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Abstract

Streptococcus pneumoniae (pneumococcus) is a leading cause of morbidity and mortality worldwide.
Although multi-valent pneumococcal vaccines have curbed the incidence of disease, their introduction
has resulted in shifted serotype distributions that must be monitored. Whole genome sequence (WGS)
data provides a powerful surveillance tool for tracking isolate serotypes, which can be determined from
nucleotide sequence of the capsular polysaccharide biosynthetic operon (cps). Although software exists to
predict serotypes from WGS data, their use is constrained by the requirement of high-coverage Next
Generation Sequencing (NGS) reads. This can present a chalenge in so far as accessibility and data
sharing. Here we present PfaSTer, a method to identify 65 prevalent serotypes from individua S
pneumoniae genome sequences rather than primary NGS data. PfaSTer combines dimensionality
reduction from k-mer analysis with machine learning, allowing for rapid serotype prediction without the
need for coverage-based assessments. We then demonstrate the robustness of this method, returning
>97% concordance when compared to biochemical results and other in-silico serotypers. PfaSTer is open

source and available at: https://github.com/pfizer-opensource/pfaster.

I ntroduction

Sreptococcus pneumoniae (pneumococcus) presents a major concern to public health, being a common
cause of lower respiratory tract infections and pneumonia [1, 2]. Pneumococca disease is a particular
threat to the elderly, largely due to a high mortality risk when contracting pneumonia [1, 3].
Pneumococca conjugate vaccines (PCVs) can be used to prevent disease [4, 5] by affording protection
against common circulating serotypes. In S. pneumoniae, serotype is defined by the structure of a capsular
polysaccharide and the genes that direct biosynthesis of the polysaccharide encoded at the capsular
polysaccharide synthesis (cps) operon [6]. To date, over 95 pneumococcal serotypes carrying unique cps

sequences have been identified [7], with a fraction of these found to be prevalent in global populations
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[7]. As the capsular polysaccharide serves as the target of PCVs [4], surveillance of emerging strains
through serotyping is important for monitoring efficacy against circulating strains and the devel opment of

new multi-valent vaccines [8].

Traditionally, pneumococcal serotyping is performed using serotype-specific monoclonal antibody
reagents, either through the Quellung reaction or latex agglutination [9]. While held in high regard, such
methods are expensive and laborious [9, 10]. Antibody tests are also often unable to differentiate closely
related serotypes [9, 11], and visual assessment of agglutination results are susceptible to subjective
interpretation. Furthermore, the need for cell cultures presents a physical barrier for replicating results
between research groups. As an alternative, automated pipelines for predicting serotypes from Next
Generation Sequencing (NGS) data have been developed. Since 2016, PneumoCaT, SeroBA, and more
recently SeroCall, have been utilized to effectively identify serotypes in-silico [10, 12, 13]. While their
underlying algorithms differ, these methods all utilize the same input: raw NGS data from the cps locus
and a reference cps database for different serotypes. By leveraging an abundance of NGS reads, these

applications provide robust predictions of the cps sequence and therefore the in-silico serotype.

While a powerful resource, high-coverage NGS data can be unwieldy and computationally intensive to
work with. Furthermore, such data is not always readily available to researchers. For instance, the
PUDMLST [14] microbia database contains, to date, over 30,000 pneumococcal genomes from
submissions around the globe. Many of these assembled genomes lack accompanying NGS data sources

and would be incompatible with the previously described serotyping tools.

We devel oped the pneumococcal FASTA serotyper (PfaSTer) to address the need for in-silico serotyping
when constrained to working with assembled or aligned genome sequences. PfaSTer identifies k-mers at
the cps locus associated with each serotype, which are utilized in machine learning for prediction (Fig 1).
Using a validated dataset of >2,000 pneumaococcal isolates, we show that PfaSTer is both a fast and
highly accurate serotype caler, with predictions comparable to both serological results and other

computational methods.
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Materialsand Methods

Data sources

Training data for PfaSTer was obtained from the Sanger Institute Pathogenwatch platform
(pathogen.watch) in the form of de-novo assembled genomes for isolates spanning 65 different serotypes
(Table S1). For validation, sequences were obtained from the NCBI sequence read archive. Accessions

for these data can be found in (Table S2).

Mash sketch creation

Reference cps sequences (previously published and utilized by PneumoCAT [12] and seroBA [10]) were
used to develop a MinHash sketch [15] of 65 serotypes. A sliding window (k-mer) of 70 nucleotides was
used to scan each cps sequence, with each k-mer converted to a 128 bit integer using MurmurHash3
(v3.0.0). To account for bidirectionality, both the forward and reverse complemented k-mer were
considered and the lexicographically smaller sequence used for hashing. The k-mers corresponding to the

1,000 smallest integer values for each serotype were saved to the sketch.

Model training and probability thresholding

A Mash screen [16] was performed for 4,019 pneumococcal genomes using the previously described
sketch. Each hash of 70 base pair k-mersin a sliding window across the genome sequence was compared
to those in the reference sketch, and matching k-mers recorded. The total number of k-mers matched for
each serotype were then saved and used as features to train a Random Forest classifier using the R
tidymodels package (v0.1.2). To account for class imbalance due to differences in serotype prevaence,

overrepresented serotypes were down sampled to no more than 200 cases for training. Initial model

4
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81  performance was measured using a grid search and the average accuracy across 2000 interna cross-
82  validations. The model was then ported to python using the sklearn package (v1.1.1). Hyperparameter
83  tuning was performed using a grid-search, with optimal parameters found to be 300 estimators, 10
84  features per estimator, and 4 samples to split branches. Model performance was re-calculated and reported

85  using the average accuracy across 200 internal cross-validations.

86  Tolimit errant predictions, the model-computed probability of both correct and incorrect predictions was
87  recorded for each serotype based on the training dataset in cross-validation. For each sample, the serotype
88  with the highest prediction probability was saved and noted as correct or incorrect classification compared
89  totheir labeled serotype. The probability distributions of correct and incorrect classifications were used to
90 fit ageneraized linear model with a binomial distribution for each of 17 serotypes. For cases where the
91 twodistributions did not overlap, a minimum probability threshold was determined as (In(p/(1-p)) - bo)/bs,
92  where by is the fitted intercept, b, the slope, and p = 0.05. For cases where the distributions did overlap,
93  the minimum threshold was calculated using the upper limit of the one-side 95% confidence interval of

94  theincorrect classification distribution.

95

96  Feature alignment for closely related serotypes

97  Reference sequences for wciZ (serotype 15B), wciX (serotype 18C), and wciG (serotype 35B) were
98 obtained from annotated genomes at NCBI (accessions CR931664, CR931673, and KX021817,
99  respectively). BLASTN [17] was used to obtain the sequence of the corresponding gene for each

100  serotype, and the resulting reading frame was assessed for presence of a premature stop codon.

101

102 Validation with an external dataset
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103 A collection of short-read sequencing data for 2,065 UK isolates originally from Public Health England
104  was used for validation. Reads were de-novo assembled to genome sequences using SPAdes (v3.14.0, -
105  isolate mode) [18] and serotypes predicted using PfaSTer. Isolates that were previously labeled through
106  latex agglutination [10] to be non-typeable, or serotypes not supported by PfaSTer, were excluded from
107  calculations. This resulted in validation against 2,026 samples (Table S2). PfaSTer predicted serotypes
108  were compared to latex agglutination results as well as calls made by both PneumoCaT and SeroBA —

109  previously reported in [10] (Note S1).

110

111  Resaults

112 We sought to develop a method for predicting pneumococcal serotypes relying only on minimal datain
113 theform of consensus genome sequences. To this end, we first applied the MinHash (Mash) algorithm, a
114  dimensionality-reduction technique that can effectively compress up to entire genome sequences to a
115 small collection (or sketch) of several thousand sub-sequences (k-mers) [15]. As the capsular
116  polysaccharide is encoded at the cps operon, we started by performing a Mash Screen [16] comparing
117  >4,000 pneumococcal genomes against a k-mer sketch of each serotype's cps locus. The number of
118  matched k-mers to each serotype was then used as features to train a Random Forest classifier. This
119  method predicts the pneumococcal serotype based on the collective voting of hundreds of decision tree

120  estimators, each trained on a bootstrapped set of the >4,000 training samples.

121 Through internal cross-validation, we found the resulting model yielded a median accuracy of 97.8% in
122 our training data. To account for misclassification from low-confidence predictions, we recorded the
123 prediction probabilities returned by the Random Forest model during cross-validation and calculated the
124  probability distributions of correct and incorrect serotype calls (Fig S1). We then set thresholds based on
125  the 95% confidence intervals, flagging serotype predictions below these values as low-confidence.

126  Following this addition, most remaining misclassifications resulted from closely related serotypes, which
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127  could not be distinguished using the Mash screen results due to a high density of shared k-mers (Fig S2).
128  In particular, the serotype pairs 15B/C, 18B/C, 24B/F, and 35B/D had a higher rate of incorrect serotype
129  calls compared to other types during cross-validation (Table S3). While the genetic cause of the 24B and
130  24F capsular polysaccharides has previously been hypothesized and studied [6, 19], the exact mechanism
131 underlying their differing polysaccharide structures is still unclear. As we cannot reliably distinguish
132 serotype 24B from 24F at this time, PfaSTer reports Serogroup 24 when either of these typesis predicted
133 by the model. In contrast, modifications that inactivate genes that code for O-acetyltransferases (wciZ for
134  15B/C, wciX for 18B/C, and wxiG for 35B/D) [20-22] impact polysaccharide structure and serotype
135  designations. These modifications can include in/dels as well as SNVs leading to frame shifts and/or
136  premature stop codons. Unfortunately, subtle and heterogeneous modifications that inactivate a step in
137  polysaccharide biosynthesis and therefore polysaccharide structure are generally not detectable with the

138  Mash screen technique.

139  To overcome this challenge in classifying 15B/C, 18B/C, and 35B/D isolates, we added alocal alignment
140  stage when one of these serotypes is predicted by our model. This step searches the corresponding
141 acetyltransferase for premature termination that would inactivate the protein. By applying this check, we

142 were ableto successfully assign each isolate to the correct serotype.

143 As final validation, we applied the PfaSTer prediction pipeline to 2,026 isolates previously evaluated
144  using the in-silico serotyping tools PneumoCaT [12] and SeroBA [10], both of which utilize NGS read
145  dataas inputs. Compared to results from latex agglutination, PfaSTer showed 97.09% concordance in its
146  serotype predictions (Fig 2, Table S2). This is similar to the ~98% concordance previously reported by
147  Epping et a using PneumoCat and SeroBA [10]. Furthermore, serotype calling by PfaSTer was in high
148  concordance with the other computational methods, returning the same serotype as PneumoCaT in
149  97.97% of cases and SeroBA in 98.47% of cases (Fig 2, Table S2). PfaSTer aso demonstrated an
150  extremely rapid runtime during this benchmarking, with all 2,026 samples completed in under 2 hours on

151  a36 cpu Amazon EC2 c4 instance running 8 parallel processes.
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152  Among the isolates used for comparison, 17 were not typed by PfaSTer due to prediction probabilities
153  falling below our computed thresholds. For cases where PfaSTer predicted a serotype with high
154  confidence, most disagreement with other typing methods occurred with 15C and 35D designations
155  (Table S2). There were 19 instances where results from latex agglutination, PneumoCaT, and SeroBA
156  differed from not only PfaSTer, but also one-another when calling the serotype as 15B or 15C. PfaSTer
157  dso identified six isolates as serotype 35D, which were identified as 35B by PneumoCaT and latex
158  agglutination. As an additional validation, we saved the wciG aignments for the six 35D predictions, and
159  thewciZ aignments for five randomly selected 15C predictions that differed from latex agglutination. We
160  then reviewed the resulting protein sequences for truncation. In all cases, a premature stop was indeed
161  observed in the corresponding O-acetyltransferase (Fig S3). These isolates are therefore expected to

162  express 15C or 35D capsular polysaccharide, as predicted by PfaSTer.

163

164  Discussion

165 We have developed an efficient tool for rapid in-silico serotyping of S pneumoniae from assembled
166  genome sequences. This method uses a single-pass k-mer screen and a machine learning model to predict
167  the S pneumoniae serotype without needing to access raw NGS data. While a targeted alignment step is
168 included to resolve a small subset of serotype-specific features (a limitation shared among serotyping

169  pipelines[10, 12]), high density read datais not needed, in contrast to other published tools.

170 A magjor challenge in developing PfaSTer was establishing confidence in the serotype predictions when
171  constrained to a single genome sequence. While other in-silico algorithms designed to assign serotype
172 utilize per-base or per-k-mer coverage to generate confidence, this information is unavailable when
173 working with a single consensus genome. Although the Mash screen results estimate sequence similarity
174  to each serotype, they do not provide any statistical power on their own. This challenge was addressed at

175  the machine learning step by leveraging the innate properties of the Random Forest model. As the model
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176  consists of an ensemble of decision trees, prediction probability can be estimated as the proportion of
177  trees agreeing on the serotype [23]. Using these values, thresholds were established to flag low-
178  confidence serotype predictions. These probability estimates are also provided to users of PfaSTer to

179  support their own decision making.

180  Of the >2,000 isolates used to validate PfaSTer performance, a small fraction exhibited discordance with
181  other serotyping methods. This included 17 samples that did not return a serotype due to low-confidence
182  prediction. Of note, 5 of these isolates were unable to be typed with other in-silico pipelines or were
183  reported as a mixture of serotypes (Table S2). This suggests that predictions computed at low probability

184  may be caused in-part by low quality sequencing data.

185  Discordance was also noted in instances when PfaSTer identified mutations that predict the derived
186  serotypes 15C and 35D. In those samples latex agglutination called the serotype as 15B or 35B,
187  respectively. Notably, each of samples with alack of 15B/15C concordance mapped to mutations in the
188 same region of wciZ at a TA-tandem repeat that has been shown to dslip and cause indels during
189  replication (Fig $4) [24, 25]. As repeated frameshifts can convert the serotype between 15B (complete
190 weciZ gene and intact O-acetyltransferase open reading frame) and 15C, the serotype can switch over time.
191  [12, 24]. Additionally, as antibodies against 15B have been shown to cross-react with 15C polysaccharide
192 [20, 25], mislabeling could occur when typing with antisera. In contrast to 15C, 35D-causing mutations
193  were more widely distributed across wciG, causing premature termination at different positions along the
194  protein coding sequence (Fig S3B). PneumoCaT does not appear to support the identification of serotype
195 35D, only able to provide a 35B assignment for the samples included in this study. Like the output from

196  PfaSTer, the SeroBA tool also recognized this subset of isolates as serotype 35D.

197  Although both fast and powerful, serotype assignment using PfaSTer has certain restrictions. As PfaSTer
198  relies on a supervised learning model for prediction, enough cases must be available for training. While
199  over 95 pneumococca serotypes have been recorded [26], certain serotypes are more prevalent than

200  others throughout the world. As a result, PfaSTer prediction is limited to 65 types due to a shortage of

9
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201  available genomes for rare serotypes. From recent studies, commonly collected serotypes shared across
202 the US, Europe, and Asiainclude 1, 3, 6A, 6B, 14, 18C, 19F, and 23F, with other serotypes identified at
203  lower frequency [27-31]. Unsurprisingly, these prevalent serotypes are al included in the pneumococcal
204  conjugate vaccine (PCV) formulations of PCV 13 [32] and PCV 20 [8]. To support continual estimation of
205  vaccine coverage, the commonly circulating serotypes in these PCV formulations are all supported by
206  PfaSTer. As the serotype landscape changes over time, and genomes of new isolates are made available,

207  the number of serotypes predicted by PfaSTer may rise.

208 By relying on an assembled genome, PfaSTer also has reduced functionality for mixed samples compared
209  to some alignment-based serotype tools. For instance, the SeroCall [13] tool can identify both major and
210  minor serotypes in mixed sequencing data by aligning sequencing reads to multiple references. While
211  PfaSTer does not support prediction for assembled metagenomes, the presence of each serotype can
212 potentialy be inferred from the density of k-mers present in the Mash screen step [16]. Future

213 developments on PfaSTer could address this feature more directly.

214  Asgloba monitoring and sequencing of S. pneumoniae continues, PfaSTer provides a means to leverage
215  portable, but previously underutilized, genome sequences for data sharing and serotype tracking. Such
216  surveillance efforts could have important impact on understanding the spread of S. pneumoniae and
217  influence future vaccine design for combatting pneumococca disease. Finaly, this method may have

218  applications suitable for typing of other micrabia species beyond S. pneumoniae.

219

220 Data Summary

221  PfaSTer is open source and available for Linux on Github under Apache License v2.0 at

222 https://github.com/pfizer-opensource/pfaster

223 Accession numbers for sequencing data are listed in the supplementary material.

10
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244 Fig 1: PfaSTer workflow. PfaSTer takes an aligned or assembled S. pneumoniae genome seguence
245  (FASTA format) as an input. A MinHash screen for k-mers associated with each reference serotype is
246 first performed. The number of k-mers matched to each reference is then passed to a Random Forest
247  classifier to assign a predicted serotype. In cases where the model is unable to discern closely-related

248  types, alignment is performed to identify serotype-defining features.
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Fig 2: Concordance between serotyping methods for a validated dataset. Number of isolates (out of

2,026) returning the same serotype when tested using PfaSTer, latex agglutination, and two other in-silico

serotyping tools
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Fig S1: Probability thresholds for 17 serotypes. Model-computed probability distributions for correct
and incorrect predictions from cross-validation are shown for 17 serotypes that returned incorrect
predictions during model development. Red lines indicate the calculated probability thresholds when
distributions do not overlap, and black lines when tails of the distributions do overlap. Predictions made
a a probability below these set values are flagged as low-confidence. Calculations for modeling the

probability distributions and threshold determination are described in the Materials and Methods.
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Intersection

Fig S2: MinHash overlap across serotypes. Fraction of k-mers shared between each pair of 65 serotype

MinHash sketches. Proportions correspond to overlap ranging from 0 to 1,000 k-mers.
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Fig S3: Amino acid sequences of O-acetyltransferases in 15C and 35D isolates predicted by
PfaSTer. A) Alignment of a serotype 15B WciZ sequence to five isolates predicted as serotype 15C by
PfaSTer. Two variants of WciZ were observed across five isolates, both containing a premature stop prior
to residue 150. B) Alignment of a serotype 35B WciG sequence to six isolates predicted to be serotype
35D by PfaSTer. Three sequences terminate prematurely prior to residue 140, and three terminate further

downstream prior to residue 320.

401 440
weiZ (15B) TATTTGCTAT ATTATATATA TATATATATC TTTATTTTTC
ERR1439297 TATTTGCTAT ATTATATATA TATATAT--C TTTATTTTTC
ERR1436407 TATTTGCTAT ATTATATATA TATATAT--C TTTATTTTTC
ERR1439408 TATTTGCTAT ATTATATATA TATATAT--C TTTATTTTTC
ERR1439231 TATTTGCTAT ATTATATATA T------—- C TTTATTTTTC
ERR1439342 TATTTGCTAT ATTATATATA T-------- C TTTATTTTTC
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Fig $4: Frameshift mutations at a tandem repeat region of wciZ in serotype 15C. Isolates predicted
to be serotype 15C by PfaSTer carry multiple nuclectide deletions (red) in an AT-rich tandem repeat
(yellow) relative to a 15B reference sequence. Previous work has shown that the resulting frameshift

inactivates the WciZ protein and causes formation of the 15C capsular polysaccharide.

Table S1: Isolate names (pathogen.watch) and ser otypes for samplesused in PfaSTer training.

Table S2: ENA accessions and serotype caller resultsfor isolates used in exter nal validation.

Table S3: Fraction of incorrect prediction for each serotype class during cross validation.
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