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Abstract 8 

Streptococcus pneumoniae (pneumococcus) is a leading cause of morbidity and mortality worldwide. 9 

Although multi-valent pneumococcal vaccines have curbed the incidence of disease, their introduction 10 

has resulted in shifted serotype distributions that must be monitored. Whole genome sequence (WGS) 11 

data provides a powerful surveillance tool for tracking isolate serotypes, which can be determined from 12 

nucleotide sequence of the capsular polysaccharide biosynthetic operon (cps). Although software exists to 13 

predict serotypes from WGS data, their use is constrained by the requirement of high-coverage Next 14 

Generation Sequencing (NGS) reads. This can present a challenge in so far as accessibility and data 15 

sharing. Here we present PfaSTer, a method to identify 65 prevalent serotypes from individual S. 16 

pneumoniae genome sequences rather than primary NGS data. PfaSTer combines dimensionality 17 

reduction from k-mer analysis with machine learning, allowing for rapid serotype prediction without the 18 

need for coverage-based assessments. We then demonstrate the robustness of this method, returning 19 

>97% concordance when compared to biochemical results and other in-silico serotypers. PfaSTer is open 20 

source and available at: https://github.com/pfizer-opensource/pfaster. 21 

 22 

 23 

Introduction 24 

Streptococcus pneumoniae (pneumococcus) presents a major concern to public health, being a common 25 

cause of lower respiratory tract infections and pneumonia [1, 2]. Pneumococcal disease is a particular 26 

threat to the elderly, largely due to a high mortality risk when contracting pneumonia [1, 3]. 27 

Pneumococcal conjugate vaccines (PCVs) can be used to prevent disease [4, 5] by affording protection 28 

against common circulating serotypes. In S. pneumoniae, serotype is defined by the structure of a capsular 29 

polysaccharide and the genes that direct biosynthesis of the polysaccharide encoded at the capsular 30 

polysaccharide synthesis (cps) operon [6]. To date, over 95 pneumococcal serotypes carrying unique cps 31 

sequences have been identified [7], with a fraction of these found to be prevalent in global populations 32 
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[7]. As the capsular polysaccharide serves as the target of PCVs [4], surveillance of emerging strains 33 

through serotyping is important for monitoring efficacy against circulating strains and the development of 34 

new multi-valent vaccines [8]. 35 

Traditionally, pneumococcal serotyping is performed using serotype-specific monoclonal antibody 36 

reagents, either through the Quellung reaction or latex agglutination [9]. While held in high regard, such 37 

methods are expensive and laborious [9, 10]. Antibody tests are also often unable to differentiate closely 38 

related serotypes [9, 11], and visual assessment of agglutination results are susceptible to subjective 39 

interpretation. Furthermore, the need for cell cultures presents a physical barrier for replicating results 40 

between research groups. As an alternative, automated pipelines for predicting serotypes from Next 41 

Generation Sequencing (NGS) data have been developed. Since 2016, PneumoCaT, SeroBA, and more 42 

recently SeroCall, have been utilized to effectively identify serotypes in-silico [10, 12, 13]. While their 43 

underlying algorithms differ, these methods all utilize the same input: raw NGS data from the cps locus 44 

and a reference cps database for different serotypes. By leveraging an abundance of NGS reads, these 45 

applications provide robust predictions of the cps sequence and therefore the in-silico serotype.  46 

While a powerful resource, high-coverage NGS data can be unwieldy and computationally intensive to 47 

work with. Furthermore, such data is not always readily available to researchers. For instance, the 48 

PubMLST [14] microbial database contains, to date, over 30,000 pneumococcal genomes from 49 

submissions around the globe. Many of these assembled genomes lack accompanying NGS data sources 50 

and would be incompatible with the previously described serotyping tools. 51 

We developed the pneumococcal FASTA serotyper (PfaSTer) to address the need for in-silico serotyping 52 

when constrained to working with assembled or aligned genome sequences. PfaSTer identifies k-mers at 53 

the cps locus associated with each serotype, which are utilized in machine learning for prediction (Fig 1). 54 

Using a validated dataset of >2,000 pneumococcal isolates, we show that PfaSTer is both a fast and 55 

highly accurate serotype caller, with predictions comparable to both serological results and other 56 

computational methods.  57 
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 58 

Materials and Methods 59 

Data sources 60 

Training data for PfaSTer was obtained from the Sanger Institute Pathogenwatch platform 61 

(pathogen.watch) in the form of de-novo assembled genomes for isolates spanning 65 different serotypes 62 

(Table S1). For validation, sequences were obtained from the NCBI sequence read archive. Accessions 63 

for these data can be found in (Table S2). 64 

 65 

Mash sketch creation 66 

Reference cps sequences (previously published and utilized by PneumoCAT [12] and seroBA [10]) were 67 

used to develop a MinHash sketch [15] of 65 serotypes. A sliding window (k-mer) of 70 nucleotides was 68 

used to scan each cps sequence, with each k-mer converted to a 128 bit integer using MurmurHash3 69 

(v3.0.0). To account for bidirectionality, both the forward and reverse complemented k-mer were 70 

considered and the lexicographically smaller sequence used for hashing. The k-mers corresponding to the 71 

1,000 smallest integer values for each serotype were saved to the sketch. 72 

 73 

Model training and probability thresholding 74 

A Mash screen [16] was performed for 4,019 pneumococcal genomes using the previously described 75 

sketch. Each hash of 70 base pair k-mers in a sliding window across the genome sequence was compared 76 

to those in the reference sketch, and matching k-mers recorded. The total number of k-mers matched for 77 

each serotype were then saved and used as features to train a Random Forest classifier using the R 78 

tidymodels package (v0.1.2).  To account for class imbalance due to differences in serotype prevalence, 79 

overrepresented serotypes were down sampled to no more than 200 cases for training. Initial model 80 
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performance was measured using a grid search and the average accuracy across 2000 internal cross-81 

validations. The model was then ported to python using the sklearn package (v1.1.1). Hyperparameter 82 

tuning was performed using a grid-search, with optimal parameters found to be 300 estimators, 10 83 

features per estimator, and 4 samples to split branches. Model performance was re-calculated and reported 84 

using the average accuracy across 200 internal cross-validations. 85 

To limit errant predictions, the model-computed probability of both correct and incorrect predictions was 86 

recorded for each serotype based on the training dataset in cross-validation. For each sample, the serotype 87 

with the highest prediction probability was saved and noted as correct or incorrect classification compared 88 

to their labeled serotype. The probability distributions of correct and incorrect classifications were used to 89 

fit a generalized linear model with a binomial distribution for each of 17 serotypes. For cases where the 90 

two distributions did not overlap, a minimum probability threshold was determined as (ln(p/(1-p)) - b0)/b1, 91 

where b0 is the fitted intercept, b1 the slope, and p = 0.05. For cases where the distributions did overlap, 92 

the minimum threshold was calculated using the upper limit of the one-side 95% confidence interval of 93 

the incorrect classification distribution. 94 

 95 

Feature alignment for closely related serotypes 96 

Reference sequences for wciZ (serotype 15B), wciX (serotype 18C), and wciG (serotype 35B) were 97 

obtained from annotated genomes at NCBI (accessions CR931664, CR931673, and KX021817, 98 

respectively). BLASTN [17] was used to obtain the sequence of the corresponding gene for each 99 

serotype, and the resulting reading frame was assessed for presence of a premature stop codon. 100 

 101 

Validation with an external dataset 102 
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A collection of short-read sequencing data for 2,065 UK isolates originally from Public Health England 103 

was used for validation. Reads were de-novo assembled to genome sequences using SPAdes (v3.14.0, -104 

isolate mode) [18] and serotypes predicted using PfaSTer. Isolates that were previously labeled through 105 

latex agglutination [10] to be non-typeable, or serotypes not supported by PfaSTer, were excluded from 106 

calculations. This resulted in validation against 2,026 samples (Table S2). PfaSTer predicted serotypes 107 

were compared to latex agglutination results as well as calls made by both PneumoCaT and SeroBA – 108 

previously reported in [10] (Note S1). 109 

 110 

Results 111 

We sought to develop a method for predicting pneumococcal serotypes relying only on minimal data in 112 

the form of consensus genome sequences. To this end, we first applied the MinHash (Mash) algorithm, a 113 

dimensionality-reduction technique that can effectively compress up to entire genome sequences to a 114 

small collection (or sketch) of several thousand sub-sequences (k-mers) [15]. As the capsular 115 

polysaccharide is encoded at the cps operon, we started by performing a Mash Screen [16] comparing 116 

>4,000 pneumococcal genomes against a k-mer sketch of each serotype’s cps locus. The number of 117 

matched k-mers to each serotype was then used as features to train a Random Forest classifier. This 118 

method predicts the pneumococcal serotype based on the collective voting of hundreds of decision tree 119 

estimators, each trained on a bootstrapped set of the >4,000 training samples. 120 

Through internal cross-validation, we found the resulting model yielded a median accuracy of 97.8% in 121 

our training data. To account for misclassification from low-confidence predictions, we recorded the 122 

prediction probabilities returned by the Random Forest model during cross-validation and calculated the 123 

probability distributions of correct and incorrect serotype calls (Fig S1). We then set thresholds based on 124 

the 95% confidence intervals, flagging serotype predictions below these values as low-confidence. 125 

Following this addition, most remaining misclassifications resulted from closely related serotypes, which 126 
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could not be distinguished using the Mash screen results due to a high density of shared k-mers (Fig S2).  127 

In particular, the serotype pairs 15B/C, 18B/C, 24B/F, and 35B/D had a higher rate of incorrect serotype 128 

calls compared to other types during cross-validation (Table S3). While the genetic cause of the 24B and 129 

24F capsular polysaccharides has previously been hypothesized and studied [6, 19], the exact mechanism 130 

underlying their differing polysaccharide structures is still unclear. As we cannot reliably distinguish 131 

serotype 24B from 24F at this time, PfaSTer reports Serogroup 24 when either of these types is predicted 132 

by the model. In contrast, modifications that inactivate genes that code for O-acetyltransferases (wciZ for 133 

15B/C, wciX for 18B/C, and wxiG for 35B/D) [20-22] impact polysaccharide structure and serotype 134 

designations. These modifications can include in/dels as well as SNVs leading to frame shifts and/or 135 

premature stop codons. Unfortunately, subtle and heterogeneous modifications that inactivate a step in 136 

polysaccharide biosynthesis and therefore polysaccharide structure are generally not detectable with the 137 

Mash screen technique. 138 

To overcome this challenge in classifying 15B/C, 18B/C, and 35B/D isolates, we added a local alignment 139 

stage when one of these serotypes is predicted by our model. This step searches the corresponding 140 

acetyltransferase for premature termination that would inactivate the protein. By applying this check, we 141 

were able to successfully assign each isolate to the correct serotype. 142 

As final validation, we applied the PfaSTer prediction pipeline to 2,026 isolates previously evaluated 143 

using the in-silico serotyping tools PneumoCaT [12] and SeroBA [10], both of which utilize NGS read 144 

data as inputs. Compared to results from latex agglutination, PfaSTer showed 97.09% concordance in its 145 

serotype predictions (Fig 2, Table S2). This is similar to the ~98% concordance previously reported by 146 

Epping et al using PneumoCat and SeroBA [10]. Furthermore, serotype calling by PfaSTer was in high 147 

concordance with the other computational methods, returning the same serotype as PneumoCaT in 148 

97.97% of cases and SeroBA in 98.47% of cases (Fig 2, Table S2). PfaSTer also demonstrated an 149 

extremely rapid runtime during this benchmarking, with all 2,026 samples completed in under 2 hours on 150 

a 36 cpu Amazon EC2 c4 instance running 8 parallel processes. 151 
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Among the isolates used for comparison, 17 were not typed by PfaSTer due to prediction probabilities 152 

falling below our computed thresholds. For cases where PfaSTer predicted a serotype with high 153 

confidence, most disagreement with other typing methods occurred with 15C and 35D designations 154 

(Table S2). There were 19 instances where results from latex agglutination, PneumoCaT, and SeroBA 155 

differed from not only PfaSTer, but also one-another when calling the serotype as 15B or 15C. PfaSTer 156 

also identified six isolates as serotype 35D, which were identified as 35B by PneumoCaT and latex 157 

agglutination. As an additional validation, we saved the wciG alignments for the six 35D predictions, and 158 

the wciZ alignments for five randomly selected 15C predictions that differed from latex agglutination. We 159 

then reviewed the resulting protein sequences for truncation. In all cases, a premature stop was indeed 160 

observed in the corresponding O-acetyltransferase (Fig S3). These isolates are therefore expected to 161 

express 15C or 35D capsular polysaccharide, as predicted by PfaSTer.  162 

 163 

Discussion 164 

We have developed an efficient tool for rapid in-silico serotyping of S. pneumoniae from assembled 165 

genome sequences. This method uses a single-pass k-mer screen and a machine learning model to predict 166 

the S. pneumoniae serotype without needing to access raw NGS data. While a targeted alignment step is 167 

included to resolve a small subset of serotype-specific features (a limitation shared among serotyping 168 

pipelines [10, 12]), high density read data is not needed, in contrast to other published tools. 169 

A major challenge in developing PfaSTer was establishing confidence in the serotype predictions when 170 

constrained to a single genome sequence. While other in-silico algorithms designed to assign serotype 171 

utilize per-base or per-k-mer coverage to generate confidence, this information is unavailable when 172 

working with a single consensus genome. Although the Mash screen results estimate sequence similarity 173 

to each serotype, they do not provide any statistical power on their own. This challenge was addressed at 174 

the machine learning step by leveraging the innate properties of the Random Forest model. As the model 175 
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consists of an ensemble of decision trees, prediction probability can be estimated as the proportion of 176 

trees agreeing on the serotype [23]. Using these values, thresholds were established to flag low-177 

confidence serotype predictions. These probability estimates are also provided to users of PfaSTer to 178 

support their own decision making. 179 

Of the >2,000 isolates used to validate PfaSTer performance, a small fraction exhibited discordance with 180 

other serotyping methods. This included 17 samples that did not return a serotype due to low-confidence 181 

prediction. Of note, 5 of these isolates were unable to be typed with other in-silico pipelines or were 182 

reported as a mixture of serotypes (Table S2). This suggests that predictions computed at low probability 183 

may be caused in-part by low quality sequencing data.  184 

Discordance was also noted in instances when PfaSTer identified mutations that predict the derived 185 

serotypes 15C and 35D. In those samples latex agglutination called the serotype as 15B or 35B, 186 

respectively. Notably, each of samples with a lack of 15B/15C concordance mapped to mutations in the 187 

same region of wciZ at a TA-tandem repeat that has been shown to slip and cause indels during 188 

replication (Fig S4) [24, 25]. As repeated frameshifts can convert the serotype between 15B (complete 189 

wciZ gene and intact O-acetyltransferase open reading frame) and 15C, the serotype can switch over time. 190 

[12, 24]. Additionally, as antibodies against 15B have been shown to cross-react with 15C polysaccharide 191 

[20, 25], mislabeling could occur when typing with antisera. In contrast to 15C, 35D-causing mutations 192 

were more widely distributed across wciG, causing premature termination at different positions along the 193 

protein coding sequence (Fig S3B). PneumoCaT does not appear to support the identification of serotype 194 

35D, only able to provide a 35B assignment for the samples included in this study. Like the output from 195 

PfaSTer, the SeroBA tool also recognized this subset of isolates as serotype 35D. 196 

Although both fast and powerful, serotype assignment using PfaSTer has certain restrictions. As PfaSTer 197 

relies on a supervised learning model for prediction, enough cases must be available for training. While 198 

over 95 pneumococcal serotypes have been recorded [26], certain serotypes are more prevalent than 199 

others throughout the world. As a result, PfaSTer prediction is limited to 65 types due to a shortage of 200 
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available genomes for rare serotypes. From recent studies, commonly collected serotypes shared across 201 

the US, Europe, and Asia include 1, 3, 6A, 6B, 14, 18C, 19F, and 23F, with other serotypes identified at 202 

lower frequency [27-31]. Unsurprisingly, these prevalent serotypes are all included in the pneumococcal 203 

conjugate vaccine (PCV) formulations of PCV13 [32] and PCV20 [8]. To support continual estimation of 204 

vaccine coverage, the commonly circulating serotypes in these PCV formulations are all supported by 205 

PfaSTer. As the serotype landscape changes over time, and genomes of new isolates are made available, 206 

the number of serotypes predicted by PfaSTer may rise. 207 

By relying on an assembled genome, PfaSTer also has reduced functionality for mixed samples compared 208 

to some alignment-based serotype tools. For instance, the SeroCall [13] tool can identify both major and 209 

minor serotypes in mixed sequencing data by aligning sequencing reads to multiple references. While 210 

PfaSTer does not support prediction for assembled metagenomes, the presence of each serotype can 211 

potentially be inferred from the density of k-mers present in the Mash screen step [16]. Future 212 

developments on PfaSTer could address this feature more directly. 213 

As global monitoring and sequencing of S. pneumoniae continues, PfaSTer provides a means to leverage 214 

portable, but previously underutilized, genome sequences for data sharing and serotype tracking. Such 215 

surveillance efforts could have important impact on understanding the spread of S. pneumoniae and 216 

influence future vaccine design for combatting pneumococcal disease. Finally, this method may have 217 

applications suitable for typing of other microbial species beyond S. pneumoniae. 218 

 219 

Data Summary 220 

PfaSTer is open source and available for Linux on Github under Apache License v2.0 at 221 

https://github.com/pfizer-opensource/pfaster  222 

Accession numbers for sequencing data are listed in the supplementary material. 223 
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 243 

Fig 1: PfaSTer workflow. PfaSTer takes an aligned or assembled S. pneumoniae genome sequence 244 

(FASTA format) as an input. A MinHash screen for k-mers associated with each reference serotype is 245 

first performed. The number of k-mers matched to each reference is then passed to a Random Forest 246 

classifier to assign a predicted serotype. In cases where the model is unable to discern closely-related 247 

types, alignment is performed to identify serotype-defining features. 248 
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 249 

Fig 2: Concordance between serotyping methods for a validated dataset. Number of isolates (out of 250 

2,026) returning the same serotype when tested using PfaSTer, latex agglutination, and two other in-silico 251 

serotyping tools 252 

. 253 
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 254 

Fig S1: Probability thresholds for 17 serotypes. Model-computed probability distributions for correct 255 

and incorrect predictions from cross-validation are shown for 17 serotypes that returned incorrect 256 

predictions during model development. Red lines indicate the calculated probability thresholds when 257 

distributions do not overlap, and black lines when tails of the distributions do overlap. Predictions made 258 

at a probability below these set values are flagged as low-confidence. Calculations for modeling the 259 

probability distributions and threshold determination are described in the Materials and Methods. 260 
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 261 

Fig S2: MinHash overlap across serotypes. Fraction of k-mers shared between each pair of 65 serotype 262 

MinHash sketches. Proportions correspond to overlap ranging from 0 to 1,000 k-mers. 263 

 264 

 265 
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266 

Fig S3: Amino acid sequences of O-acetyltransferases in 15C and 35D isolates predicted by267 

PfaSTer. A) Alignment of a serotype 15B WciZ sequence to five isolates predicted as serotype 15C by268 

PfaSTer. Two variants of WciZ were observed across five isolates, both containing a premature stop prior269 

to residue 150. B) Alignment of a serotype 35B WciG sequence to six isolates predicted to be serotype270 

35D by PfaSTer. Three sequences terminate prematurely prior to residue 140, and three terminate further271 

downstream prior to residue 320. 272 

 273 
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Fig S4: Frameshift mutations at a tandem repeat region of wciZ in serotype 15C. Isolates predicted 274 

to be serotype 15C by PfaSTer carry multiple nucleotide deletions (red) in an AT-rich tandem repeat 275 

(yellow) relative to a 15B reference sequence. Previous work has shown that the resulting frameshift 276 

inactivates the WciZ protein and causes formation of the 15C capsular polysaccharide. 277 

 278 

Table S1: Isolate names (pathogen.watch) and serotypes for samples used in PfaSTer training. 279 

Table S2: ENA accessions and serotype caller results for isolates used in external validation. 280 

Table S3: Fraction of incorrect prediction for each serotype class during cross validation. 281 

 282 
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