramers for the Mtb protein CFP-10 were described by collaborators (3) and were
578 available through the NIH Tetramer Core. For Mtb antigens Rv1196 and Rv0125, we identified
579 the dominant epitope and MHC allele restriction. Rv1196 is a member of the PPE gene family
580 which is conserved across Mtb strains and *M. bovis* but is absent in other mycobacterial species
581 (8). Though the function remains unknown, Rv1196 has been shown to induce IFN- γ responses
582 and T cell proliferation in PBMCs from human PPD⁺ patients lacking evidence of TB disease,
583 suggesting that it elicits a protective response (8). The second protein investigated in this study,
584 Rv0125, also elicits IFN- γ responses in PPD⁺ patients without evidence of TB disease (7). A
585 predicted secreted serine protease, Rv0125 is conserved across species within the Mtb complex
586 and *M. bovis*, but not in environmental mycobacteria (7). Given their conserved nature and ability
587 to elicit IFN- γ responses within PPD⁺ protected individuals, Rv1196 and Rv0125 were included
588 in the adjuvanted vaccine M72F which has been shown to protect against development of TB
589 disease in subjects with asymptomatic Mtb infection and as a boost to the BCG vaccine in mice
590 and rabbits (9, 60-64).

591
592 Here we identified that the dominant epitope from both proteins was restricted by the MHC Class
593 II *Mafa*-DPA1*07:02/*Mafa*-DPB1*19:03 alleles which present antigens to CD4 T cells. The
594 dominant epitope binding region, a.a. 371-385 in Rv1196, contained 2 amino acids, valine and
595 methionine (a.a. 383 and 384) necessary for eliciting an IFN- γ response. We did not observe this
596 phenomenon with Rv0125 but determined that the optimal binding region is smaller than that of

597 Rv1196. Using tetramers designed for these proteins and for the previously mapped CFP-10, we
598 identified Mtb-specific CD4 T cells in various compartments including the airways, uninvolved
599 lung lobes, peripheral blood, thoracic LNs and lung granulomas at necropsy. Comparing the
600 frequencies of tetramer⁺ cells in uninvolved lung or the periphery with the frequencies observed
601 in lung granulomas revealed that granulomas are enriched for Mtb-specific (tetramer⁺) CD4 T
602 cells.

603
604 The phenotype of Mtb-specific CD4 T cells in NHP TB lung granulomas using tetramer staining
605 had not been previously explored. Here we set out to identify a functional phenotype for tetramer⁺
606 cells using flow cytometry by staining for transcription factors, activation markers, and a cytolytic
607 effector molecule. Two transcription factors associated with T cell control of Mtb include T-bet
608 and ROR γ T (51, 65, 66). T-bet is a transcription factor that induces several effector molecules,
609 including production of pro-inflammatory cytokines, cytotoxic effectors, chemokines, and
610 regulation of T cell responses (67). In some studies, particularly in the context of vaccination,
611 ROR γ T and the Th17 phenotype has been associated with protection against or control of Mtb
612 infection (65, 66, 68). Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells and CFP-10 tetramer⁺ CD4 T cells in
613 granulomas had significantly higher frequencies of T-bet and ROR γ T expression compared to
614 tetramer^{neg} cells. ROR α , GATA3, and Foxp3 expression was relatively low in tetramer⁺ cells
615 compared to T-bet or ROR γ T expression. These data reveal that Rv1196 and CFP-10 tetramer⁺
616 cells exhibit a Th1 and/or Th17 phenotype. However, in our and other's previous studies of NHP
617 granulomas, either by flow cytometry or single cell RNA sequencing, only very low frequencies
618 of IL-17⁺ T cells were observed (20, 21, 69, 70); we surmised previously that the ROR γ T⁺ T cells
619 might be ex-Th17 cells (69, 71).

620

621 There were significantly higher frequencies of CD69 expression on tetramer⁺ CD4 T cells
622 compared to tetramer^{neg} CD4 T cells within the same granuloma. CD69 is a cell surface marker
623 upregulated following T cell activation, though it also can play a role in cytokine release and
624 cellular migration (72, 73). In contrast, PD-1 expression, which is both a marker for T cell
625 activation or chronically stimulated cells, was significantly lower in Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells
626 as compared to tetramer^{neg} cells, although it varied within animal for CFP-10 tetramer⁺ cells. This
627 dynamic expression amongst tetramer⁺ cells of higher CD69 and lower PD-1 may indicate that
628 these cells were not recently stimulated, but instead express CD69 as a function of immune
629 environment and for its contribution to other effector functions. Though previous studies have
630 shown low levels of exhaustion marker expression in T cells within NHP and human lung
631 granulomas, this is the first direct evidence of low levels of PD-1 expression on Mtb-specific T
632 cells in a macaque model (21, 23). Since granzyme B expression is more commonly associated
633 with CD8 cytotoxic T cells, we expected low levels in the CD4 tetramer⁺ cells. However, since
634 our gating included CD4⁺CD8⁺ T cells, we investigated the presence of granzyme B within
635 tetramer⁺ cells and tetramer^{neg} cells, finding significantly higher levels of granzyme B expression
636 within CFP-10 tetramer⁺ cells and lower frequencies in Rv1196 tetramer⁺ cells, suggesting that
637 Mtb-specific cells for different antigens may have different functional capacities.

638

639 By comparing all tetramer⁺ cells to tetramer^{neg} cells in individual granulomas we observed higher
640 frequencies of T-bet, ROR γ T, and CD69 and significantly lower levels of PD-1 in tetramer⁺ cells.
641 This reinforces that Mtb-specific T cells are activated and better poised for functionality in
642 granulomas than Mtb-nonspecific CD4 T cells. Although we only captured a small fraction of

643 Mtb-specific CD4 T cells due to the large antigenic repertoire of mycobacteria, these data suggest
644 that granulomas contain a population of Mtb-non-specific CD4 T cells that migrate to the site of
645 infection but are unlikely to participate in control of infection.

646

647 The variable frequency of tetramer⁺ T cells observed in lung granulomas within the same animal
648 and between animals emphasizes the independent nature of granulomas. In addition, our data
649 suggest that recruitment of Mtb-specific cells is not solely based on optimal T cell recruiting
650 granuloma phenotypes. For instance, we did not observe granulomas with higher frequencies of
651 Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells also having higher frequencies of CFP-10 tetramer⁺ cells as might be
652 predicted, with the idea that some granulomas may have a better capacity for Mtb-specific T cell
653 recruitment through the production of chemokines or other cell signals. Rather, the data presented
654 here suggest that T cells with different Mtb antigen specificities vary across granulomas even
655 within the same animal. One potential hypothesis for this observation is that the first Mtb-specific
656 T cells recruited to a granuloma become the dominant specific cells through local proliferation.
657 The levels of tetramer⁺ cells within granulomas also likely depends on the state of Mtb within
658 those granulomas (i.e. quiescent or replicating, or high levels of dead bacteria). We observed a
659 significant positive correlation between the frequency of Rv1196 tetramer⁺ cells and CFU in
660 individual lesions. This suggests that as bacterial burden increases, so does recruitment or
661 replication of specific T cells within individual lesions. However, we observed a significant
662 negative correlation between the frequency of T-bet or ROR γ T within tetramer⁺ cells, suggesting
663 the functionality of Mtb-specific cells is critical for reducing bacterial burden.

664

665 Although the initial screening for epitopes was expected to identify both MHC Class I and MHC
666 Class II epitopes, we only identified those recognized by CD4 T cells for both Rv1196 and Rv0125
667 proteins. This likely represents a limitation of our system, particularly in the use of IFN- γ as a
668 functional readout as CD8 T cells from NHP often express low levels of IFN- γ (20). In addition,
669 CD4 T cells may outgrow the CD8 T cells in stimulated PBMC cultures. In the future, mapping
670 peptides that elicit CD8 T cell responses could be achieved by modifying and optimizing ELISPOT
671 protocols for cytolytic molecules and peptide pools with 8-12 amino acids in length and by
672 depleting CD4 T cells prior to T cell culture. We identified limited frequencies of Rv0125
673 tetramer $^+$ cells and to some degree CFP-10 tetramer $^+$ cells in this study. Two potential hypotheses
674 for this may be that Rv0125 is not highly produced by Mtb in vivo or that the binding affinity
675 needed for identification of tetramer $^+$ cells is higher than that needed to elicit IFN- γ production.
676 We also consistently observed low IFN- γ responses to the Rv0125 peptide pool in stimulated
677 PBMCs, suggesting that this protein may contain other masking antigens, i.e. those that
678 preferentially bind to MHC II molecules but do not elicit IFN- γ responses. One limitation to the
679 use of tetramers in the context of a large bacterial pathogen (i.e. many proteins produced) is that it
680 provides a narrow view regarding the function of a small proportion of the potential specific cells.
681 However, IFN- γ ELISPOTS performed using pools of 54 and 300 immunodominant peptides elicit
682 similar levels of IFN- γ responses in NHPs, suggesting that there is a smaller set of Mtb proteins
683 responsible for the majority of the IFN- γ Mtb response (2).
684
685 A final limitation of these studies was the inability to stain for cytokines in conjunction with
686 tetramers, given the need for inclusion of dasatinib in the tetramer staining protocol to stabilize the
687 MHC Class II tetramer binding. Although we gained substantial information by including

688 transcription factor staining, we were unable to assess the true effector functions of these Mtb-
689 specific T cells. However, now that the tetramers are available, more advanced techniques such as
690 CITE-Seq may allow future transcriptional analysis of the functions of Mtb specific cells,
691 representing an additional advance in our understanding of T cell responses in granulomas.

692

693 In summary, our data demonstrate that granulomas are enriched sites for Mtb-specific CD4 T cells
694 as compared to lung tissue, LNs, or blood. While we can identify tetramer⁺ cells in the airways as
695 early as 3 weeks post infection, the frequencies of cells are low and do not increase until 8 weeks
696 post infection. Within lung granulomas, our data revealed that the majority of Mtb-specific CD4
697 T cells are CD69⁺ Th1 cells or Th17 (or ex-Th17) cells. We demonstrated a significant negative
698 correlation between expression of T-bet or ROR γ T within tetramer⁺ cells and bacterial burden in
699 granulomas, highlighting the importance of functional Mtb-specific T cells in reducing bacterial
700 burden within lung granulomas. The use of tetramers provides insight into the phenotype of
701 granuloma CD4 Mtb-specific cells, suggesting that enhancing or inducing Th1/Th17 functionality
702 in Mtb-specific CD4 T cells would be advantageous in the context of vaccine development.

703

704 AUTHOR CONTRIBUTIONS

705 Conceptualization, JLF and NLG; investigation, NLG, KK, PM, PLL, and HA; resources, JLF,
706 CS, and SO; formal analysis, NLG, PM, and JLF; writing-original draft, NLG and JLF; writing-
707 reviewing and editing, NLG, PM, PLL, JLF; supervision, CS and JLF; funding acquisition, JLF.

708

709 ACKNOWLEDGEMENTS

710 This work was supported by NIH R01 AI123093 (JLF), NIH NIAID 75N93019C00071 (JLF),
711 NIH R01 AI111815 (CS & SLO), T32 AI065380 (NLG), and the Bill and Melinda Gates
712 Foundation (JLF). We are grateful to and appreciative of the lab members of the Flynn, Scanga,
713 Lin, and Mattila labs, in particular Ryan Kelly, Jennie Vorhauer, Kush Patel, Abigail Gubernat,
714 Cassaundra Ameel, Mark Rodgers, and Janelle Gleim for their dedication in preparing the
715 necropsy samples from these animals. In addition, we thank our veterinary technicians Jaime
716 Tomko, Dan Fillmore, Kara Kracinovsky, and Jennifer Sakal for their exceptional care of the
717 animals and for performing all procedures, and L. James Frye and Jaime Tomko for performing
718 PET CT imaging. We are grateful to Amy Ellis-Connell and Alexis Balgeman for providing
719 reagents and guidance on epitope mapping. Lastly, we gratefully acknowledge the work of the
720 NIH Tetramer Facility for providing valuable resources.

721
722
723
724

725 REFERENCES

- 726 1. Gomez, M., S. Johnson, and M. L. Gennaro. 2000. Identification of secreted proteins of
727 *Mycobacterium tuberculosis* by a bioinformatic approach. *Infect Immun* 68: 2323-2327.
- 728 2. Mothé, B. R., C. S. Lindestam Arlehamn, C. Dow, M. B. C. Dillon, R. W. Wiseman, P.
729 Bohn, J. Karl, N. A. Golden, T. Gilpin, T. W. Foreman, M. A. Rodgers, S. Mehra, T. J.
730 Scriba, J. L. Flynn, D. Kaushal, D. H. O'Connor, and A. Sette. 2015. The TB-specific
731 CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap
732 with humans. *Tuberculosis (Edinb)* 95: 722-735.
- 733 3. Ellis, A., A. Balgeman, M. Rodgers, C. Updike, J. Tomko, P. Maiello, C. A. Scanga, and
734 S. L. O'Connor. 2017. Characterization of T Cells Specific for CFP-10 and ESAT-6 in
735 *Mycobacterium tuberculosis*-Infected Mauritian Cynomolgus Macaques. *Infect Immun* 85.
- 736 4. Ravn, P., A. Demissie, T. Eguale, H. Wondwosson, D. Lein, H. A. Amoudy, A. S. Mustafa,
737 A. K. Jensen, A. Holm, I. Rosenkrands, F. Oftung, J. Olobo, F. von Reyn, and P. Andersen.

738 1999. Human T cell responses to the ESAT-6 antigen from *Mycobacterium tuberculosis*.
739 *The Journal of infectious diseases* 179: 637-645.

740 5. Arend, S. M., P. Andersen, K. E. van Meijgaarden, R. L. Skjot, Y. W. Subronto, J. T. van
741 Dissel, and T. H. Ottenhoff. 2000. Detection of active tuberculosis infection by T cell
742 responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10.
743 *The Journal of infectious diseases* 181: 1850-1854.

744 6. Kamath, A. B., J. Woodworth, X. Xiong, C. Taylor, Y. Weng, and S. M. Behar. 2004.
745 Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after *Mycobacterium*
746 tuberculosis infection. *J Exp Med* 200: 1479-1489.

747 7. Skeiky, Y. A., M. J. Lodes, J. A. Guderian, R. Mohamath, T. Bement, M. R. Alderson, and
748 S. G. Reed. 1999. Cloning, expression, and immunological evaluation of two putative
749 secreted serine protease antigens of *Mycobacterium tuberculosis*. *Infect Immun* 67: 3998-
750 4007.

751 8. Dillon, D. C., M. R. Alderson, C. H. Day, D. M. Lewinsohn, R. Coler, T. Bement, A.
752 Campos-Neto, Y. A. Skeiky, I. M. Orme, A. Roberts, S. Steen, W. Dalemans, R. Badaro,
753 and S. G. Reed. 1999. Molecular characterization and human T-cell responses to a member
754 of a novel *Mycobacterium tuberculosis* mtb39 gene family. *Infect Immun* 67: 2941-2950.

755 9. Leroux-Roels, I., S. Forgas, F. De Boever, F. Clement, M.-A. Demoitié, P. Mettens, P.
756 Moris, E. Ledent, G. Leroux-Roels, and O. Ofori-Anyinam. 2013. Improved CD4+ T cell
757 responses to *Mycobacterium tuberculosis* in PPD-negative adults by M72/AS01 as
758 compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine
759 formulations: A randomized trial. *Vaccine* 31: 2196-2206.

760 10. Green, A. M., R. DiFazio, and J. L. Flynn. 2013. IFN- γ from CD4 T Cells Is Essential for
761 Host Survival and Enhances CD8 T Cell Function during *Mycobacterium tuberculosis*
762 Infection. *The Journal of Immunology* 190: 270-277.

763 11. Tubo, N. J., and M. K. Jenkins. 2014. CD4+ T Cells: guardians of the phagosome. *Clin
764 Microbiol Rev* 27: 200-213.

765 12. Höhn, H., C. Kortsik, I. Zehbe, W. E. Hitzler, K. Kayser, K. Freitag, C. Neukirch, P.
766 Andersen, T. M. Doherty, and M. Maeurer. 2007. MHC class II Tetramer Guided Detection
767 of *Mycobacterium tuberculosis*-specific CD4+ T Cells in Peripheral Blood from Patients
768 with Pulmonary Tuberculosis. *Scandinavian Journal of Immunology* 65: 467-478.

769 13. Bronke, C., N. M. Palmer, G. H. Westerlaken, M. Toebe, G. M. van Schijndel, V.
770 Purwaha, K. E. van Meijgaarden, T. N. Schumacher, D. van Baarle, K. Tesselaar, and A.
771 Geluk. 2005. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and
772 *Mycobacterium tuberculosis*-specific CD4+ T cells. *Hum Immunol* 66: 950-961.

773 14. Wei, H., R. Wang, Z. Yuan, C. Y. Chen, D. Huang, L. Halliday, W. Zhong, G. Zeng, Y.
774 Shen, L. Shen, Y. Wang, and Z. W. Chen. 2009. DR*W201/P65 tetramer visualization of
775 epitope-specific CD4 T-cell during *M. tuberculosis* infection and its resting memory pool
776 after BCG vaccination. *PLoS One* 4: e6905-e6905.

777 15. Lindestam Arlehamn, C. S., A. Gerasimova, F. Mele, R. Henderson, J. Swann, J. A.
778 Greenbaum, Y. Kim, J. Sidney, E. A. James, R. Taplitz, D. M. McKinney, W. W. Kwok,
779 H. Grey, F. Sallusto, B. Peters, and A. Sette. 2013. Memory T cells in latent
780 *Mycobacterium tuberculosis* infection are directed against three antigenic islands and
781 largely contained in a CXCR3+CCR6+ Th1 subset. *PLoS pathogens* 9: e1003130-
782 e1003130.

783 16. Gideon, H. P., T. K. Hughes, M. H. Wadsworth, A. A. Tu, T. M. Gierahn, J. M. Peters, F.
784 F. Hopkins, J.-R. Wei, C. Kummerlowe, N. L. Grant, K. Nargan, J. Phuah, H. J. Borish, P.
785 Maiello, A. G. White, C. G. Winchell, S. K. Nyquist, S. K. C. Ganchua, A. Myers, K. V.
786 Patel, C. L. Ameel, C. T. Cochran, S. Ibrahim, J. A. Tomko, L. J. Frye, J. M. Rosenberg,
787 A. Shih, M. Chao, C. A. Scanga, J. Ordovas-Montanes, B. Berger, J. T. Mattila, R.
788 Madansein, J. C. Love, P. L. Lin, A. Leslie, S. M. Behar, B. Bryson, J. L. Flynn, S. M.
789 Fortune, and A. K. Shalek. 2021. Multimodal profiling of lung granulomas reveals cellular
790 correlates of tuberculosis control. *bioRxiv*: 2020.2010.2024.352492.

791 17. Millar, J. A., J. R. Butler, S. Evans, J. T. Mattila, J. J. Linderman, J. L. Flynn, and D. E.
792 Kirschner. 2020. Spatial Organization and Recruitment of Non-Specific T Cells May Limit
793 T Cell-Macrophage Interactions Within *Mycobacterium tuberculosis* Granulomas. *Front
794 Immunol* 11: 613638.

795 18. Flynn, J. L., and J. D. Ernst. 2000. Immune responses in tuberculosis. *Current Opinion in
796 Immunology* 12: 432-436.

797 19. Ernst, J. D. 2012. The immunological life cycle of tuberculosis. *Nature Reviews
798 Immunology* 12: 581-591.

799 20. Gideon, H. P., J. Phuah, A. J. Myers, B. D. Bryson, M. A. Rodgers, M. T. Coleman, P.
800 Maiello, T. Rutledge, S. Marino, S. M. Fortune, D. E. Kirschner, P. L. Lin, and J. L. Flynn.
801 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro-
802 and anti-inflammatory cytokines is associated with sterilization. *PLoS pathogens* 11:
803 e1004603.

804 21. Wong, E. A., L. Joslyn, N. L. Grant, E. Klein, P. L. Lin, D. E. Kirschner, and J. L. Flynn.
805 2018. Low Levels of T Cell Exhaustion in Tuberculous Lung Granulomas. *Infect Immun*
806 86.

807 22. Kauffman, K. D., M. A. Sallin, S. Sakai, O. Kamenyeva, J. Kabat, D. Weiner, M. Sutphin,
808 D. Schimel, L. Via, C. E. Barry, T. Wilder-Kofie, I. Moore, R. Moore, and D. L. Barber.
809 2018. Defective positioning in granulomas but not lung-homing limits CD4 T-cell
810 interactions with *Mycobacterium tuberculosis*-infected macrophages in rhesus macaques.
811 *Mucosal Immunology* 11: 462-473.

812 23. McCaffrey, E. F., M. Donato, L. Keren, Z. Chen, A. Delmastro, M. B. Fitzpatrick, S.
813 Gupta, N. F. Greenwald, A. Baranski, W. Graf, R. Kumar, M. Bosse, C. C. Fullaway, P.
814 K. Ramdial, E. Forgó, V. Jovic, D. Van Valen, S. Mehra, S. A. Khader, S. C. Bendall, M.
815 van de Rijn, D. Kalman, D. Kaushal, R. L. Hunter, N. Banaei, A. J. C. Steyn, P. Khatri,
816 and M. Angelo. 2022. The immunoregulatory landscape of human tuberculosis
817 granulomas. *Nat Immunol* 23: 318-329.

818 24. Altman, J. D., P. A. Moss, P. J. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I.
819 Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T
820 lymphocytes. *Science* 274: 94-96.

821 25. Otting, N., C. M. Heijmans, R. C. Noort, N. G. de Groot, G. G. Doxiadis, J. J. van Rood,
822 D. I. Watkins, and R. E. Bontrop. 2005. Unparalleled complexity of the MHC class I region
823 in rhesus macaques. *Proc Natl Acad Sci U S A* 102: 1626-1631.

824 26. Daza-Vamenta, R., G. Glusman, L. Rowen, B. Guthrie, and D. E. Geraghty. 2004. Genetic
825 divergence of the rhesus macaque major histocompatibility complex. *Genome Res* 14:
826 1501-1515.

827 27. Kulski, J. K., T. Anzai, T. Shiina, and H. Inoko. 2004. Rhesus macaque class I duplon
828 structures, organization, and evolution within the alpha block of the major
829 histocompatibility complex. *Mol Biol Evol* 21: 2079-2091.

830 28. Watanabe, A., T. Shiina, S. Shimizu, K. Hosomichi, K. Yanagiya, Y. F. Kita, T. Kimura,
831 E. Soeda, R. Torii, K. Ogasawara, J. K. Kulski, and H. Inoko. 2007. A BAC-based contig
832 map of the cynomolgus macaque (*Macaca fascicularis*) major histocompatibility complex
833 genomic region. *Genomics* 89: 402-412.

834 29. Wiseman, R. W., J. A. Karl, B. N. Bimber, C. E. O'Leary, S. M. Lank, J. J. Tuscher, A. M.
835 Detmer, P. Bouffard, N. Levenkova, C. L. Turcotte, E. Szekeres, Jr., C. Wright, T. Harkins,
836 and D. H. O'Connor. 2009. Major histocompatibility complex genotyping with massively
837 parallel pyrosequencing. *Nature medicine* 15: 1322-1326.

838 30. Bontrop, R. E. 2006. Comparative genetics of MHC polymorphisms in different primate
839 species: duplications and deletions. *Hum Immunol* 67: 388-397.

840 31. Horton, R., R. Gibson, P. Coggill, M. Miretti, R. J. Allcock, J. Almeida, S. Forbes, J. G. R.
841 Gilbert, K. Halls, J. L. Harrow, E. Hart, K. Howe, D. K. Jackson, S. Palmer, A. N. Roberts,
842 S. Sims, C. A. Stewart, J. A. Traherne, S. Trevanion, L. Wilming, J. Rogers, P. J. de Jong,
843 J. F. Elliott, S. Sawcer, J. A. Todd, J. Trowsdale, and S. Beck. 2008. Variation analysis and
844 gene annotation of eight MHC haplotypes: the MHC Haplotype Project. *Immunogenetics*
845 60: 1-18.

846 32. Parham, P. 2005. MHC class I molecules and kirs in human history, health and survival.
847 *Nature Reviews Immunology* 5: 201-214.

848 33. Trowsdale, J., and J. C. Knight. 2013. Major Histocompatibility Complex Genomics and
849 Human Disease. *Annual Review of Genomics and Human Genetics* 14: 301-323.

850 34. Krebs, K. C., Z. Jin, R. Rudersdorf, A. L. Hughes, and D. H. O'Connor. 2005. Unusually
851 High Frequency MHC Class I Alleles in Mauritian Origin Cynomolgus Macaques. *The
852 Journal of Immunology* 175: 5230.

853 35. Wiseman, R. W., J. A. Karl, P. S. Bohn, F. A. Nimityongskul, G. J. Starrett, and D. H.
854 O'Connor. 2013. Haplessly hoping: macaque major histocompatibility complex made easy.
855 *Ilar J* 54: 196-210.

856 36. Maiello, P., R. M. DiFazio, A. M. Cadena, M. A. Rodgers, P. L. Lin, C. A. Scanga, and J.
857 L. Flynn. 2017. Rhesus macaques are more susceptible to progressive tuberculosis than
858 cynomolgus macaques: A quantitative comparison. *Infection and Immunity*.

859 37. Rodgers, M. A., C. Ameel, A. L. Ellis-Connell, A. J. Balgeman, P. Maiello, G. L. Barry,
860 T. C. Friedrich, E. Klein, S. L. O'Connor, and C. A. Scanga. 2018. Preexisting Simian
861 Immunodeficiency Virus Infection Increases Susceptibility to Tuberculosis in Mauritian
862 Cynomolgus Macaques. *Infect Immun* 86.

863 38. Sharpe, S. A., A. D. White, L. Sibley, F. Gleeson, G. A. Hall, R. J. Basaraba, A. McIntyre,
864 S. O. Clark, K. Gooch, P. D. Marsh, A. Williams, and M. J. Dennis. 2017. An aerosol
865 challenge model of tuberculosis in Mauritian cynomolgus macaques. *PLoS One* 12:
866 e0171906.

867 39. Lin, P. L., M. Rodgers, L. Smith, M. Bigbee, A. Myers, C. Bigbee, I. Chiosea, S. V.
868 Capuano, C. Fuhrman, E. Klein, and J. L. Flynn. 2009. Quantitative comparison of active
869 and latent tuberculosis in the cynomolgus macaque model. *Infect Immun* 77: 4631-4642.

870 40. Capuano, S. V., 3rd, D. A. Croix, S. Pawar, A. Zinovik, A. Myers, P. L. Lin, S. Bissel, C.
871 Fuhrman, E. Klein, and J. L. Flynn. 2003. Experimental *Mycobacterium tuberculosis*

872 infection of cynomolgus macaques closely resembles the various manifestations of human
873 M. tuberculosis infection. *Infection and immunity* 71: 5831-5844.

874 41. White, A. G., P. Maiello, M. T. Coleman, J. A. Tomko, L. J. Frye, C. A. Scanga, P. L. Lin,
875 and J. L. Flynn. 2017. Analysis of 18FDG PET/CT Imaging as a Tool for Studying
876 Mycobacterium tuberculosis Infection and Treatment in Non-human Primates. *J Vis Exp*:
877 56375.

878 42. Calman, A. F., and B. M. Peterlin. 1987. Mutant human B cell lines deficient in class II
879 major histocompatibility complex transcription. *J Immunol* 139: 2489-2495.

880 43. Giraldo-Vela, J. P., R. Rudersdorf, C. Chung, Y. Qi, L. T. Wallace, B. Bimber, G. J.
881 Borchardt, D. L. Fisk, C. E. Glidden, J. T. Loffredo, S. M. Piaskowski, J. R. Furlott, J. P.
882 Morales-Martinez, N. A. Wilson, W. M. Rehrauer, J. D. Lifson, M. Carrington, and D. I.
883 Watkins. 2008. The major histocompatibility complex class II alleles Mamu-DRB1*1003
884 and -DRB1*0306 are enriched in a cohort of simian immunodeficiency virus-infected
885 rhesus macaque elite controllers. *J Virol* 82: 859-870.

886 44. Garson, D., M. C. Dokhélar, H. Wakasugi, Z. Mishal, and T. Tursz. 1985. HLA class-I and
887 class-II antigen expression by human leukemic K562 cells and by Burkitt-K562 hybrids:
888 modulation by differentiation inducers and interferon. *Exp Hematol* 13: 885-890.

889 45. Heinzel, A. S., J. E. Grotzke, R. A. Lines, D. A. Lewinsohn, A. L. McNabb, D. N. Streblow,
890 V. M. Braud, H. J. Grieser, J. T. Belisle, and D. M. Lewinsohn. 2002. HLA-E-dependent
891 presentation of Mtb-derived antigen to human CD8+ T cells. *The Journal of experimental
892 medicine* 196: 1473-1481.

893 46. core, N. t. 2010. Production Protocols. Emory University.

894 47. Wieczorek, M., E. T. Abualrous, J. Sticht, M. Álvaro-Benito, S. Stolzenberg, F. Noé, and
895 C. Freund. 2017. Major Histocompatibility Complex (MHC) Class I and MHC Class II
896 Proteins: Conformational Plasticity in Antigen Presentation. *Front Immunol* 8: 292-292.

897 48. Coppola, C., B. Hopkins, S. Huhn, Z. Du, Z. Huang, and W. J. Kelly. 2020. Investigation
898 of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4(+)
899 T Cells. *Int J Mol Sci* 21.

900 49. Bevington, S. L., P. Keane, J. K. Soley, S. Tauch, D. W. Gajdasik, R. Fiancette, V. Matei-
901 Rascu, C. M. Willis, D. R. Withers, and P. N. Cockerill. 2020. IL-2/IL-7-inducible factors
902 pioneer the path to T cell differentiation in advance of lineage-defining factors. *The EMBO
903 Journal* 39: e105220.

904 50. Gillis, S., and K. A. Smith. 1977. Long term culture of tumour-specific cytotoxic T cells.
905 *Nature* 268: 154-156.

906 51. Grant, N. L., P. Maiello, E. Klein, P. L. Lin, H. J. Borish, J. Tomko, L. J. Frye, A. G. White,
907 D. E. Kirschner, J. T. Mattila, and J. L. Flynn. 2022. T cell transcription factor expression
908 evolves over time in granulomas from Mycobacterium tuberculosis-infected cynomolgus
909 macaques. *Cell Rep* 39: 110826.

910 52. Ganchua, S. K. C., A. M. Cadena, P. Maiello, H. P. Gideon, A. J. Myers, B. F. Junecko, E.
911 C. Klein, P. L. Lin, J. T. Mattila, and J. L. Flynn. 2018. Lymph nodes are sites of prolonged
912 bacterial persistence during Mycobacterium tuberculosis infection in macaques. *PLoS
913 pathogens* 14: e1007337.

914 53. Dimopoulos, N., H. M. Jackson, L. Ebert, P. Guillaume, I. F. Luescher, G. Ritter, and W.
915 Chen. 2009. Combining MHC tetramer and intracellular cytokine staining for CD8+ T cells
916 to reveal antigenic epitopes naturally presented on tumor cells. *Journal of Immunological
917 Methods* 340: 90-94.

918 54. Pastore, G., M. Carraro, E. Pettini, E. Nolfi, D. Medaglini, and A. Ciabattini. 2019.
919 Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4+ T Cells
920 Combining MHC-II Tetramer and Intracellular Cytokine Staining Technologies. *Front
921 Immunol* 10.

922 55. Liu, H., M. Rhodes, D. L. Wiest, and D. A. A. Vignali. 2000. On the Dynamics of
923 TCR:CD3 Complex Cell Surface Expression and Downmodulation. *Immunity* 13: 665-675.

924 56. Dolton, G., K. Tungatt, A. Lloyd, V. Bianchi, S. M. Theaker, A. Trimby, C. J. Holland, M.
925 Donia, A. J. Godkin, D. K. Cole, P. T. Straten, M. Peakman, I. M. Svane, and A. K. Sewell.
926 2015. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC
927 multimers. *Immunology* 146: 11-22.

928 57. Coppola, M., K. E. van Meijgaarden, K. L. M. C. Franken, S. Commandeur, G. Dolganov,
929 I. Kramnik, G. K. Schoolnik, I. Comas, O. Lund, C. Prins, S. J. F. van den Eeden, G. E.
930 Korsvold, F. Oftung, A. Geluk, and T. H. M. Ottenhoff. 2016. New Genome-Wide
931 Algorithm Identifies Novel In-Vivo Expressed *Mycobacterium Tuberculosis* Antigens
932 Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles.
933 *Scientific reports* 6: 37793-37793.

934 58. O'Connor, S. L., A. J. Blasky, C. J. Pendley, E. A. Becker, R. W. Wiseman, J. A. Karl, A.
935 L. Hughes, and D. H. O'Connor. 2007. Comprehensive characterization of MHC class II
936 haplotypes in Mauritian cynomolgus macaques. *Immunogenetics* 59: 449-462.

937 59. Budde, M. L., R. W. Wiseman, J. A. Karl, B. Hanczaruk, B. B. Simen, and D. H. O'Connor.
938 2010. Characterization of Mauritian Cynomolgus Macaque Major Histocompatibility
939 Complex Class I Haplotypes by High Resolution Pyrosequencing. *Immunogenetics* 62:
940 773-780.

941 60. Brandt, L., Y. A. W. Skeiky, M. R. Alderson, Y. Lobet, W. Dalemans, O. C. Turner, R. J.
942 Basaraba, A. A. Izzo, T. M. Lasco, P. L. Chapman, S. G. Reed, and I. M. Orme. 2004. The
943 protective effect of the *Mycobacterium bovis* BCG vaccine is increased by
944 coadministration with the *Mycobacterium tuberculosis* 72-kilodalton fusion polyprotein
945 Mtb72F in *M. tuberculosis*-infected guinea pigs. *Infection and immunity* 72: 6622-6632.

946 61. Tsenova, L., R. Harbacheuski, A. L. Moreira, E. Ellison, W. Dalemans, M. R. Alderson,
947 B. Mathema, S. G. Reed, Y. A. W. Skeiky, and G. Kaplan. 2006. Evaluation of the Mtb72F
948 polyprotein vaccine in a rabbit model of tuberculous meningitis. *Infection and immunity*
949 74: 2392-2401.

950 62. Reed, S. G., R. N. Coler, W. Dalemans, E. V. Tan, E. C. DeLa Cruz, R. J. Basaraba, I. M.
951 Orme, Y. A. W. Skeiky, M. R. Alderson, K. D. Cowgill, J.-P. Prieels, R. M. Abalos, M.-
952 C. Dubois, J. Cohen, P. Mettens, and Y. Lobet. 2009. Defined tuberculosis vaccine,
953 Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. *Proceedings of the
954 National Academy of Sciences* 106: 2301-2306.

955 63. Von Eschen, K., R. Morrison, M. Braun, O. Ofori-Anyinam, E. De Kock, P. Pavithran, M.
956 Koutsoukos, P. Moris, D. Cain, M. C. Dubois, J. Cohen, and W. R. Ballou. 2009. The
957 candidate tuberculosis vaccine Mtb72F/AS02A: Tolerability and immunogenicity in
958 humans. *Hum Vaccin* 5: 475-482.

959 64. Leroux-Roels, I., G. Leroux-Roels, O. Ofori-Anyinam, P. Moris, E. De Kock, F. Clement,
960 M. C. Dubois, M. Koutsoukos, M. A. Demoitié, J. Cohen, and W. R. Ballou. 2010. Evaluation
961 of the safety and immunogenicity of two antigen concentrations of the
962 Mtb72F/AS02(A) candidate tuberculosis vaccine in purified protein derivative-negative
963 adults. *Clin Vaccine Immunol* 17: 1763-1771.

964 65. Griffiths, K. L., A. A. Pathan, A. M. Minassian, C. R. Sander, N. E. R. Beveridge, A. V.
965 S. Hill, H. A. Fletcher, and H. McShane. 2011. Th1/Th17 Cell Induction and
966 Corresponding Reduction in ATP Consumption following Vaccination with the Novel
967 *Mycobacterium tuberculosis* Vaccine MVA85A. *PLOS ONE* 6: e23463.

968 66. Scriba, T. J., B. Kalsdorf, D.-A. Abrahams, F. Isaacs, J. Hofmeister, G. Black, H. Y.
969 Hassan, R. J. Wilkinson, G. Walzl, S. J. Gelderbloem, H. Mahomed, G. D. Hussey, and W.
970 A. Hanekom. 2008. Distinct, Specific IL-17- and IL-22-Producing
971 CD4⁺ T Cell Subsets Contribute to the Human Anti-
972 *Mycobacterial* Immune Response. *The Journal of Immunology* 180: 1962.

973 67. Kallies, A., and K. L. Good-Jacobson. 2017. Transcription Factor T-bet Orchestrates
974 Lineage Development and Function in the Immune System. *Trends in Immunology* 38:
975 287-297.

976 68. Dijkman, K., N. Aguijo, C. Boot, S. O. Hofman, C. C. Sombroek, R. A. W. Vervenne, C.
977 H. M. Kocken, D. Marinova, J. Thole, E. Rodríguez, M. P. M. Vierboom, K. G. Haanstra,
978 E. Puentes, C. Martin, and F. A. W. Verreck. 2021. Pulmonary MTBVAC vaccination
979 induces immune signatures previously correlated with prevention of tuberculosis infection.
980 *Cell Rep Med* 2: 100187.

981 69. Gideon, H. P., T. K. Hughes, C. N. Tzouanas, M. H. Wadsworth, 2nd, A. A. Tu, T. M.
982 Gierahn, J. M. Peters, F. F. Hopkins, J. R. Wei, C. Kummerlowe, N. L. Grant, K. Nargan,
983 J. Y. Phuah, H. J. Borish, P. Maiello, A. G. White, C. G. Winchell, S. K. Nyquist, S. K. C.
984 Ganchua, A. Myers, K. V. Patel, C. L. Ameel, C. T. Cochran, S. Ibrahim, J. A. Tomko, L.
985 J. Frye, J. M. Rosenberg, A. Shih, M. Chao, E. Klein, C. A. Scanga, J. Ordovas-Montanes,
986 B. Berger, J. T. Mattila, R. Madansein, J. C. Love, P. L. Lin, A. Leslie, S. M. Behar, B.
987 Bryson, J. L. Flynn, S. M. Fortune, and A. K. Shalek. 2022. Multimodal profiling of lung
988 granulomas in macaques reveals cellular correlates of tuberculosis control. *Immunity* 55:
989 827-846 e810.

990 70. Kauffman, K. D., S. Sakai, N. E. Lora, S. Namasivayam, P. J. Baker, O. Kamenyeva, T.
991 W. Foreman, C. E. Nelson, D. Oliveira-de-Souza, C. L. Vinhaes, Z. Yaniv, C. S. Lindestam
992 Arleham, A. Sette, G. J. Freeman, R. Moore, N. D. T. I. Program, A. Sher, K. D. Mayer-
993 Barber, B. B. Andrade, J. Kabat, L. E. Via, and D. L. Barber. 2021. PD-1 blockade
994 exacerbates Mycobacterium tuberculosis infection in rhesus
995 macaques. *Science Immunology* 6: eabf3861.

996 71. Basdeo, S. A., D. Cluxton, J. Sulaimani, B. Moran, M. Canavan, C. Orr, D. J. Veale, U.
997 Fearon, and J. M. Fletcher. 2017. Ex-Th17 (Nonclassical Th1) Cells Are Functionally
998 Distinct from Classical Th1 and Th17 Cells and Are Not Constrained by Regulatory T
999 Cells. *J Immunol* 198: 2249-2259.

1000 72. Cibrián, D., and F. Sánchez-Madrid. 2017. CD69: from activation marker to metabolic
1001 gatekeeper. *Eur J Immunol* 47: 946-953.

1002 73. González-Amaro, R., J. R. Cortés, F. Sánchez-Madrid, and P. Martín. 2013. Is CD69 an
1003 effective brake to control inflammatory diseases? *Trends Mol Med* 19: 625-632.

1004

Tetramer study figure legends

Figure 1: Epitope mapping and MHC allele restriction for Mtb proteins Rv1196 and Rv0125

(A) Peptide pools following a matrix mapping strategy were generated for Rv1196 where letters indicate peptide pools and numbers indicate individual 20 amino acid peptides (Supplementary Table 1). IFN- γ ELISPOT using stimulated PBMCs with Rv1196 peptide pools from a matrix pooling strategy (B) and truncated and adjacent peptides (C). (D) A similar approach was performed for Rv0125 peptide pools following a matrix mapping strategy for Rv0125 (Supplementary Table 2). IFN- γ ELISPOT using stimulated PBMCs peptide pools from a matrix pooling strategy (E) and truncated and adjacent peptides (F). (G) List of Mtb-infected MCMs used for epitope mapping for Rv1196 and Rv0125. (H, I) T cells were expanded from PBMCs isolated from MCMs and co-cultured for 12 hours with Rv1196₃₇₁₋₃₈₅ peptide (I) or Rv0125₈₁₋₉₂ peptide (J) and stimulated with RM3 cells transfected with different M1/M1 MHC alleles (color legend shown) and flow cytometry performed to determine the MHC II presenting allele. The highest frequency of TNF $^+$ IFN- γ $^+$ production from CD4 $^+$ cells was observed when cultured with either peptide and RM3 cells transfected with the DPA/DPB allele. (J, K) Representative flow cytometry plots showing expanded T cells co-cultured with DPA/DPB-transfected (or untransfected) RM3 cells and unstimulated or stimulated with Rv1196₃₇₁₋₃₈₅ or Rv1196 peptide pool (J) or Rv0125₈₁₋₉₂ or Rv0125 peptide pool (K) for animal #6817 (M1/M1).

Figure 2: Identifying tetramer $^+$ cells in the blood and BAL

IFN- γ ELISPOT response to (A) CFP-10 peptide pool, CFP-10₃₆₋₄₈, and CFP-10₇₁₋₈₅, (B) Rv0125 peptide pool and Rv0125₈₁₋₉₂, and (C) Rv1196 peptide pool, and Rv1196₃₇₁₋₃₈₅ in PBMCs throughout Mtb infection in 5 MCMs (weeks post-infection; color legend shown). (D) Frequency of tetramer $^+$ cells of CD4 $^+$ cells in PBMCs at necropsy. (E) Flow cytometry plots showing control

tetramer or Rv1196₃₇₁₋₃₈₅ tetramer staining, gated on CD4 T cells, in pre-infection, 3, and 8 weeks post infection BAL from animal #23420. (F) Frequency of Rv1196₃₇₁₋₃₈₅ tetramer⁺ CD4+ T cells (top) and Rv0125₈₁₋₉₂ (bottom) in BAL before and during infection.

Figure 3: Detection of tetramer⁺ cells in thoracic LNs

(A) Mtb bacterial burden in uninvolved thoracic LNs (CFU negative or no gross granuloma detected), involved thoracic LNs (CFU positive or gross detection of granuloma), and lung lesions (individual granulomas, clusters, and consolidations), colored by animal (color legend as in Figure 2). (B) Example flow cytometry plots, identifying control tetramer⁺ or Rv1196 tetramer⁺ cells in involved thoracic LN and uninvolved thoracic LN (monkey 23420). (C) Frequency of Rv1196 tetramer⁺ cells of CD4 T cells in thoracic LNs by animal. (D) Comparison of Rv1196 tetramer⁺ cells of CD4+ T cells in CFU⁺ and CFU⁻ thoracic LNs. (E) Results of Boolean gating for all tetramer⁺ cells of CD4+ T cells in thoracic LNs by animal. Only samples for which all 4 tetramers were used are shown. (F) Comparison of all tetramer⁺ cells of CD4+ T cells in CFU⁺ and CFU⁻ thoracic LNs. Mann-Whitney tests performed to compare the medians of CFU⁺ vs CFU⁻ thoracic LNs (D and F). Points represent individual samples, colored according to animal where bars represent medians.

Figure 4: Identification of tetramer⁺ cells in lung lesions

(A) The range in bacterial burden per lung lesion in each macaque, bars represent median values. (B) Representative flow cytometry plots showing the frequency of control tetramers (top) and pooled CFP-10 tetramer⁺ cells, Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells, and Rv0125₈₁₋₉₂ tetramer⁺ cells (bottom) in CD4⁺ T cells in lung lesions. (C) Frequency of each tetramer⁺ population of CD4⁺ T cells in lung lesions (individual points) colored by animal. Bars represent median values. (D) Median, minimum and maximum frequencies for CFP-10, Rv1196, and Rv0125 tetramer⁺ cells among all CD4⁺ T cells for each macaque. (E) Frequencies of individual tetramer⁺ cells of CD4⁺

T cells within each animal in which lines connect the same lung lesion sample (animal number stated above each graph). (F) Frequency of Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells and CFP-10 tetramer⁺ cells in CFU⁻ lung samples, CFU⁺ lung samples, extra-pulmonary (EP) granulomas (liver and spleen), lung granulomas and necropsy PBMCs.

Figure 5: Transcription factor and activation marker expression in tetramer⁺ granuloma CD4⁺ T cells

(A) Frequency of transcription factor expression in Rv1196₃₇₁₋₃₈₅ tetramer⁺ CD4 T cells compared to Rv1196₃₇₁₋₃₈₅ tetramer^{neg} CD4 T cells within the same granuloma sample. (B) Frequency of transcription factor expression in CFP-10 tetramer⁺ cells compared to CFP-10 tetramer^{neg} cells within the same granuloma sample. (C, D) Frequency of activation marker expression (CD69 and PD-1) and granzyme B in Rv1196₃₇₁₋₃₈₅ tetramer⁺ CD4 T cells compared to Rv1196₃₇₁₋₃₈₅ tetramer^{neg} CD4 T cells (C) and CFP-10 tetramer⁺ CD4 T cells compared to CFP-10 pooled tetramer^{neg} CD4 T cells (D) in granulomas. (E) Frequency of T-bet, ROR γ T, CD69, and PD-1 expression in all tetramer⁺ compared to tetramer^{neg} cells using Boolean OR gating for all 4 tetramers. For all plots each dot represents an individual granuloma or pooled granulomas colored by animal (color legend in Figure 2) with lines connecting the same sample for tetramer⁺ vs tetramer^{neg} CD4 T cells. Statistical analyses were performed using a Wilcoxon matched-pairs signed rank test.

Figure 6: Transcription factor expression in tetramer⁺ cells negatively correlates with individual granuloma bacterial burden

(A) Significant positive correlation between the frequency of Rv1196 tetramer⁺ cells of CD4⁺ T cells and log₁₀ transformed CFU+1/lesion (left). No correlation between the frequency of CFP-10 tetramer⁺ cells of CD4⁺ T cells and log₁₀ transformed CFU+1/granuloma (right, Spearman's r reported for non-parametric). (B) Significant negative correlations between the frequency of T-

bet (left) and ROR γ T (right) expression between Rv1196 tetramer $^+$ CD4 T cells and log₁₀ transformed CFU+1/granuloma. (C) No correlation between the frequency of T-bet expression among CFP-10 pooled tetramer $^+$ cells and log₁₀ transformed CFU+1/granuloma (left). Significant negative correlation between the frequency of ROR γ T expression among CFP-10 tetramer $^+$ cells and log₁₀ transformed CFU+1/granuloma (right). Unless otherwise noted, Pearson's r reported.

Supplementary figure 1: T cell culture staining, plasmids, and RM3 cell transfection plots

(A) Table of plasmid reagents for transfection of RM3 cells. (B) Expanded T cells were co-cultured with peptide-pulsed (Rv1196 or Rv1196₃₇₁₋₃₈₅) irradiated BLCLs and flow cytometry performed for pro-inflammatory cytokine responses (IFN- γ and TNF) to determine whether the Rv1196₃₇₁₋₃₈₅ was presented to CD4 or CD8 T cells. Gating strategy was performed using live/dead exclusion followed by gating on singlets, lymphocytes, CD3 $^+$ and CD4 $^+$ events. (C) Flow plots showing the detection of DR, DP, and DQ alleles (colored according to table) following RM3 transfection. Limited expression can be observed in RM3 cells transfected with DPA/DPB (teal) and DRA/DRBw*2101 (orange) alleles as compared to untransfected RM3 cells. (D) Testing of three additional antibodies (antibody, clone, and fluorophore listed above each graph) showing the detection of DPA/DPB allele expression in transfected RM3 cells.

Supplementary figure 2: Animals used for tetramer $^+$ CD4 T cell identification studies, gating strategy for tissue samples from necropsy, and flow reagents

(A) Table of MCMs used for identification of tetramer $^+$ cells in the periphery, BAL, and necropsy samples (B) Flow cytometry gating tree for necropsy samples (example shown is Animal #23620, RLL granuloma cluster 12): Events were gated on live cells using Zombie NIR, single cell events were selected from live events (FSC-A vs FSC-H), and lymphocytes identified from

single cells based on FSC-A and SSC-A. Lymphocytes were gated based on CD3 and CD20 expression with T cells (CD3⁺) subsequently gated on CD4⁺ and CD8a⁺ expression. All CD4⁺ cells were gated for tetramer⁺ events (CD4 on x axis and tetramer on y axis). All tetramer⁺ and tetramer^{neg} cells were gated for transcription factors, granzyme B or activation marker expression. (C) Table containing antibodies used for staining necropsy samples for flow cytometry analysis. (D) Example flow cytometry plots showing gating for Rv1196₃₇₁₋₃₈₅ tetramer⁺ cells in tetramer, control tetramer, or no tetramer stained PBMCs at necropsy from animal #23420. Gating strategy was performed using live/dead exclusion followed by gating on singlets, lymphocytes, CD3⁺ and CD4⁺ events as described in (B).

Supplementary table 1: Peptides used for mapping Rv1196

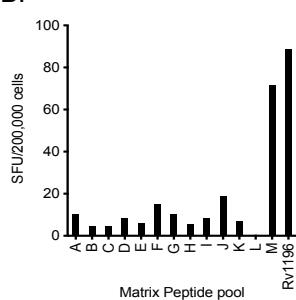
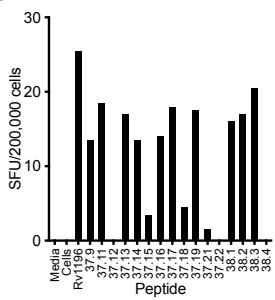
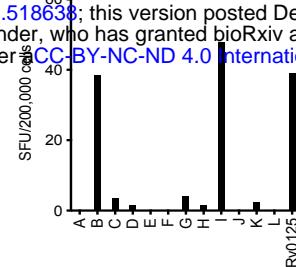

Supplementary table 2: Peptides used for mapping Rv0125

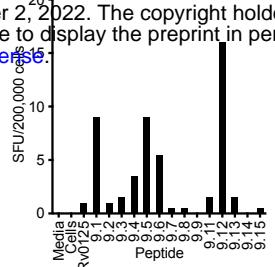
Figure 1


A.

	A	B	C	D	E	F	G
H	1	2	3	4	5	6	7
I	8	9	10	11	12	13	14
J	15	16	17	18	19	20	21
K	22	23	24	25	26	27	28
L	29	30	31	32	33	34	35
M	36	37	38				

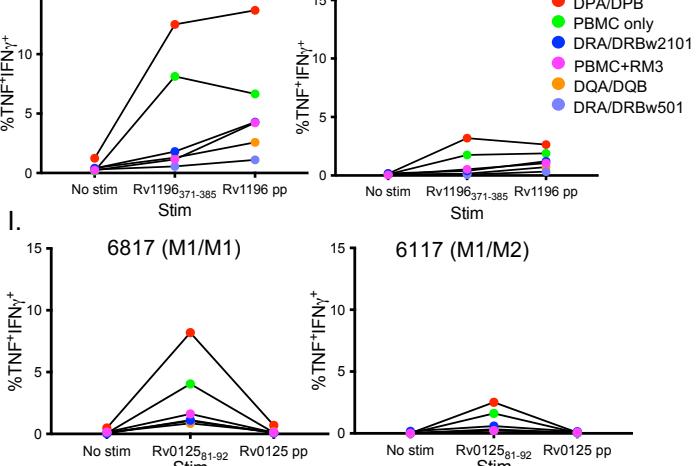
B.


C.

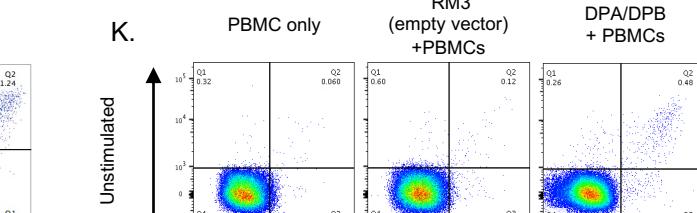

D.

	A	B	C	D	E	F	G
bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518638 ; this version posted December 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.							
I	8	9	10	11	12	13	14
J	15	16	17	18	19	20	21
K	22	23	24	25	26	27	28
L	29	30	31	32	33	34	35

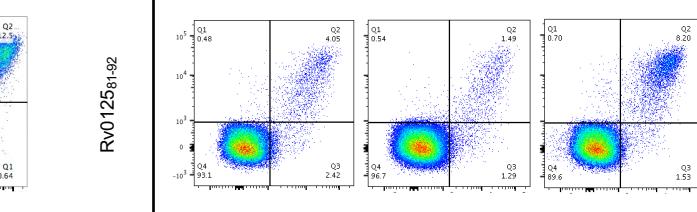
E.

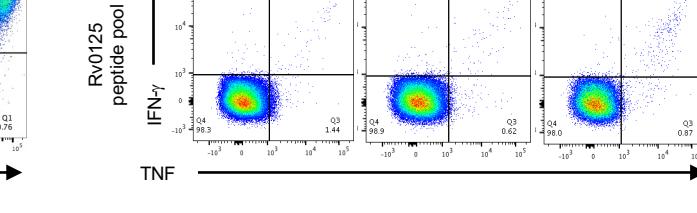


F.



H.


6817 (M1/M1)


12515 (M1/M3)

6817 (M1/M1)

6117 (M1/M2)

Unstimulated

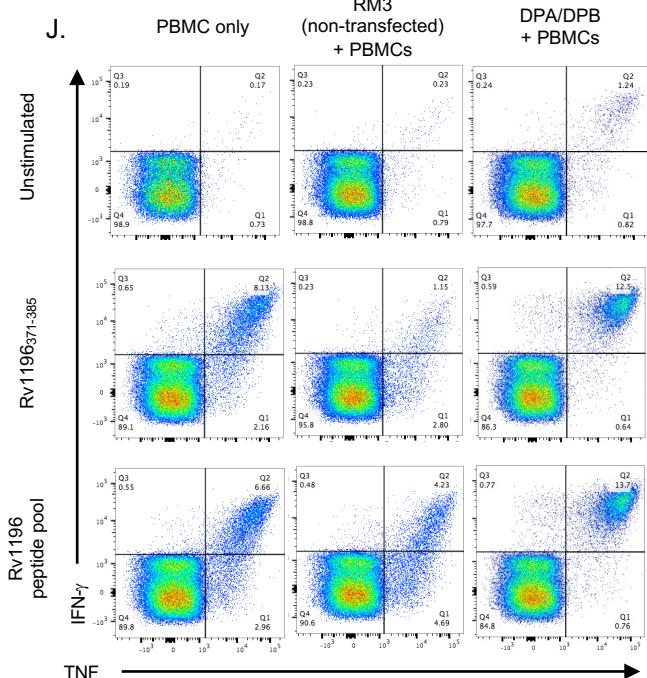
Rv1196 peptide pool

IFNγ

TNF

Unstimulated

Rv0125 peptide pool


IFNγ

TNF

G.

Monkey #	MHC Haplotype	Dominant peptide mapped for Rv1196	Dominant peptide mapped for Rv0125
3715	M1/M1	37	N/A
12515	M1/M3	Complex	N/A
6116	M1/M1	37	N/A
6216	M1/M2	9	N/A
6516	M1/M1	37	N/A
6616	M1/M2	37	N/A
6817	M1/M1	37 & 38.3	N/A
6917	M1/M6	37	N/A
7217	M1/M1	38	9 & 9.12
6717	M1/M1	37 & 38.3	9 & 9.12

J.

K.

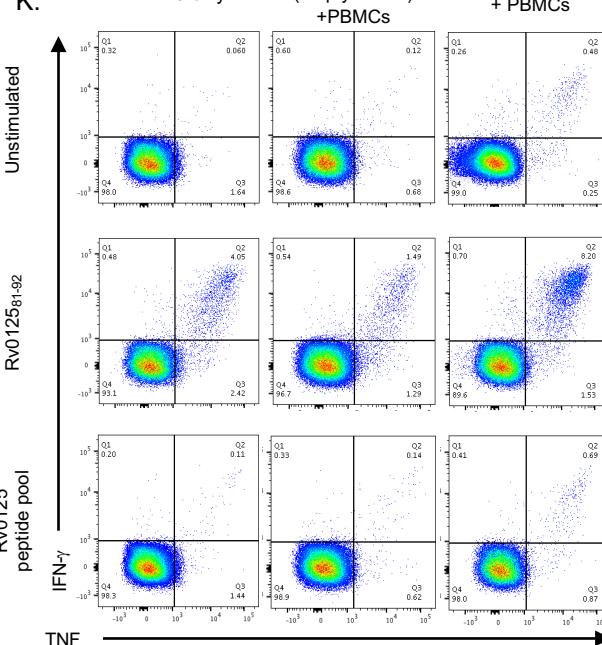


Figure 2

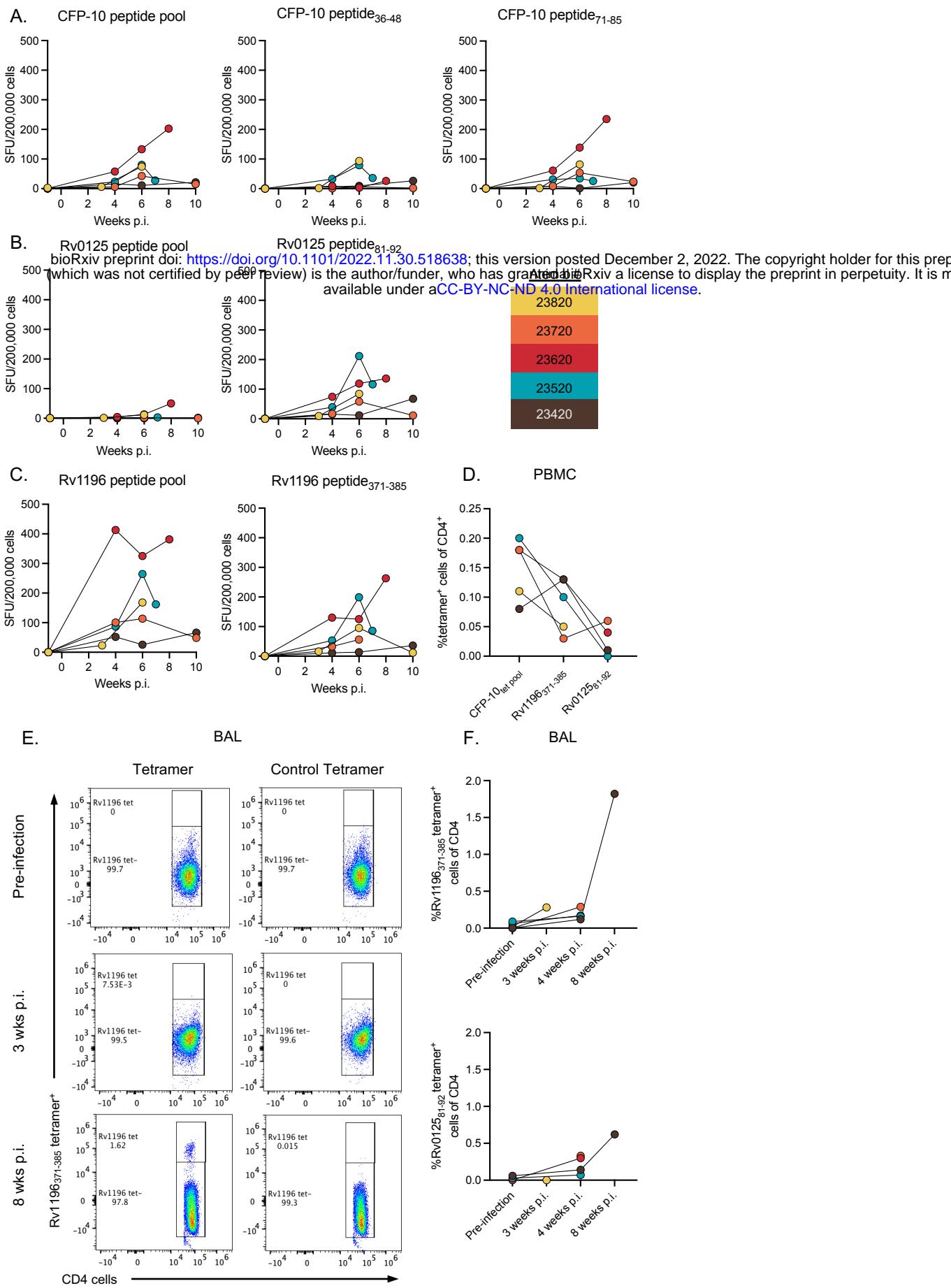


Figure 3

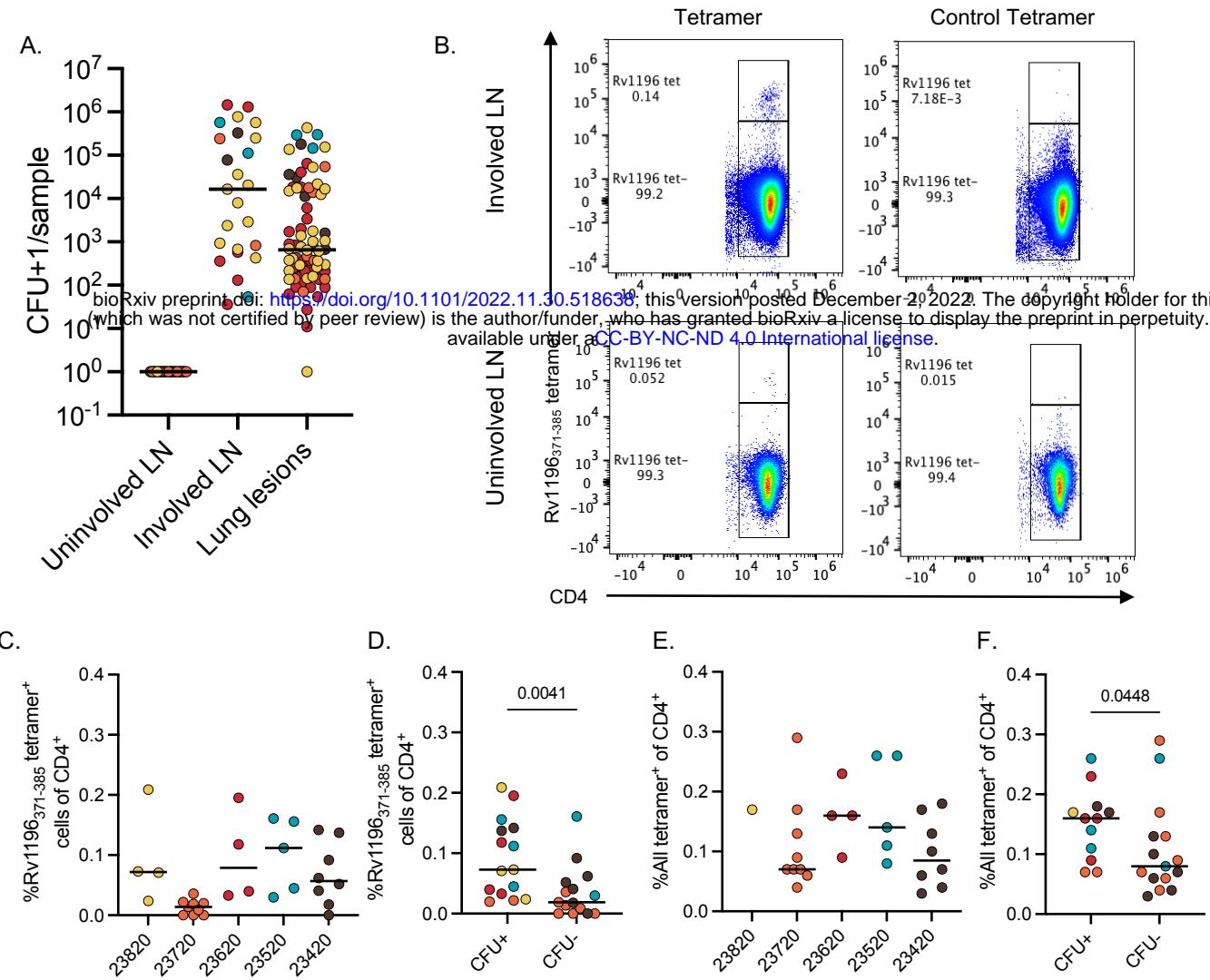


Figure 4

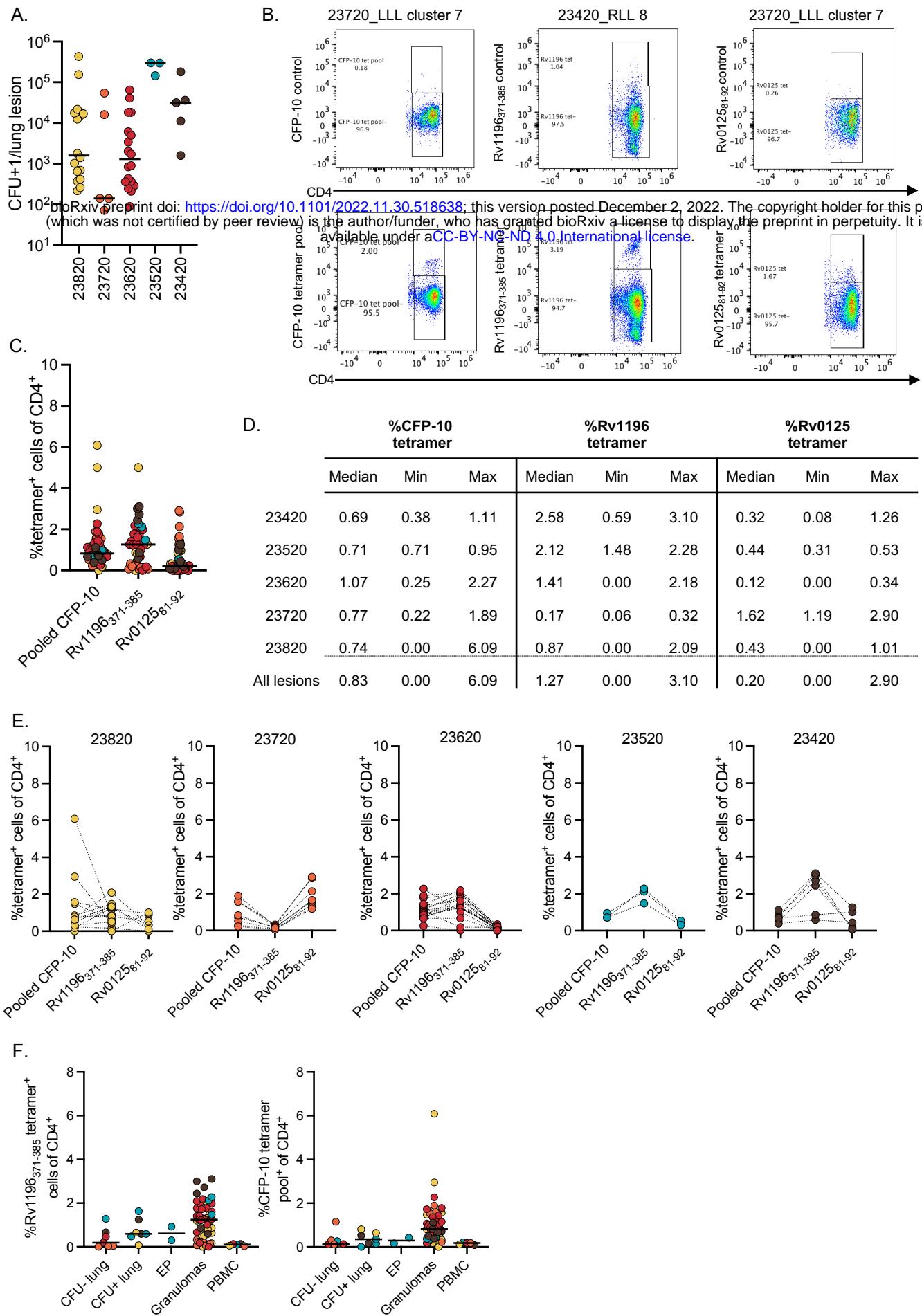
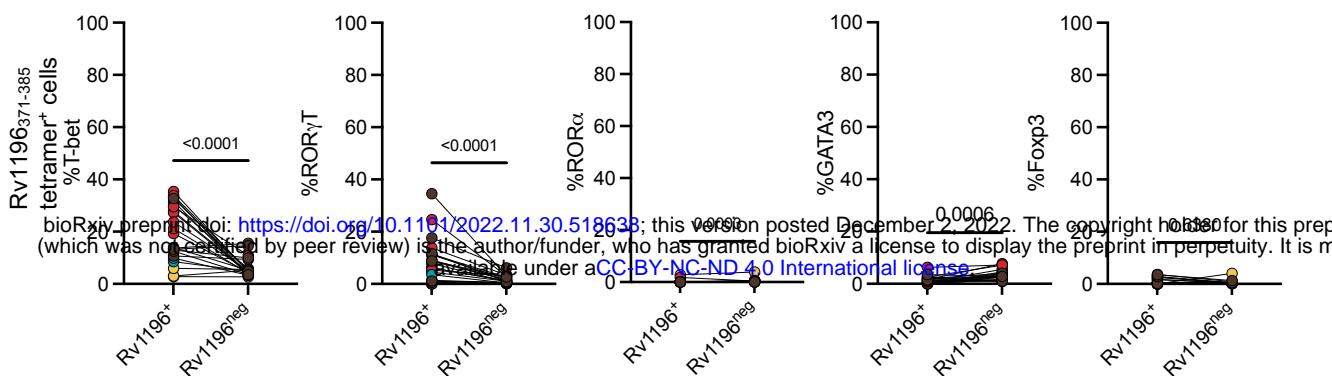
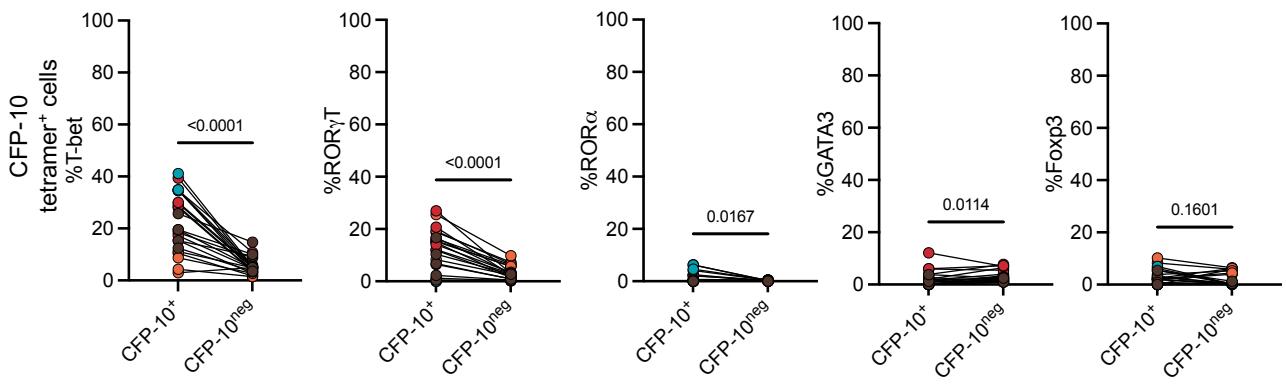
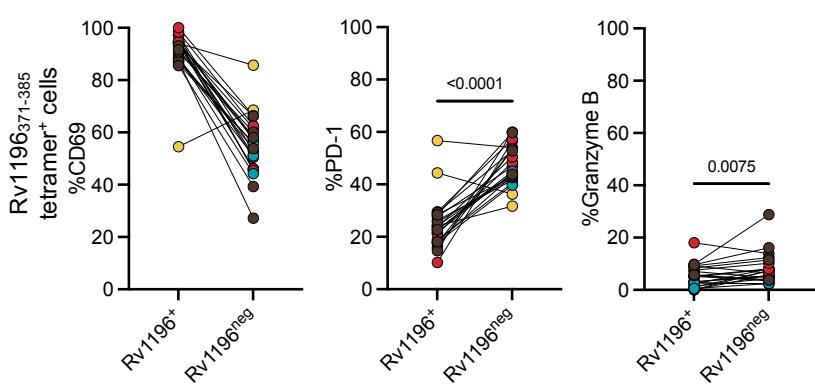
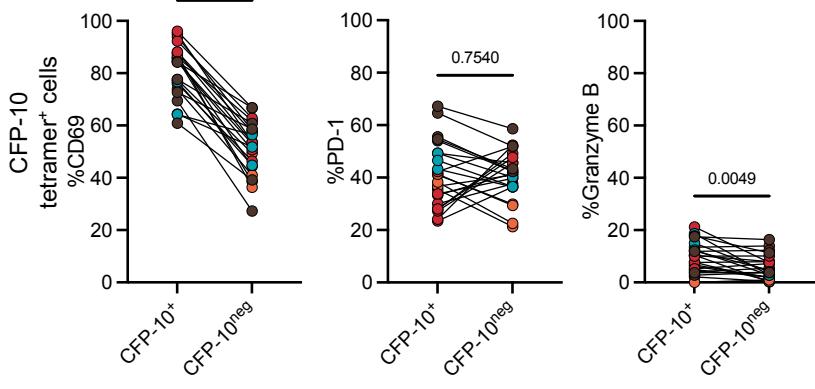




Figure 5


A.


B.

C.

D.

E.

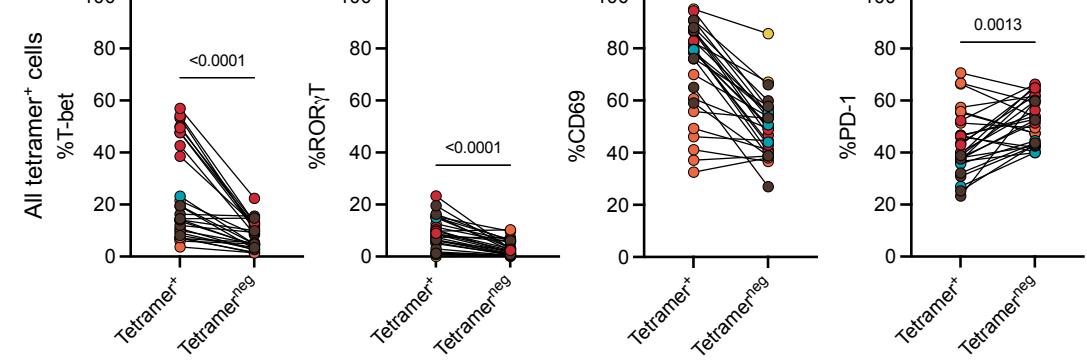
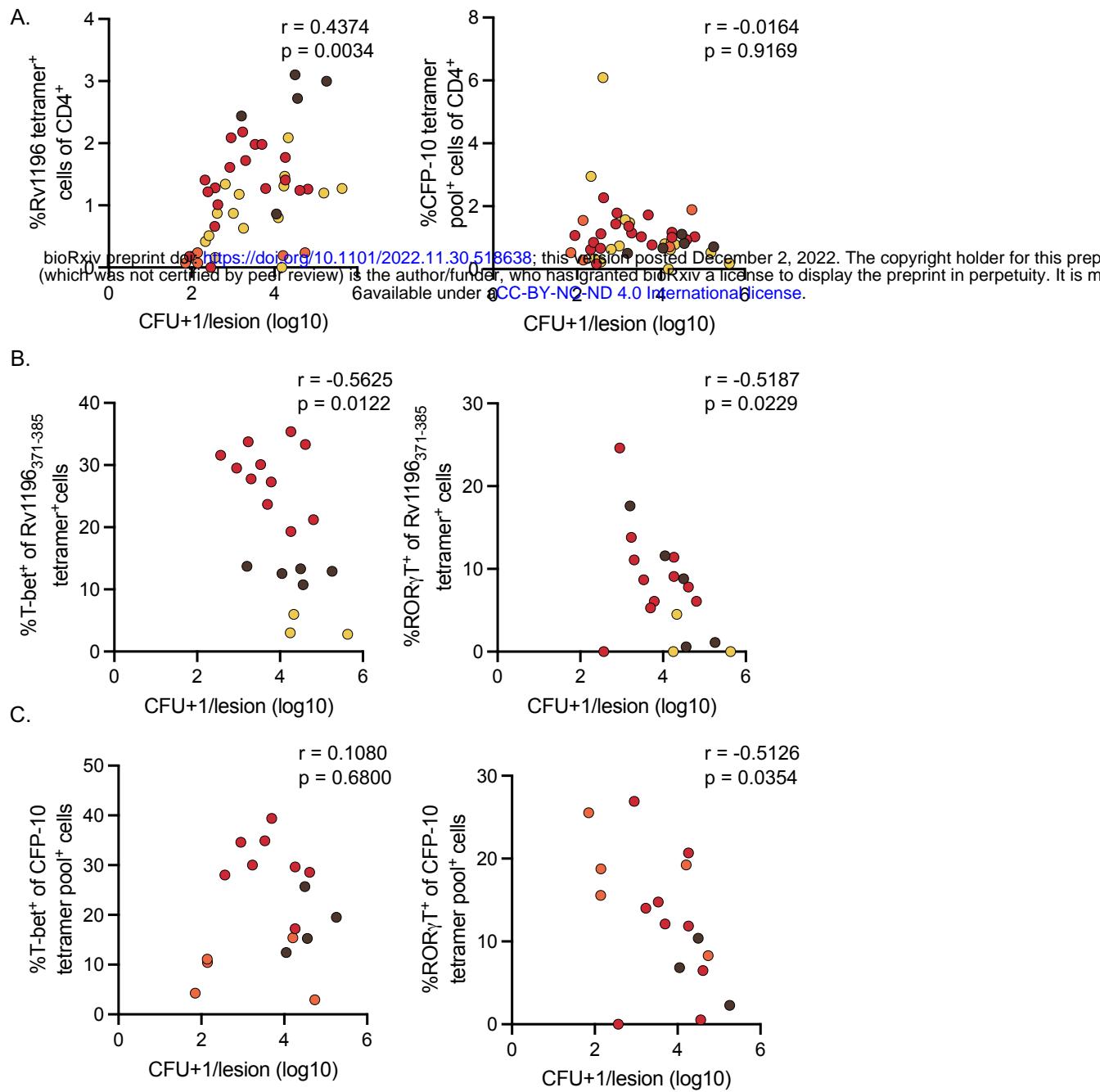
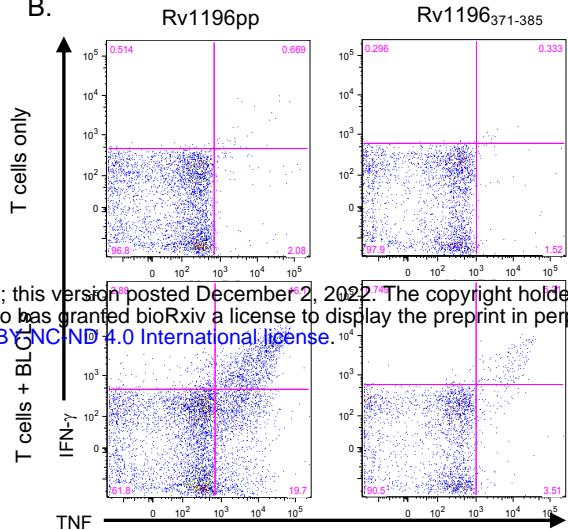
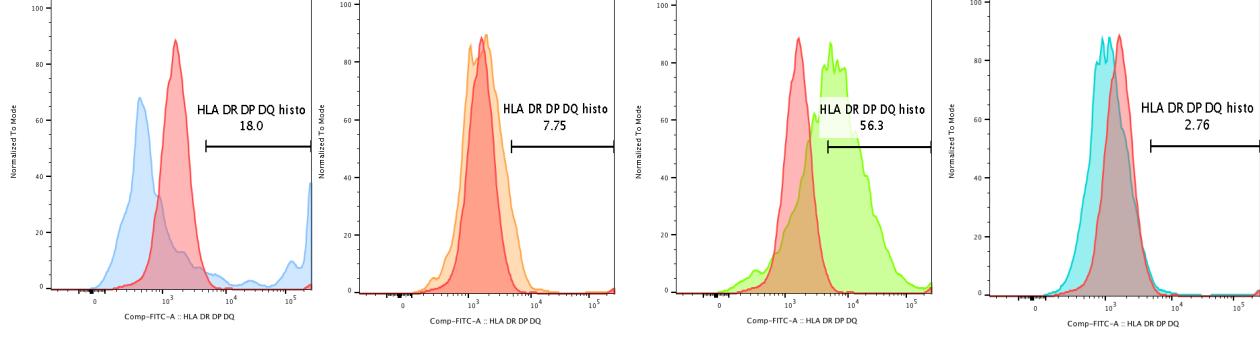



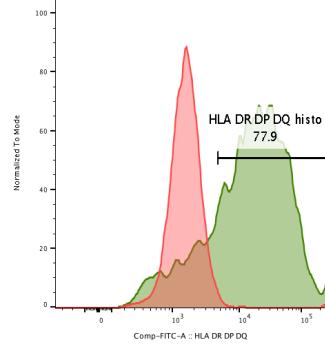
Figure 6

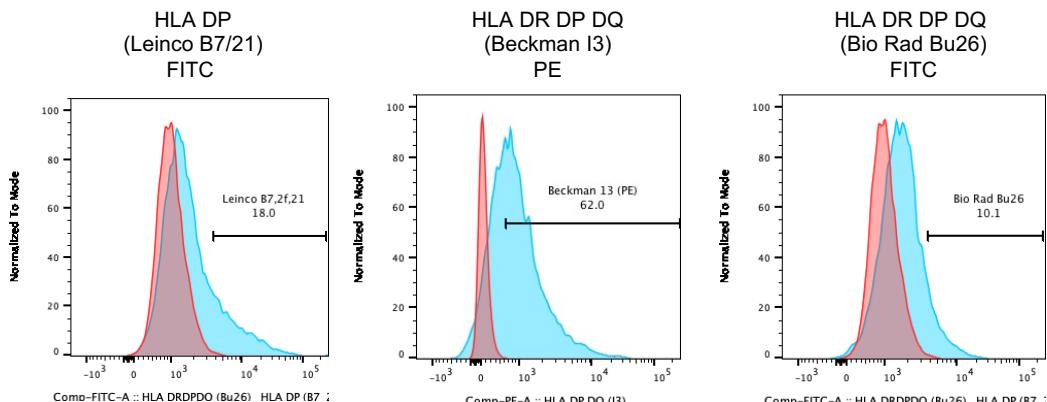


Supplementary figure 1:


A.

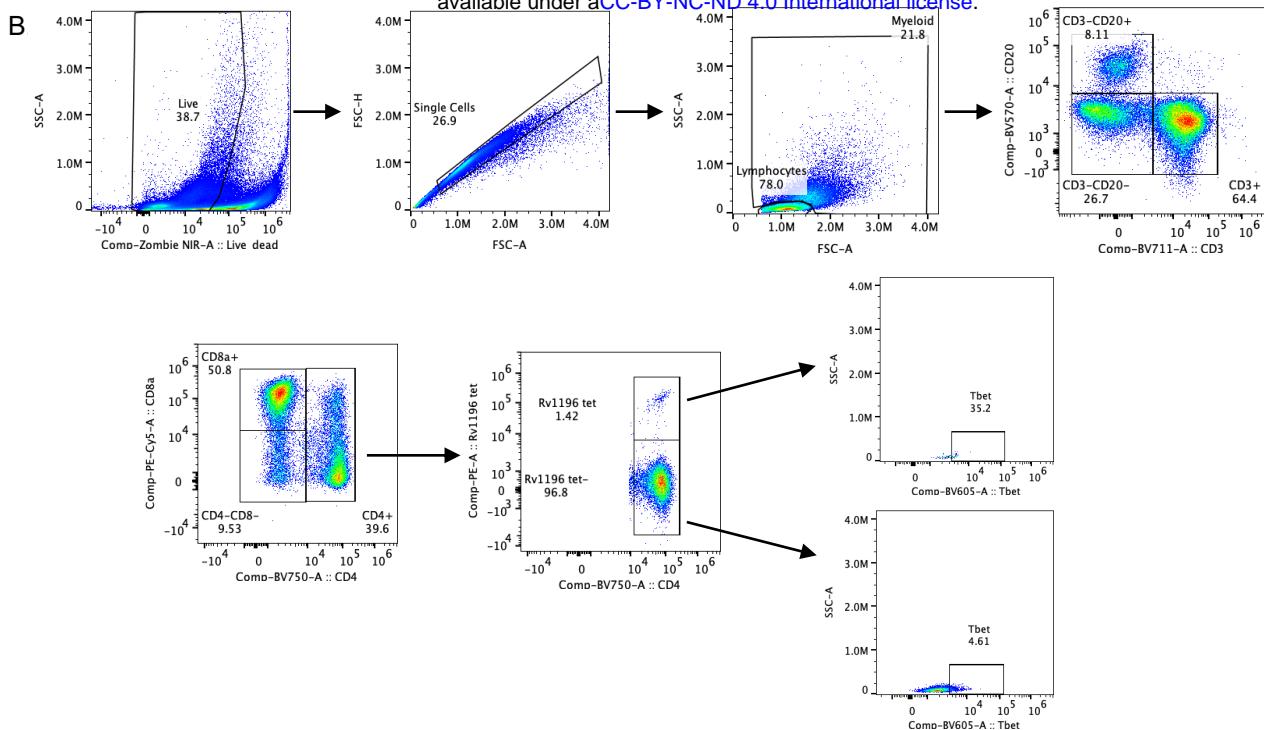
Allele name	Plasmid name
Mafa A1*063:01	pCEP4 A1*063:01
Mafa B*064:01	pCEP4 B*064:01
Mafa B*057:01	pCEP4 B*057:01
Mafa DRA*0201	pCEP4 DRA*0201
Mafa DRB1*w2101	pCEP4 DRB1*w2101
Mafa DRB w50	pCEP4 DRB w50
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.	bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518638 ; this version posted December 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
Mafa DQAT 2403	pCEP4 DQAT 2403
Mafa DQB1*1803	pCEP4 DQB1*1803
Mafa DPA1*0702	pCEP4 DPA1*0702
Mafa DPB1*19:03	pCEP4 DPB1*42 (aka Mafa-DPB1*19:03)


B.


C.

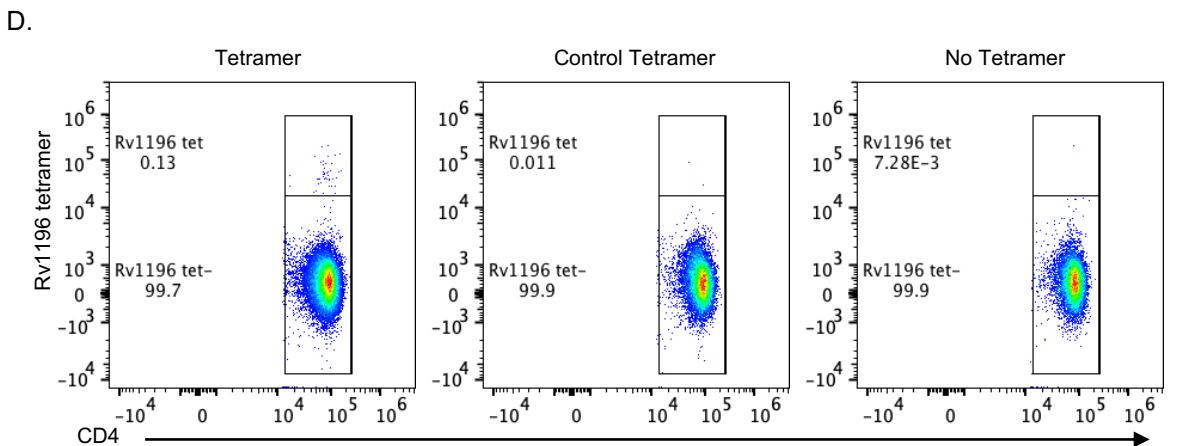
MHC allele	Cell Count	MHC Expression Frequency
DQA/DQB	1623	77.9
DPA/DPB	204	2.76
DRA/DRBw501	1853	56.3
DRA/DRBw2101	442	7.75
PBMC only	63	18.0
RM3	126	1.95

D.



Transfected DPA/DPB allele
Untransfected RM3 cells

Supplementary Figure 2: Example gating strategies for flow cytometry


Animal	Age (years)	Weight (kg)	Gender	CFU at infection	Infection date	NX date	Duration of Infection (wks)	Total CFU	Lung CFU	LN CFU	NX score	Granulomas/ clusters analyzed
23420	3	3.5	F	12	2/17/21	4/26/21	9.7	7.51E+05	3.43E+05	4.08E+05	24	6
23520	3	2.9	F	12	2/17/21	4/5/21	6.7	1.43E+06	7.46E+05	6.83E+05	31	3
23620	3	3.8	M	2	1/21/21	3/18/21	8	2.93E+06	1.68E+05	2.76E+06	54	19
23720	3	3.3	M	2	1/21/21	3/29/21	9.6	3.44E+05	1.04E+05	2.41E+05	21	8
23820	3	3.2	M	16	11/24/20	1/26/21	9	3.23E+06	1.54E+06	1.69E+06	89	15

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.30.518638>; this version posted December 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C.

Antibody/Reagent	Clone	Vendor	Cat #
CD69 (ECD)	TP1.55.3	Beckman Coulter	6607110
CD8a	RPA-T8	BD	555368
Foxp3	PCH101	eBioscience	45-4776-42
ROR γ T	AFKJS-9	Thermo fisher	46-6988-82
T-bet	4B10	BioLegend	644817
CD20	2H7	BioLegend	566175
PD-1	EH12.1	BD	566112
Granzyme B	GB11	BD	MCA2119B
CD4	L200	BD	747202
CD3	SP34-2	BD	740807
Zombie NIR	N/A	BioLegend	423106
ROR α	NR1F1	R&D	IC8924U
SAV APC	N/A	BD	554067
SAV PE	N/A	BD	554061
SAV BV421	N/A	BD	563259

Supplementary Table 1: Peptides used for mapping Rv1196

Protein	Peptide	Amino acid sequence	Amino Acid range	Length (# of a.a.)	Peptide Pool	Matrix Pool #1	Matrix Pool #2
Rv1196	1	MVDFGALPPEINSARMYAGP	1-20	20	1	H	A
Rv1196	2	INSARMYAGPGSASLVAAQ	11-30	20	1	H	B
Rv1196	3	GSASLVAACQMVDSVASDLF	21-40	20	1	H	C
Rv1196	4	MWDSVASDLFSAASAFQSVV	31-50	20	1	H	D
Rv1196	5	SAASAFQSVVWGLTVGSWIG	41-60	20	1	H	E
Rv1196	6	WGLTVGSWIGSSAGLMVAA	51-70	20	1	H	F
Rv1196	7	SSAGLMVAAASPYVAWMSVT	61-80	20	2	H	G
Rv1196	8	SPYVAWMSVTAGQAEELTAQQ	71-90	20	2	I	A
Rv1196	9	AGQAEELTAQQ/RVAAAAYET	81-100	20	2	I	B
Rv1196	10	VERVAAAAYETAYGLVPPPY	91-110	20	2	I	C
bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518638 ; this version posted December 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.							
Rv1196	11	AYGLTVPPVVAENRAELM	101-120	20	2	I	D
Rv1196	12	IAENRAELMILIAATNLLGN	111-130	20	2	I	E
Rv1196	13	LIATNLLGQNTPAIAVNEAE	121-140	20	3	I	F
Rv1196	14	TPAIAVNEAEYGEMWAQDAA	131-150	20	3	I	G
Rv1196	15	YGEMWAQDAAAMFGYAAATA	141-160	20	3	J	A
Rv1196	16	AMFGYAAATATATATLLPFE	151-170	20	3	J	B
Rv1196	17	TATATLLPFEAPEMTSAGG	161-180	20	3	J	C
Rv1196	18	EAPEMTSAGGLLEQAAVEE	171-190	20	3	J	D
Rv1196	19	LLEQAAVEEASDAAANQL	181-200	20	4	J	E
Rv1196	20	ASDAAANQLMNNVPQALQQ	191-210	20	4	J	F
Rv1196	21	MNNV/PQALQQLAQPTQGTTP	201-220	20	4	J	G
Rv1196	22	LAQPTQGTTPSSKLGGLWKT	211-230	20	4	K	A
Rv1196	23	SSKLGGWLKTVSPHRSPISN	221-240	20	4	K	B
Rv1196	24	VSPHRSPISNMVSMANNHMS	231-250	20	4	K	C
Rv1196	25	MVSMANNHMSMTNSGVSMTN	241-260	20	5	K	D
Rv1196	26	MTNSGVSMNTLSSMLKGFA	251-270	20	5	K	E
Rv1196	27	TLSSMLKGFAPAAAQAVQT	261-280	20	5	K	F
Rv1196	28	PAAAQAVQTAAQNGVRAMS	271-290	20	5	K	G
Rv1196	29	AAQNGVRAMSSLGSSLGSSG	281-300	20	5	L	A
Rv1196	30	SLGSSLGSSGLGGVAAANLG	291-310	20	5	L	B
Rv1196	31	LGGGVAANLGRAASVGSLV	301-320	20	5	L	C
Rv1196	32	RAASVGSLVPQAWAAANQA	311-330	20	6	L	D
Rv1196	33	PQAWAAANQAVTPAARALPL	321-340	20	6	L	E
Rv1196	34	VTPAARALPLTSAAERG	331-350	20	6	L	F
Rv1196	35	TSLTAAERGPQMLGGLPV	341-360	20	6	L	G
Rv1196	36	PGQMLGGLPVGQMGARAGGG	351-370	20	6	M	A
Rv1196	37	GQMGARAGGGLSGVLRVPPR	361-380	20	6	M	B
Rv1196	38	LSGVLRVPPRPYVMPHSPAAG	371-391	21	6	M	C
Rv1196	37.1	RAGGGLSGV	365-373	9	N/A	N/A	N/A
Rv1196	37.2	AGGGLSGV	366-374	9	N/A	N/A	N/A
Rv1196	37.3	ARAGGGLSG	364-372	9	N/A	N/A	N/A
Rv1196	37.4	GGGLSGVLR	368-376	9	N/A	N/A	N/A
Rv1196	37.5	RAGGGLSGVLRVPPRPYVMPHSPAG	366-391	26	N/A	N/A	N/A
Rv1196	37.6	GARAGGGLSGVLRVPPRPYVMPHSP	364-388	25	N/A	N/A	N/A
Rv1196	37.7	RAGGGLSGVLRVPPRPYVMPHS	366-387	22	N/A	N/A	N/A
Rv1196	37.8	GARAGGGLSGVLRVPPRPYVM	364-384	22	N/A	N/A	N/A
Rv1196	37.9	RAGGGLSGVLRVPPRPYVMP	366-385	20	N/A	N/A	N/A
Rv1196	37.11	GGGLSGVLRVPPRPYVMPHS	366-385	20	N/A	N/A	N/A
Rv1196	37.12	RAGGGLSGVLRVPPRPYV	366-383	18	N/A	N/A	N/A
Rv1196	37.13	GLSGVLRVPPRPYVMPHS	370-387	18	N/A	N/A	N/A
Rv1196	37.14	GGGLSGVLRVPPRPYVMP	368-385	18	N/A	N/A	N/A
Rv1196	37.15	RAGGGLSGVLRVPPRP	366-381	16	N/A	N/A	N/A
Rv1196	37.16	SGVLRVPPRPYVMPHS	372-387	16	N/A	N/A	N/A
Rv1196	37.17	GGGLSGVLRVPPRPYVYM	369-384	16	N/A	N/A	N/A
Rv1196	37.18	RAGGGLSGVLRVPP	366-379	14	N/A	N/A	N/A
Rv1196	37.19	VLRVPPRPYVMPHS	374-387	14	N/A	N/A	N/A
Rv1196	37.21	GLSGVLRVPPRPYV	370-383	14	N/A	N/A	N/A
Rv1196	37.22	LSGVLRVPPRPY	371-382	12	N/A	N/A	N/A
Rv1196	38.1	LSGVLRVPPRPYVMPHSPA	371-389	19	N/A	N/A	N/A
Rv1196	38.2	LSGVLRVPPRPYVMPHS	371-387	17	N/A	N/A	N/A
Rv1196	38.3	LSGVLRVPPRPYVMP	371-385	15	N/A	N/A	N/A
Rv1196	38.4	LSGVLRVPPRPYV	371-383	13	N/A	N/A	N/A

Supplementary Table 2: Peptides used for mapping Rv0125

Protein	Peptide	Amino acid sequence	Amino Acid range	Length (# of a.a.)	Peptide Pool	Matrix Pool #1	Matrix Pool #2
Rv0125	1	MSNSRRRSLRWSWLLSVLAA	1-20	20	1	H	A
Rv0125	2	WSWLLSVLAAVGLGLATAPA	11-30	20	1	H	B
Rv0125	3	VGLGLATAPAAQAPPALSQD	21-40	20	1	H	C
Rv0125	4	QAAPPALSQDRFADFPALPL	31-50	20	1	H	D
Rv0125	5	RFADFPALPLDPSAMVAQVG	41-60	20	1	H	E
Rv0125	6	DPSAMVAQVGPQVNVNINTKL	51-70	20	1	H	F
Rv0125	7	PQVNINTKLGYNNNAVAGCT	61-80	20	1	H	G
bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518638 ; this version posted December 2, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.							
Rv0125	9	GIVIDPNGVVLTNNHVIAGA	81-100	20	2	I	B
Rv0125	10	LTNNHVIAGATDINAFSVGS	91-110	20	2	I	C
Rv0125	11	TDINAFSVGSQQTYGVWDVG	101-120	20	2	I	D
Rv0125	12	GQTYGVDVGYDRTQDVAVL	111-130	20	2	I	E
Rv0125	13	YDRTQDVAVLQLRGAGGLPS	121-140	20	2	I	F
Rv0125	14	QLRGAGGLPSAAIGGGAVG	131-150	20	2	I	G
Rv0125	15	AAIGGGVAVGEPVAMGNMG	141-160	20	3	J	A
Rv0125	16	EPVAMGNNSGGGGTPRAVP	151-170	20	3	J	B
Rv0125	17	GQGGTPRAVPGRVVALGQTV	161-180	20	3	J	C
Rv0125	18	GRVVALGQTVQASDSLTGAE	171-190	20	3	J	D
Rv0125	19	QASDSLTAEEETLNGLIQFD	181-200	20	3	J	E
Rv0125	20	ETLNGLIQLFADAIQPGDSGG	191-210	20	3	J	F
Rv0125	21	AAIQPGDSGGPVVNGLQQV	201-220	20	3	J	G
Rv0125	22	PVNVNGQVVGMTAASDNF	211-230	20	4	K	A
Rv0125	23	GMNTAASDNFQLSQQGQGFA	221-240	20	4	K	B
Rv0125	24	QLSQGQQGFAIPGQAMAIA	231-250	20	4	K	C
Rv0125	25	IPIGQAMAIAQGQIRSGGGSP	241-260	20	4	K	D
Rv0125	26	GQIIRQGGSPTVHIGPTAFL	251-270	20	4	K	E
Rv0125	27	TVHIGPTAFLGLGVVDNNGN	261-280	20	4	K	F
Rv0125	28	GLGVVDNNNGNGARVQRVVG	271-290	20	4	K	G
Rv0125	29	GARVQRVVGSAPAASLGIST	281-300	20	5	L	A
Rv0125	30	APAASLGISTGDVITAVDGA	291-310	20	5	L	B
Rv0125	31	GDVITAVDGAPINSATAMAD	301-320	20	5	L	C
Rv0125	32	PINSATAMADALNGHHPGDV	311-330	20	5	L	D
Rv0125	33	ALNGHHPGDVISVTWQTKSG	321-340	20	5	L	E
Rv0125	34	ISVTWQTKSGGTRGNVTLA	331-350	20	5	L	F
Rv0125	35	GTRTGTVLAEGPPA	341-355	15	5	L	G
Rv0125	9.1	GTGIVIDPNGVVLTNNHVI	79-98	20	N/A	N/A	N/A
Rv0125	9.2	VIDPNGVVLTNNHVIAGATD	83-102	20	N/A	N/A	N/A
Rv0125	9.3	GAGTGIVIDPNGVVLTNNHVI	77-96	20	N/A	N/A	N/A
Rv0125	9.4	DPNGVVLTNHVIAGATDIN	85-104	20	N/A	N/A	N/A
Rv0125	9.5	GIVIDPNGVVLTNNHVIAGA	81-98	18	N/A	N/A	N/A
Rv0125	9.6	VIDPNGVVLTNNHVIAGA	83-100	18	N/A	N/A	N/A
Rv0125	9.7	GIVIDPNGVVLTNNHVI	81-96	16	N/A	N/A	N/A
Rv0125	9.8	DPNGVVLTNHVIAGA	85-100	16	N/A	N/A	N/A
Rv0125	9.9	GIVIDPNGVVLTNN	81-94	14	N/A	N/A	N/A
Rv0125	9.11	NGVLTNNHVIAGA	87-100	14	N/A	N/A	N/A
Rv0125	9.12	GIVIDPNGVVLT	81-92	12	N/A	N/A	N/A
Rv0125	9.13	VVLTNHVIAGA	89-100	12	N/A	N/A	N/A
Rv0125	9.14	GIVIDPNGVV	81-90	10	N/A	N/A	N/A
Rv0125	9.15	LTNHVIAGA	91-100	10	N/A	N/A	N/A